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Abstract. The block cipher DESX is defined by DE&X k2(X) = k2 @ DES,

(k1 & x), where @ denotes bitwise exclusive-or. This construction was first suggested
by Rivest as a computationally cheap way to protect DES against exhaustive key-search
attacks. This paper proves, in a formal model, that the DESX construction is sound. We
show that, wherF is an idealized block cipheFXkkik2(X) = k2 ® Fr(kl @ x) is
substantially more resistant to key search thah.ign fact, our analysis says th&X

has an effective key length of at least- n — 1 — Ig m bits, wherec is the key length of

F, nis the block length, anth bounds the number gk, FXk (x)) pairs the adversary

can obtain.
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1. Introduction
With its 56-bit keys, the susceptibility of DES to exhaustive key search has been a
concern and a complaint since the cipher was first made public; see, for example, [8].
The problem has escalated to the point that the Electronic Frontier Foundation has now
built a DES cracking machine, at a cost of less than US$250,000, that can find the right
key in about 3 days [9], [14].

* An earlier version of this paper appears in [13].
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18 J. Kilian and P. Rogaway

There have been many approaches suggested for reducing DES’s vulnerability to
exhaustive key search. One is to construct a DES-based block cipher which employs a
longer key. Triple DES (typically in “EDE mode”) is the best-known algorithm in this
vein. It seems to be quite secure, but it is not particularly efficient. Specifically, triple-
DES encryptioridecryption requires multiple DES encryptigdgcryptions. This paper
analyzes a cheaper alternative.

Rivest [16] proposes an extension of DES, called DESX, defined by

DESXck1k2(X) = k2 @ DES(K1 & X).

The keyK = k.k1.k2 (here,. denotes concatenation) is now %664 4+ 64 = 184

bits. Compatibility with DES is maintained by settikd = k2 = 0%. Existing DES

CBC hardware can be gainfully employed by first masking the plaintext, computing
the DES CBC, and then masking the ciphertext. Most significantly, DESX has hardly
any computational overhead over ordinary DES. Yet, somehow, DESX seems no longer
susceptible to brute-force attacks of anything néétithe.

It is unintuitive that one should be able to increase substantially the difficulty of
key search by something as simple as a couple of XORs. Yet working with the DESX
definition for a while will convince the reader that undoing their effect is not so easy.

Does the “DESX trick” really work to improve the strength of DES against exhaustive
key search? We give a strong positive result showing that it does.

1.1. Our Model

Key-search strategies disregard the algebraic or cryptanalytic specifics of a cipher and
instead treat it as a black-box transformation. Key-search strategies can be quite sophis-
ticated; recent work by [19] is an example. We want a model generous enough to permit
sophisticated key-search strategies, but restricted enough to merétrategies that
should be regarded as key search. We accomplish this as follows.

Let « be the key length for a block cipher and febe its block length. We model
anideal block cipher with these parameters asadommapF: {0, 1} x {0, 1}" —
{0, 1}" subject to the constraint that, for every Keg {0, 1}¢, F(k, -) is a permutation
on {0, 1}". A key-search adversark is an algorithm that is given the following two
oracles:

e An F oracle that on inputk, x) returnsF (k, x).
e An F~1 oracle that on inputk, y) returnsfF —1(k, y).

Here,F~1(k, y) denotes the unique poirtsuch thatF (k, x) = y.

A generic key-search adversaryes to perform some cryptanalytic task (to be spec-
ified) that depends of. She may perform arbitrary computations, using unbounded
amounts of time and space, but her only access ivia theF /F ~* oracles. We ana-
lyze the adversary’s rate of success in performing her cryptanalytic task as a function of
the number of accesses she makes tdRpE ! oracles.

To apply the above framework to DESX, we first generalize the DESX construction.
Given any block cipheF we defineFX: {0, 1}*+2" x {0, 1}" — {0, 1}" by

FX(kk1.k2, x) =k2 @& F(k, k1 & x).
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For bothF and FX we sometimes write their first argument (the key) as a subscript,
Fc(x) and FXk (x), whereK = k.k1.k2. In this notation,Fx may be thought of as a
permutation chosen from a family of (random) permutations that is indexé&d by

To investigate the strength &X against key search we consider a generic key-search
adversanAwith oracles for andF —1, and determine how wef\ can play the following
“FX-or-7” game. Ais given an “encryption oraclek that has been randomly chosen
in one of two ways (each with probability%):

e AstringK € {0, 1}*+2" is chosen at random arf(x) = FX (X).
e Arandom permutatior: {0, 1}" — {0, 1}" is selected an& (x) = 7 (X).

A must guess which walg was chosen. The adversary “wins” the game if it guesses
correctly with probability significantly greater thanB0 The FX construction “works”
if the resources needed to do a good job in winning the above game are substantially
greaterthan the resources that suffice to bréak

As an example of a generic key-search attack, consider the weakened form of DESX,
denoted DESW, in whick; is always set to &/; that is,

DESWkk2(X) = k2 @ DES(X).

It is possible to mount a generic key-search attack DESW as follows. Givamd
DESW , (x) for an arbitraryx, one can computie, = DESW, i, (X) & DES(x). Thus,

one can go through all possible keyscompute the full keyk.k,, and test with high
confidence whethdt.k; is correct (given values of Dkg,(y) for a couple of random
y-values). Hence, DESW is no stronger than DES against generic key-search attacks.
Similarly, if k is always set to ¢!, there is no significant improvement over DES,

as long as two or three plaintext—ciphertext pairs are known. (There may be marginal
benefits if only a single plaintext—ciphertext pair is known, or for ciphertext-only attacks,
but these are comparatively small improvements.) It is the combination of the two XOR
operations that give DESX its superior resistance to generic key-search attacks.

1.2. Our Main Result

We show that if generic key-search adversargan make only a “reasonable” number
of queries to her encryption orad then A must ask an excessive numberfofF —1
queries in theFX-or-m game, and therefor@ must run for an excessively long time.
More specifically, we prove the following. Leh bound the number ofx, FX (X))
pairs that the adversary can obtain. (This humber is usually under the control of the
security architect, not the adversary.) Suppose the adversary makes dt guesies
to her F/F~1 oracles. (This number is usually under the control of the adversary, not
the security architect.) Then the adversary’s advantage over random guessing (i.e., the
difference between its success and failure probabilities) in winningXrer-r game is
atmosimt-2—~"*+1_|n other words, the adversary’s advantage is at m@st —"+1+am
so the effective key length &fX, with respectto key search, is atleagtn—1—Ig mbits.

To understand the above formula, consider a block cipherith 55-bit keys and a
64-bit block size* Suppose key-search adversdrattacksFX and, in the course of the

1 Why we use 55 and not 56 is explained in the discussion in Section 4.
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attack, is able to obtain up to = 23° blocks of enciphered data. Suppaseuns in time
at mostT. ThenA has advantage of at most. 2-55-64+30+1 — T . 2-88 {g just guess
whether the enciphered data reallgsproduced byFX, and not a random permutation.
A more detailed discussion of our main theorem is given in Section 4.

Because our main result indicates the infeasibility of key search even when we ignore
the adversary’s space requirement, this “omission” only strengthens what we are saying.
Similarly, “good” adversaries may, necessarily, use an amount of fimehich far
exceeds their number &/F ! queriest. So focusing on the query complexity makes
our results all the more meaningful. Likewise, the weakness of the adversary’s goal only
strengthens the lower bound.

1.3. Related Work

Even and Mansour [10] construct a block cipiet: {0, 1}2" x {0, 1}" — {0, 1}" from a
random permutatiof®: {0, 1}" — {0, 1}" by PXy1k2(X) = k2® P (k1@ x). Clearly this

is a special case of tHeX construction, where = 0. While their motivation for looking

at PX was quite different from our reasons to investiggd, our model and methods

are, in fact, quite similar. Our main result can be seen as a natural extension of their work.

The modeling of a block cipher by a family of random permutations has its roots
in [18].

Rivestinvented DESX by May 1984, but never described the scheme in any conference
or journal paper [16]. DESX was implemented within products of RSA Data Security,
Inc., and is described in the documentation for these products [17]. DESX has also been
described at conferences organized by RSA DS, including [21].

Encryption methods similar to DESX have been invented independently. Blaze [5]
describes a DES mode of operation in whichittieblock of plaintexty;, is encrypted
using 112-bit keyk.k1 by Exx1(Xi) = 5 @ DES(S @ x), wheres;s; - - - is a stream of
bits generated frorkl by, says = DES; (0%%). Here DES’ denotes théth iterate of
DES.

Many authors have suggested methods to increase the strength of DES by changing
its internal structure. Biham and Biryukov [2] give ways to modify DES to use key-
dependent S-boxes. Their suggestions improve the cipher’s strength against differential,
linear, and improved Davies’ attacks, as well as exhaustive key search. Ciphers con-
structed using their ideas can exploit existing hardware exactly in those cases where
the hardware allows the user to substitute his own S-boxes in place of the standard
ones.

Inwork subsequent to ours [13], Aiello et al. [1] have used the same model used here to
analyze the “double DES” constructiofify; k2 (X) = Fra(Fy1(X)). In other subsequent
work, Biryukov and Wagner [4] improve upon the attack of Section 5, showing how to
break DESX with 32° knownplaintexts and & time. Our attack uses similar resources
but is achosenplaintext (instead of known-plaintext) attack. A discussion of multiple
encryption is given in [12]. A discussion of DES key search is given in [20].

1.4. Discussion

Understanding our result It may be hard to understand the ramifications of our main
theorem, thinking it means more or less than it does. DES, of course, is not a family
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of random permutations, and wannotconclude from our theorem that there does not
exist a reasonable machiiewhich breaks DESX in, say®2steps, given just a handful

of (plaintext, ciphertextpairs. What we can say is that such a machine would have to
exploit structural properties of DES; it could not get away with treating DES as a black-
box transformation. This contrasts with the sort of machines which have been suggested
in the past for doing brute-force attack: thaiytreat the underlying cipher as a black-box
transformation.

We note that while remarkable theoretical progress has been made on the linear and
differential cryptanalysis of DES (see [3] and [15]), thus far these attacks require an
impractically large number of plaintext—ciphertext pairs. To date, the only published
practical attacks against DES remain of the key-search variety. The DESX construction
was not intended to improve the strength of DES against differential or linear attack, or
any other attack which exploits structural properties of DES, and our theorem does not
say anything about its resistance to these attacks.

On export controls tied to key length Our results indicate how algorithmically trivial it

can be to obtain extra bits of strength against exhaustive key-search attacks. The impact
of these extra bits can be especially dramatic when the key length of the block cipher
had been intentionally made short.

Consider a block cipheff with a 40-bit key and a 64-bit plaintext. (Some products
using such block ciphers have been granted U.S. export approval.) With these parameters,
our results guarantee an effective key length (with respect to exhaustive key search) of
at least 40+ 64 — 1 — Igm = 103 — Ig m bits. Under the reasonable assumption that
m < 2%, say, the 40-bit block cipher has been modified, with two XORs, to a new block
cipher which needs at least®2time for exhaustive key search.

Allowing weak cryptography to be exported and strong cryptography not to be is a
policy which can only make sense wheniitis impractical, for the given system, to replace
the weak mechanism by a strong one. Our results indicate that this impracticality must
cover algorithmic changes that are particularly trivial.

1.5. Outline of the Paper

In Section 2 we define some basic notation and define what comprises a successful attack
in our model. In Section 3 we state and prove our main theorem on the security of the
DESX construction. Section 4 is a discussion. Section 5 demonstrates that the analysis
underlying our main result is tight. In Section 6 we give some conclusions and open
guestions.

2. Preliminaries

Let P, denote the space of g")! permutations om-bits.

We say that=: {0, 1}* x {0, 1}" — {0, 1}" is a block cipher if for everk € {0, 1}*,
F(k, -) € Pn. We defineF by Fc(xX) = F(k, X). Let 5, , denote the space of all block
ciphers with parameteksandn as above.

GivenF e B, ,, we define the block ciphef~* € B, , by F~1(k, y) = F_*(y) for
k € {0, 1}*. We interchangeably writEljl(y) andF~1(k, y).
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GivenF € B, n, we define the block ciphdfX € B, i2nn by FX(K, x) = k2 & F
(k1 @ x), whereK = k.k1.k2, |k| = «, and|kl| = |k2| = n. We interchangeably write
FXk (xX) andFX(K, x).

Given a partially defined functioR from a subset of0, 1}™ to a subset of0, 1}" we
denote the domain and rangefefoy Dom(F) and RangéF), and defindDom(F) =
{0, 1}™ — Dom(F) andRang&F) = {0, 1}" — Rangé&F).

We denote byx £ Sthe act of choosing uniformly from S. We denote by
Pr[A:; Ay; ---: E] the probability of evenE after performing actiong\;, A, ....

Definition 2.1. A generic key-search adversary is an algoritAmwith access to three
oraclesE, F, andF 1. Thus,A may make queries of the forg(P), F¢(x), or Fk‘l(y).
An (m, t) generic key-search adversary is a key-search adversary that majesies
to the E oracle and a total df queries to thé= andF ~* oracles.

For brevity, we sometimes drop “generic” from our terminology. Note thatipplies
the value ok as part of its queries to tHfe and F ~* oracles. We denote b§E-F-F " the
adversaryA interacting with oracle€, F, andF 1.

We now define what it means for a generic key-search advefstrpave an attack of
a certain specified effectiveness. We begin by choosing a random block Eigtaeting
k-bit keys andh-bit blocks. This means that we select a random permutﬁioﬁ Pn
for eachk-bit key k. Thus eachF is chosen independently of ea&f, for k £ k.

Then we giveA three oraclesg, F, andF . The F and F~* oracles compute their
respective functions. The encryption oraElgon inputx, either computef X (x) for a
random g + 2n)-bit key K, or computesr (x), for a random permutation < P,.The
adversary’s job is to guess which type of encryption oracle she has. Our convention is
that A outpus a 1 if itthinks that the encryption orackeis computingFX (-); it outputs

a 0 if it thinks thatE is computingr (-). When we write Prig; Az AEFF = 1] we

are referring to the probability tha&, with the specified oracles, outputs 1, after having
performed the sequence of stefg A.

The adversary’sdvantagemeasures her accuracy in winning the game above. It is
normalizedto af1, 1] scale—1indicates that the adversary is always wrong; 1 indicates
that the adversary is always right; and guessing at random, or always guessing the same
way, will give an advantage of 0.

Definition 2.2. Letx,n > 0 be integers, and let > 0 be a real number. Generic
key-search adversat is said toe-breakthe FX-scheme with parametetsn if

Adva d:ef Pr[F (R— BK,FI; K (R_ {0, 1}K+2n: AFXK,F,F* _ 1:|
— Pr[F (i BI(,I']; T (R_ P An,F,F‘l _ 1]

> €.

The above definition uses a very liberal notion of adversarial success. We are not
demanding that, sayA recoverK; nor do we askA to decrypt a randonfrXg (x) or
to produce a not-yet-askdga, FXk (X)) pair. Instead, we only ask to make a good
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guess as to whether thplaintext, ciphertextpairs she has been receiving reae
FX-encryptions, as opposed to random nonsense unrelatedTbe liberal notion of
success is chosen to make our main result stronger: an adversary’s inability to succeed
becomes all the more meaningful.

3. Security of the DESX Construction

We now prove a bound on the securityfeéX against generic key-search attacks.

Theorem 3.1. Let A be an(m, t) generic key-search adversary thabreaks the FX-
scheme with parameteks n. Thens < mt. 27<-"+1,

Proof. Before going into the detailed formal proof, we first give some intuition for
why the proof works. Clearly, thEX construction is highly nonrandom if one makes all
possible queries to tHe, F, andF —* oracles. However, to defeat the adversary it suffices
if the answers to its relatively few queries are random. For intuition, we erroneously think
of F as a family of random functions (the formal analysis takes into account the fact that
F« is a permutation). We conceptually vigwas undefined; as queries from the adversary
come in we choose values Bf(x) at random. Note that queriesiEyx) implicitly make
queries toF. If in computingE (x) we make a “fresh” query t& (one that has not been
made before), we generate a fresh answer that is random and independent of the entire
history of the attack. This fresh randomness ensures that the resulting valite)of
will be random. However, randomness cannot be guaranteed when new queries depend
on previously determined values. We show that if the adversary does not make many
gueries, then these bad events happen with low probability.

By a standard argument we may assume thas deterministic (note thaf may
be computationally unboundeti\Ve may also assume that always asks exactlyn
queries of her first oracle, which we call Heroracle. (In the experiment that defind's
advantageE was instantiated by either &X -oracle or ar-oracle.) We may assume
that A always asks exactlyy queries (total) to her second and third oracles, which we
call her F- and F~!-oracles. We may further assume thfanever repeats a query to
an oracle. We may assume thatHtk, x) returns an answey, then there is no query
(neither earlier nor later) of ~X(k, y). All of the above assumptions are without loss
of generality in the sense that it is easy to construct a new advesatiiat obeys the
above constraints and has the same advantade as

We begin by considering two different games that advergamnight play. This
amounts to specifying how to simulate a triple of oraclds, F, F~1), for the bene-
fit of A.

A first game The first game we consider, Garfe(for “random”), will exactly cor-
respond to the experiment which defines the second addend in the expression for the

2 Roughly, given unlimited computational capabilities,can derandomize its strategy by exhaustively
searching through its possible random choices, computing the effectiveness of the resulting attack, and then
choosing the most efficacious choice.
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advantage:
Pr =P AR = 1],

The definition of Gamé& will be defined to contain several extra (and seemingly irrele-
vant) steps. These steps are not needed in order to behave in a manner which is identical
(as far asA sees) to the manner of behavior definitg these steps are used, instead, to
facilitate our analysis. To identify these “irrelevant” instructions we put them in italics.
GameRis defined in Fig. 1.

Let Prr[E] denote the probability of eveiit when answers to adversary queries are
determined by running Ganf®. From the definition of Gam®& we can see that:

Game R

Initially, let F and E be undefined. Flag
bad is initially unset. Randomly choose
k* & {0,1}%, k1 ks & {0,1}*. Then answer
each query the adversary makes as follows:

On oracle query E(P):

1. Choose C' € {0,1}" uniformly from
Range(FE).

2. If Fyo (P @ k7)) is defined, then set
bad.
If F2MC @ k3) is defined, then set
bad.

3. Define E(P) =

C and return C.

On oracle query Fy(z):

1. Choose y € {0,1}" uniformly from
Range(Fg).

2. Ifk = k* and E(x @ k7) is defined
then set bad.
Ifk=k* and E!
then set bad.

3. Define Fx(z) = y and return y.

(y © k%) is defined

- On oracle query F~ Yy

. Choose z € {0,1}" uniformly from
Dom(Fk)
2. Ifk=k* and E~
then set bad.
If k = k* and E(z @ k7) 4s defined
then set bad.
3. Define Fy(z) = y and return z.

Yy @ k3) is defined

Game X

Initially, let F and E be undefined. Flag
bad is initially unset. Randomly choose
k* & {0,1}%, K, ks & {0,1}”. Then answer
each query the adversary makes as follows:

On oracle query E(P):

1. Choose C' € {0,1}" uniformly from
Range(E).

2. If Fy. (P ® k{) is defined, then C +
Fi- (P @ k}) @ k3 and set bad.
Else if F2'(C @ k3) is defined, then
set bad and goto Step 1.

3. Define E(P) = C and return C.

On oracle query Fy(z):

1. Choose y € {0,1}™ uniformly from
Range(F).

2. If k = k* and E(x ® k) is defined
then y « E(z @ k{) © k3 and set
bad.

Else If k = k* and E~'(y @ k3) is de-
fined then set bad and goto Step 1.

3. Define Fy(z) =y and return y.

On oracle query F; ' (y):

1. Choose z € {0,1}" uniformly from
Dom(Fy).

2. fk=k*and E-!(y @ k3) is defined
then z « E~'(y @ k) @ k} and set
bad.

Else if k = k* and E(z @ k}) is de-
fined then set bad and goto Step 1.
3. Define Fy(x) = y and return z.

Fig. 1. GamesRandX.
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Claim 3.1. Prg [AE’FvF‘l - 1] = Pr.

A second game Now we define a second game, Gakdt will exactly correspond to
the experiment which defines the first term in the expression for the advantage:

Px = P AP PF = 1]

Once again, the definition of Gam¢ will be defined to contain some “irrelevant”
instructions, which, for clarity, are indicated in italics. GaXés defined in Fig. 1.

The intuition behind Gam& is as follows. Wery to behave like Gam&, choosing
a random (not-yet-provided) answer for edetP), and a random (not-yet-provided for
thisk) answer for eack(X), Fk‘l(y). Usually this works fine for getting behavior which
looks like the experiment defininBx. However, sometimes it does not work, because
an “inconsistency” would be created between fxeanswers and thE /F ~*-answers.
GameX is vigilantin checking if any such inconsistencies are being created. If it finds an
inconsistency about to be created;hiangeghe value which it had “wanted” to answer
in order toforce consistency. Whenever Gaméresorts to doing this it sets the flag
bad In the analysis, we “give up” (regard the adversary as having won) any time this
happens.

Let Prg[E] denote the probability of everit when answers to adversary queries are
determined by running Gamé The definition of Gam& looks somewhat further afield
from the experiment which defind%. Nonetheless, we claim the following:

Claim 3.2. Pry [AE*F’F’l - 1] - Py

The proof of this claim is in the Appendix.

Bounding the advantage Brs [BAD]. In either GameR or GameX, let BAD be the

event that, at some pointin time, the flagdgets set. Gamak and X have been defined

S0 as to coincide up until eveB®AD. To see this, note that the corresponding oracles

in these games are identical except for, in each case, Step 2. For each pair of oracles,
Step 2 executes identical tests and based on the outcome of the test either does nothing
in both cases or selmdin both cases (and other actions, in which the oracles will differ

in their behavior). Thus, any circumstance that causes Gaared GameX to execute
different instructions will also cause both games tolsel The following two claims

follow directly from this fact.

Claim 3.3. Prg[BAD] = Prx [BAD].
Claim 3.4. Pry [AE’FFI —1] BAD] — Pry [AE'FFI —1] BAD].

What we have shown so far allows us to bound the adversary’s advantage[BAP} .

Claim 3.5. Adva < Prr[BAD].
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The argument is quite simple:

AdVA = Px — PR
= Prx [AE’F’Ffl = 1] - Prr [AE’FF1 = 1] (Claims3.1, 3.2)

= Prx[A= 1| BAD|Prx [BAD] + Prx [A = 1| BAD]Prx [BAD]
—Prr[A = 1| BAD|Prr [BAD] — Prr[A = 1| BAD]Prg [BAD]
= Prr[BAD] (Prx [A = 1| BAD] — Prg[A = 1| BAD])
(Claims3.3, 34)
< Prgr[BAD].

A third game We have reduced our analysis to bounding [BAD]. To bound
Prz[BAD], we imagine playing GamR a little differently. Instead of choosing, ki, k}

at the beginning, we choose them at the end. Then weeshb betrue or falsedepend-

ing on whether or not the choice kf, k7, k3 we have just made would have causeal

to be set to true in GamR (where the choice was made at the beginning). The new
game, GamdR, is described in Fig. 2. From the definition of GaiRewe see that:

Claim 3.6. Prgr[BAD] = Prr [BAD].

Completing the proof Now that we have sufficiently manipulated the games a simple
calculation suffices to bound R{BAD], and, thereby, to bound Adv

After having run the body of GamR', not having yet chosek, k, k3, we simply
count how many of the*2?" choices for(k*, ki, k3) will result in badgetting set.

Fix any possible values fdE andF which can arise in GamR'. Let |E| denote the
number of defined valuds(P), and let|F | denote the number of defined valuggx).

Initially, let F' and E be undefined. Answer each query the adversary makes as follows:

On oracle query E(P):
1. Choose C uniformly from Range(E).
2. Define E(P) = C and return C.

On oracle query Fy(z):

1. Choose y uniformly from Range(Fy)
2. Define Fy(z) = y and return y.

On oracle query Fy ' (y):

1. Choose z uniformly from Dom(F}).

2. Define Fy(z) =y and return z.

After all the queries have been answered:

Flag bad is initially unset.

Randomly choose k* & {0,1}%, k¥, k3 « {0, 1}™.

If 3 z such that Fy. (z) and E(z @ k}) are both defined then set bad.
If 3 y such that F;' (y) and E~'(y © k3) are both defined then set bad.

Fig. 2. GameR'.
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Note thatlE| = mand|F| = t. Fix E andF. Call (k*, k3, k}) collision-inducing(with
respect toE and F) if there is some defineg = F¢(x) and some define@ = E(P)
such that

k"*=k and (P& ki=xorCak;=y).

Every choice of(k*, ki, kj) which results in settingpad is collision-inducing, so it
suffices to upper bound the number of collision-induaikig ki, k3).

Claim 3.7. Fix E, F,where|E| = m and|F| = t. There are at mos2mt- 2" collision-
inducing(k*, ki, k) € {0, 1} x {0, 1}" x {0, 1}".

The reason is as follows: for each defind E(P)), (k, x, Fx(x)) there are at most
2- 2" points(k*, ki, k3) which induce a collision between these two points: they are the
points(k*, ki, k) € {{k} x {x & P} x {0, 1}"} U {{k} x {0, 1}" x {y @ C}}. Now there
are onlymt pairs of such points, so the total number of collision-induckig ks, k3) is
as claimed.

Finally, in GameR’ we choose a triplgk*, ki, k) at random, independent & and
F, so the chance that the selected triple is collision-inducing (for whateeexd F have
been selected) is at mosn2 - 2"/2<+2" = mt. 2-<~"*+1 Putting everything together,
this probability bounds Ady, and we are done. O

4. Discussion

Health warnings We emphasize that whehis a concrete block cipher, not a random
one, its internal structure can interact with th&-construction in such a way as to
obviate the construction’s benefits. As a trivial examplé; idlreadyhas the structure
that it XORs plaintext and ciphertext with key material, then doiragginis certainly

of no utility.

Our model considers how mudhXy looks like a random permutation (when key
K is random and unknown). It should be emphasized that some constructions which
use block ciphers—particularly hash function constructions—assume something more
of the underlying block cipher. The current results imply nothing about the suitability
of FX in constructions which areot based orFXk resembling a random permutation
whenK is random and unknown.

We also note that our analysis as stated only considers chosen-plaintext attacks and
does not establish resistance to chosen-ciphertext attacks. However, it is straightforward
to adapt our techniques to analyze chosen-ciphertext attacks, as was done in [10]. To do
this, provideA an oracle forFX 2, in addition to her other oracles. Naw will count
the sum of the number of queries to tAX and FX~! oracles. Theorem 3.1 will then
continue to hold. The proof changes very little.

Structure inthe block cipher F when£ DES. Thereisone structural property of DES
which has been suggested to assist in brute-force attacks: the DES key-complementation
property. This property comprises a significant sense in which DES is not behaving like a
family of (independent) random permutations. To “factor out” the key-complementation
property just think of DES as having a single key bit fixed. Then one can conclude that if
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this is the only structural property of DES to be exploited by a generic key-search attack,
DESX will still limit the attack’s advantage ton - 2755641 — tm. 2118,

Settingk = k2.  Asmentioned inthe Introduction, the simpler constructiegy, (x)
= F(x @ k1) and FXP5(x) = k1 @ Fi(x) do not significantly improve=’s strength
against generic key-search attacks. However, what about

FXj i (X) = k1 ® F(x @ k1)?

Is it OK to use the same key inside and out? In fact this does work, in the sense that
Theorem 3.1 stillgoes through, the proof little changed. We analyzed the more “standard”
general construction, with two keys, but the more restricted choice has the advantage of
a smaller key-size, with no obvious loss of security.

Nicer key lengths A minor inconvenience of DESX is its strange key size. In ap-
plications it would sometimes be preferable to extend the definition of DESX to use
arbitrary-length keys, or else to use keys of some fixed but more convenient length.
Standard key-separation techniques can be used.

We give one extension of DESX to arbitrary-length keys, as followsX;et denotes
the first¢ bits of X, let SHA-1 be the map of the NIST Secure Hash Standard, and let
C, C1, andC2 be fixed, distinct, equal-length strings. Whét £ 184, we can define
DESXk (x) to be equal to DESK (x) whereK’ is defined as follows:

e If |K| =56, thenK’ = K.064.0%4.
e Otherwise,

k = SHA-1(C.K)1..56,
K'=kk1k2,  where k1l = SHA-1C1.K)i.ga,
k2 = SHA-1(C2.K)1...64.

Note that whenK | = 56, DESX (X) = DES¢ (X).

Differential and linear cryptanalysisOperations besides XOR We emphasize that
the DESX construction was never intended to add strength against differential or linear
cryptanalysis. The attacks of [3] and [15] do not represent a threat against DES when the
cipher is prudently employed (e.g., when a re-key is forced before an inordinate amount
of text has been acted on); until these attacks are improved, it suffices that the DESX
construction does not render differential or linear attackeasjer

Nonetheless, the proof of Theorem 3.1 goes through w#hismeplaced by a variety of
other operations, and some of these alternatives may help to defeat attacks which were not
addressed by our model, including differential and linear cryptanalysis. In particular, an
attractive alternative to DESX may be the construction DESR (X) = k24+DES((k1+
x), whereLR + L'R &' L L .RIR, where|L| = |R| = |L'| = |R| = 32 and}
denotes addition moduld’2 Kaliski has suggested such alternatives, and analyzed their
security with respect to differential and linear attacks [11].
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5. Our Bound Is Tight

We have shown that the adversary’s advantage is at m@t"*+119™_ Tyrning this
around, the adversary neeg®+<~1-19™M queries to theF/F ! oracles to achieve an
e-advantage. We now show that for a wide rangamofcomprising allm that would

be considered in practice), an attacker can achieveagvantage using very close to
2ntet4-lam queries to thé /F ~1 oracles (the exact bound is given in Corollary 5.2). This
follows as a corollary of a more ambitious chosen-plaintext attack—one which recovers
a keyK’ = k'.k1".k2 that is consistent with the encryptions undet of m plaintexts
chosen before anfy/F ~* oracles queries are made. See [4] for a recent known-plaintext
attack on DESX.

Theorem 5.1. Let m be everm < 2", ande < % Let block cipher F be uniformly
distributed ovei3, , and let key K be uniformly distributed ovgd, 1}<*2". Then there
exist an adversary @, ¢) that initially makes m distinct queriegt . ., ty, (the test sgt

to an oracle computing F X. Adversary A then makes

(2n+/<+l—lgm + 2n + 2K) (8 + 82)

expected queries to the/F ~* oracles With probability at least it returns a K’ such
that F X, (ti)) = F Xk (%) for 1 <i < m. The probability is taken over the choice of F
K, and A’s coin tosses

It follows that our analysis is essentially tight, given our measure on the attacker's
resources, which roughly corresponds to time. We note that in practice it is also important
to consider the memory requirements of an attack. Conceivably, there exist stronger
attacks that require the same amount of time but much less memory. However, if the
time requirements are sufficiently high, the memory issue becomes moot. However, it is
an interesting open question whether imposing a reasonable space bound can allow us
to improve our time bound.

For reasonable values i, the task performed byA(m, ¢) is at least as strong as
simply distinguishing=X from a purely random permutation. To see this, consider any
family of permutationgF Xk } on{0, 1}", wherelK | = k +2n. We say that isplausible
if for someK, 7 (X)) = FXx (%) for1 <i < m. If = is chosen at random, then by a
simple counting argument the probability that it is plausible is at most

) 2K+2n
p(k, N, M) d=Gfm|n{1 }

M2 1) (2"—m+ 1)

For example, it < n,n > 20, andm > 6, thenp < 10724 So an attacker who outputs
a 1iff she finds a consisteHt has an advantage of p (x, n, m), which is essentially.

A minor technical point is that our lower bound considered attackers with worst-case
instead of expected-case bounds. However, we can convert the expectation into a worst-
case bound by observing that if an expected value is at @p#ten with probability%
it is at most ). Hence, fore < % we can set the attackex in Theorem 5.1 to find a
consistentK with probability 2, and time out ifA takes more than twice its expected
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number ofF /F 1 queries. The resulting attack uses at most

t

IA

(2nter2lam o ot 4 2ty (26 + 462)

< (2n+f<+4flgm + 2n+3 + 2K+3)£

worst-case queries to tife/ F 1 oracles.
Finally, since the advantage és— p(x, n, M) we can set to be p(k, n, m) bigger
than the desired advantage, giving the following corollary.

Corollary 5.2. Letm be everm < 2", ande < % — p(x,n, m). Let block cipher F be
uniformly distributed oves3, ,, let key K be uniformly distributed ov¢®, 1}<*2", and
let permutationr be a uniformly distributed oveP,. There exists an attacker(, ¢)
that makes m queries to oracle(Eomputing either F X or =) and makes

(2n+x+4flgm + on+3 + 2K+3) (e + p(x, n, M))

queries to the FF ~ oracles A solves the F X-ore game with advantage at least

The rest of this section is devoted to the proof of Theorem 5.1.

To motivate our attack, we can view tfe&X block cipher as choosing a random Key
and then applying the Even—Mansour construction to the funéijollVe can therefore
trivially adapt Daemen’s chosen-plaintext attack [7] on the Even—Mansour construction
[10]. Unfortunately, we do not know the value kfso we instead try all possible ones.
For completeness, we describe the attack and calculate the amount of work required to
have probabilitye of recovering the key.

5.1. Preliminaries

Assume tham is evenm < 2", ande < % Fix a constanC € {0, 1}" — {0"}. For
any functionG, defineG*(x) = G(x & C) @ G(x). Given an oracle foG one can
computeG* by making two calls. Let the secret ki&y = k.k1.k2. Let E by a synonym
for FX. By our definitions and simple algebra we have

Er(x) = FA(x@®kl) = FA(x ® C @ kl).

5.2. The Key-Search Attack

The attackerA works as follows.A uses oracles computirfgXy (for the correctK =
k.k1.k2) andF. Attacker A takes as parametens, the maximum number of queries it
is allowed to make to th& X oracle, and, a required lower bound on its probability
of producing a keyK’ that gives consistent results on timequeries it made t& X .

A(m, g)
1. Choosexy, ..., Xm/2 € {0, 1}" arbitrarily so that
TEST =X]_,...,Xm/z,Xl@C,...,Xm/z@C

hasm distinct elements.
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2. Using theF X oracle, computé X (t) fort € TEST, and then compute
FXE(X1), - .., FXE (Xmy2)-

3. Fori from1tol¢ = [(—2"In(1—¢))/m] do
Choose < {0, 1}
Forallk' € {0,1},1< j <m/2do
If F2(r) = FXR (X))
* Hope that K = k and r is either x @ klorx; @ C & k1*/
Forkl' e {x; ®@r,x; @ C @r}
k2 = Fe (X1 ® k1) ® F Xk (X1); K’ = k'.kl'.k2
If FXk/ (t) = FXk(t) fort € TEST
Return K’

5.3. Analysis of the Attack

To analyze this attack we first bound the oracle-query complexity of testing edéh
then compute how manys are needed in order to succeed with probabdity

We say that is goodif it is equal tox; @ k1 orx; & C @ k1 for somej. If r is good,
then as soon as the attacker tikés= k (remember she tries them all) she will obtain the
correct values fok1’ and therk2' (though she may try some incorrect values as well).

We now bound the expected cost of trying eackor each value af (good or bad),
the attacker must go through, in the worst case,“allftues fork’. For each value df’,
it makes two calls to th& oracle in order to computé2 (r), giving a base cost of21
calls to theF oracle. Given a promisingj, k'), whereF2 (r) = F X2 (x;), the attacker
generates two guesskek, and for eaclkl’ she makes an additional call to theoracle
to computek?'. Testingk’, k1’, andk2' requires no further oracle calls.

We note that for any, whenk’ # k the distribution onF2(r) is random even
conditioned on the answers to all of tkeX oracle queries. Thus, the expected number
of j such thatk’, j) is promising is at mostn/2"*1. Whenk’ = k, then in the worst
casem/2 promising values ofk’, j) are tested. Therefore, the expected extra number
of oracle queries needed to evaluate promising candidates is anmpsh2< /2" for
each value of selected. Thus, for each randomelected, a total of at most

2K+1 Lm4+ m2K—r‘|

expected queries are required.

It remains to bound the number 0§ that must be tried in order to select a gaod
with probability at least. There are exactlyn goodr -values out of 2 possibilities.
Thus, the probability that randomly selected values fomwill fail to be good is at most
(1 — m/2"¢. We thus need to seleétso that(1 — m/2")¢ < 1 — &. Using the identity
(1+ a)® < e®, it suffices to achieve

e—m£/2” < 1— s,
or, equivalently,

n
- -2 In(l—a)-
- m

14
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ForO<e < 3, —In(1— ) < & + &2, so it suffices that
n 2
0> 2(e+e )_
m

Summarizing the above, there is an attack which finds a consistekt’keyk’ k1’ .k2'
with probabilitye usingm queries to thé= X« oracle, and at most expected

(2n+x+lflgm + on + 2;() (8 + 82)

queries to thé= /F 1 oracles. The theorem follows. O

6. Open Problems and Conclusions

Analysis of other multiple encryption scheme3he model we have used to upper bound
the worth of key search applies to many other block-cipher based constructions. Work by
Aiello et al. [1] is an example. It would be particularly interesting to bound the maximal
advantage an adversary can get for triple DES with three distinct keys, or triple DES with
the first and third keys equal, or the method in [6]. It would be interesting to demonstrate
that some construction has a better effective key length than DESXKe&-g.— 1 bits).

Use it Since the initial publication of this paper [13], work within some standards
bodies has continued to specify encryption based on DES in its most customary modes
of operation. We recommend DESX (or one of its variants, as in Section 4). DESX is
efficient, DES-compatible, patent-unencumbered, and resists generic key-search attacks.
In virtually every way, DESX would seem to be a better DES than DES.
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Appendix.  Proof of Claim 3.2

We first define a new game, denoted Gaxhavhich matches more directly the definition
of the experiment definin@x. GameX’ is defined in Fig. 3.

First, note that no adversary can distinguish between playing Géraed playing
with oracles(FX, F, F~%) drawn according to the experiment definiRg. Indeed the
only difference between these scenarios is that GAfrgenerates values fd&& and F
by “lazy evaluation,” whereas the experiment definlygwould generate these values
all at the beginning. Thus R{ AE-F-F " = 1] = Py.

We want to show that Rf AE-F-F ™ = 1] = Pry[AE-F-F™ = 1]: no adversanA can
distinguish whether she is playing Gamteor X'. We emphasize thad's ability to
distinguish between Game§and X’ is based strictly on the inptutput behavior of
the oracles; the adversary can not see, for example, whether or not thadhgs been
set.
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Initially, let F be undefined. Randomly choose k* & {0,1}", ki, k3 & {0,1}™. Then answer each query the
adversary makes as follows:
On oracle query E(P):

1. If Fy- (P & k) is defined, return Fy- (P @ k) @ k3.

2. Otherwise, choose y uniformly from Range(Fj-), define Fy- (P @ k}) =y and return y @ k3.

On oracle query Fj(z):
1. If Fy(z) is defined, return Fy(z).
2. Else, choose y € {0,1}" uniformly from Range(F3), define Fi(z) = y and return y.

On oracle query Fy, ' (y):

1. If F'(y) is defined, return Fy ' (y).
2. Else, choose z € {0,1}" uniformly from Dom(Fy), define Fy(z) =y and return z.

Fig. 3. GameX'.

We will show something even stronger than that Ganieand X’ look identical to
any adversary. Observe that both Gahand GameX’ begin with random choices for
k*, ki, andk3. We show that, for any particular valuesldf, ki, andk;, GameX with
these initial values of*, ki, andk; is identical, to the adversary, to GaHéwith these
same initial values ok*, ki, andkj. So, for the remainder of the proof, we consider
k*, ki andk} to have fixed, arbitrary values.

A basic difference between Gamesand X’ is that GameX separately defines both
andFy- while GameX’ only definesF. and compute& (P), in response to a quety,
by Fi- (P @ k}) @ k3. The essence of our argument is that Gatneanalsobe viewed
as answering it& (P) queries by referring té-. However, strictly speaking, it is not
really F- which can be consulted. We get around this as follows.

Given partial function€ and Fy-, these functions having arisen in Ganedefine
the partial functiorF by

R Fi- (X) if F(X) is defined,
Fi-(X) = { EX @ k) @ K3 if E(x @ k7) is defined,
undefined otherwise.

Thus, in executing Gamk, defining a value foiE or Fy- can implicitly define a new
value forFy-.

At face value, the above definition might be inconsistent—this could happen if both
Fi-(X) and E(x @ k3) are defined for some, and with “clashing” values (i.e., values
which do not differ byk3). Before we proceed, we observe that this can never happen:

ClaimA.1. Let E and k- be partial functions which may arise in Game ®en the
functionF+, as described aboyés well-defined

Proof. The proofis by induction on the number of “Define” steps (Steg3, F-3, or
F~1-3) in the definition of GameX, where points oiffk* become defined as Game
executes. The basis (wh&andF —* are completely undefined) is trivial. So suppose
that, in StepE-3, we setE(P) = C. Is it possible that this definition d&(P) will cause
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l?k to become ill-defined? The only potential conflict is between the BéR) value
and a value already selected fer (P @ k7). So if F- (P @ k}) was not yet defined,
there is no new conflict created in St&p3. If, on the other handFk*(P @ k) was
already defined, then its value, by virtue of S&ef2, is E(P) & k3. This ch0|ce results
in Fe remaining well-defined. The analysis for the cases corresponding to Bt8ps
andF -3 is exactly analogous, and is omitted. O

__The function I’fk as defined for Gam&, also makes sense for GanXg, where
Fi-(X) = F(X). Our strategy, then, is to explain the effect of e&thFy:, and Fk:1
query strictly in terms offi-. We then observe that Gam¥ responds to its oracle
gueries in an absolutely identical way. This suffices to show the games equivalent.

Casel. We first analyze the behavior of GamXeon oracle queryE(P). To be-
gin, note that GameéX never defines the value & (P) unless it has receive® as
a query. So sincé\ never repeats queries (see the assumptions just following the the-
orem statementE(P) must be undefined at the time of quey Consequently, at
the time of queryP, Fk*(P @ ki) will be defined iff F.(P @ ki) is defined, and
Fk*(P ok = FPa® k*) Casela Whean*(P ® k}) is defined, then Gam&
returns the value o€ = Fk (P& ki) @ k3. In this case, settinge(P) = C leaves
Fk* unchangedCaselb. Whean (P @ ki ) is undefined, thel is repeatedly Chosen
uniformly from Rang&E) until Fk* Ceo k;) is undefined. By the definition d¥k* it
follows thaty = C @ k3 is unlformly distributed oveRange Fk*) In this case, setting
E(P)=C setst*(P ®ky) =

Now compare the above Wlth Gamé€ on queryE(P). WhenF. (P & k7) is de-
fined, thenC = F.(P @ k}) @ k; is returned and no function values are set. When
Fi- (P ® K}) is undefmed,y is Chosen uniformly fromRang&Fy-), Fi-(P @ ki) is
set toy (and implicitly Fk*(P @ k7) is set toy), andC = y @ k3 is returned. Thus,
the behavior of Game&’ on queryE(P) is identical to the behawor of Game on
queryE(P).

Case2. We will be somewhat briefer with our analyses of handF ~* oracles, which

are similar to the analysis abov@ase2a. On oracle querk (x), whenk # k* then the
behavior of Gamis clearly identical to Gam¥'. Case2b. Wherk = k* thenF: (x) is
defined iff a query of the forne (x @ ki) has been made. This holds - (x) is defined
(sinceFy-(x) would not have been queried before). By a straightforward argument the
valuey returned from the querly (x) willthenbey = E(x @ kj) ® ki = Fk* (X)inboth
gamesCase2c. Whenfk*(x) is undefined, then in both gamgss umformly chosen
from Rang&Fy:) and Fy (x) is defined to bey. Thus, in all cases, Gam¥ behaves
identically to GameX'.

Case3. F|naIIy, on oracle quenf,” L(y), the casek # k* is again trivial. When
k = k*, then Fk* (y) will be defined iff E~1(y @ k& ) is defined, in which casg =

E-Yy® k) ® ki = F -1(y) in both games. Wheﬁ 1(y) is undefined, then in both
gamesx is chosen uniformly fromﬁn(ﬁ(*) and ffk (X) is defined to bey. Again,
GameX behaves identically to Gam¥'.
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