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Abstract. The block cipher DESX is defined by DESXk.k1.k2(x) = k2⊕ DESk

(k1⊕ x), where⊕ denotes bitwise exclusive-or. This construction was first suggested
by Rivest as a computationally cheap way to protect DES against exhaustive key-search
attacks. This paper proves, in a formal model, that the DESX construction is sound. We
show that, whenF is an idealized block cipher,FXk.k1.k2(x) = k2⊕ Fk(k1⊕ x) is
substantially more resistant to key search than isF . In fact, our analysis says thatFX
has an effective key length of at leastκ +n−1− lg m bits, whereκ is the key length of
F , n is the block length, andm bounds the number of〈x, FXK (x)〉 pairs the adversary
can obtain.
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1. Introduction

With its 56-bit keys, the susceptibility of DES to exhaustive key search has been a
concern and a complaint since the cipher was first made public; see, for example, [8].
The problem has escalated to the point that the Electronic Frontier Foundation has now
built a DES cracking machine, at a cost of less than US$250,000, that can find the right
key in about 3 days [9], [14].

∗ An earlier version of this paper appears in [13].
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There have been many approaches suggested for reducing DES’s vulnerability to
exhaustive key search. One is to construct a DES-based block cipher which employs a
longer key. Triple DES (typically in “EDE mode”) is the best-known algorithm in this
vein. It seems to be quite secure, but it is not particularly efficient. Specifically, triple-
DES encryption/decryption requires multiple DES encryptions/decryptions. This paper
analyzes a cheaper alternative.

Rivest [16] proposes an extension of DES, called DESX, defined by

DESXk.k1.k2(x) = k2⊕ DESk(k1⊕ x).

The key K = k.k1.k2 (here,. denotes concatenation) is now 56+ 64+ 64 = 184
bits. Compatibility with DES is maintained by settingk1 = k2 = 064. Existing DES
CBC hardware can be gainfully employed by first masking the plaintext, computing
the DES CBC, and then masking the ciphertext. Most significantly, DESX has hardly
any computational overhead over ordinary DES. Yet, somehow, DESX seems no longer
susceptible to brute-force attacks of anything near 256 time.

It is unintuitive that one should be able to increase substantially the difficulty of
key search by something as simple as a couple of XORs. Yet working with the DESX
definition for a while will convince the reader that undoing their effect is not so easy.

Does the “DESX trick” really work to improve the strength of DES against exhaustive
key search? We give a strong positive result showing that it does.

1.1. Our Model

Key-search strategies disregard the algebraic or cryptanalytic specifics of a cipher and
instead treat it as a black-box transformation. Key-search strategies can be quite sophis-
ticated; recent work by [19] is an example. We want a model generous enough to permit
sophisticated key-search strategies, but restricted enough to permitonly strategies that
should be regarded as key search. We accomplish this as follows.

Let κ be the key length for a block cipher and letn be its block length. We model
an ideal block cipher with these parameters as arandommap F : {0,1}κ × {0,1}n →
{0,1}n subject to the constraint that, for every keyk ∈ {0,1}κ , F(k, ·) is a permutation
on {0,1}n. A key-search adversaryA is an algorithm that is given the following two
oracles:

• An F oracle that on input(k, x) returnsF(k, x).
• An F−1 oracle that on input(k, y) returnsF−1(k, y).

Here,F−1(k, y) denotes the unique pointx such thatF(k, x) = y.
A generic key-search adversarytries to perform some cryptanalytic task (to be spec-

ified) that depends onF . She may perform arbitrary computations, using unbounded
amounts of time and space, but her only access toF is via theF/F−1 oracles. We ana-
lyze the adversary’s rate of success in performing her cryptanalytic task as a function of
the number of accesses she makes to theF/F−1 oracles.

To apply the above framework to DESX, we first generalize the DESX construction.
Given any block cipherF we defineFX: {0,1}κ+2n × {0,1}n→ {0,1}n by

FX(k.k1.k2, x) = k2⊕ F(k, k1⊕ x).
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For bothF and FX we sometimes write their first argument (the key) as a subscript,
Fk(x) and FXK (x), whereK = k.k1.k2. In this notation,Fk may be thought of as a
permutation chosen from a family of (random) permutations that is indexed byk.

To investigate the strength ofFX against key search we consider a generic key-search
adversaryAwith oracles forF andF−1, and determine how wellAcan play the following
“ FX-or-π ” game. A is given an “encryption oracle”E that has been randomly chosen
in one of two ways (each with probability 0.5):

• A string K ∈ {0,1}κ+2n is chosen at random andE(x) = FXK (x).
• A random permutationπ : {0,1}n→ {0,1}n is selected andE(x) = π(x).

A must guess which wayE was chosen. The adversary “wins” the game if it guesses
correctly with probability significantly greater than 0.5. TheFX construction “works”
if the resources needed to do a good job in winning the above game are substantially
greaterthan the resources that suffice to breakF .

As an example of a generic key-search attack, consider the weakened form of DESX,
denoted DESW, in whichk1 is always set to 0|k1|; that is,

DESWk.k2(x) = k2⊕ DESk(x).

It is possible to mount a generic key-search attack DESW as follows. Givenk and
DESWk.k2(x) for an arbitraryx, one can computek2 = DESWk.k2(x) ⊕ DESk(x). Thus,
one can go through all possible keysk, compute the full keyk.k2, and test with high
confidence whetherk.k2 is correct (given values of DESk.k2(y) for a couple of random
y-values). Hence, DESW is no stronger than DES against generic key-search attacks.
Similarly, if k2 is always set to 0|k2|, there is no significant improvement over DES,
as long as two or three plaintext–ciphertext pairs are known. (There may be marginal
benefits if only a single plaintext–ciphertext pair is known, or for ciphertext-only attacks,
but these are comparatively small improvements.) It is the combination of the two XOR
operations that give DESX its superior resistance to generic key-search attacks.

1.2. Our Main Result

We show that if generic key-search adversaryA can make only a “reasonable” number
of queries to her encryption oracleE, thenA must ask an excessive number ofF/F−1

queries in theFX-or-π game, and thereforeA must run for an excessively long time.
More specifically, we prove the following. Letm bound the number of〈x, FXK (x)〉
pairs that the adversary can obtain. (This number is usually under the control of the
security architect, not the adversary.) Suppose the adversary makes at mostt queries
to her F/F−1 oracles. (This number is usually under the control of the adversary, not
the security architect.) Then the adversary’s advantage over random guessing (i.e., the
difference between its success and failure probabilities) in winning theFX-or-π game is
at mostmt·2−κ−n+1. In other words, the adversary’s advantage is at mostt ·2−κ−n+1+lg m,
so the effective key length ofFX, with respect to key search, is at leastκ+n−1−lg mbits.

To understand the above formula, consider a block cipherF with 55-bit keys and a
64-bit block size.1 Suppose key-search adversaryA attacksFX and, in the course of the

1 Why we use 55 and not 56 is explained in the discussion in Section 4.
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attack, is able to obtain up tom= 230 blocks of enciphered data. SupposeA runs in time
at mostT . ThenA has advantage of at mostT · 2−55−64+30+1 = T · 2−88 to just guess
whether the enciphered data reallywasproduced byFX, and not a random permutation.
A more detailed discussion of our main theorem is given in Section 4.

Because our main result indicates the infeasibility of key search even when we ignore
the adversary’s space requirement, this “omission” only strengthens what we are saying.
Similarly, “good” adversaries may, necessarily, use an amount of time,T , which far
exceeds their number ofF/F−1 queries,t . So focusing on the query complexity makes
our results all the more meaningful. Likewise, the weakness of the adversary’s goal only
strengthens the lower bound.

1.3. Related Work

Even and Mansour [10] construct a block cipherPX: {0,1}2n×{0,1}n→ {0,1}n from a
random permutationP: {0,1}n→{0,1}n by PXk1.k2(x) = k2⊕P(k1⊕x). Clearly this
is a special case of theFX construction, whereκ = 0. While their motivation for looking
at PX was quite different from our reasons to investigateFX, our model and methods
are, in fact, quite similar. Our main result can be seen as a natural extension of their work.

The modeling of a block cipher by a family of random permutations has its roots
in [18].

Rivest invented DESX by May 1984, but never described the scheme in any conference
or journal paper [16]. DESX was implemented within products of RSA Data Security,
Inc., and is described in the documentation for these products [17]. DESX has also been
described at conferences organized by RSA DSI, including [21].

Encryption methods similar to DESX have been invented independently. Blaze [5]
describes a DES mode of operation in which thei th block of plaintext,xi , is encrypted
using 112-bit keyk.k1 by Ek.k1(xi ) = si ⊕ DESk(si ⊕ x), wheres1s2 · · · is a stream of
bits generated fromk1 by, say,si = DES(i )k1(0

64). Here DES(i ) denotes thei th iterate of
DES.

Many authors have suggested methods to increase the strength of DES by changing
its internal structure. Biham and Biryukov [2] give ways to modify DES to use key-
dependent S-boxes. Their suggestions improve the cipher’s strength against differential,
linear, and improved Davies’ attacks, as well as exhaustive key search. Ciphers con-
structed using their ideas can exploit existing hardware exactly in those cases where
the hardware allows the user to substitute his own S-boxes in place of the standard
ones.

In work subsequent to ours [13], Aiello et al. [1] have used the same model used here to
analyze the “double DES” construction,FFk1.k2(x) = Fk2(Fk1(x)). In other subsequent
work, Biryukov and Wagner [4] improve upon the attack of Section 5, showing how to
break DESX with 232.5 knownplaintexts and 287.5 time. Our attack uses similar resources
but is achosen-plaintext (instead of known-plaintext) attack. A discussion of multiple
encryption is given in [12]. A discussion of DES key search is given in [20].

1.4. Discussion

Understanding our result. It may be hard to understand the ramifications of our main
theorem, thinking it means more or less than it does. DES, of course, is not a family
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of random permutations, and wecannotconclude from our theorem that there does not
exist a reasonable machineM which breaks DESX in, say, 260 steps, given just a handful
of 〈plaintext, ciphertext〉 pairs. What we can say is that such a machine would have to
exploit structural properties of DES; it could not get away with treating DES as a black-
box transformation. This contrasts with the sort of machines which have been suggested
in the past for doing brute-force attack: theydotreat the underlying cipher as a black-box
transformation.

We note that while remarkable theoretical progress has been made on the linear and
differential cryptanalysis of DES (see [3] and [15]), thus far these attacks require an
impractically large number of plaintext–ciphertext pairs. To date, the only published
practical attacks against DES remain of the key-search variety. The DESX construction
was not intended to improve the strength of DES against differential or linear attack, or
any other attack which exploits structural properties of DES, and our theorem does not
say anything about its resistance to these attacks.

On export controls tied to key length. Our results indicate how algorithmically trivial it
can be to obtain extra bits of strength against exhaustive key-search attacks. The impact
of these extra bits can be especially dramatic when the key length of the block cipher
had been intentionally made short.

Consider a block cipherF with a 40-bit key and a 64-bit plaintext. (Some products
using such block ciphers have been granted U.S. export approval.) With these parameters,
our results guarantee an effective key length (with respect to exhaustive key search) of
at least 40+ 64− 1− lg m = 103− lg m bits. Under the reasonable assumption that
m< 230, say, the 40-bit block cipher has been modified, with two XORs, to a new block
cipher which needs at least 273-time for exhaustive key search.

Allowing weak cryptography to be exported and strong cryptography not to be is a
policy which can only make sense when it is impractical, for the given system, to replace
the weak mechanism by a strong one. Our results indicate that this impracticality must
cover algorithmic changes that are particularly trivial.

1.5. Outline of the Paper

In Section 2 we define some basic notation and define what comprises a successful attack
in our model. In Section 3 we state and prove our main theorem on the security of the
DESX construction. Section 4 is a discussion. Section 5 demonstrates that the analysis
underlying our main result is tight. In Section 6 we give some conclusions and open
questions.

2. Preliminaries

LetPn denote the space of all(2n)! permutations onn-bits.
We say thatF : {0,1}κ × {0,1}n → {0,1}n is a block cipher if for everyk ∈ {0,1}κ ,

F(k, ·) ∈ Pn. We defineFk by Fk(x) = F(k, x). LetBκ,n denote the space of all block
ciphers with parametersκ andn as above.

Given F ∈ Bκ,n, we define the block cipherF−1 ∈ Bκ,n by F−1(k, y) = F−1
k (y) for

k ∈ {0,1}κ . We interchangeably writeF−1
k (y) andF−1(k, y).



22 J. Kilian and P. Rogaway

Given F ∈ Bκ,n, we define the block cipherFX ∈ Bκ+2n,n by FX(K , x) = k2⊕ Fk

(k1⊕ x), whereK = k.k1.k2, |k| = κ, and|k1| = |k2| = n. We interchangeably write
FXK (x) andFX(K , x).

Given a partially defined functionF from a subset of{0,1}m to a subset of{0,1}n we
denote the domain and range ofF by Dom(F) and Range(F), and defineDom(F) =
{0,1}m − Dom(F) andRange(F) = {0,1}n − Range(F).

We denote byx
R← S the act of choosingx uniformly from S. We denote by

Pr[A1; A2; · · · : E] the probability of eventE after performing actionsA1, A2, . . . .

Definition 2.1. A generic key-search adversary is an algorithmA with access to three
oracles,E, F , andF−1. Thus,A may make queries of the formE(P), Fk(x), or F−1

k (y).
An (m, t) generic key-search adversary is a key-search adversary that makesm queries
to theE oracle and a total oft queries to theF andF−1 oracles.

For brevity, we sometimes drop “generic” from our terminology. Note thatA supplies
the value ofk as part of its queries to theF andF−1 oracles. We denote byAE,F,F−1

the
adversaryA interacting with oraclesE, F , andF−1.

We now define what it means for a generic key-search adversaryA to have an attack of
a certain specified effectiveness. We begin by choosing a random block cipherF having
κ-bit keys andn-bit blocks. This means that we select a random permutationFk

R← Pn

for eachκ-bit key k. Thus eachFk is chosen independently of eachFk′ , for k 6= k′.
Then we giveA three oracles,E, F , andF−1. The F and F−1 oracles compute their
respective functions. The encryption oracleE, on inputx, either computesFXK (x) for a
random (κ + 2n)-bit key K , or computesπ(x), for a random permutationπ

R← Pn. The
adversary’s job is to guess which type of encryption oracle she has. Our convention is
thatA outputs a 1 if itthinks that the encryption oracleE is computingFXK (·); it outputs
a 0 if it thinks thatE is computingπ(·). When we write Pr[A1; A2: AE,F,F−1 = 1] we
are referring to the probability thatA, with the specified oracles, outputs 1, after having
performed the sequence of stepsA1, A2.

The adversary’sadvantagemeasures her accuracy in winning the game above. It is
normalized to a [−1,1] scale:−1 indicates that the adversary is always wrong; 1 indicates
that the adversary is always right; and guessing at random, or always guessing the same
way, will give an advantage of 0.

Definition 2.2. Let κ,n ≥ 0 be integers, and letε ≥ 0 be a real number. Generic
key-search adversaryA is said toε-breakthe FX-scheme with parametersκ,n if

AdvA
def= Pr

[
F

R← Bκ,n; K R← {0,1}κ+2n: AFXK ,F,F−1 = 1
]

− Pr
[
F

R← Bκ,n;π R← Pn: Aπ,F,F
−1 = 1

]
≥ ε.

The above definition uses a very liberal notion of adversarial success. We are not
demanding that, say,A recoverK ; nor do we askA to decrypt a randomFXK (x) or
to produce a not-yet-asked〈x, FXK (x)〉 pair. Instead, we only askA to make a good
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guess as to whether the〈plaintext, ciphertext〉 pairs she has been receiving reallyare
FX-encryptions, as opposed to random nonsense unrelated toF . The liberal notion of
success is chosen to make our main result stronger: an adversary’s inability to succeed
becomes all the more meaningful.

3. Security of the DESX Construction

We now prove a bound on the security ofFX against generic key-search attacks.

Theorem 3.1. Let A be an(m, t) generic key-search adversary thatε-breaks the FX-
scheme with parametersκ,n. Thenε ≤ mt · 2−κ−n+1.

Proof. Before going into the detailed formal proof, we first give some intuition for
why the proof works. Clearly, theFX construction is highly nonrandom if one makes all
possible queries to theE, F , andF−1 oracles. However, to defeat the adversary it suffices
if the answers to its relatively few queries are random. For intuition, we erroneously think
of F as a family of random functions (the formal analysis takes into account the fact that
Fk is a permutation). We conceptually viewF as undefined; as queries from the adversary
come in we choose values ofFk(x) at random. Note that queries toE(x) implicitly make
queries toF . If in computingE(x) we make a “fresh” query toF (one that has not been
made before), we generate a fresh answer that is random and independent of the entire
history of the attack. This fresh randomness ensures that the resulting value ofE(x)
will be random. However, randomness cannot be guaranteed when new queries depend
on previously determined values. We show that if the adversary does not make many
queries, then these bad events happen with low probability.

By a standard argument we may assume thatA is deterministic (note thatA may
be computationally unbounded).2 We may also assume thatA always asks exactlym
queries of her first oracle, which we call herE-oracle. (In the experiment that definesA’s
advantage,E was instantiated by either anFXK -oracle or aπ -oracle.) We may assume
that A always asks exactlyt queries (total) to her second and third oracles, which we
call her F- and F−1-oracles. We may further assume thatA never repeats a query to
an oracle. We may assume that ifF(k, x) returns an answery, then there is no query
(neither earlier nor later) ofF−1(k, y). All of the above assumptions are without loss
of generality in the sense that it is easy to construct a new adversary,A′, that obeys the
above constraints and has the same advantage asA.

We begin by considering two different games that adversaryA might play. This
amounts to specifying how to simulate a triple of oracles,〈E, F, F−1〉, for the bene-
fit of A.

A first game. The first game we consider, GameR (for “random”), will exactly cor-
respond to the experiment which defines the second addend in the expression for the

2 Roughly, given unlimited computational capabilities,A can derandomize its strategy by exhaustively
searching through its possible random choices, computing the effectiveness of the resulting attack, and then
choosing the most efficacious choice.
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advantage:

PR = Pr
[

Aπ,F,F
−1 = 1

]
.

The definition of GameR will be defined to contain several extra (and seemingly irrele-
vant) steps. These steps are not needed in order to behave in a manner which is identical
(as far asA sees) to the manner of behavior definingPR; these steps are used, instead, to
facilitate our analysis. To identify these “irrelevant” instructions we put them in italics.
GameR is defined in Fig. 1.

Let PrR[E] denote the probability of eventE when answers to adversary queries are
determined by running GameR. From the definition of GameR we can see that:

Fig. 1. GamesR andX.
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Claim 3.1. PrR
[

AE,F,F−1 = 1
]
= PR.

A second game. Now we define a second game, GameX. It will exactly correspond to
the experiment which defines the first term in the expression for the advantage:

PX = Pr
[

AFXK ,F,F−1 = 1
]
.

Once again, the definition of GameX will be defined to contain some “irrelevant”
instructions, which, for clarity, are indicated in italics. GameX is defined in Fig. 1.

The intuition behind GameX is as follows. Wetry to behave like GameR, choosing
a random (not-yet-provided) answer for eachE(P), and a random (not-yet-provided for
thisk) answer for eachFk(x), F−1

k (y). Usually this works fine for getting behavior which
looks like the experiment definingPX. However, sometimes it does not work, because
an “inconsistency” would be created between theFX-answers and theF/F−1-answers.
GameX is vigilant in checking if any such inconsistencies are being created. If it finds an
inconsistency about to be created, itchangesthe value which it had “wanted” to answer
in order toforce consistency. Whenever GameX resorts to doing this it sets the flag
bad. In the analysis, we “give up” (regard the adversary as having won) any time this
happens.

Let PrX[E] denote the probability of eventE when answers to adversary queries are
determined by running GameX. The definition of GameX looks somewhat further afield
from the experiment which definesPX. Nonetheless, we claim the following:

Claim 3.2. PrX
[

AE,F,F−1 = 1
]
= PX.

The proof of this claim is in the Appendix.

Bounding the advantage byPrR [BAD]. In either GameR or GameX, let BAD be the
event that, at some point in time, the flagbadgets set. GamesRandX have been defined
so as to coincide up until eventBAD. To see this, note that the corresponding oracles
in these games are identical except for, in each case, Step 2. For each pair of oracles,
Step 2 executes identical tests and based on the outcome of the test either does nothing
in both cases or setsbadin both cases (and other actions, in which the oracles will differ
in their behavior). Thus, any circumstance that causes GameR and GameX to execute
different instructions will also cause both games to setbad. The following two claims
follow directly from this fact.

Claim 3.3. PrR [BAD] = PrX [BAD].

Claim 3.4. PrR
[

AE,F,F−1 = 1 | BAD
]
= PrX

[
AE,F,F−1 = 1 | BAD

]
.

What we have shown so far allows us to bound the adversary’s advantage by PrR [BAD].

Claim 3.5. AdvA ≤ PrR [BAD].
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The argument is quite simple:

AdvA = PX − PR

= PrX
[

AE,F,F−1 = 1
]
− PrR

[
AE,F,F−1 = 1

]
(Claims3.1, 3.2)

= PrX
[
A = 1 | BAD

]
PrX

[
BAD

]+ PrX [ A = 1 | BAD]PrX [BAD]

−PrR
[
A = 1 | BAD

]
PrR

[
BAD

]− PrR [ A = 1 | BAD]PrR [BAD]

= PrR [BAD] (PrX [ A = 1 | BAD] − PrR [ A = 1 | BAD])

(Claims3.3, 3.4)

≤ PrR [BAD].

A third game. We have reduced our analysis to bounding PrR [BAD]. To bound
PrR[BAD], we imagine playing GameRa little differently. Instead of choosingk∗, k∗1, k∗2
at the beginning, we choose them at the end. Then we setbadto betrueor falsedepend-
ing on whether or not the choice ofk∗, k∗1, k∗2 we have just made would have causedbad
to be set to true in GameR (where the choice was made at the beginning). The new
game, GameR′, is described in Fig. 2. From the definition of GameR′ we see that:

Claim 3.6. PrR [BAD] = PrR′ [BAD].

Completing the proof. Now that we have sufficiently manipulated the games a simple
calculation suffices to bound PrR′ [BAD], and, thereby, to bound AdvA.

After having run the body of GameR′, not having yet chosenk∗, k∗1, k∗2, we simply
count how many of the 2κ+2n choices for(k∗, k∗1, k∗2) will result in badgetting set.

Fix any possible values forE andF which can arise in GameR′. Let |E| denote the
number of defined valuesE(P), and let|F | denote the number of defined valuesFk(x).

Fig. 2. GameR′.
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Note that|E| = m and|F | = t . Fix E andF . Call (k∗, k∗1, k∗2) collision-inducing(with
respect toE and F) if there is some definedy = Fk(x) and some definedC = E(P)
such that

k∗ = k and (P ⊕ k∗1 = x or C ⊕ k∗2 = y).

Every choice of(k∗, k∗1, k∗2) which results in settingbad is collision-inducing, so it
suffices to upper bound the number of collision-inducing(k∗, k∗1, k∗2).

Claim 3.7. Fix E, F , where|E| = m and|F | = t . There are at most2mt ·2n collision-
inducing(k∗, k∗1, k∗2) ∈ {0,1}κ × {0,1}n × {0,1}n.

The reason is as follows: for each defined(P, E(P)), (k, x, Fk(x)) there are at most
2 · 2n points(k∗, k∗1, k∗2) which induce a collision between these two points: they are the
points(k∗, k∗1, k∗2) ∈ {{k} × {x ⊕ P} × {0,1}n} ∪ {{k} × {0,1}n× {y ⊕ C}}. Now there
are onlymt pairs of such points, so the total number of collision-inducing(k∗, k∗1, k∗2) is
as claimed.

Finally, in GameR′ we choose a triple(k∗, k∗1, k∗2) at random, independent ofE and
F , so the chance that the selected triple is collision-inducing (for whateverE andF have
been selected) is at most 2mt · 2n/2κ+2n = mt · 2−κ−n+1. Putting everything together,
this probability bounds AdvA, and we are done.

4. Discussion

Health warnings. We emphasize that whenF is a concrete block cipher, not a random
one, its internal structure can interact with theFX-construction in such a way as to
obviate the construction’s benefits. As a trivial example, ifF alreadyhas the structure
that it XORs plaintext and ciphertext with key material, then doing itagain is certainly
of no utility.

Our model considers how muchFXK looks like a random permutation (when key
K is random and unknown). It should be emphasized that some constructions which
use block ciphers—particularly hash function constructions—assume something more
of the underlying block cipher. The current results imply nothing about the suitability
of FX in constructions which arenot based onFXK resembling a random permutation
whenK is random and unknown.

We also note that our analysis as stated only considers chosen-plaintext attacks and
does not establish resistance to chosen-ciphertext attacks. However, it is straightforward
to adapt our techniques to analyze chosen-ciphertext attacks, as was done in [10]. To do
this, provideA an oracle forFX−1, in addition to her other oracles. Nowm will count
the sum of the number of queries to theFX andFX−1 oracles. Theorem 3.1 will then
continue to hold. The proof changes very little.

Structure in the block cipher F when F= DES. There is one structural property of DES
which has been suggested to assist in brute-force attacks: the DES key-complementation
property. This property comprises a significant sense in which DES is not behaving like a
family of (independent) random permutations. To “factor out” the key-complementation
property just think of DES as having a single key bit fixed. Then one can conclude that if
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this is the only structural property of DES to be exploited by a generic key-search attack,
DESX will still limit the attack’s advantage totm · 2−55−64+1 = tm · 2−118.

Setting k1= k2. As mentioned in the Introduction, the simpler constructionsFXpre
k.k1(x)

= Fk(x ⊕ k1) andFXpost
k.k1(x) = k1⊕ Fk(x) do not significantly improveF ’s strength

against generic key-search attacks. However, what about

FX′k.k1(x) = k1⊕ Fk(x ⊕ k1)?

Is it OK to use the same key inside and out? In fact this does work, in the sense that
Theorem 3.1 still goes through, the proof little changed. We analyzed the more “standard”
general construction, with two keys, but the more restricted choice has the advantage of
a smaller key-size, with no obvious loss of security.

Nicer key lengths. A minor inconvenience of DESX is its strange key size. In ap-
plications it would sometimes be preferable to extend the definition of DESX to use
arbitrary-length keys, or else to use keys of some fixed but more convenient length.
Standard key-separation techniques can be used.

We give one extension of DESX to arbitrary-length keys, as follows. LetX1···` denotes
the first` bits of X, let SHA-1 be the map of the NIST Secure Hash Standard, and let
C, C1, andC2 be fixed, distinct, equal-length strings. When|K | 6= 184, we can define
DESXK (x) to be equal to DESXK ′(x) whereK ′ is defined as follows:

• If |K | = 56, thenK ′ = K .064.064.
• Otherwise,

K ′ = k.k1.k2, where

 k = SHA-1(C.K )1···56,

k1 = SHA-1(C1.K )1···64,

k2 = SHA-1(C2.K )1···64.

Note that when|K | = 56, DESXK (x) = DESK (x).

Differential and linear cryptanalysis. Operations besides XOR. We emphasize that
the DESX construction was never intended to add strength against differential or linear
cryptanalysis. The attacks of [3] and [15] do not represent a threat against DES when the
cipher is prudently employed (e.g., when a re-key is forced before an inordinate amount
of text has been acted on); until these attacks are improved, it suffices that the DESX
construction does not render differential or linear attack anyeasier.

Nonetheless, the proof of Theorem 3.1 goes through when⊕ is replaced by a variety of
other operations, and some of these alternatives may help to defeat attacks which were not
addressed by our model, including differential and linear cryptanalysis. In particular, an
attractive alternative to DESX may be the construction DESPk.k1.k2(x) = k2+DESk(k1+
x), whereL R+ L ′R′ def= L+̂L ′.R+̂R′, where|L| = |R| = |L ′| = |R′| = 32 and+̂
denotes addition modulo 232. Kaliski has suggested such alternatives, and analyzed their
security with respect to differential and linear attacks [11].
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5. Our Bound Is Tight

We have shown that the adversary’s advantage is at mostt · 2−n−κ+1+lg m. Turning this
around, the adversary needsε2n+κ−1−lg m queries to theF/F−1 oracles to achieve an
ε-advantage. We now show that for a wide range ofm (comprising allm that would
be considered in practice), an attacker can achieve anε-advantage using very close to
2n+κ+4−lg m queries to theF/F−1 oracles (the exact bound is given in Corollary 5.2). This
follows as a corollary of a more ambitious chosen-plaintext attack—one which recovers
a keyK ′ = k′.k1′.k2′ that is consistent with the encryptions underFX of m plaintexts
chosen before anyF/F−1 oracles queries are made. See [4] for a recent known-plaintext
attack on DESX.

Theorem 5.1. Let m be even, m < 2n, and ε < 1
2. Let block cipher F be uniformly

distributed overBκ,n and let key K be uniformly distributed over{0,1}κ+2n. Then there
exist an adversary A(m, ε) that initially makes m distinct queries t1, . . . , tm (the test set)
to an oracle computing F XK . Adversary A then makes(

2n+κ+1−lg m + 2n + 2κ
) (
ε + ε2

)
expected queries to the F/F−1 oracles. With probability at leastε it returns a K′ such
that F X′K (ti ) = F XK (ti ) for 1 ≤ i ≤ m. The probability is taken over the choice of F,
K , and A’s coin tosses.

It follows that our analysis is essentially tight, given our measure on the attacker’s
resources, which roughly corresponds to time. We note that in practice it is also important
to consider the memory requirements of an attack. Conceivably, there exist stronger
attacks that require the same amount of time but much less memory. However, if the
time requirements are sufficiently high, the memory issue becomes moot. However, it is
an interesting open question whether imposing a reasonable space bound can allow us
to improve our time bound.

For reasonable values ofm, the task performed byA(m, ε) is at least as strong as
simply distinguishingFX from a purely random permutation. To see this, consider any
family of permutations{F XK }on{0,1}n, where|K | = κ+2n. We say thatπ isplausible
if for someK , π(xi ) = F XK (xi ) for 1 ≤ i ≤ m. If π is chosen at random, then by a
simple counting argument the probability that it is plausible is at most

ρ(κ,n,m)
def= min

{
1,

2κ+2n

2n(2n − 1) · · · (2n −m+ 1)

}
.

For example, ifκ ≤ n, n > 20, andm> 6, thenρ < 10−24. So an attacker who outputs
a 1 iff she finds a consistentK has an advantage ofε−ρ(κ,n,m), which is essentiallyε.

A minor technical point is that our lower bound considered attackers with worst-case
instead of expected-case bounds. However, we can convert the expectation into a worst-
case bound by observing that if an expected value is at mostQ, then with probability1

2
it is at most 2Q. Hence, forε < 1

2 we can set the attackerA in Theorem 5.1 to find a
consistentK with probability 2ε, and time out ifA takes more than twice its expected
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number ofF/F−1 queries. The resulting attack uses at most

t ≤ (
2n+κ+2−lg m + 2n+1+ 2κ+1

) (
2ε + 4ε2

)
≤ (

2n+κ+4−lg m + 2n+3+ 2κ+3
)
ε

worst-case queries to theF/F−1 oracles.
Finally, since the advantage isε − ρ(κ,n,m) we can setε to beρ(κ,n,m) bigger

than the desired advantage, giving the following corollary.

Corollary 5.2. Let m be even, m< 2n, andε < 1
2 −ρ(κ,n,m). Let block cipher F be

uniformly distributed overBκ,n, let key K be uniformly distributed over{0,1}κ+2n, and
let permutationπ be a uniformly distributed overPn. There exists an attacker A(m, ε)
that makes m queries to oracle E(computing either F XK or π ) and makes(

2n+κ+4−lg m + 2n+3+ 2κ+3
)
(ε + ρ(κ,n,m))

queries to the F/F−1 oracles. A solves the F X-or-π game with advantage at leastε.

The rest of this section is devoted to the proof of Theorem 5.1.
To motivate our attack, we can view theFX block cipher as choosing a random keyk

and then applying the Even–Mansour construction to the functionFk. We can therefore
trivially adapt Daemen’s chosen-plaintext attack [7] on the Even–Mansour construction
[10]. Unfortunately, we do not know the value ofk, so we instead try all possible ones.
For completeness, we describe the attack and calculate the amount of work required to
have probabilityε of recovering the key.

5.1. Preliminaries

Assume thatm is even,m ≤ 2n, andε < 1
2. Fix a constantC ∈ {0,1}n − {0n}. For

any functionG, defineG1(x) = G(x ⊕ C) ⊕ G(x). Given an oracle forG one can
computeG1 by making two calls. Let the secret keyK = k.k1.k2. Let E by a synonym
for FX. By our definitions and simple algebra we have

E1
K (x) = F1

k (x ⊕ k1) = F1
k (x ⊕ C ⊕ k1).

5.2. The Key-Search Attack

The attackerA works as follows.A uses oracles computingF XK (for the correctK =
k.k1.k2) andF . AttackerA takes as parametersm, the maximum number of queries it
is allowed to make to theF XK oracle, andε, a required lower bound on its probability
of producing a keyK ′ that gives consistent results on them queries it made toF XK .

A(m, ε)

1. Choosex1, . . . , xm/2 ∈ {0,1}n arbitrarily so that

TEST = x1, . . . , xm/2, x1 ⊕ C, . . . , xm/2 ⊕ C

hasm distinct elements.
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2. Using theF XK oracle, computeF XK (t) for t ∈ TEST, and then compute

F X1
K (x1), . . . , F X1

K (xm/2).

3. For i from 1 to` = b(−2n ln(1− ε))/mc do

Chooser
R← {0,1}n

For all k′ ∈ {0,1}κ , 1≤ j ≤ m/2 do
If F1

k′ (r ) = F X1
K (xj )

/* Hope that k′ = k and r is either xj ⊕ k1 or xj ⊕ C ⊕ k1 */
For k1′ ∈ {xj ⊕ r, xj ⊕ C ⊕ r }

k2′ = Fk′(x1 ⊕ k1′) ⊕ F XK (x1); K ′ = k′.k1′.k2′

If F XK ′(t) = F XK (t) for t ∈ TEST

Return K ′

5.3. Analysis of the Attack

To analyze this attack we first bound the oracle-query complexity of testing eachr . We
then compute how manyr ’s are needed in order to succeed with probabilityε.

We say thatr is goodif it is equal toxj ⊕ k1 orxj ⊕ C ⊕ k1 for somej . If r is good,
then as soon as the attacker triesk′ = k (remember she tries them all) she will obtain the
correct values fork1′ and thenk2′ (though she may try some incorrect values as well).

We now bound the expected cost of trying eachr . For each value ofr (good or bad),
the attacker must go through, in the worst case, all 2κ values fork′. For each value ofk′,
it makes two calls to theF oracle in order to computeF1

k′ (r ), giving a base cost of 2κ+1

calls to theF oracle. Given a promising( j, k′), whereF1
k′ (r ) = F X1

K (xj ), the attacker
generates two guessesk1′, and for eachk1′ she makes an additional call to theF oracle
to computek2′. Testingk′, k1′, andk2′ requires no further oracle calls.

We note that for anyr , when k′ 6= k the distribution onF1
k′ (r ) is random even

conditioned on the answers to all of theF X oracle queries. Thus, the expected number
of j such that(k′, j ) is promising is at mostm/2n+1. Whenk′ = k, then in the worst
case,m/2 promising values of(k′, j ) are tested. Therefore, the expected extra number
of oracle queries needed to evaluate promising candidates is at mostm+ m2κ/2n for
each value ofr selected. Thus, for each randomr selected, a total of at most

2κ+1+m+m2κ−n

expected queries are required.
It remains to bound the number ofr ’s that must be tried in order to select a goodr

with probability at leastε. There are exactlym goodr -values out of 2n possibilities.
Thus, the probability that̀ randomly selected values forr will fail to be good is at most
(1−m/2n)`. We thus need to select` so that(1−m/2n)` ≤ 1− ε. Using the identity
(1+ a)b ≤ eab, it suffices to achieve

e−m`/2n ≤ 1− ε,
or, equivalently,

` ≥ −2n ln(1− ε)
m

.
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For 0< ε < 1
2,− ln(1− ε) < ε + ε2, so it suffices that

` ≥ 2n(ε + ε2)

m
.

Summarizing the above, there is an attack which finds a consistent keyK ′ = k′.k1′.k2′

with probabilityε usingm queries to theF XK oracle, and at most expected(
2n+κ+1−lg m + 2n + 2κ

) (
ε + ε2

)
queries to theF/F−1 oracles. The theorem follows.

6. Open Problems and Conclusions

Analysis of other multiple encryption schemes. The model we have used to upper bound
the worth of key search applies to many other block-cipher based constructions. Work by
Aiello et al. [1] is an example. It would be particularly interesting to bound the maximal
advantage an adversary can get for triple DES with three distinct keys, or triple DES with
the first and third keys equal, or the method in [6]. It would be interesting to demonstrate
that some construction has a better effective key length than DESX (e.g.,k+n−1 bits).

Use it! Since the initial publication of this paper [13], work within some standards
bodies has continued to specify encryption based on DES in its most customary modes
of operation. We recommend DESX (or one of its variants, as in Section 4). DESX is
efficient, DES-compatible, patent-unencumbered, and resists generic key-search attacks.
In virtually every way, DESX would seem to be a better DES than DES.
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Appendix. Proof of Claim 3.2

We first define a new game, denoted GameX′, which matches more directly the definition
of the experiment definingPX. GameX′ is defined in Fig. 3.

First, note that no adversary can distinguish between playing GameX′ and playing
with oracles〈FXK , F, F−1〉 drawn according to the experiment definingPX. Indeed the
only difference between these scenarios is that GameX′ generates values forE andF
by “lazy evaluation,” whereas the experiment definingPX would generate these values
all at the beginning. Thus PrX′ [ AE,F,F−1 = 1] = PX.

We want to show that PrX[ AE,F,F−1 = 1] = PrX′ [ AE,F,F−1 = 1]: no adversaryA can
distinguish whether she is playing GameX or X′. We emphasize thatA’s ability to
distinguish between GamesX andX′ is based strictly on the input/output behavior of
the oracles; the adversary can not see, for example, whether or not the flagbadhas been
set.
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Fig. 3. GameX′.

We will show something even stronger than that GamesX and X′ look identical to
any adversary. Observe that both GameX and GameX′ begin with random choices for
k∗, k∗1, andk∗2. We show that, for any particular values ofk∗, k∗1, andk∗2, GameX with
these initial values ofk∗, k∗1, andk∗2 is identical, to the adversary, to GameX′ with these
same initial values ofk∗, k∗1, andk∗2. So, for the remainder of the proof, we consider
k∗, k∗1 andk∗2 to have fixed, arbitrary values.

A basic difference between GamesX andX′ is that GameX separately defines bothE
andFk∗ while GameX′ only definesFk∗ and computesE(P), in response to a queryP,
by Fk∗(P ⊕ k∗1) ⊕ k∗2. The essence of our argument is that GameX canalsobe viewed
as answering itsE(P) queries by referring toFk∗ . However, strictly speaking, it is not
really Fk∗ which can be consulted. We get around this as follows.

Given partial functionsE andFk∗ , these functions having arisen in GameX, define
the partial function̂Fk∗ by

F̂k∗(x) =
Fk∗(x) if Fk∗(x) is defined,

E(x ⊕ k∗1) ⊕ k∗2 if E(x ⊕ k∗1) is defined,
undefined otherwise.

Thus, in executing GameX, defining a value forE or Fk∗ can implicitly define a new
value for F̂k∗ .

At face value, the above definition might be inconsistent—this could happen if both
Fk∗(x) andE(x ⊕ k∗1) are defined for somex, and with “clashing” values (i.e., values
which do not differ byk∗2). Before we proceed, we observe that this can never happen:

Claim A.1. Let E and Fk∗ be partial functions which may arise in Game X. Then the
functionF̂k∗ , as described above, is well-defined.

Proof. The proof is by induction on the number of “Define” steps (StepsE-3, F-3, or
F−1-3) in the definition of GameX, where points of̂Fk∗ become defined as GameX
executes. The basis (whenE andF−1 are completely undefined) is trivial. So suppose
that, in StepE-3, we setE(P) = C. Is it possible that this definition ofE(P) will cause
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F̂k∗ to become ill-defined? The only potential conflict is between the newE(P) value
and a value already selected forFk∗(P ⊕ k∗1). So if Fk∗(P ⊕ k∗1) was not yet defined,
there is no new conflict created in StepE-3. If, on the other hand,Fk∗(P ⊕ k∗1) was
already defined, then its value, by virtue of StepE-2, is E(P) ⊕ k∗2. This choice results
in F̂k∗ remaining well-defined. The analysis for the cases corresponding to StepsF-3
andF−1-3 is exactly analogous, and is omitted.

The function F̂k∗ , as defined for GameX, also makes sense for GameX′, where
F̂k∗(x) = Fk∗(x). Our strategy, then, is to explain the effect of eachE, Fk∗ , and F−1

k∗

query strictly in terms of̂Fk∗ . We then observe that GameX′ responds to its oracle
queries in an absolutely identical way. This suffices to show the games equivalent.

Case1. We first analyze the behavior of GameX on oracle queryE(P). To be-
gin, note that GameX never defines the value ofE(P) unless it has receivedP as
a query. So sinceA never repeats queries (see the assumptions just following the the-
orem statement)E(P) must be undefined at the time of queryP. Consequently, at
the time of queryP, F̂k∗(P ⊕ k∗1) will be defined iff Fk∗(P ⊕ k∗1) is defined, and
F̂k∗(P ⊕ k∗1) = F(P ⊕ k∗1). Case1a. WhenF̂k∗(P ⊕ k∗1) is defined, then GameX
returns the value ofC = F̂k∗(P ⊕ k∗1) ⊕ k∗2. In this case, settingE(P) = C leaves
F̂k∗ unchanged.Case1b. WhenF̂k∗(P ⊕ k∗1) is undefined, thenC is repeatedly chosen
uniformly from Range(E) until F−1

k∗ (C ⊕ k∗2) is undefined. By the definition of̂Fk∗ it
follows thaty = C ⊕ k∗2 is uniformly distributed overRange(F̂k∗). In this case, setting
E(P) = C setsF̂k∗(P ⊕ k∗1) = y.

Now compare the above with GameX′ on queryE(P). When Fk∗(P ⊕ k∗1) is de-
fined, thenC = Fk∗(P ⊕ k∗1) ⊕ k∗2 is returned and no function values are set. When
Fk∗(P ⊕ k∗1) is undefined,y is chosen uniformly fromRange(Fk∗), Fk∗(P ⊕ k∗1) is
set toy (and implicitly F̂k∗(P ⊕ k∗1) is set toy), andC = y ⊕ k∗2 is returned. Thus,
the behavior of GameX′ on queryE(P) is identical to the behavior of GameX on
queryE(P).

Case2. We will be somewhat briefer with our analyses of theF andF−1 oracles, which
are similar to the analysis above.Case2a. On oracle queryFk(x), whenk 6= k∗ then the
behavior of GameX is clearly identical to GameX′.Case2b. Whenk = k∗ thenFk∗(x) is
defined iff a query of the formE(x ⊕ k∗1) has been made. This holds iff̂Fk∗(x) is defined
(sinceFk∗(x) would not have been queried before). By a straightforward argument the
valuey returned from the queryF(x)will then bey = E(x ⊕ k∗1) ⊕ k∗2 = F̂k∗(x) in both
games.Case2c. WhenF̂k∗(x) is undefined, then in both gamesy is uniformly chosen
from Range(F̂k∗) and F̂k∗(x) is defined to bey. Thus, in all cases, GameX behaves
identically to GameX′.

Case3. Finally, on oracle queryF−1
k (y), the casek 6= k∗ is again trivial. When

k = k∗, then F̂−1
k∗ (y) will be defined iff E−1(y ⊕ k∗2) is defined, in which casex =

E−1(y ⊕ k∗2) ⊕ k∗1 = F̂−1
k∗ (y) in both games. When̂F−1

k∗ (y) is undefined, then in both
gamesx is chosen uniformly fromDom(F̂k∗) and F̂k∗(x) is defined to bey. Again,
GameX behaves identically to GameX′.
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