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Abstract. A private information retrievalscheme allows a user to retrieve a data
item of his choice from a remote database (or several copies of a database) while
hiding from the database owner which particular data item he is interested in. We
consider the question of private information retrieval in the so-called “commodity-
based” model, recently proposed by Beaver for practically oriented service-provider
Internet applications. We present simple and modular schemes allowing us to reduce
dramatically the overall communication involving users, and substantially reduce their
computation, using off-line messages sentfrom service-providers to databases and users.
The service-providers do not need to know the database contents nor the future user’s
requests; all they need to know is an upper bound on the data size. Our solutions can
be made resilient against collusions of databases with more than a majority (in fact,
all-but-one) of the service-providers.
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1. Introduction

Cryptography inth®0s.  With the widespread use of World-Wide Web and Internet ap-
plications, cryptographic protocols are increasingly used in commercial settings. Hence,
while the trend of the 1980s was to establish general plausibility results, the trend of
the 1990s was to consider solutions which lao¢h provably secure and efficiently im-
plementable in practical applications (for a more general discussion on this topic see
surveys by Goldreich [15] and Goldwasser [19], [18]). This is the case of the current
work as well—here we show how with the help of service-providers one can maintain
the user’s privacy while retrieving information from a remote database with almost the
same total communication cosyfoom the user as if we do not care about privacy at all.

Commodity-Based CryptographyMotivated by a client—server paradigm, Beaver [2]
proposed a new “commodity-based” approach for the design of efficient cryptographic
protocols. In hismodel there are several independent service-providers poatietbdity
servergor simplyserversor short), which off-line sell “security commaodities” to their
clients; these commaodities can be later utilized by the clients to perform more cheaply
various cryptographic tasks. An advantage of this model is that the servers do not need
to know private inputs of their clients, do not need to know which or how many other
servers are being used, and only send a single message (commaodity) to each client. On
the other hand, this setting is clearly much more restrictive than the usual setting for
secure multiparty protocols (as in [31], [17], [6], and [8]), which allows point-to-point
multiround communication. In [2] Beaver showed how to achieve so-called “1-out-of-2
Oblivious Transfer” and “multicast” in this model, provided that the majority of the
servers are honest. We consider this model in the context of remote database information
retrieval.

Private Information Retrieval Private information retrieva(PIR) schemes allow a

user to retrieve a data item of his choice from a remote database while hiding which
particular data item he is interested in. In the basic PIR setting the database content is
modeled by am-bit string X, possibly replicated (for a reason that will be explained
shortly) ink > 1 distinct databases. The user, holdingetieval index | wishes to

learn theith data bitx;. A t-private PIR schemés a protocol between the user and

the databases in which the user leaxn#/hile keeping private from any collusion of

t databases (where the user’s privacy is either information-theoretic or computational,
depending on the setting). By default, PIR refers to 1-private PIR.

A trivial single-database solution to this problem is to let the database send its en-
tire contentx to the user; however, while being information-theoretically private, the
communication complexityf this solution may be prohibitively large. (For example,
consider retrieval from a Web search-engine.) While it is impossible to do better us-
ing a single database and maintaining information-theoretic user privacy [10], it turns
out that if x is replicated in two or more databases, then there are much better solu-
tions. We now briefly mention some of the work done in this area in the past. Private
information retrieval with information-theoretic user privacy was introduced by Chor
et al. [10], who constructed (1-private) schemes with a communication complexity of
O(n'/3) bits fork = 2 database€) (n¥/¥) bits for a constant numbé&r> 3 of databases,
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and O(log® nloglogn) bits for k = O(logn) databases. Ambainis [1] improved the
k-database upper bound @(nY/%-D) for any constank (see [22] for an improved
dependence ok). Generalizations to-private PIR were given in [10] and [22].

ComputationaPIR schemes, in which the user’s privacy should only hold with respect
to computationally bounded databases (relying on certain intractability assumptions),
were first considered by Chor and Gilboa [9], who constructed a 2-database scheme
with subpolynomial communication and by Ostrovsky and Shoup [28] who considered
private reading and writing gdrom multiple databases.

Kushilevitz and Ostrovsky [23] constructed the fgbtgle database scheme with sub-
polynomial communication, thereby demonstrating that in the computational setting data
replication can be totally avoided. Subsequentimprovements to the communication com-
plexity of their scheme (relying on stronger assumptions) were given by Stern [30] and
most recently by Cachin et al. [7], the latter achieving polylogarithmic communication.
Single-database schemes were shown to imply the existance of one-way functions [5]
and Oblivious Transfer protocols [11]. Moreover, single-database schemes with com-
munication complexity strictly smaller than the database size were recently shown to
exist based on any one-way trapdoor permutation [24].

Our Setting The setting may be informally described as follows. Similarly to the
original PIR scenario, there is a user holding a retrieval indardk > 1 databases
holding copies of am-bit data stringx. As before, the user wishes to retrieyavithout
revealingi to the databases. However, in our setting there are additionally one or more
commodity servenahich may off-line send randomized messages, called commodities,
to the user and to each of the databasesommodity-based PIR scheifoe commodity
schemdor short) consists of the following two stages:

1. (Off-line commaodity distribution stageEach server, on input'land an optional
security parameterlindependently runs a probabilistic polynomial time sampling
algorithm, outputtingk + 1 strings (commaodities) sent via secure channels to the
user and th& databases.

2. (On-lineretrieval stage) With commodities from the off-line stage as private in-
puts, the user and the databases execute some PIR protocol in which the user sends
queries to the databases and receives answers in return.

In a real-life setting we envision many (perhaps competing) servers, where the user de-
cides which and how many of them to use. We measure both the off-line communication
in the commaodity distribution stage (i.e., size of commodities) and the on-line communi-
cation between the user and the databases in the retrieval stage. Our main objectives are
to minimize the total communication involving the user (in both stages) and to shift most
of the overall communication to the off-line stage. It should be noted that one clearly
cannot expect to achieve a bettetal complexity than that of ordinary (i.e., serverless)
PIR schemes, since the servers in any commodity scheme can be simulated by the user to
obtain an ordinary scheme of the same total complexity. We stress though that all of our
schemes allow minimizing the total communication involvingulserto be logarithmic
in n (and polynomial in the security parameter in the single-database case).

Another major goal is to guarantee the user’s privacy even when some of the servers
dishonestly collude with databases. One less obvious motivation for protecting against
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such collusions is that a nonmalicious yet faulty server (e.g., one with a bad random
number generator) may cause the same damage as a server which colludes with the
databases. (In contrast, faulty databases do not compromise the user’s privacy, neither in
our schemes nor in previous PIR schemes.) In most of our multiserver schemes, even if
all but one of the servers collude with databases, the user’s privacy still remains intact.

Our Results We start by constructing single-server commodity schemes, where as long
as this server does not collude with the databases the user’s privacy is guaranteed. We
then show how ta@omposesuch single-server schemes into multiserver schemes with
improved privacy properties. In particular, by establishing general transformations from
PIR schemes to commodity schemes (and by “plugging in” appropriate modifications of
PIR schemes from [10], [9], and [23]) we obtain the following commodity schemes:

e Computational single-database casdzor any constant integens, d > 1 we con-
struct amm-server, single-database computational scheme, withstanding collusions
of the database with up tm — 1 servers, with user's communication complexity
O(logn + poly(x)) (counting both the user’s commodity and on-line communica-
tion) and server-database commodity complegity - n'/%) (wherex is a security
parameter and security is based on the Quadratic Residuosity Assumption).

e Computational multi-database casefor any constannh > 1 we construct am-
server, 2-database computational scheme, withstanding collusions of a database
with up tom — 1 servers, with user’s communication of si2g¢logn) and server-

database commodity complexity- 20(/logn) (relying on the existence of a pseu-
dorandom generator). Schemes of this type are most appealing when the server-
privacy threshold is small and the database size is large. However, since the number
of databases is perhaps the most important complexity measure, such schemes are
obviously useless for all but very small valuesaf

e Information-theoretic multi-database case:For any constant integers, t, d >
1, we construct am-server,(mtd + 1)-database information-theoretically private
scheme, withstanding collusions of up ttadatabases anch — 1 servers, with
user’s communication complexi® (logn) and commodity complexity (n*/9).
Schemes of this type are most appealing when the database is moderately sized.

We then proceed to show how to make the amortized cost of our commodity schemes
cheaper and how to test commodities:

e Amortizing commodity cost for multiple queries: In most of ouis-private schemes
(i.e., those that can withstamsclishonest servers), by using> s + 1 servers the
amortized commodity cost per query can be reducgd s + 1)) - (m/(m — S))
times the cost of a single query in tii®+ 1)-server scheme (while maintaining
s-privacy).

o Commodity testing: We give procedures for verifying the validity of commodities
supplied by servers, allowing us to ensure correctness of our schemes even in the
presence of faulty or malicious servers. This problem is particularly natural in
a setting where some of the (potentially many) servers may be malfunctioning.
Moreover, the testing procedure can be carried out off-line, after the distribution of
commodities and before the actual retrieval.
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We finally discuss two extensions of the original problem; one concerns protecting
privacy of the data against a potentially dishonest user (in a sense that the user cannot
get more information than the single entry he has “paid for,” see [13], [30], and [27]) and
another concerns extension of our results to the related probl@nivate information
storage[28].

Benefitsfor PIR Asdiscussed above, reducing tteenmunicatiorost of PIR serves as

the main motivation for introducing commodity schemes. Indeed, commodity schemes
constructed in this work require little on-line communication and litbt&l communi-

cation involving the user; furthermore, their communication is typically unbalanced in

a favorable direction: almost all of it is directed from servers to their clients (namely,
users and databases) and from databases to their clients (namely, users). However, our
transformations of PIR schemes into commodity schemes may also be beneficial for
reducing thecomputationcost of PIR. A substantial portion of the user's computa-
tion (to an extent depending on the underlying PIR scheme) is shifted to an off-line
stage and is carried out by the servers. Even if better single-database PIR schemes
are devisetl this advantage may still justify the use of commodity schemes in the
computational, single-database case. Finally, a major disadvantage of single-database
commodity schemes over their PIR counterparts is that the user’s privacy may be com-
promised if servers collude with the database. To avoid this, one may use a degen-
erate form of our single-server construction in which the user simulates the server;
while obviously not reducing his total work, this shifts most of the user’s computa-
tion (and communication) to an off-line stage without compromising his privacy in any
way.

Comparison with Related Wark It is instructive to illuminate two points of comparison
between this work and Beaver’s work [2], which introduces the commodity-based model
we use. First, protocols from [2] do not dramatically save on-line communication; the
main goals there are to provide a level of resilience which is impossible to achieve in the
information-theoretic setting without the aid of the servers, and to remove unnecessary
interaction. Second, our solutions achieve resilience to collusions of databases with up
tom— 1 servers, in opposition to an optimal threshold @h — 1) /2] servers in Beaver's
Oblivious-Transfer protocol. This higher privacy threshold is made possible here because
of the different setting, which allows either replication of data or computational privacy.

A very different PIR model using auxiliary servers was recently proposed by Gertner
et al. [12]. This model differs from Beaver’s (and our) model in that it allows servers to
interact with the user and the databases. The objective of [12] is also different: it is not
to decrease the total on-line work or the user’s work, but rather to reduce the amount
of unprotected data replication in information-theoretic PIR by allowing a database to
“secret-share” its content with several data servers.

1 Recent single-database PIR schemes [30], [7] fall short of being satisfactorily efficient in two ways. First,
their computation costis very high (for instance, the scheme from [7] requires the database topartatutar
exponentiations over a large modulus). Second, even their communication overhead is quite significant for
“realistic” choices of parameters, especially when retrieving multibit records.
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Organization Section 2 contains some notation, as well as formal definitions of the
PIR and commodity PIR models. In Section 3 we summarize the complexity parameters
of specific PIR schemes which can be utilized for obtaining communication efficient
commodity PIR schemes. Section 4 introduces atomic commodity schemes, and Sec-
tion 5 deals with composing them to improve their privacy properties. In Section 6
we construct multi-database schemes based on the method of low-degree polynomial
interpolation. In Section 7 we show that the commodity cost of our schemes can be
amortized over multiple queries. Section 8 provides procedures for testing the cor-
rectness of commodities distributed by the servers. Section 9 discusses two exten-
sions of the original problem. Finally, the appendices contain a description of some
PIR schemes referred to in Section 3, as well as more general commodity testing
procedures.

2. Preliminaries
2.1. General Notation

By Z, we denote the additive group of residues moduknd by GKq), whereq is a
prime power, a finite field of ordey. Addition, subtraction, and multiplication operations
are sometimes carried over a finite group or field, as implied by the context¢Bswe
denote the bitwise exclusive-or of the two binary striggg. By R we denote the set of
reals, byR ™ the positive reals, by the natural numbers, and ] the set{1, 2, . .., k}.

By logn we denotelog, n1, and bye,, r € Z,, therth unit vector of lengtn (starting
with r = 0). We say that a functiont N'— R is negligibleif for every constant > 0
there exists an integet such thak(x) < k¢ forall ¥« > «..

By default, analgorithm refers to a probabilistic Turing Machine, and efficient
algorithmto a probabilistic polynomial time Turing Machine. We model adversaries by
nonuniform families of Boolean circuits. The&zeof a circuit F is the number of gates
in F. By F(y), whereF is anl-input circuit andy is a string over a finite alphabet, we
denote the value of the circuik applied to thd-bit prefix (or padding) of the binary
encoding ofy.

Whenever referring to eandomchoice of an element from a finite domak) the
associated distribution is uniform ovAr and is independent of all other random choices.
We use the following notation for defining probabilistic experiments and algorithms. By
e < E we denote a choice of an elemarfrom a distributionE (or uniformly from a
finite setE), and bye < v the assignment of the valueto e. By A(y), whereA is an
algorithm, we denote the output distribution of the algoritAmunning on inpul, where
the probability space is induced by the random coin&off A is deterministic,A(y)
denotes its output value. Br[e < E; f < F;...: p(e f,...)], wherep(, -, ...)
is a predicate, we denote the probability tipge, f, ...) will be true after the ordered

execution of the assignmerﬁsf— E:f <F;....

2.2. Parameters for PIR and Commodity Schemes

We letk denote the number afatabasesan instance of which is denotd®3;, and
m denote the number @fommodity serverr serversfor short), an instance of which
is denotedSy. A data string denotedx, is held by allk databases and is unknown
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to the user and the servers. Instead of only considering the default scenario where a
single bit is retrieved, we will occasionally be interested in the more general scenario
of retrieving an¢-bit record To this end we view the data stringas ann-tuple of
length+ records, wheré = 1 by default. The position, also called timelex of a data
record which the user would like to retrieve is denoted byherei € Z,. Notice that

under the above notation the data string isaaple from({0, 1}*)" and the desired data
recordy; is a string in{0, 1}*. Finally, in the computational settingdenotes a security
parameter.

2.3. Definitions

In the following definitions of PIR and commaodity-based PIR schemes we restrict our
attention to the default setting bft retrieval (i.e., £ = 1 andx € {0, 1}"). The more
general case is addressed in Section 2.4.

A PIR schemas a randomized protocol, in which the user sendyuaryto each
database and receives answerin return? At the end of the interaction, the user ap-
plies somereconstructionfunction to the answers, obtaining the desired dataxbit
A commodity-based PIR scherfer commodity schemi®r short) consists of: (1) an
off-line commodity distribution stagén which each server sends a (possibly different)
randomized string, callecbmmaodityto the user and to each database; and (2) an on-line
retrieval stagewhich proceeds similarly to an ordinary PIR scheme except that queries,
answers, and reconstruction may also depend on commodities. Since PIR schemes may
be viewed as serverless commodity schemes, their definition is derived as a special case
of the following “generic” definition.

An m-serverk-database commodity scherfigs defined by a quadruple of efficient
algorithms(come, que,, ans:, recc), where:

e come(1¥, 1", h) is the commodity generation algorithm invoked by each ofrthe
servers; given a security parameterdata sizen, and server identity, it outputs
randomized commoditieg!, (c2™, ..., cﬂb‘)), wherecy is sent byS to the user

and each:ﬁb“ to the corresponding database.

e ques (19,170, (¢}, ..., cp)) outputs ak-tuple of querieg(dy, ..., gx) generated
by the user on security parameterdata sizen, retrieval index, and commodi-
tiescy, ..., ¢y, (wherecy is the commaodity received from servsy). If P is a PIR
scheme, we also neege, to output an auxiliaryeconstruction informatiostring
z (possibly containing some trapdoor information required for efficient reconstruc-
tion) such that reconstruction can later depend on the answesaoie, without
depending on the index the queries generated lqyye,, or the random coins of
guep. Although takingz to includeall random coins and inputs ofue, will al-
ways do, it turns out that a much shorter stringan be used in all currently known
PIR schemes, without affecting the computational efficiency of reconstruttion.

2 Amore general definition would allow multiple rounds of interaction rather than a single queries—answers
round. However, all currently known PIR schemes require only a single round of interaction.

3 In all information-theoretic schemes known to date [10], [1], [22], as well as in the computational scheme
of [9], either no such auxiliary reconstruction information is needed or diigyneeded. In known single-
database computational schemes [23], [30],£4f length« or « + polylog(n) suffices (in [23], for instance,

a trapdoor consisting of the factorization ot it modulusN is sufficient for efficient reconstruction).
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This feature, which is not very useful in the original PIR setting, turns out to be
important in our context.

e ang(j, X, qj, (cfb‘, ...,cgqu)) outputs the answer of databeB8j, 1 < j < k, on
. . db db,
the data string, queryq;, and commodities, ’, ..., Cn .
e recc((as, ..., &), (¢}, ..., cp), 2) outputs a single bit reconstructed by the user
from the answersy, ..., a, commoditiescy, ..., ¢y, and (in the case of PIR)

reconstruction informatiom.

The special case of PIR. A k-database PIR scheny@ is defined as a 0-servés
database commodity scheme. Hefiteay be defined by a tripl@jue,, ansp, recp),
where all commodity-related inputs to these three algorithms are omitted.

Before proceeding to specify the semantic requirements a commodity scheme must
obey, two further syntactic remarks are in place.

1. Some inputs to the functiorgue,, ans:, recc are omitted when they are not
needed. For instance, in most of our constructions all servers play a symmetric
role, in which casén will be omitted from the inputs ofome. We also omit the
input 2 whenever referring exclusively to information-theoretic schemes (which
do not require a security parameter). Finally, note that the parametarare
not given as explicit inputs tansp or recp; however, they may be implicitly
contained in their inputs (for instance, the data stsrdetermines and a query
g; may determing).

2. For any schemé we assume that botians: andrec are deterministic. I is
strictly a commodity scheme (i.e., witm > 1), we assume thajue, is also
deterministic, which makes the user deterministic as well.

Any commodity scheme must satisfy both correctness and privacy requirements, de-
fined in the next subsections.

2.3.1. Correctness

A commodity scheme is said to lmrrect if, at the end of the retrieval stage, the
reconstructed value is always equalxo(assuming that all parties are honest). This
requirement may be relaxed to allow some small reconstruction error (as in [7]); we use
the perfect correctness variant for simplicity.

We write two separate correctness definitions, one for PIR and one for commodity
PIR withm > 1, incorporating the above syntactic remarks.

A k-database PIR scherfieis correct, if, for anyc, n, x € {0, 1}",i € Z,,

Pri((@z. .. .. 0k, 2) < quep(1*, 1", i);
(ag,...,a) < (@nsp(1, X, ), ..., ansp(k, X, Qk)) :
recp((ag, ..., &), 2) = X] =1,

where the probability is over the random coingjok,.
An m-serverk-database commodity scher@iés correct if, for any, n, x € {0, 1}",
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i€ Zn,

Pri(cy, ™, ..., c™) & come(14, 1", 1);

(€4, (8, .. cih)) & come(1¥, 1", my);
@, - - -, k) < ques (1, 170, (¢}, ..., co));
(@, ...,a) < (ans (1, X, qz, (cfljbl, ..., clby,
. ange (K, X, g (€2, ., ¢y
recc((a, ..., &), (¢}, ...,cp)) = %] =1,

where the probability is over the random coins of thendependent invocations of
come.

2.3.2. Privacy

Informally, a commaodity scheme is said to (set)-private(and a PIR schenteprivate)
if i is kept private from any collusion af(possibly dishonest) servers andatabase$.
We use nonuniform security definitions for convenience; the security of our constructions
extends to the uniform setting as well.

Let T C [k] be the indices of corrupt databases and I8t= {hy, ..., hs} € [m]
be the indices o$ corrupt servers, which may distribute arbitrary commaodities. We do
not restrict the computation of corrupt servers during the commodity distribution stage;
hence it may be assumed without loss of generality that commodities sent by these servers
aredeterminedby «, n.> We specify the (deterministic) corruption strategy of servers
from Sby a functionS*(., -), such thatS* (1%, 1") returns a sef(hy, Cn,), . . ., (hs, Cn,)}
specifying the commodities sent by corrupt serfewe letV> T = (C37, Q5"
denote the joinviewof databases from, consisting of bottommaoditieseceived from
incorrupt servers ir§ £ [m]\S (included in the random variable> ") and on-line
queries(included inQZ " T). More formally, for any, n, i € Z, andS, S, T as above,
the random variabl¥, " (c, n, i) = (CZT (x, n), QST (k, n, 1)) is obtained as follows:
(1) conduct the probabilistic experiment appearing in the correctness definition above,
except that fot = 1,2, ..., s replace thehth invocation ofcome by an assignment
from the corresponding entry &; (2) IetC?’T include all commoditiesﬂq withh e S
andj € T; and (3) Ieth’T include all queriesy; with j € T.” Finally, for any (fixed)
Kk, N, we letC(x, n) denote a restriction @f to these specific parameters. Thugik’,Tn)(i )

andcgiz,n) are different names for the random variakﬂbtg'T(/c, n,i) andCCST(K, n,

respectively.

4 Dishonest databases do not pose any risk to the user’s privacy in our single-round setting.

5 This follows from a standard “averaging argument”; namely, there is some fixed choice of the dishonest
servers’ coins given which the adversary’s advantage is maintained.

6 Commodities sent by corrupt serversdatabasesre irrelevant to the user’s privacy.

7 Note thatQi‘*’T depends on the corruption strateg; as the user’s queries depend on his commodities.
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Information-Theoretic Privacy We say that the schendeais information-theoretically
(s, t)-private (and refer to it as an information-theoretic scheme) if, for any number of
recordsn, retrieval indices, i, € Zy, collusionS C [m] of s servers with corruption

strategyS*, and collusionT C [K] of t databases, the random variab\@,;)T (i1) and

V&, (i2) areidenticallydistributed.

Computational Privacy In the computational setting, the above perfect privacy re-
quirement is relaxed to computational indistinguishability, parameterized by the security
parametek and the data size.2 Formally, letF be a class of functiorfs V' x N’ — N,
specifying a bound on the adversary’s resources (as a functionndf and let€ be a
class of functiong: N x N’ — R, specifying a bound on the tolerated advantage of
an adversary in distinguishing between different retrieval indices.

For any two distributionsD;, D, circuit F, and constant > 0, we say thatF
distinguishes betweem@nd D, with ane-advantagef |Pr[F(D1) = 1]—Pr[F (D) =
1]| > €. For anyS € [m], T C [Kk], ¢ > 0, and positive integer$, «, n, we say that
the collusion(S, T) can (f, €)-breakC(«, n), if there exists a corruption stratedy
for servers inS, retrieval indices, i, € Z,, and a circuitF of size f, such thatF
distinguishes betweevis, | (i1) andV3,. |, (i2) with ane-advantage.

We say that the schen@és (computationally}]S, T)-private with privacy levelF, &),
if, for any functionf € F, there exists a function € £, such that for any, n the col-
lusion (S, T) cannot(f(x, n), e(x, n))-breakC («, n). In other words, every--bounded
adversary corruptingS, T) should gain from its view only aéi-bounded advantage in
distinguishing between any two retrieval indices. Finally, we saydhsafs, t)-private
(with privacy level(F, £)), if itis (S, T)-private for all collusiongS, T) with |S| = s
and|T| = t. The parameterss, t) will sometimes be referred to as tpevacy thresh-
old (in contrast to th@rivacy level(F, £)). Since the default database privacy threshold
considered in other PIR workstis= 1, in the context of commodity schemesrivate”
will stand for (s, 1)-private.

Note thaC is information-theoreticallys, t) private if and only if it is computationally
(s, t)-private with privacy level F, £) for all function classes, £. This observation
will allow us to use the computational framework in theorems and proofs that apply to
boththe computational and the information-theoretic settings.

When referring tespecificschemes the privacy levéfF, £) will usually be omitted,
under the implicit understanding that it is closely related to the strength of an underlying
intractability assumption. As a default privacy level (which takes over whergyér
are omitted)F can be taken to be the class of all polynomialscifor equivalently
in k + n), and& to be the class of all functions(-, -) which become negligible ir
wheneven is polynomially bounded ir. Thatis,e € £ if for any polynomialp(-) there
is a negligible functiorz’(-) such thak(x, n) < ¢'(x) wheneven < p(x). This default
definition corresponds to the usual “conservative” security assumptions which limit the

8 It seems more natural to let the level of privacy depend on the security parametene. How-
ever, allowing the privacy level to depend anas well better fits constructions (as in [9] and [7]) whose
security slightly degrades with, even when the adversary’s resources are bounded by a fixed function
of k.
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problem size and the adversary’s power to be polynomial in the security parameter and
the adversary’s advantage to be negligible.

We finally remark that the above definition of computational privacy implies privacy
in the sense of the single-parameter definition used in [9], wheserves both as a
data size parameter and as a security parameter. Specifically, if a schenprivate
under our two-parameter definition with the default privacy level, then focany the
single-parameter schenf& defined byP.(n) = P(n°, n) is private under the single-
parameter definition. Moreover,# is private with a stronger privacy level, then smaller
functions ofn can be substituted far, as small apolylog(n) in an extreme case (e.g.,
whenF = {2¢%} and& = {27} for some constants @ ¢z, ¢; < 1).

2.3.3. Complexity

Complexity is measured, by default, in terms of communication. ddramunication
complexityof a PIR scheme or a commodity scheme is den@ie@), wherex (called

the query complexityis the maximal number of query bits sent from the user to any
database, and (called theanswer complexilyis the maximal number of answer bits
sent from any database to the user. Té@nstruction information complexitf a PIR
schemeP, denotedy, is the maximal length of the reconstruction information string
output byquep.

Note that the communication complexity reflects only the communication cost of the
retrieval stage. Theommodity complexityf a commodity scheme is denoted, §9°),
wheres' (resp.89°) is themaximalnumber of commodity bits sent from any server to
the user (resp. to any database). Since PIR schemes and commaodity schemes are param-
eterized by the number of recordsa security parameter(in the computational case),
and the record sizé (to be addressed in the next subsection), the complexity measures
a, B, v, 8", 89 may depend on these parameters. Finally, whenever the parahister
omitted it is understood to be equal to 1. For instar®@, n) is used to denote the
answer complexity on an-bit data string with security parameter

2.4. Extending Bit Retrieval to Block Retrieval

The definitions in Section 2.3 only address the default case of bit retrieval. A more
general schemé’, allowing retrieval of multibit records (also referred to lascks,
may be defined by applying the following modifications to the original definitions.
First, a record length parameteshould be optionally given as an additional input to the
algorithms comprising’ (as we shall see, this option is not used in our context). Second,
the correctness definition should be strengthened to apply to éargx e ({0, 1})"
(whererece: should not be restricted to return a single bit). Finally, we require the privacy
level to be independent of the record lengthe., we use the same definitions except for
extra universal quantifiers ohwhere appropriate. In the remainder of this subsection
we address the special case of block retrieval for PIR schemes; the more general case of
commaodity schemes can be handled similarly.

Let P be any PIR scheme, as defined in Section 2.3. We define a default extension of
P into a block retrieval schent®’ in the following “naive” way, which is used in [10]
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as a basis for further optimizatidrFor any data string € ({0, 1})" and 1< w < ¢,
let x* denote then-bit string obtained by taking only theth bit from each record. To
retrieve an¢-bit record usingP’: (1) the user invokegue, as inP; (2) each database
answers the user’s query by invokiagsp ¢ times, once under eachbit data string
x¥; and (3) the user applies the reconstruction functieey ¢ times, once for each
answer.

Note that the user’s queries in the scheRiare independent of the record length
Hence, we have:

Claim 1[10]. Any PIR schem& (for bit retrieval) can be extended into a private
block retrieval schem®”’, such thatjue,, = que,. Moreoverif the answer complexity
of P is B(x, n), then the answer complexity &f is 8'(x, n, £) = £ - B(x, n) (and the
guery complexityreconstruction information complexjignd privacy level of”’ are the
same as oP).

Relying on Claim 1 we freely use any PIR schefglor similarly any commodity
scheme®) on data strings of arbitrary record size, and do not involve the record size in
the privacy analysis.

3. PIR Schemes with Low Answer Complexity

Most of the commodity schemes constructed in this work can use any PIR scheme as
a building block. However, for the commodity schemes to be efficient, we are typically
interested in PIR schemes whose answer complexity is very low.

Table 1 summarizes the parameters of some PIR schemes whose answer complexity
is minimized to either a single bit, in the multi-database case;®P bits, in the
computational single-database case. The parameters of some of these schemes will be
explicitly referred to in what follows. The parametgrappearing in the table can be
substituted by any positive integer (including 1). In the “security type” column, “i.t.”
stands for information-theoretic security, “comp.” for computational security, “PRG” for
the existence of a pseudo-random generator (or equivalently one-way functions [21]),
“QRA’ for the Quadratic Residuosity Assumption [20], “PRA’ for the Prime Residuosity

Table 1. Parameters of some PIR schemes.

Name k t o B y Security Type
P%k k k—1 n 1 0 it.

PH td+1 ot o(n¥/d) 1 0 it.

Ps 2 1 i - 20(/logm 1 0 comp. (PRG)
P 1 1 O(dkn/d) «d K comp. (QRA)
P 1 1 O(dknt/d) K - 20@ K comp. (PRA)
Ps 1 1 (k +1logm D (k +1ogn)°®  (x +1logn)°D  comp. @-H)

9 We use scheme®B with the smallest answer complexity possible; optimization techniques from [10] and
[9] do not yield any improvement for such schemes.
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Assumption (see [30] and references therein), adH"” stands for the newly introduced
®-Hiding assumption (see [7]).

The scheméP¥ is the simplest one to describe: The user pikckatherwise-random
queriesy, . .., gk € {0, 1}" whose bitwise exclusive-or is equaldg each databases;
replies with the inner product (over @GB) x - g;, and the user reconstructsby taking
the exclusive-or of th& answer bits. (This is a simple generalization of an elementary
scheme from [10].) The other schemes are variants of schemes from [10], [9], [23], [30],
and [7].

Pé’d is obtained by applying a small optimization to the polynomial interpolation-
based scheme from [10] (see Remark 2 in SectiofP§)s a variant of the 2-database
computational scheme from [9]; in this scheme the user’s queries are interpreted as two
short pseudorandom “seeds,” which are expanded (independently) by the two databases
to twon-bit strings whose exclusive-orés. The scheme can then proceed%%sDetails
of this scheme will appear in the journal version of [9].

The remaining schemes are all single-database sch@rj‘lésa variant of the scheme
from [23]. This variant and some optimized version of it (in a setting where a public
random string is available) are described in Appendix 9’?. which generalizes the
construction ofPg, is from [30]. Finally,Ps is from [7]. Since the main focus of this
work is on obtaining general and provably secure reductions, we use the less efficient
schemeP (which is based on a more “standard” security assumption) to instantiate our
single-database results.

We stress that while the scherfig is essentially optimal as far as its asymptotic
complexity is concerned, the relative performance of the different schemes under “real-
life” parameters may vary. In particular, the information-theoretic schemes and the 2-
database computational schefAghave a better communication complexity on small
to moderately sized data strings (say, with= 10°), or on larger strings with larger
records. Moreover, these schemes are significantly more computationally efficient than
the single-database schemes, roughly corresponding to the efficiency difference between
a private-key and a public-key encryption of the entire data.

4. Atomic Single-Server Commodity Schemes

In this section we present a simple transformation fromtapsivatek-database (com-
putational or information-theoretic) PIR scheme tqGat)-private, single-serveik-
database commodity scheme. Single-server schemes obtained via this transformation
are referred to aatomic schemesand are subsequently composed into schemes with
improved privacy properties.

We start with an informal description of how atomic commodity schemes are con-
structed, where for simplicity we refer here to the single-database case; aformal treatment
of the general case will follow.

Consider any 1-round single-database (computational) PIR scReBech a scheme
may be viewed as the following three-stage procedure: (1) the user computes a ran-
domized quenyg corresponding to the retrieval indéxto which we sometimes refer
asa query pointing to theth data record; (2) the database computes an answer to
this query based on the database contents; and (3) the user reconstrutisdhi
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record, x;, from the answer and some auxiliary reconstruction informatiaener-

ated along with the query. While the communication and computation costs of each
such step may vary from one scheme to another, none of the known PIR schemes
is satisfactorily efficient in both of these aspects. The following simple idea allows
us to shift most of the communication cost and a substantial part of the user’s com-
putation from the on-line protocol to an off-line stage, and from the user’s hands to
an external commodity server. Instead of having the user congutiéne a query
pointing to the desired data record, we let the server perfaifntine the following
operations:

e Pick a random retrieval index

e Compute arandom quegypointing to the th data record, along with its associated
reconstruction information.

e Send the index along withz to the user, and the quegyto the database.

Such commodities supplied by the server can then serveasigious windowpointing
to a random location in the data string which is known to the user but is computationally
hidden from the database. All that is left to the user, knowing the location of this window
relative to hisretrieval index, is to specify by how much the data string should be cyclically
shifted (say, to the left) so that the desired record will be aligned with this window.
Then, using the database’s answer on the shifted data string and the reconstruction
information supplied by the server, the user can efficiently reconstruct the desired data
record. Note that since the privacy &f guarantees that is kept private from the
database, the shift amount=1i —r (modn) sent by the user gives the database no
useful information.

The procedure we have just described is referred to aattimic commodity scheme
based or?, and is denoted,. Formalizing and generalizing the above procedure, we
have:

Theorem 1. LetP be any t-privatek-database PIR schenfke > 1) with communi-
cation complexity(«, B) and reconstruction information complexify Then there is
a (0, t)-private, single-serverk-database commodity scheiie with communication
complexity(logn, 8), commodity complexitgfogn + y, «), and the same privacy level
asp.10

Proof. A commodity schem&p as required is formally described in Fig. 1. The
correctness of » follows from observing that when cyclically shiftingby A places
to the left, the desired recosg moves to positiom — A = r, to which the commodity
gueries point.

We turn to show tha€p is (0, t)-private with the same privacy level & Fix «,
n, and a collusionT C [K] of t databases. We reduce the privacyCef to the pri-
vacy of P by showing that if the collusio, T) can (f, €)-breakCp(«, n), then the
collusionT can (f, ¢)-breakP(x, n). Let VCT(i) denote the view ofT -databases in

Cp(x,n) onindexi (more precisely,\/CT(i) is the random variabl&’ci’&,n)(i), defined

10 |n particular, ifP is information-theoretically private, then sods.
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Atomic-Scheme-Cp
P: a k-database PIR scheme
Cp: asingle-server k-database commodity scheme

come,, (1%,1™)
r& Zn;
((qh‘JZv .. '7‘]1:)7 Z) <R_ que‘P(ln1 lnu 7‘);
return ((r, 2),(q1,...,q%));
que (1%,1, (7, 2))
A+—i—r (mod n);
return (A, A, ..., A);
ansc, (7, z, 8, g;)
return a; def ansp(j,z << A, g5);
(where z << A denotes a cyclic shift of z by A records to the left).

rece, ((a1,...,a8), (7, 2))
return recp((ay,...,ax),2);

Fig. 1. Atomic single-server commodity scher@e .

in Section 2.3, withS* = ¢), and similarly IetQ})(i) denote the view off -databases
in P. Now, suppose thaF is a circuit of sizef distinguishing with anc:-advantage
betweenV/ (i1) and V/ (i2), for someiy, i, € Z,. By the definition ofCp, the view
V. (up to replicated components) ! (i) = (QL(R),i — R), whereR is a ran-
dom variable uniformly distributed ovet,,. Since the random variablgR,i — R) is
distributed identically tqi — R, R) (and since the randomness@j} is independent
of R), the random variabl&/ (i) is distributed identically tq QL (i — R), R). Now,
since

IPr[F(Qp(i1 — R), R = 1] - PrlF(Qp(i2— R, R) =1]| > ¢

then, using a standard averaging argument, there existZ,, such that thig-advantage
is maintained conditioned big = rq. That is,

IPr[F(Qp(i1 — o), To) = 1] — PrIF(Qp(i2 — o), ro) = 1]| > .

Therefore, the circuif’ defined byF’(q) 2F (q, ro) is acircuit of sizef distinguishing
between retrieval indicds — ro andi, — rg with ane-advantage, as required.

Finally, the communication and commaodity complexityCef are clearly as specified,
and if P is computationally efficient, then so@%. O

Note that total communication involving the userdp, counting both the off-line
commodity distribution stage and the on-line retrieval stage, is dominated by the answer
complexity of P. Section 3 contains an overview of some known PIR schemes with low
answer complexity. Such schemes, which are not very useful in the usual PIR setting,
serve as the most natural building blocks for commodity schemes.

Finally, it is important to observe that in any atomic schefpe a collusion of the
server with a single database can easily learagardless of the privacy threshold7@f
Moreover, even an honest server with a faulty source of randomness will compromise
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the user’s privacy itf». This obvious weakness of atomic schemes is dealt with in the
following two sections.

5. Composing Commodity Schemes

As observed above, in any atomic commaodity scheme the user’s privacy is totally de-
pendent on a proper behavior of the single server. A natural approach for alleviating
this problem is to distribute the user’s trust among several servers rather than one. We
achieve this bycomposingatomic commodity schemes into multiserver schemes with
improved privacy properties.

5.1. The Single-Database Case

We start by describing the special case of compoatamig single-databaseommaodity
schemes; a more general composition operator is defined and formally analyzed in the
next subsection.

Consider two atomic single-database commodity schegswith serverS;, and
Cp, with serverS,. The composed scheme proceeds as follows:

CommoDITIES: Each of the two servers independently distributes commodities as in the
corresponding atomic scheme. Lrigt r, denote the random retrieval indices picked,
respectively, bys;, So, and letq,, g, denote the correspondirfgy - andP,-queries.

RETRIEVAL: The database simulates all possible queries made by the user in the retrieval
stage ofCp,, and constructs a virtual data strirgwhose records consist of answers to
these queries. Specifically, thi record ofx’, 0 < | < n, will consist of the answer
according toP; to the commaodity-queryg; on the original data string shifted byl
records to the left. The retrieval of tith record ofx can now be reduced to retrieval of
the Ath record ofx’, whereA =i —r; (modn) is the query used i@p, for retrieving
theith record ofx. The user retrieves thisth record ofx’ using the retrieval procedure
of Cp,, based on commodities supplied 8y. Knowing this record, the user can apply
to it the reconstruction procedure®p, to obtainx;. Note thatx’ hasn records, exactly
as the number of records in The larger record size of will only affect the database’s
answer, whose size may be proportional to this record'dize.

The query sent by the user in the composed scheline i — r,. Since bothr; and
r, are hidden from the database and exactly one of them is hidden from eachisisrver,
kept private from any collusion of the database with a single server.

Intuitively, the transformation from the original data strixgp the virtual data string
X’ corresponds to aoblivious shiftof x by a random amoumt, which is known to the
user andS; but is unknown to the database afigl Indeed, each record af may be
viewed as an encoding, according®g of a corresponding shifted record fromUsing
this notion of oblivious shifts, the retrieval stage of the composed scheme described

11 |n the single-database case we consider the “naive” block retrieval of Claim 1 as a worst-case scenario.
The complexity of the composed scheme can be substantially impro€ednifplements block retrieval in a
more efficient way. Some amortization of the cost of retrieving blocks is obtained by the scheme from [30].
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above can be viewed as follows:

e Using qi, the database obliviously shifisby r; records to obtain a virtual data
stringx’; then, usingy,, the database obliviously shiftsby r, records to obtain a
virtual data string”.

e The user explicitly asks for thé — r; — ry)th record ofx”, from which he can
reconstruck; .

(Note that we have slightly modified the previous scheme; there the database only com-
putes the single record a&f required by the user.)

The above presentation makes it conceptually easy to generalize the two-server com-
posed scheme into an-server scheme, which keepgrivate from any collusion of
the database witim — 1 servers. In such am-server scheme the database successively
performsm oblivious shifts on the data, using commodities fromrtheifferent servers,
and the user reconstructsfrom the(i — = ;rp)th record of the resultant virtual data
string. Notice that with our default implementation of block retrieval (using Claim 1)
each oblivious shift increases the record size of the virtual data string by a multiplicative
factor equal to the answer size of the underlying PIR scheme. Thus, for all but very
small values ofm this approach will yield schemes with an unrealistically large answer
complexity. One potential way of avoiding this problem is by using more efficient block
retrieval technigques. This problem can also be avoided in the multi-database case, which
is discussed in Sections 5.2 and 6.

Before introducing a more general multi-database composition operator, we state the
result obtained by composing atomic single-database schemes in the manner described
above.

Theorem 2. LetP be a single-database PIR scheme with communication complexity
(o, B) and reconstruction information complexify. Then for any constant m> 1,
there is an m-serve(m — 1)-private single-database commodity schegfg, with
communication complexitffog n, 8™), commodity complexitogn + y, «), and the
same privacy level &B.

A generalization of Theorem 2 is formally proved in the next subsection. As a special
case, we may obtain the following:

Corollary 1. Forany constantintegers nd > 1there is an m-servesingle-database
(m—1)-private computational commodity scheassuming QRAwith communication
complexity(logn, «©®) and commodity complexitjogn, O(x - n¥/9)).

Proof. Such a scheme can be obtained by applying Theorem 2 to the PIR s@?jeme
More precisely, the actual communication complexityligyn, O(x™?)); for constant
m andd, this is polynomial inc.1? O

12 Fixing the number of databases [10], [1], or the complexity paramkf@8], has been the convention
in other PIR related works. In Section 6 we present a (multi-database) scheme whose complexity is also
polynomial inm.
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We note that since the scherﬁ’é allows us to trade answer complexity for query
complexity (an extreme case @6 = 1, in which the query complexity is linear im
and the answer complexity is oy, a similar tradeoff can be established between the
commoditycomplexity and thecommunicatiorcomplexity in them-server scheme of
Corollary 1. Finally, this scheme can be made more eﬁicieﬁg’ibr Ps is used instead
of P§ (see Section 3).

5.2. Multi-Database Composition

Known multi-database PIR schemes possess several advantages over their single-database
counterparts. First, they allow information-theoretic user privacy, which cannot be a-
chieved at all in the single-database case (unless the entire database is sent to the user
[10]). Other advantages are their computational complexity, which is typically much
more modest, and their superior communication complexity on moderately sized data
strings. Finally, and in our context most importantly, they can potentially have the small-
est answer complexity possible—as low as a single bit (this is the case for the schemes
73'1‘, 7>;~d, P3). In contrast, it is not hard to observe that a very low answer complexity
implies a poor level of computational privacy in single-database PIR schemes. Since the
bottleneck of the previous multiserver solutions was the answer complexity of the under-
lying PIR schemes, multi-database schemes seem like better candidates for commodity
schemes with a high threshold of server-privacy.

However, when trying to apply the composition technique described in the previous
subsection to multi-database commodity schemes, the following problem arises. Con-
sider an attempt to compose two atomic multi-database schélpeandCp,. When
letting each database compute a virtual data string as defined for the single-database
case, strings computed by different databases may differ; indeed, these strings depend
on differentP;-queries sent as commodities to the databases. Consequently, there is
not enough data replication to allow using the multi-database schienfigr retrieval
from the virtual data strings. The latter problem may be overcome by increasing the
number of databases, thereby introducing sufficient additional data replication to allow
the second-level retrieval. This idea is used in the following formalization of a composi-
tion operator, which generalizes the composition technique described in the previous
subsection.

Consider any two commodity schemég,andC,, where eaclt,, is anmg-serverky-
database scheme with communication complegity S,) and commodity complexity
8y, 5gb). We define a composed scheifie= C; o C, usingm = m; + m, servers
andk = kjk, databases. For convenience, server indices will be taken from the set
({1} x [m1]) U ({2} x [m]) and database indices from the daf [x [k2].

The composed scherfeon parameters = («, n), will invoke the schemé; on the
same parametersand the schem@&, on the parameters’ ' (k, (1)), wheren' (ic, n)
is the size of the query domain 6f («, n). Note that ifC; is an atomic scheme, then
n'(r) = n, andn’ () ~ 2% in general. Hence, we require that(z) = O(logn) for
C to be computationally efficient. The schem@roceeds as follows.

ComMMODITIES: Each serverS; , generates commodities &, in C1(;r), except that
each commodity originally sent frofiy, to DB;; will now be sent fromSy , to all
database®B;, j, j € [ko]. Similarly, each serves, n, generates commodities &g, in
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Co(r"), except that each commodity originally sent frdig) to DB;, will now be sent
from S, p, to all DB j,, j € [Ka].

RETRIEVAL:

1. The user computes, queries(ds, ..., Gk,) pointing to the retrieval index as
in C1(r) (with commodities from serverSy n); then, viewing each query;, as
a retrieval index, the user computks queries(gj, 1, . . ., Jj,k) Pointing to g,
according toC,(rr’) (using C,-commodities from the servetS; ). Each query
0;,,j, is sent to the databageB;, j,.

2. Each databas®B;, j, computes a virtual data string'?), consisting oft’ records

of size 1, where each record contains an answer to a possible user’'s query in

C:. Specifically, theth record ofx'V is the answer, according @ (and using
C,-commodities), to théth retrieval query orx. The databas®5;, , replies to
the user’s query by simulatirg on the data string/’ and the user’s queny, j,.
3. The user reconstrucis by first recovering each entvgéfl“, j1 € [ka], from the
answersoDBj, 1, ..., DB}, k, (using the reconstruction function and commodities
of C,), and then applying the reconstruction functiorCeto the resultant values.

Aformal definition of the composed schedis given in Fig. 2. Its correctness follows
directly from the correctness 61, C,. The following lemma includes a straightforward
complexity analysis.

Composed-Scheme-C; o C;

C1: an mg-server ki-database commodity scheme.

Cy: an mgp-server kp-database commodity scheme.

C = C10Cy: an (my + my)-server kqkz-database commodity scheme,

with server indices ({1} x [m1]) U ({2} x [m3]) and database indices [k1] x [k2].
comc (1%, 1%, (bh)) /*be[2],h € [my)*/
(c’b“’h, (cgf’,i, ey c,ff’,’:")) bid comg, (1%, 1™ h),
where ny = n and np = n'(s,n) (the size of the query domain of Ci(k, n)).

for all (41, 72) € [ka] x [ka], cpi® ™ = cpi’s

return (c;h, (cgf’,i'l, cey c:i’:"“))

quec(l", lnv iv (6111,1! ) C’llt,m,v cg,lv .. -76121,m2))
(g1, -1 qx,) queg, (1%, 17,4, (¢} 1, .. ., ¢F 0, ))s
for all j1 € [k1], (g5,,1,- -1 9j1.k,) < queg, (17,17 kn) g, (S51r- 18 m,))
(where each string in the query domain of Ci(k, n) is identified with an index in Zp/);
return (g1,1,. -+, Gky,ks )
ansc((j1, 72): 2, 95.5.) /% 1 € [k1], 5z € [k2] */
let zU1) be a virtual data string defined by:

)

K,n)

] . dbjy, 5 db;y 5
T'l(lii) —ansc, (]1: Ty 51y (Cl,{ldzv sy Cl,vjnl;ﬂ))v g5, € Znts
return ansc, (ij m(jl)YQJ'n]'n (cgf){ldzv ey lzi,brjn:]z))’
rece((a1,1.-.,8ky ks )s (011"1, Y SR C12‘,1n2))
for all jy € [ka}, a7, <—rece,((aj, 1)+ 1@,k )s (S5 10+ 3 Com,))s
return rece, ((a’h EERY a”h)’ (61{,1, L) cllt,ml));

Fig. 2. Composed commodity scher@g o C,.
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Lemmal. The communication complexity 6fis (a2(7’), B1() - B2(7")), and its
commodity complexity iGnax(st (), 85(r")}, max{s{®(xr), 3°(x")}). Furthermore if
the query domains @f;, C, are of size n eaclthenm = 7’ = (k, n); hence in this case
the communication complexity 6fbecomeslogn, 8; - 82) (with query domain of size
n). Finally, if 1 = O(logn), thenC is computationally efficient

We turn to analyze the privacy 6f Let S = ({1} x §) U ({2} x ) be a set of corrupt
servers, and lef = T; x T, be a set of databases. We reduce(®e€T )-privacy ofC to
boththe (S, Ty)-privacy ofC; and the(S,, T,)-privacy ofC,. The reduction can be made
tighter and cleaner in the case tifatandC, are either atomic schemes or compositions
of atomic schemes. More generally, such a tighter reduction is possible whenever the
composed schemes meet the following stronger privacy requirement.

Definition 1. We say that atrong collusion(S, T) can( f, ¢)-breakC («, n) if, for some
circuit F of size f, indicesiy, io € Z,, corruption strategys*, andarbitrary function
help,

IPr[F(Cc(i1), help(Qc(i1))) = 1] — Pr[F(Cc(i2), help(Qc(i2)) = 1]| > ¢,

whereCe(i) = Ccs(zﬁn)(i)andQc(i) = g;;:n)(i ). We say thaf isstrongly(s, t)-private
(with a specified privacy level) if it satisfies the privacy definition from Section 2.3 with
respect to strong collusions.

Note that a strong collusion may perform an arbitrary (unbounded) computagipn
on the queries alone, followed by a bounded computation on the commodities and the
output ofhelp.

The following lemma may be proved very similarly to Theorem 1.

Lemma 2. For any t-private PIR schem®, the atomic commodity schendg is
strongly (0, t)-private with the same privacy level &

Lemma 3. Fix «, n (which determiner, n’, '), and suppose that the strong collusion
(resp collusion) (S, T) can(f, €)-breakC (). Then

1. The strong collusioffresp collusion (S, T1) can(f, €)-breakCy () (resp (f +
fa(m'), €)-breakCy (), where $(x’) is the size of circuitry required for computing

queCQ(n’))'
2. The strong collusioffresp collusion (S, T,) can(f, €)-breakCy(r’).

Proof. We use the following simplified notation. BZ;, C,, Q1(i, Cq1), Q(i, Cq, Cy))

we denote the joint random variables associated with the invocatictizof, where
C; andC; are, respectively, thé,(;r)- andC,(rr')-commaodities, Q1 (i, Cy) are the in-
termediateC;-queries computed by the user as a function of the indaxd his com-
modities fromC,, and Q(i, C;, C,) are the finalC-queries. We writeQ(i, C1, Cp) =
Q2(Qu(i, Cy), Cyp), indicating thatQ is obtained by applyingue,, ., with commodi-
ties C,, to each of thek; entries ofQ;. Finally, using the usual superscripts to denote
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restrictions of these variables or specify a corruption strategy, the view ¢&the)-
collusion with corruption strateg$* is (up to replicated components)

(€T 2™, Q¥ QY i, Cy). Cy),

where§; is the restriction ofS* to Cy-servers.

If the strong collusion(S, T) can( f, €)-breakC (;r), then there is a corruption strategy
S*, acircuitF of size f, indicesi,, i, € Zy, and functiorhelp such thaf distinguishes
between

(CET, C2 ™), help(Qs QS ™ (ip, C1). C)). &

b = 1, 2, with ane-advantage. If an ordinary collusiais, T) can(f, €)-breakC (),
then the above holds withelprestricted to be the identity function.

We start by proving the first claim. Using an averaging argument, there exist some fixed
commoditiesc, output by allC,-servers (extending;) given which thes-advantage of
F is maintained. That is, conditioning lyg and slightly bending corruption strategy
notation,F distinguishes between

(C3T, ¢ ™), help(Q2 ™2(Q5E ™ (ip. C1). &2))).

b = 1,2, with ane-advantage. Hence, lettirlgelg(q) = heIp(QSZ’TZ(q,cg)), there

is a circuit of sizef distinguishing betwee(‘Cfl'Tl, help (Q; ’Tl(ib, Cy),b=12,
with an e-advantage, implying that the strong collusit®, T1) can (f, €)-breakC;.
The case of an ordinary collusion can be handled similarlgeipin (1) is the identity
function, to(f + fa(x’), €)-breakC;(;r) one may use a circul; such that(c, q) =
F((c, ¢ ™), Q% ™(q, c2)), where the evaluation &, can be handled with at most an
fo(z’) extra cost to the size d¥.

Finally, to prove the second claim, we condition the view (1) by figedommaodities
¢1 which maintain the-advantage of-. That is, the circuifF distinguishes between

(T, CE™), help(QFF ™ (Q% ™ (ip, c1), C2))).

b = 1, 2, with ane-advantage. Letting, = Q‘.f’Tl(ib, C1), there is a circuit of sizd

distinguishing betwee(CfZ’TZ, heIp(sts’TZ(i{), Cy))), b =1, 2. We may conclude that
the strong collusioiS,, T,) can( f, €)-breakCs ('), and ifhelpis the identity function,
then this holds for an ordinary collusion as well. O

Lemma 4. |If Cyis strongly(s;, t)-private andC, is strongly(s;, t)-private both with
privacy level(F, £) and query domain of size thenC is strongly(s; + s, + 1, t)-private
with privacy level(F, £).

Proof. Since both query domains are of sisewe haver’ = 7 = («x,n). Now
fix 7, and suppose that some strong collusi@T), where|S| = s + s, + 1 and
IT| = t, can(f,e)-breakC(w). Forb = 1,2, letS = {h: (b,h) € S}, and let
Ti = {ju: 3j (ju. }) € T}andTo = {j2: 3j (], j2) € T}. The strong collusiorS, T),
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whereT = T; x T, can alsa( f, €)-breakC(x), sinceT  T. Moreover, botHT,| <t
and|T,| < t, and eitheS§| < s or || < <. It follows by Lemma 3 that in the first
case (S| < s) there is a strongs,, t)-collusion which can(f, €)-breakC,(x), and
in the second cas¢%| < ) there is a strongs,, t)-collusion which can( f, €)-break
Cz(?‘[). O

A direct application of the composition tool to atomic schemes of the previous section
thus gives the following.

Theorem 3. LetPX be a t-privatek-database PIR scheme with communication com-
plexity («, 8), and reconstruction information complexity. Then for any constant

m > 1, there is an m-servetm — 1, t)-private, k™-database commodity schei@g,,
with communication complexityogn, ™), commodity complexitglogn + y, «), and

the same privacy level &,

Proof. A schemel, as required can be obtained by composingtomic commaodity
schemes based oR* in an arbitrary order. Complexity, privacy, and computational
efficiency (for a constanh) follow by induction from the claims about the composition
operator. (Complexity and efficiency follow from Lemma 1 and privacy from Lemmas 2
and 3). For the sake of concreteness, an explicit description of such a composed scheme
is given in Fig. 3. O

Remark 1. ltcan be readily verified that in the single-database dase{), all servers
in the composed schendd, play a symmetric role (i.ecome (i, n, h) is independent

Composed-Scheme-C"g,‘
Pk: a k-database PIR scheme
C= C;,"k: an m-server k™-database commodity scheme with database names
DBr,7=T11...Tm € [k]™.
come (1%, 1" k) /* he[m]*/
R
Th < Zn;
((q,lL, el q’,;), zh) & quep: (17,17, 74);
cy < (Thy 2n);
for all 7 € [k]™, ¢® g7,
return (cj, (czb’)re[k]m);
queC(1"7 i7 ((Th 2:1), s (r"'H Z’m)))
Aei=30  m (modn);
return (A, A, ..., A);
ansc(7r, %, A, (¢1, .-, q57))  /FTre k)™ */
zf < 2; /* ¢ denotes the empty string */
for k< 1 to m, iteratively compute n-record data strings ™', such that 7/ = ;... 7,
and 2] < anspx (7, 27Tt L gph), L€ Dy
return a, = zh; /% only this entry of ™ should be computed. */
recc((al, LRS! ak)y ((rly zl)) ey (r‘my zm)))
for h+m — 1 down-to 0, for all 7/ € [k}, a,» «recpr((ar1,ar2,...,ark), Z0s1);
return a.;

Fig. 3. Composedn-server commodity schenﬁ;k.
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of h). In the multi-database case, however, despite using the same commaodity generation
algorithm, each server sends its commodities to a different set of databases. By letting
each server simulate ath servers, the servers’ role can always be made symmetric at
the expense of increasing the commodity complexity by a factar. of

“Plugging in” the schemé&; in Theorem 3, we obtain the following:

Corollary 2. For any constant m> 1 there is an m-serve(m — 1)-private 2™-
database computational commodity schewigh communication complexityogn, 1)

and commodity complexiyogn, « - 2°W/!°9M) (assuming the existence of a pseudo-
random generator

We remark that although the number of databases in the above corollary grows ex-
ponentially with the privacy thresholgl this overhead is arguably tolerable for small
values ofs such as 1 or 2.

6. Polynomial-Interpolation-Based Commodity Schemes

In all of the schemes obtained in the previous section, the total communication cost of
retrieval grows exponentially with the server-privacy threstegfithough polynomial in
logn and« for afixed 9. This is clearly the case with the single-database scheme of
Theorem 2, where the answer of this single database grows exponentiallgnitit
is also the case with schemes obtained via Theorem 3, where communication with each
database may be only logarithmic fin(and independent ah wheng = 1), but the
number of databases grows exponentially waith

In this section we extend techniques from [10], based on the method of low-degree
polynomial interpolation (see [3] and [4]), to obtain multi-database commodity schemes
which avoid this exponential growth of communication. In particular, achiesAmgvacy
would requires + 1 serverss + 2 databases, and log+ 1 communication with each
database. This makes the total communication cost of retrieval grow only logarithmically
in n andlinearly in the privacy threshold.

We use the following two lemmas.

Lemma5. Letn be an integer and q a prime powtat y" represent a sequence of
variables ¥, yI, ..., y" |, and leté;, ;, denote Kronecker’s functiofi.e., &, i, equals
1lifi; =i, and0 otherwisg. Then for any m> 1 and i € Z, there exists a degree-m
multivariate polynomial Py, y?, ..., y™ in m- n variables oveiGF(q), such that
foreveryn,...,rm € Zp,

[Dim(eflv LICIO ] erm) - 5i,r,

wherer= Y[ ry (modn).

Moreover,P™ can be evaluated in polynomial time (in the size of its inputs).
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Proof. Fixing n andq, define the following sequence of polynomiaR}(y) = y!
and

BTGy = 3 P YTy,

weZ,

where the subtraction— w is taken modulan. It easily follows by induction o that
P™ as defined above meets the specified requirements. Binge(P, ..., P ,) can
be efficiently evaluated given the values®¥ 1, the values oP™ can be efficiently
computed on a given assignment by iterating the evaluation Bf alvhereh runs from

ltom. |
The next lemma slightly improves a similar bound implicit in [10].

Lemma 6. Letl, d be positive integerand letq> d+ 1 be a prime poweiThen there
exist n g Y (';d) degree-d multivariate polynomialé v, -...,0< i <ngq4,and
assignments' € GF(q)', 0 <i < n g, such that f(v'2) = &, forall 0 < iy, i, <

N d.

Proof. The existence of sucp', v can be easily derived from the following facts:

« the number of degred-monic monomial§ overyi, ..., yi is (‘%) (as the number

of ways for placing at modt identical balls inl distinct bins);
e whend < g — 1 these monomials are linearly independent, where each monomial
p is identified in a natural way with the vectaP ¢ GF(q)q‘ such that, .y =

P(YL, -0 W)

Now, since then 4 x q' matrix whose rows are all the vectar8 is of full rank it is

row-equivalent to a matri of whichn; 4 columnsinduce an identity matrix. Identifying

each of these, 4 columns with an assignment and each linear combination used for

obtaining a row ofA with a corresponding polynomigl , the desired result is obtained.
An explicit construction of sucly', v, slightly improving a construction from [167,

is described in the following. Let' (ys, ..., yi) be theith degreed monic monomial

(say, according to lexicographic order). With eachassociate a “characteristic vector”

def

Vi = (ul,...,v), such tham' = ]_['j:1 ijj- Letting yo = d — lezl y; andvy =
d—Y|_;v (=d—degm)), definep' as

pi(yl»"'sy|)=.

j=0 k=0

13 We define a degred-monic monomial to be the product af most d not necessarily distinct, variables;
“monic” indicates that the coefficient is 1.

14 Here and in the following, aa x b matrix is said to be of full rank if its rank is equal to ngin b).

15 The construction in [10] implies a similar bound withg = ('*g’l), utilizing only the(”g’l) mono-

mials whose degree exactly d
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Since Z}:O v} = d, eachp' is of degreed. It is straightforward to verify that the
constructedp', v\ meet the requirements. O

It is interesting to note that the bour(Bgd) in the lemma is tight, as it coincides
with the dimension of the linear space of degteeultivariate polynomials (which
is spanned by the degrelemonic monomials). This means that the application of the
polynomial interpolation technique to PIR, as in [10], in a sense cannot be pushed any
further.

def

Theorem 4. Let mt,d be positive integerdet k = mtd + 1 and q be a prime
power greater than k- 1. Let |, 4 denote the smallest integer | such tr(bgd) > n.
Then there is anim — 1, t)-private information-theoretic commodity schefig: 4,
with m serversk databasescommunication complexitfogn, logq), and commodity
complexity(logn, I, 4 - logq). Moreovey this scheme can be applied to data strings
whose records are elements @f(q) (rather than single bifsat the same cost

Proof. Letk =mtd+1and =l,g4,letp', V' be as promised by Lemma 6, andmét
be as promised by Lemma 5. We view the data bits (or records) as elementspf GF
A commodity schemé€y, 4 as required is described in the following:

CoMMODITIES: Each serveS,, 1 <h <m:

1. Picks a random index, € Z,, which is sent as a commodity to the user, and
computes the corresponding assignmént

2. Independently shares each entry'ofaccording to Shamir’s secret sharing scheme
[29] with privacy threshold, over GKq). Formally, for eachwth entryvir, 1 <
w < |, and each databageB;, S, sends taDB; the sharef(6;), where f1 is
a random degree{univariate) polynomial with free coefficient!, and eacls;,
1 < j <k, is a distinct nonzero element in GH associated wittDB;. We let

w1 denote thé-tuple of shares sent fro, to DB;.

RETRIEVAL:

def .

1. U sends to each database the querst i — Y [ ry (modn).
2. Each databasBB; replies with

g =) Xura- PROM@H, . pu™)),

weZn

wherep = (p°, pt, ..., p"Y), andw + A is computed modula.

3. U reconstructs by interpolatiow; is taken to be the free coefficient of the (unique)
degreemtd univariate polynomialp over GKq) such thatp(¥;) = aj, | =
1,...,k

PrivACY: Let S = [m]\{ho} be a set ofn— 1 corrupt servers with corruption strateg¥,
and letT C [k] be a set ot corrupt databases. The privacy of the scheme follows from
the fact that the collusioB, T cannot obtain any information about the indgxpicked
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by the remaining server. More formally, for anyi the viewvg T(n i) includes:

° commodltlesx:h sent by the incorrupt servé,, to databases from;
e the user's quenA =i — > ', ry (modn), where all indicesy, exceptry, are
determined by corrupt servers (as specifiedSby

Now, the commodities:ﬁ0 consist ofl independent-tuples of elements from GF),
each containing shares generated by -grivate Shamir’'s secret-sharing. It follows that
cﬁo is distributed uniformly over G)'"*, independently ofy,,. Sincerp, is uniformly
distributed oveZ,,, we may conclude that the joint viemvgo, A) is uniformly distributed
over GRQ)'' x Z,, independently of.

CorRECTNESSs It suffices to show that the point8§;, a;), j € [K], lie on a degreemtd
(univariate) polynomial whose free coefficientjs This can be argued in a straightfor-
ward way by tracmg the computation of the answagtsFor eacth € [m] andu € [l],
the points(6;, uu ') j € [K], lie on a degred-polynomial (namely, the polynomid"
picked by the user) whose free coefficienb{s. Since eactp® is of degred, for any
h e [mlandw € Z, the points(6;, p*(M™1)) lie on a degreed polynomial whose free
coefficient isp” (v'"), which by Lemma 6 equalk,,. Finally, since eacl)’ is of de-
greed, for eachw € Z, the points(@;, P™(p(ut), ..., p(x™)))) lie on a degreentd
polynomial whose free coefficient B'(e,, ..., &,,), which by Lemma 5 is equal to
8w.r (Wherer =3 "rp). It follows that the pointg6;, a;) lie on a degreentd polynomial
whose free coefficient iiwezn Xwta * Swr = Xr+a = Xi. This concludes the proof of
Theorem 4. O

Remark 2. When retrieving a single-bit, the scherfig; 4 can be converted into a
similar scheme, in which each database replies wisingle answer bit, and the user
takes the exclusive-or of the answers to obtain/Ve briefly describe how this is done.
Observe that i€, 1 4 the user reconstructs by computing dixedlinear combination

over GKQ) of thek field elements replied by the databases. Thus, as a first step we can
let each database multiply its original answer by the corresponding coefficient, so that
reconstruction consists of computing themof all answers over Gfg). Then, ifq is
chosen to be a power of g & 2M°9+D1T will suffice) it is enough to send the user only

the “least significant bit” of each answer.

Combining the above remark with the fact thag = O(n%9) for any constand, we
have the following corollary of Theorem 4:

Corollary 3. For any constants.g, d there is an(s, t)-private information-theoretic

commodity scheme withs 1 serversk = dt(s + 1) + 1 databasescommunication
complexity(logn, 1) and commodity complexitjogn, O(n%/9)).

7. Multiple-Query Schemes

In this section we show that the commodity complexity of previous schemes can be
amortized over multiple queries made by the user.
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A p-queryPIR or commodity scheme can be defined using a straightforward extension
ofthe single-query definitions; the generalized privacy requirement should assert that any
two retrievalindex vectors = (iq, ..., i,) andi’ = (ig, ..., i;) cannot be distinguished
(in the appropriate sense) by the adversary. Any commodity scgimePIR scheme
‘P) can be extended into@query scheme using parallel and independent repetitions.
This extension is referred to as thaive q-query extensiarf C. It follows by a standard
hybrid argument (see [14]) thatdf is private with privacy levelF, &), then its naive
p-gquery extension is private with privacy leveF, p&), wherep& E (pe: & € &)

We show that in the case of our commodity schemes, the commodity cost of the naive
p-query extension can be reduced.

We start with a motivating example. Suppose that the user wishes to retrieve two
records, with (arbitrary) indices, i, using a 1-private single-database commodity
schemeC%, whereP is some single-database PIR scheme. In the naive 2-query ex-
tension ofC%, the scheme is independently invoked twice in parallel. The retrieval cost
of this solution is twice as large as that for a single query, and so is its commaodity cost.
The total number of commaodity paics, c?® generated by the two servers will thus be
four (each server generates two pairs, one for each retrieval). Note that one cannot use the
same commaodities for the two retrievals, since this would reveal the differgrde to
the database, potentially disclosing too much information about what the user is looking
for. We now show that using an additional server,tttal commodity cost of the above
scheme can be improved to three commodity pairs of the same size as before. Consider
a scheme in which each of the three sen/sS,, Sz sends a single commaodity pair, as
in the original single-query scheme, and theis retrieved using the schengg, with
commodities fromSy, S,, andi, is retrieved using the same scheme with commodities
from S, S3. The view of the database will consist of the three commodities supplied by
the different servers, as well as the user’s qudkiesr; — ro andi, —r, —ra. It is not
hard to verify that the joint distribution of these queries reveals nothing abgus)
as long as at least two of, ro, r3 are kept private. Assuming that at most one server
is dishonest, the (computational) privacy of at least two of the three indices is ensured.
Summarizing, we have obtained a 1-private 3-server scheme for retrieving two records,
with the same retrieval complexity as the naive 2-server scheme, but with a lower com-
modity cost (three commodities instead of four). In the following we show how this can
be generalized to obtain substantial savings in the commodity cost, asymptotically by
up to a multiplicative factor of + 1.

Theorem 5. Assume n is a prime powemd let G be a full-rankp x m matrix over
GF(n) such that the Hamming weight of every row in Guis and G generates a
linear code whose minimal distance is det C* be a commodity scheme obtained
via Theoremg or 4; in particular, C¥ is a w-server k-database (w — 1, t)-private
commodity scheme with communication complélatyn, 8) and commaodity complexity
(logn, 89P), in which all servers play a symmetric rol€hen there is an m-seryek-
database(d — 1, t)-private commodity schendgd! for p retrievals with communication
complexity(p logn, pB) and commodity complexifyogn, §9°). Moreovey C;! has the
privacy level of the naive@-query extension of its underlying PIR schefdand is
information-theoretically private i€ is obtained via Theore).
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Proof. Observe that in every schent® as above, the user’'s query is of the form
i—> h_1 F'n, Where each, is supplied by a different server. We denot&€bya1, . . ., A,],
whereiq, ..., A, are fixed nonzero elements of G#, a generalization af® in which
the user's query i$ — > 1 Anrp (.., C” = C”[1,1,...,1]). In case of a scheme
C" obtained via composition ab atomic single-database schemes (Theorem 2), such a
generalization can be realized by modifying the definition oftittecomposed atomic
scheme so that the user’s queryis= i — Aqr (instead ofi — r), and each database
replies with an answer on a databassuch thaii = x;,.j+4 (instead of replying ox
cyclically shifted byA). Schemes obtained via the polynomial interpolation technique
(Theorem 4) can be appropriately generalized by a straightforward modification of the
polynomialsP™ from Lemma 5.

We now define the schendd".

CommoDITIES: Each serves;, 1 < h < m, sends commodities as a single servef'in

RETRIEVAL: Letgy, ..., gy denote the nonzero entries inthté row of G, andhy, ..., hY}
their corresponding columns. Then, for each retrieval irndek < u < p, the user and
the databases execute the retrieval protoc@'gfy, . . ., g5 ], using commodities sup-
plied by Spy, ..., Spy.

The correctness df}}! follows directly from the correctness of the scheng&sand
from the fact that all servers i play a symmetric role. Since each of timeservers
sends commodities for a single retrieval, asCify the commodity complexity is as
indicated. The communication complexity is the same as thatrefrievals using’® .

It remains to show that the scher@g is (d — 1, t)-private. LetSbe a setofl — 1
corrupt servers and |6t be a set ot databases. Sind® generates a linear code with
minimal distanced, the p x (m — d + 1) matrix Gg, obtained by restricting to its
columns with indices fron, is of full rank (otherwise there exists a nonzero codeword
whose Hamming weight is smaller thdi It follows that there is a server s8tof size
m — p, SC S, such that the (square) matiixg is nonsingular. If the collusiogS, T)
can(f, €)-breakC;'(x, n), then the same holds for the (larger) collus{@& T).

Now, fix «, n, and corruption strateg$™, and letR = (R, ..., Ry) be a random
variable consisting of the indices sent as commodities to the user. Note that thelRntries
with h e S are uniformly and independently distributed over@y; and each remaining
entry Ry, h € S, has some fixed valug determined by8*(«, n). The user’s query (to
each database)iis GR, wherel = (i, ..., i,) is hisindex vector. The commodities sent
from servers irS to databases il include queries fromS | independent invocations of
an underlying PIR scheniB(x, n), where each invocation uses a corresponding entry
of R as its retrieval index; we denote this joint distribution of commoditieQ(Rg).
The joint view of databases froih on index vector is Ve (i) = (Qp(R), i — GR).

Now, suppose there are two index vecligrs, and a circuit- of size f such thaf dis-
tinguishes betweeYi: (i;) andVe (i2) with ane-advantage. That i$; distinguishes with
ane-advantage betwediQ»(Rg)Qp(rs),ip — GgRg — Ggrg), b =1, 2. Using the
independence d@»(Rg) andQp(rs), there exists a circui’ of size f distinguishing
with ane-advantage betwedQ»(Rg), i, — GgRg),b =1, 2, wherei, =i, — Ggrs.
Finally, since for any index vectaothe random variabléQ»(Rg), i — GgRg) is iden-
tically distributed to(Qp(Ggl(i — Rg)), Rg), we may apply yet another averaging
argument to conclude that for some index vecirs, there is a circuit=" of size f
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distinguishing betweeQ (i7) andQx (i3) with ane-advantage. Hence we have shown
thatCy' is (d — 1, t)-private, with the same privacy level as that of the naivguery
extension of its underlying PIR scherfe O

Remark 3. The condition onG in Theorem 5 can be relaxed to allow rows with
different Hamming weight irG; in such casesy can be taken as th@aximalrow
weight inG. This generalization, however, is not very useful for our purposes.

In the following we focus on the case whare= d, in which Theorem 5 induces
no penalty in the communication cost or the number of databases of the multiquery
scheme. This restriction motivates the following problem: Given a prime povesd
positive integers, d, find a minimal-length linear code over @5 which is generated
by p linearly independent codewords of weigthtand whose minimal distance &

We letm(n, p, d) denote this minimal length, corresponding to the minimal number
of commaodity-tuples which by Theorem 5 are sufficient for performingdependent

(d — 1)-private retrievals from an-record data string, with no penalty in the communi-
cation complexity or the number of databases. The commoditym@stoe, d) should be
compared with the cost of the corresponding naive extension scheme, keseers
distribute a total ofdo commodity-tuples. For instancej(n, p,2) = p + 1, as the

o x (p + 1) matrix

11 0 0 --- 0

o1 1 0 ---0
G=

00 ... 0 1 1

generates (over GR)) a code of distance 2, thus generalizing the motivating example
from the beginning of the section to an asymptotic savings factor of 2 for 1-private
schemes.

More generally, we have:

Factl. Foranyn p,d suchthatn>p—1,m(n, p,d)=p+d— 1.

Proof. Forn, p,d as above, there exisp[+ d — 1, p, d] linear codes over Gfn)
(see Chapter 11 of [25]). The x (0o + d — 1) generating matrixG of such code
can be transformed via elementary row operations to a m@trigenerating the same
code, which containsax p identity submatrix. Since the Hamming weight of each row
of G'isatmostp+d —1) — p+1 = d, we have shown than(n, p,d) > p+d—1.0n
the other hand, it follows from the Singleton bound (see p. 33 of [25])tiiat o, d) <
o+d—1. O

We remark that the requirememt> p — 1 is necessary for the above bound to hold.
Luckily, in most plausible situationsis significantly larger thap,'® in which case the
following corollary of Fact 1 applies.

16 Frequently changingmalldatabases can yield exceptions to this rule.
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Corollary 4. Assuming that the number of querjess smaller than the database size
n, Theorenb can asymptotically save a factor oftsl in the amortized commodity cost
of multiquery(s, t)-private schemes obtained via Theorem$, or 4. If the number of
servers is limited to ) mg > s, the amortized savings factoris+ 1) - ((mg — S)/mg).

8. Commodity Testing

So far we have only addressed the goal of protecting the user’s privacy, without consid-
ering issues of correctness in the presence of faulty parties. In this section we consider
the problem ofcommodity testingthat is, verifying whether commodities provided by
a given server are valid.

We restrict our attention to commodities for which there exists a PIR scigrsach
that the user's commodity is some retrieval indepossibly along with reconstruction
information), and the databases’ commodities consist of queries, generated according to
‘P, pointing tor. We note that commaodities used in atomic schemes, and hence also in
the composition of such schemes, are of this typarrectnesof such commodities is
defined as follows.

Definition 2. Given a PIR schem@, data sizen, and corresponding commodities
c=((r,2), (qu, - .., Q) (supposedly output gome, (,n) for somex), the commodities
c are said to beorrect on a data string xx € {0, 1}", if recp((as, ..., &), 2) = X,
wherea; = ansp (], X, d;j); their correctness ratias the proportion of data strings on
which they are correct. The commodities are said todreectif they are correct on all
data strings of length.

Notice that in any commodity scheme which is composed of atomic schemes, ensuring
correctness of all commodities distributed by the servers guarantees correct execution
of the retrieval procedure, assuming that the databases are honest.

We give two types of procedures for testing correctness of commodities, the second
being more general than the first; however, procedures of the first type are much more
efficient, and despite their lack of generality can be applied to most PIR schemes known
to date. Both procedures treat the underlying PIR scheme as a black box, verifying
correctness of commaodities by testing them on some (small) sample of data strings. While
their validity relies on the honest behavior of the databases, none of them compromises
the user’s privacy, even when there are dishonest databases. Finally, both procedures
require a single round of (off-line) interaction, and their communication complexity
involves an error probability parameter

Inthe remainder of this section we describe the more efficient (and less general) testing
procedure. The more general type is discussed in Appendix B.

8.1. Linear Schemes

Fix a security parameter, data sizen, and a finite field=. A PIR schemeP(«, n) is

said to beinear overF if for any stringsq, . . ., Ok, Z, there exists a linear functional

g: F"— F, such that, for anx < {0, 1}", recp((ay, ..., &), 2) = g(X) wherea; =
ansp(j, X, g;). That is, even if the queries and the reconstruction information are badly
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formed, the reconstructed value is “well-behaved” in the sense that it is equal to some
linear combination of the data. All known multi-database PIR schemes [10], [1], [9],
[22] fit into this category’

In the linear case, the goal of the testing procedure is to verify efficiently that the
linear combination corresponding to the commodities correct, i.e., equal to,
while keeping private from the databases. Note that to achaysoluteconfidence in
commodities’ correctness, the “black-box approach” requires that the tested strings span
the linear space GH)", implying that at leash data strings must be tested. However,
settling for a small probability of one-sided error, a much more efficient solution to this
problem can be obtained as a typical applicatiosrofll-bias probability spacd26].
The following fact is proved in [26].

Fact2. Foranyne A ande > 0, there is(an efficiently constructib)emeta-test-set
Th.e € (GHQ)")', where | = O(log(1/¢)), such that

e |7h| is polynomial in n and./e.
e Foreveryye GF(Q)",y # 0,at mostare-fraction of the test-tuple@vy, ..., wy) €
Tn.e Satisfy y-wp =0forall 1 < b <|I.

We now use Fact 2 to verify commodities with error probabtity

1. The user picks a random inddxe [|7, |] and sends it to each database.
2. Each databaskp; finds thedth test-tuple irZ;, , (wy, ..., wy), and replies with

@', ....a), wherea® = ansp(j, wp. q).

3. The user accepts if the commodities were correct oh sdllected test strings;
that is, if, for every 1< b < I, recp((@>, ..., aP), 2) is equal to the'th entry
of wp.

Since the random test indekis independent of the commodities, the above testing
procedure does not compromise the user’s privacy. If the tested commodities are correct,
the user always accepts. If they are incorrect, the user accepts with probability at most
€; to see this, note that if £ e represents the linear combination corresponding to
incorrect commodities, them — e # 0, implying that with probability at least & ¢
there is a test vectany, from the selected test-tuple such thatwy, # € - wy.

The communication complexity of the schemedgogn + glog(1/¢)), whereg is
the answer complexity dP. We note that one can use a simpler constructiof,Qffor
constant (see [26]) and amplify success probability by independent repetitions, yielding
a computationally easier procedure with a slightly worse asymptotic communication of
O((logn + B) log(1/e)).

We finally remark that while our definition of commodity correctness does not directly
apply to the polynomial interpolation scheme from Section 6 (as it is not composed of
atomic schemes), it is possible to handle this scheme as well within the same linear
framework as above.

17 while known single-database schemes do not directly fit into this category, similar methods can be applied
to the schemes from [23] and [30].
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9. Extensions
In this section we discuss two extensions of the results presented in previous sections.

9.1. Protecting Data Privacy

Ordinary PIR schemes may reveal to the user (and especially to a dishonest user who
does not follow his protocol) more information about the data stxititan just a single

data recordx;. This is a serious disadvantage in some scenarios, e.g., when the user
is required to pay for each data item he retrieves. In [13] and [27] it is shown how to
transform ordinary PIR schemes into stronger schemes, which protect the privacy of the
data in the sense thahy user, even a dishonest one, cannot learn more than a single
data record in each invocation.

All the results of this work can be directly applied to such stronger schemes as well.
Moreover, our use of PIR schemes with a very simple answer structure (see Section 3)
makes it particularly easy to satisfy the extra data privacy requirement. In fact, the (mod-
erate) overhead incurred by the transformations in [13] and [27] can be almost totally
eliminated in the commodity-based setting, provided that not all servers collude with the
user. For instance, consider commaodity schemes in which the user recongthyctsk-
ing the exclusive-or of answer bitsy, . . ., a. Thisis the case for the optimized version
of the schemé&,,; 4 (see Corollary 3), as well as for commodity schemes constructed
from the computational PIR scherf. If each answer bi; in these schemes is masked
with a bitr; such that thé bitsr, ..., ri are random subject to the constraint that their
exclusive-or is 0, then the only information aboutevealed by the masked answers is
a single data bik;. Letting the servers provide random masksis above, we obtain
commodity schemes that maintain data privacy with respectioaasuser, who sends
the same shift amount to all databases. A technique from [10] can be used to prevent a
dishonest user, sending different shift amounts to different databases, from learning any
information about the data. This requires oflylogn) additional commaodity bits, and
yields a commodity scheme which protects the privacy of the data agangtossibly
dishonest) usef

9.2. Application to Private Information Storage

Most of the results presented in this work can be adapted to the related proliHenabé
Information Storagéntroduced in [28]. Private information storage schemes allow a user
to write and read data privately fvom a data string which isecret-sharedrather than
replicated) among several databases. In the case of writing, this means that both the
address of the written record and its contents should be hidden from each collusion of
databases.

In the following we only deal with Teund storage schemes; this is contrasted with
the main construction of [28], which requires logarithmically many rounds of interac-
tion. We also assume that the “write” operation specifies an additive changeiti the

18 Note that in the underlying PIR schemes the user has much more cheating power; by choosing invalid
gueries the user can learn linear combinations of large sets of data bits. In the commodity schemes the user’s
cheating is restricted to specifying different shift amounts, which can be more easily taken care of.
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record, say over a finite field, rather than overwrite it with a specific value (e.g., in
the case of single bit records, the user determines whether or not to fliphtldata

bit). An “overwrite” operation can then be implemented using one read operation for
retrieving theith record, followed by one write operation to change (or unchange) its
value.

More formally, a 1-round storage scheme is defined as follows. The “read” operation
proceeds as in the case of PIR, except that the distributed representation of the data
string is different (i.e., the data string is secret-shared rather than replicated). In a “write”
operation, the user sends to each database a query string, catfedand which is
interpreted by each database to represent some transformation of its share of the data
string. After performing these transformations, the shares held by the databases should
represent an appropriately modified data string, in a way that will be consistent with
subsequent read and write operations performednyuser. Such a scheme is said to
bet-privateif the commands viewed by artydatabases give them no information (in
the appropriate sense) on the write address or the change amount.

The notion of commodity storage scheroan be defined in the natural way. We now
argue that an analogue of the atomic commodity PIR schemes from Section 4 exists for
storage schemes as well. Consider any 1-rduddtabase storage scheme in which the
data string is shared recordwise (implying that shifting all shares by the same amount
results in a valid representation of the shifted data string). For simplicity, we also assume
that this storage scheme applies to single-bit data records, and that there is a dummy
location which is not considered a part of the data string (so that to unchange the data
the user may flip the dummy bit). A “write” operation in a corresponding commodity
storage scheme can then proceed as follows:

e The server picks a random storage index Z, and ak-tuple of commands for
flipping %, . Each command is sent to the corresponding database and the itadex
the user.

e In the on-line stage, the user sends to each database a shift aouni —

r (modn). Each database: (1) cyclically shifts its sharefdyecords to the left;

(2) interprets its commodity command and performs the required transformation
on the shifted share; and (3) shifts the transformed share bagkrbgords to the
right.

The read operation for the commodity scheme can be obtained from the original read
operation as in atomic commodity PIR schemes.

Single-round storage schemes on which the above transformation may operate can be
based onany ofthe PIR scherﬂéjs pLa, andP;3, with similar storage cost as the retrieval
cost of the PIR schemé8.n fact, a 1-round storage scheme can be based on any PIR
scheme in which the user’s query is interpreted as askingdmggelinear combination
of the data records, over some finite field. In a corresponding storage scheme, the data
string will be equal to the sum of all its shares; a write operation, addingx, tis
implemented by having each database add to its share the coefficient vector of the linear
combination corresponding to a query pointingto

19 |f the “read” operation is implemented via a multi-database PIR scheme, the number of databases should
be increased (as in [28]) to allow sufficient replication of each share.
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Generally, attempting to construct storage schemes with higher server-privacy thresh-
olds turns out to be more problematic, as the composition technique of Section 5 does
not seem to be applicable in its full generality to the case of storage. However, it is
possible to directly construct multiserver storage schemes with similar parameters to the
commodity PIR schemes of Corollary 2 or Theorem 4.

Appendix A. The PIR SchemeP}

In this appendix we describe the PIR schéﬁjeand some possible optimization of this
scheme in a setting where a public source of randomness is available.

The scheméP§ can be obtained by a straightforward modification of the recursive
construction from [23]. It uses the quadratic residuosity-based public-key encryption
scheme from [20] described below. The public key is-bit modulusN = pq, where
p, q are two large primes satisfying = q = 3 (mod 4, and the private key is the
pair (p, q). Let J,jl denote the multiplicative group of residues modbavith Jacobi
symbol 1. To encrypt a bit 0 we Iy (0) = r?2 (mod N), and to encrypt a bit 1 we
let En(1) = —r2 (mod N) wherer is a random residue moduld. Note that an en-
cryption of O (resp. 1) is a random quadratic residue (resp. quadratic nonresidg‘é) in
If m = mym,---m, is a message of length thenm is encrypted by independently
encrypting each of itg bits; that is,En(m) = En(m)En(My) --- EN(My). The de-
cryption functionD,, q,(C), wherec is a« £-bit ciphertext, proceeds by parsiegnto
k-bit residuegcy, .. ., ¢,), and extracting the quadratic character of each residue using
the private key(p, q).

The schemé%ﬁi proceeds as follows. Assume tirat= a® for some integen. The
user views the data string as embedded in d-dimensional cube of length, and
naturally identifies his retrieval indeix with its coordinateq(iy, ...,iq) € zg. The
user’s query consists of the public key, along with da independent encryptions
(,...,ct ..., (S, ..., cd ), where eackd is an encryption of the bit 1ify = &’
and an encryption of the bit 0 otherwise. In other words, the query includes an encryp-
tion of thed lengtha unit vectorsg,, .. ., &,. The private key(p, q) is taken to be the
reconstruction information. To specify how the database computes its answer, we define
an operatoselecty, c) as follows. Lety be ana-record data string with record length
and letc be ana-tuple of ciphertexts, where each ciphertext a’ € Z,, is an element
of J,jl. We defineselecty, c) to be a string of lengtk ¢, obtained by concatenating the
£ residuesy, Si, ..., Sr—1, where

a—1
s = H ¢ (mod N)
a'=0

(and eacls,, 0 < ¢/ < ¢, is represented usingbits). Note that ifc encodes a length-

unit vectore, andy is a data string consisting afrecords of lengtl, thenselecty, c)

is ax¢-bit encoding ofy;,. The database’s answer will be computed uslrsgiccessive
applications of theselectoperator, each having the effect of decreasing the dimension
of the data cube by 1 and increasing the representation size of each entry by a factor of
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«. Specifically, the database starts by lettyf$) = x, andford' =d—-1,d—2,...,0
letsy@) be ana-record data string, with record length’) = «9-9', defined by

" _ d’+1 d'+1 (d'+1) (d'+1)
y(il,iz ..... ig) — Select(co LM Ca—_‘]_ )’ (y 1)))

[(FRPRS idr,O)’ tt y(il,iz ..... lg,a—

The database replies with a data striylf, whose single record may be intuitively
viewed as ad-level encoding” ofx;. Finally, the user reconstrucks from this answer
by successively applying the decryption functibp, q to the answed times.

In a setting where a public source of randomness is available, the query complexity
of 732 may be improved by an asymptotic factoofand in fact the same improvement
applies to the query complexity of the original scheme from [23]). The idea is to modify
the schemé%‘lj by first letting the user and the database parse the public random string
as a sequence of random eIements],jr’f, and then replacing each residue sent by the
user with a single correction bit. Sin¢e 1) is a quadratic nonresidue modulo any Blum
integerN, the database can flip the quadratic character of any public residue simply by
negating it. The query complexity of the modified scheme-4sdn!/¢ (in opposition to
K + dien¥/d of PY) and its answer complexity i€ (as of Pg).

Appendix B. General Commodity Testing

In this section we address the general problem of testing commaodities which correspond
to anarbitrary PIR scheme. Note that in this case, achieving absolute confidence in
commodity correctness using the “black-box approach” requires’alaga strings to

be tested. Again, settling for a small probability of error one can do much better, using
straightforward sampling techniques.

Informally, the testing procedures will either reject commodities or give statistical
evidence that their correctness ratio is high. To avoid the worst case possibility of having
a certified commodity fail on a specific data stringthe on-line retrieval protocol will
be augmented to include randomization of the data string, as well as repeated querying
for amplifying success probability.

We start by describing a procedure which is (statistically) secure against servers with
unlimited computational power, but requires the use of a public random string picked
independently of the commodities. This need for public randomness is dispensed with
in what follows. For the sake of simplicity, we refer only to @aomicscheme’». The
techniques can be adapted to any of our multiserver schemes as well.

COMMODITY STAGE:

1. The server, on input“11", distributes commodities = ((r, 2), (Q, . . ., Gk)) as
in Cp(k, n).

2. The user and the databases parse the public random styngyas. . ., Y., where
eachyy is n-bit long, and test the commoditieon each data string. That is, for
each 1< d < «, each databasBB; replies witha; = ansp(j, yq, g;), and the
user verifies thatecp ((ay, . . ., &), 2) is equal to the th bit of yq.

3. If the commodities fail the test, the user rejects. Otherwise, the user and the
databases proceed to the retrieval stage.
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RETRIEVAL STAGE:

1. The user and the databases parse the remainder of the public random string as
71, 2, ..., Z., Where eaclzy is n-bit long.
2. The user and the databases invoke the original retrieval schéimes, where in
the dth invocation the databases replace the data skihyg the (random) string
X @ z4.
3. The user reconstrudtanswer bitdy, . . ., b, according to the original reconstruc-
tion function, and outputs the majority vote of the bit valbgsp (zy);.

The second part of the next claim follows from a standard application of Chernoff
bounds.

Claim 2. The above testing procedure satisfies the following

o If the commodities c are corredhe user will always output the correct data.bit

e For any commodities,aata string x retrieval index i and security parametex,
if the user does not reject ¢ at the commodity stdlgen the probability that his
output is wrong(i.e., is different from ) is 272,

We now argue that, under mild cryptographic assumptions, public randomness can be
replaced by a shorter seed sent from the user to each database.

Claim 3. Suppose there exists a nonuniformly se€upseudorandom generator:G

{0, 1}® — {0, 1} (i.e,, any polynomial-size circuit family distinguishes. Urom

G (U, (1)) with at most a negligible advantage in, where U is the uniform distri-
bution on¢-bit stringg. Let L = 2«n denote the total length of the public random
string in the above testing procedurlow modify the procedure by replacing the
public random string with a random seed of sizél) sent from the user to each
databaseso that both the user and the databases can apply G to the seed to obtain
a common pseudorandom string of lengthTlhen the modified procedure satisfies the
following:

o If all commodities are correcthe user will always output the correct data.bit

e For any commodities,aata string x retrieval index | and security parametex,
if the user does not reject ¢ at the commodity stdlgen the probability that his
output is wrondi.e., is different from x) is negligible in«.

Proof. If (for infinitely many «’s) there exist,, X., i, which make the user err with
«~O® probability, then a truly public random string of lendth> « can be distinguished
from a pseudorandom one withka®® advantage, contradicting the pseudorandomness
assumption. Specifically, theth distinguishing circuit takes an = 2«|x,| bit string as
input, then simulates the above procedure (wjthx,, i) using its input as the public
random string, and finally outputs 0 if the user’s output is equal #®nd 1 otherwise.

20 Nonuniform security may be relaxed to uniform security if a corrupt server is restricted to be computa-
tionally efficient.
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Since the algorithmansp, recp, andque. , are efficient, the size of such a circuit can
be polynomial inL, the length of its input. O

Substituting a “sufficiently secure” seed size #dt) (e.g.,« (L) = L® foranyc > 0
under standard cryptographic assumptiong(b = polylog(L) under more ambitious
assumptions), we get a communication efficient testing procedure for the general case
(though not quite as efficient as for the linear case). We finally note that more general
techniques for derandomizing BPP algorithms (see [16] for a survey) may be used to
improve the above procedure.
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