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Abstract.  A (t. n)-locally random reduction maps a problem instance x into a .set 
of problem instances Yl . . . . .  ?,,,~ in such a way that it is easy to construct the answer 
to x from the answers to Yl . . . . .  Yn,  and yet the distribution on t-element subsets 
of Yl . . . . .  y, depends only on Ixl. In this paper we formalize such reductions and 
give improved methods for achieving them. Then we give a cryptographic application, 
showing a new way to prove in perfect zero knowledge that committed bits x t  . . . . .  Xm 

satisfy some predicate Q. Unlike previous techniques for such perfect zero-knowledge 
proofs, ours uses an amount of communication that is bounded by a fixed polynomial 
in m, regardless of the computational complexity of Q. 

Key words. Random reducibility. Zero-knowledge protocols. 

* These results were presented in preliminary form at the 10th Annual Crypto Conference, Santa Barbara, 
CA, August 1990. The work of D. Beaver was done at Harvard University, supported in part by NSF Grant CCR- 
870-4513. The work of J. Kilian was done at MIT and Harvard University, supported by an NSF postdoctoral 
fellowship. 

17 



18 D. Beaver, J. Feigenbaum, J. Kilian. and P. Rogaway 

I. Introduction 

We develop and apply a new type of reduction, which we call a locally random reduction. 
We begin with some historical motivation and context for our work. Next, we present an 
improved construction of locally random reductions. Finally, we apply these reductions 
to zero-knowledge proofs on committed bits. 

I. 1. Motivation and Historical Context 

The notion of reducibility among computational problems has long had a pervasive influ- 
ence on the theory of computation. To analyze the average-case complexity of  a problem, 
it often suffices to reduce an arbitrary instance of the problem to a random instance. For 
example, let p be a prime and let t~ be a generator of  Zp. The problem of comput- 
ing Iog,~ x mod p, where x ~ Zp, can be reduced to that of  computing log,~ y mod p, 
where y is distributed uniformly over Zp. Simply choose r uniformly at random from 
{1 . . . . .  p - 1}, compute y = ~trx mod p, and let log,, x = (Iog,~ y) - r mod(p  - '  1). 
Thus, a "hard" instance of x can be generated by choosing x at random: If computing 
log,~ x were easy for a randomly chosen x, then it would be easy for any value of x. 

More generally, suppose computing f ( x ) ,  where Ix l = m,  could be randomly reduced 
to computing g(y), such that y is distributed according to some probability measure Rm. 
Then the average-case complexity of  computing g(y), where the average is computed 
with respect to Rm, is as high as the worst-case complexity of computing f ( x ) .  

Unfortunately, this approach is limited, because of the following result. Suppose that 
E~' 5~ II P and that f is NP-hard. Then there is no polynomial-time random reduction 
from f to any function g such that the distribution on random instances y depends only 
on Ix l (see [ 1 ]). This result holds for a generalized notion of random reductions, known as 
single-oracle instance-hiding schemes. These schemes have a probabilistic polynomial- 
time bounded player P and an unbounded player O that always answers correctly. P 
wishes to compute f (x) for some function f and an input x. P is allowed to flip coins and 
to interact with O for an arbitrary number of  rounds but is not allowed to reveal anything 
more than Ixl to O. Here, "revealing only Ixl to O" means that, if Ixll = Ix21, then O 's  
views of the conversation when x = xl and when x ---- x2 are identically distributed. A 
more precise and general formulation of this idea may be found in [1]. 

Rivest [17], [1 ] proposed the more general notion of multioracle instance-hiding 
schemes, in which P is allowed to interact with a number of  oracles Oi . . . . .  On. P is not 
allowed to reveal more than Ix l to any single oracle Oi, but two or more oracles together 
may have enough information to reconstruct x completely. Whereas schemes with only 
one oracle appear relatively weak, Beaver and Feigenbaum proved the following theorem 
for multioracle schemes. 

T h e o r e m  [3]. For any function f ,  there exists an (Ixl -4- l)-oracle instance-hiding 
scheme that reveals at most Ix l. 

Because any function f :  {0, 1} m > {0, 1} can be trivially reduced to a function 
g: {0, 1} " - c  > {0, I}2",the f a c t o r o f l x l +  1 may be reduced to a factor of lx l - c lglx l. 
In fact, we later show how to reduce this to Ixl/c lglxl. 
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Lipton [15] translated the arguments of  13] into the language of multivariate polyno- 
mials and applied them to the area of program testing. This framework is much easier 
to work with than the original framework, which involved multiparty computations on 
shared secrets, and furthermore allows useful program-testing results for multivariate 
polynomials of low degree to be proved. It has been observed that Lipton's program- 
testing reductions imply average-case complexity results, such as the following theorem 
on computing permanents over finite fields. 

Theo rem [15]. Let F be a finite field with more than m + 1 elements. Suppose that, 
for  some probabilistic polynomial-time algorithm P, and for  M chosen uniformly from 
m x m matrices, 

Pr [P(M)  = perm(M)] > I 
3(m + 1) 

Then there exists a probabilistic polynomial-time algorithm Q such that, for  all m • m 
matrices M, 

Pr[Q(M) -- perm(M)] > I - 2 .... . 

Taking the contrapositive, if computing permanents over large finite fields is difficult 
in the worst case, it must also be difficult for an g2( l /m)  fraction of the instances. 
Since the results of Beaver and Feigenbaum [3] and Lipton [15] appeared, a number of 
researchers have used random-self-reducibility properties of  multivariate polynomials 
to show, among other things, that P#P c IP (see 116]), IP = PSPACE (see I191), and 
MIP = NEXPTIME (see [2]). A detailed overview of the relationship of locally random 
reductions to other basic concepts in complexity theory can be found in [9]. 

1.2. Our Results 

In this paper, we provide a formal definition of locally random reductions, exhibit an 
improved general construction of such reductions, and apply them to zero-knowledge 
proof systems. Informally, a (t, n)-locally random reduction from a function f to a 
function g works as follows. To compute f ( x ) ,  we use x and a string r o f" random coin- 
flips" to generate Yl . . . . .  y,,. Here n and t depend only on m = Ixl. We recover f ( x )  
by computing simple functions of x, r, and g(Yl) . . . . .  g(y , ) .  Moreover, for any x0 and 
xl of the same length m, for any il i t ,  the distribution yO ~,0 induced by x0 is 

�9 �9 � 9  v] induced by x~. We prove the following theorem, identical to the dis t r ibut ion  y i l ,  . ,, 
which is stated informally here; a formal statement and proof are given in Section 3. 

Theo rem 1. For any function f :  {0, 1}" ~ {0, 1} and any constant c > 0, there i sa  
function g such that f is (t, t m / c  lg m)-Iocally random reducible to g. 

This improves on the results of [3] and [15] mentioned above. 
We apply locally random reductions in a novel protocol for zero-knowledge proofs on 

committed bits. Zero-knowledge proof systems, as originally formulated by Goldwasser 
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et al. [13], are two-party protocols in which the parties have a common input x, and one 
party (the prover) convinces the other (the verifier) that, say, f ( x )  = 1, without revealing 
anything about x except that f ( x )  = 1. We consider a related setting in which the prover 
publishes a commitment to its private input x and then at some later time proves in zero- 
knowledge to the verifier that f ( x )  = 1. Furthermore, f may be unknown at the time x 
is committed. 

We consider how to implement such proofs in the presence of an ideal commitment 
scheme. Both prover and verifier have unlimited computational power, no complexity- 
theoretic assumptions are made, and an ideal bit commitment scheme is assumed as a 
primitive. A natural question to ask is whether zero-knowledge proofs can actually be 
performed on committed bits in this setting. This question has been answered in the 
affirmative by several researchers (e.g., [5] and [18]); a written account of  a more recent 
scheme appears in [6]. 

It is natural to ask whether an interactive proof system is at all interesting if it requires 
the verifier as well as the prover to have unlimited computational power. The answer is 
yes, for the following reason: We are focusing on the communication cost of proving 
the value of a predicate on a set of  committed bits. It is not at all clear (and might even 
be counterintuitive) that an arbitrary predicate f can be proven in a communication- 
efficient manner, even if both prover and verifier have enough computational power 
to compute f .  All previous schemes for zero-knowledge proofs on committed bits, 
including those of [5], [6], and [18], have bit complexity proportional to the circuit 
complexity of  f ,  where by "bit complexity" we mean the total number of  bits committed 
to or communicated between the two players. Thus, if f is an arbitrary predicate on m 
bits, a zero-knowledge proof that f ( x )  = 1 will require exponential communication 
if the protocols of [5], [61, and [18], regardless of the amount of computational power 
one allows the verifier. By applying locally random reductions, we achieve a protocol 
whose total communication cost is polynomial, even if the circuit complexity of  f is 
exponential. 

Theo rem 2. Given an ideal commitment scheme, there exist protocols for committing 
and decommiiting bits and a protocol for proving arbitrary predicates on a set of com- 
mitted bits. The proof system reveals nothing about the committed bits other than what 
is implied by the predicate's being true. Furthermore, the bit complexity of the proof 
system is polynomial in the number of input bits to the predicate--it is independent of 
the predicate's computational complexity. 

A formal statement and proof of  this theorem appears in Section 4. 
Although the fact that both prover and verifier in our protocol have unlimited com- 

putational power does not detract from the theoretical importance of the fact that the 
protocol 's communication costs are polynomial, it does render the protocol impractical. 
With respect to practical applicability, our protocol is not an improvement over those of  

[51, [6], and [181. 
The rest of  the paper is organized as follows. In Section 2 we formally define locally 

random reductions and other notions that we use later in the paper. In Section 3 we 
give our improved construction of locally random reductions. In Section 4 we give our 
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communication-efficient protocol for zero-knowledge proofs on committed bits. Open 
questions are given in Section 5. 

These results first appeared in our Technical Memorandum [4]. 

2. Preliminaries 

2.1. Locally Random Reductions 

We now formalize the intuition of Section 1.2. 

Definition 1. Let f :  D --~ {0, 1 }*, g: D '  ~ {0. 1 }*, and t, n: N ~ N. We say that f 
is (t, n)-Iocally r a n d o m  reducible to g in time Q(m) if there is a polynomial p(m) and 
a pair of  Q(m)-time computable functions (scatter, reconstruct) such that: 

�9 [Correctness] For all m E N and x ~ D N {0, 1 }m for at least three-quarters of  all 
r E {0, 1} pOn), 

f (x) = reconstruct(x, r, g(Yl) . . . . .  g(Yn~m))), 

where (Yl . . . . .  Yn~,,~)) = scatter(x, r). 
[Local randomness]  For all m E N and {il . . . . .  item)} c {1 . . . . .  n(m)}, if r is 
chosen uniformly at random from {0, 1 }P~), then, for any xl, x2 6 D f3 {0, 1 },n, the 
distribution on (yi, . . . . .  yi,,,,) induced by scatter(xl, r) is identical to that induced 
by scatter(x2, r). 

More succinctly, we write " f  is (t, n)-lrr to g." When we omit mention of  Q, it means 
that Q(m) is a polynomial but that the specific polynomial involved is unimportant 
for the result under discussion. In the special case in which f = g, we say that f is 
"(t, n)-locally random self-reducible." 

Informally, if T is a subset of  the target instances {Yl . . . . .  Y,,(m)}, and ITI < t(m), 
then T leaks no information about the original instance x, except its length m. 

2.2. Function Arithmetization 

A powerful technique for dealing with a Boolean function f :  {0, 1} m --~ {0, 1} is to 
treat f as a multivariate polynomial P over some finite field F. In this way, algebraic 
properties of  polynomials can be directly exploited. Such arithmetization of  Boolean 
functions is an important insight of Ben-Or et al. [7]. The polynomial P is sometimes 
referred to as a "multilinear extension of f over F"  (e.g., in [2], [16], and [19]). 

Fix a function f :  {0, 1} 'n ~ {0, 1} and a finite field F. We use or' i to denote the 
i polynomial xi and a 0 to denote the polynomial 1 - xi, (The "1" is the multiplicative 

identity of  F.) Given an m-bit string a = a~ �9 �9 "am, we define the polynomial ~, by 

1-I' ~a = Ota i �9 
i=1 
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Now let the polynomial P(x)  be given by 

P ( x ) =  Z f(a)6~(x).  
a6{0.1} n' 

This is the arithmetization of  f over F. 
Here is an example. Let f (xlx2x3) = xl ~ x2 ~ x3, where ~ denotes exclusive-or. 

Then the arithmetization of f is the polynomial 

P(x l . xe ,  x 3 ) = X l ( l  - x 2 ) ( l  - x 3 ) + ( I  -Xl)X2(1 - x 3 ) + ( 1  - x l ) ( l  - - X 2 ) X 3 ~ t - x I X 2 X 3  . 

At this point, we make two observations. First, in the definition of  ~a, each variable 
can appear at most once in the product, and so 6,, is linear in each variable xi. Thus P is 
also linear in each variable xi (being the sum of monomials that are linear in xi). Second, 
for any x e {0, I} m, P(x) = f ( x ) .  This identity may be verified by noting that, in the 
sum given by the definition of  P(x),  all the terms are zero except for one that is equal to 

f ( x ) .  
Throughout this paper we assume that the finite field F has characteristic two. This 

allows us to choose an element of  F uniformly at random simply by flipping coins. All of 
our definitions and results can be stated for F of  characteristic greater than two as well. 
Certain protocols that work with probability one when F has characteristic two may 
fail with exponentially small probability when F has a higher characteristic, because a 
sequence of  coin flips may fail to yield an element of  F. Otherwise, everything that we 
present is the same for all finite fields. 

3. Improved Locally Random Reductions 

We now show how to improve the results of Beaver and Feigenbaum [3] and Lipton 
[15]. We first exhibit a parametrized family of  random self-reductions for multivariate 
polynomials over sufficiently large finite fields. We then give, for any constant c > 0 
and any m-bit function f ,  a (t, t Lm/c Ig mJ)-Iocally random reduction from f to some 
other function g. 

Lemma 1. There is a polynomial Q(m) having the following proper~. Let d and t be 
numbers, and let F be a finite field of  at least dt + 2 points. Let P(xl . . . . .  x,,,) be a 
polynomial in F[xl . . . . .  Xm] of total degree at most d. Then P is locally random self- 
reducible in time Q(m + d + t + lgl FI). Furthermore, there is a single pair of functions 
(scatter, reconstruct) that serves as a locally random self-reduction for any P satisfying 
the above conditions. 

Proof. Our proof proceeds along the lines of  [3], using the polynomial framework of  
[15]. First, we define scatter(X, r). Let X = (xl . . . . .  Xm) ~ F m, and regard r as a set 
of  mt random elements of F, denoted {Ci,j }, where 1 < i < m and I < j < t. Let 
or1 . . . . .  ~dt+l denote distinct nonzero elements of  F. Define Pi (Z) by 

pi(z) = ci.tz t + ""  + ci.jz + xi. 
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Finally, define 

scatter( X,  {ci, j } ) = (Yi . . . . .  Yat + l ), 

where Yk = (Pl(O~k) . . . . .  pm(Olk)). 
Before describing reconstruct, we explain our definition of scatter. Define/3(z)  by 

/3(z) = P ( p l ( z )  . . . . .  pro(Z)). 

Because P is of  total degree at most d, and each Pi (z) is of  degree t in z, the curve/3(z)  
is of degree at most dt .  By definition, 

P(Yk)  = /3(ott) 

and 

P ( X )  = / 3 ( 0 )  (because pi(O) = xi). 

We now define reconstruct. Recall that computing P ( X )  is equivalent to computing 
/3(0). Because/3 is a univariate polynomial of  degree at most dt ,  P(O) may be recov- 
ered f rom/3 (ut) . . . . .  /3 (Ud,+l) by Lagrangian interpolation. More explicitly, we define 
scatter by 

dt+l 
sca t t er (P(YI )  . . . . .  P(Yat+l))  = E tkYk, 

k= l  

where tl . . . . .  tdr+~ ~ F are constants defined by 

-_~Z . 1-1 tk 
, t L  ~k  --  Olj j#k 

Thus, (scatter, reconstruct) has the correctness property required by Definition 1, 
and both scatter and reconstruct can be computed in the stated polynomial number of 
steps. Thus it suffices to show that, for any Xi ,  X2 ~ F m and any sequence (il . . . . .  it), 
the distribution on (Yi, . . . . .  Yi,) induced by scat ter(Xi ,  r)  is the same as that induced 
by scatter(X2, r),  i.e., that (scatter, reconstruct) has the local randomness property also 
required by Definition 1. We show this by using the following well known fact about poly- 
nomial interpolation: Given points (xj, Yl) . . . . .  (xt, Yl), where all the xi 's  are distinct 
and nonzero, and fixing co, there is exactly one polynomial of  the form ctz t + . . .  +cl  z +co 
that agrees with all of these points. Thus, the fact that the ci.)'s are chosen independently 
and uniformly at random, combined with our definition of scatter, implies that, for any 
distinct a~, . . . . .  ak, ~ F - {0}, and any X, Y~, . . . . .  Yk, ~ F m, there is exactly one con- 
sistent value of C. Therefore, the distribution on (Y~, . . . . .  Y~,) is uniform o v e r  (Fro) t, 
for any value of X ~ Fm. [] 

Beaver and Feigenbaum showed that, for any m-bit boolean function f ,  there is a 
function g such that f is (1, m + i)-locally random reducible to g. We now show how 
to reduce the total number of  queries from m + 1 to [ m / c  Ig m J, for any constant c > 0. 
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T h e o r e m 2 .  Fixacons tantc  > Oandafunct iont:  N ~ N. Thenthereisapolynomial  
Q(m) having the following property: For any function f :  {0, 1} m ~ {0, 1} there is a 

function g such that f is (t, t [m/c  lg m)J )-locally random reducible to g in time Q(m).  

Proof. Let F be a finite field of the form GF(2t), where l >_ [mt]. We first show 
how to reduce the computation of  the arithmetization P (xl, .. �9 x,,,) of  f over F to the 
computation of another multivariate polynomial P* (YR . . . . .  yo) over F of  total degree 
at most [m/c  lgmJ. We then apply Lemma l to complete our proof. Partition the set 
{1 . . . . .  m} into disjoint subsets Si . . . . .  Sd, each of size at most c l g m  + 1. For any i 
and any nonempty T c_ Si, we define a new variable YT, given by 

Y T  = 1 ~  x i '  
iET  

Let I = {il . . . . .  ik} be any subset of the indices {1 . . . . .  m} and let ax i , . .  "xik be a 
monomial in which each variable appears at most once. We can transform this degree 
k < m monomial into a monomial of degree < d via the mapping 

d 

ax i~  �9 �9 . x ik  ?, a I - I  y l n s i  �9 
i=1 

It is easy to verify that the values of  the two monomials are equal, given the above 
change of  variables. Because the arithmetization P of  f is a sum of monomials in which 
each variable appears once, transforming each monomial of  P as above yields a new 
polynomial P* of degree at most d. Finally, the subscripts taken by our variables y r  can 
be renamed integers instead of  sets. This purely syntactic transformation will sometimes 
be made for notational reasons, allowing us to say yl . . . . .  y,, when convenient, but it is 
otherwise unnecessary. We can easily bound v, the number of  variables in P*, by 

m . 2 e l g i n +  I < . 
U < 

- - c l g m  

Here is a simple example of the change of variables, with m = 6 and d = 3. Suppose 
that 

P ( X l , . . . ,  x6) ---- XlX2X3X4-~5)f6 - -  x 2 x 3 x 6  + 2XlX2X3X6. 

First, let Si = {1,2}, $2 = {3, 4}, and $3 = {5, 6}, yielding variables 

Ylll, Y121, Yll.21, Yl31, Y[4}, Y13.41, YlsI, Y[6], Yl5.61. 

The polynomial P* is given by 

P*(YlJl . . . . .  Yls.61) = YII,zlYI3.4}y[5.61 - Y{21YI3IY[6} + 2Y(I.21Yl31Y{61. 

Note that it may he infeasible to write down P or P*, because the number of  terms 
in one or both may be exponential in m. However, the reduction from P to P* only 
requires computing the new variables {Yr }, which can be done with a small number of  
multiplications in our field. For example, Yl3.41 is computed by multiplying x3 and x4. 
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We now define our reduction (scatter, reconstruct). On input X = xl . . . . .  x,~, scat- 
ter(X, r) first computes x~ . . . . .  x,, E F, where boolean O's are transformed into the 
0 element in F, and boolean l ' s  are transformed into the 1 element in F. This trivial 
transformation effects the reduction from f to P. Next, scatter computes the variables 
{yr}, effecting the reduction from P to P*. Note that P*(yl . . . . .  y~) = f ( x l  . . . . .  Xm), 
where 0 and 1 field elements are identified with 0 and 1 boolean values. Finally, scatter 
performs the mapping used by the (t, dt + l)-locally random self-reduction given in 
Lemma 1, for v-variable polynomials over F of degree d = [m/c  lg mJ. 

We define reconstruct to be the same as in Lemma 1, except that it interprets 0 and 1 
field elements as their boolean equivalents. 

By Lemma 1, our reduction (scatter, reconstruct) always give the correct answer. 
Furthermore, the number of algebraic operations performed by reconstruct and scatter 
is bounded by some polynomial in v and t. Because v is bounded by some polynomial 
in m (depending on c), and the requisite field operations can be implemented in time 
polynomial in m and t, the total number of bit operations performed by reconstruct and 
scatter is polynomial in m and t. [] 

4. Zero-Knowledge Proofs on Committed Bits 

In this section we formally define ideal bit commitment schemes and review the notion 
of zero-knowledge proofs on committed bits. In the protocols we describe, there is one 
party (the "prover") who commits to a set of  bits and later proves assertions about these 
committed bits, and there is another party (the "verifier") who verifies the proofs on the 
committed bits. 

Intuitively, we think of an ideal commitment scheme as having physical envelopes 
that the prover can fill with information and place on the table. If the prover later opens 
an envelope, the verifier knows its contents have not been changed. 

We are interested in the notion of  zero-knowledge proof~ on committed bits. Such 
commitments have also been referred to as notarized envelopes. That is, one would 
like to commit to a set of bits b~ . . . . .  b,,, and at some later time prove some predi- 
cate Q(bj . . . . .  b,,,) on these bits, without revealing the values of  bl . . . . .  b,,, or other 
information not implied by Q(bl . . . . .  bin). 

Ideal commitment schemes were used in the construction of zero-knowledge proofs 
for predicates in NP (see 1121) and IP (see [ 14]). Zero-knowledge proofs on committed 
bits were first used in the study of multiparty secure computation [1 1 ] and were based on 
complexity-theoretic assumptions. Simple schemes for basing zero-knowledge proofs on 
committed bits on ideal commitment schemes were developed not long thereafter (e.g., 
[5] and [I 8]) but did not appear in the literature until [6]. These schemes allowed arbitrary 
predicates on k committed bits to be proved using a total amount of  communication that 
was potentially exponential in k. 

This exponential communication cost is sometimes acceptable. For example, any NP 
predicate Q(bl . . . . .  bin) can be transformed into a predicate of the form 

(3yt . . . . .  yl)Q'(bt  . . . . .  b,n, Yt . . . . .  Yt), 

where Q' = Ai  Q~ and each QI is a predicate on just three variables. Then Q(bl . . . . .  b,,,) 
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can be proved in zero-knowledge by committing to suitable values for yl . . . . .  Yt and 
proving each of the predicates QI in zero-knowledge. However, such a transformation 
cannot be applied to arbitrary predicates and can be very unwieldy even for NP predicates. 
This technique also leaves open the question of whether the communication cost of  
zero-knowledge proofs on committed bits depends intrinsically on the computational 
complexity of  the predicate to be proven. In the remainder of  this section we answer this 
fundamental question in the negative. 

4.1. Formal Definitions 

In this section we describe the model of computation for interactive proofs in the presence 
of an ideal commitment  scheme. We then go on to define (perfect) zero-knowledge proofs 
in this model. 

4.1.1. Ideal Commi tmen t  Schemes 

An ideal commitment  scheme (ICS) can be thought of  as a special type of channel that 
connects the prover P to the verifier V. When we run the protocol specified by P and V, 
any string that V writes down for P will be delivered (unmodified) to P; but messages 
sent from P to V are transmitted in the following way. Initialize S ~ 0 and then: 

1. When P transmits on its channel to V a message 

commit(x,  t), 

if there is no ordered pair (x', t) e S, then we set S ~ S t3 { (x, t) } and deliver to V 
the message t. If  there is already an (x', t) e S, then the empty string is delivered 
to V. 

2. When P transmits on its channel to V a message 

decommit(t) ,  

if there is some pair (x, t) ~ S, then we deliver to V the message (x, t). I f  there is 
no such pair (x, t) ~ S, then the empty string is delivered to V. 

We could have provided P a "direct" channel to V, but this is trivially simulated with 
the channel above. 

We say that P commits  to x = Xl �9 �9 x,,  if P transmits in the course of  the protocol: 

commit(xt ,  x - b i t - l )  . . . . .  commit(x, , ,  x - b i t - m ) ,  (0, l e n g t h - x = m ) .  

We say that P reveals x if it sends the corresponding decommitments. 
We use the notation ChannelS__, v (X) to denote the message delivered when x is 

transmitted on the P ~ V channel, which is currently in state S. Note that this operation 
has a side effect on S. 

4.2. ICS Protocol  Execution 

We model players P and V as {0, l}*-valued functions on initial input s 6 {0, 1}*, 
(verifier) view z 6 {0, 1, #}*, and coins flips r 6 {0, 1} ~176 An R(m)-round execution 
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(P(s l ) ,  V(s2)) is defined by the following experiment: Set z ~-- X; set S ~-- 0; choose 
random strings rK, r2 E {0, 1}~; then 

f o r /  +-  i to R([xl) do 
z ~-- z # ChannelS_.v(P(sl, Z, rt)) 
Z ~ Z # V(s2, z, r2) 

We say that an execution of (P  (S 1 ), V ($2)) accepts (or simply V accepts) if the last bit 
of  the final value of z is !; else we say it rejects. The (verifier's) view is the random 
variable that gives s2, r2, and the final value of z. The communication complexi~, of an 
execution is the length of the final value of z. 

4.2. I. Zero-Knowledge Proofv on Committed Bits 

A zero-knowledge proof that predicate Q holds on committed bits Xl . . . . .  xm is a like 
a neutral third party that does nothing but check that a(x t  . . . . .  xm) = 1, reporting the 
answer back to V. Nothing else is revealed. 

As in the more customary setting of Goldwasser et al. [13], we can formalize this 
idea by using a simulator: We require of any (possibly cheating) verifier that there be an 
algorithm that produces a distribution on (fake) views that coincides with the distribution 
on (real) views received by that verifier (when interacting with the prover who has initial 
input x, where Q(x) = 1). By effectively demonstrating that the verifier could have 
computed its view on its own (knowing nothing but Q(x) = 1), the existence of  the 
simulator assures us that the verifier learns no more than it should. 

Another way to model potential information leakage follows the notion of "witness 
indistinguishability" of  Feige and Shamir [8]. In particular, for any equal length x and x '  
that satisfy predicate Q, the views that the verifier gets in these cases should be identical. 
This approach concerns itself more with hiding the input than with leaking extraneous 
information. 

In the formalization we now give, we follow the second approach. Equivalent defini- 
tions can be formulated using simulators. 

Definit ion 2. An R (m )-round, e(m)-error ICS proof  system for predicate Q is a pair 
of players (P,  V) such that: 

�9 (Completeness) For any x such that Q(x)  = 1, an R(Ixl)-round execution (P  (x), 
V(Ixl)) accepts, and in it P commits to x. 

�9 (Soundness) For any player/5 that commits to its initial input x, if Q(x) = 0, then 
the R(IxD-round execution (/5(x), V(Ixl)) accepts with probability at most e(Ixl). 

is constant we omit mention of these param- When R(m) is polynomial and e(m) < 
eters. If the communication complexity is bounded by a polynomial in m, we say that 
(P,  V) is communication-efficient. 

Definition 3. An ICS proof system (P,  V) for predicate Q is zero-knowledge if, 
for all f" and all xt ,x2  such that Ixll = fx21 and Q(xl )  = Q(x2) = 1, the view of 
(P(xl) ,  f'(]x~ I)) is identical to the view of (P(x2),  l~'([x21)). 
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4.3. A Communication-Efficient Protocol for Proofs on Committed Bits 

We now present a new protocol, based on an ICS, for performing zero-knowledge proofs 
on committed bits. In our protocol a computationally unbounded prover P can prove 
arbitrary predicates in zero-knowledge to a computationally unbounded verifier V. Un- 
like the previous protocols, our protocol requires communication that is only polynomial 
in the number of  committed bits, regardless of the circuit complexity of the predicate 
being proven. Note that the verifier must be computationally unbounded, because it must 
verify arbitrary predicates. 

For our discussion, we often blur the distinction between boolean values and the 0 
and 1 elements of a finite field. First, we use a standard trick of  representing each bit 
to be committed as a random exclusive-or of  two bits (equivalently, a random sum over 
G F(2)). The following simple protocols are used to commit and reveal bits. 

Protocol COMMIT(XI . . . . .  Xm). For 1 < i < m, P uniformly chooses x ~ x/ ~ {0, 1}, 
subject to xi = x~ (9 x/ ,  and commits to x ~ and x /us ing  the ICS. 

Pro toco l  REVEAL(i). The prover reveals x ~ a n d  xi I using the ICS. V computes x i 
x ~ (9 x /  

It is easy to verifier that the value of a bit recovered during the REVEAL protocol must be 
the same as that during the COMMIT protocol. Furthermore, as soon as P has committed 
to x/~ and x/ ,  he has implicitly committed to a bit xi that is guaranteed to be well defined. 
The issue of  committed bits' being well defined arises later but can be safely ignored at 
this point. 

Our protocol for performing zero-knowledge proofs on a set of  committed bits is 
based on the reduction given in the proof of Lemma l, where t = I. In order to prove 
the boolean predicate Q(xl . . . . .  Xm), P and V first arithmetize Q, as in the proof of 
Theorem 2 (treating Q(X)  as a boolean function that is l iff Q(X)  is true). For the rest 
of the protocol, P must show that Q*(xl . . . . .  xm) = l, where Q* is a degree _< m 
multivariate polynomial over a finite field F. F must have at least m + l distinct nonzero 
elements, denoted al ,  . . . ,  13tm+l �9 

The zero-knowledge proof proceeds in two phases. In the commitment phase, P gen- 
erates a run of  the (1, m + 1)-locally random self-reduction on Q*, "breaks" the com- 
putation into random pieces, and commits to these pieces. In the challenge phase, V 
randomly chooses to see certain pieces of the reduction and uses this glimpse to verify 
probabilistically that the self-reduction was honest. 

In the commitment phase, P uniformly generates {ci ~ F} and then follows the reduc- 
tion in Lemma 1 to generate {Yi,j }. He then computes 

Yj = (Yl,j . . . . .  Y,,,,j), 

zj = Q*(Yj), 

and finally reconstructs the final answer, 

m+l 

"lid= E t j z j , 
j= l  
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P r o t o c o l  PROVE(Xl . . . . .  x m, Q)  [Commitment Stage] 
Let F be a finite field with at least m + 2 elements, and let Q* be the 
arithmetization of Q over F.  Le t  otl . . . . .  a, ,+l ~ F be distinct and nonzero. 
Define tj . . . . .  tm+l 6 F by tj = l " I i r  - a i ) ) .  

1. For 1 < i < m and 1 < j < m + 1, P uniformly choosesci  ~- F ,  and 
computes 

Yi, j  = Xi § CiOlj, 

Yj = (YI,j  . . . .  Y,,,,j), 

z j  = Q*(Y j ) ,  

and 

m+l 

w =  Z tjZj.  
j= l  

P uniformly chooses c ~ c] ~ F ,  subject to ci = c o + c], and z ~ z) c 

0 + z). P then computes F ,  subject to z) = zj  

yb. = X b + cb~j, 
t.J 

. 

and 

m+l 

wb= S,jz , 
j= l  

where b c {0, 1 }. Note that Yi, j  = yO .,,j + .v. t,,:. and w = w ~ + w I . 

3. For b ~ {0, i }, 1 < i < m, and i _< j _< m + 1, P commits to cbi, Yi.j,b 

b and w b using the ICS. Zj ,  

Fig. 1. Commitment stage of the zero-knowledge proof system. 

29 

where tj = I-I i~j(-ol i / (Olj  - c l i )  ). After generating this run of  the reduction, P breaks 
up each ci, Yc j ,  z j ,  and w into halves whose sum (over F)  is equal to the original and 
then commits to each half. Thus, we have ci = cl ) + c] , w = w ~ + w I , etc. We give the 
commitment stage of  the protocol in Fig. 1. 

In the challenge phase of  the protocol, V makes one of  three general requests. He can 
ask P to reveal the "0 half" or the "1 half" of  the self-reduction and verify a number of  
linear constraints. He can ask P to reveal Yj and zj  for some j (by revealing both halves 
of  all their relevant components) and verify that zj = Q*(Yj). Alternatively, he can ask 
P to reveal w (by revealing w ~ and w I) and verify that w = I. We give the challenge 
stage of  the protocol in Fig. 2. 

4.4. Proper t i e s  o f  O u r  P r o o f  Sys tem 

In this section, we argue that our protocols have the properties of a zero-knowledge proof 
system. We first show that our protocol is complete:  If both parties behave properly, then 
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P r o t o c o l  PROVE(xI  . . . . .  x .... Q) [Challenge Stage] 
V makes one of the following m + 4 challenges, each with equal probability: 

1. IFor b either 0 or 1] For 1 < i < m and 1 < j < m + 1, V asks P 
to reveal x~, c b, y~',.j, zj,b and w b. V accepts iff y~j = xbi + cbiaj and 
lob XT'm+ I b 

-~ /--.,j=l l j Z j -  
2. [For 1 < j < m +  !] Fo rb  E {0, 1} and 1 < i < m, V asks P to reveal 

5'( ~ and b V then computes Yj = (yO.j + yl o t ~.j Z j .  I , j  . . . . .  Ym, j  + Ym.j) and 

~j = ~J'~ + zjl and accepts iff ~j = Q*(Yj). 

3. V asks P to reveal w ~ and wl and accepts iff w ~ + wl = 1. 

Fig. 2. Challenge stage of the zero-knowledge proof system. 

V always accepts a correct assertion. Next, we show that our protocol is weakly sound: 
V rejects a false assertion with probability at least 1/poly(m).  Finally, we show that 
our protocol is zero-knowledge: A proof that Q(xl . . . . .  x, ,)  = 1 conveys no extra 

information about xl . . . . .  Xm. 

L e m m a  2. l f  Q(xl . . . . .  Xm) = 1, and P and V follow PROVE(X I . . . . .  X, n, Q), then V 
always accepts. 

Proof,  It suffices to show that V accepts for each of the three types of  challenges 
,b and he might make. The first challenge is trivially satisfied, by the definition of Yi.j 

w b. To show that the second challenge is satisfied, it suffices to show that the values 
for ~j and ~'j reconstructed by V are truly equal to those given by P. By construction, 
zj = zjO § Zjl. The case for Yj follows from the identity .vi. j = .v 9.,. j + v),. j. which may be 
verified by 

. i . j  § yil, j § 

= (x ~ + + ( d  + 

= Xi + CiOtj 

= Y i . j .  

To show that the third challenge is satisfied, it suffices to show that lo = 1 and w = 

w ~ + w 1. That w = 1 follows from the fact that Q*(Xl . . . . .  Xm) = 1 and the fact the 
construction of Lemma 1 always gives the correct answer. To see that w ---- w ~ + w I, 

note that 

,m+, ) 
\ j = l  

;n + I 

= Z , ' , (  z~ + zJ) 
j = l  
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m+l 

= y ~ t j z j  
j= l  

LU. [ ]  

L e m m a  3. Suppose that Q(xl  . . . . .  Xm) = 0. Then for  any (possibly malicious) P, i f  
^ 

V obeys the protocol, he rejects with probability at least l / ( m  + 4), regardless of  P ' s  
strategy. 

Proof. Given committed values for c b, yb,.j, Zj,b and tU b, define ci = c o + c), Yi.j = 

0 0 i and w = to o + tu1. Suppose that, for all i and j ,  Yi.j  + yil.j , Zj = Zj 21- Zj ,  

Yi,j  = Xi -t- CiOlj, 

zj = Q (yl.j . . . .  Ym.j), 

and 

m+l 

w = ~-~t jz j .  
j= l  

Then, by the proof of Lemma 1, w = Q*(xl . . . . .  Xm) # 1, and V rejects if he asks 
to see w ~ and w j (a Type 3 challenge). If Yi.j ~ Xi + ciotj for some i, j ,  then, for 
some b ~ {0, 1}, it must hold that y b  # x b + CbiCtj, and V rejects if he makes a Type 1 

l , J  

~m+l  tjzj,  for some j ,  then, challenge, for the appropriate value of  b. Similarly, if w # e_..,j=l 
v ' m +  I b for some b ~ {0, 1}, w b # z__,j=l t jz j ,  and V again rejects if he makes the appropriate 

Type 1 challenge. Finally, if, for some j ,  zj # Q*(yI.j . . . . .  ym.j), then V rejects if he 
makes a Type 2 challenge, with that value of  j .  Thus, in all cases, there must be at least 
one challenge that causes V to reject, and that challenge is chosen with probability at 
least 1/(m + 4). [] 

Lemmas 2 and 3 show that the protocol is a one-round, (1 - l / ( m  + 4))-error proof 
system. We next show that the protocol is zero-knowledge and then discuss how to reduce 
the probability that a false statement is accepted. 

L e m m a  4. Suppose that Q(xl  . . . . .  Xm) = Q(xt  . . . . .  -~m) = 1 and that, for  some set 
T c_ { 1 . . . . .  m }, xt = xt for  t ~ T. Let V be an arbitrary, computationally unbounded 
party. Then the distribution on V 's  view induced by running COMMIT(XI . . . . .  Xm), 
PROVE(Xl . . . . .  x .... Q), and REVEAL(t) for  t E T is identical to that induced by run- 
ning COMMIT(.~I . . . . .  -~',n), PROVE(.~I . . . . .  X'n' Q), and REVEAL(t ) for  t ~ T. 

Proof. The bulk of  the proof consists of  analyzing the information revealed to f '  during 
the execution of  the PROVE protocol. Suppose P commits to Xl . . . . .  Xm by committing 
to (x ~ xl)  . . . . .  (X~ Xml). We first show that, for each possible challenge V can make, 

b and in no there exists b e {0, 1 } such that his view can be generated from x b . . . . .  x m 

way depends on x l-b, ...,xml-b. Indeed, for Type 1 and Type 3 queries, ~"s view can 
be generated without looking at (x ~ x I) . . . .  0 1 , (x,,,, x m) at all. 



32 D. Beaver. J. Feigenbaum, J. Kilian, and P. Rogaway 

If V makes a Type 1 challenge, for either value of b, his view consists of x/b , cbi, .v~'.,.:, zj,b 
and w b, for ! < i < m and 1 < j < m + 1. The values of c/b and zff are uniform over F. 

b C~ . . . .  Cbm, and z~, . .  b Furthermore, y~j and w b are functions of  only x~ . . . . .  x . . . . . .  Zm+ l 
(ignoring the (~i's, which are publicly known). Thus, his view from a Type 1 challenge 

b (with value b) can be generated from only x~ . . . . .  x,,. 
If ~' makes a Type 2 challenge, with a given value of j ,  his view consists of  y~j and z~, 

, l ) depends for b e {0, 1 }, and 1 < i < m. First note that the distribution induced on (z ~ ~j 
only on the distribution of Yj = (YLj . . . . .  Ym.j). By the properties of our locally random 
reduction, Y l , j  . . . . .  Ym.j are independently and uniformly distributed over F, regardless 
of  the values of  (x ~ x I ) . . . . .  (x, ~ , x,l,). We have the identities 

V b cbiolj, . i . j  ~ Xbi "~- 

Y i , j  = Xi + CiOtj, 

and 

x, = x ~ + x:.  

Furthermore, the c/b's are distributed uniformly and independently, subject to ci = c ~  
and ~j :~ 0. By a simple probability argument, the distribution on 

I yO, j, Yl,j . . . . .  yOm.j, Ym,j 

0 l Hence, if V makes a Type 2 challenge, his view is uniform, subject to Yi , j  = Y i . j  + Y i , j "  

from this challenge does not depend on the values o f x  ~ x I, .. 0 1 �9 , Xtrt, X m �9 

Finally, if f '  makes a Type 3 challenge, then his view consists of w ~ and w I . We claim 
that w ~ and w I are uniformly distributed subject to w ~ + w I = 1, and thus ~"s view 
does not depend on (x ~ x l), o 1 Lu 0 .i/)1 . . . . .  (x,,, x m). First, note that w = 1 = + Because 
w~ = Z-,j=lv'm+l tjz~), Z o, . . . ,  Zm+lO are uniformly and independently distributed, and at least 

one value of {t/} is nonzero (in fact, every tj is nonzero), it follows that w ~ is uniformly 
distributed. 

Now, recall that the COMMIT protocol reveals nothing about the values of  x~ . . . . .  xm 
and that the REVEAL(t) protocol releases the values of xt ~ and x: .  Hence, f " s  view can 

b for some value of  b always be generated by looking at {(x ~ x: ) l t  ~ T} and x~ . . . . .  x,, ,  
that depends only on the type of ~"s challenge�9 However, if Xl . . . . .  x,, and Yl . . . . .  ~,, 
are as in the statement of  the lemma, then, for either value of b, the induced distribution 
o n  

b and {(Y~ ~ TI,  Y~ . . . .  -b {(x~ ~ T} ,x~  . . . . .  x m ,Xr, 

is identical, and hence ~"s view is also identical. [] 

We can view the above argument as an algorithm for simulating ~"s view, knowing 
only x, for t e T. During the proof process, the simulator simply talks to ~', generating 
its responses according to the algorithm given in the proof. At some point, it may need to 

b for some b c {0, 1 }, at which point the simulator uniformly generates k n o w  x b . . . . .  x m 
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.h and continues. When it comes time to simulate the revelation of x, for t xb  . . . .  ' )/m 

T, the simulator learns these values, computes x, I-b = x, - x b for t c T (choosing 
b uniformly if they have not been chosen before), and outputs the appropriate x b l  ~ . . . , X m 

values. 
One drawback to the scheme given above is the low probability that a verifier will 

catch an incorrect proof. This problem has been dealt with in previous protocols for 
zero-knowledge proofs on committed bits; the ideas used there carry over to our protocol 
without any conceptual alteration, and thus we simply state without proof the stronger 
results that we obtain using these standard techniques. 

The basic idea is to run several independent copies of the protocols. Instead of breaking 
each xi into a single pair, (x/o, xi I ), P will break each xi into a sequence of independent 
pairs, 

(x/o[ 1 ], xil[ 1]) . . . . .  (x/~ Xi I [I]). 

Similarly, P reveals xi by revealing all l pairs that he previously committed. When P is 
honest, x ~  xi I [ j l  will have the same value, xi, for all values of j .  With a malicious 

prover fi, there is no such guarantee. In this case we define xi to be the majority of 
x~  @ xiJ[j], for 1 < j _< l. Under this interpretation, even a malicious prover is 
guaranteed to be committing to some unambiguous value. 

More precisely, recall the following standard protocol that is used in earlier work on 
zero-knowledge proofs, e.g., in those of Bennett [5] and Rudich I18]. Given two pairs, 
(x~ x i  I [j])  and (x~ l, xg' [k]), we wish to give a zero-knowledge proof that 

x/o[j] ~ xi I [j]  = x~ ~ xi I [k]. 

This is accomplished by using protocol PROVE-EQUAL on the four committed bits. 

Protocol PROVE-EQUAL(x 0, xl ,  x20' ?c~) /* Prove that x ~ ~ . r  I = x ~ @ x~ *// 

1. P sends V the value of x ~ ~ x ~ 
2. V uniformly chooses b c {0, 1 } and sends b to P. 
3. P reveals x~ and x~ to V, who accepts iff x~ ~ x~ is equal to the value 

sent in Step 1. 

The PROVE-EQUAL protocol is known to have the following properties: 

Proper ty  1. I fx  ~ @x I :/: x ~ O.r~, then V rejects with probability at least �89 regardless 

of /6 ' s  strategy. 

Property 2. Let x E {0, 1}, and let x ~ x I , x ~ x~ be chosen uniformly subject to 

x = x 0  = x ~ �9 

Then, for any V, the induced distribution on ~"s view of 

PROVE-EQUAL(X i 0 , X I '  X2 0 , X~ ), 
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Protocol P R O V E - M A N Y ( x I  . . . . .  X,n, Q, k) 
I: repeat  k times 

1. V chooses jl . . . . .  jm such that, for 1 < d < m, (xOi[jd], Xil[Jd]) is 
unused, and b C {0, 1 } uniformly. 

2. If b = 1, then V and P run PROVE(xl . . . . .  Xm, Q), where the pair 
(x~ x] [ji]) is used to represent xi. 

3. I fb  0,then V choosesj~, j,, such that (x~ i . ,  . . . . .  " xi IJd]) is unused 
for 1 < d < m. Then, for each d, P, and V run 

0 . t  l ' t  PROVE-EQUAL(xi0[ji], X] [ji ], Xi [Jal, xi [Ja]). 

II: V rejects iff V ever rejected during Steps 2 or 3 of the loop. P aborts the 
protocol if ever asked to "reuse" a pair. 

Fig. 3. Protocol for decreasing the probability of error. 

followed by the revelation ofx  ~ x l ' x2 ,0 x2 ,l may be generated by the following algorithm: 

1. Choose v E {0, 1} at random and choose Yl, Y2 6 {0, 1} uniformly subject to 

v = Y l  (9Y2- 
2. Send v to s On receipt of  b from s set x~ = y, and x~ = y2, and send x~ and x b 

to s 
3. Set xl  -b = x (9 Xbl and x~ -h = x (9 x b, and send x ~ x I , x ~ and x~ to f ' .  

In particular, Property 2 implies that l) 's  view through the PROVE-EQUAL protocol is 
independent of  x. 

In the protocol of Fig. 3 a pair (x~ x][j]) is called used if it has been chosen 
in some previous iteration of the repea t  loop and unused if it has not. Straightforward 
probabilistic arguments (which we omit) show that the protocol has the following desired 
properties. 

L e m m a  5. Suppose that Q(xl . . . . .  Xm) is false and that l > 3k. Then, during each 
iteration of  the repea t  loop in the PROVE-MANY protocol, V rejects with probability at 
least 

l - 1 ( 2 m  + 

L e m m a  6. Suppose that Q(xl . . . . .  Xm) = Q(Xl . . . . .  2m) = 1, and that,for some set 
T c__ { 1 . . . . .  m }, xr = 2t for t E T. Let (; be an arbitrary computationally unbounded 
party. Then the distribution on (/'s view induced by running C O M M I T ( x  I . . . . .  Xm ), PROVE-  

M A N Y  (Xl . . . . .  Xm, Q, k ), and REVEAL(t )for t ~ T is identical to that induced by running 
COMMIT(2t . . . . .  Xm), PROVE-MANY(21 . . . . .  X,n, Q, k), and REVEAL(t)for t ~ T. 

Together Lemmas 2 ~  give the following: 



l,ocally Random Reductions: Improvements and Applications 35 

T h e o r e m 2 .  Ever)., predicate Q(xl  . . . . .  x, ,)  has a one-round, 2 .... -error zero- 

knowledge ICS proof  system, 

5. Open Questions 

Open questions abound, including: 

Ques t ion  1. Can Theorem 1 be improved so that fewer than t Lm/c Ig mj  random in- 
stances are needed'? Alternatively, can a lower bound on the required number of  random 
instances be proven? 

Currently, it is not even known whether there is a function f that is not (1 ,2)- local ly  
random reducible to any function g. Fortnow and Szegedy [ 10] show that there is an f 

that is not (1 ,2)- local ly  random reducible to a pair of functions (g t, g2), if the functions 
gi are required to be boolean and that the reduction have zero error probability. 

Question 2. Is there a protocol for zero-knowledge proofs of arbitrary predicates on 
committed bits that is even more communication-efficient than the one we have pre- 
sented? 

Question 3. Is there a fixed polynomial m '  with the following property: For any 
polynomial- t ime predicate Q (x I . . . . .  x,,),  there is a zero-knowledge protocol that proves 
the value of  Q on committed bits, has bit complexity m ' ,  and has a prover and verifier that 
both run in polynomial time? That is, if we restrict attention to poly-time Q's,  is there a 
protocol that shares with the protocol presented in this paper the property that the (poly- 
nomial) communication complexity does not depend on the computational complexity 
of Q and has the additional property that the prover and verifier are poly-t ime? 
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