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Abstract. We put forward two natural generalizations of predicate encryption (PE),
dubbed multi-key and multi-input PE. More in details, our contributions are threefold.

e Definitions. We formalize security of multi-key PE and multi-input PE following the stan-
dard indistinguishability paradigm, and modeling security both against malicious senders
(i.e., corruption of encryption keys) and malicious receivers (i.e., collusions).
Constructions. We construct adaptively secure multi-key and multi-input PE supporting the
conjunction of poly-many arbitrary single-input predicates, assuming the sub-exponential
hardness of the learning with errors (LWE) problem.

Applications. We show that multi-key and multi-input PE for expressive enough predicates
suffices for interesting cryptographic applications, including non-interactive multi-party
computation (NI-MPC) and matchmaking encryption (ME).

In particular, plugging in our constructions of multi-key and multi-input PE, under the
sub-exponential LWE assumption, we obtain the first ME supporting arbitrary policies
with unbounded collusions, as well as robust (resp. non-robust) NI-MPC for so-called
all-or-nothing functions satisfying a non-trivial notion of reusability and supporting a
constant (resp. polynomial) number of parties. Prior to our work, both of these applica-
tions required much heavier tools such as indistinguishability obfuscation or compact
functional encryption.

*An abridged version of this paper appears in the Proceedings of Advances in Cryptology-
EUROCRYPT 2023: 42nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques [25].
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1. Introduction

Predicate encryption (PE) [17,30,37] is a powerful cryptographic primitive that enriches
standard encryption with fine-grained access control to the encrypted data. In PE, the
ciphertext is associated to both a message m and an attribute! x, whereas the secret key is
associated to a predicate P, in such a way that the decryption process reveals the message
if and only if the attribute x satisfies the predicate P (i.e., P(x) = 1). Typically, secu-
rity of PE requires indistinguishability in the presence of collusion attacks, namely, for
any pair of attributes (x°, x!) and for any pair of messages (m°, m"), ciphertexts corre-
sponding to (x°, m®) and to (x!, m") are computationally indistinguishable, even for an
adversary possessing poly-many decryption keys dkp, so long as P(x°) = P(x') =0
(otherwise it is easy to distinguish). The above security notion is also known as “weak”
attribute-hiding which considers the secrecy of the attributes only in the case of a receiver
not able to decrypt the ciphertext, i.e., the predicate is not satisfied.

Recently, there has been a lot of progress in constructing PE supporting expressive
predicates under standard assumptions [5,12,17,30,37,38,42,43,45,46]. In particular,
Gourbunov et al. [30] give a construction of selectively secure PE (with unbounded
collusions) for arbitrary predicates under the learning with errors (LWE) assumption.
Moreover, under sub-exponential LWE, the same construction achieves adaptive security
(this requires complexity leveraging).

1.1. Our Contributions

In this paper, we put forward two natural generalizations of PE which we dub multi-key
PE and multi-input PE. Furthermore, we construct both multi-key PE and multi-input PE
for a particular class of predicates, under the LWE assumption. As we show, the class of
predicates our schemes can handle is powerful enough to yield interesting cryptographic
applications, including matchmaking encryption (ME) [10, 11] for arbitrary policies and
non-interactive multi-party computation (NI-MPC) [34] satisfying a weaker (but still
non-trivial) notion of reusability. We elaborate on these contributions in Sect. 1.3.
Prior to our work, all of the above applications required much stronger tools such as
indistinguishability obfuscation (i0) [13]. While recent work made significant progress
toward basing iO on standard assumptions [35,36], these constructions are fairly complex
and still require a careful combination of multiple assumptions (i.e., learning parity with
noise, the SXDH assumption on bilinear groups, and the existence of pseudorandom
generators computable in constant depth). Furthermore, such constructions are not secure
in the presence of a quantum attacker. Candidate constructions of post-quantum iO also
exist [18,28,47], but they are based on problems whose hardness is less understood.

ISometimes, we also refer to x as the predicate input. Throughout the paper, we use the terms attribute
and input interchangeably.
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Multi-key PE. In multi-key PE, we consider an ensemble of predicates P = {P,}
indexed by a value v € V = Vj x - -+ x V, which is uniquely represented as a sequence
v=(v1,...,0,) € V] x---xV,.Asender can encrypt a message under an input x using
the public-key encryption algorithm Enc(mpk, x, m). A trusted authority generates
decryption keys dk,, (using the corresponding master secret key msk;) foreachi € [n],
with the guarantee that, given the decryption keys dk,,, ..., dk,, , the receiver can
decrypt successfully the ciphertext ¢ (associated to plaintext m and attributes x), so long
as Py(x) = Py, 0, (x) = 1.

Security of multi-key PE says that, for any pair of attributes (x, x!) and for any pair of
messages (mo, mb), ciphertexts ¢ associated to (xo, mo) and (xl, m!) should be compu-
tationally indistinguishable even under unbounded collusions, where the latter essentially
means that the adversary can obtain decryption keys for (poly-many) arbitrary values
v1, ..., Uy Which correspond to predicates indexed by any value v = (v, ..., v,) such
that P,(x°) = P,(x') = 0. This yields so-called CPA-1-sided security. The stronger no-
tion of CPA-2-sided security additionally allows for predicates indexed by values v such
that P,(x%) = P,(x1) = 1,s0 long as m® = m'. These notions mimic the corresponding
notions that are already established for standard PE.

Our first result is a construction of multi-key PE, from the sub-exponential LWE
assumption, supporting conjunctions of arbitrary predicates, i.e., for predicates of the
form Py(x) = Py (x1) A--- A Py, (x,), where x = (x1,...,x,) and v = (vq, ..., V).

Theorem 1. (Informal). Assuming the sub-exponential hardness of LWE, there exists
a CPA-1-sided adaptively secure multi-key PE scheme supporting conjunctions of n =
poly(X) arbitrary predicates with unbounded collusions.

Multi-input PE. In multi-input PE, we consider predicates P with n inputs, i.e., predi-
cates of the form P (xy, ..., x,). A trusted authority produces encryption keys ek; which
are associated to the ith slot of an input for P; namely, given a (possibly secret)” encryp-
tion key €kK;, a sender can generate a ciphertext ¢; which is an encryption of message m;
under attribute x;. At the same time, the authority can produce a decryption key dk p as-
sociated to an n-input predicate P, with the guarantee that the receiver can successfully
decrypt cy, ..., ¢y, and thus obtain my, ..., my, solong as P(x1,...,x,) = 1.

As for security, we consider similar flavors as CPA-1-sided and CPA-2-sided secu-
rity for standard PE. Namely, for any pair of sequences of attributes (x?, cee, x,?) and
(xll, R x,i) and for any pair of sequences of messages (m(l), R mg) and (mi, R m}l),
ciphertexts cy, . .., ¢, corresponding to either (x?, m?), R (xg, mg) or (xq, m%), e,
(x,ll, m,ll) should be computationally indistinguishable. Here, we additionally consider
two cases:

o Inthe setting with no corruptions (a.k.a. the secret-key setting), all of the encryption
keys ek; are secret and cannot be corrupted (and thus all the senders are honest).

o In the setting with adaptive corruptions, the attacker can adaptively reveal some of
the encryption keys ek; (and thus corrupt a subset of the senders).

2This is one of the differences between multi-key PE and multi-input PE: the former has a public-key
encryption algorithm, whereas the latter could have a secret-key encryption algorithm.
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Naturally, for both of these flavors, one can define CPA-1-sided and CPA-2-sided security
with or without collusions.

Our second result is a construction of multi-input PE, from the sub-exponential LWE
assumption, supporting conjunctions of n = poly() arbitrary predicates with wildcards,
i.e., for predicates of the form P(xy,...,x,) = Pi(x1) A--- A P,(x,) such that, for
each i € [n], there exists a (public) wildcard input x for which P; (x}) = 1 forevery ith
predicate P;.3 Our multi-input PE construction retains its security only in the setting of
no corruptions (i.e., the encryption keys €k; are kept secret) and no collusions (i.e., the
adversary only knows a single decryption key dKk p for an adversarially chosen predicate
P).

Theorem 2. (Informal). Assuming the sub-exponential hardness of LWE, there exists
a CPA-1-sided adaptively secure multi-input PE scheme supporting conjunctions of n =
poly(L) arbitrary predicates with wildcards, without corruptions and without collusions.

Our third result is a construction of multi-input PE, from the sub-exponential LWE
assumption, supporting the same class of predicates as above but tolerating adaptive cor-
ruptions of up to n — 1 parties. However, this particular scheme only supports predicates
with constant arity.

Theorem 3. (Informal). Assuming the sub-exponential hardness of LWE, there exists
a CPA-1-sided adaptively secure multi-input PE scheme supporting conjunctions of
n = O (1) arbitrary predicates with wildcards, under n — 1 adaptive corruptions and
without collusions.

Finally, we anticipate that all our constructions are transformations that leverage
single-input PE schemes (e.g., [30]) and lockable obfuscation [31,48] as building blocks.
Such transformations are general and achieve CPA-2-sided security if the underlying
single-input PE schemes are CPA-2-sided secure. In particular, we obtain (i) CPA-2-
sided secure multi-key PE with unbounded collusions for n = poly(%), (ii) CPA-2-sided
secure multi-input PE without corruptions and without collusions for n = O (log(%)),*
and (iii) CPA-2-sided secure multi-input PE under n — 1 corruptions and without col-
lusions for n = O(1). However, at the time of this writing, the LWE assumption is not
sufficient for CPA-2-sided security. Indeed, even for single-input PE for arbitrary pred-
icates, CPA-2-sided security implies iO [15]. The current state-of-the-art constructions
of i0 require much stronger assumptions compared to standard LWE.

Additional content of this manuscript. A preliminary version of this work appears in
the Proceedings of EUROCRYPT 2023 [25]. Material not present in the Proceedings,
but included in this manuscript, are (i) construction of multi-input PE in the setting of no
corruptions (Construction 3 of Sect.5.2); (ii) applications of our constructions (Sect. 6);

3Note that, in the setting with no corruptions, assuming the presence of a (single) wildcard x7 for each
P; does not affect the expressiveness and the security guarantees of multi-input PE. This is because the ith
sender can simply choose not to encrypt xi*, which will not permit the receiver to evaluate P; over xi*.

4Note that, in case of no corruptions, our CPA-1-sided construction supports n = poly(x). However, to
achieve CPA-2-sided security we use complexity leveraging and this reduces n from poly(1) to O (log(%)).
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(iii) security proofs of our results including the ones contained in the Proceedings of
EUROCRYPT 2023 [25] (Sect.5).

1.2. Technical Overview

We now give a high-level overview of our constructions. As explained above, both our
multi-key and multi-input PE constructions handle conjunctions of arbitrary predicates,
i.e., predicates of the form:

P(xi,...,xp) = Pi(x1)) Ao A Py(xy). (1)

We start by explaining how to build multi-key PE for the above class of predicates
by combining single-input PE and so-called lockable obfuscation [31,48]. Informally, a
lockable obfuscation scheme allows to obfuscate a circuit C under a lock y together with
amessage m, in such a way that evaluating the obfuscated circuit, on input x, returns m if
C(x) = y. As for security, an obfuscated circuit can be simulated in a virtual black box
(VBB) fashion whenever the lock is random and unknown to the adversary. Lockable
obfuscation exists under the standard LWE assumption.

Then, we explain how to build multi-input PE (for the same class of predicates) by
additionally using SKE and PKE. Here, we consider two settings: without corruptions
(ak.a. the secret-key setting) and with corruptions. The former assumes that all the
encryption keys (each corresponding to an input) are secret. The latter is a stronger
model that allows the adversary to leak one or more encryption keys (i.e., corruption of the
senders). We achieve security in each setting by changing the way lockable obfuscation
is used. In particular, part of the contribution of this paper is a new technique based on
nested (lockable obfuscated) circuits that execute each other. This technique allows us to
construct a multi-input PE that can handle adaptive corruptions. We provide a high-level
overview in the remaining part of this section. For more details, we refer the reader
to Sects.4 and 5.

Multi-key Predicate Encryption. An n-key PE allows a sender to encrypt a message m
under an attribute x, by running ¢ <—s Enc(mpk, x, m). Similarly to single-input PE, a
receiver can correctly decrypt c if it has a decryption key for a predicate P,, within a
family P of predicates indexed by values v € V, such that P,(x) = 1. The main differ-
ence between single-input PE and n-key PE is that in the latter the receiver must have
n independent decryption keys (dk,,, ..., dk,,) that uniquely represent the predicate
Py(-) = Py,,..v,(-),1.e., the decryption key associated to a particular predicate is decom-
posed into n decryption keys. Each decryption key dk,, is generated by the authority via
KGen(msk;, v;) where (mskj, ..., msk,) are the master secret keys generated during
the setup. Hence, once obtained (dk,,, ..., dk,, ) from the authority, the receiver can de-
crypt the ciphertext ¢ (encrypted under attribute x) by executing Dec(dk,,,, ..., dk,,, ¢).
The message is returned if the predicate Py, . ,,(x) = 1, where Py, ,,(-) is the pred-
icate represented by the combination of the n decryptions keys dk,,, ..., dk,,. The
security of n-key PE is analogous to that of single-input PE, where the validity of the
adversary A is defined with respect to the (poly-many) tuples (dk,,, ..., dk,,) of n
decryption keys that the adversary has access to. In particular, we consider the well-

.....
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known notion of CPA-1-sided security, i.e., the attacker cannot distinguish between
Enc(mpk, x°, m®) and Enc(mpk, x!, m!) so long as it only holds combinations of n
decryption keys (dK,,, ..., dk,,) such that P, ., % = Py,...v, (xhH =0 (i.e., the
adversary cannot decrypt the challenge ciphertext).’

As explained above, we focus on conjunctions of arbitrary predicates P, .. o, (x) =
Py, oo, (X1, oo x0) = Py (x1) A A Py, (xp) as defined in Eq. (1); hence, x =
(x1, ..., x,) and each dk,, identifies the ith predicate of the conjunction (and, in turn,
any tuple of n decryption keys uniquely identifies the global predicate). We build an
n-key PE handling this class of predicates by extending the technique of Goyal et
al. [31], that uses lockable obfuscation to transform any CPA secure attribute-based
encryption (ABE) (recall that ABE schemes only guarantee the secrecy of the mes-
sage) into a CPA-1-sided secure PE (i.e., secrecy of both message and attribute). Let
PE; = (Setup;, KGen;, Enc;, Dec;) for i € [n] be n single-input PE schemes, each
with ciphertext expansion poly(A) + |m;| where |m;| is the message length supported
by the ith PE. In a nutshell, our n-key PE scheme kPE = (Setup, KGen, Enc, Dec)
works as follows:

.....

Setup. The setup algorithm Setup simply executes Setup; of each PE; and outputs the
master publickey mpk = (mpKy, ..., mpk,) and n master secretkeys (mski, .. .,
msk,,).

Key Generation. To generate a decryption key dk,, <—s KGen(msk;, v;) (representing
the ith predicate Py, (-) of the conjunction), the authority can use the key generation
algorithm of the ith PE, i.e., dk,; <—s KGen;(msk;, P,,).

Encryption. To encrypt a message m under an input x = (xy, ..., X,), a sender samples
arandom lock y and encrypts it n times using PEy, ..., PE,, i.e.,
¢ < Enc,(mpk,,, x,, Enc,—1(mpk,_, x,—1, ..., Enci(mpky, x1, y))).

Note that, forn = poly (1), the final ciphertext will be of polynomial size since each
underlying i th PE scheme has poly (1) |m; | ciphertext expansion where |m; | is the
message length supported by ith scheme. The final ciphertext of the n-key PE kPE
will be the obfuscation of the circuit C. under the lock y together with the message
m (i.e.,C <= Obf(1*, C., y, m)), where C,, on input (dK,, , . .., dK,, ), iteratively
decrypts ¢ and returns the last decrypted value, i.e., y = C.(dKy,, ..., dk,,) =
Dec;(dk,,, ..., Dec,(dk,,, ¢)). ~

Decryption. Finally, decryption is straightforward: the receiver simply executes C using
its n decryption keys (dk,,, ..., dk,,).

SObserve that the decryption keys can be interleaved. For example, starting from

dKyys..es dKy;, ...dky,) representing the predicate Py, .. w;....v,, the adversary can ask for an ad-
ditional ith decryption key dkvl( and rearrange the decryption keys as (dKy, , ..., dkvt(, ...dky,) in order to
obtain the tuple representing a different predicate Pv1 ,,,, — # Pyy,.vjvn

6By leveraging hybrid encryption, we can transform any PE into one with poly(x) + |m| ciphertext
expansion, i.e., Enc’(mpk, x, m) = Enc(mpk, x, s)||PRG(s) & m where s <5 <$*.
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The CPA-1-sided security of our construction follows by the CPA security (i.e., secrecy
of the message) of PEy, ..., PE, and by the security of lockable obfuscation.” Intu-
itively, the proof works as follows. In order to be valid, an adversary A cannot hold a tuple
of decryption keys (dky,, ..., dk,,) such that P, ., (xby = Py, (x{’, e xfl’) =
1, where x? = (x{’ ey x,’j ) is the input chosen by A during the challenge phase, and b
is the challenge bit. Since Py, . ., (xi’, ol xfl’ ) is a conjunction of arbitrary predicates
(see Eq. (1)), this implies that there exists an i € [r] such that P, (x;’ ) = 0 for every
ith decryption key dk,, obtained by A. We can leverage this observation together with
the CPA security of PE; to do a first hybrid in which the challenger computes the ith
layer of the challenge ciphertext as Enc; (mpk;, xf’, 0...0). Now, since the lock y is
not encrypted anymore, we can use the security of lockable obfuscation to do a second
hybrid in which the challenge ciphertext C is simulated by using the simulator of lock-
able obfuscation. In this last hybrid, the challenge ciphertext does not depend on the bit
b sampled by the challenger.

Despite we focused the discussion on CPA-1-sided security, we stress that the same
construction achieves CPA-2-sided security if the underlying n single-input PE schemes
PE;, ..., PE, are CPA-2-sided secure, i.e., Enc(mpk, x%, mY) and Enc(mpk, x!', m")
are indistinguishable even when Py, ,, (x*) = Py, o, (x") = land m® = m!.

..........

Multi-input Predicate Encryption. We now turn to the more challenging setting of
multi-input PE.® Here, each of the n senders can use its corresponding encryption key
to independently encrypt messages under different inputs for the predicate. For this
reason, the setup algorithm of n-input PE outputs n encryption keys (eKy, ..., ek,) and
amaster secret key msk. Each encryption key €k; is given to the ith sender and allows the
latter to handle the ith slot of a multi-input predicate. The ith party encrypts a message
m; under an input x; by using its encryption key ek;, i.e., ¢; < Enc(ek;, x;, m;).
On the other hand, a receiver can use the decryption key dk p associated to an n-input
predicate P (recall that dK p is generated by the authority via KGen(msk, P)) to execute
Dec(dkp, c1, . .., ¢,). Intuitively, the decryption algorithm returns (m1, ..., m,) when
P(x1,...,x,) = 1 where (m;, x;) are the message and the input associated to the ith
ciphertext c;.

The CPA-1-sided security of n-input PE is similar to that of n-key PE, but adapted to the
multi-input setting. Informally, an adversary A must not be able to distinguish between
ciphertexts (Enc(ek;, x?, m?))ie[n] and (Enc(ek;, xil, ml.l))l-e[n] where (x?, ceey xg),
(xll, R x,{) and (m(l), el mg), (m{, e, m,ll) are chosen by A. Naturally, this is subject
to the usual validity condition, informally saying that A should not be able to decrypt (part
of) the challenge ciphertext. This condition can assume different meanings depending on
whether the encryption keys are all secret or some of them are public (or can be leaked).
Because of this, we formalize security with and without corruptions. Throughout the rest
of this section, we describe how CPA-1-sided security of n-input PE changes in these
two settings, and give some intuition on our constructions for each setting. We recall

TWhen we write CPA secure PE, without specifying 1-sided or 2-sided security, we refer to a PE scheme
that guarantees only the secrecy of the message. CPA secure PE is the same as CPA secure ABE.

8Indeed, as we discuss in Sect.4.3, CPA-1-sided (resp. CPA-2-sided) secure multi-input PE for arbitrary
predicates implies CPA-1-sided (resp. CPA-2-sided) secure multi-key PE.
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that our multi-input constructions will support conjunctions of arbitrary predicates with
wildcards (see Theorems 3 and 2 of Sect. 1.1).

Security in the secret-key setting. Here, no corruptions are allowed and thus the en-
cryption keys are kept secrets. Hence, an adversary A playing the CPA-1-sided secu-
rity game has adaptive oracle access to both the key generation oracle KGen(msk, -)
and to n encryption oracles {Enc(ek;, -, -)}ie[n]. The latter oracles allow A to gener-
ate ciphertexts (associated to the ith input/sender) on adversarially chosen predicate
inputs and messages. Since these ciphertexts are created independently, the adversary
has the power to interleave part of the challenge ciphertext (c}, ..., c;) with the ci-
phertexts obtained through the encryption oracles. This has a huge impact on the se-
curity of the a n-input PE scheme and on the validity condition that A must satisfy.
For example, during the challenge phase, A could choose two vectors of messages

(m(l), e, mg) and (m}, o, m,ll) and two vectors of predicate inputs (x?, e, xg) and
(xll, A x,ﬁ) such that for every predicate P (submitted to oracle KGen(m, -)) we
have P(x?, . ..,x,?) = P(xll, ...,x,i) = 0. Although the vector (c},...,c}) can-

not be directly decrypted, A could still be able to decrypt part of it by leveraging
the encryption oracles. In more details, A could: (i) adversarially choose x/ such that
PaY, o xl,.o.x)) = 1and P(x],...,x],...x})) = 0; (ii) submit (x/, m}) to ora-
cle Enc(ek;, -, -) and obtain ¢};and (iii) simply decrypt the vector (c},...,c},...,cp).
When b = 0 (resp. b = 1), the adversary knows that the challenge ciphertext must (resp.
must not) decrypt successfully. This allows it to easily win the CPA-1-sided security ex-
periment of n-input PE. As a consequence, the condition defining when A is valid depends
on both the queries submitted to KGen(msk, -) and to the oracles {Enc(ek;, -, )}ic[u]-
More precisely, for every decryption key dk p corresponding to a predicate P, for every
vector of ciphertexts obtained by interleaving the challenge ciphertext (cj, ..., ¢ji) with
the ciphertexts generated through any of the n encryption oracles, we must have that P
is not satisfied. This is formalized by the following condition: VP € Okgen, VJj € [n],
Viy € [k + 11, ..., Vi, € [k, + 1], it holds that

(i1.0) (j-1.00 0 _(j+1,0) (in,0)y _
P(.xl v Xl XXt ,...,.xnl )_
. ',7 ’1 y . ’1 .
P D D ey <o, @)

where Okgen are the queries submitted to oracle KGen(msk, ), (x?, ...,x,?), (xll,
ey x,l) are the predicate inputs chosen by A during the challenge phase, and Qf’ =

{xi(lﬁb) x(k,‘,b) x(k,'-H,h)

R ) X; = x;’ } is the ordered list composed of the k; predicate
inputs submitted to oracle Enc(ek;, -, -) and the challenge input xf’ forb e <«s,i € [n]
(observe that Q? and Qil are identical except for the last element). The formal security
definition appears in Sect.4.2.

Construction in the secret-key setting. 'We propose a construction of n-input PE for
conjunctions of arbitrary predicates (see Eq. (1)) with wildcards from single-input PE,
lockable obfuscation, and SKE. In particular, we start from single-input PE for ar-
bitrary predicates. Actually, it will suffice that the underlying PE itself supports the



Multi-key and Multi-input Predicate Encryption Page 9 of 100 24

predicates P(x1, ..., x,) as defined in Eq. (1), where we view (x1, ..., x,,) as a single
input chosen by the sender. In addition, the predicate must have a (efficiently com-
putable) wildcard input (x}, ..., x;) such that x* satisfies every ith predicate of the
conjunction, i.e., P; (xl?') = 1. As we will describe next, the n — 1 subset of wildcards
(SN xl.*_l , xi*_H , ..., x;) will permit the ith sender to put a “don’t care” placeholder
on the slots of the other senders. This will allow the construction to deal with multiple
inputs without compromising the evaluation of the predicate. We highlight that wild-
cards can be generically added to any single-input PE for arbitrary predicates. Let P the
original predicate supported by the single-input PE scheme. Then, we can add a wildcard
by translating P into a new predicate P’ which admits a special (dummy) input x* that
always evaluate the predicate to 1, i.e.,

P'(x) = :1 o= ?C*’

P(x) otherwise.

The main intuition behind our construction is to evaluate the conjunction of the pred-
icates inside lockable obfuscation in such a way that, as soon as one of the predicates
(of the conjunction) is not satisfied, both the messages and the predicate inputs remain
hidden (even if another predicate P; is satisfied). To accomplish that, we need to cre-
ate a link between the independently generated ciphertexts (each produced by different
senders). This is done by leveraging an SKE scheme as follows.

In a nutshell, our construction works as follows:

Encryption keys. Theith secret encryption key has the formek; = (mpk, k;, Ki11)
where mpk is the master public key of the single-input PE, and k; fori € [n]
is a secret key for the SKE. (We also let ek, = k;.%)

Encryption. Inorder to encrypt a message m; under an input x;, the i th sender sam-
ples a random lock y; and encrypts (y;, ki+1) via the single-input PE, using
the input made by all the wildcards x; except for the position j = i, where,

M s Enc(mpk, (x7, ...,

X X l+1, ..., x0), (i, Kit+1)). The final 01phertext ¢; will be ¢; =

(@,, c(z)) where ci(2) <s Enc(k;, cfl)) and @,- is the obfuscation of the cir-

cuit C (2) Ky under the lock y; and message m; .

instead, the sender places its real input x;, i.e., ¢;
X

Similarly to the case of multi-key PE, the latter circuit is responsible for the decryp-
tion. In particular, upon input the ciphertexts (c(?l, el ,(12), cgz), .. (2) D—
note the order of the ciphertexts—and the decryption key dk p for P(x Iy onns xn),

the circuit C (o acts as follows:
¢ ’ki+l

1. Set k = k; 41 where K; 4 is the secret key hardcoded into the circuit (recall
that secret keys are cyclically ordered, i.e., K,4+1 = Ky).

2. For c(z) € {cfi)l, P, ciz), . (2) 1} do:
(a) Decrypt ¢t j usmg the secret key K, i.e., c = Dec(k, 0(2))

9In other words, the secret keys are cyclically ordered.
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(a) Decrypt cj.l) using dk p in order to get (y;, Kj41). If cﬁ.l) decrypts correctly,

(€5

K41 is the secret key used to encrypt the next ciphertext ¢ jaeE

(c) Setk = kj+1.

3. Compute (y;, ki+1) = Dec(dkp, Dec(k, cfz))), where 652) is the ciphertext
hardcoded into the circuit.

4. Return y; (note that if none of the decryptions fails then y; is the lock used to
obfuscate the circuit).

Decryption. By following the computation (described above) of the obfuscated cir-

cuit, decryption is immediate. Upon input (c;);e[»], the receiver computes m; =

@i (cﬁ)], R c,(lz), cgz), R ci(i)l ,dkp) where ¢; = (@i, cl.(z)) and dKp is the de-
cryption key of the underlying single-input PE for a predicate P(x, ..., x,).

We highlight that the combination of the SKE with the PE wildcards is what allows

our construction to correctly implement the predicates of Eq. (1). This is because, when

cl.(l) correctly decrypts under the key dk p (0a), we are guaranteed that P; (x;) = 1 (recall

that x; is the input of the ith sender). In particular, the latter holds as, in any other slot,

the ith sender has used the wildcards. By repeating this argument, we can conclude that

P(x1,...,x5) = Pi(x1) A ... A Py(xy) is satisfied if the execution of each (Cc(z) Kot
i N+

goes as expected. The formal construction is described in Sect.5.2.

As for security, we show that our construction satisfies CPA-1-sided security in the
presence of no collusions (i.e., the adversary can submit a single query to the oracle
KGen) if the underlying PE is CPA-1-sided secure, SKE is CPA secure, and the lockable
obfuscation is secure. Roughly, the proof works as follows. Let P* be the only predicate
submitted to KGen by the adversary. Starting from A’s validity condition, we infer that,
for any choice of the challenge bit » € <s, then attacker A must maintain one of the
following two conditions:

(i) either Py ()ci7 )=...=PF (xfj) = 0 (i.e., all the predicates of the conjunctions are
false);

(i) or (if at least one predicate P;* is satisfied, i.e., Pi*(xf) = 1) there exists j # i
such that, for every x; € 0% it holds that P*(x ) = 0 where 0% is the ordered
. . J T
list composed of predicate inputs submitted to the oracle EnC(e{( j» ) and the
challenge input xj? (see Eq. (2)).10

When the first condition is satisfied, we can leverage the CPA-1-sided security of the
single-input PE to show that the every lock y; (encrypted using the PE), and every input
x; (encrypted in cl.(z)), is completely hidden to the adversary. The latter allows us to use
the security of lockable obfuscation to move to a hybrid experiment in which all the
(obfuscated) circuits are simulated (including the messages).

On the other hand, when the second condition is satisfied, we can transition to a hybrid
experiment (this time by leveraging the security of the underlying PE scheme) in which
Enc(ek;, -, -) computes c(/l) by encrypting the all-zero string (instead of (y;, K;j41)).

107f this condition is not satisfied, the adversary has obtained through the encryption oracles a set of
ciphertexts that can be interleaved with one (or more) parts of the challenge ciphertext in order to satisfy the
predicate P*.
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Thus, we can use the security of lockable obfuscation to move to another hybrid in which
Enc(ek;, -, -) simulates all the obfuscations. At this point, the symmetric key K;1 is
not used anymore. Hence, we can use the security of SKE to transition to another hybrid
in which Enc(ek 1, -, -) computes cﬁ:l by encrypting the all-zero string (instead of

cﬁ.lll that, in turn, contains the lock y; 1 and the symmetric key K ;). After this hybrid,
we can again use the security of lockable obfuscation to simulate all the obfuscations
computed by Enc(ek; 1, -, ), and so on. By repeating these last two hybrids, we reach
an experiment whose distribution does not depend on the challenge bit.

‘We highlight that our scheme is not secure in the presence of collusions. In particular,
the fact that the adversary can obtain a single decryption key dkp is crucial in order
to get the validity condition (ii), i.e., for every b € <—s there exists a j such that for
every predicate (submitted to KGen(msk, -)) we have P; (x;’) = 0. In fact, in the case
of collusions, the adversary can ask for two decryption keys dk p and dKk p+ such that for
every b € <s:

PPy =0and (X)) =...= P,(x0) =1
P{(x0y=1and P,(x5) =... = P.(x}) = 0.

Note that these are valid queries for the CPA-1-sided security experiment of n-input PE
(the ciphertext cannot be decrypted). However, such a unique j for every predicate (as
per condition (ii)) does not exist. When this happens, we are not able to conclude the
proof by making a reduction to the security of single-input PE (the reduction will make
an invalid set of queries to the KGen oracle of the single-input PE, making it invalid for
the CPA-1-sided security of the single-input PE).!!

Lastly, we stress that since we start from a single-input PE supporting conjunctions
of arbitrary predicates with wildcards, we end up with an n-input PE for conjunctions of
arbitrary predicates (see Eq. (1)) with wildcards. We highlight that wildcards do not play
any role in the security proof of our secret-key construction. In other words, wildcards
are required for functionality (correctness) and not for security. Indeed, in the secret-key
setting (i.e., no corruptions), wildcards can be easily removed. This is because we can
transform any secure multi-input PE for P(xy, ..., x,) = Pi(x1) A... A P,(x,) witha
single wildcard (x7, . .., x,7) into a secure multi-input PE for the same class of predicates
P(x1, ..., x,) without the wildcard. This can be done by requiring the senders not to
encrypt the corresponding wildcard, i.e., for each i € [n], Enc(ek;, X7, m;) outputs L
whenever x; = x;. We stress that this only works in the case of no corruptions. In fact,
as we will discuss later, in case of corruption, wildcards play a role in the security of our
corruption-resilient multi-input PE scheme, e.g., an adversary can encrypt wildcards on
its own using the leaked encryption keys.

Security under corruptions. Next, let us explain how to define security of multi-input
PE in the presence of corruptions. Here, the adversary has the possibility to corrupt a

1 A§ we discuss in Sect. 5.4, our construction remains secure if we consider a weaker form of collusion in
which the adversary can only obtain multiple decryption keys for predicates P such that there is a unique j
for all predicates (submitted to KGen) that satisfies the validity condition (ii).
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subset of the senders and leak their encryption keys ek;. We model this by introduc-
ing an additional corruption oracle Corr(-) that, upon input an index i € [n], returns
ek;. Note that, once obtained €k;, the adversary A has the possibility to produce ar-
bitrary ciphertexts on any message and predicate input, without interacting with the
challenger during the CPA-1-sided security game. As usual, the validity condition heav-
ily depends on the queries submitted to both the encryption oracles and the corruption
oracle. More precisely, the validity condition now says that, for every decryption key
dk p, for every vector of ciphertexts that can be obtained by interleaving the challenge
ciphertext (cf, ..., c;) with both the ciphertexts obtain through any of the (uncorrupted)
encryption oracles and the ones that A may autonomously produce by using the leaked
encryption keys (through oracle Corr(-)), we have that P is not satisfied. Hence, the
validity condition is identical to that of the secret-key setting (see Eq. (2)), except that:

e If the ith encryption key ek; has been corrupted/leaked, then Qﬁ’ of Eq. (2) corre-
sponds to the ith predicate input space. This is because the adversary can produce
a valid ciphertext on any input x;.

e Else (i.e., the ith encryption key €k; is still secret), Qf.’ is defined as usual, i.e., it is
the ordered list of predicate inputs submitted to oracle Enc(ek;, -, -) and challenge
input xf’ .

See Sect. 4.2 for the formal definition.

A simple attack. Before explaining our construction in details, let us show why the
previous construction is not secure under corruptions. For simplicity, we focus on the 2-
input setting. This will help us identifying the main properties that a multi-input scheme
must satisfy in order to remain secure in case of corruptions. Suppose an adversary A has
a single decryption key dk p for P (x1, x2) = P (x1) A P2(x2) and a vector of ciphertexts
(c},c3) = ((@1 , C§2))’ (@2, cgz))) encrypted under the predicate input (x, x2) such that
Pi(x1) = 0 and P,(x2) = 1. Note that this ciphertext should not decrypt under dkp,
since the conjunction of P; and P, evaluates to 0. If A can obtain ek, then it can easily
determine the message m» (and thus the bit b). Indeed, once A gets ek, = (mpk, ka, K1),
it can compute a malicious ciphertext E{ll) (using the single-input PE) by encrypting
(¥, k2) (where ¥ is a random lock) under the predicate input composed by (x{, x}) such
that Py (x]) = land P,(x}) = 1. Then, it can compute 5412) <s Enc(kj, 'c‘ﬁl)) and execute
@2 (5(12), dkp) to get m,. Note that by definition the execution of @2 outputs the correct

message, since P; (xi) A Pry(xp) = 1 and E§2) contains the correct secret encryption key
ks, allowing the circuit to correctly end the computation. Also, note that this attack does
not violate the validity condition. This is because Pj(x;) = 0, and A does not use the
oracle Enc(eky, -, -) at all. Hence, any interleaving of the ciphertexts will involve the
predicate input x; that, in turn, will make the conjunction P (x1, x5) = Pi(x1) A Pa(x})
unsatisfied for every choice of the input predicate x5.

In light of the above attack, we can identify the main properties that a multi-input PE
scheme must satisfy to remain secure even in the presence of corruption:

1. Naturally, as for the secret-key setting, it is fundamental that the encrypted in-
puts and encrypted messages remain secret when one of the predicates P; of the
conjunction is not satisfied (see the proof strategy of our previous construction).
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2. In combination with the above, we must guarantee that revealing one (or more)
encryption key leaks no information about the encryption keys of other senders.
This is fundamental otherwise a malicious sender may be able to impersonate
and produce valid ciphertexts on behalf of others. This affects the security of the
scheme since an adversary able to forge ciphertexts on behalf of an honest sender
can violate the property described by the above Item 1 (i.e., the adversary can satisfy
the ith predicate associated to the ith honest sender). We highlight that ensuring
correctness while guaranteeing this property is challenging. For example, if the
encryption key of the first sender “encodes” less information about the one of the
second sender, then the harder will be the combination of their ciphertexts during
decryption.

As demonstrated by the attack strategy described above, our secret-key multi-input PE
scheme does not achieve the second property since an attacker can leak one encryption
key which, in turn, allows it to produce a ciphertext on behalf of the honest sender (which
allows for correct decryption in some scenarios).

Construction under corruptions. In order to achieve the above properties, we propose
anew technique based on nested (lockable obfuscated) circuits that can be executed one
inside the other. This technique permits to make available secret information (e.g., secret
keys) only during nested execution. For the sake of clarity, we first present our approach
for the case of two inputs.

Encryption keys. We replace the SKE in our previous construction with a PKE, so that
the encryption key ek (resp. eky) is now composed of (mpk, sk, pK;, pk,) (resp.
(mpk, ska, pk,, pk;)) where (sk;, pk;) is a secret/public key pair. Each (sk;, pk;)
is associated to the ith sender. Indeed, note that only ek; (the encryption key of
the ith sender) contains the secret key sk;). This is fundamental to deal with
corruptions, i.e., corrupting the ith sender reveals no information about the secret

keys (sKki, ..., SK;—1, SKi+1, ..., Sk;) of the other senders. Moreover, as we will
next, sk; will be required to generate valid ciphertexts for the jth slot of the
scheme.

Encryption. From the perspective of the first sender, in order to encrypt a message m1

under the input x, it samples two random locks ( yiln, y?”t) and encrypts them (using

the single-input PE) as before using the wildcard x3,i.e., cgo) <s Enc(mpk, (x1, x3),

(yI", y9U1)).12 At this point, the PE ciphertext CgO) is re-encrypted twice using pk;

and pk,, i.e., ng) <~s Enc(pk;, cll_l)) for i € [2]. Intuitively, the two layers of
PKE have the role of hiding the PE ciphertexts (that in turn contain the locks) even
when the adversary leaks all encryption keys except one. The final ciphertext is
composed by the two obfuscations (C‘l’”t, CY" of the circuits (C:IL(‘: er (C'S”k1 o Te
1 1

spectively. The former is obfuscated under the lock y?u‘ and message m 1, whereas

the latter is obfuscated under the lock yiln and message skj. The ciphertext pro-
duced by the second sender, is identical, except that it uses Sk, (instead of ski)

and that cgo) is computed using the predicate input (x}, x2) (instead of (x1, x3)).

12Recall that wildcards must be efficiently computable.
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Decryption. The crux of our nesting technique comes from the definition of the circuits
COIL(" 2y Which, in turn, defines the decryption algorithm of our construction (i.e.,
SK;,c:

i,

the nesting technique is fundamental to achieve correctness). More precisely, the
outer circuit (Co:t « (.e., the circuit that is given obfuscated to the receiver as
S 1€}

part of the ciphertext c;) will take as input the obfuscation ((NZ'Z” of the inner circuit
C'”k oy and adecryptionkey dk p. Then, in order to securely check the conjunction
SKp ,C)

inside the lockable obfuscation, (C;’:t o, Will execute @g‘ (ski, dkp). At this point,
1,¢]

@2” has everything it needs to check the satisfiability of P> (-). It removes the PKE
layers from ng) by computing cgo) = Dec(sk;,, Dec(sk;, cgz))). Then, it decrypts
the PE ciphertext (yI', y9U') = Dec(dkp, céo))—observe that the decryption suc-
ceeds if Py(xp) = l—and returns y'2”. By correctness of lockablg .obfuscation,
if the computation of (Clsnkz,cf’ (ski, dkp) goes as intended, then C%'(sk;, dkp)

will output Sk, (the message attached to the obfuscation). Once obtained sk, the
computation of (Coi‘(Jt (2 can continue and perform a similar computation to check
S 1,€}

the satisfiability of P;(-) except that, if the PE ciphertext 650) decrypts correctly, it

returns yOU. If all the decryptions (performed by (CCS’IL(’?C?) and (Cisnkz,cf)) succeed,

the execution of the obfuscation (ﬁ?“t of (COL‘t oy Will output m ;. A symmetrical
S 1,¢)
argument holds for CO* , and C" | releasing m>.
ska,cy ski,c;

We show that the above 2-input PE construction is CPA-1-sided secure under 1 cor-
ruption (i.e., one encryption key remains secret) and no collusions if the underlying
single-input PE is CPA secure, PKE is CPA secure, and the lockable obfuscation is se-
cure. The high-level intuition is that Sk; remains unknown to the adversary if P;(-) = 0
(unless the adversary invokes the oracle Corr(i)). This is reflected by the proof technique
that is sketched below.

Let dk p+ be the decryption key obtained by A for the predicate P*(-,-) = P;(-) A
Pj () (recall the presence of wildcards), and let Qcor be the queries submitted to the
corruption oracle. Starting from the validity condition, we can infer that for any choice
of the challenge bit b € <—s we have:

(i) either P (x}) = P} (x3) = 0;

(ii) or (i.e., there exists an i € [2] such that predicate P; is satisfied) j ¢ Qcorr sSuch
that j # i and, for every x; € Q'; , PJ’F (xj) = O (recall that xj’. € Qlj’.). Observe
that this second condition holds because of the following:

o If there is x; € Q’]’. such that Pj’f (x;)) =1, A can use the corresponding

ciphertext to decrypt the ith part of the challenge ciphertext since P (xf’ )= 1.
o If j € Ocorr, A can simply use ek; to encrypt a random message under
the wildcard x; (that always exists by design of our construction) and, again,
decrypt the ith part of the challenge ciphertext. Note that, contrarily from our
secret-key construction, wildcards play an important role in the security of our
multi-input PE construction under corruptions (if an encryption key ek gets
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leaked then a malicious adversary can always encrypt itself the jth wildcards
x;, satisfying the jth predicate P;). Hence, in the corruption setting, wildcards
are used for both functionality and security.

By leveraging the above two conditions, the security of our scheme follows by using
a similar argument to that of the secret-key setting. In particular, when the first condition
is satisfied, we can show that the locks (yI", y?U') and (yI', ySU') (used to encrypt the
challenge) are completely hidden. This, in turn, allows us to use the security of lockable

obfuscation and simulate the obfuscations of (C°Ut , € 5 (cout , Ch
Skl,cl Skl,cl Sk2,62 Skz,

o)
and the corresponding messages.

On the other hand, when the second condition is satisfied, we can move to a hybrid
(by leveraging the security of single-input PE) in which Enc(ek;, -, -) computes c;.O) by
encrypting the all-zero string (instead of (yijn, y;.’“t)). Then, we can use the security of
lockable obfuscation to transition to another hybrid in which Enc(ek;, -, -) simulates
all the obfuscations. At this point, the secret key sk ; of the uncorrupted jth sender is
not used anymore (recall that j & Qcorr). Hence, we can leverage the security of the
PKE to remove the locks (yI", y°U") chosen by the ith sender (recall i # ;). In more
details, we do another hybrid in which the jth PKE layer cl.(" )
is an encryption of zeroes (instead of cf] -b that, in turn, encrypts the locks ( yli”, yiom)).
After this hybrid, we can again use the security of lockable obfuscation to simulate
all the obfuscations (and the corresponding attached messages) that compose the ith
component of the ciphertext. The distribution of this last hybrid does not depend on the
challenge bit b since all the ciphertexts are simulated by the simulator of the lockable
obfuscation scheme.

To sum up, we can observe that encrypting cl.(o) (the PE ciphertext that contains the

locks) with the public keys (pK;, pk,) of both senders is crucial in order for our proof
to work independently of which encryption key the adversary decides to leak. So long
as at least one encryption key ek; remains hidden, then there is a PKE layer that cannot
be decrypted by the adversary. This allows the proof to go through.
Generalizing the nesting technique to (n > 2) inputs. By carefully modifying the
definition of the outer and inner circuits, we can generalize the above technique to the
case of n > 2. The structure of the encryption keys and of the encryption algorithm is
similar to the case n = 2:

of the challenge ciphertext

e Each encryption key ek; is of the form (mpk, sk;, pkj, ..., pk,).

e Tocompute theith encryption of (x;, m;), the sender computes the initial PE cipher-
text as cl§0) s Enc(mpk, (x},....x;, ..., x}), (yli.”, yi"”t)). Then, it re-encrypts
n times the ciphertext CEO) using (pKy, ..., pk,), ie., ci(v) <3 Enc(pk,, cl.(v_l))
for v € [n]. As usual, the final ciphertext ¢; = ((E?Ut, @“) is composed of the

obfuscations of COU  “and C" .
ski.c; ski,c

i Ci

We now turn on the crucial point: the definition of the outer and inner circuits. Again, for

the sake of clarity, we only describe the outer circuit (C°:t « and of the inner circuits
S 1,€)
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sk, c sk
are defined similarly. First off, the input space of these circuits is a follows:

(cin W Ccin ) generated by the corresponding senders. The remaining circuits
2 n>Cn

o COU = takes as input the n — 1 obfuscations of the circuits (C" ., ...,
ski.c) ska,c,

(Ci”k ) and a decryption dkp. These obfuscations are the inner circuits that
S n »cn

needs to be executed in order to return the message m attached to the obfuscation
of COU .
Sk1 ,CY')

e On the other hand, (Cisnk m» for i € [n]\{1}, takes as input a tuple of n secret
i€

keys (ski, ..., sky,) (where some can be set to 1), a decryption key dkp, and
the obfuscations of (C" s (C'”k )- Intuitively, these obfuscations are
SKit1,¢, 1) SKn,Cn

the remaining inner circuits that we need to still execute in order to complete the
nested execution.

Intuitively, the decryption of m| requires the nested execution of these circuits (starting
from the outer one) in order to get all the secret keys required to decrypt the PE ciphertext.
This is achieved as follows:

e The outer circuit (Coi‘(Jt ) Starts the nested execution by invoking the obfuscation
SK1,¢y

of (Ci”k o upon input (sky, L, ..., 1), dkp, and the remaining obfuscations of
S 2,6y
CN e n €.
( sk3,c§") Skn,c,(f'))
e In turn, (C'”k w Will do a similar thing: It executes the next obfuscated circuit
S 2,0y
(C'S”k L upon input (skq, ska, L, ..., L), dkp, and the remaining obfuscations
3,C3 .
ch ..., CN .
( sky.cy” Skn,c,(,"))
° Theaboveprocessisrepeateduntil(C'nk (o isexecuted uponinput (sKj, ..., sk, _1,
SKp.Cn

1) and dk p. At this point, all the secret keys are known (observe that sk, is hard-

coded). From c,(,"), we can remove the n PKE layers, decrypt the PE ciphertext and,

in turn, return yil” if the PE ciphertext decrypts correctly (i.e., P, (-) is satisfied).
e Once (C'”k ) terminates, the secret key sk, is released and C""  performs
SKn,Cn SKp—1,¢, "4

the computation required to check if P,_1(-) is satisfied. Indeed, (CiS” w has

been executed on input (sKi, ..., sk,—2, L, 1), it has sk,_; harcoded, and the
execution of (C'”k « has released sk,,. Hence, after the correct termination of
SKy,Cp

cn , all secret keys are known.
)
Skn sCn

It may seems that this argument can be iterated. However, there is a problem. Even

if (C'”k w correctly terminates, the circuit C"" « that invokes it does not have
SKn—1,¢, 74 SKn—2,¢, "o

access to the secret key skj,. This is because the latter circuit receives as input (sKki, ...,
sk,_3, L, 1, 1), ithas sk,,_» hardcoded, and the circuit (C'”k (ny has returned sk, 1.
s

n—1,Cn

As a consequence, C" o must re-run C"  on input (sky, ..., sk,_1, L) in
Sk,,,z,cn_2 sKy.cn

order to get Sk, and decrypt every PKE layer. This needs to be done at any level of the
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nested execution, yielding an asymptotic running time of O (n"). Hence, this technique
only works assuming n = O(1), i.e. for O (1)-input predicates. The formal construction
is described in Sect.5.3.

On achieving CPA-2-sided secure multi-input PE. Until now, we only focused the
discussion on achieving CPA-1-sided security. Our multi-input constructions achieve
CPA-2-sided security if the underlying single-input PE is CPA-2-sided secure (we high-
light that, in our secret-key multi-input PE construction, we need to reduce the n-arity
from poly (i) to O (log(1)) since we use complexity leveraging). We just recall here that,
already for the simple notion of single-input PE for arbitrary predicates, CPA-2-sided
security implies iO [15].

1.3. Applications

Finally, we explore applications of multi-key and multi-input PE. This question is par-
ticularly relevant given the fact that we are only able to obtain multi-key and multi-input
PE supporting conjunctions of arbitrary predicates (with wildcards). Luckily, we can
show that this class of predicates is already expressive enough to yield interesting cryp-
tographic applications which previously required much stronger assumptions.

Matchmaking Encryption. Matchmaking encryption (ME) [10,11] allows a sender to
publicly encrypt a message m under some attributes o and a policy R. On the other hand,
the receiver can use the decryption keys dk, and dks (encoding the receiver’s attributes
and policy, respectively) to decrypt the message (i.e., Dec(dk,, dkgs, ¢) = m) if there
is a mutual match S(o) = 1 AR(p) = 1. The main security guarantee of ME is defined
by the following two properties:

e In case of a mismatch, nothing is leaked except the fact that a match did not occur.
e Additionally, in case of a match, nothing is leaked except for the message and the
fact that a match occurred.

These properties are reminiscent to CPA-2-sided security of PE. Multi-key PE is a direct
generalization of ME: 2-key PE for conjunctions Py, ,, (-, -) = Py, (-) A Py, () (i.e., the
class of predicates studied in this work) implies ME for arbitrary policies. In a nutshell,
the construction works as follows. To encrypt a message m under the sender’s attributes
o and the sender’s policy R, the ME encryption algorithm corresponds to the public-key
encryption algorithm of the 2-key PE scheme, i.e., ¢ <—s Enc(mpk, (x1, x2), m) where
x1 = o and xo = R. Analogously, the ME decryption keys dk, and dkgs correspond to
the decryption keys dk,, and dk,, of the 2-key PE scheme where v; = S and vy = p.
By setting Py, v, (x1,x2) = Ps (0, R) = P5(S) A Pr(p) = S(0) A R(p), we obtain
the desired ME functionality during decryption. The security analysis is intuitive: if the
2-key PE is CPA-1-sided secure, then the ME scheme is secure only in case of mismatch.
In addition, if the 2-key PE is CPA-2-sided secure, then the ME security holds also in
case of a match. Hence, as a corollary of our results, we achieve the weaker notion of
CPA-1-sided secure (i.e., mismatch) ME supporting arbitrary policies and unbounded
collusions from sub-exponential LWE. We provide more details in Sect.6.1.

The seminal works of ME [10,11] propose ME as a tool for anonymous commu-
nication with bilateral authentication. The anonymity level guaranteed by the scheme
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depends on the notion of security. ME with CPA-2-sided security (as originally proposed
by [10,11]) guarantees the anonymity of users (e.g., users’ attributes and policies) inde-
pendently from the outcome of the bilateral matching (i.e., match and mismatch). In the
case of CPA-1-sided secure ME (as the one proposed in this work), anonymity is guar-
anteed only in case of a mismatch, i.e., unauthorized parties infer no information about
the identity of the sender. Thus, our notion of CPA-1-secure ME can be used in scenarios
in which the sender’s identity can be disclosed to authorized receivers (e.g., health-care
scenarios where a bilateral matching between patients and doctors is performed).

Previous works construct CPA-2-sided secure ME with unbounded collusions for
either very restricted policies (i.e., for identity matching) using bilinear maps [20,26]
(and ROM [10]), or for arbitrary policies from much stronger assumptions such as 2-
input FE with one secret key and one public key (this notion of 2-input FE implies
i0) [10,11].

For completeness (see Sects.4.1, 4.3), we highlight that we can build n-key PE from
(n + 1)-input PE supporting arbitrary predicates and tolerating 1 corruption (this is
required to implement the public-key encryption algorithm of n-key PE). As a con-
sequence, multi-input PE implies ME as well. However, recall that our multi-input PE
constructions do not support arbitrary predicates but only conjunctions of arbitrary pred-
icates with wildcards.

Non-interactive MPC. Non-interactive MPC (NI-MPC) [14,34] allows n parties to
evaluate a function f(vq, ..., v,) on their inputs using a single round of communication
(i.e., each party sends a single message ¢; <—$ Enc(crs, ek;, v;)). This is achieved by
assuming a trusted setup (that may depend on the function itself) that generates (possibly
correlated) strings (e.g., common reference string crs and encryption keys €kK;) that can
be later used by the parties to perform function evaluation. Security of NI-MPC can
be formulated in two different settings, named non-reusable and reusable NI-MPC.
The former retains security only if the setup is executed after every round. The latter
retains security even if parties evaluate f on different inputs using the same setup (full-
fledged reusability makes use of session identifiers in order to avoid that an adversary
can interleave messages from different rounds [34]). Both non-reusable and reusable
NI-MPC provide the same security guarantee, formalized using an indistinguishability-
based definition: an adversary A cannot distinguish between (Enc(crs, ek;, U?))ie[n]
and (Enc(crs, ek;, vl.l)),-e[,,], so long as any combination of the messages known by the
adversary (including the ones it can compute using the encryption key ek; of a corrupted
party) yields the same function’s evaluation. '

As mentioned by several works [14,29,32,33], NI-MPC achieving indistinguishability-
based security implies iO even in very restricted settings. In particular, a non-reusable
1-robust (i.e., one malicious party) NI-MPC for two parties implies iO. Intuitively, by
fixing the NI-MPC function to f(C, x) = C(x), we can obfuscate a circuit by simply
setting the i~nput of the first (honest) party to C, compute ¢; <—s Enc(crs, ek, C), and
outputting C = (crs, ¢y, €ky) where ek, ek, are the key material required to encode the

3Note that security of NI-MPC for general functions is formalized by an indistinguishability-based defi-
nition [14,32]. This is because simulation-based NI-MPC implies virtual black box (VBB) obfuscation that
is known to be impossible for certain classes of functions [13].
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inputs of the NI-MPC (note that 1-robustness is necessary since we reveal ek;). To eval-
uate the obfuscated circuit, the evaluator only needs to compute ¢, <—s Enc(crs, ek, x)
and evaluate the NI-MPC function f that will yield C(x). The security of this iO ob-
fuscator follows from the security of NI-MPC since the residual functions f(Co, -) and
f(Cy, ) are identical, as Cy(x) = C;(x) for every input x. Additionally, reusable, O-
robust (i.e., no malicious parties) NI-MPC for n = poly() parties implies iO. In this
case, i0 can be built using a similar construction to that of iO from secret-key multi-input
functional encryption (FE) [29].

Due to the similarities between multi-input PE and multi-input FE, we observe that
multi-input PE is enough to construct NI-MPC for all-or-nothing functions defined over
the predicates supported by the multi-input PE scheme. In more details, by leveraging
our CPA-1-sided n-input PE (for n = O(1)) secure under n — 1 corruptions and without
collusions, we can build an (n — 1)-robust NI-MPC for a constant number of parties for
the following class of functions:

(my,...,my) ifP(xy,...,xy) =1
1 otherwise

fe((x1,my), ..., (xn, my)) = i

where P(x1, ..., Xx,) is a conjunctions of arbitrary independent predicates (with wild-
cards) as defined in Eq. (1). The resulting NI-MPC satisfies a weaker notion of reusabil-
ity without session identifiers (i.e., messages produced in different rounds can be in-
terleaved by design) specifically tailored for all-or-nothing functions, which we name
CPA-1-sided reusability. In a nutshell, CPA-1-sided reusable NI-MPC guarantees the
usual indistinguishability-based security only if fp outputs L (i.e., P(-) is not satisfied)
for any combination of the honest messages and the ones the adversary can maliciously
compute using the encryption key ek; of a corrupted party.

The construction is intuitive. At setup, simply publish crs = dkp and distribute ek;
to the ith party where (msk, ek, ...ek,) <s Setup(1*) and dkp <s KGen(msk, P).
During evaluation, each party can send the message ¢; <—s Enc(ek;, x;, m;) and compute
Dec(dkp, ci, ..., ;) to evaluate the function fp((xy,my), ..., (x,, m,)). The CPA-
1-sided reusable security of k-robust NI-MPC for fp follows readily from CPA-1-sided
security of n-input PE under k corruptions and without collusions.

By plugging in our results, we obtain either CPA-1-sided reusable (n — 1)-robust
NI-MPC with n = O(1), or CPA-1-sided reusable O-robust NI-MPC with n = poly()
where the predicate P of the function fp is a conjunctions of arbitrary predicates (i.e.,
P(xy,...,xp) = Pi(x1) A -+ A Py(x,,)) with wildcards under the LWE assumption.

An example of an application of (CPA-1-sided reusable) NI-MPC is one-round voting
protocols: We imagine the scenario where a committee consisting of n parties wants to
approve a certain law. They can use NI-MPC to encode their set of constraints as their
input x;. The law is then approved if Pi(x1) A --- A Pa(x,) = 1, where P; is a (public)
policy that checks if the constraint imposed by x; is satisfied by the law. Importantly,
the protocol is completely non-interactive, and therefore the parties can just send their
messages and go offline, without the need to wait for everyone to respond. In terms of
security, the law is approved only if all policies are satisfied and otherwise the preference
of each party is kept hidden. For instance, a hypothetical party that blocked the law would
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remain anonymous. We provide the formal definition of CPA-1-sided reusability and the
construction of NI-MPC from multi-input PE in Sect. 6.2.

We emphasize that, nonetheless CPA-1-sided reusability is a weakening of the stan-
dard reusability definition, our flavor of reusability is non-trivial to achieve in the setting
of general functions. This is because we can build null iO (and, in turn, witness en-
cryption) [19,31,48] from CPA-1-sided reusable NI-MPC using the same constructions
of i0 from (standard) reusable NI-MPC, i.e., CPA-1-sided reusable (resp. CPA-1-sided
non-reusable) O-robust (resp. 1-robust) NI-MPC for n = poly(}) parties (resp. n = 2
parties) and general functions implies null iO. The above observation motivates our
research question of building such a notion of NI-MPC for restricted functionalities.
Considering restricted functionalities, such as conjunction of arbitrary predicates, per-
mits us to construct NI-MPC from LWE that is, at the time of this writing, a computational
assumption not sufficient for constructing null iO and witness encryption.

1.4. Relation with Witness Encryption

In the following we recall the notion of witness encryption (WE) [27], and we discuss its
relation with both multi-input and multi-key schemes. We anticipate that such relations
do not require CPA-1-sided and CPA-2-sided security. Hence, the following discussion
will focus on multi-input and multi-key ABE schemes, i.e., predicate inputs can be
public.

A WE scheme for a relation R, defined over a language £, allows a sender to encrypt
a message m using a statement x. A receiver, holding a witness w, can decrypt the
message m if (x, w) € R. As for security, WE guarantees that the message remains
hidden whenever x ¢ L, i.e., the corresponding ciphertext cannot be decrypted. WE
has several disrupting applications such as encrypting messages that can be decrypted
in future (i.e., whenever w will be known). Moreover, WE does not require setup and is
fully non-interactive.

As shown by Brakerski et al. [19], an n-input ABE (i.e., predicate inputs can be
public) for arbitrary predicates (or any predicate that “match” the desired NP relation),
secure in the secret-key setting and without collusions, implies WE for NP and n-size
witnesses. The construction is reminiscent to the one of iO from secret-key multi-input
functional encryption [29] (see also Sect. 1.3). Unfortunately, we cannot use here our
n-input scheme since it only supports conjunctions of arbitrary predicates (see Eq. (1)).
Currently, it is not known how to build n-input ABE (and thus PE), with n > 2, for
arbitrary predicates without iO (the only known construction is for n = 2 and it is due
to the work of Agrawal et al. [8]. See Sect. 2 for a detailed discussion.

Also, we stress that multi-key ABE (i.e., a multi-key scheme where predicate inputs
can be public) for arbitrary predicates implies WE. The construction is similar to that
of Brakerski et al. [19], for obtaining WE from multi-input ABE. The only difference
is that we substitute the multiple inputs with the multiple decryption keys of multi-
key ABE. For completeness, we describe the construction below. Let Py, . ,, (x) =1
if and only if (x,w) € R, where w = vy]|...||v, defines the class of predicates
supported by the multi-key ABE. To encrypt a message m under a statement x € L,
the sender computes (mpk, mskj, ..., msk,) <s Setup(1*) and sends to the receiver
(¢, (dky;, dkg;)iem)) where ¢ <—s Enc(mpk, x, m) and dk,, <-s KGen(msk;, 1) (resp.
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dky; < KGen(msk;, 0)) for i € [n]. To decrypt the ciphertext under a witness w =
vill... [|va, the receiver simply executes Dec(dk;, , ..., dk], ,c) where dk;. = dk,, if
v; = 1, and dk;i = dkg; if v; = 0.!* Similarly to the case of multi-input, our multi-key
construction fails to imply WE since it does not support arbitrary predicates (we stress
once again that CPA-1-sided and CPA-2-sided security are not required).

It may seem that arbitrary predicates are a necessary condition in order to build WE
from multi-input schemes. However, we highlight that this is not necessarily the case if
we consider security under corruptions. In particular, a 2-input scheme for conjunctions
under 1 corruption and no collusions, implies WE for any relation. This can be accom-
plished by considering the predicate Py R (-, -) = P1(-) A Py g (-) such that Py (x}) =1
(for some wildcard x7) and P, g(w) = 1 if and only if (x, w) € R. Intuitively, to
encrypt m using a statement x, the sender can simply output (cy, €ka, dkp, ) such that
c1 <s Enc(eky, x{, m), dkp,_ , <sKGen(m, P, r), and (msk, eky, eks) «—s Setup

(1*). Then, the receiver uses w to retrieve m by computing Dec(dk, ., c1, Enc(ekz, w)).

Here, it is crucial that the underlying 2-input scheme can handle corruptions, since the
latter allows the sender to disclose ek to the (possibly malicious) receiver and give him
the opportunity to try different witnesses.

Unfortunately, even in this case, our O(1)-input scheme under corruptions fails to
imply WE. This is because our construction supports conjunctions of arbitrary predicates
each one having a wildcard. In other words, the wildcard is a trivial witness for any
statement. 1©

Given the above discussion, we identify two plausible approaches that could lead to
a construction of WE from standard assumptions:

e Enlarging the class of predicates of our secret-key n-input or n-key constructions:
From conjunction of arbitrary predicates (see Eq. (1)) to arbitrary predicates (or
any restricted class of predicates that permits to implement a specific non-trivial
WE relation R).

e Supporting conjunctions of arbitrary predicates (without wildcards) in the setting
of 2-input with security under 1 corruption.

2. Related Work

Multi-input PE is a special case of multi-input FE [29]. It is well known that so-called
compact FE (supporting arbitrary functions) implies multi-input FE [9, 15], which in turn
implies i0. Constructions of multi-input FE from standard assumptions, in turn, exist
for restricted functions [1-4,6,7,16,21,22,24,39,44]. The multi-input and multi-key
settings have also been considered in the context of fully-homomorphic encryption [23,
40,41].

140Observe that the same construction works if we start from a multi-key PE whose encryption algorithm is
secret-key, i.e., the mpk (required to execute ENc) is replaced with an encryption key ek that is kept secret.

15 A similar construction can be used to build iO from 2-input FE with security under 1 corruption and no
collusions.

161f wildcards exist, a malicious receiver can always decrypt the message by evaluating the predicate over
the wildcards.
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Multi-input PE can also be seen as stronger form of multi-input ABE [19], the differ-
ence being that the attributes are not private in the case of ABE. Previously to our work,
all (provably secure) constructions of n-input ABE with n > 2 required iO. The only
exception is the work of Agrawal et al. [8] that proposes two constructions of secret-key
(i.e., no corruptions) 2-input key-policy ABE for NC! with unbounded collusions (recall
that, in the ABE setting, only the secrecy of the messages is guaranteed, i.e., inputs can
be public). The first construction is based on LWE and pairings, and it is provably secure
in the generic group model. The second construction is based on function-hiding inner-
product FE, a variant of the non-falsifiable KOALA knowledge assumption (which is
proven to hold under the bilinear generic group model), and LWE. However, this second
construction achieves a weaker selective flavor of security in which the adversary has
to submit both the challenge and the decryption key queries before the setup phase.
Additionally, they propose two heuristic constructions. The first is a 2-input ABE for
P from lattices, and the second is a 3-input ABE for NC! from pairings and lattices.
However, the security of these heuristic constructions remains unclear.

In comparison, our work directly focuses on the PE setting (i.e., CPA-1-sided security)
and provides the first secret-key n-input PE that supports n = poly(A) inputs, with
(adaptive) CPA-1-sided security (i.e., secrecy of both inputs and messages) based solely
on LWE. However, our construction only supports a restricted class of predicates (i.e.,
conjunctions of arbitrary predicates with wildcards) and it is secure only in the case
of no collusions. Furthermore, differently from [8], we move away from the secret-
key setting and propose a second construction of n-input PE (still for conjunctions of
arbitrary predicates) that supports n = O (1) inputs and can tolerate n — 1 corruptions
(i.e., up to n — 1 encryption keys can be adaptively revealed by the adversary). Finally,
we propose the notion of multi-key PE (not covered in [8]), and give the first construction
of CPA-1-sided secure n-key PE for n = poly(), with unbounded collusions and still
supporting conjunctions of arbitrary predicates, based on LWE.

Regarding the techniques, we highlight that both our work and that of [8] introduce
(albeit different) nesting techniques based on lockable obfuscation. In particular, the
nesting technique of [8] permits to transform any secret-key n-input ABE into a secret-
key n-input PE (achieving CPA-1-sided security). We stress that their approach only
works in the secret-key setting. In contrast, we propose a different nesting technique
which yields n-input PE for n = O (1) while tolerating n — 1 corruptions. It is important
to note that our nesting technique is not generic, but it is specifically tailored to work
with the class of predicates considered in this work.

Turning to applications, we highlight that the multi-input schemes of [8] fail to imply
ME, since their constructions are all in the secret-key setting (whereas ME requires a
public-key encryption algorithm). As for NI-MPC, the constructions in [8] can be used
to obtain a CPA-1-sided O-robust reusable NI-MPC for all-or-nothing functions defined
over arbitrary predicates, but only in the case of 2 parties (3 parties if we consider also
the heuristic constructions).
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3. Preliminaries

3.1. Notation

We use the notation [1] = {1, 2, ..., n}. Capital bold-face letters (such as X) are used to
denote random variables, small letters (such as x) to denote concrete values, calligraphic
letters (such as &) to denote sets, serif letters (such as A) to denote algorithms, and bold
typeface letters (such as C) to denote circuits. All of our algorithms are modeled as
(possibly interactive) Turing machines; if algorithm A has oracle access to some oracle
O, we often implicitly write Qg for the set of queries asked by A to O.

For a string x € <s*, we let |x| be its length; if X is a set, |X| represents the
cardinality of X. When x is chosen uniformly in X, we write x <—s X’. If A is an
algorithm, we write y <—s A(x) to denote a run of A on input x and output y; if A is
randomized, y is a random variable and A(x; r) denotes a run of A on input x and
(uniform) randomness r. An algorithm A is probabilistic polynomial-time (PPT) if A
is randomized and for any input x,r € <—s* the computation of A(x; r) terminates
in a polynomial number of steps (in the input size). We write C(x) = y to denote the
evaluation of the circuit C on input x and output y.

Let G be an experiment defining the security of a cryptographic primitive IT and E
be an event. We write P [Gn,A()») = 1|E] (i.e., the outcome of experiment Gy a ()
conditioned to the event E) to denote the advantage of an adversary A in winning the
experiment Gy a(%) (i.e., Gra (%) = 1) when the event E holds.!”

Negligible functions. Throughout the paper, we denote by A € N the security parameter
and we implicitly assume that every algorithm takes as input the security parameter. A
function v(-) is called negligible in the security parameter A € N if it vanishes faster than
the inverse of any polynomial in A, i.e. v(A) € O(1/p(})) for all positive polynomials
p(A). We sometimes write negl(i) (resp. poly(4)) to denote an unspecified negligible
function (resp. polynomial function) in the security parameter.

3.2. Lockable Obfuscation

A lockable obfuscator [31,48] permits to obfuscate a circuit C together with a ‘ilpck”
y and a message m. As a result, the obfuscator will output an obfuscated circuit C that
will behave as follows:

m ifCx)=y

Cwx) = .
1 otherwise.

More formally, let n(-), s(-), d(-) be polynomials, and C, s 4(}) be the family of circuits
of depth d(}) with input size n()\) and output size s(A). A lockable obfuscator for the
circuit family C, 5 4 (%) and message space M is composed of the following polynomial-
time algorithms:

17 This is equivalent to saying that the output of Gy A (%) is set to O when E does not hold.
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i)

(C,m, @) —s Ag(17)

b—s{0,1},y «s {0,1}°*)

Co «s Obf(1*,C, y,m), C; s S(1*, 11€1 1lml)
b —s A1 (1Y, Cp, @)

If (b’ = b): return 1

Else: return 0

Fig. 1. Game defining security of lockable obfuscation.

Obf(1*, C, v, m): Upon input the security parameter 1*, a circuit C € Cnsar), a
lock y € < s and a message m € M, the randomized lockable obfuscator
algorithm outputs a circuit C. ~

Eval(C, x): Upon input an obfuscated circuit C and an input x € <" the deter-
ministic evaluation algorithm outputs a message m € M U {L}.

Definition 1. (Semi-statistical correctness of lockable obfuscation [31]). A lockable
obfuscator [T = (Obf, Eval) for the circuit family C, 5 4(A) and message space M
satisfies semi-statistical correctness if:

1. VA e N,Vx € <" m e M,VC € Cp.4(1) such that C(x) = y, we have
P [Eval(Obf(1*, C, y,m), x) = m] = L.
2. VA eN,Vx € <" ¥m e M,VC € C,4.4(2) such that C(x) # y, we have
P [Eval(Obf(1*, C, y, m), x) = m] < negl(1).

As for security, lockable obfuscation must hide any information about the circuit C,
the message m and the lock y when the lock is randomly chosen. This is defined by
requiring that there exists a simulator S that simulates the obfuscated circuit C.
Definition 2. (Security of lockable obfuscation). A lockable obfuscator IT = (ODbf,

Eval) for the circuit family C, 5 4(1) and message space M is secure if there exists a
PPT simulator S such that for every PPT adversary A = (Ao, A) we have:

']P’ [G'g;k\-gm) - 1] - % < negl(n),

where G'lfl’ck’séim (A) is depicted in Fig. 1.

Remark 1. The definitions above are taken from [31]. Wichs and Zirdelis [48] proposed
aslightly more general notion of obfuscation for multi-bit compute-and-compare circuits
in which the lock is only required to be unpredictable. They also give an obfuscator for
multi-bit compute-and-compare circuits from the LWE assumption.
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SR G0
k —s KGen(17) (pk, sk) s KGen(1*)
(m®,mt, ) —s AE”C(k")(lA) (m®, m!, o) —s Ag(17, pk)
bs{0,1},c—sEnc(k,m?)  b<s{0,1}, ¢ s Enc(pk,m")
b s Allznc(k")(l)‘,c, ) b —s A1 (17, ¢, )

If (' =b): return 1 If (b’ =b): return 1

Else: return 0 Else: return 0

Fig. 2. Game defining CPA security of SKE and PKE.

3.3. Symmetric and Public Key Encryption
3.3.1. Symmetric Key Encryption

A symmetric-key encryption (SKE) scheme with message space M is composed of the
following polynomial-time algorithms:

KGen(1*): The randomized key generator takes as input the security parameter 1* and
outputs a symmetric key K.

Enc(k, m): The randomized encryption algorithm takes as input a symmetric key K and
a message m € M, and outputs a ciphertext c.

Dec(k, ¢): The deterministic decryption algorithm takes as input a symmetric key kK
and a ciphertext c, and outputs a message m.

We require a SKE to be correct and secure against chosen-plaintext attacks (CPA).

Definition 3. (Correctness of SKE). A SKE I1 with message space M is correct if
VA €N, Vm € M, we have

P [Dec(k, Enc(k, m)) = m] = 1 — negl()),

where k <—s KGen(1%). The above probability is taken over the random coins of KGen
and Enc.

Definition 4. (CPA security of SKE). We say that a SKE TIT is CPA secure if for all
PPT adversaries A = (Ag, A}):

1
‘IP’ [Gﬁf’f\‘*s“e(x) - 1] — 5| = negin.

where game G%P,':"Ske (A) is depicted in Fig.2.
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3.3.2. Public Key Encryption

A public-key encryption (PKE) scheme with message space M is composed of the
following polynomial-time algorithms:

KGen(1*): The randomized key generator takes as input the security parameter 1* and
outputs a public and a secret key pair (pk, sk).

Enc(pk, m): The randomized encryption algorithm takes as input a public key pk and
a message m € M and outputs a ciphertext c.

Dec(sk, ¢): The deterministic decryption algorithm takes as input a secret key sk and
a ciphertext ¢ and outputs a message m.

We consider the usual definition of correctness and CPA security of PKE.

Definition 5. (Correctness of PKE). A PKE IT with message space M is correct if
Vi € N, Y(pk, sk) output by KGen(1%), Vm € M, we have

IP [Dec(sk, Enc(pk, m)) = m] > 1 — negl()),

where (pk, sk) <—s KGen(1*). The above probability is taken over the random coins of
KGen and Enc.

Definition 6. (CPA security of PKE). We say that a SKE IT is CPA secure if for all
PPT adversaries A = (Ag, A}):

’IP’ [GaaPeo) =1] - % < negl(),

where game GgPﬁ‘-pke () is depicted in Fig. 2.

3.4. Predicate Encryption

In PE, a trusted authority generates a decryption key for the receiver associated to an
arbitrary predicate of his choice. The receiver is able to decrypt a ciphertext if and only if
the predicate P (corresponding to its decryption key) is satisfied when evaluated with the
predicate input x used for encrypting the plaintext, i.e. P(x) = 1. Formally, a PE with
message space M, input space X', and predicate space P, is composed of the following
polynomial-time algorithms:

Setup(1*): Upon input the security parameter 1, the randomized setup algorithm out-
puts the master public key mpk and the master secret key msk.

KGen(msk, P): The randomized key generator takes as input the master secret key
msk and a predicate P € P. The algorithm outputs a secret decryption key dKk p
for predicate P.

Enc(mpk, x, m): The randomized encryption algorithm takes as the master public key
mpk, an input x € X, and a message m € M. The algorithm produces a ciphertext
c linked to both x and m.
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GIATE ) GHA )

(mpk, msk) «s Setup(1*) (mpk, msk) s Setup(1*)

(mO,m' 2, a) «s AKGE"("‘Sk )(IA mpk) (m®,mt, 20, 2t a) —s AKGen(mSk )( , mpk)
b s {0,1}, c <3 Enc(mpk, z, m") b3 {0,1}, c s Enc(mpk, z*, m®)

b —s ATGE"(mSk")(lk,c,a) b —s AKGe"(mSk )(1)‘ ¢, @)

If (' =b): return 1 If (' =b): return 1

Else: return 0 Else: return 0

Fig. 3. Game defining CPA, CPA-1-sided, and CPA-2-sided security of PE.

Dec(dkp, ¢): The deterministic decryption algorithm takes as input a secret decryption
key dkp for predicate P € P and a ciphertext c. The algorithm outputs either a
message m or an error L.

Correctness of PE states that the receiver obtains the message with overwhelming prob-
ability if P(x) = 1. On the other hand, if P(x) = O, the decryption outputs L with
overwhelming probability.

Definition 7. (Correctness of PE). A PE with message space M, input space X, pred-
icate space P, is correct if VA € N, Vm € M, Vx € X, VP € P, the following two
conditions hold:

1. If P(x) = 1, then P [Dec(dkp, Enc(mpk, x, m)) =m] > 1 — negl(x) where
(mpk, msk) <s Setup(1*) and dkp <—s KGen(msk, P).

2. If P(x) = 0, then P[Dec(dkp, Enc(mpk, x,m)) = L] > 1 — negl(A) where
(mpk, msk) <s Setup(1*) and dkp <s KGen(msk, P).

The above two probabilities are taken over the random coins of Setup, KGen and Enc.

Security of PE comes in different flavors. The standard CPA security requires the
adversary to distinguish between the encryption of two messages for the same predicate
input. More formally, the adversary is allowed to perform a polynomial number of queries
to the key generation oracle. Then, the adversary chooses two messages m® and m! and
an input x, and wins the CPA security game if it can distinguish between an encryption of
Enc(mpk, x, m") and Enc(mpk, x, m') with non-negligible probability (a PE scheme
that satisfies CPA security is also called attribute-based encryption (ABE)).

Definition 8. (CPA security of PE). We say that a PE I is CPA secure if for all valid
PPT adversaries A = (Ag, A1):

‘ [GSPAPEG) =1] —% < negl(h),

where game GCPA PE()) is depicted in Fig. 3. Adversary A is called valid if VP € Okgen
it holds that P(x) =0.

We also consider two stronger definitions of security, namely CPA-1-sided and CPA-
2-sided security, guaranteeing also the secrecy of the predicate input used during the
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encryption of a message. In this security games, the adversary is allowed to choose two
different inputs x° and x! and the usual messages m” and m'. CPA-1-sided security
guarantees the privacy of the input only when the predicates for which the adversary
knows a decryption key (i.e. the ones he received from the key generation oracle) are not
satisfied, i.e. the receiver cannot decrypt the message. On the other hand, CPA-2-sided
security considers the same property also when the predicate is satisfied, i.e., the receiver
can decrypt the challenge ciphertexts.

Definition 9. (CPA-1-sided and CPA-2-sided security of PE). Let t € [2]. We say that
a PE IT is CPA-¢-sided secure if for all valid PPT adversaries A = (Ag, A():

1
Flegh P = 1] -

< negl(»),

where game G%PQ'I'PE()\) is depicted in Fig.3. Adversary A is called valid if VP €
OKaen: ’

Caser=1:Px%) =PuxhH =0.
Caser =2 : Either P(x?) = P(x') = 0or P(x%) = P(x!) Am® = m!.

Through the paper, we say I is CPA-1-sided (resp. CPA-2-sided) secure without collu-
sions if |Okgen| = 1, i.e., the adversary cannot get more than one decryption key.18

Remark 2. PE schemes, satisfying CPA security (Definition 8) or CPA-1-sided security
(Definition 9), can be built from different assumptions. Notably, [30] proposes an LWE-
based PE scheme satisfying CPA-1-sided (and thus CPA) selective security, i.e., the
adversary chooses the challenge messages and predicate inputs before receiving the
master public key. By using complexity leveraging, the same construction achieves
adaptive security (i.e., Definitions 8, 9) but this requires sub-exponential LWE.

4. Multi-key and Multi-input Predicate Encryption

We provide the formal definitions of multi-key PE and multi-input PE in the follow-
ing Sects. 4.1 and 4.2, respectively. In Sect. 4.3, we show the relations between multi-key
PE and multi-input PE schemes.

18For the sake of clarity, we implicitly assume that challenge messages and inputs have the same length, i.e.,
\mol = |m1| and |x0| = |)cl | (this is required to exclude trivial attacks). We stress that when the single-input
PE scheme has an apriori bound on the length of the messages and attributes (defined on setup), the latter have
same length by definition.
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G%[Ii’ﬁ—t—kPE()\)

(mpk, msky, ..., msky) <s$ Setup(1>‘)

KGen(msky,-),..., KGen(mskn,»)(l)\

1.0 1
,xTo, T, o) S A

(m®,m , mpk)
b—s{0,1}, c —s Enc(mpk, z°, m?)

b s All'(Gen(mskl,-),...,KGen(mskn,-) (1)\7 , Ot)

If (' =b): return 1

Else: return 0

Fig. 4. Game defining CPA--sided security of n-key PE.

4.1. Multi-key PE

Formally, an n-key PE with message space M, input space &', and predicate space
P = {Py,..0,(®)}@,..,vney indexed by V = V| x --- x V), is composed of the
following polynomial-time algorithms:

Setup(1*): Upon input the security parameter 1* the setup algorithm outputs the master
public key mpk and the n master secret key (mski, ..., msk,).

KGen(msk;, v;): Let i € [n]. The randomized key generator takes as input the ith
master secret key msk; and the ith index v; € V;. The algorithm outputs the ith
secret decryption key dk,, for the predicate index v;.

Enc(mpk, x, m): The randomized encryption algorithm takes as the master public key
mpk, an input x € X, and a message m € M. The algorithm produces a ciphertext

c.
Dec(dky,, ..., dk,,, ¢): The deterministic decryption algorithm takes as input n se-
cret decryption keys (dKky,, ..., dk,,) for the n indexes (vi,...,v,) € V and a

ciphertext c. The algorithm outputs a message m.

Correctness is intuitive: given the decryption keys (dk,,, ..., dk,,) for (vi, ..., v,)
€ V, the decryption algorithm returns the message m (encrypted under the input x) with
overwhelming probability, whenever Py, . ., (x) = 1.

Definition 10. (Correctness of n-key PE). A n-key PE with message space M, input
space X, predicate space P = {Py,... v, }v,,...v,cy indexed by V = Vi X -+ XV, is
correctif VA € N, Vm € M, Vx € X,V(v1,...,v,) € Vsuchthat P,, ., (x) =1, we
have:

P [Dec(dk,,., ..., dk,,, Enc(mpk, x, m)) = m] > 1 — negl(2),

where (mpk, mski, ..., msk,) <s Setup(1*) and dk,, < KGen(msk;, v;) fori €
[n]. The above probability is taken over the random coins of Setup, KGen, and Enc.

As for security, we adapt the standard CPA-1-sided and CPA-2-sided security of PE
to the n-key setting. In particular, an adversary (with oracle access to KGen(msk;, -) for
i € [n]) cannot distinguish between Enc(mpk, x°, m®) and Enc(mpk, x!, m!) except
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with non-negligible probability. When considering CPA-1-sided security, the adversary
is valid only if it cannot decrypt the challenge ciphertext, i.e., it asks to the n key gen-
eration oracles indexes (vy, ..., v,) such that P, _,, x% = Py, ..o, (x1 = 0. Analo-
gously, the CPA-2-sided security captures the indistinguishability of Enc(mpk, x°, m?)
and Enc(mpk, x!, m') even when the adversary can decrypt the challenge ciphertext,
ie., Py, v, (xo) = Py...v, (xl) = 1 and m® = m!. These security definitions are
formalized below.

.....

Definition 11. (CPA-1-sided and CPA-2-sided security of n-key PE). Lett € [2]. We
say that a n-key PE I is CPA-t-sided secure if for all valid PPT adversaries A =
(Ao, A1):

1
‘IP’ [Gﬁf’f\\'*kPE(x) - 1] — 3| = negix),

CPA-t-kPE
I1,A

where game G (1) is depicted in Fig.4. Adversary A is called valid if Vv; €

QKGen(mskl,% .Y, € QKGen(msk,,,~)a we have!”

Caser=1:Py o, (") =P, ., &H=0.
Case r = 2 : Either P,, . n@H =0

0 1 0 119
or Py, 0, (x) =Py, p,x)Am =m.

.....

yeeey

4.2. Multi-input PE

Formally, an n-input PE with message space M = M; x --- x M,, input space
X =X x -+ x A, and predicate space P, is composed of the following polynomial-
time algorithms:

Setup(1*): Upon input the security parameter 1* the setup algorithm outputs the en-
cryption keys (€Ki, ..., €K,) and the master secret key msk.

KGen(msk, P): The randomized key generator takes as input the master secret key
msk and a predicate P € P. The algorithm outputs a secret decryption key dk p
for predicate P.

Enc(ek;, x;, m;): Leti € [n]. The randomized encryption algorithm takes as input an
encryption key ek;, an input x; € Aj;, and a message m; € M;. The algorithm
produces a ciphertext c; linked to x;.

Dec(dkp, ¢y, ..., cy): The deterministic decryption algorithm takes as input a secret
decryption key dkp for predicate P € P and n ciphertexts (ci,...,c,). The
algorithm outputs n messages (my, ..., my).

Correctness states that ciphertexts (cy, ..., ¢;), each linked to an input x;, correctly
decrypt with overwhelming probability if P(x1, ..., x,) = 1.

19 As usual, we implicitly assume that challenge messages and inputs have the same length, i.e., |m0| = |m1 |
and \xol = |)cl | (this is required to exclude trivial attacks). We stress that when the multi-key PE scheme has
an apriori bound on the length of the messages and attributes (defined on setup), the latter have same length
by definition.
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Definition 12. (Correctness of n-input PE). An n-input PE with message space M =
My x---x My, input space X = X x - - - x A}, predicate space P, is correctif VA € N,

Yimy,...,my) € M,VY(x1,...,x,) € XVP € P such that P(xy,...,x,) = 1, we
have:

P[Dec(dkp,ci,....cp) = (mi,....my)] = 1 —negl(n),
where (eky, ..., ek,, msk) <s Setup(1*), dkp <sKGen(msk, P), and c; <s

Enc(ek;, x;, m;) for i € [n]. The above probability is taken over the random coins
of Setup, KGen, and Enc.

Security with and without corruptions. 'The CPA-1-sided and CPA-2-sided security of
n-input PE capture the infeasibility in distinguishing between ciphertexts (Enc
(eky, x%,m?), ... Enc(eky,, x0, m%)) and (Enc(eky, x}, m}), ..., Enc(ek,, x}, m})).
This is modeled by an adversary having oracle access to a key generation oracle
KGen(msk, -) (allowing it to get decryption keys dkp on predicates of its choice)
and n encryption oracles Enc(eky, -, -), ..., Enc(ek,, -, -) (allowing it to get encryp-
tions of arbitrary messages and inputs). Differently from the n-key setting, we consider
different models of security with respect to whether the encryption keys are secret (i.e.,
no corruptions) or public/leaked (i.e., the adversary has the possibility to get one or
more encryption keys of its choice). The corruption of an encryption key is captured
by giving access to a corruption oracle Corr(-) to the adversary that, on input i € [n],
it returns ek;. Intuitively, the knowledge of ek; impacts the validity condition that the
adversary must satisfy (e.g., the challenge ciphertext cannot be decrypted). Indeed, ek;
would allow the adversary to produce arbitrary ith ciphertexts on arbitrary ith inputs x;
and potentially decrypt part of the challenge ciphertext. Concretely, as for CPA-1-sided
security, the validity of the adversary can be defined as follows:

e No corruptions (a.k.a. the secret-key setting). If all the encryption keys (eKy, ...,
ek, ) are secret the validity conditions of CPA-1-sided security is straightforward.
It intuitively states that for every dk p (obtained through oracle KGen(msk, -)) and

any tuple of ciphertexts (cy, ..., ¢;) (each linked to an input x;) obtained through
the interleaving of part of the challenge ciphertext with the ciphertexts generated
by invoking oracles {Enc(ek;, -, -)}ie[n], we must have that P(xy,...,x,) =0

(otherwise part of the challenge ciphertext can be decrypted).

e With corruptions. If some of the encryption keys are known by the adversary
(i.e., obtained through the corruption oracle Corr(-)) then the validity condition
now changes according to which keys have been obtained. This is because the
adversary can now autonomously compute arbitrary ciphertext (for a particular slot
i) using the leaked ith encryption key ek; . Taking into account this observation, the
validity of CPA-1-sided security with corruptions says that any tuple of ciphertexts
(c1, - .., cp) that can be obtained by interleaving part of the challenge ciphertexts
with both the ones generated through oracles {Enc(ek;, -, -)}ic[»] and the ones that
can be autonomously generated using the leaked encryption keys, we must have
that P(x1,...,x,) =0.
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GﬁFAPA-t-iPE ()\)

(eki, ..., ekp, msk) —s Setup(1*)

KGen(msk,-),Corr(-),{Enc(ek;,-,-)}icrn
((m?)ze[n]a(mzl)le[n]v(‘r?)ze[n]a(le)ze[n]aa) 3 AO ! I€l ](1>\)

b«—s{0,1},c1 <3 Enc(eki,zb,mb), ..., cn <3 Enc(ekn,zl,mb)

KG k,-),Corr(-),{E ki, ) Yiein
b/ <—$A1 en(msk,-),Corr(-),{Enc(e ’ )}_76[ ](IA,Cl,...,Cn,Ot)

If (b’ =b): return 1
Else: return 0

Fig. 5. Game defining CPA-¢-sided security of n-input PE in the £-corruptions setting. Oracle Corr () returns
ek; for j € [n].

The validity of CPA-2-sided security (with and without corruptions) can be easily ob-
tained by adapting the above discussion. Below, we provide the formal definition.

Definition 13. (¢-Corruptions CPA-1-sided and CPA-2-sided security of n-input PE).
Let r € [2]. We say that an n-input PE IT is CPA-z-sided secure in the ¢-corruptions
setting if for all valid PPT adversaries A = (Ag, A1):

, 1
’P [Gfi,CAPA”"PE(M = 1] — 5| = negl®).

where game G%‘CAPA"'iPE(A) is depicted in Fig.5. Let Q; = {x|3(x, m) € QEncek, ...}
for i € [n]\Qcorr and Q; = A} for i € Qgcorr. Moreover, let Qfl (ford € <)
be the ordered set composed of the predicate inputs Q; and the challenge input xl.d ,

ie., Q? = {xi(l’d), .. .,xi(ki’d),xl.(ki+l’d) = xl.d} where k; = |Q;| and xYU-D e Q; for

j € [ki1.?° Adversary A is called valid if |Qcorr| < € and VP € Qkgen, Vj € [n],
Vii € [ky +11,...,Vi, € [k, + 1], we have

. (i1,0) (j-1,00 o _(Gj+1,0) in,0
Caser =1:P(x, ,...,xj_’l ,xj,xjjrl ,...,xlg’" )

x(ij—l>1) 1 _Gj+1.D

-
XX X s xlim by =0,

=PV .
Case r = 2 : Either
. i 1,0 ii11,0 .
P(xf”’o), ... ,x;lill ), x?, x;l_ﬁl ), cel x,(l’"’o))

Gj—1,1) 1 G411

(in, 1)y —
j,] ’ jv ]+1 ’.."xnn )_O

= P(xfil’l), X
or

(i1,0) @ij-1,00 o _(+1,0) (in,0)
P(x e XL XX s X,
(j-1,1) 1 _(@j+1,D)

.y ]_1 ) j, j+1 PRI

0 1

= P(x{i]’l), . ,x,(li”’l)) Amj i

200bserve that Q? and Qi1 are identical except for the last element.
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£-hyb-CPA-1-iPE
Gria O

(eki, ..., ekyn, msk) s Setup(1*, 12), pub = (ekp—py1,-..,ekn)

KGen(msk,-),{Enc(ek;,-,-)}icrn_
((m?)ze[n]v(mzl)ze[n]v (1,10)16[”]’ (Ii)ze[nha) 3 AO ’ I€l e](:l)\:pUb)
b s {0,1},¢1 «<s Enc(eki, 2}, m}), ..., cn s Enc(eky,z, m>)

b —s ATGen(mSk,‘)’{EnC(ekj,.,.)}je["_[] (1, cn, @)
If (b/ =b): return 1

Else: return 0

Fig. 6. Game defining CPA-z-sided security of n-input PE in the £-hybrid setting.

Through the paper, for ¢ € [2], we say that IT is CPA-¢-sided secure in the £-corruptions
setting and without collusions if |Qkgen| = 1 (i.e., the adversary asks for a single
decryption key). If |Qcorr|] = O (i.e., no corruptions), we say that IT is CPA-z-sided
secure in the secret-key setting. In case of both restrictions, we say that IT is CPA-
t-sided secure in the secret-key setting and without collusions (i.e., |Qcorr] = 0 and

|QkGenl = 1)~2]
4.3. Relating Multi-key PE and Multi-input PE

Here, we show a construction of n-key PE from (n + 1)-input PE supporting arbitrary
predicates and tolerating 1 corruption. In more details, it suffices that the (n 4 1)-input
PE satisfies a weaker flavor of security under corruptions, named £-hybrid setting (which
is formalized in this section).

Multi-input PE in the £-Hybrid Setting. A multi-input PE in the hybrid setting allows
generating (during setup) some encryptions keys that can be made public. The main
difference between the hybrid setting and the corruption setting is that in the former the
setup needs to know a priori which ones will be public (in other words, the setup depends
on the keys that the adversary wants to leak/obtain). For this reason, it is easy to see
that the hybrid setting is stronger than the secret-key one but significantly weaker than
the corruption setting (in which the keys are leaked by the adversary in an adaptively
fashion).

We assume that the Setup algorithm takes as input an additional parameter 1¢ de-
noting the number of keys that will be made public. Without loss of generality, we
assume that the first n — £ keys (eky, ..., €K,_,) are kept secret whereas the last £
keys (eK,—¢+1, ..., €k,) are published. Observe that, for £ = 0, the hybrid setting
corresponds to the secret-key setting (see Sect.4.2).

21 A for multi-key PE, we implicitly assume that challenge messages and inputs have the same length, i.e.,
\m?l = |m ill and |le\ = |x l.ll fori € [n] (this is required to exclude trivial attacks). We stress that when the
multi-input PE scheme has an apriori bound on the length of the messages and attributes (defined on setup),
the latter have same length by definition.
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Definition 14. (¢-Hybrid CPA-1-sided and CPA-2-side security of n-input PE). Let
t € [2]. We say that a n-input PE IT is CPA-z-sided secure in the ¢-hybrid setting if for
all valid PPT adversaries A = (Ag, A1):

< negl(»),

_hyb-CPA-1-i 1
‘P[ngb CPA-1-PE ) _ 1] -

where game Ge hyb CPA-1- IF,E()\) isdepictedinFig.6.Let Q; = {x|3(x, m) € QEnc(ek;...)}

fori € [n — E] and Q;=A; for i € [n]\[n — £]. Moreover, let Q? (ford € <)
be the ordered set composed of the predicate inputs Q; and the challenge input xd
ie., Qd = {x(1 d),... (k d),x(k +Ld) d} where k; = |Q;| and xUD e 9, for
j € [ki]. Adversary A 1s called valid if |QCorr| < £ and VP € Qkgen, VJ € [n],
Viy € [k1 + 11, ..., Viy € [k, + 1], we have??

: 0 _—
Caser=1:P(x{"" . ;ljll ),x?,x;lﬁl VL x im0

(i1.1) Gj—1,1) 1 G+, 1
P(x; ,...,xj_’l ,xj,xjfrl ,...,xfl‘" )y = 0.

Case r = 2 : Either

(i1,0) ij-1,00 o (j+1,0)  (in0)
P(x s XD XX xp")
- @1,1) (z, D1 G D (in, 1)y _
= P(x, e XL XX s Xy ) =0
or

(i1,0) (l -1.00 o _(@j+1.0) (, 0)
P(x, s XL XX ety

_P(x(” 1) x(z_,_u,l) 1 (i_/+1,1)

(in, 1) 0 _
Ce XL X X Xy )/\mj—mj.

Multi-key PE from Multi-input PE. Here, we build a n-key PE from (n 4 1)-input PE
that tolerates 1 public encryption key, i.e., I-hybrid setting (Definition 14). The idea is to

use the first n inputs of the predicate P (x1, ..., x,+1) (of (n + 1)-input PE) to determine
the indexes (vi, ..., v,) € V that define the predicate Py, . ., (x) of the n-key PE, i.e.,
P(x1,...,%pq1) = P, ..., Uy, x) = Py, v, (x) where x; = v; fori e [n] and
Xn+1 = X.

Construction 1. Ler iPE = (Setup,, KGeny, Ency, Dec)) be a (n + 1)-input PE
scheme with message space M = My X -+ X M, 41, input space X = X X+ -+ X Xp41,
and predicate space Py = {P(x1, ..., Xp+1)} such that

Py, ..., xp41) = x1 ..... x,,(xn+l)s

22 A5 usual, we implicitly assume that the challenge messages and inputs have the same length, i.e., \mol =

Im}| and |x?| = |x}| fori € [n].
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where x; € X fori € [n + 1]. We build a n-key PE scheme with message space
M = M1, input space X = X, 1, and predicate space P = { Py, ... v, (X)}w....0)eV
indexed by V = X1 x --- x &, in the following way:

Setup(1*): Upon input the security parameter 1* the randomized setup algorithm

outputs mpk = ek, and msk; = (ek;, dkp), ..., msk, = (ek,,dkp) where
(mpk’, ek, ..., ek,11) <= Setup, (1*) and dkp <—s KGen(msk’, P) for P €
Pi.

KGen(msk;, v;): Leti € [n]. Uponinput the ith master secret keymsk; = (ek;, dkp),
and the ith predicate index v; € X, the randomized key generator outputs dk,, =
(cy;, dkp) where c,, <—s Ency(ek;, v;, L).

Enc(mpk, x, m): Upon input the master public key mpk = €K,11, an input x €
Xp+1, and a message m € My,41, the randomized encryption algorithm computes
¢ <sEnci(ek,+1, x, m).

Dec(dky,, ..., dky,, c): Upon input n secret decryption keys dk,, = (cy,,dKp),
..., dky, = (cy,, dKp) and a ciphertext c, the deterministic decryption algorithm
outputs myy| where (my, ..., myy1) = Deci(dkp, ¢y, ..., cy,, C).

Correctness follows from the correctness of iPE. As for security, we establish the
following result.

Theorem 4. Let iPE be as above. For t € [2], if iPE is CPA-t-sided secure in the 1-
hybrid model without collusions (Definition 14) then the n-key PE scheme I1 from Con-
struction 1 is CPA-t-sided secure (Definition 11).

Proof. (CPA-1-sided security of IT) Without loss of generality, we assume that the ad-
versary A submits (at least) one query to each key generation oracle KGen(mski, -),
..., KGen(msk,,, -) (proving the security of Tl against this adversary implies the secu-
rity of T1 against any other adversary that does not query an oracle KGen(msk;, -, -)
for a j € [n]). Suppose there exists a valid PPT adversary A with a non-negligible
advantage in breaking the CPA-1-sided security of T1. We build an adversary A’ that
breaks the 1-hybrid CPA-1-side security (without collusions) of iPE. A’ is defined as
follows:

1. Receive €K, from the challenger and send it to A.

2. Send the query P (i.e., the predicate supported by iPE) to the KGen; oracle and
receive dK p.

3. item:answerspsqueriesspsmultispskeyspsPEspsfromspsmultispsinputspsPE Initial-
ize L; = {0} fori € [n]. A" answers to the incoming oracle queries as follows:

e On input v; € X; for KGen(msk;, -), forward the query (v;, L) to oracle
Enci(ek;, -, -) and receive the answer c,,. Add v; to L; and return dk,;, =

(Cv,w dkP)
4. Receive the challenge (mo, m!, x9, xl)from A. A’ sends the challenge ((m?, el
mg), (m%, m;) (x?, ...,x,?), (xll, ...,x,ll)) where m’1 = ... = m; =1,

i i =i _ = i i ; ;
m, o =m,x;=x; =x;<sLjandx, =x' forje[nlandi e <.

5. Receive the challenge ciphertexts cy, ..., cy+1 and forward cp41 to A.



24 Page 36 of 100 D. Francati et al.

6. Answer to the incoming oracle queries as in Item 3.
7. Return the output of A.

Let d be the challenge bit sampled by the challenger. A’ perfectly simulates the view of
A. Moreover, since A is a valid adversary, we have thatVvi € QkGen(msk;.-)s - - - » YUn €
OKGen(msk,..)» we have Py, ., x% = Py,...v, (x1) = 0. In order to be valid, A needs
to satisfy the condition of Definition 14. Let Qf’ as defined in Definition 14. First, note
that, for i € [n], we have that Q? = Qil = OKGen(msk;,-) = Li since xlfl = xi] —d _ X;
are sampled from L; (i.e., Q; does not contain any value that depends on the challenge
bit d). Hence, the only case in which the adversary A may evaluate the predicate P on
an input that depends on the challenge bit d (i.e., the cases captured by Definition 14)
is when A’ uses the challenge ciphertext c,, 1. However, when ¢y is used, the validity
of A implies that¥(vy, ..., v,) € Qlf NEEE Qﬁ (recall Qf’ = Ql.lfbfori € [n]),

0
P(ui, .. s vn, X,y p) = Py

..........

where xfl_H = x! fori € <s. Hence, A’ submits only a single query to oracle KGen;

and is also a valid adversary for Gﬁjgg',CPA'l'iPE (X). This concludes the proof.

(CPA-2-sided security of IT) The reduction is identical. The only difference is the
analysis of the validity of A'. By definition A is a valid adversary with respect to the
CPA-2-sided security of IPE, i.e, Yv1 € Okgen(msk,,-)» - --» YVn € DKGen(msk,,.)» We
have

n (xl) =0or

Un(xl) Am® =m'.

..........

,,,,,,,,,,

If A satisfies the first part of the above condition, then the analysis of A’s validity is
identical to that of CPA-1-sided security. On the other hand, if A satisfies the second
part of the above condition, then the validity of A follows by using an similar argument
to that of CPA-1-sided security and, in addition, observing that

0 0 1 1
Pi, .o vns Xqq) = Py 0, (07) = Py 0y, (x7) = P(U1, - ., Un, Xp0q),
and m2+1 =m=m!' = m;11+1' This concludes the proof. [

5. Constructions

In this section, we give different constructions of multi-key and multi-input PE (see
also Sect. 1.2) for predicates P(x1, ..., X;) = P1(x1) A... A Py(xy).

In particular, in Sect. 5.1 we give a construction of n-key PE from single-input PE and
lockable obfuscation for n = poly(A). This construction is secure against unbounded
collusions.

In Sects.5.2 and 5.3, we give two constructions of n-input PE from single-input PE,
lockable obfuscation, and SKE/PKE. The first handles poly()-arity and it is CPA-1-side
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Ce(dki, ..., dky) Ceil(er,. .. en—1,dkp)
Initialize: ¢, = ¢ Initialize: ki = k,cn, = ¢
For i from n to 1 do: For i from n to 1 do:

Dec; (dk;, ¢;) = ci—1 Deci (dkp, Deca(kq, ¢i)) = v;
end for. If v; = L: return L
return cg Else: let v; = (yi, ki+1)

end for.

return y, where v, = (yn, k1)

Fig. 7. On the left, the definition of the circuit C. of Construction 2. On the right, the definition of the circuit
C. k of Construction 3.

secure without collusions and in the secret-key setting. The second handles O (1)-arity
and it is CPA-1-side secure without collusions and in the (n — 1)-corruptions setting.
This second construction leverages a new nesting execution technique of (lockable ob-
fuscated) circuits.

Both multi-input constructions support conjunctions of arbitrary predicates with wild-
cards, i.e., for every i € [n], there exists (possibly unique) a wildcard x such that for
every ith predicate P; we have P;(x]) = 1 (in Sect.5.4 we discuss how to remove the
wildcard when no corruptions are in place).

Also, our constructions are generic and achieve CPA-2-sided security if the underlying
single-input PE is CPA-2-sided secure (in case of no corruptions, our CPA-2-sided secure
multi-input Construction 3 supports n = O (log(1))).

5.1. Multi-key PE from PE and Lockable Obfuscation

Construction 2. Consider the following primitives:

1. Fori € [n], a PE scheme PE; = (Setup;, KGen;, Enc;, Dec;) with message
space M, input space X;, and predicate space P; = {Py(x)},e), indexed by
V;. Without loss of generality, we assume that PE; has ciphertext space Y,
My = «s"® and M; = Y;_| for every i € [n]\{1}. In order to do not
incur into an exponential ciphertext growth (e.g., for n = poly(})), each ith PE
scheme must have a ciphertext expansion of poly(L) + |m;| where |m;| is the
length of the messages m; € M, supported by the ith PE scheme (this can be
obtained generically from any PE scheme by leveraging hybrid encryption, i.e.,
Enc; (mpk, x, 5)||PRG(s) & m; where s <s <«s*).23

2. A lockable obfuscation scheme LOBF = (Obf, Eval) with message space M for
the family of circuits Cy 5 a(X) = {C,} as defined in Fig.7, where n(}), s(1), d())
depends on the schemes PE, ..., PE, used, and the circuits C, s 4(\).

We build a n-key PE scheme I1 with message space M, input space X = X X - - - X Xy,
and predicate space P = { Py, .. v, (X1, ..., X5) = Py (x1) A=+ A Py, (X))} vy, )V
indexed by YV = V| x --- x V, (and Py, € P; fori € [n]), as follows:

23We stress each PE; requires a different PRG with a particular stretch depending on the size of the message
we wish to encrypt. Alternatively, it is possible to use a single PRG if the latter has an arbitrary polynomial
stretch.
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Setup(1*): Upon input the security parameter 1* the randomized setup algorithm
outputs mpk = (mpkKy, ..., mpk,) and msky, ..., msk, where (mpk;, msk;)
s Setup; (1*) fori € [n].

KGen(msk;, v;): Let i € [n]. Upon input the ith master secret key msk; and the
ith predicate index v; € V;, the randomized key generator outputs dK,, <
KGen;(msk;, P,,) where P,, € P;.

Enc(mpk, x, m): Upon input the master public key mpk = (mpk,, ..., mpk,), an
input x = (x1,...,xp) € X, and a message m € M, the randomized encryption
proceeds as follows:

1. Sample y <s «s*® and let co = y.
2. Fori € [n], compute c; <s Enc;(mpk;, x;, ci_1).
Finally, it outputs ¢ = C where C < Obf(1*, C,,, y, m).
Dec(dky,, ..., dky,, ¢): Upon input n decryption keys dk,, ..., dK,, and a cipher-

text ¢ = (C the deterministic decryption algorithm outputs m = = Eval(C, (dky, ,
-, dky,)).

Correctness follows from the correctness of the underlying schemes. We establish the
following result.

Theorem 5. Letn = poly()), PE;, ..., PE, and LOBF be as above.

1. If each PEy, ..., PE, is CPA secure (Definition 8) and LOBF is secure (Defini-
tion 2), then the n-key PE scheme Tl from Construction 2 is CPA-1-sided secure
(Definition 11).

2. If each PEq, ..., PE, is CPA-2-sided secure (Definition 9) and LOBF is secure
(Definition 2), then the n-key PE scheme T1 from Construction 2 is CPA-2-sided
secure (Definition 11).

5.1.1. Proof of Theorem 5
CPA-1-sided security of IT (Theorem 5). Consider the predicate space P of Construc-
tion 2, i.e.,

P = {Pvl ..... vn(xla -~-7xn)}(v1,...,v,1)eV
= {Pvl (XD ALA Pv,l (xn)}(Pvl,...,PUn)e'Pl X...X Py 3)

Also, consider the validity condition of GCF>A 1-kPE (Definition 11). We can write such a
validity condition for the predicate space 73 as follows: Yv; € OkGen(msk,,)>---» Un €
QKGen(msk,l, )
Pv1 ,,,,, v,,(x?»~--ax2)=Pv1 ..... v,l(xllwnaxyb
- (PU,(x?) A APy, (x,?)) =0 A (PU,(x?) A APy, (x,?)) =0,

where xg = (x?, R x,?) and x| = (xll, ey x,i) are the two input challenges output
by the adversary. The above equation can be rewritten as follows: 3o, j1 € [n], Yvj, €
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QKGen(mskj0 ) VUjl € QKGen(mskj1 )

(x9) =0A Py (x}) =0. “4)

Ujo Vil
Hence, in order to be valid with respect to GCPA 1-kPE " A needs to satisfy the above
equation. Let Validity ; ; the validity COIldlthl’l (as deﬁned in Eq. (4)) with respect to
some jo, j1 € [n]. By taking into account the above point, the CPA-1-sided security
of Construction 2 follows by proving the following lemma.

Lemma 1. Let jo, j1 € [n]. If both PE, and PE;, are CPA secure (Definition 8) and
LOBF is secure (Definition 2), then

|
‘}P’ [Gﬁ'f,’;"l-"PE(A) - I‘Validity N jl] — 5| = negl).

Proof.  Consider the following hybrid experiments:

Hg (A): This is exactly the experiment GCPQ 1-kPE conditioned to Validity ;, ; where
the challenge bitis b, i.e., the adversary is valid and satisfies condition Validity ; ;.

Hb (X): Same as Ho, except that the challenger computes cjb <sEnc;j, (mpk]b,
w) where w <s M, (instead of cj, <= Enc;,(mpk ; i ]b s Cjp—1)-

le’ (A) Same as H?, except that the challenger simulates the challenge czphertext c=

C using the simulator of the lockable obfuscation scheme LOBF, i.e., C «sS1%,
11Cel | 1lmely.

Claim 1. H}(0) ~, HY ().

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between HZ o)
and Hll’ (A) with non-negligible probability. We build an adversary A that breaks the CPA
security of PE,. A'is defined as follows:
1. Receive mpkjb from the challenger.
2. Send mpk = (mpk,, ..., mpk,) to D where (mpk;, msk;) <-s Setup; (1*) for
i € [n]\{b}.
3. A answers to the incoming oracle queries as follows:
e On input v; € V; for KGen(msk;, -), A proceeds as follows: If j, = i, it for-
wards the query Py, € P;, to KGenj, and returns the answer dk,,. Otherwise
(if jb # i), it returns dK,, <—s KGen;(msk;, Py,) for P,; € P;.

4. Receive the challenge (mO, ml, (x?, el x,?), (xf, . ,x,}))from D.

5. Sample y <s <5 and set co = y.

6. Fori € [jp — 1], compute c, <—$ Enc,(mpk,,xf’, ci—1).

7. Send the challenge (m*, ml, x ) where m? = Cip ml < M, and receive the
challenge ciphertext c*

8. Fori € [n]\ [jp], compute ¢; < Enc; (mpk;, xf’, ci—1) where cj, = c*.

9. Finally, send ¢ = C «s Obf(1*, Ce,, v, m?) to D.
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10. Answer to the incoming oracle queries as in Item 3.
11. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates H? o(A). On the other hand, ifd = 1, A
simulates H}l’ (V). In addition, since D is valid and sansﬁes the condition Validity ; ; , we
conclude thatVvj, € Vj,, P, Vio (x ) = 0. This implies that VP € QKGen] P(x?h) =0.
Hence, A is a valid adversary wzth the same advantage of D. This concludes the proof. (]

Claim 2. H{(A) ~. H5(%).

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hll’ )
and Hg (M) with non-negligible probability. We build an adversary A that breaks the
security of lockable obfuscation LOBF. A is defined as follows:
1. Send mpk = (mpk,, ..., mpk,) to D where (mpk;, msk;) <s Setup; (1*) for
i €[n]
2. A answers to the incoming oracle queries as follows:

e Oninput v; € V; for RKGen(msk;, -), A returns dk,, <—s KGen;(msk;, P,,)

for Py, € P;.
3. Receive the challenge (mo, ml, (x?, el x,?), (xll, . ,x,%))from D.
4. Fori € [n]\ [jp]l, compute c¢; <=s Enc;(mpkK;, x7, ¢;—1) where cj, < M.

5. Theadversary A sends (Ce, , m by tothe challengerand receives back the obfuscated
circuit C Jfrom the challenger.

6. A returns ¢ = C to D.

7. Answer to the incoming oracle queries as in Item 2.

8. Return the output of D.

Let d be the challenge bit sampled by the challenger. When d = 0, A simulates Hlf x);
otherwise, if d = 1, A simulates Hg (X). Thus, A has the same non-negligible advantage
of D with respect to the experiment G:?géé"x s (V). This concludes the proof. O

Claim3. H5(0) = HI72(0).

Proof.  The claim follows by observing that these experiments do not depend on the
challenge bit b. (|

Lemma 1 follows by combining Claims 1-3. (]

By leveraging Lemma 1, we conclude that IT of Construction 2 is CPA-1-sided secure.
CPA-2-sided security of IT (Theorem 5). Consider the validity condition of GCPA 2-kPE
(Definition 11). This can be rewritten with respect to the definition of P (Eq (3)) as
follows: 3jo, j1 € [n], Yvj, € QKGen(mskj0,~)s Vv, € QKGen(mskjl,-)s Vi, ...,vp) €
OkaGen(msk;,) X+ X QKGen(msk,. )

Either P, (x0)=0A Py, (x}) =0
or Py, (x0) = Py, xD) AL APy (x0) = Py, (x]) Amg = my (5)
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Consider the following conditions:

Validity, j, ; : Vvj, € QKGen(msk/O ), Yvj, € QKGen(msk_/l,A),
”Jo (x ) =0A P”Jl (x}l) =0
Validity, : V(vy, ..., v,) € QKGen(mskl,-) X... X QKGen(mskn,-),

Py (x)) = Py D) A AP, (X0 =Py, () Am® =m!.

By leveraging the above validity conditions we can rephrase Eq. (5) as follows: 3y, ji €
[n] such that

Either Validity,, ; ; or Validity,.

Hence, in order to be valid with respect to GCP,’&\ 2kPE A needs to satisfy the above equa-
tion. By taking into account the above point, the CPA-2-sided security of Construction 2
follows by proving the following lemmas.

Lemma 2. Let jo, ji € [n]. If both PE;, and PEj, are CPA-2-sided secure (Defini-
tion 9) and LOBF is secure (Definition 2), then

’IP’ [Gﬁf’ﬁ'z-kPE(x) = 1|Validity, ;. jl] — = | < negl).

Proof. The lemma follows by using an identical argument to that of Lemma 1. O

Lemma 3. [feach PE, ..., PE, are CPA-2-sided secure (Definition 9), then

1
'IP [GFAPPE() = 1| Validity, | - 3| = neglh).

Proof.  Consider the following hybrid experiments:

Hg (X): This is exactly the experiment GCPQ "2KPE conditioned to Validity, where the
challenge bit is b, i.e., the adversary is valid and satisfies the condition Validity.
Hf’()») fori € [n]: Same as Hlfl, except that the challenger computes c; < Enc;(

mpk; xil_h, ci—1) (instead of c; <—s Enc; (mpk;, x,b, ci—1)-
Claim4. Fori € [n], H?_ (M) ~. HY ().

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hb 1 ()
and Hf’ (1) with non-negligible probability. We build an adversary A that breaks the
CPA-2-sided security of PE;. A is defined as follows:
1. Receive mpK; from the challenger.
2. Send mpk = (mpk,, ..., mpk,) to D where (mpk ;, msk;) <s Setup; (1*) for
J € [n\{i}.
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3. A answers to the incoming oracle queries as follows:

e Oninput v; € V; for RKGen(msk;, -), A proceeds as follows: If j = i, it
forwards the query P,; € P; to KGen; and returns the answer dkvj. Otherwise
(if j # i), it returns dk,; <—s KGen;(msk;, Py;) for Py; € P;.

4. Receive the challenge (mo, ml, (x?, e, x,?), (xll, . ,x,%))from D.

5. Sample y <s <3P and set ¢y = y.

6. For j € [i — 1], compute cj < Encj(mpkj,le._b, cj—1).

7. Send the challenge (mg, m}k x0 = xf’, xl = xil_b) where mg = mi =c¢i_1, and

receive the challenge ciphertext c*.
8. For j € [n]\ [i], compute cj < Encj(mpkj, x?, cj—1) where ¢; = c*.
9. Finally, send ¢ = C <«s Obf(1*, C,,, y, mp) to D.
10. Answer to the incoming oracle queries as in Item 3.
11. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates Hf?_1 (A). On the other hand, ifd = 1,
A simulates Hf? (A). In addition, since D is valid and satisfies the condition Validity |, we
conclude that Vv; € Qkgen(msk;.)s Po; (x?) = P, (xl.l). Hence, A is a valid adversary
with the same advantage of D. This concludes the proof. (I

Claim 5. H.(0) =H! ().

Proof.  Since Validity holds, we know that mg = mj. Hence, these experiments are
identically distributed. [

Lemma 3 follows by combining Claims 4 and 5. (]
By combining Lemmas 2 and 3 we conclude that IT of Construction 2 is CPA-2-sided
secure.

5.2. Secret-key Setting: Multi-input PE from PE, Lockable Obfuscation and SKE

Secret-key setting. 'We present our n-input PE construction that is CPA-1-sided secure
in the secret-key setting without collusions, for n = poly(1). It leverages a CPA-1-sided
secure single-input PE, lockable obfuscation, and SKE. The same construction is CPA-
2-sided secure in the secret-key setting without collusions for n = O (log()), if the
initial single-input PE is CPA-2-sided secure.

Construction 3. (n-input PE in the secret-key setting). Consider the following primi-
tives:

1. A PE scheme PE| = (Setup,, KGeny, Enc;, Dec,) with message space M =
<M 5 /\/l’l, input space X1 = X1 X --- X X1, and predicate space
Pr={P(x1,...,x0)} = {P1(x1) A+ A Py(x)}. Without loss of generality, we
assume that PE has ciphertext space M and there exists a (single) wildcard input
(x7, ..., x)) € Xy suchthatV(Py(x) A~ A Py(xy)) € P, Vi € [n], Pi(x}) = 1.
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2. A SKE scheme SKE = (KGen,, Enc,, Dec,) with message space M,. Without
loss of generality, we assume that SKE has key space M/,

3. A lockable obfuscation scheme LOBF = (Obf, Eval) with message space M3 for
the family of circuits Cy, 5 4(A) = {C, k} as defined in Fig.’l, where n(1), s(A), d (i)
depends on the schemes PE and SKE used, and the circuit depth of the circuits
Cn,s,d ().

n

We build a n-input PE scheme with message space M = M3 X --- x M3, input space
X = X, and predicate space P = P; = {P(x1,...,x,)} = {P1(x1) A --- A Py(xp)}
withwildcard (i.e., there exists a (single) wildcard (x7, . . ., x;) € X suchthat¥(Py(x1)A
<o A Py(xy)) € PVi € [n], Pi(x}) = 1), as follows:

Setup(1*): Upon input the security parameter 1*, the randomized setup algorithm out-
puts (€Ki, ..., ek,) and msk where (mpk, msk) <s Setup, (1*), ek; = (mpk,
ki, Kit1), Knse1 = ki, and k; <s KGeny(1%) fori € [n].

KGen(msk, P): Upon input the master secret key msk and a predicate P € P, the
randomized key generator outputs dkp <—s KGenj(msk, P).

Enc(ek;, x;, m;): Leti € [n]. Upon input an encryption key ek; = (mpk, K;, K;+1),
aninput x; € X1 ;, and amessage m; € Mas, the randomized encryption algorithm

i s Enci(mpk, (x1, ..., x0), (i, Kip1))

where xj = x; for any j € [n]\{i}. Finally, it outputs ¢ = ((E,',ci(z)) where

@,‘ <3 Obf(l)‘, (Cc-(z),kH.] , Vi m;) and C(z) <~$ EI’ICz(kl‘, C(l)).

samples y; <s <M and compute ¢

i i
Dec(dkp, c1, ..., cn): Upon input a secret decryption key dKp for predicate P € P,
and n ciphertexts (cy, ..., cp) such that ¢; = (C;, cl.(z)) for i € [n]. The deter-

ministic decryption returns (my, ..., my) where m; = Eval(C;, (cl-(i)l, o, c,(,z),

¢ e?) dkp)) fori € [n].
Asusual, correctness follows from the correctness of the underlying primitives. Below,
we establish the following result.

Theorem 6. Let PE, SKE, and LOBF be as above.

1. For n = poly(), if PE is CPA-1-sided secure without collusions (Definition 9),
SKE is CPA secure (Definition 4), and LOBF is secure (Definition 2), then the
n-input PE scheme T1 from Construction 3 is CPA-1-sided secure in the secret-key
setting without collusions (Definition 13).

2. Forn = O(log())), if PE is CPA-2-sided secure without collusions (Definition 9),
SKE is CPA secure (Definition 4), and LOBF is secure (Definition 2), then the
n-input PE scheme T1 from Construction 3 is CPA-2-sided secure in the secret-key
setting without collusions (Definition 13).

5.2.1. Proof of Theorem 6

CPA-1-sided security of IT (Theorem 6). Consider the predicate space P = {P(xq, ...,
xn)} of Construction 3 where P(x1, ..., x,) = Pi(x{) A -+ A P,(x,). Let P* € P be
the only predicate for which the adversary will ask the decryption key dkp+ during
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the experiment G0 CPA 1HPE (recall that we prove the security of Construction 3 in the
scenario without collus1ons i.e., |Okgenl| = 1). Also, consider the validity condition of
G0 CPA HPE 'We can write suchavahdlty condition with respectto P* € Okgen = {P*}
as follows Vje[n], Vi €lki+1],...,Vi, € [ky + 1],

i1,0 (ij-1,0) (ij41,0)
P*(x}ll ) x x;! 1] ,x;-),xjfl] .. (’" 0y
_ (i1.1) (-1 1 _Gjs1D (in,1)
=P (x,"",. ]’1 ,)cj,xH’1 s xym)
_ px, (i1,0) % (z, 1,0) 0 (ij41,0) * ¢ (in,0)
=Px; )N AP l( )/\P(x)AP_H(H_l )/\--/\P,-n(xn )

= PrO ) A A PE (f DY APEGH A PR G A A PEGED) = 0,

where Qb {x(1 b), ey l(k b), xl(k itLE) _ xb ;} is the ordered list composed of the ki

predicate inputs Q; submitted to oracle Enc(ek,, , -) and the challenge input xl (as
defined in Definition 13). The above equation can be rewritten as follows: 3jo, j; € [n],
V(... x)) € Q1 x e X Oy,

((Pl*(x?) —O0A-- AP0 = 0) v (R;f)(x?O) —0APL(Y,) = o)) A
((Pl*(xll) —OA-- AP = 0) v (P;j () =0APLG) = 0)) . ®)

Note that in the above equation we made explicit the challenge inputs and the inputs
submitted to the encryption oracles. For this reason, it is enough to quantify over all

(x],...,x;) € Q1 x--- x Q, where Q; = {x(l) . (k )} are the inputs submitted to
oracle Enc(ek;, -, -). Hence, in order to be valid, A needs to satisfy the condition defined
by Eq. (6). These conditions are defined by the events below: for some jo, j; € [n],

Validity, :

PN =0A- AP D =0APx)=0A--- AP =0.
Validity, ; ;, :Vx}o IS QjO,Vx}l €Qj,

Pr(x0)=0A P} (i) =0A P} (xj)=0AP(x})=0.
Validity; ;, 'Vx/- € Qjp,

Pr(x0)=0AP;;)=0AP(x])=0A--APHx,) =0.
Valldlty4!jl .ijl € Qj,

PE(x)) =0A---APFx)) =0A P(x)) =0A P} (x]) =0.

For the sake of clarity, in the rest of this proof, we use the notation V; = chz) K

where cl@ and k; 4 will be clear from the context. Also, [a : b];f ={a,a+1,...,n,1,
2,...,b}. If1 <a < b < n, we have [a : b]:[ = {a,a + 1,...,b}. Similarly,
[a'b]_ fa,a—1,....,1,n,n—1,...,b}.If 1 <b <a <n,wehave [a : b], =
{a,a — ., b}.
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Lemma 4. [f PE is CPA-1-sided secure without collusions (Definition 9) and LOBF

is secure (Definition 2), then

- 1
'IP’ [G%%PA-I"PE(,\) — 1 A |Okaenl = I‘Validityl] — 5| = negl.

Proof.  Consider the following hybrid experiments:

Hg’o(k).' This is exactly the experiment G%%PA'HPE()») conditioned to the event
Validity, where the challenge bit is b, i.e., the adversary is valid and satisfies
the condition Validity. .

Hg" (X)) fori € [n]: Same as Hg’l_l, except that the challenger changes howit com-
putes the challenger ciphertext c;. The value cfl) challenge ciphertextc; = (C;, 652))
is computed as cl(]) <s Enci(mpk, (x1,...,x,), 0SWHK@D)Y  (instead of

cfl) <sEnci(mpk, (x1, ..., x.), i, Kit1))) where 0SMFT5R) e M (for some
function k), x; = le, and xj = x; for j € [n]\{i}. Observe that clgl) is computed
by fixing x; = x? (instead of x; = xf’), i.e., the input (x1, . .., x,) used to compute
the ith challenge ciphertext is fixed and does not depend on the challenge bit b.

H2°(0): Identical to HS™ ().

H}f’i(k) fori € [n]: Same as H]f’i_l, except that the challenger changes how it com-
putes the challenger ciphertext c;. Formally, the value ((Nj,- of challenge ciphertext

ci = (G, cfz)) is simulated by the challenger using the simulator of the lockable
obfuscation scheme LOBF, i.e., (Ei s S(1*, 11Vil| 1|m§’|).

Claim 6. H)'~'(\) ~ H)' () fori € [n].

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hg’ 1= x)
and Hg" (A) with non-negligible probability. We build an adversary A that breaks the
CPA-1-sided security without collusions of PE. A is defined as follows:
1. Receive mpK from the challenger.
2. Compute K; < KGen,(1*) for j € [n]. Let ek; = (mpk, K;, ki y1) fori € [n]
where K,+1 = K.
3. A answers to the incoming oracle queries as follows:

e On input P* € P for KGen, forward the query P* to KGen and return the

answer dK p. ~
e Oninput (x,m) € X1 xMjforEnc(ek;, -, ), returnc; = (C;, ci.z)) s Enc(
ek;, x, m). '
4. Receive the challenge ((m(l), el mg), (m}, el m,ll), (x?, e x,?), (xll, el x,i))
from D.

5. Forany j € [n], A proceeds as follows:

Case j < i: Sample y;j <$ < sV Execute cg.l) <s Ency(mpk, (x1, ..., x,),

0SMHk)y ywhere Xj = x?, and x jr = xj*., Sor j' € [n\{j}.
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Case j = i: Send the challenge (mg = (yi, Kit1), m}k = OS()‘)H‘(A),)CS = (xfk)l,

xfn), X, (x*l, e xin)) where y; <= <53 0SWHA) ¢ Afy) xgl. -
x?’ xl. = xQ andx = xij = x*. for j € [n]\{i}. Receive the challenge
ciphertext c* from the challenger Set c( ) = ¢,

1

Case j > i: Sample y; < <P and compute c; < Enc(mpk, (xg, ...,

Xn), (¥j, Kjt1)) where x; = xj.’, and xjr = x]*.,for Jj e mn\{}

6. Compute c; = ((Ej, 6‘5-2)) where 0;2) <~sEncy(ek;, C;l)) and @j «s Obf(1%,

Vi, vy, m?)foranyj € [n].
7. Send the challenge ciphertexts (cy, ..., cy) to D.
8. Answer to the incoming oracle queries as in Item 3.
9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates H0 (k) On the other hand,

if d = 1, A simulates Hg ’(A). Moreover, conditioned to the event Validity, (i.e., D

satisfies Validity, ), we know that D asks for a single decryption key dKk p+ for P* and
Pl.*(x?) =0A P,.*(xl.l) = 0. Because of this, A submits a single query P* to oracle
KGen(msk, -) and it is also a valid adversary for the experiment GgE’fAl'PE()\) with
the same advantage of D. This concludes the proof. [

Claim7. HY'"'(0) ~. HY (V) fori € [n].

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hl{’ =i *)
and Hlf" (X) with non-negligible probability. We build an adversary A that breaks the
security of the lockable obfuscation scheme LOBF. A is defined as follows:
1. Compute (eki, ..., ek,, msk) <s Setup(1*) where ek; = (mpk, kj, k;_1) for
Jj € [n]. Let kn—H = kj.
2. A answers to the incoming oracle queries as follows:
e Oninput P* € P for KGen, return dk p+ <—s KGen(msk, P*).
e On input (x,m) € X| x M3 for Enc(ek;, -, -) where j € [n], return c; =
((Ej, cﬁ.z)) <s Enc(ek;, x, m).
3. Receive the challenge ((m(l), el mg), (m}, el m,11), (x?, R x,?), (xll, el x,i))
from D.
4. For any j € [n] compute cﬁl) s Enci(mpk, (x1, ..., x,), 0SMTED)y gpg 05.2)
< Encz(kj,c )wherex] _x , and x i _x ,for j e [n]\{j}.
5. Forany j € [n] \ {i}, A proceeds asfollows

Case j < i: Compute(C sS4, 11Vil, llm |)

Case j =i: Send the challenge (V;, m; ) to the challenger and receive C. Set
G =C. ~

Case j > i: Compute C; <s Obf(l)‘,Vj, Vi mlj’-) where y; <= <=3 s@),
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6. Setc; = ((Ej, c}z))forj € [n] and send the challenge ciphertexts (c1, ..., cy) to
D.

7. Answer to the incoming oracle queries as in Item 2.

8. Return the output of D.

Let d be the challenge bit sampled by the challenger The adversary A perfectly simulates
the view of D. In particular, ifd = 0, A simulates H i ()») On the other hand, ifd = 1,

A simulates HllJ i (A). Hence, A has the same advantage of D. This concludes the proof. (]
Claim 8. H." () =H| ""().
Proof.  The distribution of these two experiments does not depend on the bit b. (]
By combining Claims 6-8 and the fact that Validity, is satisfied, we conclude that
H'~ o~ H" =H "~ ...~ H" =H, """
This concludes the proof. (|

Lemma 5. Let jo, j1 € [n]. If PE is CPA-1-sided secure without collusions (Defini-
tion 9), SKE is CPA secure (Definition 4), and LOBF is secure (Definition 2), then

< negl(}).

. o 1
‘]p [G%‘%PA'I"PE(A) =1A|Qkgenl =1 Valldltyz’jo’jl] —3

Proof.  Without loss of generality, let g = |Q1| = - -- = |Q,| € poly()). Consider the
following hybrid experiments:

Hg()») This is exactly the experiment G0 CPA -IPE (%) conditioned to the event
Validity, ; ; where the challenge bit is b i.e., the adversary is valid and sat-
isfies Validity, ; ;..

Hb (A): Same as HS, except that the challenger Changes how it computes the chal-

lenger czphertext cj,. Formally, the value c of the challenge ciphertext cj, =
((C]b, ; )lS computedascjb < EnCl(mpk, (X1, ..., Xn), PR (instead of

5.1) <« Encl(mpk (X1, ..., X0), (¥j,» Kj,41))) where OS(A)H‘()‘) € M (for some
Sunctionk), x, = x andx] = x*forJ € [n)\{jp}. Note thatc stilldepends on
the challenge bit b since it is computed over the input (x1, . . . x,,) where x j, = x?b.
Hb 0,0,0 24

We will remove this dependency in Hg’ ™.

Hg’o: Identical to H? Q).
Hg’l(k) fori € [q]: Same as Hg’l_l()\) except that the challenger changes how it
answers to the first i queries for oracle Enc(ek,, -, -). Formally, on input the

i'th query (x, m) such that i’ < i, the challenger computes CE ) s Enc; (mpk,

24This allow us to reuse the proof in Lemmas 6 and 7.
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(X1, ...y xp), OSOHER)y yopere Xj, = x, and x; = x for j € [n\{jp}. Fi-

nally, the challenger returns cj, = ((th, ( )) where cE )

<sEncy(kj,, <, ))
Vj, < «—s5M) and (C iy < Obf(1*, Vi, ylb, m). Otherwise, on input the i'th
query (x, m) such that i’ > i, the challenger answers as usual, i.e., as defined in
H".

Hl37 (X): Same as lez,q, except that the challenger changes how it computes the chal-
lenger ciphertext c j,. Formally, the value ® j, of challenge ciphertextc j, = (((~3 b cﬁ) )
is simulated by the challenger using the simulator of the lockable obfuscation

scheme LOBF, i.e., @jb s S+, 1V !, l‘m-l;b| .

HZ’O: Identical to Hl3’ Q).

Hi’i (X) fori € [q]: Same as Hi’ifl (L) except that the challenger changes how it an-
swers to the first i queries for oracle Enc(ek ,, -, -). Formally, on input the i'th

query (x, m) such that i’ < i, the challenger returns cj, = (@ jps € (2)) where
o J» 18 computed using the simulator of the lockable obfuscator scheme LOBF,
ie., Cjb s S(1%, I‘V’hl 111y, Otherwise, on input the i'th query (x, m) such that
i’ > i, the challenger answers as usual, i.e., as defined in H4

H, 40" Identical to HYY (3.

Hls’flo Oforl € {0} U [n —1]: Same as H5+1 1 except that the challenger changes
how it computes the challenger ciphertext c, where v = (j, +i mod n) + 1. For-
mally, the value c( ) is computed as c( ) s Enc(mpk, (x1, ..., x,), 05W k@)
where 0*MTKR) e My (for some function k), x, = xg, and xj = x; for

j € [n]\{v}. Observe thatc( ) is computed by fixing x, = xg (instead of x, = xf)’),

i.e., the predicate input (x1, . .., X,) used to compute the vth challenge ciphertext
is fixed and does not depend on the challenge bit b.
Hg’ft 0, Ofor t € [ql, i € {0}U[n — 2]: Same as Hgft L0, 0()\.) except that the chal-
lenger changes how it answers to the first t| queries for oracle Enc(ek,, -, -) where
v = (jp +i mod n) + 1. On input the t{th query (x, m) such that t| < t, the
challenger computes c( ) s Enci(mpk, (x1, ..., x,), 00Dy ywhere x, = x,

andxj = x*for] € [n]\{v} Finally, the challenger returns ¢, = (@v, c,SZ)) where

61(12) <$ Enc2(ku»cv ) C <5 Obf(l)\ Vo, yu,m), and y, < <M Other-

wise, on input the t{th query (x, m) such that t| > 1|, the challenger answers

. b,0,0,0
as usual, i.e., as defined in H5+z

Hl;fi’tz’ofor t € [qli € {0} U [n —2]: Same as Hgfl 2=l 0()») except that the chal-
lenger changes how it answers to the first t queries for oracle Enc(ek,, -, -)

where v = (jp +i mod n)+ 1. Formally, on input the tyth query (x, m) such that

té < 1y, the challenger returns ¢, = ((EU, (:1()2)) where CJ’ is computed using the
simulator of the lockable obfuscator scheme LOBF, i.e., C, <s S(1*, Vel qlmly,
Otherwise, on input the t)th query (x, m) such that t; > o, the challenger answers

b,q,0,0

as usual, i.e., as defined in Hy;
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g’flq fori € {0} U[n —2]: Same as H q @ 0()\) except that the challenger com-
putes the challenger ciphertext c, dlﬁ‘erently forv = (jp +i mod n) + 1. For-
mally, the value ((N: of challenge ciphertext ¢, = (@U, (2)) is simulated by the
challenger using the simulator of the lockable obfuscation scheme LOBF, i.e.,
C, <s S, 11Vl 1Im3ly,

Claim 9. H}(0) ~ H2 ().

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between H? o)
and Hlf (M) with non-negligible probability. We build an adversary A that breaks the
CPA-1-sided security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.
2. Compute K; < KGen,(1") for j € [n]. Let ek; = (mpk,K;, Kjy1) for j € [n]
where K, 11 = Ki.
3. A answers to the incoming oracle queries as follows:
e On input P* € P for KGen, forward the query P* to KGen; and return the
answer dK p=.
e On input (x,m) € X| x M3 for Enc(ek;, -, -) where j € [n], return c; =
(@j, 05-2)) <sEnc(ek;, x, m).

4. Receive the challenge (m9,...,m9), (ml,....,mb), % ..., x)), (xl, ..., xD)
from D. Send the challenge (m0 = (yj,,,kj,,+1),m,1,< = QW+ ;0 (x*l,
x0),xl = (x*l,.. xL)) where yj, <= <53 QWD) e A x Sjb =

xi]b _ij ana’x . x ;=X *for j € [n\{Jp}-

5. Receive the challenge czphertext c* from the challenger. Set cﬁ.},) =c*

(O]

6. Forany j € [n)\{Jj»}, computec <sEnci(mpk, (x1,...,x,), (j, Kjt1)) where

yj S <8 Y()‘),x —x]

7. Compute cj = ((Ej, CE.Z)) where cﬁ.z) <s Ency(ek;, cgl)) and ((Ajj <5 Obf(1%, Vi,
yj,m?)foranyj € [n].
8. Send the challenge ciphertexts (cy, ..., cy) to D.
9. Answer to the incoming oracle queries as in Item 3.
10. Return the output of D.

,and xj = x;,fOF Jhen\{j}

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates H? o(A). On the other hand, ifd = 1, A
simulates Hb (A). Moreover, since D submits a smgle query P* to oracle KGen(msk, -)
and it satisfies the condition Validity, ; i , we know that P* (xb I ) = 0. Because of this,
A submits only a query to oracle KGenl (msk, ) (i.e., secunty without collusions) and,
it is also a valid adversary for the experiment GSEAAI -PE (X) with the same advantage of

D. This concludes the proof. [

Claim 10. H5'~'(1) ~. H5" (1) fori € [q].
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Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hg’i_l x)

and le”i()») with non-negligible probability. We build an adversary A that breaks the
CPA-1-sided security without collusions of PE. A is defined as follows:

1. Receive mpK from the challenger.
2. Compute K; <—s KGeny(1*) for j € [n]. Let ki1 = Ki.
3. A answers to the incoming oracle queries as follows:

e On input P* € P for KGen, forward the query P* to KGen; and return the
answer dK p=.

e On input i'th query (x,m) € X| x Ms for Enc(ekK;, -, -) where j € [n], A
proceeds as follows:

Case j # jp: Sample y; < < S®) - Compute cﬁ.l) <s Ency(mpk, (xi, ...,
Xn), (¥j, Kjt1)) where x; = x and Xj = x}‘,for Jj e n\{j}

(1)

J

Case j = jpandi’ < i: Sample y; <s <M Compute ¢’ <s Ency(mpk,

(X1, ..., xn), 05()‘)“‘()‘)) where xj, = x and xj; = x;,for Jj e n\{p}

Case j = jpand i’ =i: Sample yj, < «~s$5M and send (mg = (V). Kjp+1),
ml = QWD 30— 0 X0 xl = (L, .. xh) to the chal-
lenger where xi)jb = xijb = x and xgj/ = xij/ = x7 for j' € [n)\{jp}-
Receive the challenge ciphertext ¢* and ¢t = ¢,

Jb

Case j = jpandi’ > i: Sample yj, < «~sM_ Compute cj.i) s Enc
(mpk, (x1, ..., %), (¥j,, Kj,+1)) where xj, = x and xj = x;, for j' €
[(n1\{Jn}.
Finally, return c; = ((Ej, 652)) where CE_Z) s Ency(kj, cﬁ.l)) and @j <5 Obf
(1%, V;, yj,m).
4. Receive the challenge ((m?, o ,mg), (m%, o ,m,ll), (x?, . ,x,?), (xll, R x,ll)
from D.
5. Forevery j € [n]\ {jp}, sample y; <=5 < S®) and compute cﬁ,l) <s Ency(mpk,

(X1, ..., %), (vj, Kjy1)) where xj = xj? and x j = x}‘,for Jj e n\{j}
D s Ency (mpk, (x1, ...,
Jb

Xp), SR FTED) ywhere x;, = x]b.h and xj = x7% for j" € [n1\{j}.

6. Sample yj, <s < SW) and compute the ciphertext ¢

7. Compute the ciphertext ¢c; = ((Ej, c&z)) where 052) s Ency(k;, cﬁ.l)) and
(Ej <5 Obf(1*, Vi, v, mlj’.)foranyj € [n].
8. Send the challenge ciphertexts (cy, ..., c,) to D.

9. Answer to the incoming oracle queries as in Item 3.
10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly
simulates the view of D. In particular, if d = 0, A simulates Hg’i_] (A). On the other
hand, if d = 1, A simulates Hg’i()»). Moreover, since D submits a single query P* to
oracle KGen(msk, -) and it satisfies the condition Validity, j, ;, we know that Vx}b €
Qs P;] (x;-b) = 0. Because of this, A submits a single query to oracle KGen(msk, -)
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and it is also avalid adversary for the experiment GSEAAI PE(\) with the same advantage

of D. This concludes the proof. (I
Claim 11.  HJ“ (A) ~, H3(3.).

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hg’q x)

and Hé’ (A) with non-negligible probability. We build an adversary A that breaks the
security of the lockable obfuscation scheme LOBF. A is defined as follows:

1. Compute (eki, ..., ek,, msk) <s Setup(1*) where ek; = (mpk, k;, K;;1) for
Jj € [n]. Let kn—H = Kj.
2. A answers to the incoming oracle queries as follows:

e On input P* € P for KGen, return dk p= <—s KGen(msk, P*).
e Oninput (x,m) € X1 x M3 for Enc(ek;, -, -), A proceeds as follows:
Case j = jp: Sample yj, <5 <=5 SA) Compute c}i) <s Ency(mpk,
(X1, ey Xp), OSPFTED)Y hepe Xj, =X, Xj/ = x;f, forany j' € [n]\{jp}.
Case j # jp: Run Cﬁ»l) <s Enci(mpk, (x1,...,x,), (¥j,Kjt1)) wherey; <
«s* W xj = x, xj = x3 forany j' € [n]\{j}.

Finally, returncj = (@j, 05.2)) where c§2) <sEncy(kj, C;l)) and @j <3 Obf(

l)L’Vjv yjam)
3. Receive the challenge ((m(l), el mg), (m%, el m,11), (x(f, R x,(l)), (xll, e, x,ll))
from D.
4, Computecg) «s Enci(mpk, (x1,...,x,), OSO‘Hk(“)andcg) s Ency(kj, cﬁi))

where x j, = xﬁ-’b, and xj = x7 for j € [n]\{jp}.
5.1) «s Enci(mpk,
@1 ), (072 K, P s Enca(k;, ci), and T <s Obf(1%, V, y;, m?)

where x; = x?, and xj» = x;,for J e n\{Jj}

5. Forany j € [n]\ {jp}, sample y; <= < SW) and compute ¢

6. Send the challenge (V j,, m?b) to the challenger and receive C. Set (Ejb =C.

7. Setcj = (@,', cﬁz))forj € [n] and send the challenge ciphertexts (c1, ..., cy) to
D.
8. Answer to the incoming oracle queries as in Item 2.
9. Return the output of D.
Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates lej’q (X). On the other hand, ifd = 1,
A simulates Hg (1). Hence, A has the same advantage of D. This concludes the proof. (]

Claim 12. H2'~'(1) ~. HY' (1) fori € [q].
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Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hbl 1( A)
and H4 (A) with non-negligible probability. We build an adversary A that breaks the
security of the lockable obfuscation scheme LOBF. A is defined as follows:
1. Compute (€Ki, ..., ek,, msk) <s Setup(1*) where ek; = (mpk, ek;, ek;_)
for j € [n]. Let k41 = K.
2. A answers to the incoming oracle queries as follows:
e On input P* € P for KGen, return dk px <—s KGen(msk, P*).
e On input the i'th query (x, m) € X| x M3 for Enc(ek;, -, -), A proceeds as
follows:
Case j=j, and i’ <i: Run @jb <5 S(1%, 1|th|, 1mly, cﬁ <sEnca(kj,,
c;.i)), and cj.;) —sEnci(mpk, (x1, ..., x,), 5P ywhere x;, = x,
xjr = x% for any j' € [nI\{jn).

Case j = jpandi’ = i: Compute 6(2

<sEnca(kj,, c (1)) and c(l) <s Ency

(mpk, (x1, ..., xp), QS MFh)y where Xj, = X, Xji = X} for any j €
[nI\{J»}. Send the challenge (V j,, m) to the challenger and receive the
answer C*. Set Cj, = C*.

Case j = jpandi’ > i: Compute((N:jb <3 Obf(l)‘,ij, m), cﬁ) <s Ency(kj,,
C;i))’ and c;i) s Enci(mpk, (x1, ..., x,), DR where ;<
80, xj, = x, xj = x3 for any ' € [\ jp).

Case j # jp: Compute(Ej <~ Obf(l)‘,Vj, yj,m), C; <«s$ EnCz(k], i ) and
ci s Enci(mpk, (x1, ..., xa), (), Kj1)) wherey; < <3, x; =
x.xj = xj forany j' € [n\[j}.
Finally, return c; = ((E/, c;.Q)).
3. Receive the challenge ((m(l), el mg), (m}, el m,ll), (x?, el x,?), (xll, el x,i))
from D.
~ b
4. Run Cj, <sS(1*, 1"’/;,\ 1751, c“) s Enci(mpk, (x1, ..., x,), 0S@+k@))

andc( <—$EnC2(k,,c )whereij—x andx,—x for j € [nI\{jp}-

5. Forany j € [n]\ {jp}, sample y; <= < ‘0‘) and compute c(l) <s Ency(mpk,

@1 Xn), 07, K, P s Enca(k;, c§), and T < Obf(l’\,Vi, vj, mb)
where xj = xj.’, and xj = x7, for j" € [n]\{j}.

6. Setc; = ((ﬁj, c}z))forj € [n] and send the challenge ciphertexts (c1, ..., cy) to
D.

7. Answer to the incoming oracle queries as in Item 2.
8. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates H i (A) On the other hand, if

d = 1, A simulates Hi "(A). Hence, A has the same advantage of D. This concludes the
proof. O
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Claim 13. HJ%Z () ~ B0 fori € (0} U [n — 11,

Proof. Letv = (jp, +i mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between H ;_’ ql (X) and Hb’o.’o’o(k) with non-negligible probability. We
build an adversary A that breaks the CPA security of SKE. A is defined as follows:

1. Compute (mpk, msk) <s Setup, (1*) and ek; = (ek,kj, kj_1) for j € [n]\{v}.
Ifv# 1, letk, 1 =K.

2. A answers to the incoming oracle queries as follows:
e Oninput P* € P for KGen, return dkp+ <—s KGen;(msk, P*).
e Oninput (x,m) € X1 x M3 for Enc(ekj, -, -), A proceeds as follows:
Case j €ljp:v— 1];f: Compute@j s S(1*, Vil 1lmly, 05.2) <~sEncy(kj,
C;l)), and c?l) s Enci(mpk, (x1, ..., x,), s PRy wpere xXj = x,
xj = x% forany j € [n\(j}.
) <s Enci(mpk, (x1. ..., xn), (Vo Ko1)) where y, <
<My, =x, Xjr = x’f,forany j’ € [n)\{v}. Send the query cl(,l) to the

Case ] = v: Runcy

oracle Enc; andrecelvetheanswerc Compule(C <5 Obf(17%, Vo, yy, m).

Casei <n —2 (hence,v & {jb — 1, jp})and j € [v+1: jp — 1]} Run(C
<5 Obf(17, V;,yj, m), the ciphertext c( ) s Ency(k;, cﬁ. )), and cﬁ.l)
<s Enci(mpk, (x1,...,x,), (¥}, ]+1)) where y; <=$ < s, Xj=x,
xj = x}‘,for any j' € [n|\{j}.

Finally, return c; = ((Ej, 0;2)).

3. Receive the challenge ((m(l), e, mg), (m%, el m}L), (x?, R x,?), (xll, e, x,i))
from D.

4. Casei < n — 1 (hence, v # jp): For every j € [n], the adversary A proceeds as
follows:

Case j € [jp, v —1];7: Run ci.l) <—sEnci(mpk, (x1, ..., x,), 0S®OTED)y where
Xj = x?, and xj = x;, for j' € [nI\{j}. Finally, compute (Ej s S(1*,
b
Vil 15 ana c(z) «sEnca(k;, c(“)

Case j = v: Runc(1 0) <~$ Encl(mpk (x*l, .. x*n) (yu, K ,,4_1))ana'c(1 D
Enci (mpk, (x!,, ..., x}), O‘O‘Hk(x))whereyv s «s5H) 30— xb xl =
g, and xf:]/ = xlj, = x for j' € [n]\{v}. Send the challenge (m =

,(j] O), % 1(,] 1)) to the challenger and receive the answer c*. Set CU and
compute C, <s Obf(1*, V,, m'Z).

Casei <n —2 (hence,v & {jb — 1, jo})and j € [v+1: jp — 1]}: Runc;D <3
Enci(mpk, (x1,...,x,), (v, Kj41)) where y; <= < s xj = x?, and
Xjr = x*., for j € [nI\{j}. Finally, compute (Ej «sObf(1*,V;, y;, m?) and
cj»z) <« Encz(kj, c( ))
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5. Otherwise, case i = n — 1 (hence, v = j,): For every j € [n], the adversary A
proceeds as follows:

Case j € [jb+ 1: jp — 1];7: Execute c&l) s Enci(mpk, (x1, ..., x,), 0sMHkR)
where x; = x?, and xj = x}’, for j' € [nI\{j}. Finally, compute (Ej <3
b
S(H, 1l 171y and ¢ P s Ency(k;, ¢f).
Case j = jp: Runc;.;)’o) <s Ency (mpk, (xSl, X2, O‘Y(A)+k(x))andcﬁi’]) <
Enc;(mpk, (xil, cenxl)), 0SMHEAD)Y ywhere xgjb = xﬁ.’b, xijb = x?b, and
xgj/ = xij/ = x;, for j' € [nI\{jp}. Send the challenge (m° = c&i’o), m! =

5»;’1)) to the challenger and receive the answer c*. Set 05-?

~ ~ b
C;, «sCj <sSa*, 1Vl 1"y,

c . Finally, compute

6. Setc; = ((ﬁj, cﬁz))forj € [n] and send the challenge ciphertexts (c1, ..., cy) to
D.

7. Answer to the incoming oracle queries as in 2.

8. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates

the view of D. In particular, if d = 0, A simulates Hgfi’Z’ll (X). On the other hand, if

d = 1, A simulates Hgfgo’o(k). Hence, A has the same advantage of D. This concludes

the proof. (I

Claim 14. H2 710000 ~ H2VO00) for 1y € [q) and i € (0} U [n —2].
Proof. Letv = (jp, +i mod n) + 1 Suppose there exists a PPT distinguisher D that
distinguishes between Hé’f;l’o’o(k) and Hgfi‘o’o(k) with non-negligible probability.
We build an adversary A that breaks the CPA security of SKE. A is defined as follows:
1. Compute (mpk, msk) <s Setup, (1*) and ek; = (ek,k;, kj_1) for j € [n]\{v}.
Ifv # 1, let k1 =K.
2. A answers to the incoming oracle queries as follows:

e On input P* € P for KGen, return dk p+ <—s KGen(msk, P*).
e On input the t{th query (x,m) € X1 x M3 for Enc(ek;, -, -), A proceeds as

follows:
Case j€ljp : v—1]}: Execute (Ej < S(1*, 11Vl 1lmly, 05.2) <3
Enca(, k;. cﬁ.l)), and cﬁ.l) s Enci(mpk, (x1, ..., x,), 0Py yohere

xj = x, xj = x% forany j' € [n1\(j},
Case j =vandt] <t;: Sample y, < «—sM " Run cl()l) <s Ency (mpk,
(X1, ..., xn), OSW“‘O‘)) where xy = x, xj1 = x;, for any j' € [n]\{v}.

Send Lhe query cl()l) to the oracle Enc, and receive the answer c,(,z). Com-

pute C, < Obf(1*,V,, y,, m).
Case j = v and t{ = t1: Compute cfjl’o) «s Enci(mpk, (x1, ..., x,),
(yv, Ky+1)) and cf,l’l) s Enci(mpk, (x1, ..., x,), "Wy where v,
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«s «$5W) x, = x, and Xj = xj*., for j' € [n]\{v}. Send the challenge

m° = cl()l’o), m! = cgl’])) to the challenger and receive the answer c*.
Set c,(Jz). Finally, compute C, <s Obf(1*,V,, y,, m).

Case j = v and t] > t;: Sample y, <= <5 S®) . Run cf)l) <s Enc| (mpk,

(1, -y xn), (ky, Kys1)) where xy = x, xjp = x3, for any j" € [n]\{v}.
Send the query cfjl) to the oracle Enc;y and receive the answer~cl(,2). Com-
pute C, <3 Obf
(1)"a Vvs yUs m)'

Casei <n —2(hence,v# jp —1)and j e [v+1: jp — 1],J{: Run (Ej <~$
Obf(1%, Vi, yj,m), cf) s Enca(kj, cﬁ.l)), and cﬁ.l) s Ency
(mpk, (x1, ..., %), (¥j,Kj41)) where y; <= < s, Xj =X, Xjr = x;,
forany j" € [n]\{;}.

. T~ 2)
Finally, return c; = (Cj, ¢; ).

3. Receive the challenge ((m(l), el mg), (m%, el m,11), (x?, R x,?), (xll, R x,ll))
from D.
4. For every j € [n], the adversary A proceeds as follows:
Case j € [jp:v—11F: Run cﬁ.l) <—sEnci(mpk, (x1, ..., x,), 0SPOFTED)Y yohere
Xj = x?, and xj = x}‘, for j' € [nI\{j}. Finally, compute (Ej s S(1*,

b
1Vl 151 and cj.z) «sEnca(k;, cﬁ.”).
)

Case j = v: Sample y, <s «s PTG and compute ¢’ «s Enci(mpk, (x1,
oo Xn), OSITER)y yphere y, s <=5 5M) xy = x0, and xj = x% for j €

[nT\{v}. Ssnd the query C,(J]) to the oracle Ency and receive the answer cl(,z).

Compute C,, < Obf(1*,V,, y,, m).
Casei <n —2 (hence,v # jpb—1)and j € [v+1: j, — 1]}: Run cj.l) <«

Enci(mpk, (x1,...,x,), (yj,Kj11)) where y; < < s, xj = x?, and

xj = x;, Sor j’ € [nI\{j}. Finally, compute (Ej <3 Obf(1%, Vi, v, m?) and
6‘5-2) s Ency(kj, c;D).

5. Setcj = (@j, c?)forj € [n] and send the challenge ciphertexts (c1, ..., cy) to
D.

6. Answer to the incoming oracle queries as in Item 2.

7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates

the view of D. In particular, if d = 0, A simulates Hgfl._l’o’o(k). On the other hand, if

d =1, A simulates Hgi‘i’o’o(k). Hence, A has the same advantage of D. This concludes
the proof. O

2227100~ H2L2O () for 1 € (gl and i € {0} U [n — 2],

Claim 15. H P
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Proof. Letv = (jp +i mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between Hb q -1, 0()») nd Hgfl 2 0()») with non-negligible probability.
We build an adversary A that breaks the security of the lockable obfuscator scheme

LOBF. A is defined as follows:
1. Compute (ekq, ..., ek,, msk) <s Setup(1*) where ek; = (mpk,K;, kji1) for
J € [n]. Let kKy+1 = K.
2. A answers to the incoming oracle queries as follows:

e Oninput P* € P for KGen, return dk p« <—s KGen(msk, P*).
e On input the tjth query (x,m) € X1 x M3 for Enc(ek;, -, -), A proceeds as

follows:
Case j € [jp : v — 11} Execute (Ej <s S(1*, 11Vl 1lmly, 652) s Enc,
(k. cgl)), and cﬁ,l) <sEnci(mpk, (x1, ..., x,), 0*PHD)y yopere x; =

X, Xjr = x}’,for any j' € [n|\{j}.
Case j =vandty < 1p: RunC, <sS(1*, 1Yol 1iml) ¢ s Ency (ky, ci"),

,(,1) <sEnci(mpk, (x1, ..., x,), 0C®OT*Dy ywhere x, = x, Xjr = xj,for

any j" € [n]\{v}.
Case j = v and t2 =t Compute c( ) s Enc;(ky, ¢ l)) and c(l) s Ency
(mpk, (x1, ..., x, ),05(}‘)+k(A)) where x, = x, and xj = xj, for j €
[nI\{v}. Send the challenge (V,,m) to the challenger and receive the
answer C*. Set C, = C*.
Case j =vandt) > ty: Sample — y, <5 < Compute
Enci(mpk, (x1,...,x,), W+ where x, = x, xXjr = xj/ for any
(1)

s ,(, )

Jj € [n] \{v} Send the query ¢y’ to the oracle Ency and receive the
answer c,, . Compute (C <5 Obf(1*, C Dy Y m).
Casei <n —?2 (hence,v # jpb — 1)and j € [v+ 1 jb — 117 Run (Ej <~$

Obf(1*, Vi, yj,m), c; <s Ency(kj, c( )) andc(l) <«s Enci(mpk, (x1,

S Xn), (v, Kjg1)) where y; < <—$S(}‘), Xj =X Xy = x;, for any
Jj e n\{j}.
Finally, return ¢j = (@j, cj.z)).
3. Receive the challenge ((m(l), el mg), (m}, el m,]1), (x?, R x,(l)), (xll, el x,ll))
from D.
4. Forevery j € [n], the adversary A proceeds as follows:

Case j € [jp: v —11F: Run c(l) s Enci(mpk, (xi, ..., x,), s PTGy ywhere
Xj = x?, and xj = xj for Jj' € [mI\{j}. Finally, compute ((ij s S(1*,
1V 1751 and @ s Enca(k;, ).

Case j = v: Sample y, <—s <s$ SW‘H‘()‘) and compute Cy ) s Enc(mpk, (xl,
L Xp), OSPHEO)Y yohere y, s <55 x, = x ,and xj = x /for Jj €

(
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[nI\{v}. Finally, compute @j <—$Obf(1)‘,Vv,yv,ml;) and cff)

Ency (ky. ci).
Casei <n —?2 (hence,v # j,—1)and j € [v+1: j, — 1]7: Run cgl) <«
Enci(mpk, (x1,...,x,), (yj, Kj41)) where Vi s <55 xj = xf
Xj = x , for j' € [n)\{j}. Finally, compute (C «~sObf(1*,V Vi, yj,ml]’-) and
(2) (H
)-

and

<«~$ Encz(kj, ¢;

5. Setc; = ((Cj, cﬁ ))forj € [n] and send the challenge ciphertexts (c1, ..., cy) to
D.

6. Answer to the incoming oracle queries as in Item 2.

7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates

the view of D. In particular, if d = 0, A simulates Hgfi’tz_l’o(k). On the other hand, if

d =1, A simulates Hgft 2 0()»). Hence, A has the same advantage of D. This concludes
the proof. (I

bqu

Claim 16. H2%000) ~. H2ET (1) fori € (0} U [n —2].

S5+i

Proof. Letv = (jp +1i mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between H157 ()\.) and Hb q @ 1()\.) with non-negligible probability. We
build an adversary A that breaks the securzty of the lockable obfuscator scheme LOBF.
A is defined as follows:
1. Compute (eKy, ..., ek,, msk) <s Setup(1*) where ek; = (mpk, K;, Kj41) for
j € [n]. Let k1 = K.
2. A answers to the incoming oracle queries as follows:
e Oninput P* € P for KGen, return dkp+ <—s KGen(msk, P*).
e Oninput (x,m) € X1 x M3 for Enc(ekj, -, -), A proceeds as follows:
Case j € [jp : v]}: Run Cj «<sS(1*, 11Vl 1iml), c§. —sEncy(k;, c! : Dy,
and cﬁl) s Enci(mpk, (xi, ..., x,), OS()‘)H‘(A)) where xj = x, xj =
X3, forany j' € [n\(j).
Casei <n —2 (hence,v # j, —1)and j € [v+1: j, — 1];F: Run C; <

Obf(1%, Vi, yj,m), c§2 s Enca(k;, c(l)) and cj.l) <«
Enci(mpk, (x1, ..., x), (v, H_l))whereyj <~ <—$S()‘),xj =X Xj =
x, forany j' € [n]\(j).
Finally, return ¢j = ((Ej, c;.2)).
3. Receive the challenge ((m?, el mg), (m%, el m,11), (x?, R x,(l)), (xll, R x,i))

from D.
4. For every j € [n], the adversary A proceeds as follows:



24

6.
7.

Page 58 of 100 D. Francati et al.

D Enci(mpk, (x1, ..., x,), WAy where

Xj = x?, and xj = x}‘, for j' € [nI\{j}. Finally, compute (Ej «~sS(1*,
Vil 1751y and ¢? «sEnca(k;. i),

Case j = v: Run c,(,z) <s Ency(ky, c,gl)) and c,gl) «s Enci(mpk, (x1,...,x,),
0SMHED)y ywhere x, = x8 and xj = x;f, for j' € [n)\{v}. Send the chal-
lenge (V,, m,lj) to the challenger and receive the answer C*. Set (ﬁv = C*.

Casei <n —2 (hence,v # jpb—1)and j € [v+1: j, — 1]} Run cth

Case j € [jp:v— 11} Run c;

<~$

Enci(mpk, (x1,...,x,), (yj,Kj11)) where y; < s X = x?, and

xj = x3 for j’ € [nI\{j}. Finally, compute @j «s Obf(1*,V;, yj, m}j’.) and

(2) (1)
c;” s Ency(k;, ¢; ).

. Setcj = (((NZ.,', cﬁz))forj € [n] and send the challenge ciphertexts (c1, ..., cy) to
D.
Answer to the incoming oracle queries as in Item 2.

Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates Hg’q.’q’o(k). On the other hand, if

+i

d =1, A simulates Hgfi’q’l(k). Hence, A has the same advantage of D. This concludes
the proof. (Il

Claim 17. HL 29990 = H2E0 (),

S5+n

Proof.  The distributions of these two experiments do not depend on the bit b. [

By combining Claims 9-17 and the fact that Validity, ; ; holds, we conclude that

b~ mab — b0 ~ ~ 1?9 ~ b — b0 o ~ a1 _
Hy~ H =H)" ~. .-~ H*~ H;=H;" ~. -~ H' =

b.q.q.1 . ¥y0.0,0,0 ~ 1b.4.0.0  1b9.9.0
H4qq ’\’CHS "“c""‘“chq ’\’c""‘“cH5qq ~c
b,q.q.1 ~ 1b.0,0,0 _ 31-5,0,0,0
H; Mo~ Hyy ty =Hs T
This concludes the proof. O

Lemma 6. Let jy € [n]. If PE is CPA-1-sided secure without collusions (Definition 9),
SKE is CPA secure (Definition 4), and LOBF is secure (Definition 2), then

- 1
‘1}» [G%%PA"-'PE(x) — 1A |Qkgen| = I‘Validityi jo] — 5| = negls.

Proof.  Without loss of generality, let ¢ = |Q1| = ... = |Qunim| € poly(X). Consider
the hybrid experiments of Lemmas 4 and 5. Formally,
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o Let H(l)’i()») and Hi’i()») for i € {0} U [n] be the hybrids of Lemma 4 (for the
challenge bit b = 1) except that are conditioned to the event Validitys ; (instead

of Validity ). ‘
o Let HY(1), HOG), HY' (1), HOG), HY 00, HY T (0, HYL 2000, Mg 00,
Hg;gy’k (W), and HY"™0 (), for (i, j, k) € ({0} U[g]) x ({0} Un —2]) x <, be

the hybrids of Lemma 5 (for the challenge bit b = 0) except that are conditioned
to the event Validitys ; (instead of Validity, ; ; ).

In addition, consider the following additional hybrids experiments:

0,9, , ; 9,0,0,0
Hg " Identical to Hy ) ™.

0,0,0 . . . 0.q,
H5+n+i fori € [n]: Identical to H5+qn‘~]H71'
Hgf,ﬁi forty € ql,i € [n]: Same as Hgf;fi;l except that the challenger changes

how it answers to the first ty queries for oracle Enc(eky, -, -) where v = (jo —
i —1 mod n) + 1. Formally, on input the tith query (x, m) such that t;, < 1,

the challenger returns ¢, = (((NI,,, c,(})) where @v <5 Obf(1%, V,, Yy, M) where
yo <= <M. Otherwise, on input the tyth query (x, m) such that t, > t», the

challenger answers as usual, i.e., as defined in H0.0

S+n+i*
Hgfn’f{_i fort) € [ql,i € [n]: Same as Hgfn:_li’q except that the challenger changes
how it answers to the first t| queries for oracle Enc(eky, -, -) where v = (jo —
i —1 mod n) + 1. Formally, on input the t|th query (x,m) such that t| <
11, the challenger computes cl(,l) s Enci(mpk, (x1,...,x,), (v, Ky+1)) where

yp < «s5®) x, = x, and Xj = x; for j € [n]\{v}. Finally, the challenger re-

twrns ¢, = (((NZ,,, cff)) where c,(}) <s Ency(ky, cf,l)), @U s Obf(1*, Vy, vy, m).

Otherwise, on input the t{th query (x, m) such that t; > ty, the challenger answers
0,0,q

as usual, i.e., as defined in Hg )", ;.

Claim 18. HJ() ~ HY""0().
Proof.  The proof of Claim 18 is identical to that of Lemma 5 where the challenge bit
isb=0. O

Claim 19. H"27 () ~ HY22 (L) for 1o € [q] and i € [n].
Proof. Letv = (jo—i—1 mod n)+ 1. Suppose there exists a PPT distinguisher D
that distinguishes between Hgfﬁ;] (A) and Hsfr’l’i ; () with non-negligible probability.
We build an adversary A that breaks the security of the lockable obfuscator scheme

LOBF. A is defined as follows:
1. Compute (€Ki, ..., ek, msk) <s Setup(1*) where ek; = (mpk, k;, k;j11) for
j € [n]. Let k1 = K.
2. A answers to the incoming oracle queries as follows:
e Oninput P* € P for KGen, return dkp+ <—s KGen;(msk, P*).
e On input the tyth query (x,m) € X1 x Mj for Enc(ek;, -, -), A proceeds as
follows:



24 Page 60 of 100 D. Francati et al.

Casei > land j €[jo—1:v+1],: Compute ((ij <—$Obf(1)‘,Vj, yj,m),
c? s Ency(k;, ¢i), and ') s Enci(mpk, (x1, ... xn). (3. Kj11)
where y; <= < s@), Xj =X, Xj = x;,for any j' € [n1\{j}.

Case j =vandt) < tr: Compute @j <5 Obf(1*, V,, y,, m), c,(jz) <~s Enc,
(ky, cl()l)), andcl(,l) s Enci(mpk, (x1,...,x,), 0PNy ywhere y, «s
«sSM) xy =x, xj = x% for any j € [n\{v}.

Case j = v and té =t Compute 01()2) s Ency(ky, cgl)), and cl()l) s Ency

(mpk, (x1, ...,x,,),OS()‘Hk(A)) where x, = x, xj = x]*./ for any j' €
[n1\{v}. Send the challenge (CC@ Koir® m) to the challenger and receive
C*. Set (EU = C~. ~

Case j =vandty > tr: RunC, <s S(1*, 1Yol qlmly, cf,z) s Enca(ky, c,(jl)),

Cl(,l) <sEnci(mpk, (x1, ..., x,), OS(A)_H((A)) where x, = x, Xj = x;,for
any j' € [n]\{v). 3

Casei #nand j €[v—1: jol,: ComputeC; <s S(1*%, 11Vil, 1lmly, c§2) <~
Enca(k;, c;l)), and c?l) s Enci(mpk, (x1, ..., x,), s PRy ywpere
xj =, xj = 3, forany j' € n\(j).

(@)

Finally, return c; = (C;, i)

3. Receive the challenge ((m(l), el mg), (m}, el m,ll), (x?, e x,(l)), (xll, e, x,ll))
from D.

4. For every j € [n], the adversary A computes cﬁ.l) s Enci(mpk, (xq, ..., x,),
0Ky ywhere Xj = x?, and xj = x]*., for j' € [n\\{j}. Finally, compute
~ 0
C; «sSU*, 11Vl 151y and 05.2) «s Enca(k;, cﬁl)).

5. Setc; = (@j, cﬁz))forj € [n] and send the challenge ciphertexts (c1, ..., cy) to

D.

6. Answer to the incoming oracle queries as in Item 2.
7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates

the view of D. In particular, if d = 0, A simulates Hgfr’l’ii (X). On the other hand, if

d = 1, A simulates Hgﬁﬁ;l (A). Hence, A has the same advantage of D. This concludes
the proof. U

Claim 20. HJ!'~'7(0) ~ HY"Y (1) for 1y € [q) and i € [n — 1],

Proof. Letv = (jo—i — 1 mod n) + 1. Suppose there exists a PPT distinguisher D
that distinguishes between HO (A) and 1§ Mot (A) with non-negligible probability.

S+n+i S+n+i
We build an adversary A that breaks the CPA security of SKE. A is defined as follows:

1. Compute (mpk, msk) <—s Setup, (1*) and ek; = (mpk,ek;,ek;_) for j €

[(n\{v}. If v # 1, let Ky1 = Ki.
2. A answers to the incoming oracle queries as follows:
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3.

4.

=)}

e Oninput P* € P for KGen, return dkp+ <—s KGen(msk, P*).
e On input the t{th query (x,m) € X1 x Ms for Enc(ek;, -, -), A proceeds as
follows:

Casei > land je[jo—1:v+1];: Run(C <5 Obf(1%, Vo, yj, m), c()

Enca(k;, cﬁl)), and cﬁ.l) <s Enci(mpk, (x1,...,x,), (vj, Kj+1)) where
yj s <M x; =x, xj = x7, for any J e n\{}

Case j =vandt] <t;: Run c( ) s Enci(mpk, (x1, ..., x1), Wy, Kyt1))
where y, <s <s*®) x, = x, Xy = x’.* for any j' € [n]\{v}. Send
the query c to the oracle ENncy and receive the answer cy @ . Compute

<5 Obf(1*, Vy, y,, m).

Case j=vand tl =11 Run 01()1,0) <~sEnci(mpk, (xi, ..., x,), 050‘)"”‘“))

andcy'") < Encl<mpk, (X1, - Xn), (s Koy 1)) where yy <= <53,
Xy = X, and xj; = x* for j' € [n]\{v}). Send the challenge (m° =
c,(jl’o), m (1 1)) to the challenger and receive the answer c*. Set c(z)
and compute (C s Obf(1*, Vy, yu, m).

Case j =vandt] > t;: Run c,(jl) s Enci(mpk, (x1, ..., x,), 0SM+k()
where x, = x, xji = x’f for any j' € [n]\{v} Send the query c(l)
to the oracle Enc, and receive the answer ¢y @ Compute (C <3 Obf(

1*, V,, Vv, m) where y, <—$ < s,

Case jelv—1: jol,: RunC; <s S(1*, 11Vl qlmly, c§2) <~ Encz(kj,cﬁl)),
and cg.l) <sEnci(mpk, (x1, ..., x,), 0\ DDy where x; = x, x;0 =
X3, for any j' € n\(j).

: (™ 2)
Finally, return c; = (C;, ¢; ).

Receive the challenge ((m(l), cey mg), (m%, cey m,ll), (x?, A x,?), (xll, e, x,ll))
from D.
For every j € [n], the adversary A proceeds as follows:

Case ] = v: Compute c( ) s Enci(mpk, (x1, ..., x,), 00PN ywhere x, =
and Xjr=x /for] € [n]\{v}. Send the query c( ) to the oracle Enc, and

receive the answerc Fmally, compute (C sS4, 11Vil, 1|m ‘)
Case j # v: Compute cj s Enci(mpk, (xi, ..., x,), O*()‘H‘ko‘)) where xj =

xo and x j = x* for j € [n]\{j}. Finally, run @j sS4, 11Vl 1|m(}|) and

5.2 <« Encz(kj, c( ))

. Setcj = (@j, c} ))forj € [n] and send the challenge ciphertexts (c1, ..., cy) to

D.

. Answer to the incoming oracle queries as in Item 2.
. Return the output of D.
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Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates

the view of D. In particular, if d = 0, A simulates Hg fn i 1()). On the other hand, if

d =1, A simulates H _f_lni (A). Hence, A has the same advantage of D. This concludes
the proof. (I

. 0,611, 0,11,
Claim 21. HJ, () ~ Hy 57 (L) for ty € [q).

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hy +t125 9]

and Hgfznl 1)) with non-negligible probability. We build an adversary A that breaks
the CPA-1-sided security without collusions of PE. A is defined as follows:

1. Receive mpK from the challenger.
2. Compute K; < KGen,(1*) for j € [n]. Let K41 = K.
3. A answers to the incoming oracle queries as follows:
e On input P* € P for KGen, forward the query P* to KGen| and return the
answer dK p=.
e On input tjth query (x,m) € X; x M3 for Enc(ek;, -, -) where j € [n], A
proceeds as follows:
Case j # jo: Sample y; <s <—s°® and compute 051) <«s Ency(mpk, (x1,
X)), (V) H])) where xj = x and x j/ —x ,for j € [n]\{j}.
Case j = joand t] < t;: Compute ( ) s Encl(mpk (X1, . vvy Xn),
(Vjo> Kjo+1)) where xj, = x and xjr = xj , for j € [n\{jo}-
Case j = jo and t] = t;: Sample ym s <M andsendthe challenge (mg

s(A)+k(A 1 0 1

0 W) +k( )7’"* = Vo kj0+1),x 1(Jc*l,...,x*n),o)c (xl*l,...,x*n))
*

to the challenger where Xejo = Xujo = X and x o) = Xey = X for

J' € [nI\{Jjo}. Receive the challenge ciphertext c* and c; ) = ¢,

Case j = joand t] > t;: Sample yj, <3 < S®and  compute cﬁ-(l))
Enci(mpk, (x1, ..., xp), PRy ywpere Xj, = x and xj = x;, for
Jj" € [n1\{jo}-
Finally, return c; = (((N:,, @ )) where c] <sEncy(k;, c( )) and(C <3 Obf(
IA,VJ', YVjs m)
4. Receive the challenge ((m?, R mg), (m{, R m,ll), (x?, o ,x,?), (xll, R x,%)
from D.
5. For every j € [n], the adversary A computes cg.l) <s Ency(mpk, (x1, ..., x,),
0sMHk)y ywhere Xj = xQ and xjr = xf for j' € [nI\{j}.
(2)

<~$

6. For every j € [n], the adversary A computes ¢ <= Enc;(ek;, ci.l)) and
T, «sSA*, 11Vil 1751,

7. Setcj = (@j, c}z))forj € [n] and send the challenge ciphertexts (c1, ..., cy) to
D.

8. Answer to the incoming oracle queries as in Item 3.
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9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates

the view of D. In particular, if d = 0, A simulates H(S)fz;]’q()»). On the other hand, if

d = 1, A simulates Hg_ilzf (X). Moreover, since D submits a single query P* to oracle
KGen(msk, -) and it satisfies Validity; ;, we know that Vx}o € Qjy, P]’.’B (x;O) = 0.
Because of this, A submits a single query to oracle KGenj(msk, -) and it is also a
valid adversary for the experiment GSE{'\Al'PE(A) with the same advantage of D. This
concludes the proof. (Il

Claim 22. HL°(1) ~, HM (),

Proof.  The proof of Claim 22 is identical to that of Lemma 4 where the challenge bit
isb=1. (]

. 0,q, 1,
Claim 23. H L7(0) =H ().

Proof.  Claim 23 follows by observing that experiments Hgféz A) and H}’q (A) are

identical (and does not depend on the bit b). (Il

By combining Claims 18-23 and the fact that Validity; ; is satisfied, we conclude
that

0~ 170.0,0,0 _ 40.9.9 _ §70.0,0 ~ 7%0q ~
Hy ~cH5+n_1 :H5+n :HSJHHrl ... NCH5+n+l R ...~
0,9.9 _ 170.0,0 ~ 7u%0q ~ \u%%9 — gl o~ glo
H5+n+1 = H5+n+2 e e H5+2n ~e .- ™e H5+2n =H," =~ H,

This concludes the proof. O

Lemma 7. Let j; € [n]. If PE is CPA-1-sided secure without collusions (Definition 9),
SKE is CPA secure (Definition 4), and LOBF is secure (Definition 2), then

- 1
‘]P’ [G%%F’A'“PE(M — 1 A |Qkenl = 1‘Validity4, jl] — 5| = negls.

Proof. Lemma 7 follows by using a symmetrical argument to that of Lemma 6. ([

By combining Lemmas 4—7, we conclude that IT is CPA-1-sided secure without col-
lusions.
CPA-2-sided security of IT for n = O(log(})) (Theorem 6). As usual, consider
the predicate space P = {P(xy,...,x,)} of Construction 3 where P(xi,...,xy)
= Pi(x1) A ... A Py(xp). Let P* € P be the only predicate for which the adver-
sary will ask for the decryption key dk p+ during the experiment G%%PA'Z'iPE (recall
that we prove the security of Construction 3 in the scenario without collusions, i.e.,
|OkGenl = 1). Also, consider the validity condition of G%%PA'Z'iPE and consider the
following observations:
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1. Suppose thatVj € [n], Vi] € [k1 + 1], ..., Vi, € [k, + 1], we have

0 (ij-1.0) (ij+1,0)
p* (x! (i1, )""’xjill ’ ?’ j__:_—il—l o (znO))

_ px, (1,1 G-, 1 _Gj+1.D (in, 1)y _
= P"(x s XL XX e Xy ) =0,

where Qf’ = {xl.(l’b), R x.(ki’b), xl(k iTLh) f} fori € [n], b € < as defined
in Definition 13. This means that the adversary cannot decrypt any part of the
challenge ciphertext.

2. Otherwise, if 3] € [n], iy € [k; + 11, ..., 3i, € [k, + 1] such that

21,0 i 141.0
P*(x (”0),...,x;l"1' ) x?,x;lﬂl ),... (in:0)y
i1 1 MOREY Gj1.1)
=Pl T xlie Dy = 1, (7)

we are guaranteed that the adversary can retrieve the message mlj’. contained

into the jth challenge ciphertext ¢;. By taking into account the definition of
P*(x1, ..., x,) = P(x))A...AP(x,),Eq. (7) implies that, forany j* € [n]\[j],
the adversary can satisfy the ith predicate P for i € [n]\[;'] (e.g., by taking the
ciphertexts corresponding to the indexes iy,...,i;—1,ij4+1,...,1, and the jth
challenge ciphertext c;). Hence, the secrecy of the challenge message mlj?, solely
depends on the evaluation of PJ’.“, over the challenge input xj.’,.

By taking into account the following observations, we can rewrite the validity condition
of G%CPA-24PE (Definition 13) in the following way:

Either Validity; or Validity,

where Validity; and Validity, formalize the observations of Items 1 and 2 respectively,
i.e.,

Validity, : Vj € [n], Vi1 € [k + 11, ..., Vi, € [kn + 1],

(i1,0) (j-1.0) o _(ij+1.0) i O
PRy T T i) =
(i1.1) (j-1.D) 1 GjnD) Wy
P*(x," ,...,xjil ,xj,xij e (’ )y =0
Validity, : V; € [n], Either P} (x}) = P}(x}) =0 or Pj &) =Prap) AmY) =m]

where Qf-’ = {xi(l’b),...,x.(ki’b),xl.(kiJrl’b) = xf’} fori € [n], b € <s as defined

in Definition 13. Hence, the CPA-2-sided security of Construction 3 follows by proving
the following lemmas.

Lemma 8. [fPE is CPA-1-sided secure without collusions (Definition 9), SKE is CPA
secure (Definition 4), and LOBF is secure (Definition 2), then

- 1
'IP [G%%PA-Z"PE(A) =1 A |Qkgen| = I’Validityl] — 5| = negi.
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Proof.  Note that Validity, is equivalent to the validity condition of CPA-1-sided se-
curity. Hence, the lemma follows by leveraging an identical argument to that of the
CPA-1-sided case (Sect.5.2.1). O

Lemma 9. [f PE is CPA-2-sided secure without collusions (Definition 9) and LOBF
is secure (Definition 2), then

. ]
'IP’ [G%%PA-Z"PE(A) =1 A |Okaen| = I‘Validityz] — 5| = negli.

Proof.  In this lemma, we restrict the adversary to submit the (single) query to KGen
only before the challenge phase, i.e., the oracle KGen is not available after the challenge
phase. Under this restriction, we prove Lemma 9 for any n = poly()). Then, we use
complexity leveraging to show that the lemma holds when n = O (log(A)) and the oracle
KGen is available after the challenge phase. Without loss of generality, we assume the
adversary always submit a query to KGen. Finally, for the sake of clarity, in the rest of
this proof we use the notation V; = C.o . 1 where cfz) and K; 11 will be clear from the
context. Co
Consider the following hybrid experiments:

HS’O(A): This is exactly the experiment G%‘SAPA'HPE()\) conditioned to the event
Validity, where the challenge bit is b, i.e., the adversary is valid and satisfied
Validity,. Recall that the oracle KGen is not available after the challenge phase.

Hg" (X) fori € [n]: Same as Hg’lfl, except that the challenger changes how it com-
putes the challenger ciphertext c;. Let P* € QOkgen and ((x?, ...,x,?), (xll,

..,x,i)) be the predicate submitted to the oracle KGen before the challenge
phase and the challenge inputs chosen by the adversary. If P (x? ) = P* (xil) =0,
the value ci(l) challenge ciphertext ¢; = ((ﬁi, cl-(z)) is computed as cl.(l) <~sEncy(

mpk, (x1, ..., xp), 0SPHKRD) ywhere 05WHKR) e My (for some function k) x; =
x), and xj = x% for j € [n]\{i}. Otherwise, if P}(x)) = PF(x}) = 1, the
value cfl) challenge ciphertext ¢; = ((6,-, cfz) ) is computed as cl.(l) s Ency(
mpk, (x1, ..., xn), (i, Ki1)) where y; <=s <P x; = x?, and x; = x; for

J € [n\{i}. Observe that cl.(l) is computed by fixing x; = xio (instead of x; = x;’),
i.e., the input (x1, ..., Xx,) used to compute the ith challenge ciphertext is fixed
and does not depend on the challenge bit b.

HY°(0): Identical 10 HP" ().

Hlf" (A) fori € [n]: Same as H?’l_l, except that the challenger changes how it com-
putes the challenger ciphertext c¢;. Let P* € Okgen and ((x?, ...,x,?), (xll,
ey x,i)) be the predicate submitted to the oracle KGen before the challenge
phase and the challenge inputs chosen by the adversary. If P* (x? ) = P* (xil) =0,
the value ((Nji of challenge ciphertext c¢; = ((le-, cl@) is simulated by the chal-
lenger using the simulator of the lockable obfuscation scheme LOBF, i.e., C;i «s
S(1*, 11Vl 1|’"ll‘)‘). Otherwise, if P* (le) = Pi*(xil) = 1, the value @i is computed
as in H}l”o(k).
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Claim 24. H}'~'(1) ~. HS' (L) fori € [n].

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hg’ =i x)

and Hg’i(k) with non-negligible probability. We build an adversary A that breaks the
CPA-2-sided security without collusions of PE. A is defined as follows:

1.
2.

4.

5.

7.
8.
9.

Receive mpkK from the challenger.
Compute K; < KGen,(1*) for j € [n]. Let ek; = (mpk, K;, kiy1) fori € [n]
where K,+1 = K.

. A answers to the incoming oracle queries as follows:

e On input P* € P for KGen, forward the query P* to KGen and return the
answer dK p. _

e Oninput(x, m) € X;xMjforEnc(ek;, -, ), returnc; = (C;, cﬁ.z)) s Enc(
ek;, x, m). '

Receive the challenge ((m(l), el mg), (m}, el m,ll), (x?, el n) (xl, el ,i))

from D.

Let P*(x1,...,x5) = P'(x1) A--- A PY(x,) be the predicate submitted by A to

the oracle KGen. For any j € [n], A proceeds as follows:

Case j < i and P*(x?) = P*(le.) = 0: Compute cﬁ.l) <s Ency
(mpk, (x1,...,x,), OS()‘)Jrk()‘))wherexj = xo. andxj = x*,forj/ e [n\{j}.

Case j < i and P* (xo) = P*(xl) = 1. Sample y; < < YO‘) and execute c(l)

<sEnci(mpk, (x1,...,x,), (ij j+1)) where Xj = xY ,

J
j" e n\{j}.
Case j =i and P*(x?) = P*(xl) = 0: Send the challenge (mg = (v, Kix1),

and xj = xj, for

ml = QWHG) 10— (x*l, coux2)xl = (x*l, oo xL)) where y; <
550 sAHRD) o Ay, Si = xf’, xli = xlo, and xgj = xl. = x*
for j € [n]\{i}. Receive the challenge ciphertext c* from the challenger. Set
cfl) =c*

Case j =i and P*(x?) = P*(xl) = 1: Send the challenge (mg = (i, Ki+1),
mi = (yi, k,-_H),x = (x*l,...,xgn) xi = (xil,...,xin)) where y; <3
s xo. = xb xl- —x andx L= xi] = *forj € [n]\{i}. Receive the
challenge ciphertext c* from the challenger Set c( ) = ¢,

()

Case j > i: Sample y; <$ <= A and compute c; =~ <= Enc;(mpk, (x1, ...,

Xn), (vj, Kjt1)) where x; —x],ana’x]/ =x% forj € [nI\{j}.

. Compute c; = (((ij, c(l.z)) where ci.z) <3 Encz(ekj,cﬁ.”) and ((ij <5 Obf(17,

Vi, yjs mlj’.)foranyj € [n].

Send the challenge ciphertexts (cy, ..., c,) to D.

Answer to the incoming oracle queries for Enc(ek;, -, -) as in Item 3.
Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates H i 1()\.) On the other hand, if
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d = 1, A simulates Hg’i(A). Moreover, since D satisfies Validity, and it asks for a
single decryption key dkp« for P*, we have that either P} (xl-o) = Pi*(xl-l) = 0or
P (xo) = P* (xil)/\m? = mt1 This implies that A is a valid adversary for the experiment

GSEAAZ PE (L) with the same advantage of D. This concludes the proof. ([

Claim 25. H)""'(1) ~. HY () fori € [n].

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hb 1= r)
and HI]’ i (1) with non-negligible probability. We build an adversary A that breaks the
security of the lockable obfuscation scheme LOBF. A is defined as follows:
1. Compute (€Ki, ..., ek,, msk) «s Setup(l)‘)forj € [n]whereek; = (mpk, k;,
Kjt1). Let Ky = K.
2. A answers to the incoming oracle queries as follows:
e Oninput P* € P for KGen, return dkp <—s KGen(msk, P).
e Oninput(x, m) € X1 xMjforEnc(ek;, -, ), returnc; = (C;, cg.z)) <~s Enc(
ek;, x, m).
3. Receive the challenge ((m?, el mg), (m%, e, m,ll), (x?, el x,?), (xll, e, x,ll))
from D.
4. Let P*(x1,...,x,) = P(x1) A ... A Py (x) be the predicate submitted by A to
the oracle KGen. For any j € [n], A proceeds as follows:

Case j < i and P*(x?) = P*(x}) = 0: Compute C;l) <~s Ency
(mpk, (x1, ..., x,), 0SPFTkG) where x; = x?, andxj = x;,forj’ e [n\{j}.
Finally, set c¢; = (@j, c&z)) where c§.2) <sEncy(k;, cgl)) and
T, «sSA%, 1Vl 1),

Case j =i and P*(x?) = P*(le-) = 0: Compute cfl) s Enc
(mpk, (x1, ..., x,), 0SPTKR)y g c}2) <«s Ency(k;, cl.(l)) where x; = x?,

and x j; = x;, for j' € [n\{i}. Send the challenge (V;, mf.’) to the challenger
and receive C;. Set ¢; = (C;, c(z))
Case j > i and P* (xo) = P*(x ) =0: Computec(l) s Enci(mpk, (x1, ..., x,),

0sMHKA)y yyhere xXj = xj, and xj = xj Jor j/ € [nI\{j}. Finally, set
= (((ij, cj-z))wherec;z) s Ency(kj, cﬁ-l))and@j <« Obf(l)‘,Vj, Vi, mlj’-)
s(0)

where yj <=5 <
Case P*(x?) = P*(le.) = 1: Compute cj <5 EnC(ekj,x;.), m}j’.).
5. Send the challenge ciphertexts (c1, ..., c,) to D.

6. Answer to the incoming oracle queries for Enc(ek;, -, -) as in Item 2.
7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates H i 1()\.) On the other hand, if
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d = 1, A simulates H?’i (X). Hence, A retains the same advantage of D. This concludes
the proof. ([

Claim26. H’"(,) = HI ™" ().

Proof. The claim follows by leveraging the validity condition Validity,. Indeed, for
every i € [n], ifPi*(x?) = Pl-*(xil) = 0 we have that the jth ciphertext c; does not
depend on the bit b. On the other hand, if P} (x?) =P (xl.l) = 1, we have that the jth
ciphertext cj depends on either m? or m} However, since the adversary satisfies the

validity condition Validity, we have that m? = m} Hence, H?’"()\) and H}_b’" (L) are
identically distributed. This concludes the proof. (I

By combining Claims 24-25 and conditioned to the event Validity,, we conclude
that H" ~, ... ~. HY" = H)? ~. ... ~ H}" = H;". Note that this holds if
n = poly(i) and the adversary is restricted to submitting the (single) key generation
query before the challenge phase, i.e., KGen oracle not available after challenge phase.
By using complexity leveraging, we conclude that the same result holds also when the
KGen oracle is available after the challenge phase whenn = O (log(1)). This concludes
the proof. (]

By leveraging Lemmas 8 and 9, we conclude that IT of Construction 2 is CPA-2-sided
secure for n = O (log()).

5.3. Corruption Setting: Multi-input PE from PE, Lockable Obfuscation and PKE

We now move on to our construction of n-input PE that is CPA-1-sided secure in the (n —
1)-corruptions setting without collusions. This construction handles constant arity (i.e.,
n € O(1)) since the decryption running time is O (n"*). It is based on CPA secure single-
input PE, lockable obfuscation, and PKE and it leverages the nested execution technique
described in Sect. 1.2. Also, the same construction achieves CPA-2-sided security if the
initial single-input PE is CPA-2-sided secure.

Construction 4. (n-input PE in the corruption setting)/ Consider the following primi-
tives:

1. A PE scheme PE = (Setup,, KGeny, Enc;, Dec,) with message space M =
g m3M)tma(d) input space X1 = X11 X ... x X, and predicate space P, =
{P(x1,...,x0)} = {P1(x1) A ... A Py(xy)}). Without loss of generality, we as-
sume that PE has ciphertext space Y1 and there exists a (single) wildcard input
(x7, ..., x)) € Xy suchthatY (P (x) A ... A Py(xy)) € P1,Vi € [n], Pi(x}) = 1.

2. Fori € [n], a PKE scheme PKE,; = (KGen,;, Enc, ;, Decy ;) with message
space My ;. Without loss of generality, we assume that PKE; has ciphertext space
Wi and secret-key space Ky ;. Moreover, we assume that M 1 = Y1, and My ; =
Vaio1 for everyi € [n\{1}.

3. A lockable obfuscation scheme LOBF; = (Obfs, Eval3) with message space
Ms =K1 U...UKp,) x <= U020+ for the family of circuits Cot gias )
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Cln

c,sk,i

(C1,...,Cp_o,ski,...,skn,dkp)

Initialize:
cn = ¢, ski =sk,Cn—1 = L,k = 1,Vj € [n]\ {i}, sk} = sk;
If 3w € [n — 2] such that C,, # L and Cyy1 =L: k=w
end initialize.
If k # 1 do: J If k =L, no circuit to execute.
// Execute each circuit received in input in order to retrieve the related secret key.
For t € [k] do: n—2+t—k
——
EValg((ng7 ((Ct+1, ey (Ckn l, e ,L, Skll, e ,Sk;w dkp)) =T
If r=_1:return L
Else: skj, = sk where r = (sk,h) / Save the secret key returned by Cq.
end for.
end if.
// At this point, all secret keys are known.
For j from n to 1 do: Decy j(sk’;,c;) = ¢j—1
Dec1 (dkp7 Co) =v
If v=_1:return L

out)

Else: return yi- where v = (yz Y

Ccout (Cq,...,Cp_1,dkp)

cskz

Initialize: ¢, = ¢, sk = sk,Vj € [n] \ {i}, sk = L
/| Execute each circuit received in input in order to retrieve the related secret key.
For t from 1 to n — 1 do: t—1
EvaIg((Ct, ((Ct+1, ey (Cnfl, l, e ,l,sk’l, ceey Sk/n, dkp)) =
If r=1: return L
Else: skj, = sk where r = (sk,h) / Save the secret key returned by C;.
end for.
// At this point, all secret keys are known.
For j from n to 1 do: DeCQyj(sk;,cj) =cj_1
Decl(dkp, Co) =v
If v=_1:return L

t

Else: return y;"* where v = (y;nyy?m)

Fig. 8. Definitions of the circuits (CiC” . and (C(c)ustk ; supported by the lockable obfuscation schemes LOBF;
and LOBF, of Construction 4.

= {(Cc sk.i) defined in Fig.8, where n3(1), s3(A), d3(A) depends on the schemes

PE, PKE, 1, ..., PKE,,, used, and the circuits C;l” s3.ds -

4. A lockable obfuscanon scheme LOBF4 = (Obfy, Eval4) with message space My
for the family of circuits Cfl’“ sads ) = {(Coustk } defined in Fig.8, where nq(A),
s4(X), d4(A) depends on the schemes PE, PKE2 15 ..., PKE2,, LOBF3 used, and

out
the circuits Cn4,s4,d4 Q).
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We build a n-input PE scheme with message space M = My X -+ - X My, input space

X = X, and predicate space P = P; = {P(x1,...,x,)} = {P1(x1) A --- A Py(xp)}

withwildcard (i.e., there exists a(single) wildcard (x7, . . ., x;) € X suchthat¥ (P (x)A
.. A Py(xp)) € P, Vi € [n], Pi(x}) = 1), as follows:

Setup(1*): Upon input the security parameter 1* the randomized setup algorithm out-
puts (€K, ...,ek,) and msk where (mpk,msk) <s Setup,(1%),
ek; = (mpk, sk;, pK;, ..., pK,), and (sk;, pk;) < KGeny ;(1*) fori € [n].

KGen(msk, P): Upon input the master secret key msk and a predicate P € P, the
randomized key generator algorithm outputs dkp <—s KGenj(msk, P).

Enc(ek;, x;, m;): Let i € [n]. Upon input an encryption key ek; = (mpk, sk;,

pKy, ..., pk,), an input x; € X ;, and a message m; € My, the randomized
encryption algorithm samples (yl , Vi outy g «s53M+4) gnd proceeds as fol-
lows:

1. Compyte leo) s Ency(mpk, (xi,...,x,), (yl VY outyy \where Xj= x*for] €

[nI\{i}. o
j=

2. For j € [n], computec ) s Enc,, ;(pk;, ¢; ).
Finally, it outputs ¢; = ((CQUt (C'»”), where (CQL" <5 Obfy (17, CO(L:zt) sk;i’ y’ mi)

and @;n <5 Obfz(1%, (Cr},,) ok yl , (sk;, D).
Dec(dkp, ci, ..., cp): Upon lnput a decryption key dk p for predicate P € P, and n

ciphertexts (c1, ..., cy) such that ¢; = ((ﬁ?“t, (Ci.”)fori € [n]. The deterministic
decrypt~ion qugorithgz_ returns Agml, ., My) where m; =
Eval,(Co%, (Cin, ..., Cn,,C",.....CN, dkp)) fori € [n].

Correctness follows from the one of the underlying primitives (see also Fig.8 for
the definitions of (C'” ok, and (Coutk ). Moreover, decryption is polynomial time when
n € O(1). Below, we establish the followmg result.

Theorem 7. Let n = O(1), PE, PKE, |, ..., PKE; ,, LOBF3, and LOBF4 be as

above.

1. If PE is CPA secure without collusions (Definition 8), each PKEy ; (fori € [n]) is
CPA secure (Definition 6), and both LOBF3 and LOBF4 are secure (Definition 2),
then the n-input PE scheme T1 from Construction 4 is CPA-1-sided secure in the
(n — 1)-corruptions setting without collusions (Definition 13).

2. If PE is CPA-2-sided secure without collusions (Definition 9), each PKE, ; (for
i € [n]) is CPA secure (Definition 6), and both LOBF3 and LOBF4 are secure
(Definition 2), then the n-input PE scheme I1 from Construction 4 is CPA-2-sided
secure in the (n — 1)-corruptions setting without collusions (Definition 13).

5.3.1. Proof of Theorem 7

CPA-1-sided security of TII (Theorem 7) Consider the predicate space
={P(x1,...,x,)} of Construction 4 where P (xy,...,x;) = Pi(x1) A--- A P,(xp).
Let P* € P be the only predicate for which the adversary will ask the decryption key
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dk p+ during the experiment G}.'[l;l)'CPA'I"PE (recall that we prove the security of Con-
struction 4 in the £-corruptions setting without collusions (i.e., | Okgen| = 1). Consider
the validity condition of G(n D-CPA-IIPE 1 Tet Qi = {x|A(x,m) € QEenceek;,-,)}
for i € [n]\Qcorr, and Qz = AX; fori € Qgcorr (recall that [Qcorr| < n — 1)
as defined in Definition 13. We can write such a validity condition with respect to
P* € Qkgen = {P*} as follows: Vj € [n], Vi € [k; + 1], ..., Vi, € [k, + 1],

(i1,0) @i 10) (41,0 in,0
PRyt T T i)
(i1.1 @1, 1) 1 G411 in,1
P*(x,"! ... ]/1 g oyt

(, 1.0) (ij41,0)

j—H

@jt1,1)
l+1( Jj+1 )

YA A PE (kim0

in

= PEa T A A PR G A PR A PE

<]11>

=Py A A PE T A PR AP A A PEGDY =0,

where Qb = {)c(1 b), e xi(k"’b), xl.(ki +Lb) xf’ } is the ordered list composed of the

k; predicate inputs Q; and the challenge input xib (as defined in Definition 13). Note
that Construction 4 has input space X; = X1 x --- x &, (that is identical to the
one of the underlying PE). Hence, we can conclude that for each X ; for i € [n]
there exists x; € A7 ; such that Pl.* (x}) = 1. As a consequence, an adversary is valid
only if there exists jo, j1 € [n]\Qcorr such that P;g (x?o) = Pj’.‘1 (x}l) = 0. Otherwise,
an adversary is able to decrypt at least one out the two challenges by leveraging the
corrupted encryption keys {ek;};coc,,, and computing |Qcorr| ciphertexts, each under
the ith predicate wildcard x}* € X ; fori € Qcorr-

According to the above observation, the A’s validity can be rewritten as follows:
Jjo, j1 € [n1\Qcorrs V(xi, cees x,;) € Qpx--x 9y,

«Pﬁﬁb=0A~.Agﬁﬁ)=o)v< *(x9) =0 A PE(x, y—@)
(Qﬁ@}:OAH.ARnﬁ)zo)v( () =0APHE, y_Q) ®)

Note that in the above equation we made explicit the challenge inputs and the inputs
of Q;. For this reason, it is enough to quantify over all (x{, cey X)) € QX oo X Qy

where Q; is equal to the inputs {xl.(l), o xi(ki)} submitted to oracle Enc(ek;, -, -), if
i & Qcorr. Otherwise (if i € Qcorr), Qi is equal to the ith input space X; ;. Hence, in
order to be valid, A needs to satisfy the condition defined by Eq. (8). This is equivalent
to considering the events below: For some jo, ji € [n]\ Qcorr,>

Validity, :
PN =0A- AP =0APx)=0A---APx)=0.
Validity, ; 5, :\7’xj0 € QjO,ijl € Qj,

25Since we are in the (n — 1)-corruptions setting (i.e, | Qgorr| < n— 1) suchas jg, j1 € [n]\ Qgorr always
exist.
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PE(9) =0A Ph (i) =0APE(x)) =0A P (x})=0.
Validitys ;, : Vx}o € Qj»

PEGO)=0APrES)=0APF(x]) =0A-- AP (xy) =0.
Validity, ; : Vx} € Q;,

PEG)) =0A- APFx) =0APH(x))=0A P (x})=0.

For the sake of clarity, in the rest of this proof, we use the notation Vi.” = (Cirg”)
C.

i .8k i

(resp. V?“t = CO(L,‘}) . ) where cl.(”), sk;, and i will be clear from the context. Also,
[eh ,SK;,1

la: bt ={a,a+1,...,n,1,2,...,b}.1f 1 < a < b < n, wehave [a : D] =
{a,a+1,...,b}.

Lemma 10. [fPE is CPA secure without collusions (Definition 8), LOBF3 and LOBF4
are secure (Definition 2), then

—1)-CPA-1-i 1
‘IP’ (G2 PEG) = 1A | Qcgenl = 1| Validity, | - 5

< negl(}).

Proof.  Consider the following hybrid experiments:

Hg’o(k).' This is exactly the experiment Gg;l)_CPA'l'iPE (X) conditioned to the validity

event Validity, where the challenge bit is b, i.e., the adversary is valid and satisfies
Validity,.

Hg" (X) fori € [n]: Same as Hg’l_l, except that the challenger changes how it com-
putes the challenger ciphertext ci. Formally, it computes value

c}o) <—sEnci(mpk, (x1, ..., x,), 053MFsa() (instead of cl.(o) <3
Enci(mpk, (x1, ..., x,), (ylin, yl.OUt))) where cl@ is the value used to compute the
challenge ciphertext x; = x?, and xj = x}forj € [n]\{i}. Observe that c; is com-
puted by fixing x; = xl-O (instead of x; = xf’), i.e., the predicate input (x1, ..., Xp)
used to compute the ith challenge ciphertext is fixed and does not depend on the
challenge bit b.

H2°(0): Identical 1o HS" ().

H}f’i(k) fori € [n]: Same as Hllj’i_l, except that the challenger changes how it com-
putes the challenger ciphertext c;. Formally, the value (E'l” of challenge ciphertext
¢ = ((Ei-”, (ﬁ?“t) is simulated by the challenger using the simulator S3 of the
lockable obfuscation scheme LOBF3, i.e., S(1*, IW:'nI, 11(ski.Dly

H2°(0): Identical 1o HE" (1),

Hg’i(k) fori € [n]: Same as Hg’ifl, except that the challenger changes how it com-
putes the challenger ciphertext c;. Formally, the value @?“t of challenge ciphertext
¢ = (@.”, @?“t) is simulated by the challenger using the simulator Sy of the
lockable obfuscation scheme LOBFy, i.e., S(1*, lw?m|, 1|m?‘).
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Claim27. H2'"'(\) ~. H2 (V) fori € [n]
. 0 c H .

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hg’ =i x)

and Hg’i(k) with non-negligible probability. We build an adversary A that breaks the
CPA security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.
2. Compute (sk;., pk;) < KGen,,;(1*) and set ek; = (mpk, sk;, pk. ..., pk,)
for j € [n].
3. A answers to the incoming oracle queries as follows:
e On input P* € P for KGen, forward the query P* to KGen and return the
answer dK px.
e Oninput j € [n] for Corr, return ekK;.
e On input (x,m) € Xj; x My for Enc(ek;, -, ) where j € [n], return
cj <sEnc(ek;, x, m).

4. Receive the challenge ((m(l), el mg), (m%, el m,11), (x(l), R x,(l)), (xll, e, x,ll))
from D.
5. Forany j € [n], A proceeds as follows:
Case j < i: Sample (y] ,y,“t) s <593 Hsa) Compute
CE»O) s Enci(mpk, (x1, ..., x,), 053 W +s4M)y yhere xXj = x?, and xj = x;,

for j" e [n\{j}.
Case j = i: Send the .challenge (m° = (yl . outy ! = W+ ®) [y = (x,
., Xn)) where (y'.n yQUt) s «sWFa®) = xb and x; = xj for j €
(0)

[7]\{i}. Receive the challenge ciphertext c* from the challenger. Set ¢;* = c*.
Case j > i: Sample (y. S outy o g « 553 Fsa(d) Compute
1 /
Cﬁ» ) s Enc;(mpk, (x1, ..., x,), (y] ,yJUt)) where x; = x] and x jr = x],

Jor j" € [n\{j}.

6. For every j € [n], compute c(v) <s Ency , (pk,, 5” 1))forv € [n].

7. Computec; = ((C'” (COUt) where(C'n <5 Obf3(1%, V'” y'n (skj, j)) ana’(Cout <«
Obfs (1%, VU, yut, ’j)for any j € [n].
8. Send the challenge ciphertexts (cy, ..., c,) to D.
9. Answer to the incoming oracle queries as in Item 3.
10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In pamcalar if d = 0, A simulates H0 (k) On the other hand, if
d = 1, A simulates H1 (A). Moreover, since D satisfies Validity; and it asks for a
single decryption key dK p« for P*, we have that P} (x?) =0AP* (xl.l) = 0. Because of
this, A submits a single query P* to oracle KGeny and it is also a valid adversary for

the experiment GSEAAPE(A) with the same advantage of D. This concludes the proof. (]

Claim 28. H}'~'(\) ~ H} () fori € [n].
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Proof.  Suppose there exists a PPT distinguisher D that distinguishes between H?’ =i x)

and Hll”i()») with non-negligible probability. We build an adversary A that breaks the
security of the lockable obfuscation scheme LOBF3. A is defined as follows:

1.

2.

9,1

9.
10.

. For every j € [n], run c;

. For every j € [n], compute ¢
. For any j € [n], A proceeds as follows:

Compute (€Ki, ..., ek,, msk) <s Setup(1*) where ek ; = (mpk, sk, pk, ...,
pk,) for j € [n].
A answers to the incoming oracle queries as follows:
e On input P* € P for KGen, return dk px <—s KGen(msk, P*).
e Oninput j € [n] for Corr, return k.
e On input (x,m) € Xy ; x My for Enc(ek;, -,-) where j € [n], return
cj <sEnc(ek;, x, m).

. Receive the challenge ((m(l), ey mg), (m%, cey m,ll), (x?, R n) (xl, e, x,ll))

from D.
;O) «s Enci(mpk, (x1, ..., x,), 03MT4M)) yhere x; =
xQ and xj = x%, for Jj e\

W g Enc, , (pK,, c;v_l))for v € [n].

Case j < i: Compute (E']” <3 S3(1%, IW-Ifnl, 116sk;. 01,
Case j =i: Send the challenge (Vin, (sk;, i)) to the challenger and receive @n
Case j > i: ComputeCijn <5 Obf3 (1%, Vijn, yijn, (skj, j)) where yijn 5 <5530,

. For every j € [n], compute (E?“t <5 Obfs (1%, V?“t, yj?“t, m?) where y;’“t <«

<5543

. Setcj = (Cin, (E‘]?“t) for j € [n] and send the challenge ciphertexts (cy, ..., cp)

to D.
Answer to the incoming oracle queries as in Item 2.
Return the output of D.

Let d be the challenge bit sampled by the challenger The adversary A perfectly simulates
the view of D. In particular, ifd = 0, A simulates H (A) On the other hand, ifd = 1,

A simulates Hlf i (X). Hence, A has the same advantage of D. This concludes the proof. (1

Claim 29. H5'~'(1) ~. HS' (L) fori € [n].

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb 1= 9]

and H2 (A) with non-negligible probability. We build an adversary A that breaks the
security of the lockable obfuscation scheme LOBF4. A is defined as follows:

1.

2.

Compute (€K1, . .., ek,, msk) <s Setup(1*) where ek; = (mpk, sk;, pky, ...,
pk,) for j € [n].
A answers to the incoming oracle queries as follows:

e Oninput P* € P for KGen, return dk px <—s KGen(msk, P*).

e Oninput j € [n] for Corr, return k.
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e On input (x,m) € X ; x My for Enc(ek;, -, ) where j € [n], return
cj <sEnc(ek;, x, m).
3. Receive the challenge ((m(l), el mg), (m}, el m,ll), (x?, el x,(l)), (xll, el x,ll))
from D.
4. For every j € [n], compute c;O) <~sEnci(mpk, (xi, ..., x,), 053()‘)“4()‘)) where
X; :xQ, and xji = x7, for j' € [nI\{j}.

()

5. For every j € [n], run ;< Enc, , (pk,, cﬁ.v_l))for v € [n].

6. For every j € [n], compute (Ci;1 s S3(1%, V7, 118K;.01y.
7. Forevery j € [n], A proceeds as follows:

Case j < i: Compute (E‘]?”t <5 S4(1*, 1IV§?“‘|’ l‘m.l;l).
Case j = i: Send the challenge (V?“t, mf-’) to the challenger and receive @?”t.
Case j > i: Compute (E?“t <35 Obfy (1%, V?“t, y;?“t b) where y°“t <5 <34,

8. Setc; = (([Njijn, (E?Ut) for j € [n] and send the challenge ciphertexts (cy, ..., cy)
to D.
9. Answer to the incoming oracle queries as in Item 2.
10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, ifd = 0, A simulates Hg"_l (X). On the other hand, ifd = 1,

A simulates Hg’i (A). Hence, A has the same advantage of D. This concludes the proof. [
Claim 30. H5"(.) = H) """ (L),
Proof.  The distribution of these two experiments does not depend on the bit b. O
By combining Claims 27-30 and conditioned to the event Validity |, we conclude that
H~ ..~ H" =0 .~ H"=H}"~. ...~ H" =H, """
This concludes the proof. O
Lemma 11. Let jo, j1 € [n]\ Qcorr- If PE is CPA secure without collusions (Defini-

tion 8), PKE; j, and PKE, ; are CPA secure (Definition 6), LOBF3 and LOBF4 are
secure (Definition 2), then

‘IP [Gg;\“'CF’A'l"PE(A) = 1 A |Qkgen| = 1|Validity, j.] — ~| < negln).

Proof.  Without loss of generality, let ¢ = |Qj)| = |Qj,| € poly()) (recall jo, j1 &
Ocorr)- Consider the following hybrid experiments:

Hb (X): This is exactly the experiment G(" D-CPA-1- IF)E()») conditioned to the validity
event Validity, j ; where the challenge bit is b, i.e., the adversary is valid and
satisfies the validity event Validity, ; ;.
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Hb (X): Same as HS, except that the challenger changes how it computes the challenge
Joth ciphertext cj,. Specifically, it computes c( ) s Enci(mpk, (x1, ..., x,),
053 +saM)y (instead of c(. ) s Enci(mpk, (xi, ..., x,), (yl . i outy)) where the

value ¢V is used to compute the challenge ciphertext, x; = x ,and xj = = X} ¥ for
j € [n\{Jp}-

HS": Identical 1o H (1),

le”i()») fori €[q]: Same as le”ifl(k) except that the challenger changes how it
answers to the first i queries for oracle Enc(ek;,, -, -). Formally, on input the

§0) <s Ency(mpk,

(X1, ..., xp), 034y ywpere Xj, =X, and x; = X7 Y for j € [n]\{jp}. Finally,

i'th query (x, m) such that i’ < i, the challenger computes c

the challenger returns cj, = (C'” (C°“t) where c( V) g Enc, , (pk,, c(b 1))for
v e [n], (y/b y/“t) «$ < B30 (C'” < Obfg(lA V'” yjb, (sk,b, ]b)), and
(C‘j).bm <5 Obfy (17, V?”t, y?b“t mjb). Otherwzse, on input thel th query (x, m) such
that i’ > i, the challenger answers as usual, i.e., as defined in Hg’o.

Hé’ (X): Same as Hb’q, except that the challenger chimges how it computes the chal-
lenge jpth ciphertext cj,. Formally, the value (C';; of challenge jpth ciphertext
Cj, = (((Af']’; , (E‘]?:t) is simulated by the challenger using the simulator S3 of the lock-
able obfuscation scheme LOBF3, i.e., ((NZ'J'[" is computed by executing S;(17, lwlfnb l,
1\(Skj,,,jb)|).

Hf{ (A): Same as H, except that the challenger changes how it computes the challenge
Joth ciphertext cj,. Formally, the value @?:t of challenge jpth ciphertext cj, =
(@g, @?b“'t) is simulated by the challenger using the simulator Sy of the lockable
obfuscation scheme LOBFy, i.e., (E?b“t is computed by executing S4(17%, le?bml,
1‘ml/)'b| .

: Identical to Hb Q).

H (k) fori € [q]: Same as Hg" () except that the challenger changes how it an-
swers to the first i queries for oracle Enc(ek;,, -, -). Formally, on input the i'th

b,i—1

query (x, m) such that i’ < i, the challenger returns c, = ((C'” (COUt) where (C'”
is computed using the simulator Sz of the lockable obfuscator scheme LOBFs3, i. e

(C']’; s S3(1*, lwfbl, 1‘(Skfb’-”’)‘). Otherwise, on input the i’th query (x, m) such
that i’ > i, the challenger answers as usual, i.e., as defined in Hg’o.

Hg’o: Identical to Hg’q Q).

Hg" (X) fori € [q]: Same as Hg”_l (L) except that the challenger changes how it an-
swers to the first i queries for oracle Enc(ekK;,, -, -). Formally, on input the i'th
query (x, m) such that i’ < i, the challenger returns cj, = (C'r;, (CQ;H) where Cq:t
is computed using the simulator Sy of the lockable obfuscator scheme LOBF4,

~ out
ie., (C‘]?:t s Sy(1*, 1Vl |, 1™y, Otherwise, on input the i'th query (x, m) such

that i’ > i, the challenger answers as usual, i.e., as defined in Hg’o.
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Hb L1 Identical to H 4.

H?floforl € {0} U [n —2]: Same as H 1 except that the challenger changes how

it computes the challenge Clphertext cr where r = (jp+i mod n)+ 1. Formally,
Gb) b) s Encz s (PKj,, w) where w <=s My j,.

H177 4_110 fori € {0} U[n —2]: Same as H7 o (A) except that the challenger changes
how it computes theNehallenge ciphertext ¢, where r = ( Jp+i mod n) + 1.
Formally, the value CI" of challenge ciphertext ¢, = (C", CO") is simulated by
the challenger using the simulator of the lockable obfuscation scheme LOBFs3, i.e.,

VI 1kl

the value c¢,’”’ is computed as cy

@in is computed by executing S3(1*, 1!
Hlﬁllfori e {0} U [n — 2]: Same as H?ilo()\) except that the challenger changes
how it computes the challenge ciphertext ¢, where r = (jp, +i mod n) + 1.
Formally, the value CO" of challenge ciphertext ¢, = (C", COU) is simulated by
the challenger using the simulator of the lockable obfuscation scheme LOBFy, i.e.,

@8”‘ is computed by executing S4(1*, 11V, ll’"m).

Claim 31. H5(1) ~. H2 (V).

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between HZ o)
and Hll’ (A) with non-negligible probability. We build an adversary A that breaks the CPA
security without collusions of PE. A is defined as follows:

1. Receive mpK from the challenger.
2. Compute (sk;. pk;) <—sKGen,,;(1*) and set ek; = (mpk, sk;, pk. ..., pk,)
for j € [n].
3. A answers to the incoming oracle queries as follows:
e On input P* € P for KGen, forward the query P* to KGen and return the
answer dK px.
e Oninput j € [n] for Corr, return ekK;.
e On input (x,m) € Xj; x My for Enc(ek;, -, ) where j € [n], return
cj <sEnc(ek;, x, m).
4. Receive the challenge ((m(l), el 0) (m%, o, m ) (x?, R x,(l)), (xll, e, x,ll))
from D. Send the challenge (m° (y]h y]“t) m' = 05WHsl) = (x,
., Xn)) where (y}';, y?b“t) s s BWFM -y = xj?b and xj = xj for j €
[(n\{Jp}-
5. Receive the challenge ciphertext c* from the challenger. Set c(.o) =c*

6. For every j € [n]\ {jp}, compute cﬁ.o) s Enci(mpk, (x1, ..., x,), (y] 2 Y outy)

where (yi.n y(.)Ut) 5 <553 MFs) xj = xﬁ.’, and xj = x;, for j' € [nI\{j}.

7. Forevery j € [n], compute c(v) <~s Ency , (pk,, c(v_l))for v € [n].

8. Computecj = ((C'n COUt) where (C'” <5 Obfs (17, V'” y'” (skj, /) and(COUt <~
Obf, (1%, Vj’“t, y] , ?)for any j € [n].
9. Send the challenge ciphertexts (cy, ..., cp) to D.

10. Answer to the incoming oracle queries as in Item 3.
11. Return the output of D.
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Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates Hg (X). On the other hand, ifd = 1,
A simulates H? (A). Moreover, D submits a single query P* to oracle KGen and it
satisfies the validity condition Validity, j ; , we know that P?:’(xj.’b) = 0. Because of
this, A submits a single query to oracle KGeny and, it is also a valid adversary for the

experiment GgEAAPE()») with the same advantage of D. This concludes the proof. [

Claim 32. H5""'(1) ~. HY' (V) fori € [q).

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hg’i_l x)

and H}z”i(k) with non-negligible probability. We build an adversary A that breaks the
CPA security without collusions of PE. A is defined as follows:

1. Receive mpK from the challenger.
2. Compute (sK;, pk;) <sKGeny, ;(1*) and set ek; = (mpk, sk, pkj, ..., pkK,)
for j € [n].
3. A answers to the incoming oracle queries as follows:
e On input P* € P for KGen, forward the query P* to KGen, and return the
answer dK px.
e Oninput j € [n] for Corr, return €kK;.
e On input i'th query (x,m) € X1 j x My for Enc(ek;, -, -) where j € [n], A
proceeds as follows:
Case j # jp: Sample (yijny;’”t) s «s53MHD) Ry, C;-O) <«s Ency(mpk, (
XlyenvsrXn), (yijn, y})Ut)) where x; = x and x 1 = x;,for Jj e mN\{}
Case j = jpandi’ < i: Sample (yij';, y;?b”t) s «s53W+a@) - Compute
C;S) «—sEnci(mpk, (x1, ..., x,), 03M TRy yhere Xj, =xand xj =
X% for j' € [n\Ujv)
Case j = j,andi’ = i: Sample (y}';, y;’b“t) s «s3M+aB) Send the chal-
'J'; yj’.b“t),m1 = 03WHM) ¥ = (x1,...,xp)) fo the
challenger where xj, = x and xj = x;/ Jor j' € [n]\{Jj»}. Receive the
0)
Jb
Case j = jpandi’ > i: Sample (y'j”, y}?“t) s <53+ Compute

lenge (m° = (y

challenge ciphertext c* and set c;” = c*.

c;.b_l) <sEnci(mpk, (x1, ..., x,), ", y9U) where x, = x and x =
X% for J' € W\

Finally, return cj = (Cin, (E?“t) where c;v) <s Ency , (pk,, cﬁ.v*l)) forv €

(n], Eéi;‘ <5 Obf3 (1%, Vi]r‘, y}“, (skj, j)) and@?“t s Obfy (1%, VU, yoUl ).

4. Receive the challenge ((m?, el mg), (m%, e, m,ll), (x?, el x,?), (xll, el x,ll))
from D.
5. Compute cﬁ.g) s Enci(mpk, (xi, ..., x,), 0S30‘)+S4(k)) where xj, = xj’.b, Xjr =

x5 for j' € [n\Ujp}, and (Y, y9I) <=5 s 50T,
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6. Compute c(”) «s Ency , (pk,, cﬁz 1))for v e [n].

7. Compute cj, = ((C'n (Cout) where (C'” <5 Obf3 (1%, V'” y'” (skj,. j»)) and (COUt
<5 Obfs (1%, V‘?“t, yfb“t mjb).
8. Forevery j € [n]\ {jp}, compute c; <—s Enc(ek;, x?, mlj’-).
9. Send the challenge ciphertexts (c1, ..., c,) to D.
10. Answer to the incoming oracle queries as in Item 3.
11. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates H l 1()L) On the other hand, if
d = 1, A simulates Hg”(k). Moreover, since D submlts a single query P* to oracle
KGen and it satisfies the validity condition Validity, jo, j1» we have that jp & Qcorr and
vxl € Qj, C X1 j,, P} (x},) = 0. Because of this, A submits a single query to oracle
KGem and it is also a valld adversary for the experiment GCPA PE () with the same
advantage of D. This concludes the proof. O

Claim 33. HJ“ (L) ~. H3(.).

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between lea,q x)

and Hg (M) with non-negligible probability. We build an adversary A that breaks the
security of the lockable obfuscation scheme LOBF3. A is defined as follows:

1. Compute (€K, ..., ek,, msk) < Setup(1*) whereek; = (mpk, sk;, pky, ...,
pk,) for j € [n].
2. A answers to the incoming oracle queries as follows:
e Oninput P* € P for KGen, return dk p+ <—s KGen(msk, P*).
e Oninput j € [n] for Corr, return ekK;.
e Oninput (x,m) € X1 ; x My for Enc(ek;, -, -), A proceeds as follows:

Case j = jp: Sample (yjb Y outy g «s53M+sa) Ryp 65

<«s Ency(mpk,
(X1, ..., xp), 05 W4y ypere Xj, =X, Xji = xj/forany Jj e n\{Jjp}

Case j # jp: Compute c( )

—s Enci(mpk, (x1, ..., x,), (4", yoU)) where
(N, yOUt) s < ) xj =x, xj =% forany j' € [n]\{j}.

Finally, return c¢; = (€, C") where c;”) «s Ency., (pk,, cﬁ.”_”) forv e

[n], Eéij!‘ s Obf3 (1%, VIN, yin (sk;, j)) and@;’“t s Obfy (1%, VU, youl ).

3. Receive the challenge ((m(l), el mg), (m}, el m,]1), (x?, R x,(l)), (xll, el x,ll))
from D.
4, Computec;i)) <s Enci(mpk, (x1,...,x,), 033()‘)+S4(A))wherexjh = xj?h andxj =

x% for j € [n\{jp}

5. Compute c(v) <s Ency , (pk,, cﬁ.zfl))for v € [n].
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. Send the challenge (Vi};, (sKj,, jb)) to the challenger and receive C. Compute

in ~out i =~ Sout t t b
cj, = (C';;,(C?:) where (C'/r;) = C, (Cj.’: s Obf4(1)‘,V?b“ ,yj’h“ ,m;,) and
y;?b“t g <554 R),
For every j € [n]\ {jb}, compute c; <s Enc(ek;, xb, ml/’.).
Send the challenge ciphertexts (c{,...,c,)toD.

Answer to the incoming oracle queries as in Item 2.
Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates Hg’q (X). On the other hand, ifd = 1,
A simulates Hg’ (X). Hence, A has the same advantage of D. This concludes the proof. [

Claim 34. H)'~' () ~ H)' (1),

Proof.  Claim 34 follows by leveraging a similar argument to that of Claim 33. (I

Claim 35. H2'~'(1) =, HZ'(0) fori € [q].

Proof.  Suppose there exists a PPT distinguisher D that distinguishes between Hg’ifl x)

and ng‘i(k) with non-negligible probability. We build an adversary A that breaks the
security of the lockable obfuscation scheme LOBF3. A is defined as follows:

1.
2.

Compute (€Ky, ..., ek,, msk) <s Setup(1%).
A answers to the incoming oracle queries as follows:

e On input P* € P for KGen, forward the query P* to KGen and return the
answer dK p=.

e Oninput j € [n] for Corr, return k.

e On input i'th query (x,m) € X1 ; x My for Enc(ek;, -, -) where j € [n], A
proceeds as follows:

Case j # jp: Returncj = (©n, ((Nj?”t) s Enc(ek;, x, m).
Case j = jpandi’ < i: Sample yj’.b“t —$ < 54()‘).Runc;€) <s Ency (mpk, (

X1y ennyXn), 034y yhope Xj, =xand xj = x]*., for j € [n1\{Jp}-

~ o~ 1
Return cj, = (C';;, (C;?b”t) where cg) <s Ency , (pk,, CS; ))for v € [n],

(C'Jr; <5 S3(1%, ! «’hl, 116Kip 00y and (C‘;;t <5 Obfs (1%, V?b“t, y;’»b“t, m).
Case j = jp,andi’ = i: Sample y;?b“t <% < S4(A).Runc§2) <s Ency (mpk, (

X1y ennsXn), 034y yhope Xj, =xand xj = x]*., for j € [n1\{Jp}-

Send the challenge (Vi};, (sKj,, jv)) to the challenger where

cﬁ-z) s Ency , (pk,, cg*]))for v € [n]. Receive the challenge ciphertext

= =i o =in out =out t
(Candset(C';; = C. Returncj, = (C'f;, C‘}; ) where (C?b” <5 Obfy (1%, V(;bu

out
yjb ’ m)

3



Multi-key and Multi-input Predicate Encryption Page 81 of 100 24

Case j = jpandi’ > i: Sample (yij”, y;?“t) s <3+ Compute
0)
i .
x;,forj’ € [nI\{jp}. Returnc;, = (C'}, (C;’b“t) wherecﬁ.;)) <s Ency,, (PK,,
7 . Jp’ b s 9
cﬁz ))for v e [n], (C'jr; <3 Obf3(1%, V'};, y}rb‘, (skj,. j»)), and (C‘]?b”t s
Obfy (17, VO, yOU', m).

<sEnci(mpk, (x1, ..., x,), 03MT4®)) ywhere Xj, = x and xj =

3. Receive the challenge ((m(l), cey mg), (m%, cey m,ll), (x(l), e x,(l)), (xll, e, x,ll))
from D.
4. Compute cj, = (C;;, (C?:t) where (C'/r; <5 S3(1%, i !hl, 116Kip-d0)ly and (C?}:”

s Sy 1R I,
5. Forevery j € [n]\ {jp}, compute c; <= Enc(ek;, xj.’, m];).
6. Send the challenge ciphertexts (cy, ..., cp) to D.
7. Answer to the incoming oracle queries as in Item 2.
8. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. In particular, if d = 0, A simulates Hg”il (X). On the other hand, ifd = 1,
A simulates Hg” (X). Hence, A has the same advantage of D. This concludes the proof. (]

Claim 36. HY'~'(1) ~. H2' (V) fori € [g].
Proof.  Claim 36 follows by leveraging a similar argument to that of Claim 35. (]

Claim 37. Hy;' ) ~ By () fori € (0} U [n —21.
Proof. Letr = (jp +i mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between Hl;;:lfl_l()») and H?f{o(k) with non-negligible probability. We
build an adversary A that breaks the CPA security of PKE; j,. A is defined as follows:

1. Compute (mpk, msk) <—s Setupl(l’\) and (sk;, pkj) <« KGenz,j(lk)forj €

[(n]\{Jp}-

2. Receive pkjh from the challenger.

3. Setek; = (mpk, sk;, pky, ..., pk,) for j € [n]\{j}.

4. A answers to the incoming oracle queries as follows:

e On input P* € P for KGen, return dk p« <—s KGen(msk, P*).

e Oninput j € [n] for Corr, return k.
e Oninput (x,m) € X1 ; x My for Enc(ek;, -, -), A proceeds as follows:

Case j = jp: Run ¢; = (@;‘,@;Ut) where @]n <5 S3(1%, lwll'n‘, 110kl
~ t
and T < S4(17, 11771 11m1).
Case j # jp: Compute c; <s Enc(ek;, x, m).
Finally, return c;.

5. Receive the challenge ((m(l), el mg), (m%, el m}L), (x(l), R x,?), (xll, R x,ll))

from D.
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6. For every j € [n], the adversary A proceeds as follows:
Case j € [jp :r — 1];}: Compute ¢j = (@ijn’ @?Ut) where @'}” <3 S3(17%, lwllnl,
1SkDl) and T s Sy (1, 1777, 11731,

Case j =r: Sample (y, Ly outy g 5 53(M)Fs4(2) andcomputec ) s Enc(mpk, (x1,
o xn), (N, ¥ outyy where x, = xf’, Xj = xj , for any j' € [n]\{r}. Com-

O

pute cﬁ QP Enca ., (pk,, crv 1))for v € [jp — 1]. Send the challenge (m0 =

cfv), = w) to the challenger where w <3 M2 j»- Receive the answer c* and

setcﬁ”’) =c* Computec(v) s Ency, l,(pkv, (= l))forv € [n\[Jjp]. Setc, =

((C (COL“) where (C'" <5 Obfs(1*, VN, yin, (Sk,, r)) and (C°“t <5 Obfs (1%,
Vout7 ygut b)
Casei <n—2andjelr+1:j,— 1]+ Compute c; < Enc(ek],x mlj’)
7. Send the challenge ciphertexts (cy, ..., cy) to D.
8. Answer to the incoming oracle queries as in Item 4.
9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates
the view of D. This is because, by the Validity, ; ; we have that j, ¢ Qcorr, i.e., A can
simulate the view of D without knowing sK;, (sampled by the challenger). Moreover,
ifd = 0, A simulates Hé’ﬂ 1 (V). On the other hand, if d = 1, A simulates H?flo(k).
Hence, A has the same advantage of D. This concludes the proof. O

Claim 38. H,:"(3) ~ H. ') fori € {0} U [n — 2.

Proof. Letr = (jp + i mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between H + (A) and Hh+1 O(A) with non-negligible probability. We build
an adversary A that breaks the security of the lockable obfuscation scheme LOBF3. A

is defined as follows:

1. Compute (eKy, ..., ek,, msk) <s Setup(1%).
2. A answers to the incoming oracle queries as follows:

e Oninput P* € P for KGen, return dkpx <—s KGen;(msk, P*).
e Oninput j € [n] for Corr, return ek;.
e Oninput (x,m) € X1 ; x My for Enc(ek;, -, -), A proceeds as follows:
Case j = jo: Run ¢c; = (©1,TM) where TN s S3(1*, 1177, 1165K1-1))
and € s 41+, 1171 1im),
Case j # jp: Compute c; <s Enc(ek;, x, m).
Finally, return c;.

3. Receive the challenge ((m?, el mg), (m%, el m,11), (x?, R x,(l)), (xll, R x,i))
from D.
4. For every j € [n], the adversary A proceeds as follows:
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Case j € [jp : r — 11 : Compute ¢; = (((Nji;', @}”t) where (E']” <5 S3(1*, I\Vf}‘l’
1\(Skj,j)|) and @?Ut s 84(1)»’ I‘V?m\’ llmlﬂ)

Case j = r: Compute cﬁv) <s Ency,, (pk,, cfvil)) forv € [n\[jp» — 1] where
cfj”_l) = w <s My j,. Send the challenge (Vir”, (sk;, r)) to the challenger
and receive the answer C*. Set ¢, = (CM, COUy where CN = C*, yout
«s <5 4M gnd COU «—s Obfy (1%, VOUt yout by,

Casei <n—2andjelr+1:j,— 1]2‘: Compute ¢ < Enc(ekj,xb b).

i

5. Send the challenge ciphertexts (cy, ..., cy) to D.
6. Answer to the incoming oracle queries as in Item 2.
7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly simulates

the view of D. In particular, if d = 0, A simulates H?f{o(k). On the other hand, ifd = 1,

A simulates H?igo(k). Hence, A has the same advantage of D. This concludes the

proof. O
. b,1,0 ~ b,1,1 .

Claim 39. Hy ;1) ~c Hy ;" (1) fori € {0} U [n —2].

Proof.  Claim 39 follows by leveraging a similar argument to that of Claim 38. [

Claim40. H) L0y~ HY ().

Proof.  The distribution of these two experiments does not depend on the bit b. (I

By combining Claims 31-40 and conditioned to the event Validity, ;; ; , we conclude
that

b~ 1l =10 A ~ B~ HC ~ T\ = |0 A ~ HYY =
Hj~H=H"~ ~HI ~H~H=H"~ -~ H=
b0 . ~ qbd _ b Ll yb.0,0 ~ b L1 _ gpl-b1,1
Hew ~c -~ Hg" =Hg ' mcH 7 ~e -~y ) =Hp 005
This concludes the proof. O

Lemma 12. Let jy € [n]\ Qcorr- If PE is CPA secure without collusions (Definition 8),
PKE,, j, is CPA secure (Definition 6), LOBF3 and LOBF4 are secure (Definition 2), then

_1)CPAL I
‘]P’ Gl 2P PEGY = 1 A | Qkgenl = 1| Validitys ;, | - 5| = negl.

Proof.  Without loss of generality, let g = |Qj,| € poly(™) (recall jo & Qcorr).- Con-
sider the hybrid experiments of Lemmas 4 and 11. Formally,
o Let H(l)’i(k), H}’i()\), Hé’i(k) for i € [n] be the hybrid of Lemma 10 (for the
challenge bit b = 1) except that are conditioned to the event Validitys ; (instead
of Validity ).
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o LetH)(2), HO(), HY' (1), HOG), HY (1), HY' (1), He' (), He ™' (1), HY:52 (),
fori € [n],t €lql,j € {0}U[n—-2], (k1, kp) X < 2 be the hybrids of Lemma 11
(for the challenge bit b = 0) except that are conditioned to the event Validity; ;;

(instead of Validity, j; : ).
In addition, consider the following additional hybrids experiments:

0,0 . . 0,1,1
H7+n_1. Identical to H7+n_2.

Hgin_l fori € [ql: Same as Hgi;il except that the challenger changes how it an-
swers to the first i queries for oracle Enc(eK,, -, -). Formally, on input the i'th
query (x,m) such that i’ < i, the challenger returns cj, = ((C'j%, (C%”) where

(Cf)’“t <5 Obf4 (1%, V%‘t, y;?o“t, m) where y;’O“t s <% Otherwise, on input the
i'th %uery (x, m) such that i’ > i, the challenger answers as usual, i.e., as defined
. .0

inHa5, .

0,0 . : 0.q
H - Identical o Hy[, .

Hgin fori € [q]: Sameas Hgi;l except that the challenger changes how it answers to
the firsti queries for oracle Enc(ek,, -, -). For:g_ally;on input theNi./th query (x, m)
such thati' < i, the challenger returns c j, = (C'j%, (C%‘t) where (C']r(‘) <«s Obfs(17%,
Vi;(‘), yijz, (sKjy, jo)) where y'jz <«s <M Otherwise, on input the i'th query
(x, m) such that i’ > i, the challenger answers as usual, i.e., as defined in Hgfn.

0,0 . . 0,9
H7Jﬁ”+1‘ Identical to Hy,.

Hgfrn L1 fori €lql: Same as Hgfr,;lr] except that the challenger changes how it an-
swers to the first i queries for oracle Enc(ekjy, -, -). On input the i'th query
(x,m) such that i' < i, the challenger samples (¥}, y;:)“t) s <5 53M)Hsd)

;2) <s Enci(mpk, (x1, ..., x,), (yijz, y;-)om)) where xj, = x, and

xj = x} for j € [n]\{jo}. Finally, the challenger returns c;, = ((Ei]%, (E%H)

where cj.g) <s Ency,, (pk,, cgs_l)) for v € [n], @i/r(]) 5 <= Obf3(1A,Vi/%, yiig,

(sK jy, jo)), COUt s Obf,(17%, V%n, yj-’om, m). Otherwise, on input the i'th query

(x, m) such thati’ > i, the challenger answers as usual, i.e., as defined in Hgfn L1

and computes ¢

Claim 41. H)() ~ HOLL (0.

Proof.  The proof of Claim 41 is identical to that of Lemma S where the challenge bit
isb=0. (I

Claim42. HY[' ()~  HY. _ (0 fori € [q].

Proof.  Claim 42 follows by leveraging a similar argument to that of Claim 36. O

Claim43. HY/'(\) ~ HY! (4) fori € [q].

Proof.  Claim 43 follows by leveraging a similar argument to that of Claim 35. U
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Claim44. HY[ ! ()~ HY L (W) fori € [q].

Proof.  Claim 44 follows by leveraging a similar argument to that of Claim 32. ([
Claim 45. H}’(%) ~, HY ().

Proof. The proof of Claim 45 is identical to that of Lemma 4 where the challenge bit
isb=1. ]

Claim 46. HYY

1,
Tint1 (M) = H,y 1.

Proof.  Claim 46 follows by observing that experiments Hgfn +1(*) and H;’q()\) are
identical (and does not depend on the bit b). ([l

By combining Claims 41-46 and the fact that Validity; ; holds, we conclude that

0 goll _ b0 ~ ~ yba —pubo o ~ p\ba
HO ~c H7+n—2 = H7+n—1 ~e s e H7+n—l = H7+n ~e e H7+n
_ ubo ~ ~ [P —ygld ~ glo
= H7+n+l ~e .- e H7+n+l =H,” ~ H;".
This concludes the proof. O

Lemma 13. Let j; € [n]\ Qcorr- If PE is CPA secure without collusions (Definition 8),
PKE,, j, is CPA secure (Definition 6), LOBF3 and LOBF 4 are secure (Definition 2), then

CPAL o 1
’IP’ [Ggﬂ CPALIPE Gy — 1 A | Qkgenl = I‘Valldlty4’ jl] — 5| = negl.

Proof. Lemma 13 follows by using a symmetrical argument to that of Lemma 12. [

By combining Lemmas 10-13 we conclude that IT is CPA secure in the (n — 1)-
corruptions setting without collusions.
CPA-2-sided security of IT (Theorem 7) As usual, consider the predicate space P =
{P(x1,...,x,)} of Construction 4 where P(xy,...,x,) = Pi(x1) A... A P,(x,). Let
P* € P be the only predicate for which the adversary will ask for the decryption key dk p=
during the experiment Gg’;\l)'CPA'Z"PE (recall that we prove the security of Construc-
tion 4 in the scenario without collusions, i.e., | Okgen| = 1). We can leverage a similar
argument to that used to prove Theorem 6 for the CPA-2-sided case (see Sect.5.2.1) in
order to rewrite the validity condition of Gg’;l)'CPA'Z"PE (Definition 13) as follows:

Either Validity; or Validity,

where

Validity, : Vj € [n],Vii € [ky + 11, ..., Vi, € [kn + 1],
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; 0 1,0
P*(xl(”’o) J(”ll ) x?,xj(-lfll ) x 0y =

i1,1 @ij-1,1) 1 _Gjy1,D in, 1
P*(x(”) /’11 ,xj,xj_ﬂ Y. x(’ =0

Validity, : Vj € [n], Either P} (x) = P}(x}) = 0or PF(x)) = P} (x)) Am) = m)]
for Qb {x(] b), e, xl.(k”b), xl.(k"“’b) = xf’} fori € [n], b € <5 as defined in Defi-
nition 13. Recall that, if i & Qgcorr, then Qf.’ is the ordered list composed of the inputs
submitted to the oracle Enc(ek;, -, -) and the challenge input xf’ . Otherwise, ifi € Qcorr,
then Qf? is equal to the ith input space X ; that, in turn, contains also the challenge input

x;’ . Hence, the CPA-2-sided security of Construction 4 follows by proving the following
lemmas.

Lemma 14. [fPE is CPA secure without collusions (Definition 8), SKE is CPA secure
(Definition 4), and LOBF is secure (Definition 2), then

).CPAL 1
‘IF’ [qu JCPA2IPE ) 1A | Qkaenl = I‘Validityl] — 5| = negls.

Proof.  Note that Validity is equivalent to the validity condition of CPA-1-sided se-
curity. Hence, the lemma follows by leveraging an identical argument to that of the
CPA-1-sided case (Sect.5.3.1). ([l

Lemma 15. [IfPE is CPA-2-sided secure without collusions (Definition 9) and LOBF
is secure (Definition 2), then

—1)-CPA-2-i 1
’P (G A" PEG) = 1 A |Qgenl = 1|Validity, | - 5| < negi().

Proof. Let P* € QkGen and ((x?, R x,?), (xll, e x,ll)) be the predicate submitted
to the oracle KGen and the challenge inputs chosen by the adversary, respectively.
Despite P* is chosen adaptively, we assume that the values {z; }i c[n] such that Pi* (x?) =
Pi*(xil) = z; are known before the challenge phase. Indeed, {z;}ic[n) can be guessed
with non-negligible probability since n = O(1).

Consider the following hybrid experiments:

Hg O(A) This is exactly the experiment G(" D-CPA-2- IPE()») conditioned to the event
Validity, where the challenge bit is b l e., the adversary is valid and satisfies
Validity,.

Hb i (X) fori € [n]: Same as Hb except that the challenger changes how it com-

putes the challenge czphertext c; with respect to z;. If zi = 0 (i.e,, P (xo)
)

P*(x ) = 0), the value c( ) s computed as c¢; <s Enci(mpk, (xq, ..., x,),
O“(M““O‘)) where x; = x ,and x; = X7 ¥ for j € [n]\{i}. Otherwise, if z; = 1
(ie, PF (xo) = P*(xl) = 1), the value c}o is computed as c( ) s Enc(

mpk, (x1, ..., x,), (yl .S outy) ywhere (y yiOUt) 5 <5 Y3O‘)+‘4()‘), Xi = x?, and
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Xj = x; for j € [n]\{i}. Observe that ci(o) is computed by fixing x; = xio (instead
ofx; = xf’), i.e., theinput (x1, ..., X,) used to compute the ith challenge ciphertext
is fixed and does not depend on the challenge bit b.

H?O(\): Identical 1o HY™ (3.).

Hll’" (X) fori € [n]: Same as Hlf’lfl, except that the challenger changes how it com-
putes the challenger ciphertext c; with respect to z;. If zi = 0 (i.e,, Pl.* (x?) =
P (xl-l) =0), the value (E?“t of challenge ciphertext ¢c; = ((Eiin, (E?Ut) is simulated
by the challenger using the simulator of the lockable obfuscation scheme LOBF4,

. ~ out b . .
ie., (C?”t s S, (14, 11V 11mily where V?Ut = (C°<u,lt> K i Otherwise, if z; = 1
C; ,SKi,1

(ie., P* (x?) = P} (xil) = 1), the value (E?“t is computed as in Hlf‘o()\).
We can prove that the indistinguishability of the above hybrids by leveraging similar
techniques to that of Sects.5.2.1 and 5.3.1.

Claim47. H)''(\) ~ H)' () fori € [n].

Proof.  Note that the values {z;}ic[n] (i.e., Pl.* (xlp) = Pi* (xil) = z;), can be correctly
guessed with non-negligible probability since n = O(1). Conditioned to the above, the
claim follows from the CPA-2-sided security of PE. O

Claim48. H}'~'(0) ~ H} () fori € [n].

Proof.  As usual, the values {z;}ic[a] (i.e., Pi*(x?) = Pl-* (xl-l) = z;), can be correctly
guessed with non-negligible probability since n = O(1). Conditioned to the above, the
claim follows from the security of the lockable obfuscation scheme LOBFy4. (]

Claim 49. H"(1) = HI ™" ().

Proof.  The claim follows by leveraging the fact that Validity, holds (i.e., the adversary
satisfies Validity, ) and observing that the values {z;}ic[n) (i.e., P} (x?) = P} (xil) =2z)
can be correctly guessed with non-negligible probability since n = O(1). Conditioned
to the above, for every i € [n], if P} (x?) = Pi*(xil) = z; = 0 we have that the jth
challenge ciphertext c; does not depend on the bit b. On the other hand, if P* (x?) =

P* (xil) = z; = 1, we have that the jth challenge ciphertext c; depends on either m(j)

or m} However, by the validity condition Validity, we have that m? = m} Hence,
H[f’"()») and H{_b’"()») are identically distributed. This concludes the proof. (]

By combining Claims 47-49 and the fact that Validity, holds, we conclude that
Hg’o Re ...~ Hg’” = H?’O Re ...~ H(])’" = H}” This concludes the proof. O

By leveraging Lemmas 14 and 15, we conclude that IT of Construction 4 is CPA-2-
sided secure.
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5.4. Additional Discussion

On wildcards. Wildcards affect the security guarantee and the expressiveness of the
multi-input PE construction depending on the presence of corruptions. In the case of no
corruptions (Construction 3), the (single) wildcard can be removed by simply requiring
each ith sender not to compute a ciphertext ¢; under the corresponding ith wildcard x7,
i.e., Enc(ek;, x;, m;) outputs | whenever x; = x. In other words, we can transform
any secure multi-input PE for P(xy, ..., x,) = Pi(x;) A ... A P,(x,) with wildcard
(x7, ..., x;) into a secure multi-input PE for the same predicate P(xy, ..., x,) without
the wildcard. On the other hand, this cannot be done when corruptions are in place
(Construction 4). Indeed, if the adversary gets an encryption key €k;, then it can use
the latter to always produce a ciphertext ¢; under x;. This means that the adversary can
always use ek; (of the corrupted user) and satisfy the ith predicate P; (this also affects
the security proof of Construction 4. See Sects.5.3.1, 5.3.1).

On unbounded collusions For completeness, we highlight that if we start from an
initial single-input PE scheme PE (of Theorems 6, 7) that is CPA-1-sided secure against
unbounded collusions, both our Constructions 3 and 4 are CPA-1-sided secure with
respect to a weaker form of unbounded collusions (but still stronger than no collusions).
For the sake of clarity, we focus on our secret-key Construction 3, but the same argument
holds for our Construction 4 against corruptions.

In case of no collusions, at the beginning of the proof of Theorem 6 (see Sect. 5.2.1), we
show that the adversary’s validity condition (of Definition 13) is equivalent to satisfying
at least one of the following four conditions: for some jy, ji € [n],

Validity, :
P =0A-- AP =0APf ) =0A--- AP xH=0 (9
Validity, ; ; : Vx| € Qj,, V), € Qj,

Pr(x0)=0A P () =0AP;(xj)=0APj(x;)=0 (10)

Validity; ;, :Vx}o € Qjp,
PiO)=0A P ) =0API(x]) =0A- AP =0 (11)

Validity, ;, :‘v’x}l €Qj,
PFa) =0A-- AP =0AP(xj)=0APi(x))=0 (12)
where P*(x1,...,x,) = (P(x1) A -+ A Pr(x,)) € QkGen is the single key genera-
tion query submitted by the adversary A, ((x?, e, x,?), (xll, R x,i)) is the adversarial

challenge inputs, and Q; are the predicate inputs submitted to the encryption oracle
Enc(ek;, -, -) fori € [n].

When working with CPA-1-sided security against (fully fledged) unbounded collu-
sions, a valid adversary can obtain two decryption keys for P and P’ that satisfy Eq. (10)
(or Egs (11), (12)) with respect to two different indexes jo, ji1 € [n]and jy, j| € [n].ie.,
(jo. j1) # (jy» j1)- When this happens the proof fails since, as we discussed in Sect. 1.2,
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our reduction will make an invalid set of queries to the KGen oracle of the single-input
PE. However, we observe that the exact same proof of Theorem 5 goes through when we
allow A to asking for multiple decryption keys under the restriction that: 3o, j; € [n],
VP(x1,...,x5) = (P1(x1) A ... A Py(x,)) € Okgen, such that either one condi-
tion between Eqs. (9)—(12) is satisfied (i.e., the same indexes jo, j; for all predicates
P € Okaen)-

6. Applications

In this section, we show the applications of our constructions. In Sect.6.1, we provide
the definitions of ME and we show a construction from multi-key PE. In Sect. 6.2, we
define CPA-1-sided reusable robust NI-MPC for all-or-nothing functions and we provide
a construction from multi-input PE.

6.1. Matchmaking Encryption from 2-Key PE

Definition of ME. In ME, a trusted authority generates a decryption key for the receiver,
associated to an arbitrary policy of his choice. The receiver is able to decrypt the message
if and only if a match occurs, i.e. the sender’s attribute match the receiver policy, and
vice versa. Differently from [10, 1 1], we consider honest senders (i.e., we do not consider
authenticity security). Hence, the sender do not need to receive an encryption key from
the authority, but can encrypt a message directly with the sender’s attribute as an input.
Security against malicious senders (i.e., authenticity) can be achieved by relying on
similar techniques of [10,11,26], by combining non-interactive zero-knowledge proofs
and digital signatures.

Formally, an ME with message space M, sender’s policy and attribute spaces P
and U, receiver’s policy and attribute spaces P, and U is composed of the following
polynomial-time algorithms:

Setup(1*): Upon input the security parameter 1*, the randomized setup algorithm out-
puts the master public key mpk and the master secret key msk.

RKGen(msk, p): The randomized receiver-key generator takes as input the master
secret key msk, and attributes p € Us. The algorithm outputs a secret decryption
key dk,, for attributes p.

PolGen(msk, S): The randomized receiver policy generator takes as input the master
secret key msk, and a policy S € P,. The algorithm outputs a secret decryption
key dKs for the circuit S.

Enc(mpk, o, R, m): The randomized encryption algorithm takes as input the master
public key mpk, attributes o € U, a policy R € Py, and a message m € M. The
algorithm produces a ciphertext ¢ linked to both o and R.

Dec(dk,, dks, ¢): The deterministic decryption algorithm takes as input a secret de-
cryption key dk, for attributes p € U, a secret decryption key dKs for a circuit
S € P,, and a ciphertext c. The algorithm outputs a message .
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G%‘?ﬁ’t’ME(A)

(mpk, msk) «s Setup(1*)

(mo, ml . RO, ]Rl , O'O, 0_1’ Oé) —s AEKGen(msk,<),Po|Gen(msk,<) (1)\7 mpk)
b s {0,1}, c —s Enc(mpk, o®, R®, m?)

b s All?KGen(msk,-),PolGen(msk,»)(
If (' =b): return 1

Else: return 0

1% e @)

Fig. 9. Games defining CPA-7-sided security of ME.

Correctness states that the receiver can obtain the message with overwhelming prob-
ability if a match occurs. As for security, we consider the standard definition of ME,
namely CPA-1-sided and CPA-2-sided security. Informally, CPA-1-sided security cap-
tures the secrecy of the sender’s attributes, the sender’s policy, and the message when
a match does not occur. On the other hand, CPA-2-sided security extends this secrecy
even when a match occurs.

Definition 15. (Correctness of ME). An ME with message space M, sender’s policy
and attribute spaces P; and U, receiver’s policy and attribute spaces P, and U, is
correct if VA € N, Vm € M, VYo € U1,Vp € U, VR € P, VS € P, such that
S(e) =1 AR(p) =1:

P [Dec(dk,, dks, Enc(mpk, o, R, m)) = m] > 1 — negl(}),

where  ¥V(mpk, msk) < Setup(1*), dk, <s RKGen(msk, p), and dkg <
PolGen(msk, S). The above probability is taken over the random coins of
Setup, RKGen, PolGen, and Enc.

Definition 16. (CPA-1-sided and CPA-2-sided security of ME). Let t € [2]. We say
that an ME IT is CPA-z-sided secure if for all valid PPT adversaries A = (Ag, A1):

1
'IP’ [Ggf’,ﬁ‘-t’ME(x) = 1] — 5| = negl.

where game Ggpﬁ"t'ME(k) is depicted in Fig.9. Adversary A is called valid if Yp €
ORKaGen, VS € OpoiGen:
e Case t = 1 (mismatch only):

R(p) =R'(p) =0) v (S(c”) =S(c") = 0)
v (R%(p) =S(o") = 0) v R (p) = S(c°) = 0); (13)
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e Case r = 2 (mismatch and match): Either

R(p) =R'(p) =0) v (S(c°) =S(0") = 0)
v (R(p) =S(a") =0) v (R (p) =S(c°) = 0)

or (R%(p) =R (p)) A (S(0”) =S(@") A (m° =m"). (14)

We stress that CPA-1-sided and CPA-2-sided security reflects the “mismatch condi-
tion” and “match condition” of the original work of Ateniese et al. [10, Definition 5].
We chose to change their names to avoid confusion and make the notation consistent
with respect to the one of PE. Also, we stress that [10, Definition 5] defines security of
ME only in term of CPA-2-sided security (whereas, in this work, we also consider the
weaker notion of CPA-1-sided security).

6.1.1. Construction of ME from 2-Key PE

Construction 5. Ler KPE = (Setup,;, KGeni, Ency, Dec;) be a 2-key PE scheme
with message space M, input space X = X x X, and predicate space
4P = {P, r(x1, X2)}(p,R)cV indexed by V = Vi x V3 such that

Py r(0,S) = Py(S) A Pr(0) =S(p) AR(0),

where 0 € X1, S € X, p € V1, and R € V). We build an ME scheme with message
space M, sender’s policy and attribute spaces X, and X\, and receiver’s policy and
attribute spaces V> and V1, in the following way:

Setup(1*): Upon input the security parameter 1*, the randomized setup algorithm
outputs mpk = mpk and msk = (msk, mskj) where (mpk, mski, msk;) <
Setup, (1*).

RKGen(msk, p): Upon input the master secret key msk = (msky, msky) and at-
tributes p € V), the randomized receiver-key generator outputs dk, <—s KGen;(
mskji, o).

PolGen(msk, S): Upon input the master secret key msk = (msk;, msky) and a
policy S € Vs, the randomized receiver policy generator outputs dkg <—s KGen (
msko, S).

Enc(mpk, o, R, m): Upon input the master public key mpk, attributes o € X}, a
policy R € X, and a message m € M, the randomized encryption algorithm
computes ¢ <s Enci(mpk, (o, R), m).

Dec(dk,, dks, ¢): Upon input a secret decryption key dk, for attributes p € V1, a
secret decryption key dKgs for a policy S € V,, and a ciphertext c, the deterministic
decryption algorithm outputs m = Dec;(dK,,, dKs, ¢).

Correctness follows from the correctness of KPE. Below, we establish the following
result.

Theorem 8. Let KPE be as above.
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1. If KPE is CPA-1-sided secure (Definition 11) then the ME scheme I1 from Con-
struction 5 is CPA-1-sided secure (Definition 16).

2. If KPE is CPA-2-sided secure (Definition 11) then the ME scheme 1 from Con-
struction 5 is CPA-2-sided secure (Definition 16).

Proof. (CPA-1-sided security of 1) Suppose there exists a valid PPT adversary A with
a non-negligible advantage in breaking the CPA-1-sided security of T1. We build an
adversary A that breaks the CPA-1-sided security of KPE. A’ is defined as follows:

1. Receive mpK from the challenger and send it to A.
2. A’ answers to the incoming oracle queries as follows:

e On input p € V) for RKGen, forward the query p to KGen(msky, -) and
return the answer dK,.

e On input R € V;, from PolGen, forward the query R to KGen(msky, -) and
return the answer dKp.

3. Receive the challenge (mo, m!, RO RL, o9, al) from A'. Send the challenge
m°, m', x0, x1) where x' = (¢!, S") for i € <s. Forward the challenge ci-
phertext ¢ to A.

4. Answer to the incoming oracle queries as in Item 2.

5. Return the output of A.

Let d be the challenge bit sampled by the challenger. A’ perfectly simulates the view of
A. Moreover, A is a valid adversary, i.e., it satisfies the mismatch condition of Eq. (13).
This implies that Vp € QkGen(msk;.)» R € OKGenmsky.) Po.r(@%,SY) = S%p) A
R(c% = 0and Pp,R(al, sh = Sl(p) AR (o) = 0. Hence, A is a valid adversary for
GE;@:A;"PE(A). This concludes the proof.

(CPA-2-sided security of I1) The reduction is identical. The only difference is the
analysis of the validity of A'. Since A is a valid adversary with respect to the CPA-
2-sided security experiment of KPE, i.e., it satisfies Eq. (14). This implies that Vp €

QKGen(mskl,A),R S QKGen(mskz,-), either Pp,R(UO’SO) = Pp,R(Ul,Sl) = 0 or

PP’R(GO,SO) = Pp,R(al,Sl) Am® = ml. Hence, A is a valid adversary for
GkCF',Déﬁ?kPE()»). This concludes the proof. O

6.2. Non-interactive Multi Party Computation (with Correlated Randomness) from
Multi-input PE

Definition of CPA-1-sided reusable k-robust NI-MPC for all-or-nothing functions.
A NI-MPC protocol for a function f : V| x---x V), — ) isa (non-interactive) protocol
between n parties and an evaluator.?° On initialization, a trusted party executes the setup
algorithm (crs, ek, ..., ek,) <s Setup(l)‘, f). Then, it publishes the common refer-
ence string crs and sends the (possibly correlated) encryption keys to the corresponding
parties, i.e., the ith party receives the ith encryption key €k;. After the setup phase,
each party, owning an input v; € V;, sends a single message ¢; < Enc(crs, ek;, v;)

26Depending on the scenario, the evaluator can be any of the parties running the NI-MPC protocol.
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to the evaluator. The latter will be able to compute the output of the function f by ex-
ecuting f(vy, ..., v,) = Eval(ers, ¢y, ..., ¢,). We focus on NI-MPC without session
identifiers, i.e., the encryption algorithm does not take in input the unique identifier for
the current round. Hence, messages computed in different rounds can be interleaved by
design (this will affect the security definition of NI-MPC).

Formally, a NI-MPC protocol IT for a function f : V| x --- x V, — ) consists of
the following algorithms:

Setup(1%, f): Uponinput the security parameter 1* and a function f : V; x - --x V), —
Y, the setup algorithm outputs the common reference string crs and n encryption
keys eky, ..., eky.

Enc(crs, ek;, v;): Upon input a common reference string Crs, an input v; € V;, and an
encryption key ek;, the randomized encryption algorithm outputs a ciphertext c;.

Eval(crs, c1, ..., ¢y): Upon input a common reference string Crs and n ciphertexts
c1, - .-, Cp, the deterministic evaluation algorithm outputs a value y € ).

Correctness states that the evaluation of n ciphertext (cy, ..., ¢;), computed over the
inputs (vy, ..., v,), outputs f(vi,..., V)

Definition 17. (Correctness of NI-MPC). A NI-MPC protocol for a function f : V| x
-xV, = Yiscorrectif VA € N, V(vy,...,v,) € V| X -+ X V,, we have:

P[Eval(crs, ci,....cp) = f(v1,...,v)] =1 — negl(n),

where (crs, eki, ..., ek,) <s Setup(1”, f) and ¢; < Enc(crs, ek;, v;) for i € [n].
The above probability is taken over the random coins of Setup and Enc.

As for security, a k-robust NI-MPC guarantees the secrecy of the inputs of hon-
est parties even in the presence of an adversary that corrupts a set Qgorr of k parties
(when an adversary corrupts the ith party it obtains its encryption key ek; and the
latter gives to the adversary the ability of producing adversarially chosen messages
using ek;). Following the blueprint of Halevi et al. [32] (see also [14]), this is formal-
ized by an indistinguishability-based definition that states the infeasibility of distin-
guishing between (Enc(crs, ek, v)), ..., Enc(crs, ek,, v2)) and (Enc(crs, ekj, v}),
..., Enc(crs, ek,, v,ll)),27 so long as any interleaving of the honest inputs with any ad-
versarially chosen input v € V;, belonging to a corrupted party i € Qcorr, produces
the same function evaluation. In addition, security of NI-MPC can be formulated in two
different settings, named non-reusable and reusable NI-MPC:

e Non-reusable NI-MPC guarantees the secrecy of parties’ inputs only if the setup
is executed after each round (i.e., a single evaluation f(vy, ..., v,) per setup is
allowed).

e On the other hand, reusable NI-MPC provides a stronger security guarantees allow-
ing parties to use the same setup in multiple rounds. As defined in [32], full-fledged

27Simulation-based security of NI-MPC for general functions is impossible. Indeed, simulation-based NI-
MPC implies virtual black box (VBB) obfuscation [14,29,32] and the latter is impossible for certain class of
circuits/functions [13].
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GiiA™ )

(crs,eki, ..., eky) «<s Setup(1>‘7 fpr)

Corr(-),{Enc(crs,ek;, ) }icn
(@, yom), (v, s vp), @) <5 Ag (12 ers)
b+«s{0,1}, c1 <s Enc(crs, ek, vlf), ..., cn <3 Enc(crs, ekn, vfl)
Corr(-),{E ki) b
b s Alorr( ) {Enc(crs,ek;; ) bign) (1/\,017 o ’C"’a)

If (b =b): return 1

Else: return 0

Fig. 10. Game defining (CPA-1-sided) reusable k-robust security of NI-MPC for all-or-nothing functions and
without session identifiers. On input i € [n], the corruption oracle Corr(-) returns the ith encryption key ek;.

reusability NI-MPC makes use of session identifiers in order to block interleaving
of messages produced in different rounds. In particular, in each round of computa-

tion, the parties compute their messages c1, . . ., ¢, by attaching to them a unique
session identifiers £. Only messages cy, ..., ¢, with the same identifier £ can be
evaluated together yielding f(vy, ..., v,) = Eval(crs, cy, ..., cn).

We focus on a weaker notion of reusability without session identifiers, specifically
tailored for all-or-nothing functions, that allows to re-use the same setup until a certain
condition is satisfied. An all-or-nothing function fp : V| X --- x V,; = (M1 x -+ X

M,)U{ L} returns parties’ messages (my, ..., m,) € M| x---x M, only if a predicate
P(x1, ..., x,) is satisfied, i.e.,
my,...,my) £ P(xg,...,xp) =1
VUl ooy Uy) = 15
frvi n) 1L otherwise (15)
where v; = (x;,m;) € Vi = X; x M; fori € [n]. We named our weaker notion of

reusability CPA-1-sided reusability and, in a nutshell, it allows parties to reuse the same
setup (without affecting the security of the protocol) so long as fp evaluates L for any
combinations of the honest inputs and every input associated to the corrupted parties.?®
This condition resembles the CPA-1-sided security of multi-input PE (Definition 13).

Definition 18. (CPA-1-sided reusable k-robust security of NI-MPC for all-or-nothing
functions). Let fp : Vi x -+ x V,; = (M| x --- x M,) U{L} be an all-or-nothing
function as defined in Eq. (15). We say that a NI-MPC protocol IT for fp is CPA-1-sided
reusable k-robust secure if for any valid PPT adversary A = (Ag, A) we have:

[6R3] - 3| < neai

where G?Ii:r:pc()») is depicted in Fig. 10. Let Q; = QEnc(ers,ek;,-) fori € [n]\Qcorr and
Q; = & fori € Qgorr. Adversary A is called valid if |Qgerr| < k and Vd € <,

28We consider every combination of the inputs due to the lack of session identifiers.
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Vjen, Vi, ...,v,) € QU {vf} X o X Qp U{v,‘f},wehavethat

/ / d v 1
fP(Uo, ""Uj—l’ Uj, Uj_,’_], ...,vn_l) = J_.

We stress that both the flavors of corruption and challenge selection considered in
our Definition 18 are stronger than the one of Halevi et al. [32]. In Definition 18, the
adversary can both choose which parties want to corrupt and the challenge adaptively.
On the other hand, [32] only covers selective security on both aspects.

Remark 3. (On the relation between NI-MPC, iO, and null iO). As note by previ-
ous works [14,32], NI-MPC has strong relations with i0. Taking into account full-
fledged reusability, indistinguishability-based O-robust NI-MPC for general functions
that supports n = poly() parties implies 0. The construction is reminiscent to that
of 10 from multi-input functional encryption [29]. Analogously, we can translate the
above implications to the setting of CPA-1-sided reusability and null iO (and, in turn
WE) [19,31,48], i.e., CPA-1-sided reusable 0-robust NI-MPC for general functions that
supports n = poly (1) parties implies null iO. This shows that nonetheless CPA-1-sided
reusability is a weakening of standard reusability, it is non-trivial to achieve for general
functions. Moreover, if we consider 1-robustness, we can get rid of both the (CPA-
1-sided) reusability and n = poly(}) parties requirements. In particular, as described
in Sect. 1.4, we can build 1O (resp. null i0) from indistinguishability-based (resp. CPA-
1-sided) non-reusable 1-robust NI-MPC supporting n = 2 parties.?’

6.2.1. Construction of NI-MPC for all-or-nothing functions from Multi-input PE

Here, we build a CPA-1-sided reusable k-robust NI-MPC protocol for fp : Vi x - -+ X
Vi = My x -+ x M) U{L} (defined as in Eq. (15)) from any CPA-1-sided secure
n-input PE in the k-corruptions setting without collusions.

Construction 6. Ler iPE; = (Setup,, KGeny, Ency, Decy) be a n-input PE scheme
withmessage space M = M X - - X My, input space X = X| x- - -x X, and predicate
space Py = {P(xy, ..., xpn)}. Let V; = X; x M, fori € [n]. Forevery P € Py, we build
a NI-MPC protocol for the function fp : Vi X -+ x V, => (M| x -+ x M) U{L}
(as defined in Eq. (15)) in the following way:

Setup(1*, fp): Upon input the security parameter 1* and a function fp, the random-

ized setup algorithm computes (€k, ..., ek,, msk) <s Setup, (1*) and dkp =
KGen|(msk, P) where P € P\ is the predicate defining the function fp. Finally,
it returns crs = dkp and ekq, . . ., ek,.

Enc(crs, ek;, v;): Leti € [n]. Uponinputthe common reference string crs = dkp, the
encryption key €kK;, and the input v; = (x;, m;) € V;, the randomized encryption
algorithm outputs ¢; <s Ency(ek;, x;, m;).

29Non-reusable 1-robust security of NI-MPC means that the honest encryption key ek; is used only once
(i.e., to compute a single message) whereas €k|_; is revealed to the adversary (i.e., the adversary can use it
multiple times without breaking the security of the NI-MPC protocol).
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Eval(crs, ¢y, ..., ¢,): On input the common reference string crs = dKp and n ci-
4 8
phertexts ¢y, . .., ¢, the evaluation algorithm outputs Decy(dkp, ¢y, ..., c,).

Correctness follows from that of the underlying n-input PE iPE;. In particular, cor-
rectness for the case fp((x1,m1),..., (x,,my)) = L (i.e., P is not satisfied) can be
obtained by extending the iPE;’s correctness to the case of P is not satisfied, i.e.,
Dec(dkp, ci, ..., cy) = L whenever P(x,...,x,) = 0.3°

Security of Construction 6 is formalized by Theorem 9. By combining Theorems 9
and 6 (and [30]), we obtain a CPA-1-sided reusable O-robust NI-MPC protocol for
n = poly(}) parties (based on the LWE assumption) for all-or-nothing functions fp
(Eq. (15)) where P is a conjunctions of arbitrary predicates with wildcards. Similarly,
by combining Theorems 9 and 7, we obtain a CPA-1-sided reusable (n — 1)-robust NI-
MPC protocol for n = O(1) parties for the same class of functions. Both settings are
non-trivial, and they both imply null iO (and WE) in the case of NI-MPC for general
functions (see Sects. 1.3 and Remark 3).

Theorem 9. Let iPE| as above. If iPE| is CPA-1-sided secure in the k-corruptions
setting without collusions (Definition 13), then I1 of Construction 6 is CPA-1-sided
reusable k-robust secure (Definition 18).

Proof.  Suppose there exists a valid PPT adversary A with a non-negligible advantage
in breaking the partial reusability k-robust security of NI-MPC. we build an adversary
A’ that breaks the CPA-1-sided security in the k-corruptions setting without collusions
of IPE;. A’ proceeds as follows:

1. Send P to the oracle KGen(msk, -) and receive dkp.
2. Send crs = dkp to A.
3. A’ answers the incoming oracle queries as follows:

e On input v; = (x,m) € V; for Enc(crs, €k;, -) where i € [n], forward the
query (x, m) to Ency(ek;, -, -) and return the answer c; to A.

e Oninputi € [n] for Corr(-), forward the query i to oracle Corr(-) and return
the answer €k; to A.

4. Receive the challenge (v(l) = (x(l),m(l)), ...,v,? = (xg,mg)) and (v]1 = (xll,
m}), ool =) mhy).

5. Send ((m(l), R mg), (x?, R x,?)) and ((m}, e m,li), (xll, e x,ll)) to the chal-
lenger.

6. Receive the ciphertexts (cy, .. ., ¢,) and forward them to A.

7. Answer to the incoming oracle queries as in Item 3.
8. Return the output of A.

The adversary A’ perfectly simulates the view of A. Moreover, by combining | QkGen, | =
1 (A submits a single query to the KGen oracle) and A’s validity, we can easily conclude

30Correctness for the case P(x Toeves xp) = 0 can be seamlessly added to any multi-input PE scheme
by applying an efficiently computable and invertible padding ®(-) (e.g., ®(m) = m||1]|0* where A is the
security parameter) before encrypting the message m;, i.e., Enc(ek;, x;, ®(m;)). On decryption, the n-input
PE scheme will return L. whenever the padding is invalid.
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that A’ is a valid adversary for the experiment G{‘,;g%"l'iPE()») without collusions. This
concludes the proof. ([
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