
J. Cryptology (1997) I0:1-16 Joumol of 

CRYPTOLOGY 
�9 1997 International Association for 
Cryptologic Research 

On Schnorr's Preprocessing for 
Digital Signature Schemes* 

Peter de Rooij** 
PTT Research, P.O. Box 421, 

2260 AK Leidschendam, The Netherlands 

Communicated by Ivan B. Damg~rd 

Received 29 April 1993 and revised 15 September 1995 

Abstract. Schnorr's identification and signature schemes [ I 0], [ 11 ] are efficient, dis- 
crete log-based protocols. Moreover, preprocessing algorithms are proposed that sig- 
nificantly speed up the computations of the prover (resp. signer). Therefore, this pre- 
processing greatly enhances the suitability for implementation on a smart card. The 
preprocessing algorithms can be used for other (discrete log-based) signature schemes 
as well. 

The security of the preprocessing depends on a parameter k; the required storage is 
linear in k. In 110] and [I 1] the value k = 8 is suggested, for which the level of security 
is conjectured to be 272 I 11 ]. 

In this paper an attack on these preprocessing algorithms is presented. This attack 
retrieves the secret key in about (k!) 2 steps, using in the order of �89 - I)k! 
consecutive signatures or transcripts of identifications. For k = 8, this amounts to about 
23t steps and 700 signatures. 

This attack is applicable to BrickelI-McCurley, EIGamal, and DSS signatures as well, 
if the same preprocessing algorithm is used. 

Key words. Cryptology, Cryptanalysis. Identification, Digital signature, EIGamal, 
DSS, Preprocessing, Smart card. 

1. Introduction 

At Crypto '89, a discrete log-based identification protocol and a related signature scheme 
especially suited for use on smart cards were proposed by Schnorr [10]. One optional 
feature of both was the possibility of using a preprocessing algorithm that substantially 
speeds up the prover's (or signer's) calculations. However, use of this preprocessing 
algorithm enables an attack that provides the prover's (signer's) secret key [9]. 

* Part of the results of this paper were presented at Eurocrypt '91 [9]. 
** Currently, the author is at Europay International, Chauss6e de Tervuren 198A, 1410 Waterloo, Belgium. 



2 EdeR~O 

An improved preprocessing algorithm, resistant to this attack, was proposed in [11]. 
Below, the attack is adapted to the new preprocessing algorithm. This new attack still 
is applicable to the old preprocessing, and is substantially faster than the old attack 
from [9]. 

Since the preprocessing algorithms can be used in any protocol where a random power 
of a fixed base is to be computed, the scope of this paper is wider than just the application 
to Schnorr's protocols from [10] and [11]. The proposed attack can be adapted to any 
protocol where Schnorr's preprocessing is applied, provided that it satisfies a (rather mild) 
assumption. Specifically, it is shown to be applicable to BrickelI-McCurley, ElGamal, 
and DSS signatures [1], [4], [7] with Schnorr's preprocessing. 

This paper is organized as follows. Section 2 briefly describes Schnorr's identification 
protocol and signature scheme, and gives the preprocessing algorithm. The new attack 
mentioned above is given in Section 3. Section 4 is dedicated to the computation of the 
complexity of this attack and the required number of signatures. In Section 5 the attack 
is generalized in several ways. The consequences for the complexity of the attack of 
changing the preprocessing and of lifting some of the assumptions are discussed, and 
a straightforward adaption of the attack to ElGamal and DSS signatures with the same 
preprocessing is given. Section 6, finally, contains the conclusions. 

2. Description of the Algorithm 

2.1. Background 

In [11] a discrete log-based identification protocol and a related signature scheme are 
proposed. The identification protocol is based on the Chaum-Evertse-van de Graaf pro- 
tocol [2]. Essentially, it condenses this protocol into 'one single round. The signature 
scheme is an extension of the identification protocol. We briefly describe the identifi- 
cation protocol and the signature scheme. This provides the necessary background for 
the introduction of the preprocessing algorithm and its cryptanalysis. For more details, 
see [1 I]. 

2.1. I. Preliminaries 

The following parameters are chosen once and for all, and are known to all users: a large 
prime p, a prime q that divides p - 1, a primitive qth root of unity a 6 Zp, and a security 
parameter t. In [11] it is proposed taking p and q in the order of 512 bits and 140 bits 
respectively, and t = 72. 

Each user .4 chooses a secret key sA ~ Zq. The corresponding public key is v,4 = 
ot -s-~ mod p. Of course, the authenticity of this public key must be checked by the verifier. 
This is done by means of a certificate. However, since this aspect is of no consequence 
in this paper, it is ignored from now on. 

In the rest of this paper the index .4 is used only where necessary to avoid confusion. 

2.1.2. The Identification Protocol 

Suppose prover .4 (Alice) wants to prove her identity to verifier 13 (Bob). First, .4 picks 
a random number r ~ Zq and sends the initial commitment x = ct r mod p to 13. Then 
/3 returns a random number e e {0 . . . . .  2 t - 1 }, called the challenge, to .4. Next, .4 



On Schnorr's Preprocessing for Digital Signature Schemes 3 

sends y = r + s.a �9 e mod q to/3. Finally,/3 checks .A's proof of  identity by calculating 
= c~-~v~ mod p. The proof will be accepted if and only if .~ = x. 
In what follows all calculations are performed modulo q, except where indicated 

otherwise. 

2.1.3. The Signature Scheme 

The identification protocol is extended to a signature scheme analogous to the extensions 
of  the Fiat-Shamir and Guillou-Quisquater identification protocols [5], [8]. That is, a 
t-bit hash value of  the initial commitment x and the message m to be signed replaces 
the challenge. The signature consists of this hash value and of  y as in the identification 
protocol. 

Let h denote the hash function that is used to compute the hash value. A message m 
is signed by signer .A as follows. First, .A picks a random number r 6 Zq and calculates 
x = t~ r mod p; from this e = h(x, m) and y = r + s.a �9 e are computed. The signature 
consists of the pair (y, e). In what follows a pair (y, e) is called a signature, even if it is 
constructed in the course of an instance of the identification protocol. 

The signature of .,4 on m can be checked by computing .,7 = ctyveA mod p and ~ = 
h(s m). The signature will be accepted if and only if~' = e. 

2.2. The Preprocessing Algorithm 

Essentially, the preprocessing algorithm from [11] is a modified version of the algo- 
rithm from [10]. The purpose of both is the reduction of the computational effort of  
the prover/signer. This effort is determined by the effort of performing the modular 
exponentiation d r mod p. The preprocessing essentially reduces this effort to that of  a 
few multiplications only. This is achieved by taking, instead of a random r, a linear 
combination of  several independently and randomly chosen numbers ri 6 Zq for which 
xi = etr' mod p is precomputed. 

For this purpose, each user initially stores a collection of  k such pairs (ri, x~), 0 _< i < 
k. Here k is a security parameter; the proposed value [10], [11] is k = 8. Then, for each 
signature, the pair (r, x) is chosen as a combination of  the stored pairs (r;, xi). 

Subsequently, the collection of  pairs is "rejuvenated" by replacing one of the pairs 
(ri, xi) by a similar combination. More precisely, the first time, (r0, x0) is replaced by a 
combination of  the pairs (ri, xi) for 0 _< i < k. This new pair is denoted (rk, xk). The 
next time, (rl, xj) is replaced by (rk+l, xk-~ I), and so on. 

More specifically, a new pair (rt+k, xt+k) is computed from the stored pairs (rr+i, x;+i ) 
for 0 _< i < k in both [10] and [11] as (Y~.j 2Jr,+,cj ), l-lj xZ+~j)) Here the a( j )  select 
one of the stored pairs. The pair (r, x) is an intermediate result in the computation of  
(ri, xi). 

In [10] the a( j )  were randomly selected from {0 . . . . .  k - 1} and a security parameter 
d determined the number of  pairs used in these combinations. In the new preprocessing 
algorithm [11], the a ( j)  for 0 < j < k represent a random permutation of {0 . . . . .  k - 1 }, 
so that all k stored pairs are used. 

The index of the new pair can be used as a sequential number for the signature. Denote 
this sequential number by i, the value of  r used in the corresponding initial commitment 
by r*, and the initial commitment itself by xi*. The signature itself is (Yi, ei), and the 
pair (r i_k, xi-k) is replaced by (ri, xi), using ai (.) for the selection of  the stored pairs. 



4 E d e  R o o i j  

Finally, let S t  denote the symmetric group of permutations on k elements (here on the 
integers 0, 1 . . . . .  k - 1). 

(The notation here is different from that used in [11]. Clearly, this does not alter the 
preprocessing itself.) 

The preprocessing algorithm [11] is as follows. (The preprocessing from [10] differs 
only in the form and number of terms ai ( j ) . )  

The Preprocessing Algorithm 
In i t ia l i zat ion.  Load k pairs (ri ,  x i )  as above, 0 < i < k; 

i :--- k; 

1. Pick a random permutation (ai (0) . . . . .  ai (k - 1)) ~ S t ;  

a i ( k )  := 0; a i ( k  + 1) := k - 1; 
, . . k + l  j . 

2. r i := ri_ k -}- 2 r i - l  modq,  r i . =  )-~j=0 2 raAD+i_ t modq,  
* 2 k + l  2 j 

x i := x i - t  �9 x i_  I mod p; xi : =  I-I j=o(Xai(j)+i-k)  mod p; 
3. Keep the pair (ri*, xi*) ready for the next signature; 

Keep the pairs (r j ,  x j ) ,  i - k + 1 < j < i,  stored; 
(i.e., replace ( r i - t ,  x i - t )  with (r i ,  x i )  ) 

4. i : = i + 1 ;  
goto 1 for the next signature. 

This preprocessing requires a storage of k pairs (ra, Xi) and a computational effort of 
2k + 2 multiplications modulo p, see [1 l]. 

3. A New Attack 

3.1. In t roduc t ion  

In the preprocessing algorithm from [10] it was possible that only two of the stored 
pairs (ri, xi) were used for the generation of the new pair. This introduced possible 
dependencies of only three signatures that were sufficient to retrieve the secret key. This 
was exploited by the attack from [9]. 

The main difference between the old preprocessing algorithm [ 10] and the new version 
[ 11 ] is the fact that in the new version it is guaranteed that all stored pairs are used. Below, 
it is shown that nevertheless it is possible to find signatures that contain dependencies 
that yield the secret key of a user. 

3.2. D e p e n d e n c i e s  B e t w e e n  S igna ture s  

In this section we generalize the attack from [9] to the new preprocessing. Assume that 
p, q, or, t, and some number of successive signatures are available to the enemy. Then, 
giving y and e in the ith signature an index i, the following equations hold: 

r* = r i - k  q- 2 r i - l ,  i = k ,  k + 1 . . . . .  (1) 
k + l  

ri = Z 2Jrajc j )+i- t '  i = k ,  k + 1 . . . . .  (2) 
j = 0  



On Schnorr's Preprocessing for Digital Signature Schemes 5 

Yi = r7 + sei ,  i = k, k + 1 . . . . .  (3) 

This is exact ly  the same as in [ 10] except  for the choice  and number  o f a i  ( j ) ' s .  Therefore  
the l inking equations can be derived in exact ly  the same manner  as in [9]. That  is, f rom 

l (1) and (3) it fol lows that r i - i  = ~(Yi -- sei -- r i - k )  for all i > k. Repea ted  substi tut ion 
using this equal i ty  yields,  for  j > 0, c > 1, 

C 

rj+,c~-I~ (_�89 = ~) tYj+l(k-I)+l -- se j+l(k- l )+l) .  
/=1 

This  equat ion is cal led a l inking equation. Note that it is vacuous ly  sat isf ied for  c = 0 
as well .  Below, this equat ion is used for  j --- i mod(k  - I) and c = i d iv(k  - 1). 

We can use this l inking equat ion to write any ri with i > 0 as a function ofr i  mod~k-l), S 
and the s ignatures  (yj ,  ej)  for  j = i mod(k  - 1) + k, i mod(k  - 1) + 2k - 1 . . . . .  i + 1. 

If  those s ignatures  are known,  then this is a l inear combinat ion of r i med(k-I) and s with 
known constant  and known coefficients.  We can write this equat ion as 

ri = (--I) idiv(k-I)r imed(k-I)  if- Yi - - s E i ,  (4) 

where  

i d i v ( k -  I ) 

Ei = -  Z (--l)idiv(k-I)-I+leim~'3(k-l)+l(k-l)+l 
/= t  

(5) 

and s imi lar ly  for Yi 

This fact  can be used to rewrite any equat ion of  the same form as (2) to a l inear 
equation in r0 . . . . .  rk-2 and s. To see this, first note that (2) is a l inear equat ion in 
r i -k ,  ri-k.+l . . . . .  ri. By the form o r a l ( j ) ,  it can be rewrit ten to 

k-I  
ri = 2kr i -k  k- 2 k + l r i - i  't- Z A i ( j ) r i - k + j ,  

j=0 

where Ai ( j )  = Y~,,q/=j 2/, where the summat ion  ranges over  the terms with 0 < l < k 
only. Since in the new preprocess ing  (ai (0) . . . . .  ai (k - I )) represents  a permuta t ion  for  
all i ,  each sum consists  of  exact ly  one term, and log 2 A i (.) represents  the inverse of  this 
permutat ion.  (A  i i tself  is a permutat ion on the symbols  1 ,2  . . . . .  2 k- j  .) 

Subst i tut ion of  (4) and reorder ing of  terms yields  

k-I  

Yi - 2kYi-k -- 2 k+t Yi- l  -- ~_,  A i ( j ) Y i - k + j  
j=0 

k-I  
I idiv(k-I)_ Z mi 1 ~(i-k+j)div(k-l)~ . : - - ( - - 5  ) timed(k-I) + (J)(--921 "(i-k+j)mod(k-l) 

j=0 

+ s E i - - 2 k E i - t  - - 2 k + I E i - i  --  A i ( j ) E i - k + j  , 
j=o 

(6) 



6 P. de Rooij 

which obviously is a linear equation in r0 up to rk-2 and s, with coefficients depending 
o n  i, o n  A i ( . ) ,  and on (the signatures required to compute) Yi-k up to Yi and Ei-k u p  tO 

Ei. Clearly, this equation can be written in the form 

k-2 

Z ~/~ijrj qI- S~ i : ~7i, 
j =0 

(7) 

where Yi and Ei depend on i, on  Ai(.), and some signatures only. It easily follows from 
(6) that, for all j ,  the coefficients .l~ij depend on i and Ai(') only. This is crucial to the 
attack in [9] as well as to the one presented here. 

It follows that, given n different equations of the same form as (2), say for the sequential 
numbers i0 < il < .- .  < i , - l ,  the following set of equations can be formed: 

~io ro 

(8) 

Here M is an n x (k - 1) matrix with entries MIj = .A4i, j as in (7) with index i = it. 
For details, see Appendix A. 

3.3. Use of the Dependencies 

Up to now, only the form of (1)-(3) is used, so everything that is derived holds for both 
versions of  the preprocessing. 

In the old preprocessing it is possible that only two Ai ( j ) ' s  are nonzero. That is, 
it is possible that a row of M has a support of weight 2, see Appendix A. The attack 
described in 19] finds a matrix M with three rows with the same support of  weight 2 
and with i0 = il ~ i2(mod k - 1). Then (8) reduces to a system of three equations in 
three unknowns, which can be solved with high probability. The solution provides an 
estimate .~ for s, which is correct if and only if ot -~ = v. The search for this matrix M 
is performed as an exhaustive search over all possible candidate matrices; i.e., over all 
suitable triples (i0, i~, i2) and all suitable Ai, (-) for which the required signatures are 
available. For details, see [9]. (The formulation is different there.) 

That attack will not work here, as it is guaranteed by the choice of the ai (1)'s that all 
rows of M have support of  weight k - 1, see Appendix A. This implies that the attack 
will require a k • (k - 1) matrix M. The work factor then increases to about (k!) k steps, 
as there are that many different possible M-matrices. This is infeasible for the proposed 
parameter k = 8. 

The attack presented here will find two identical rows of M, say with indices i0 and 
i~. Given that, the entries of  M in (7) cancel out by subtraction of  row i~ from i0 of this 
system. This yields 

s(Ci,, -~?i,) = Yi~ - Y~,, (9) 

from which s is found if Ci0 - ~'i, # 0. 
From the form of the entries of the matrix M (see Appendix A) it can easily be seen 

that two rows of M are identical if and only if A~,, = A~, and i0 = i l (modk - I), say 



On Schnorr's Preprocessing for Digital Signature Schemes 7 

ij = ~ . + I z j ( k -  1), wi th0 < i < k -  1 and# /  > 0. In thatcase, denoting/~ = / z l  - # 0 ,  

~Cio - gi~ = ( - 2 ) u ~  ei, - e6,) 

+ E ( - - 2 ) l ' " + l - I  eio+t(k_j)+l -- Aio(j)eio+j+(t_l~(k_l) . (10) 
t=l j=o 

The same expression with all e , ' s  replaced by the corresponding y , ' s  holds for Yi,, - 3;,,. 
See Appendix B for details on the computation. 

This shows that in order to compute s from (9), we only need the /~(k - 1) + 2 
signatures with indices i0 through ij + 1, and the correct value of  Aio. 

The difference ~i0 - -  ~-r is nonzero with overwhelming probability. This can be seen 
as follows. Given all ei 's  that occur in (10), except one, there is at most one value for 
this last one that forces ,fi,, - gi, -- 0. This happens with negligible probability, since for 
identification, e is a random t-bit value (proposed: t = 72); for signing, it is the output 
of a hash function. 

We may conclude that, for any i0, any il - i0(modk - 1), il > i0, and any Aio , (9) 
provides an estimate for s with overwhelming probability. This estimate is correct if 

A 5 = Aio. 
If an adversary obtains the set of signatures {(y,, ei)lio <_ i <_ il + 1} and if i0 = 

i . (modk  - 1), i0 < il, we say that he has a cand ida te  for finding s. We denote this 
candidate by (i0, il ). 

Given a candidate, he may just assume that Aio = Ai, and apply (9) for all k ! possible 
value of  Aio. Each of  these instances of (9) provides an estimate for s with overwhelming 
probability. The correctness of an estimate g can easily be assessed by checking whether 
a -~ equals the public key v. 

If indeed Aio = Ai , ,  he will eventually hit the correct value of Aio and find s (with 
overwhelming probability). This will take at most k! steps, where each step consists of the 

computation of an estimate g by (9) for some choice of Aio and the verification ~-~ ~ v. 
The computational effort of  a step is determined by this modular exponentiation. 

If Ai,, ~ Aft ,  he will find incorrect estimates in all k! steps. (We neglect the probability 
that an incorrect system (8) will nevertheless yield the correct solution s.) 

So, given a candidate, the enemy performs at most k! steps, yielding either s or 
"'failure," This whole process is called check ing  a candidate .  

A candidate is g o o d  if Aio = A~,, which happens with probability I/[Skl = 1 /k ! .  
Recall that checking a good candidate provides s with overwhelming probability. 

Below, we assume that a good candidate always provides s. That is, we neglect the 
probability that a good candidate is found that does not provide s. This seems reasonable, 
as this happens with probability at most 2 -t (= 2-72). (We may also define the probability 
of success of  the proposed attack as the probability that a good candidate provides s.) 

3.4. An  At tack  

Suppose the enemy possesses a number of consecutive signatures. He can partition the 
sequential numbers into k - 1 sets Tx, 0 < ~. < k - 1, according to their residues 
I modulo (k - 1 ). Then, for each pair io, il in one of  the Tz's,  the set of  signatures 
(i0, il) --- {(yi, ei)lio < i < ij + 1 } is a candidate; we say that this candidate is in T~. 



8 P. de Rooij 

Given this, an attack could proceed by checking all those candidates in some order. 
For example, this can be done as follows. For all values )~ 6 {0 . . . . .  k - 2} check each 
candidate in Tx, until s is found. This is just an exhaustive search over all possible 
candidates possessed. 

4. The Complexity of the Attack 

4.1. Introduction 

In this section the expected required number of  signatures and the expected number of  
steps for the attack described above are computed. First, we calculate the expected suffi- 
cient size of  the Tx 's  as introduced in the previous section. From this, both expectations 
can be computed. 

First, observe that the probability that a candidate is good is 1/k!. Therefore, it is 
intuitively expected that the number of required signatures be in the order of  ,r by the 
birthday paradox. Since the number of steps of the attack equals the number of  estimates 
for s, it would then be expected that the number of  steps be in the order of  (k !)2, as there 
are k! estimates per candidate, and in the order of  k! candidates in a pool of  signatures 
of size ~ ,,/~.L These intuitions prove accurate. 

4.2. The Expected Number of Required Signatures 

Recall that a candidate provides s with probability Ilk!. Therefore, given a collection 
of candidates T = {imin, imin + k - 1 . . . . .  imin + (N - l)(k - 1)} there is a probability 

Pr{no success IT} = 1-[ I - 
i=1 

that no candidate provides s. Therefore, the probability that the above attack requires at 
least (k - 1)N + 1 consecutive signatures to obtain a good candidate, providing s, given 
by 

Pr{N > N} = I - I  ! - 
i=t  

( l l )  

where N is the random variable denoting the required cardinality of the sets Tx. From 
this it follows that the expected value of N amounts to 

EN(N) = Z N Pr{N = N} ~ 2(k - 1) '  
N=[ 

(12) 

see Appendix C. The required number of  signatures is (k - I )EN(N)  + 1, or about 

~/ l rr  For k 8, this amounts to 666 consecutive signatures. (k l)k!. i 



On Schnorr's Preprocessing for Digital Signature Schemes 9 

4.3. The Complexi~ of the Attack 

The expected number of candidates, EN (# candidates), to check for each value of ~. 
follows from 

EN(# candidates) = s ( N )  Pr{N = N}. (13) 
N = I  

This yields 

! 

k! k! / rtk! 
--k-I - 1 < EN(# candidates) < 2 + ~ + ~/ 2(k - 1)" 

See Appendix D. For k = 8, this implies Ere(# candidates) < 5857. 
From this we find the expected workload WL: the above number of candidates must 

be checked for each value of ,k; checking each candidate requires k! steps. That is, 

WL = (k - 1). EN(#candidates).  k! ~ (k!) 2, 

which is 1.6 �9 109 ~ 231 for k = 8. 

5. Generalization 

5.1. Other Preprocessing Algorithms 

The attack will work for any preprocessing algorithm where (1) and (3) hold. The 
expected number of signatures is approximately 

r  l)J~f 

and the workload amounts to approximately A/"2 steps, if the analogue if (2) allows N 
possibilities. 

For example, in the described attack we have.A/" = k!. In the preprocessing from [10] 
we have.IV" = k d-2. For k = 8 and d -- 6, the suggested values of the security parameters, 
the number of signatures there is about 212; the workload then is (84) 2 = 2 24 = 1.7.107. 
(The attack from [9] required 2000 signatures with a workload of  238.) 

5.2. Relaxing the Assumptions 

The attack described above requires a relatively small number of signatures in order to 
be successful, but those signatures should be consecutive signatures by the same entity. 
This requirement can be relaxed, at the expense of increasing the number of required 
signatures. The workload remains the same, as is shown below. 

Observe that any k + 1 consecutive signatures form a candidate, so the probability of 
recovering the corresponding secret key s from those signatures is 1/k!. Moreover, for 
N such minimal candidates (i0, i0 + k - 1 ) . . . . .  (iN-t, iN-1 + k - I ), the probabilities 
of success are independent. 

Therefore, the expected required number of  minimal candidates is k!. Note that these 
minimal candidates need not even be related to the same signer/prover. 



I0 E de Rooij 

The complexity of  this attack (checking minimal candidates) is of the same order as 
the attack given above, namely (k!)2; only the number of  required signatures is (k + 1)!, 
instead of �89 ~/2rr (k - l)k!. For k = 8, this is a little over 360,000, instead of 666. 

Sets of  2k - 1 consecutive signatures may also be used. Such a set provides k - 1 
independent minimal candidates, namely one for each index modulo k - 1. Again, N 
disjunct sets of  2k - 1 signatures provide N ( k  - 1) independent candidates. That is, 
expected value of N is k ! / ( k  - 1). We see that k ! / ( k  - !) disjunct sets of  2k - 1 
consecutive signatures (in total 5760.  15 = 86,400 signatures for k -- 8) are sufficient 
as well, The workload is still the same. 

The significantly lower number of  signatures required for the proposed attack is a 
consequence of the birthday paradox. Since the expected workload WL is in this case 
not determined by the number of  signatures, but by the number of  checks, the birthday 
paradox does not help in reducing the complexity. 

5.3. Adaption to Other Signature Schemes 

The preprocessing algorithm can be applied in any situation where random powers of 
fixed bases are to be computed. This will occur in most discrete log-based identification 
protocols and signature schemes. However, the preprocessing will in general not be 
applicable in key exchange protocols, as either the exponent or the base is chosen by the 
other party. For example, in the Diffie-Hellman key exchange, the other party chooses 
the exponent [3]; in GUnther's key exchange protocol the base is chosen by the other 
party [6]. 

If the preprocessing discussed here is used in other signature schemes, (3) will in 
general be different. If  the resulting equation is linear in r* (i.e., its coefficient is known), 
it is possible to adapt the attack. We give three examples. 

5.3.1. Brickel l -McCurley  

The identification scheme and the related signature scheme by Brickell and McCurley 
[1] are variants of  Schnorr's schemes. The difference lies in the fact that all reductions 
modulo q are replaced by reductions modulo p - 1, while q is kept secret. This makes no 
difference for the proposed attack, except that all computations now must be performed 
modulo p - 1 instead of modulo q. 

An additional issue is invertibility modulo p - 1. First, note that 2 must be invertible 
for the computation o f , f ,  and 3;, in (9), see (15). However, 2 is never invertible modulo 
p - 1. Since the product R of all small factors of p - 1 can be determined easily, this 
problem can be avoided by performing the computations modulo (p - 1 ) / R ,  rather than 
modulo p - 1. This yields s modulo (p  - I ) / R .  Since this fixes s modulo q as well, this 

provides an equivalent key. 
Next, note that Ci0 - El, need not be invertible modulo (p  - I ) / R .  This happens with 

probability inversely proportional to the smallest factor of (p - 1 ) / R .  That is, as before, 
this probability is negligible. 

So, if Schnorr's preprocessing is used in the Brickell-McCurley identification or 
signatures, the proposed attack can be applied. The complexity and required number of 
signatures are the same. The exponentiation that determines the workload of checking a 



On Schnorr's Preprocessing for Digital Signature Schemes 11 

candidate takes about IP - l l / IqRI  times as tong as for Schnorr's signature scheme, as 
the complexity of exponentiation is linear in the length of the exponent. 

5.3.2. EIGamal  

For ElGamal 's  signature scheme [4], a signature on a message m is a pair (p,  or), with 
p = ot r, that satisfies 

m =-- sp + rcr ( m o d p - l ) .  

(The notation of [4] is changed to conform to the notation in this paper. Also, note that 
the public key is ~ ,  not c~-3. Obviously, this makes no difference here.) It follows that 
(3) can be replaced by 

m i  , P i  
- -  = r  i + S - - ,  
o i o i 

with all computations modulo p - 1. Therefore, with Yi = rni/~i and ei = pi/c~i for all 
i we obtain the same equations as for Schnorr's signature scheme. Note that indeed both 
Yi and ei can be computed by anyone in possession of the corresponding signature. 

This implies that the attack will work for ElGamal signatures with Schnorr's prepro- 
cessing as well. The complexity and required number of  signatures are the same, but all 
computations are modulo (p - l ) /R ,  as for BrickelI-McCurley. Since the verification 
still determines the workload of checking a candidate, the only computational difference 
is the length of  the exponent. Thus, the attack typically takes about four times as long as 
for Schnorr's signature scheme. 

5.3.3. DSS 

For the proposed Digital Signature Standard DSS [7], a signature on a message m is a 
pair (p, e ) ,  that satisfies 

p = ( e t r  m o d p )  m o d q  and cr = ( r - I ( h ( m ) + s p ) ) m o d q .  

(The notation of [7] is changed to conform to the notation in this paper. Again, the public 
key is ~ ,  not ~-~,  which again makes no difference.) From this it follows that 

r = a - t  (h(m) + sp)  modq.  

In this case, (3) can be replaced by 

cri-J h (mi )  = r* - scri-i pi. 

Therefore, with Yi -= cri- lh(mi)  and ei = -cr i - lp i  we obtain the same equations as for 
Schnorr's signature scheme. Note that indeed both y~ and e i can be computed by anyone 
in possession of the corresponding signature. 

This implies that the attack will work for DSS signatures with Schnorr's preprocessing 
as well. The complexity and required number of  signatures are the same as for Schnorr 's 
signature scheme. 



12 P. de Rooij 

6. Discussion and Conclusions 

The idea of preprocessing the computation of a random power of a fixed base is interest- 
ing, as it reduces the effort to only a few multiplications. This is especially worthwhile 
for smart cards. Care must be taken, however, that no too much information leaks: the 
replacement of a "true random number" by a pseudorandom number always provides 
side information. 

The preprocessing algorithm as proposed in [11] is not sufficiently secure, since the 
attack described above retrieves the secret key in about (k!) 2 steps, using in the order 

l ~/27r (k - I)k! consecutive signatures or transcripts of identifications, where k is a of 
security parameter, For the proposed value k = 8, this amounts to about 231 steps and 666 
signatures. The workload for each step is determined by a modular exponentiation (for 
Schnorr's signature scheme and DSS with a 140-bit and 160-bit exponent, respectively). 

For the preprocessin~ algorithm from [10], the secret key can be retrieved in k 21a-2) 

steps, using about �89 - 1)k a-2 consecutive signatures, where d is an additional 
security parameter. For the proposed values k = 8 and d = 6 this amounts to 224 steps 
and 212 signatures. 

The attack does not seem to depend very heavily on the underlying signature scheme, as 
it only requires a linear equation in the random exponent. A Schnorr, Brickell-McCurley, 
E1Gamal, or DSS signature provides such an equation, as it must hold for a successful 
verification. 

Furthermore, the attack shows that it is not sufficient to require statistical independence 
of the exponents of any k consecutive signatures, where k is the number of stored pairs. 
The rationale for this requirement was that at least k + 1 consecutive signatures would 
be required, or some number of nonconsecutive ones. 

This indeed holds for the proposed attack. However, only two of the random choices 
involved in those signatures are of consequence for the attack. It is the number of possi- 
bilities for these choices that determines the workload, not the number of signatures. 

The attack works because of the extra information provided by the signature itself, 
namely (3), which is linear in r* (with a known coefficient). Together with the way of 
generating r* (equation (1)) this is sufficient to reduce the number of involved random 
choices to two. 

Acknowledgments 

The author would like to thank Johan van Tilburg, Arjen Lenstra, Claus Schnorr, Jean- 
Paul Boly, and the referees for their comments and for the fruitful discussions about 
this paper, and Yacov Yacobi for pointing out the issue of adapting the attack to other 
signature schemes. 

Appendix A. The Form of the M-Matrix 

In this appendix the exact form of (7) is derived. Let 

/l = i div(k - 1) and X = i mod(k - I). 



On Schnorr's Preprocessing for Digital Signature Schemes 

Then 

13 

{i -2 ( i - k + j ) d i v ( k -  1 ) =  1 
if j = ~ . = 0 ,  
if 1 - ~ . < j  < k - h ,  
if k - ) ~ < j < k - I  

and 

k - 2  
( i - k + j )  m o d ( k - 1 ) =  ~ . + j - I  

~ . + j  - k  

if j = ~ . = 0 ,  

if I - ~ .  < j < k - ~ ,  
if k - ) ~ < j < k - l .  

Multiplication of (6) by ( - 2 )  u then yields 

k-I ) 
( - 2 )  u Yi - 2kYi-k -- 2 '~+ lYi - I  - -  Z A i ( j ) Y i - k + j  

j=0  

0 k - I -~ ,  k - I  

= - r x + a Z A i ( j ) r ~ ' - 2 - - 2  Z Ai( j )rx+j- i+ ~ ai(j)rx+j-k 
j=~. j= I -~. )=k-~. 

+ S ( - - 2 )  ~ (El --2kEi-k - - 2  k+ 
k_, ) 

2Ei-I - Z Ai(j)Ei-k+j , 
j=O 

(14) 

where, in all summations, 0 _< j _< k - 1. Setting ./~ij to the coefficient of  rj in this 
equation, and 

( 'c ) Ei = ( - 2 )  u Ei - 2kEi_k -- 2 k+jEi_l -- Ai(j)Ei-k+j , 
j = 0  

(15) 

and similarly for Yi, this provides (7). Note that indeed the coefficients .A/t 0 depend on 
Ai and on i (or even on i mod(k - 1 )) only; Yi and ~'~ depend on Ai, on i, and a number 
of signatures. 

Finally, (14) enables us to give an explicit form of a r o w  Mi. of M (suppressing the 
indices i): 

- 2 A ( 1 )  - I - 2 A ( 2 )  . . . .  2A(k-2) -2A(k-  1) + 4 A ( 0 )  if k = 0 ,  
A(k- 1 ) - 2 A ( 0 )  - 2 A ( I ) -  I . . . .  2 A ( k - 3 )  -2A(k-2) if ~ .=  I, 

A ( k - 2 )  A(k-1)-2A(O) . . . .  2A(k - 4) - 2A(k  - 3) if ~ . = 2 ,  

A(2) A(3) ... A(k- I ) - 2 A ( 0 )  - 2 A ( I ) -  I if ~ . = k - 2 .  



14 P. de Rooij  

Appendix B. Computation of s - &~ 

Let it : 3. + Iz t (k  - 1) for t = 0, 1. Furthermore, let # = /x l  - /x0 .  According to (5) it 
holds that 

( - 2 )  'u' Ej+,uik_ u - (-2)J'OEj 
j div(k - 1 )+~.~ 

= -(-2)*" E " I "J div(k-l)-/+l+/~ (-- 5. ) ej rood(k- I)+/(k- I)+ l 
I=l 

j div(k-l) 
( 1 ~jdiv(k-I)-I+l 

+ (-2) ~''' ~ , - ~ ,  ejm.~(k-I)+Rt~-I)+l 
I=1 

j div(k-I I+,u 

= -(-2)`u~ Z (--llJdiv(k-l)-l+lejm~ 
I=j div(k- I )+  I 

,u 
1-1 

= - - ( - - 2 )  'u'' Z ( - - 2 )  e. /+/(k-I)+l 
/=l 

for all j.  Therefore, using (15), it follows that 

'fio -E i ,  = - ( - 2 )  "u' Ell + ( - 2 ) U ~  q ' - 2 k ( ( - 2 )  "u' E i , - k  - (--2)U~ 

+ 2k+ I ((-2)`u' E i t -  | - ( -2 )  u~ Ei, ,-  1 ) 

k-I  

+ E Ai~ Ei' -k+j -- (--2)'u')Eio-k+j) 
j=0  

Z k ~k+l = - . - 2 .  " u ~  ~ . - 2 / - ~  eio+l(k-I)+l - 2 e i o + ( l _ l ) ( k _ l  ) - -  z e i o + l ( k _ l  ) 

/=1 
k-1 ) 

-- )~=0 Ai~176 

= (-2)u~2k((-2)'uei, - eio) 

+ ( -2 )  "~ Z ( - 2 )  l-' ei,,.lIk-U+J -- Z A i o ( j ) e i o + j + U - . ) ( k - t )  �9 
t=[ j=o  

Appendix C. The Expected Number of Signatures 

The expectation EN(N) from (12) can be computed as follows using (11): 

EN(N) = Z P r { N  >_ N} 
N : I  

kr-1 N - 2 (  i .~k-I 
: I+Z  I-[ J 

N=2 i=l 



On Schnorr's Preprocessing for Digital Signature Schemes 15 

k!-I N-: 
1 -t- Z e  {k- )~2,  , n( -i/k!} 

N=2 

N . 2  

< 1 +  ,= 
N=2 

< 2 + f ~  e -r:/{2k!/{k-I)) dx  
do 

= 2+V 2(k- 1) 

Appendix D. The Complexity of the Attack 

To compute the expectation Ely(# candidates) from (13), first note that 

() N Pr{N = N} = (N - I )Pr{N > N}, EN 2 = 
N=2 N=2 

which follows from Pr{N = N} = Pr{N > N} - Pr{N > N + I} and 

Then, using (i 1), computations similar to those above yield 

EN(# candidates) = 
/ ) , - ,  

FI ' -  
N=2 i=1 k ! ]  

s < X e-{X-I)2/(2k!/(k-II)dx 

< X e-X'/(2k/(k-I)}dx + 
I I 

k~ / ~_~ 
< l + ~ + l + ~ / 2 ( k _ l ) .  

References 

[ I ] E. E Brickell and K. S. McCurley, An interactive identification scheme based on discrete logarithms and 
factoring, Journal of C~.ptology 5( 1 ) (1992), 29-39. 

[2] D. Chaum, J.-H. Evertse, and J. van de Graaf, An improved protocol for demonstration possession of 
discrete logarithms and some generalizations, Advances in C~ptology--Proceedings of Eurocrypt '87 
(D. Chaum and W. L. Price, eds.), Lecture Notes in Computer Science, vol. 304, Springer-Verlag, Berlin, 
1988, pp. 127-141. 

[3] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions on Information Theor 3, 
22(6) (1976), 644 654. 

[4] T. E1Gamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE 
Transactions on Information TheoD, 31(4) (1985), 469-472. 



16 P. de Rooij 

[5] U. Feige, A. Fiat, and A. Shamir, Zero knowledge proofs of identity, Journal of Cryptology 1( I ) (1988), 
77-95. 

[6] C. G. GUnther, An identity-based key-exchange protocol, Advances in Co'ptalogy--Proceedings of 
Euroc~'pt '89 (J.-J. Quisquater and J. Vandewalle, eds.). Lecture Notes in Computer Science, 
vol. 434, Springer-Verlag, Berlin, 1990, pp. 29-37. 

[7] National Institute of Technology and Standards, Specifications for the Digital Signature Standard ( DSS), 
Federal Information Processing Standards Publication XX, U.S. Department of Commerce, February I, 
1993. 

[8] J. J. Quisquater and L. S. Guillou, A practical zero-knowledge protocol fitted to security micropro- 
cessor minimizing both transmission and memory, Advances in Cr).,ptology--Proceedings of Eurocrypt 
'88 (C. G. GUnther, ed.), Lecture Notes in Computer Science, vol. 330, Springer-Verlag, Berlin, 1988, 
pp. 123-128. 

[9] P. de Rooij, On the security of the Schnorr scheme using preprocessing, Advances in Cryptology-- 
Proceedings of Eurocrypt '91 (D. W. Davies, ed.), Leciure Notes in Computer Science, vol. 547, Springer- 
Verlag, Berlin, 1991, pp. 71-80. 

[10] C. P. Schnorr, Efficient identification and signatures for smart cards, Advances in C~'ptology-- 
Proceedings of C~.pto '89 (G. Brassard, ed.), Lecture Notes in Computer Science, vol. 435, Springer- 
Verlag, Berlin, 1990, pp. 239-251. 

[ I I l C.P. Schnorr, Efficient signature generation by smart cards, Journal of Cryptology 4(3) ( 1991 ), 161-174. 


