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Abstract. We put forward two natural generalizations of predicate encryption (PE),
dubbed multi-key and multi-input PE. More in details, our contributions are threefold.

• Definitions. We formalize security of multi-key PE and multi-input PE following the stan-
dard indistinguishability paradigm, and modeling security both against malicious senders
(i.e., corruption of encryption keys) and malicious receivers (i.e., collusions).

• Constructions.We construct adaptively secure multi-key and multi-input PE supporting the
conjunction of poly-many arbitrary single-input predicates, assuming the sub-exponential
hardness of the learning with errors (LWE) problem.

• Applications. We show that multi-key and multi-input PE for expressive enough predicates
suffices for interesting cryptographic applications, including non-interactive multi-party
computation (NI-MPC) and matchmaking encryption (ME).

In particular, plugging in our constructions of multi-key and multi-input PE, under the
sub-exponential LWE assumption, we obtain the first ME supporting arbitrary policies
with unbounded collusions, as well as robust (resp. non-robust) NI-MPC for so-called
all-or-nothing functions satisfying a non-trivial notion of reusability and supporting a
constant (resp. polynomial) number of parties. Prior to our work, both of these applica-
tions required much heavier tools such as indistinguishability obfuscation or compact
functional encryption.

∗An abridged version of this paper appears in the Proceedings of Advances in Cryptology-
EUROCRYPT 2023: 42nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques [25].
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1. Introduction

Predicate encryption (PE) [17,30,37] is a powerful cryptographic primitive that enriches
standard encryption with fine-grained access control to the encrypted data. In PE, the
ciphertext is associated to both a messagem and an attribute1 x , whereas the secret key is
associated to a predicate P , in such a way that the decryption process reveals the message
if and only if the attribute x satisfies the predicate P (i.e., P(x) = 1). Typically, secu-
rity of PE requires indistinguishability in the presence of collusion attacks, namely, for
any pair of attributes (x0, x1) and for any pair of messages (m0,m1), ciphertexts corre-
sponding to (x0,m0) and to (x1,m1) are computationally indistinguishable, even for an
adversary possessing poly-many decryption keys dkP , so long as P(x0) = P(x1) = 0
(otherwise it is easy to distinguish). The above security notion is also known as “weak”
attribute-hiding which considers the secrecy of the attributes only in the case of a receiver
not able to decrypt the ciphertext, i.e., the predicate is not satisfied.

Recently, there has been a lot of progress in constructing PE supporting expressive
predicates under standard assumptions [5,12,17,30,37,38,42,43,45,46]. In particular,
Gourbunov et al. [30] give a construction of selectively secure PE (with unbounded
collusions) for arbitrary predicates under the learning with errors (LWE) assumption.
Moreover, under sub-exponential LWE, the same construction achieves adaptive security
(this requires complexity leveraging).

1.1. Our Contributions

In this paper, we put forward two natural generalizations of PE which we dub multi-key
PE andmulti-input PE. Furthermore, we construct both multi-key PE and multi-input PE
for a particular class of predicates, under the LWE assumption. As we show, the class of
predicates our schemes can handle is powerful enough to yield interesting cryptographic
applications, including matchmaking encryption (ME) [10,11] for arbitrary policies and
non-interactive multi-party computation (NI-MPC) [34] satisfying a weaker (but still
non-trivial) notion of reusability. We elaborate on these contributions in Sect. 1.3.

Prior to our work, all of the above applications required much stronger tools such as
indistinguishability obfuscation (iO) [13]. While recent work made significant progress
toward basing iO on standard assumptions [35,36], these constructions are fairly complex
and still require a careful combination of multiple assumptions (i.e., learning parity with
noise, the SXDH assumption on bilinear groups, and the existence of pseudorandom
generators computable in constant depth). Furthermore, such constructions are not secure
in the presence of a quantum attacker. Candidate constructions of post-quantum iO also
exist [18,28,47], but they are based on problems whose hardness is less understood.

1Sometimes, we also refer to x as the predicate input. Throughout the paper, we use the terms attribute
and input interchangeably.
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Multi-key PE. In multi-key PE, we consider an ensemble of predicates P = {Pv}
indexed by a value v ∈ V = V1 × · · · ×Vn which is uniquely represented as a sequence
v = (v1, . . . , vn) ∈ V1×· · ·×Vn . A sender can encrypt a message under an input x using
the public-key encryption algorithm Enc(mpk, x,m). A trusted authority generates
decryption keys dkvi (using the corresponding master secret key mski ) for each i ∈ [n],
with the guarantee that, given the decryption keys dkv1 , . . . ,dkvn , the receiver can
decrypt successfully the ciphertext c (associated to plaintext m and attributes x), so long
as Pv(x) = Pv1,...,vn (x) = 1.

Security of multi-key PE says that, for any pair of attributes (x0, x1) and for any pair of
messages (m0,m1), ciphertexts c associated to (x0,m0) and (x1,m1) should be compu-
tationally indistinguishable even under unbounded collusions, where the latter essentially
means that the adversary can obtain decryption keys for (poly-many) arbitrary values
v1, . . . , vn which correspond to predicates indexed by any value v = (v1, . . . , vn) such
that Pv(x0) = Pv(x1) = 0. This yields so-called CPA-1-sided security. The stronger no-
tion of CPA-2-sided security additionally allows for predicates indexed by values v such
that Pv(x0) = Pv(x1) = 1, so long asm0 = m1. These notions mimic the corresponding
notions that are already established for standard PE.

Our first result is a construction of multi-key PE, from the sub-exponential LWE
assumption, supporting conjunctions of arbitrary predicates, i.e., for predicates of the
form Pv(x) = Pv1(x1) ∧ · · · ∧ Pvn (xn), where x = (x1, . . . , xn) and v = (v1, . . . , vn).

Theorem 1. (Informal). Assuming the sub-exponential hardness of LWE, there exists
a CPA-1-sided adaptively secure multi-key PE scheme supporting conjunctions of n =
poly(λ) arbitrary predicates with unbounded collusions.

Multi-input PE. In multi-input PE, we consider predicates P with n inputs, i.e., predi-
cates of the form P(x1, . . . , xn). A trusted authority produces encryption keys eki which
are associated to the i th slot of an input for P; namely, given a (possibly secret)2 encryp-
tion key eki , a sender can generate a ciphertext ci which is an encryption of message mi

under attribute xi . At the same time, the authority can produce a decryption key dkP as-
sociated to an n-input predicate P , with the guarantee that the receiver can successfully
decrypt c1, . . . , cn , and thus obtain m1, . . . ,mn , so long as P(x1, . . . , xn) = 1.

As for security, we consider similar flavors as CPA-1-sided and CPA-2-sided secu-
rity for standard PE. Namely, for any pair of sequences of attributes (x0

1 , . . . , x0
n ) and

(x1
1 , . . . , x1

n) and for any pair of sequences of messages (m0
1, . . . ,m

0
n) and (m1

1, . . . ,m
1
n),

ciphertexts c1, . . . , cn corresponding to either (x0
1 ,m0

1), . . . , (x
0
n ,m

0
n) or (x1

1 ,m1
1), . . . ,

(x1
n ,m

1
n) should be computationally indistinguishable. Here, we additionally consider

two cases:

• In the setting with no corruptions (a.k.a. the secret-key setting), all of the encryption
keys eki are secret and cannot be corrupted (and thus all the senders are honest).

• In the setting with adaptive corruptions, the attacker can adaptively reveal some of
the encryption keys eki (and thus corrupt a subset of the senders).

2This is one of the differences between multi-key PE and multi-input PE: the former has a public-key
encryption algorithm, whereas the latter could have a secret-key encryption algorithm.
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Naturally, for both of these flavors, one can define CPA-1-sided and CPA-2-sided security
with or without collusions.

Our second result is a construction of multi-input PE, from the sub-exponential LWE
assumption, supporting conjunctions of n = poly(λ) arbitrary predicateswithwildcards,
i.e., for predicates of the form P(x1, . . . , xn) = P1(x1) ∧ · · · ∧ Pn(xn) such that, for
each i ∈ [n], there exists a (public) wildcard input x�

i for which Pi (x�
i ) = 1 for every i th

predicate Pi .3 Our multi-input PE construction retains its security only in the setting of
no corruptions (i.e., the encryption keys eki are kept secret) and no collusions (i.e., the
adversary only knows a single decryption key dkP for an adversarially chosen predicate
P).

Theorem 2. (Informal). Assuming the sub-exponential hardness of LWE, there exists
a CPA-1-sided adaptively secure multi-input PE scheme supporting conjunctions of n =
poly(λ) arbitrary predicates withwildcards, without corruptions andwithout collusions.

Our third result is a construction of multi-input PE, from the sub-exponential LWE
assumption, supporting the same class of predicates as above but tolerating adaptive cor-
ruptions of up to n−1 parties. However, this particular scheme only supports predicates
with constant arity.

Theorem 3. (Informal). Assuming the sub-exponential hardness of LWE, there exists
a CPA-1-sided adaptively secure multi-input PE scheme supporting conjunctions of
n = O(1) arbitrary predicates with wildcards, under n − 1 adaptive corruptions and
without collusions.

Finally, we anticipate that all our constructions are transformations that leverage
single-input PE schemes (e.g., [30]) and lockable obfuscation [31,48] as building blocks.
Such transformations are general and achieve CPA-2-sided security if the underlying
single-input PE schemes are CPA-2-sided secure. In particular, we obtain (i) CPA-2-
sided secure multi-key PE with unbounded collusions for n = poly(λ), (i i) CPA-2-sided
secure multi-input PE without corruptions and without collusions for n = O(log(λ)),4

and (i i i) CPA-2-sided secure multi-input PE under n − 1 corruptions and without col-
lusions for n = O(1). However, at the time of this writing, the LWE assumption is not
sufficient for CPA-2-sided security. Indeed, even for single-input PE for arbitrary pred-
icates, CPA-2-sided security implies iO [15]. The current state-of-the-art constructions
of iO require much stronger assumptions compared to standard LWE.

Additional content of this manuscript. A preliminary version of this work appears in
the Proceedings of EUROCRYPT 2023 [25]. Material not present in the Proceedings,
but included in this manuscript, are (i) construction of multi-input PE in the setting of no
corruptions (Construction 3 of Sect. 5.2); (i i) applications of our constructions (Sect. 6);

3Note that, in the setting with no corruptions, assuming the presence of a (single) wildcard x�
i for each

Pi does not affect the expressiveness and the security guarantees of multi-input PE. This is because the i th
sender can simply choose not to encrypt x�

i , which will not permit the receiver to evaluate Pi over x�
i .

4Note that, in case of no corruptions, our CPA-1-sided construction supports n = poly(λ). However, to
achieve CPA-2-sided security we use complexity leveraging and this reduces n from poly(λ) to O(log(λ)).
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(i i i) security proofs of our results including the ones contained in the Proceedings of
EUROCRYPT 2023 [25] (Sect. 5).

1.2. Technical Overview

We now give a high-level overview of our constructions. As explained above, both our
multi-key and multi-input PE constructions handle conjunctions of arbitrary predicates,
i.e., predicates of the form:

P(x1, . . . , xn) = P1(x1) ∧ · · · ∧ Pn(xn). (1)

We start by explaining how to build multi-key PE for the above class of predicates
by combining single-input PE and so-called lockable obfuscation [31,48]. Informally, a
lockable obfuscation scheme allows to obfuscate a circuit C under a lock y together with
a messagem, in such a way that evaluating the obfuscated circuit, on input x , returnsm if
C(x) = y. As for security, an obfuscated circuit can be simulated in a virtual black box
(VBB) fashion whenever the lock is random and unknown to the adversary. Lockable
obfuscation exists under the standard LWE assumption.

Then, we explain how to build multi-input PE (for the same class of predicates) by
additionally using SKE and PKE. Here, we consider two settings: without corruptions
(a.k.a. the secret-key setting) and with corruptions. The former assumes that all the
encryption keys (each corresponding to an input) are secret. The latter is a stronger
model that allows the adversary to leak one or more encryption keys (i.e., corruption of the
senders). We achieve security in each setting by changing the way lockable obfuscation
is used. In particular, part of the contribution of this paper is a new technique based on
nested (lockable obfuscated) circuits that execute each other. This technique allows us to
construct a multi-input PE that can handle adaptive corruptions. We provide a high-level
overview in the remaining part of this section. For more details, we refer the reader
to Sects. 4 and 5.

Multi-key Predicate Encryption. An n-key PE allows a sender to encrypt a message m
under an attribute x , by running c ←$ Enc(mpk, x,m). Similarly to single-input PE, a
receiver can correctly decrypt c if it has a decryption key for a predicate Pv , within a
family P of predicates indexed by values v ∈ V , such that Pv(x) = 1. The main differ-
ence between single-input PE and n-key PE is that in the latter the receiver must have
n independent decryption keys (dkv1, . . . ,dkvn ) that uniquely represent the predicate
Pv(·) = Pv1,...,vn (·), i.e., the decryption key associated to a particular predicate is decom-
posed into n decryption keys. Each decryption key dkvi is generated by the authority via
KGen(mski , vi ) where (msk1, . . . ,mskn) are the master secret keys generated during
the setup. Hence, once obtained (dkv1, . . . ,dkvn ) from the authority, the receiver can de-
crypt the ciphertext c (encrypted under attribute x) by executingDec(dkv1 , . . . ,dkvn , c).
The message is returned if the predicate Pv1,...,vn (x) = 1, where Pv1,...,vn (·) is the pred-
icate represented by the combination of the n decryptions keys dkv1 , . . . ,dkvn . The
security of n-key PE is analogous to that of single-input PE, where the validity of the
adversary A is defined with respect to the (poly-many) tuples (dkv1 , . . . ,dkvn ) of n
decryption keys that the adversary has access to. In particular, we consider the well-
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known notion of CPA-1-sided security, i.e., the attacker cannot distinguish between
Enc(mpk, x0,m0) and Enc(mpk, x1,m1) so long as it only holds combinations of n
decryption keys (dkv1 , . . . ,dkvn ) such that Pv1,...,vn (x

0) = Pv1,...,vn (x
1) = 0 (i.e., the

adversary cannot decrypt the challenge ciphertext).5

As explained above, we focus on conjunctions of arbitrary predicates Pv1,...,vn (x) =
Pv1,...,vn (x1, . . . , xn) = Pv1(x1) ∧ · · · ∧ Pvn (xn) as defined in Eq. (1); hence, x =
(x1, . . . , xn) and each dkvi identifies the i th predicate of the conjunction (and, in turn,
any tuple of n decryption keys uniquely identifies the global predicate). We build an
n-key PE handling this class of predicates by extending the technique of Goyal et
al. [31], that uses lockable obfuscation to transform any CPA secure attribute-based
encryption (ABE) (recall that ABE schemes only guarantee the secrecy of the mes-
sage) into a CPA-1-sided secure PE (i.e., secrecy of both message and attribute). Let
PEi = (Setupi ,KGeni ,Enci ,Deci ) for i ∈ [n] be n single-input PE schemes, each
with ciphertext expansion poly(λ) + |mi | where |mi | is the message length supported
by the i th PE.6 In a nutshell, our n-key PE scheme kPE = (Setup,KGen,Enc,Dec)
works as follows:

Setup. The setup algorithm Setup simply executes Setupi of each PEi and outputs the
master public keympk = (mpk1, . . . ,mpkn) andnmaster secret keys (msk1, . . . ,

mskn).
Key Generation. To generate a decryption key dkvi ←$ KGen(mski , vi ) (representing

the i th predicate Pvi (·) of the conjunction), the authority can use the key generation
algorithm of the i th PE, i.e., dkvi ←$ KGeni (mski , Pvi ).

Encryption. To encrypt a message m under an input x = (x1, . . . , xn), a sender samples
a random lock y and encrypts it n times using PE1, . . . ,PEn , i.e.,

c ←$ Encn(mpkn, xn,Encn−1(mpkn−1, xn−1, . . . ,Enc1(mpk1, x1, y))).

Note that, for n = poly(λ), the final ciphertext will be of polynomial size since each
underlying i th PE scheme haspoly(λ)+|mi | ciphertext expansion where |mi | is the
message length supported by i th scheme. The final ciphertext of the n-key PE kPE
will be the obfuscation of the circuit Cc under the lock y together with the message
m (i.e., ˜C ←$ Obf(1λ,Cc, y,m)), whereCc, on input (dkv1 , . . . ,dkvn ), iteratively
decrypts c and returns the last decrypted value, i.e., y = Cc(dkv1, . . . ,dkvn ) =
Dec1(dkv1, . . . ,Decn(dkvn , c)).

Decryption. Finally, decryption is straightforward: the receiver simply executes ˜C using
its n decryption keys (dkv1 , . . . ,dkvn ).

5Observe that the decryption keys can be interleaved. For example, starting from
(dkv1 , . . . , dkvi , . . .dkvn ) representing the predicate Pv1,...,vi ,...,vn , the adversary can ask for an ad-
ditional i th decryption key dkv′

i
and rearrange the decryption keys as (dkv1 , . . . ,dkv′

i
, . . .dkvn ) in order to

obtain the tuple representing a different predicate Pv1,...,v′
i ,...,vn

�= Pv1,...,vi ,...,vn .

6By leveraging hybrid encryption, we can transform any PE into one with poly(λ) + |m| ciphertext
expansion, i.e., Enc′(mpk, x,m) = Enc(mpk, x, s)||PRG(s) ⊕ m where s ←$ ←$ λ.
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The CPA-1-sided security of our construction follows by the CPA security (i.e., secrecy
of the message) of PE1, . . . ,PEn and by the security of lockable obfuscation.7 Intu-
itively, the proof works as follows. In order to be valid, an adversaryA cannot hold a tuple
of decryption keys (dkv1, . . . ,dkvn ) such that Pv1,...,vn (x

b) = Pv1,...,vn (x
b
1 , . . . , xbn ) =

1, where xb = (xb1 , . . . , xbn ) is the input chosen by A during the challenge phase, and b
is the challenge bit. Since Pv1,...,vn (x

b
1 , . . . , xbn ) is a conjunction of arbitrary predicates

(see Eq. (1)), this implies that there exists an i ∈ [n] such that Pvi (x
b
i ) = 0 for every

i th decryption key dkvi obtained by A. We can leverage this observation together with
the CPA security of PEi to do a first hybrid in which the challenger computes the i th
layer of the challenge ciphertext as Enci (mpki , x

b
i , 0 . . . 0). Now, since the lock y is

not encrypted anymore, we can use the security of lockable obfuscation to do a second
hybrid in which the challenge ciphertext ˜C is simulated by using the simulator of lock-
able obfuscation. In this last hybrid, the challenge ciphertext does not depend on the bit
b sampled by the challenger.

Despite we focused the discussion on CPA-1-sided security, we stress that the same
construction achieves CPA-2-sided security if the underlying n single-input PE schemes
PE1, . . . ,PEn are CPA-2-sided secure, i.e., Enc(mpk, x0,m0) and Enc(mpk, x1,m1)

are indistinguishable even when Pv1,...,vn (x
0) = Pv1,...,vn (x

1) = 1 and m0 = m1.

Multi-input Predicate Encryption. We now turn to the more challenging setting of
multi-input PE.8 Here, each of the n senders can use its corresponding encryption key
to independently encrypt messages under different inputs for the predicate. For this
reason, the setup algorithm of n-input PE outputs n encryption keys (ek1, . . . ,ekn) and
a master secret keymsk. Each encryption keyeki is given to the i th sender and allows the
latter to handle the i th slot of a multi-input predicate. The i th party encrypts a message
mi under an input xi by using its encryption key eki , i.e., ci ←$ Enc(eki , xi ,mi ).
On the other hand, a receiver can use the decryption key dkP associated to an n-input
predicate P (recall that dkP is generated by the authority viaKGen(msk, P)) to execute
Dec(dkP , c1, . . . , cn). Intuitively, the decryption algorithm returns (m1, . . . ,mn) when
P(x1, . . . , xn) = 1 where (mi , xi ) are the message and the input associated to the i th
ciphertext ci .

The CPA-1-sided security ofn-input PE is similar to that ofn-key PE, but adapted to the
multi-input setting. Informally, an adversary A must not be able to distinguish between
ciphertexts (Enc(eki , x0

i ,m
0
i ))i∈[n] and (Enc(eki , x1

i ,m
1
i ))i∈[n] where (x0

1 , . . . , x0
n ),

(x1
1 , . . . , x1

n) and (m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n) are chosen by A. Naturally, this is subject

to the usual validity condition, informally saying thatA should not be able to decrypt (part
of) the challenge ciphertext. This condition can assume different meanings depending on
whether the encryption keys are all secret or some of them are public (or can be leaked).
Because of this, we formalize security with and without corruptions. Throughout the rest
of this section, we describe how CPA-1-sided security of n-input PE changes in these
two settings, and give some intuition on our constructions for each setting. We recall

7When we write CPA secure PE, without specifying 1-sided or 2-sided security, we refer to a PE scheme
that guarantees only the secrecy of the message. CPA secure PE is the same as CPA secure ABE.

8Indeed, as we discuss in Sect. 4.3, CPA-1-sided (resp. CPA-2-sided) secure multi-input PE for arbitrary
predicates implies CPA-1-sided (resp. CPA-2-sided) secure multi-key PE.
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that our multi-input constructions will support conjunctions of arbitrary predicates with
wildcards (see Theorems 3 and 2 of Sect. 1.1).

Security in the secret-key setting. Here, no corruptions are allowed and thus the en-
cryption keys are kept secrets. Hence, an adversary A playing the CPA-1-sided secu-
rity game has adaptive oracle access to both the key generation oracle KGen(msk, ·)
and to n encryption oracles {Enc(eki , ·, ·)}i∈[n]. The latter oracles allow A to gener-
ate ciphertexts (associated to the i th input/sender) on adversarially chosen predicate
inputs and messages. Since these ciphertexts are created independently, the adversary
has the power to interleave part of the challenge ciphertext (c∗

1, . . . , c∗
n) with the ci-

phertexts obtained through the encryption oracles. This has a huge impact on the se-
curity of the a n-input PE scheme and on the validity condition that A must satisfy.
For example, during the challenge phase, A could choose two vectors of messages
(m0

1, . . . ,m
0
n) and (m1

1, . . . ,m
1
n) and two vectors of predicate inputs (x0

1 , . . . , x0
n ) and

(x1
1 , . . . , x1

n) such that for every predicate P (submitted to oracle KGen(m, ·)) we
have P(x0

1 , . . . , x0
n ) = P(x1

1 , . . . , x1
n) = 0. Although the vector (c∗

1, . . . , c∗
n) can-

not be directly decrypted, A could still be able to decrypt part of it by leveraging
the encryption oracles. In more details, A could: (i) adversarially choose x ′

i such that
P(x0

1 , . . . , x ′
i , . . . x

0
n ) = 1 and P(x1

1 , . . . , x ′
i , . . . x

1
n) = 0; (ii) submit (x ′

i ,m
′
i ) to ora-

cle Enc(eki , ·, ·) and obtain c′
i ;and (iii) simply decrypt the vector (c∗

1, . . . , c′
i , . . . , c

∗
n).

When b = 0 (resp. b = 1), the adversary knows that the challenge ciphertext must (resp.
must not) decrypt successfully. This allows it to easily win the CPA-1-sided security ex-
periment ofn-input PE. As a consequence, the condition defining whenA is valid depends
on both the queries submitted to KGen(msk, ·) and to the oracles {Enc(eki , ·, ·)}i∈[n].
More precisely, for every decryption key dkP corresponding to a predicate P , for every
vector of ciphertexts obtained by interleaving the challenge ciphertext (c∗

1, . . . , c∗
n) with

the ciphertexts generated through any of the n encryption oracles, we must have that P
is not satisfied. This is formalized by the following condition: ∀P ∈ QKGen, ∀ j ∈ [n],
∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], it holds that

P(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n ) =

P(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) = 0, (2)

where QKGen are the queries submitted to oracle KGen(msk, ·), (x0
1 , . . . , x0

n ), (x
1
1 ,

. . . , x1
n) are the predicate inputs chosen by A during the challenge phase, and Qb

i =
{x (1,b)

i , . . . , x (ki ,b)
i , x (ki+1,b)

i = xbi } is the ordered list composed of the ki predicate
inputs submitted to oracle Enc(eki , ·, ·) and the challenge input xbi for b ∈ ←$ , i ∈ [n]
(observe that Q0

i and Q1
i are identical except for the last element). The formal security

definition appears in Sect. 4.2.

Construction in the secret-key setting. We propose a construction of n-input PE for
conjunctions of arbitrary predicates (see Eq. (1)) with wildcards from single-input PE,
lockable obfuscation, and SKE. In particular, we start from single-input PE for ar-
bitrary predicates. Actually, it will suffice that the underlying PE itself supports the
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predicates P(x1, . . . , xn) as defined in Eq. (1), where we view (x1, . . . , xn) as a single
input chosen by the sender. In addition, the predicate must have a (efficiently com-
putable) wildcard input (x�

1, . . . , x�
n) such that x�

i satisfies every i th predicate of the
conjunction, i.e., Pi (x�

i ) = 1. As we will describe next, the n − 1 subset of wildcards
(x�

1, . . . , x�
i−1, x

�
i+1, . . . , x

�
n) will permit the i th sender to put a “don’t care” placeholder

on the slots of the other senders. This will allow the construction to deal with multiple
inputs without compromising the evaluation of the predicate. We highlight that wild-
cards can be generically added to any single-input PE for arbitrary predicates. Let P the
original predicate supported by the single-input PE scheme. Then, we can add a wildcard
by translating P into a new predicate P ′ which admits a special (dummy) input x� that
always evaluate the predicate to 1, i.e.,

P ′(x) =
{

1 if x = x�,

P(x) otherwise.

The main intuition behind our construction is to evaluate the conjunction of the pred-
icates inside lockable obfuscation in such a way that, as soon as one of the predicates
(of the conjunction) is not satisfied, both the messages and the predicate inputs remain
hidden (even if another predicate Pi is satisfied). To accomplish that, we need to cre-
ate a link between the independently generated ciphertexts (each produced by different
senders). This is done by leveraging an SKE scheme as follows.

In a nutshell, our construction works as follows:

Encryption keys. The i th secret encryption key has the formeki = (mpk, ki , ki+1)

where mpk is the master public key of the single-input PE, and ki for i ∈ [n]
is a secret key for the SKE. (We also let ekn+1 = k1.9)

Encryption. In order to encrypt a messagemi under an input xi , the i th sender sam-
ples a random lock yi and encrypts (yi , ki+1) via the single-input PE, using
the input made by all the wildcards x�

j except for the position j = i , where,

instead, the sender places its real input xi , i.e., c(1)
i ←$ Enc(mpk, (x�

1, . . . ,

x�
i−1, xi , x

�
i+1, . . . , x

�
n), (yi , ki+1)). The final ciphertext ci will be ci =

(˜Ci , c
(2)
i ), where c(2)

i ←$ Enc(ki , c
(1)
i ) and ˜Ci is the obfuscation of the cir-

cuit C
c(2)
i ,ki+1

under the lock yi and message mi .

Similarly to the case of multi-key PE, the latter circuit is responsible for the decryp-
tion. In particular, upon input the ciphertexts (c(2)

i+1, . . . , c
(2)
n , c(2)

1 , . . . , c(2)
i−1)—

note the order of the ciphertexts—and the decryption key dkP for P(x1, . . . , xn),
the circuit C

c(2)
i ,ki+1

acts as follows:

1. Set k = ki+1 where ki+1 is the secret key hardcoded into the circuit (recall
that secret keys are cyclically ordered, i.e., kn+1 = k1).

2. For c(2)
j ∈ {c(2)

i+1, . . . , c
(2)
n , c(2)

1 , . . . , c(2)
i−1} do:

(a) Decrypt c(2)
j using the secret key k, i.e., c(1)

j = Dec(k, c(2)
j ).

9In other words, the secret keys are cyclically ordered.
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(a) Decrypt c(1)
j usingdkP in order to get (y j , k j+1). If c(1)

j decrypts correctly,

k j+1 is the secret key used to encrypt the next ciphertext c(2)
j+1.

(c) Set k = k j+1.

3. Compute (yi , ki+1) = Dec(dkP ,Dec(k, c(2)
i )), where c(2)

i is the ciphertext
hardcoded into the circuit.

4. Return yi (note that if none of the decryptions fails then yi is the lock used to
obfuscate the circuit).

Decryption. By following the computation (described above) of the obfuscated cir-
cuit, decryption is immediate. Upon input (ci )i∈[n], the receiver computes mi =
˜Ci (c

(2)
i+1, . . . , c

(2)
n , c(2)

1 , . . . , c(2)
i−1,dkP ) where ci = (˜Ci , c

(2)
i ) and dkP is the de-

cryption key of the underlying single-input PE for a predicate P(x1, . . . , xn).

We highlight that the combination of the SKE with the PE wildcards is what allows
our construction to correctly implement the predicates of Eq. (1). This is because, when
c(1)
i correctly decrypts under the key dkP (0a), we are guaranteed that Pi (xi ) = 1 (recall

that xi is the input of the i th sender). In particular, the latter holds as, in any other slot,
the i th sender has used the wildcards. By repeating this argument, we can conclude that
P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) is satisfied if the execution of each C

c(2)
i ,ki+1

goes as expected. The formal construction is described in Sect. 5.2.
As for security, we show that our construction satisfies CPA-1-sided security in the

presence of no collusions (i.e., the adversary can submit a single query to the oracle
KGen) if the underlying PE is CPA-1-sided secure, SKE is CPA secure, and the lockable
obfuscation is secure. Roughly, the proof works as follows. Let P∗ be the only predicate
submitted to KGen by the adversary. Starting from A’s validity condition, we infer that,
for any choice of the challenge bit b ∈ ←$ , then attacker A must maintain one of the
following two conditions:

(i) either P∗
1 (xb1 ) = . . . = P∗

n (xbn ) = 0 (i.e., all the predicates of the conjunctions are
false);

(ii) or (if at least one predicate P∗
i is satisfied, i.e., P∗

i (xbi ) = 1) there exists j �= i
such that, for every x j ∈ Qb

j , it holds that P∗
j (x j ) = 0 where Qb

j is the ordered
list composed of predicate inputs submitted to the oracle Enc(ek j , ·, ·) and the
challenge input xbj (see Eq. (2)).10

When the first condition is satisfied, we can leverage the CPA-1-sided security of the
single-input PE to show that the every lock yi (encrypted using the PE), and every input
xi (encrypted in c(2)

i ), is completely hidden to the adversary. The latter allows us to use
the security of lockable obfuscation to move to a hybrid experiment in which all the
(obfuscated) circuits are simulated (including the messages).

On the other hand, when the second condition is satisfied, we can transition to a hybrid
experiment (this time by leveraging the security of the underlying PE scheme) in which
Enc(ek j , ·, ·) computes c(1)

j by encrypting the all-zero string (instead of (y j , k j+1)).

10If this condition is not satisfied, the adversary has obtained through the encryption oracles a set of
ciphertexts that can be interleaved with one (or more) parts of the challenge ciphertext in order to satisfy the
predicate P∗.
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Thus, we can use the security of lockable obfuscation to move to another hybrid in which
Enc(ek j , ·, ·) simulates all the obfuscations. At this point, the symmetric key k j+1 is
not used anymore. Hence, we can use the security of SKE to transition to another hybrid
in which Enc(ek j+1, ·, ·) computes c(2)

j+1 by encrypting the all-zero string (instead of

c(1)
j+1 that, in turn, contains the lock y j+1 and the symmetric key k j+2). After this hybrid,

we can again use the security of lockable obfuscation to simulate all the obfuscations
computed by Enc(ek j+1, ·, ·), and so on. By repeating these last two hybrids, we reach
an experiment whose distribution does not depend on the challenge bit.

We highlight that our scheme is not secure in the presence of collusions. In particular,
the fact that the adversary can obtain a single decryption key dkP is crucial in order
to get the validity condition (ii), i.e., for every b ∈ ←$ there exists a j such that for
every predicate (submitted to KGen(msk, ·)) we have Pj (xbj ) = 0. In fact, in the case
of collusions, the adversary can ask for two decryption keys dkP and dkP ′ such that for
every b ∈ ←$ :

P1(x
b
1 ) = 0 and P2(x

b
2 ) = . . . = Pn(x

b
n ) = 1

P ′
1(x

b
1 ) = 1 and P ′

2(x
b
2 ) = . . . = P ′

n(x
b
n ) = 0.

Note that these are valid queries for the CPA-1-sided security experiment of n-input PE
(the ciphertext cannot be decrypted). However, such a unique j for every predicate (as
per condition (ii)) does not exist. When this happens, we are not able to conclude the
proof by making a reduction to the security of single-input PE (the reduction will make
an invalid set of queries to the KGen oracle of the single-input PE, making it invalid for
the CPA-1-sided security of the single-input PE).11

Lastly, we stress that since we start from a single-input PE supporting conjunctions
of arbitrary predicates with wildcards, we end up with an n-input PE for conjunctions of
arbitrary predicates (see Eq. (1)) with wildcards. We highlight that wildcards do not play
any role in the security proof of our secret-key construction. In other words, wildcards
are required for functionality (correctness) and not for security. Indeed, in the secret-key
setting (i.e., no corruptions), wildcards can be easily removed. This is because we can
transform any secure multi-input PE for P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) with a
singlewildcard (x�

1, . . . , x�
n) into a secure multi-input PE for the same class of predicates

P(x1, . . . , xn) without the wildcard. This can be done by requiring the senders not to
encrypt the corresponding wildcard, i.e., for each i ∈ [n], Enc(eki , x�

i ,mi ) outputs ⊥
whenever xi = x�

i . We stress that this only works in the case of no corruptions. In fact,
as we will discuss later, in case of corruption, wildcards play a role in the security of our
corruption-resilient multi-input PE scheme, e.g., an adversary can encrypt wildcards on
its own using the leaked encryption keys.

Security under corruptions. Next, let us explain how to define security of multi-input
PE in the presence of corruptions. Here, the adversary has the possibility to corrupt a

11As we discuss in Sect. 5.4, our construction remains secure if we consider a weaker form of collusion in
which the adversary can only obtain multiple decryption keys for predicates P such that there is a unique j
for all predicates (submitted to KGen) that satisfies the validity condition (ii).
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subset of the senders and leak their encryption keys eki . We model this by introduc-
ing an additional corruption oracle Corr(·) that, upon input an index i ∈ [n], returns
eki . Note that, once obtained eki , the adversary A has the possibility to produce ar-
bitrary ciphertexts on any message and predicate input, without interacting with the
challenger during the CPA-1-sided security game. As usual, the validity condition heav-
ily depends on the queries submitted to both the encryption oracles and the corruption
oracle. More precisely, the validity condition now says that, for every decryption key
dkP , for every vector of ciphertexts that can be obtained by interleaving the challenge
ciphertext (c∗

1, . . . , c∗
n) with both the ciphertexts obtain through any of the (uncorrupted)

encryption oracles and the ones that A may autonomously produce by using the leaked
encryption keys (through oracle Corr(·)), we have that P is not satisfied. Hence, the
validity condition is identical to that of the secret-key setting (see Eq. (2)), except that:

• If the i th encryption key eki has been corrupted/leaked, then Qb
i of Eq. (2) corre-

sponds to the i th predicate input space. This is because the adversary can produce
a valid ciphertext on any input xi .

• Else (i.e., the i th encryption key eki is still secret), Qb
i is defined as usual, i.e., it is

the ordered list of predicate inputs submitted to oracle Enc(eki , ·, ·) and challenge
input xbi .

See Sect. 4.2 for the formal definition.

A simple attack. Before explaining our construction in details, let us show why the
previous construction is not secure under corruptions. For simplicity, we focus on the 2-
input setting. This will help us identifying the main properties that a multi-input scheme
must satisfy in order to remain secure in case of corruptions. Suppose an adversary A has
a single decryption key dkP for P(x1, x2) = P1(x1)∧ P2(x2) and a vector of ciphertexts
(c∗

1, c∗
2) = ((˜C1, c

(2)
1 ), (˜C2, c

(2)
2 )) encrypted under the predicate input (x1, x2) such that

P1(x1) = 0 and P2(x2) = 1. Note that this ciphertext should not decrypt under dkP ,
since the conjunction of P1 and P2 evaluates to 0. If A can obtain ek2, then it can easily
determine the messagem2 (and thus the bit b). Indeed, onceA gets ek2 = (mpk, k2, k1),
it can compute a malicious ciphertext c̃(1)

1 (using the single-input PE) by encrypting
(ỹ, k2) (where ỹ is a random lock) under the predicate input composed by (x ′

1, x
′
2) such

that P1(x ′
1) = 1 and P2(x ′

2) = 1. Then, it can compute c̃(2)
1 ←$ Enc(k1, c̃

(1)
1 ) and execute

˜C2(̃c
(2)
1 ,dkP ) to get m2. Note that by definition the execution of ˜C2 outputs the correct

message, since P1(x ′
1) ∧ P2(x2) = 1 and c̃(2)

1 contains the correct secret encryption key
k2, allowing the circuit to correctly end the computation. Also, note that this attack does
not violate the validity condition. This is because P1(x1) = 0, and A does not use the
oracle Enc(ek1, ·, ·) at all. Hence, any interleaving of the ciphertexts will involve the
predicate input x1 that, in turn, will make the conjunction P(x1, x ′

2) = P1(x1) ∧ P2(x ′
2)

unsatisfied for every choice of the input predicate x ′
2.

In light of the above attack, we can identify the main properties that a multi-input PE
scheme must satisfy to remain secure even in the presence of corruption:

1. Naturally, as for the secret-key setting, it is fundamental that the encrypted in-
puts and encrypted messages remain secret when one of the predicates Pi of the
conjunction is not satisfied (see the proof strategy of our previous construction).
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2. In combination with the above, we must guarantee that revealing one (or more)
encryption key leaks no information about the encryption keys of other senders.
This is fundamental otherwise a malicious sender may be able to impersonate
and produce valid ciphertexts on behalf of others. This affects the security of the
scheme since an adversary able to forge ciphertexts on behalf of an honest sender
can violate the property described by the above Item 1 (i.e., the adversary can satisfy
the i th predicate associated to the i th honest sender). We highlight that ensuring
correctness while guaranteeing this property is challenging. For example, if the
encryption key of the first sender “encodes” less information about the one of the
second sender, then the harder will be the combination of their ciphertexts during
decryption.

As demonstrated by the attack strategy described above, our secret-key multi-input PE
scheme does not achieve the second property since an attacker can leak one encryption
key which, in turn, allows it to produce a ciphertext on behalf of the honest sender (which
allows for correct decryption in some scenarios).

Construction under corruptions. In order to achieve the above properties, we propose
a new technique based on nested (lockable obfuscated) circuits that can be executed one
inside the other. This technique permits to make available secret information (e.g., secret
keys) only during nested execution. For the sake of clarity, we first present our approach
for the case of two inputs.

Encryption keys. We replace the SKE in our previous construction with a PKE, so that
the encryption keyek1 (resp.ek2) is now composed of (mpk, sk1,pk1,pk2) (resp.
(mpk, sk2,pk2,pk1)) where (ski ,pki ) is a secret/public key pair. Each (ski ,pki )
is associated to the i th sender. Indeed, note that only eki (the encryption key of
the i th sender) contains the secret key ski ). This is fundamental to deal with
corruptions, i.e., corrupting the i th sender reveals no information about the secret
keys (sk1, . . . , ski−1, ski+1, . . . , skn) of the other senders. Moreover, as we will
next, sk j will be required to generate valid ciphertexts for the j th slot of the
scheme.

Encryption. From the perspective of the first sender, in order to encrypt a message m1
under the input x1, it samples two random locks (y in1 , yout1 ) and encrypts them (using

the single-input PE) as before using the wildcard x�
2, i.e., c(0)

1 ←$ Enc(mpk, (x1, x�
2),

(y in1 , yout1 )).12 At this point, the PE ciphertext c(0)
1 is re-encrypted twice using pk1

and pk2, i.e., c(i)
1 ←$ Enc(pki , c

(i−1)
1 ) for i ∈ [2]. Intuitively, the two layers of

PKE have the role of hiding the PE ciphertexts (that in turn contain the locks) even
when the adversary leaks all encryption keys except one. The final ciphertext is
composed by the two obfuscations ˜C

out
1 , ˜C

in
1 of the circuits Cout

sk1,c
(2)
1

, Cin
sk1,c

(2)
1

, re-

spectively. The former is obfuscated under the lock yout1 and message m1, whereas
the latter is obfuscated under the lock y in1 and message sk1. The ciphertext pro-
duced by the second sender, is identical, except that it uses sk2 (instead of sk1)
and that c(0)

2 is computed using the predicate input (x�
1, x2) (instead of (x1, x�

2)).

12Recall that wildcards must be efficiently computable.
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Decryption. The crux of our nesting technique comes from the definition of the circuits
C
out
ski ,c

(2)
i

which, in turn, defines the decryption algorithm of our construction (i.e.,

the nesting technique is fundamental to achieve correctness). More precisely, the
outer circuit Cout

sk1,c
(2)
1

(i.e., the circuit that is given obfuscated to the receiver as

part of the ciphertext c1) will take as input the obfuscation ˜C
in
2 of the inner circuit

C
in
sk2,c

(2)
2

and a decryption keydkP . Then, in order to securely check the conjunction

inside the lockable obfuscation,Cout
sk1,c

(2)
1

will execute ˜C
in
2 (sk1,dkP ). At this point,

˜C
in
2 has everything it needs to check the satisfiability of P2(·). It removes the PKE

layers from c(2)
2 by computing c(0)

2 = Dec(sk2,Dec(sk1, c
(2)
2 )). Then, it decrypts

the PE ciphertext (y in2 , yout2 ) = Dec(dkP , c(0)
2 )—observe that the decryption suc-

ceeds if P2(x2) = 1—and returns y in2 . By correctness of lockable obfuscation,
if the computation of Cin

sk2,c
(2)
2

(sk1,dkP ) goes as intended, then ˜C
in
2 (sk1,dkP )

will output sk2 (the message attached to the obfuscation). Once obtained sk2, the
computation of Cout

sk1,c
(2)
1

can continue and perform a similar computation to check

the satisfiability of P1(·) except that, if the PE ciphertext c(0)
1 decrypts correctly, it

returns yout1 . If all the decryptions (performed by C
out
sk1,c

(2)
1

and C
in
sk2,c

(2)
2

) succeed,

the execution of the obfuscation ˜C
out
1 of Cout

sk1,c
(2)
1

will output m1. A symmetrical

argument holds for Cout
sk2,c

(2)
2

and C
in
sk1,c

(2)
1

, releasing m2.

We show that the above 2-input PE construction is CPA-1-sided secure under 1 cor-
ruption (i.e., one encryption key remains secret) and no collusions if the underlying
single-input PE is CPA secure, PKE is CPA secure, and the lockable obfuscation is se-
cure. The high-level intuition is that ski remains unknown to the adversary if Pi (·) = 0
(unless the adversary invokes the oracleCorr(i)). This is reflected by the proof technique
that is sketched below.

Let dkP∗ be the decryption key obtained by A for the predicate P∗(·, ·) = P∗
1 (·) ∧

P∗
2 (·) (recall the presence of wildcards), and let QCorr be the queries submitted to the

corruption oracle. Starting from the validity condition, we can infer that for any choice
of the challenge bit b ∈ ←$ we have:

(i) either P∗
1 (xb1 ) = P∗

2 (xb2 ) = 0;
(ii) or (i.e., there exists an i ∈ [2] such that predicate Pi is satisfied) j �∈ QCorr such

that j �= i and, for every x j ∈ Qb
j , P

∗
j (x j ) = 0 (recall that xbj ∈ Qb

j ). Observe
that this second condition holds because of the following:

• If there is x j ∈ Qb
j such that P∗

j (x j ) = 1, A can use the corresponding

ciphertext to decrypt the i th part of the challenge ciphertext since P∗
i (xbi ) = 1.

• If j ∈ QCorr, A can simply use ek j to encrypt a random message under
the wildcard x�

j (that always exists by design of our construction) and, again,
decrypt the i th part of the challenge ciphertext. Note that, contrarily from our
secret-key construction, wildcards play an important role in the security of our
multi-input PE construction under corruptions (if an encryption key ek j gets
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leaked then a malicious adversary can always encrypt itself the j th wildcards
x�
j , satisfying the j th predicate Pj ). Hence, in the corruption setting, wildcards

are used for both functionality and security.

By leveraging the above two conditions, the security of our scheme follows by using
a similar argument to that of the secret-key setting. In particular, when the first condition
is satisfied, we can show that the locks (y in1 , yout1 ) and (y in2 , yout2 ) (used to encrypt the
challenge) are completely hidden. This, in turn, allows us to use the security of lockable
obfuscation and simulate the obfuscations of (Cout

sk1,c
(2)
1

,Cin
sk1,c

(2)
1

), (Cout
sk2,c

(2)
2

,Cin
sk2,c

(2)
2

),

and the corresponding messages.
On the other hand, when the second condition is satisfied, we can move to a hybrid

(by leveraging the security of single-input PE) in which Enc(ek j , ·, ·) computes c(0)
j by

encrypting the all-zero string (instead of (y inj , youtj )). Then, we can use the security of
lockable obfuscation to transition to another hybrid in which Enc(ek j , ·, ·) simulates
all the obfuscations. At this point, the secret key sk j of the uncorrupted j th sender is
not used anymore (recall that j �∈ QCorr). Hence, we can leverage the security of the
PKE to remove the locks (y ini , youti ) chosen by the i th sender (recall i �= j). In more

details, we do another hybrid in which the j th PKE layer c( j)
i of the challenge ciphertext

is an encryption of zeroes (instead of c( j−1)
i that, in turn, encrypts the locks (y ini , youti )).

After this hybrid, we can again use the security of lockable obfuscation to simulate
all the obfuscations (and the corresponding attached messages) that compose the i th
component of the ciphertext. The distribution of this last hybrid does not depend on the
challenge bit b since all the ciphertexts are simulated by the simulator of the lockable
obfuscation scheme.

To sum up, we can observe that encrypting c(0)
i (the PE ciphertext that contains the

locks) with the public keys (pk1, pk2) of both senders is crucial in order for our proof
to work independently of which encryption key the adversary decides to leak. So long
as at least one encryption key eki remains hidden, then there is a PKE layer that cannot
be decrypted by the adversary. This allows the proof to go through.
Generalizing the nesting technique to (n > 2) inputs. By carefully modifying the
definition of the outer and inner circuits, we can generalize the above technique to the
case of n > 2. The structure of the encryption keys and of the encryption algorithm is
similar to the case n = 2:

• Each encryption key eki is of the form (mpk, ski ,pk1, . . . ,pkn).
• To compute the i th encryption of (xi ,mi ), the sender computes the initial PE cipher-

text as c(0)
i ←$ Enc(mpk, (x�

1, . . . , xi , . . . , x�
n), (y

in
i , youti )). Then, it re-encrypts

n times the ciphertext c(0)
i using (pk1, . . . ,pkn), i.e., c(v)

i ←$ Enc(pkv, c
(v−1)
i )

for v ∈ [n]. As usual, the final ciphertext ci = (˜Cout
i ,˜Cin

i ) is composed of the
obfuscations of Cout

ski ,c
(n)
i

and C
in
ski ,c

(n)
i

.

We now turn on the crucial point: the definition of the outer and inner circuits. Again, for
the sake of clarity, we only describe the outer circuit Cout

sk1,c
(n)
1

and of the inner circuits
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(Cin
sk2,c

(n)
2

, . . . ,Cin
skn ,c

(n)
n

) generated by the corresponding senders. The remaining circuits

are defined similarly. First off, the input space of these circuits is a follows:

• C
out
sk1,c

(n)
1

takes as input the n − 1 obfuscations of the circuits (Cin
sk2,c

(n)
2

, . . . ,

C
in
skn ,c

(n)
n

) and a decryption dkP . These obfuscations are the inner circuits that

needs to be executed in order to return the message m1 attached to the obfuscation
of Cout

sk1,c
(n)
1

.

• On the other hand, Cin
ski ,c

(n)
i

, for i ∈ [n]\{1}, takes as input a tuple of n secret

keys (sk1, . . . , skn) (where some can be set to ⊥), a decryption key dkP , and
the obfuscations of (Cin

ski+1,c
(n)
i+1

, . . . ,Cin
skn ,c

(n)
n

). Intuitively, these obfuscations are

the remaining inner circuits that we need to still execute in order to complete the
nested execution.

Intuitively, the decryption of m1 requires the nested execution of these circuits (starting
from the outer one) in order to get all the secret keys required to decrypt the PE ciphertext.
This is achieved as follows:

• The outer circuit Cout
sk1,c

(n)
1

starts the nested execution by invoking the obfuscation

of Cin
sk2,c

(n)
2

upon input (sk1,⊥, . . . ,⊥), dkP , and the remaining obfuscations of

(Cin
sk3,c

(n)
3

, . . . ,Cin
skn ,c

(n)
n

).

• In turn, Cin
sk2,c

(n)
2

will do a similar thing: It executes the next obfuscated circuit

C
in
sk3,c

(n)
3

upon input (sk1, sk2,⊥, . . . ,⊥), dkP , and the remaining obfuscations

(Cin
sk4,c

(n)
4

, . . . ,Cin
skn ,c

(n)
n

).

• The above process is repeated untilCin
skn ,c

(n)
n

is executed upon input (sk1, . . . , skn−1,

⊥) and dkP . At this point, all the secret keys are known (observe that skn is hard-
coded). From c(n)

n , we can remove the n PKE layers, decrypt the PE ciphertext and,
in turn, return y inn if the PE ciphertext decrypts correctly (i.e., Pn(·) is satisfied).

• Once C
in
skn ,c

(n)
n

terminates, the secret key skn is released and C
in
skn−1,c

(n)
n−1

performs

the computation required to check if Pn−1(·) is satisfied. Indeed, Cin
skn−1,c

(n)
n−1

has

been executed on input (sk1, . . . , skn−2,⊥,⊥), it has skn−1 harcoded, and the
execution of C

in
skn ,c

(n)
n

has released skn . Hence, after the correct termination of

C
in
skn ,c

(n)
n

, all secret keys are known.

It may seems that this argument can be iterated. However, there is a problem. Even
if Cin

skn−1,c
(n)
n−1

correctly terminates, the circuit Cin
skn−2,c

(n)
n−2

that invokes it does not have

access to the secret key skn . This is because the latter circuit receives as input (sk1, . . . ,

skn−3,⊥,⊥,⊥), it has skn−2 hardcoded, and the circuit Cin
skn−1,c

(n)
n

has returned skn−1.

As a consequence, Cin
skn−2,c

(n)
n−2

must re-run C
in
skn ,c

(n)
n

on input (sk1, . . . , skn−1,⊥) in

order to get skn and decrypt every PKE layer. This needs to be done at any level of the
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nested execution, yielding an asymptotic running time of O(nn). Hence, this technique
only works assuming n = O(1), i.e. for O(1)-input predicates. The formal construction
is described in Sect. 5.3.
On achieving CPA-2-sided secure multi-input PE. Until now, we only focused the
discussion on achieving CPA-1-sided security. Our multi-input constructions achieve
CPA-2-sided security if the underlying single-input PE is CPA-2-sided secure (we high-
light that, in our secret-key multi-input PE construction, we need to reduce the n-arity
from poly(λ) to O(log(λ)) since we use complexity leveraging). We just recall here that,
already for the simple notion of single-input PE for arbitrary predicates, CPA-2-sided
security implies iO [15].

1.3. Applications

Finally, we explore applications of multi-key and multi-input PE. This question is par-
ticularly relevant given the fact that we are only able to obtain multi-key and multi-input
PE supporting conjunctions of arbitrary predicates (with wildcards). Luckily, we can
show that this class of predicates is already expressive enough to yield interesting cryp-
tographic applications which previously required much stronger assumptions.

Matchmaking Encryption. Matchmaking encryption (ME) [10,11] allows a sender to
publicly encrypt a message m under some attributes σ and a policy R. On the other hand,
the receiver can use the decryption keys dkρ and dkS (encoding the receiver’s attributes
and policy, respectively) to decrypt the message (i.e., Dec(dkρ,dkS, c) = m) if there
is a mutual match S(σ ) = 1 ∧R(ρ) = 1. The main security guarantee of ME is defined
by the following two properties:

• In case of a mismatch, nothing is leaked except the fact that a match did not occur.
• Additionally, in case of a match, nothing is leaked except for the message and the

fact that a match occurred.

These properties are reminiscent to CPA-2-sided security of PE. Multi-key PE is a direct
generalization of ME: 2-key PE for conjunctions Pv1,v2(·, ·) = Pv1(·) ∧ Pv2(·) (i.e., the
class of predicates studied in this work) implies ME for arbitrary policies. In a nutshell,
the construction works as follows. To encrypt a message m under the sender’s attributes
σ and the sender’s policy R, the ME encryption algorithm corresponds to the public-key
encryption algorithm of the 2-key PE scheme, i.e., c ←$ Enc(mpk, (x1, x2),m) where
x1 = σ and x2 = R. Analogously, the ME decryption keys dkρ and dkS correspond to
the decryption keys dkv2 and dkv1 of the 2-key PE scheme where v1 = S and v2 = ρ.
By setting Pv1,v2(x1, x2) = PS,ρ(σ,R) = Pσ (S) ∧ PR(ρ) = S(σ ) ∧ R(ρ), we obtain
the desired ME functionality during decryption. The security analysis is intuitive: if the
2-key PE is CPA-1-sided secure, then the ME scheme is secure only in case of mismatch.
In addition, if the 2-key PE is CPA-2-sided secure, then the ME security holds also in
case of a match. Hence, as a corollary of our results, we achieve the weaker notion of
CPA-1-sided secure (i.e., mismatch) ME supporting arbitrary policies and unbounded
collusions from sub-exponential LWE. We provide more details in Sect. 6.1.

The seminal works of ME [10,11] propose ME as a tool for anonymous commu-
nication with bilateral authentication. The anonymity level guaranteed by the scheme
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depends on the notion of security. ME with CPA-2-sided security (as originally proposed
by [10,11]) guarantees the anonymity of users (e.g., users’ attributes and policies) inde-
pendently from the outcome of the bilateral matching (i.e., match and mismatch). In the
case of CPA-1-sided secure ME (as the one proposed in this work), anonymity is guar-
anteed only in case of a mismatch, i.e., unauthorized parties infer no information about
the identity of the sender. Thus, our notion of CPA-1-secure ME can be used in scenarios
in which the sender’s identity can be disclosed to authorized receivers (e.g., health-care
scenarios where a bilateral matching between patients and doctors is performed).

Previous works construct CPA-2-sided secure ME with unbounded collusions for
either very restricted policies (i.e., for identity matching) using bilinear maps [20,26]
(and ROM [10]), or for arbitrary policies from much stronger assumptions such as 2-
input FE with one secret key and one public key (this notion of 2-input FE implies
iO) [10,11].

For completeness (see Sects. 4.1, 4.3), we highlight that we can build n-key PE from
(n + 1)-input PE supporting arbitrary predicates and tolerating 1 corruption (this is
required to implement the public-key encryption algorithm of n-key PE). As a con-
sequence, multi-input PE implies ME as well. However, recall that our multi-input PE
constructions do not support arbitrary predicates but only conjunctions of arbitrary pred-
icates with wildcards.

Non-interactive MPC. Non-interactive MPC (NI-MPC) [14,34] allows n parties to
evaluate a function f (v1, . . . , vn) on their inputs using a single round of communication
(i.e., each party sends a single message ci ←$ Enc(crs,eki , vi )). This is achieved by
assuming a trusted setup (that may depend on the function itself) that generates (possibly
correlated) strings (e.g., common reference string crs and encryption keys eki ) that can
be later used by the parties to perform function evaluation. Security of NI-MPC can
be formulated in two different settings, named non-reusable and reusable NI-MPC.
The former retains security only if the setup is executed after every round. The latter
retains security even if parties evaluate f on different inputs using the same setup (full-
fledged reusability makes use of session identifiers in order to avoid that an adversary
can interleave messages from different rounds [34]). Both non-reusable and reusable
NI-MPC provide the same security guarantee, formalized using an indistinguishability-
based definition: an adversary A cannot distinguish between (Enc(crs,eki , v0

i ))i∈[n]
and (Enc(crs,eki , v1

i ))i∈[n], so long as any combination of the messages known by the
adversary (including the ones it can compute using the encryption key eki of a corrupted
party) yields the same function’s evaluation.13

As mentioned by several works [14,29,32,33], NI-MPC achieving indistinguishability-
based security implies iO even in very restricted settings. In particular, a non-reusable
1-robust (i.e., one malicious party) NI-MPC for two parties implies iO. Intuitively, by
fixing the NI-MPC function to f (C, x) = C(x), we can obfuscate a circuit by simply
setting the input of the first (honest) party to C, compute c1 ←$ Enc(crs,ek1,C), and
outputting ˜C = (crs, c1,ek2) whereek1,ek2 are the key material required to encode the

13Note that security of NI-MPC for general functions is formalized by an indistinguishability-based defi-
nition [14,32]. This is because simulation-based NI-MPC implies virtual black box (VBB) obfuscation that
is known to be impossible for certain classes of functions [13].
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inputs of the NI-MPC (note that 1-robustness is necessary since we reveal ek2). To eval-
uate the obfuscated circuit, the evaluator only needs to compute c2 ←$ Enc(crs,ek2, x)
and evaluate the NI-MPC function f that will yield C(x). The security of this iO ob-
fuscator follows from the security of NI-MPC since the residual functions f (C0, ·) and
f (C1, ·) are identical, as C0(x) = C1(x) for every input x . Additionally, reusable, 0-
robust (i.e., no malicious parties) NI-MPC for n = poly(λ) parties implies iO. In this
case, iO can be built using a similar construction to that of iO from secret-key multi-input
functional encryption (FE) [29].

Due to the similarities between multi-input PE and multi-input FE, we observe that
multi-input PE is enough to construct NI-MPC for all-or-nothing functions defined over
the predicates supported by the multi-input PE scheme. In more details, by leveraging
our CPA-1-sided n-input PE (for n = O(1)) secure under n−1 corruptions and without
collusions, we can build an (n − 1)-robust NI-MPC for a constant number of parties for
the following class of functions:

fP ((x1,m1), . . . , (xn,mn)) =
{

(m1, . . . ,mn) if P(x1, . . . , xn) = 1

⊥ otherwise

where P(x1, . . . , xn) is a conjunctions of arbitrary independent predicates (with wild-
cards) as defined in Eq. (1). The resulting NI-MPC satisfies a weaker notion of reusabil-
ity without session identifiers (i.e., messages produced in different rounds can be in-
terleaved by design) specifically tailored for all-or-nothing functions, which we name
CPA-1-sided reusability. In a nutshell, CPA-1-sided reusable NI-MPC guarantees the
usual indistinguishability-based security only if fP outputs ⊥ (i.e., P(·) is not satisfied)
for any combination of the honest messages and the ones the adversary can maliciously
compute using the encryption key eki of a corrupted party.

The construction is intuitive. At setup, simply publish crs = dkP and distribute eki
to the i th party where (msk,ek1, . . . ekn) ←$ Setup(1λ) and dkP ←$ KGen(msk, P).
During evaluation, each party can send the message ci ←$ Enc(eki , xi ,mi ) and compute
Dec(dkP , c1, . . . , cn) to evaluate the function fP ((x1,m1), . . . , (xn,mn)). The CPA-
1-sided reusable security of k-robust NI-MPC for fP follows readily from CPA-1-sided
security of n-input PE under k corruptions and without collusions.

By plugging in our results, we obtain either CPA-1-sided reusable (n − 1)-robust
NI-MPC with n = O(1), or CPA-1-sided reusable 0-robust NI-MPC with n = poly(λ)

where the predicate P of the function fP is a conjunctions of arbitrary predicates (i.e.,
P(x1, . . . , xn) = P1(x1) ∧ · · · ∧ Pn(xn)) with wildcards under the LWE assumption.

An example of an application of (CPA-1-sided reusable) NI-MPC is one-round voting
protocols: We imagine the scenario where a committee consisting of n parties wants to
approve a certain law. They can use NI-MPC to encode their set of constraints as their
input xi . The law is then approved if P1(x1) ∧ · · · ∧ P2(xn) = 1, where Pi is a (public)
policy that checks if the constraint imposed by xi is satisfied by the law. Importantly,
the protocol is completely non-interactive, and therefore the parties can just send their
messages and go offline, without the need to wait for everyone to respond. In terms of
security, the law is approved only if all policies are satisfied and otherwise the preference
of each party is kept hidden. For instance, a hypothetical party that blocked the law would
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remain anonymous. We provide the formal definition of CPA-1-sided reusability and the
construction of NI-MPC from multi-input PE in Sect. 6.2.

We emphasize that, nonetheless CPA-1-sided reusability is a weakening of the stan-
dard reusability definition, our flavor of reusability is non-trivial to achieve in the setting
of general functions. This is because we can build null iO (and, in turn, witness en-
cryption) [19,31,48] from CPA-1-sided reusable NI-MPC using the same constructions
of iO from (standard) reusable NI-MPC, i.e., CPA-1-sided reusable (resp. CPA-1-sided
non-reusable) 0-robust (resp. 1-robust) NI-MPC for n = poly(λ) parties (resp. n = 2
parties) and general functions implies null iO. The above observation motivates our
research question of building such a notion of NI-MPC for restricted functionalities.
Considering restricted functionalities, such as conjunction of arbitrary predicates, per-
mits us to construct NI-MPC from LWE that is, at the time of this writing, a computational
assumption not sufficient for constructing null iO and witness encryption.

1.4. Relation with Witness Encryption

In the following we recall the notion of witness encryption (WE) [27], and we discuss its
relation with both multi-input and multi-key schemes. We anticipate that such relations
do not require CPA-1-sided and CPA-2-sided security. Hence, the following discussion
will focus on multi-input and multi-key ABE schemes, i.e., predicate inputs can be
public.

A WE scheme for a relation R, defined over a language L, allows a sender to encrypt
a message m using a statement x . A receiver, holding a witness w, can decrypt the
message m if (x, w) ∈ R. As for security, WE guarantees that the message remains
hidden whenever x �∈ L, i.e., the corresponding ciphertext cannot be decrypted. WE
has several disrupting applications such as encrypting messages that can be decrypted
in future (i.e., whenever w will be known). Moreover, WE does not require setup and is
fully non-interactive.

As shown by Brakerski et al. [19], an n-input ABE (i.e., predicate inputs can be
public) for arbitrary predicates (or any predicate that “match” the desired NP relation),
secure in the secret-key setting and without collusions, implies WE for NP and n-size
witnesses. The construction is reminiscent to the one of iO from secret-key multi-input
functional encryption [29] (see also Sect. 1.3). Unfortunately, we cannot use here our
n-input scheme since it only supports conjunctions of arbitrary predicates (see Eq. (1)).
Currently, it is not known how to build n-input ABE (and thus PE), with n > 2, for
arbitrary predicates without iO (the only known construction is for n = 2 and it is due
to the work of Agrawal et al. [8]. See Sect. 2 for a detailed discussion.

Also, we stress that multi-key ABE (i.e., a multi-key scheme where predicate inputs
can be public) for arbitrary predicates implies WE. The construction is similar to that
of Brakerski et al. [19], for obtaining WE from multi-input ABE. The only difference
is that we substitute the multiple inputs with the multiple decryption keys of multi-
key ABE. For completeness, we describe the construction below. Let Pv1,...,vn (x) = 1
if and only if (x, w) ∈ R, where w = v1|| . . . ||vn defines the class of predicates
supported by the multi-key ABE. To encrypt a message m under a statement x ∈ L,
the sender computes (mpk,msk1, . . . ,mskn) ←$ Setup(1λ) and sends to the receiver
(c, (dkvi ,dkvi )i∈[n]) where c ←$ Enc(mpk, x,m) and dkvi ←$ KGen(mski , 1) (resp.
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dkvi ←$ KGen(mski , 0)) for i ∈ [n]. To decrypt the ciphertext under a witness w =
v1|| . . . ||vn , the receiver simply executes Dec(dk′

v1
, . . . ,dk′

vn
, c) where dk′

vi
= dkvi if

vi = 1, and dk′
vi

= dkvi if vi = 0.14 Similarly to the case of multi-input, our multi-key
construction fails to imply WE since it does not support arbitrary predicates (we stress
once again that CPA-1-sided and CPA-2-sided security are not required).

It may seem that arbitrary predicates are a necessary condition in order to build WE
from multi-input schemes. However, we highlight that this is not necessarily the case if
we consider security under corruptions. In particular, a 2-input scheme for conjunctions
under 1 corruption and no collusions, implies WE for any relation. This can be accom-
plished by considering the predicate Px,R(·, ·) = P1(·) ∧ Px,R(·) such that P1(x�

1) = 1
(for some wildcard x�

1) and Px,R(w) = 1 if and only if (x, w) ∈ R. Intuitively, to
encrypt m using a statement x , the sender can simply output (c1,ek2,dkPx,R) such that
c1 ←$ Enc(ek1, x�

1,m), dkPx,R ←$ KGen(m, Px,R), and (msk,ek1,ek2) ←$ Setup
(1λ). Then, the receiver usesw to retrievem by computingDec(dkx,R, c1,Enc(ek2, w)).15

Here, it is crucial that the underlying 2-input scheme can handle corruptions, since the
latter allows the sender to disclose ek2 to the (possibly malicious) receiver and give him
the opportunity to try different witnesses.

Unfortunately, even in this case, our O(1)-input scheme under corruptions fails to
imply WE. This is because our construction supports conjunctions of arbitrary predicates
each one having a wildcard. In other words, the wildcard is a trivial witness for any
statement.16

Given the above discussion, we identify two plausible approaches that could lead to
a construction of WE from standard assumptions:

• Enlarging the class of predicates of our secret-key n-input or n-key constructions:
From conjunction of arbitrary predicates (see Eq. (1)) to arbitrary predicates (or
any restricted class of predicates that permits to implement a specific non-trivial
WE relation R).

• Supporting conjunctions of arbitrary predicates (without wildcards) in the setting
of 2-input with security under 1 corruption.

2. Related Work

Multi-input PE is a special case of multi-input FE [29]. It is well known that so-called
compact FE (supporting arbitrary functions) implies multi-input FE [9,15], which in turn
implies iO. Constructions of multi-input FE from standard assumptions, in turn, exist
for restricted functions [1–4,6,7,16,21,22,24,39,44]. The multi-input and multi-key
settings have also been considered in the context of fully-homomorphic encryption [23,
40,41].

14Observe that the same construction works if we start from a multi-key PE whose encryption algorithm is
secret-key, i.e., the mpk (required to execute Enc) is replaced with an encryption key ek that is kept secret.

15A similar construction can be used to build iO from 2-input FE with security under 1 corruption and no
collusions.

16If wildcards exist, a malicious receiver can always decrypt the message by evaluating the predicate over
the wildcards.
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Multi-input PE can also be seen as stronger form of multi-input ABE [19], the differ-
ence being that the attributes are not private in the case of ABE. Previously to our work,
all (provably secure) constructions of n-input ABE with n > 2 required iO. The only
exception is the work of Agrawal et al. [8] that proposes two constructions of secret-key
(i.e., no corruptions) 2-input key-policy ABE forNC1 with unbounded collusions (recall
that, in the ABE setting, only the secrecy of the messages is guaranteed, i.e., inputs can
be public). The first construction is based on LWE and pairings, and it is provably secure
in the generic group model. The second construction is based on function-hiding inner-
product FE, a variant of the non-falsifiable KOALA knowledge assumption (which is
proven to hold under the bilinear generic group model), and LWE. However, this second
construction achieves a weaker selective flavor of security in which the adversary has
to submit both the challenge and the decryption key queries before the setup phase.
Additionally, they propose two heuristic constructions. The first is a 2-input ABE for
P from lattices, and the second is a 3-input ABE for NC1 from pairings and lattices.
However, the security of these heuristic constructions remains unclear.

In comparison, our work directly focuses on the PE setting (i.e., CPA-1-sided security)
and provides the first secret-key n-input PE that supports n = poly(λ) inputs, with
(adaptive) CPA-1-sided security (i.e., secrecy of both inputs and messages) based solely
on LWE. However, our construction only supports a restricted class of predicates (i.e.,
conjunctions of arbitrary predicates with wildcards) and it is secure only in the case
of no collusions. Furthermore, differently from [8], we move away from the secret-
key setting and propose a second construction of n-input PE (still for conjunctions of
arbitrary predicates) that supports n = O(1) inputs and can tolerate n − 1 corruptions
(i.e., up to n − 1 encryption keys can be adaptively revealed by the adversary). Finally,
we propose the notion of multi-key PE (not covered in [8]), and give the first construction
of CPA-1-sided secure n-key PE for n = poly(λ), with unbounded collusions and still
supporting conjunctions of arbitrary predicates, based on LWE.

Regarding the techniques, we highlight that both our work and that of [8] introduce
(albeit different) nesting techniques based on lockable obfuscation. In particular, the
nesting technique of [8] permits to transform any secret-key n-input ABE into a secret-
key n-input PE (achieving CPA-1-sided security). We stress that their approach only
works in the secret-key setting. In contrast, we propose a different nesting technique
which yields n-input PE for n = O(1) while tolerating n−1 corruptions. It is important
to note that our nesting technique is not generic, but it is specifically tailored to work
with the class of predicates considered in this work.

Turning to applications, we highlight that the multi-input schemes of [8] fail to imply
ME, since their constructions are all in the secret-key setting (whereas ME requires a
public-key encryption algorithm). As for NI-MPC, the constructions in [8] can be used
to obtain a CPA-1-sided 0-robust reusable NI-MPC for all-or-nothing functions defined
over arbitrary predicates, but only in the case of 2 parties (3 parties if we consider also
the heuristic constructions).
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3. Preliminaries

3.1. Notation

We use the notation [n] = {1, 2, . . . , n}. Capital bold-face letters (such as X) are used to
denote random variables, small letters (such as x) to denote concrete values, calligraphic
letters (such as X ) to denote sets, serif letters (such as A) to denote algorithms, and bold
typeface letters (such as C) to denote circuits. All of our algorithms are modeled as
(possibly interactive) Turing machines; if algorithm A has oracle access to some oracle
O, we often implicitly write QO for the set of queries asked by A to O.

For a string x ∈ ←$ ∗, we let |x | be its length; if X is a set, |X | represents the
cardinality of X . When x is chosen uniformly in X , we write x ←$ X . If A is an
algorithm, we write y ←$ A(x) to denote a run of A on input x and output y; if A is
randomized, y is a random variable and A(x; r) denotes a run of A on input x and
(uniform) randomness r . An algorithm A is probabilistic polynomial-time (PPT) if A
is randomized and for any input x, r ∈ ←$ ∗ the computation of A(x; r) terminates
in a polynomial number of steps (in the input size). We write C(x) = y to denote the
evaluation of the circuit C on input x and output y.

Let G be an experiment defining the security of a cryptographic primitive � and E
be an event. We write P

[

G�,A(λ) = 1|E]

(i.e., the outcome of experiment G�,A(λ)

conditioned to the event E) to denote the advantage of an adversary A in winning the
experiment G�,A(λ) (i.e., G�,A(λ) = 1) when the event E holds.17

Negligible functions. Throughout the paper, we denote by λ ∈ N the security parameter
and we implicitly assume that every algorithm takes as input the security parameter. A
function ν(·) is called negligible in the security parameter λ ∈ N if it vanishes faster than
the inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials
p(λ). We sometimes write negl(λ) (resp. poly(λ)) to denote an unspecified negligible
function (resp. polynomial function) in the security parameter.

3.2. Lockable Obfuscation

A lockable obfuscator [31,48] permits to obfuscate a circuit C together with a “lock”
y and a message m. As a result, the obfuscator will output an obfuscated circuit ˜C that
will behave as follows:

˜C(x) =
{

m if C(x) = y

⊥ otherwise.

More formally, let n(·), s(·), d(·) be polynomials, and Cn,s,d(λ) be the family of circuits
of depth d(λ) with input size n(λ) and output size s(λ). A lockable obfuscator for the
circuit family Cn,s,d(λ) and message spaceM is composed of the following polynomial-
time algorithms:

17This is equivalent to saying that the output of G�,A(λ) is set to 0 when E does not hold.
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Glock-sim
Π,A,S (λ)

(C, m, α) ←$ A0(1λ)

b ←$ {0, 1}, y ←$ {0, 1}s(λ)

C0 ←$ Obf(1λ,C, y, m),C1 ←$ S(1λ, 1|C|, 1|m|)

b ←$ A1(1λ,Cb, α)

If (b = b): return 1

Else: return 0

Fig. 1. Game defining security of lockable obfuscation.

Obf(1λ,C, y,m): Upon input the security parameter 1λ, a circuit C ∈ Cn,s,d(λ), a
lock y ∈ ←$ s(λ), and a message m ∈ M, the randomized lockable obfuscator
algorithm outputs a circuit ˜C.

Eval(˜C, x): Upon input an obfuscated circuit ˜C and an input x ∈ ←$ n(λ), the deter-
ministic evaluation algorithm outputs a message m ∈ M ∪ {⊥}.

Definition 1. (Semi-statistical correctness of lockable obfuscation [31]). A lockable
obfuscator � = (Obf,Eval) for the circuit family Cn,s,d(λ) and message space M
satisfies semi-statistical correctness if:

1. ∀λ ∈ N, ∀x ∈ ←$ n(λ), m ∈ M, ∀C ∈ Cn,s,d(λ) such that C(x) = y, we have

P
[

Eval(Obf(1λ,C, y,m), x) = m
] = 1.

2. ∀λ ∈ N, ∀x ∈ ←$ n(λ), ∀m ∈ M, ∀C ∈ Cn,s,d(λ) such that C(x) �= y, we have

P
[

Eval(Obf(1λ,C, y,m), x) = m
] ≤ negl(λ).

As for security, lockable obfuscation must hide any information about the circuit C,
the message m and the lock y when the lock is randomly chosen. This is defined by
requiring that there exists a simulator S that simulates the obfuscated circuit ˜C.

Definition 2. (Security of lockable obfuscation). A lockable obfuscator � = (Obf,
Eval) for the circuit family Cn,s,d(λ) and message space M is secure if there exists a
PPT simulator S such that for every PPT adversary A = (A0,A1) we have:

∣

∣

∣

∣

P

[

Glock-sim
�,A,S (λ) = 1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ),

where Glock-sim
�,A,S (λ) is depicted in Fig. 1.

Remark 1. The definitions above are taken from [31]. Wichs and Zirdelis [48] proposed
a slightly more general notion of obfuscation for multi-bit compute-and-compare circuits
in which the lock is only required to be unpredictable. They also give an obfuscator for
multi-bit compute-and-compare circuits from the LWE assumption.



Multi-key and Multi-input Predicate Encryption Page 25 of 100    24 

GCPA-ske
Π,A (λ)

k ←$ KGen(1λ)

(m0, m1, α) ←$ AEnc(k,·)
0 (1λ)

b ←$ {0, 1}, c ←$ Enc(k, mb)

b ←$ AEnc(k,·)
1 (1λ, c, α)

If (b = b): return 1

Else: return 0

GCPA-pke
Π,A (λ)

(pk, sk) ←$ KGen(1λ)

(m0, m1, α) ←$ A0(1λ, pk)

b ←$ {0, 1}, c ←$ Enc(pk, mb)

b ←$ A1(1λ, c, α)

If (b = b): return 1

Else: return 0

Fig. 2. Game defining CPA security of SKE and PKE.

3.3. Symmetric and Public Key Encryption

3.3.1. Symmetric Key Encryption

A symmetric-key encryption (SKE) scheme with message space M is composed of the
following polynomial-time algorithms:

KGen(1λ): The randomized key generator takes as input the security parameter 1λ and
outputs a symmetric key k.

Enc(k,m): The randomized encryption algorithm takes as input a symmetric key k and
a message m ∈ M, and outputs a ciphertext c.

Dec(k, c): The deterministic decryption algorithm takes as input a symmetric key k
and a ciphertext c, and outputs a message m.

We require a SKE to be correct and secure against chosen-plaintext attacks (CPA).

Definition 3. (Correctness of SKE). A SKE � with message space M is correct if
∀λ ∈ N, ∀m ∈ M, we have

P
[

Dec(k,Enc(k,m)) = m
] ≥ 1 − negl(λ),

where k ←$ KGen(1λ). The above probability is taken over the random coins of KGen
and Enc.

Definition 4. (CPA security of SKE). We say that a SKE � is CPA secure if for all
PPT adversaries A = (A0,A1):

∣

∣

∣

∣

P

[

GCPA-ske
�,A (λ) = 1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ),

where game GCPA-ske
�,A (λ) is depicted in Fig. 2.
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3.3.2. Public Key Encryption

A public-key encryption (PKE) scheme with message space M is composed of the
following polynomial-time algorithms:

KGen(1λ): The randomized key generator takes as input the security parameter 1λ and
outputs a public and a secret key pair (pk, sk).

Enc(pk,m): The randomized encryption algorithm takes as input a public key pk and
a message m ∈ M and outputs a ciphertext c.

Dec(sk, c): The deterministic decryption algorithm takes as input a secret key sk and
a ciphertext c and outputs a message m.

We consider the usual definition of correctness and CPA security of PKE.

Definition 5. (Correctness of PKE). A PKE � with message space M is correct if
∀λ ∈ N, ∀(pk, sk) output by KGen(1λ), ∀m ∈ M, we have

P
[

Dec(sk,Enc(pk,m)) = m
] ≥ 1 − negl(λ),

where (pk, sk) ←$ KGen(1λ). The above probability is taken over the random coins of
KGen and Enc.

Definition 6. (CPA security of PKE). We say that a SKE � is CPA secure if for all
PPT adversaries A = (A0,A1):

∣

∣

∣

∣

P

[

GCPA-pke
�,A (λ) = 1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ),

where game GCPA-pke
�,A (λ) is depicted in Fig. 2.

3.4. Predicate Encryption

In PE, a trusted authority generates a decryption key for the receiver associated to an
arbitrary predicate of his choice. The receiver is able to decrypt a ciphertext if and only if
the predicate P (corresponding to its decryption key) is satisfied when evaluated with the
predicate input x used for encrypting the plaintext, i.e. P(x) = 1. Formally, a PE with
message space M, input space X , and predicate space P , is composed of the following
polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ, the randomized setup algorithm out-
puts the master public key mpk and the master secret key msk.

KGen(msk, P): The randomized key generator takes as input the master secret key
msk and a predicate P ∈ P . The algorithm outputs a secret decryption key dkP
for predicate P .

Enc(mpk, x,m): The randomized encryption algorithm takes as the master public key
mpk, an input x ∈ X , and a message m ∈ M. The algorithm produces a ciphertext
c linked to both x and m.
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GCPA-PE
Π,A (λ)

(mpk,msk) ←$ Setup(1λ)

(m0, m1, x, α) ←$ AKGen(msk,·)
0 (1λ,mpk)

b ←$ {0, 1}, c ←$ Enc(mpk, x, mb)

b ←$ AKGen(msk,·)
1 (1λ, c, α)

If (b = b): return 1

Else: return 0

GCPA-t-PE
Π,A (λ)

(mpk,msk) ←$ Setup(1λ)

(m0, m1, x0, x1, α) ←$ AKGen(msk,·)
0 (1λ,mpk)

b ←$ {0, 1}, c ←$ Enc(mpk, xb, mb)

b ←$ AKGen(msk,·)
1 (1λ, c, α)

If (b = b): return 1

Else: return 0

Fig. 3. Game defining CPA, CPA-1-sided, and CPA-2-sided security of PE.

Dec(dkP , c): The deterministic decryption algorithm takes as input a secret decryption
key dkP for predicate P ∈ P and a ciphertext c. The algorithm outputs either a
message m or an error ⊥.

Correctness of PE states that the receiver obtains the message with overwhelming prob-
ability if P(x) = 1. On the other hand, if P(x) = 0, the decryption outputs ⊥ with
overwhelming probability.

Definition 7. (Correctness of PE). A PE with message space M, input space X , pred-
icate space P , is correct if ∀λ ∈ N, ∀m ∈ M, ∀x ∈ X , ∀P ∈ P , the following two
conditions hold:

1. If P(x) = 1, then P
[

Dec(dkP ,Enc(mpk, x,m)) = m
] ≥ 1 − negl(λ) where

(mpk,msk) ←$ Setup(1λ) and dkP ←$ KGen(msk, P).
2. If P(x) = 0, then P

[

Dec(dkP ,Enc(mpk, x,m)) = ⊥] ≥ 1 − negl(λ) where
(mpk,msk) ←$ Setup(1λ) and dkP ←$ KGen(msk, P).

The above two probabilities are taken over the random coins of Setup,KGen and Enc.

Security of PE comes in different flavors. The standard CPA security requires the
adversary to distinguish between the encryption of two messages for the same predicate
input. More formally, the adversary is allowed to perform a polynomial number of queries
to the key generation oracle. Then, the adversary chooses two messages m0 and m1 and
an input x , and wins the CPA security game if it can distinguish between an encryption of
Enc(mpk, x,m0) and Enc(mpk, x,m1) with non-negligible probability (a PE scheme
that satisfies CPA security is also called attribute-based encryption (ABE)).

Definition 8. (CPA security of PE). We say that a PE � is CPA secure if for all valid
PPT adversaries A = (A0,A1):

∣

∣

∣

∣

P

[

GCPA-PE
�,A (λ) = 1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ),

where gameGCPA-PE
�,A (λ) is depicted in Fig. 3. AdversaryA is called valid if ∀P ∈ QKGen

it holds that P(x) = 0.

We also consider two stronger definitions of security, namely CPA-1-sided and CPA-
2-sided security, guaranteeing also the secrecy of the predicate input used during the
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encryption of a message. In this security games, the adversary is allowed to choose two
different inputs x0 and x1 and the usual messages m0 and m1. CPA-1-sided security
guarantees the privacy of the input only when the predicates for which the adversary
knows a decryption key (i.e. the ones he received from the key generation oracle) are not
satisfied, i.e. the receiver cannot decrypt the message. On the other hand, CPA-2-sided
security considers the same property also when the predicate is satisfied, i.e., the receiver
can decrypt the challenge ciphertexts.

Definition 9. (CPA-1-sided and CPA-2-sided security of PE). Let t ∈ [2]. We say that
a PE � is CPA-t-sided secure if for all valid PPT adversaries A = (A0,A1):

∣

∣

∣

∣

P

[

GCPA-t-PE
�,A (λ) = 1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ),

where game GCPA-t-PE
�,A (λ) is depicted in Fig. 3. Adversary A is called valid if ∀P ∈

QKGen,

Case t = 1 : P(x0) = P(x1) = 0.

Case t = 2 : Either P(x0) = P(x1) = 0 or P(x0) = P(x1) ∧ m0 = m1.

Through the paper, we say � is CPA-1-sided (resp. CPA-2-sided) secure without collu-
sions if |QKGen| = 1, i.e., the adversary cannot get more than one decryption key.18

Remark 2. PE schemes, satisfying CPA security (Definition 8) or CPA-1-sided security
(Definition 9), can be built from different assumptions. Notably, [30] proposes an LWE-
based PE scheme satisfying CPA-1-sided (and thus CPA) selective security, i.e., the
adversary chooses the challenge messages and predicate inputs before receiving the
master public key. By using complexity leveraging, the same construction achieves
adaptive security (i.e., Definitions 8, 9) but this requires sub-exponential LWE.

4. Multi-key and Multi-input Predicate Encryption

We provide the formal definitions of multi-key PE and multi-input PE in the follow-
ing Sects. 4.1 and 4.2, respectively. In Sect. 4.3, we show the relations between multi-key
PE and multi-input PE schemes.

18For the sake of clarity, we implicitly assume that challenge messages and inputs have the same length, i.e.,
|m0| = |m1| and |x0| = |x1| (this is required to exclude trivial attacks). We stress that when the single-input
PE scheme has an apriori bound on the length of the messages and attributes (defined on setup), the latter have
same length by definition.
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GCPA-t-kPE
Π,A (λ)

(mpk,msk1, . . . ,mskn) ←$ Setup(1λ)

(m0, m1, x0, x1, α) ←$ AKGen(msk1,·),...,KGen(mskn,·)
0 (1λ,mpk)

b ←$ {0, 1}, c ←$ Enc(mpk, xb, mb)

b ←$ AKGen(msk1,·),...,KGen(mskn,·)
1 (1λ, c, α)

If (b = b): return 1

Else: return 0

Fig. 4. Game defining CPA-t-sided security of n-key PE.

4.1. Multi-key PE

Formally, an n-key PE with message space M, input space X , and predicate space
P = {Pv1,...,vn (x)}(v1,...,vn)∈V indexed by V = V1 × · · · × Vn , is composed of the
following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the setup algorithm outputs the master
public key mpk and the n master secret key (msk1, . . . ,mskn).

KGen(mski , vi ): Let i ∈ [n]. The randomized key generator takes as input the i th
master secret key mski and the i th index vi ∈ Vi . The algorithm outputs the i th
secret decryption key dkvi for the predicate index vi .

Enc(mpk, x,m): The randomized encryption algorithm takes as the master public key
mpk, an input x ∈ X , and a message m ∈ M. The algorithm produces a ciphertext
c.

Dec(dkv1, . . . ,dkvn , c): The deterministic decryption algorithm takes as input n se-
cret decryption keys (dkv1 , . . . ,dkvn ) for the n indexes (v1, . . . , vn) ∈ V and a
ciphertext c. The algorithm outputs a message m.

Correctness is intuitive: given the decryption keys (dkv1, . . . ,dkvn ) for (v1, . . . , vn)

∈ V , the decryption algorithm returns the message m (encrypted under the input x) with
overwhelming probability, whenever Pv1,...,vn (x) = 1.

Definition 10. (Correctness of n-key PE). A n-key PE with message space M, input
space X , predicate space P = {Pv1,...,vn }v1,...,vn∈V indexed by V = V1 × · · · × Vn , is
correct if ∀λ ∈ N, ∀m ∈ M, ∀x ∈ X , ∀(v1, . . . , vn) ∈ V such that Pv1,...,vn (x) = 1, we
have:

P
[

Dec(dkv1 , . . . ,dkvn ,Enc(mpk, x,m)) = m
] ≥ 1 − negl(λ),

where (mpk,msk1, . . . ,mskn) ←$ Setup(1λ) and dkvi ←$ KGen(mski , vi ) for i ∈
[n]. The above probability is taken over the random coins of Setup,KGen, and Enc.

As for security, we adapt the standard CPA-1-sided and CPA-2-sided security of PE
to the n-key setting. In particular, an adversary (with oracle access to KGen(mski , ·) for
i ∈ [n]) cannot distinguish between Enc(mpk, x0,m0) and Enc(mpk, x1,m1) except
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with non-negligible probability. When considering CPA-1-sided security, the adversary
is valid only if it cannot decrypt the challenge ciphertext, i.e., it asks to the n key gen-
eration oracles indexes (v1, . . . , vn) such that Pv1,...,vn (x

0) = Pv1,...,vn (x
1) = 0. Analo-

gously, the CPA-2-sided security captures the indistinguishability of Enc(mpk, x0,m0)

and Enc(mpk, x1,m1) even when the adversary can decrypt the challenge ciphertext,
i.e., Pv1,...,vn (x

0) = Pv1,...,vn (x
1) = 1 and m0 = m1. These security definitions are

formalized below.

Definition 11. (CPA-1-sided and CPA-2-sided security of n-key PE). Let t ∈ [2]. We
say that a n-key PE � is CPA-t-sided secure if for all valid PPT adversaries A =
(A0,A1):

∣

∣

∣

∣

P

[

GCPA-t-kPE
�,A (λ) = 1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ),

where game GCPA-t-kPE
�,A (λ) is depicted in Fig. 4. Adversary A is called valid if ∀v1 ∈

QKGen(msk1,·), . . . ,∀vn ∈ QKGen(mskn ,·), we have19

Case t = 1 : Pv1,...,vn (x
0) = Pv1,...,vn (x

1) = 0.

Case t = 2 : Either Pv1,...,vn (x
0) = Pv1,...,vn (x

1) = 0

or Pv1,...,vn (x
0) = Pv1,...,vn (x

1) ∧ m0 = m1.19

4.2. Multi-input PE

Formally, an n-input PE with message space M = M1 × · · · × Mn , input space
X = X1 × · · · × Xn , and predicate space P , is composed of the following polynomial-
time algorithms:

Setup(1λ): Upon input the security parameter 1λ the setup algorithm outputs the en-
cryption keys (ek1, . . . ,ekn) and the master secret key msk.

KGen(msk, P): The randomized key generator takes as input the master secret key
msk and a predicate P ∈ P . The algorithm outputs a secret decryption key dkP
for predicate P .

Enc(eki , xi ,mi ): Let i ∈ [n]. The randomized encryption algorithm takes as input an
encryption key eki , an input xi ∈ Xi , and a message mi ∈ Mi . The algorithm
produces a ciphertext ci linked to xi .

Dec(dkP , c1, . . . , cn): The deterministic decryption algorithm takes as input a secret
decryption key dkP for predicate P ∈ P and n ciphertexts (c1, . . . , cn). The
algorithm outputs n messages (m1, . . . ,mn).

Correctness states that ciphertexts (c1, . . . , cn), each linked to an input xi , correctly
decrypt with overwhelming probability if P(x1, . . . , xn) = 1.

19As usual, we implicitly assume that challenge messages and inputs have the same length, i.e., |m0| = |m1|
and |x0| = |x1| (this is required to exclude trivial attacks). We stress that when the multi-key PE scheme has
an apriori bound on the length of the messages and attributes (defined on setup), the latter have same length
by definition.
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Definition 12. (Correctness of n-input PE). An n-input PE with message space M =
M1×· · ·×Mn , input spaceX = X1×· · ·×Xn , predicate spaceP , is correct if ∀λ ∈ N,
∀(m1, . . . ,mn) ∈ M, ∀(x1, . . . , xn) ∈ X ,∀P ∈ P such that P(x1, . . . , xn) = 1, we
have:

P
[

Dec(dkP , c1, . . . , cn) = (m1, . . . ,mn)
] ≥ 1 − negl(λ),

where (ek1, . . . ,ekn,msk) ←$ Setup(1λ), dkP ←$ KGen(msk, P), and ci ←$

Enc(eki , xi ,mi ) for i ∈ [n]. The above probability is taken over the random coins
of Setup,KGen, and Enc.

Security with and without corruptions. The CPA-1-sided and CPA-2-sided security of
n-input PE capture the infeasibility in distinguishing between ciphertexts (Enc
(ek1, x0

1 ,m0
1), . . . ,Enc(ekn, x

0
n ,m

0
n)) and (Enc(ek1, x1

1 ,m1
1), . . . ,Enc(ekn, x

1
n ,m

1
n)).

This is modeled by an adversary having oracle access to a key generation oracle
KGen(msk, ·) (allowing it to get decryption keys dkP on predicates of its choice)
and n encryption oracles Enc(ek1, ·, ·), . . . ,Enc(ekn, ·, ·) (allowing it to get encryp-
tions of arbitrary messages and inputs). Differently from the n-key setting, we consider
different models of security with respect to whether the encryption keys are secret (i.e.,
no corruptions) or public/leaked (i.e., the adversary has the possibility to get one or
more encryption keys of its choice). The corruption of an encryption key is captured
by giving access to a corruption oracle Corr(·) to the adversary that, on input i ∈ [n],
it returns eki . Intuitively, the knowledge of eki impacts the validity condition that the
adversary must satisfy (e.g., the challenge ciphertext cannot be decrypted). Indeed, eki
would allow the adversary to produce arbitrary i th ciphertexts on arbitrary i th inputs xi
and potentially decrypt part of the challenge ciphertext. Concretely, as for CPA-1-sided
security, the validity of the adversary can be defined as follows:

• No corruptions (a.k.a. the secret-key setting). If all the encryption keys (ek1, . . . ,

ekn) are secret the validity conditions of CPA-1-sided security is straightforward.
It intuitively states that for every dkP (obtained through oracleKGen(msk, ·)) and
any tuple of ciphertexts (c1, . . . , cn) (each linked to an input xi ) obtained through
the interleaving of part of the challenge ciphertext with the ciphertexts generated
by invoking oracles {Enc(eki , ·, ·)}i∈[n], we must have that P(x1, . . . , xn) = 0
(otherwise part of the challenge ciphertext can be decrypted).

• With corruptions. If some of the encryption keys are known by the adversary
(i.e., obtained through the corruption oracle Corr(·)) then the validity condition
now changes according to which keys have been obtained. This is because the
adversary can now autonomously compute arbitrary ciphertext (for a particular slot
i) using the leaked i th encryption key eki . Taking into account this observation, the
validity of CPA-1-sided securitywith corruptions says that any tuple of ciphertexts
(c1, . . . , cn) that can be obtained by interleaving part of the challenge ciphertexts
with both the ones generated through oracles {Enc(eki , ·, ·)}i∈[n] and the ones that
can be autonomously generated using the leaked encryption keys, we must have
that P(x1, . . . , xn) = 0.
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G -CPA-t-iPE
Π,A (λ)

(ek1, . . . , ekn,msk) ←$ Setup(1λ)

((m0
i )i∈[n], (m

1
i )i∈[n], (x

0
i )i∈[n], (x

1
i )i∈[n], α) ←$ A

KGen(msk,·),Corr(·),{Enc(ekj ,·,·)}j∈[n]
0 (1λ)

b ←$ {0, 1}, c1 ←$ Enc(ek1, xb
1, mb

1), . . . , cn ←$ Enc(ekn, xb
n, mb

n)

b ←$ A
KGen(msk,·),Corr(·),{Enc(ekj ,·,·)}j∈[n]
1 (1λ, c1, . . . , cn, α)

If (b = b): return 1

Else: return 0

Fig. 5. Game defining CPA-t-sided security of n-input PE in the �-corruptions setting. Oracle Corr( j) returns
ek j for j ∈ [n].

The validity of CPA-2-sided security (with and without corruptions) can be easily ob-
tained by adapting the above discussion. Below, we provide the formal definition.

Definition 13. (�-Corruptions CPA-1-sided and CPA-2-sided security of n-input PE).
Let t ∈ [2]. We say that an n-input PE � is CPA-t-sided secure in the �-corruptions
setting if for all valid PPT adversaries A = (A0,A1):

∣

∣

∣

∣

P

[

G�-CPA-t-iPE
�,A (λ) = 1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ),

where game G�-CPA-t-iPE
�,A (λ) is depicted in Fig. 5. Let Qi = {x |∃(x,m) ∈ QEnc(eki ,·,·)}

for i ∈ [n]\QCorr and Qi = Xi for i ∈ QCorr. Moreover, let Qd
i (for d ∈ ←$ )

be the ordered set composed of the predicate inputs Qi and the challenge input xdi ,

i.e., Qd
i = {x (1,d)

i , . . . , x (ki ,d)
i , x (ki+1,d)

i = xdi } where ki = |Qi | and x ( j,d) ∈ Qi for
j ∈ [ki ].20 Adversary A is called valid if |QCorr| ≤ � and ∀P ∈ QKGen, ∀ j ∈ [n],
∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], we have

Case t = 1 : P(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n )

= P(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) = 0.

Case t = 2 : Either

P(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n )

= P(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) = 0

or

P(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n )

= P(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) ∧ m0

j = m1
j .

20Observe that Q0
i and Q1

i are identical except for the last element.
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G -hyb-CPA-1-iPE
Π,A (λ)

(ek1, . . . , ekn,msk) ←$ Setup(1λ, 1 ), pub = (ekn− +1, . . . , ekn)

((m0
i )i∈[n], (m

1
i )i∈[n], (x

0
i )i∈[n], (x

1
i )i∈[n], α) ←$ A

KGen(msk,·),{Enc(ekj ,·,·)}j∈[n− ]
0 (1λ, pub)

b ←$ {0, 1}, c1 ←$ Enc(ek1, xb
1, mb

1), . . . , cn ←$ Enc(ekn, xb
n, mb

n)

b ←$ A
KGen(msk,·),{Enc(ekj ,·,·)}j∈[n− ]
1 (1λ, c1, . . . , cn, α)

If (b = b): return 1

Else: return 0

Fig. 6. Game defining CPA-t-sided security of n-input PE in the �-hybrid setting.

Through the paper, for t ∈ [2], we say that � is CPA-t-sided secure in the �-corruptions
setting and without collusions if |QKGen| = 1 (i.e., the adversary asks for a single
decryption key). If |QCorr| = 0 (i.e., no corruptions), we say that � is CPA-t-sided
secure in the secret-key setting. In case of both restrictions, we say that � is CPA-
t-sided secure in the secret-key setting and without collusions (i.e., |QCorr| = 0 and
|QKGen| = 1).21

4.3. Relating Multi-key PE and Multi-input PE

Here, we show a construction of n-key PE from (n + 1)-input PE supporting arbitrary
predicates and tolerating 1 corruption. In more details, it suffices that the (n + 1)-input
PE satisfies a weaker flavor of security under corruptions, named �-hybrid setting (which
is formalized in this section).
Multi-input PE in the �-Hybrid Setting. A multi-input PE in the hybrid setting allows
generating (during setup) some encryptions keys that can be made public. The main
difference between the hybrid setting and the corruption setting is that in the former the
setup needs to know a priori which ones will be public (in other words, the setup depends
on the keys that the adversary wants to leak/obtain). For this reason, it is easy to see
that the hybrid setting is stronger than the secret-key one but significantly weaker than
the corruption setting (in which the keys are leaked by the adversary in an adaptively
fashion).

We assume that the Setup algorithm takes as input an additional parameter 1� de-
noting the number of keys that will be made public. Without loss of generality, we
assume that the first n − � keys (ek1, . . . ,ekn−�) are kept secret whereas the last �

keys (ekn−�+1, . . . ,ekn) are published. Observe that, for � = 0, the hybrid setting
corresponds to the secret-key setting (see Sect. 4.2).

21As for multi-key PE, we implicitly assume that challenge messages and inputs have the same length, i.e.,
|m0

i | = |m1
i | and |x0

i | = |x1
i | for i ∈ [n] (this is required to exclude trivial attacks). We stress that when the

multi-input PE scheme has an apriori bound on the length of the messages and attributes (defined on setup),
the latter have same length by definition.



   24 Page 34 of 100 D. Francati et al.

Definition 14. (�-Hybrid CPA-1-sided and CPA-2-side security of n-input PE). Let
t ∈ [2]. We say that a n-input PE � is CPA-t-sided secure in the �-hybrid setting if for
all valid PPT adversaries A = (A0,A1):

∣

∣

∣

∣

P

[

G�-hyb-CPA-1-iPE
�,A (λ) = 1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ),

where gameG�-hyb-CPA-1-iPE
�,A (λ) is depicted in Fig. 6. LetQi = {x |∃(x,m) ∈ QEnc(eki ,·,·)}

for i ∈ [n − �] and Qi=Xi for i ∈ [n]\[n − �]. Moreover, let Qd
i (for d ∈ ←$ )

be the ordered set composed of the predicate inputs Qi and the challenge input xdi ,

i.e., Qd
i = {x (1,d)

i , . . . , x (ki ,d)
i , x (ki+1,d)

i = xdi } where ki = |Qi | and x ( j,d) ∈ Qi for
j ∈ [ki ]. Adversary A is called valid if |QCorr| ≤ � and ∀P ∈ QKGen, ∀ j ∈ [n],
∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], we have22

Case t = 1 : P(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n )

= P(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) = 0.

Case t = 2 : Either

P(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n )

= P(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) = 0

or

P(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n )

= P(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) ∧ m0

j = m1
j .

Multi-key PE from Multi-input PE. Here, we build a n-key PE from (n + 1)-input PE
that tolerates 1 public encryption key, i.e., 1-hybrid setting (Definition 14). The idea is to
use the first n inputs of the predicate P(x1, . . . , xn+1) (of (n+1)-input PE) to determine
the indexes (v1, . . . , vn) ∈ V that define the predicate Pv1,...,vn (x) of the n-key PE, i.e.,
P(x1, . . . , xn+1) = P(v1, . . . , vn, x) = Pv1,...,vn (x) where xi = vi for i ∈ [n] and
xn+1 = x .

Construction 1. Let iPE = (Setup1,KGen1,Enc1,Dec1) be a (n + 1)-input PE
schemewith message spaceM = M1×· · ·×Mn+1, input spaceX = X1×· · ·×Xn+1,
and predicate space P1 = {P(x1, . . . , xn+1)} such that

P(x1, . . . , xn+1) = Px1,...,xn (xn+1),

22As usual, we implicitly assume that the challenge messages and inputs have the same length, i.e., |m0
i | =

|m1
i | and |x0

i | = |x1
i | for i ∈ [n].
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where xi ∈ Xi for i ∈ [n + 1]. We build a n-key PE scheme with message space
M = Mn+1, input spaceX = Xn+1, and predicate spaceP = {Pv1,...,vn (x)}(v1,...,vn)∈V
indexed by V = X1 × · · · × Xn, in the following way:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm
outputs mpk = ekn and msk1 = (ek1,dkP ), . . . ,mskn = (ekn,dkP ) where
(mpk′,ek1, . . . ,ekn+1) ←$ Setup1(1

λ) and dkP ←$ KGen1(msk′, P) for P ∈
P1.

KGen(mski , vi ): Let i ∈ [n].Upon input the i thmaster secret keymski = (eki ,dkP ),
and the i th predicate index vi ∈ Xi , the randomized key generator outputs dkvi =
(cvi ,dkP ) where cvi ←$ Enc1(eki , vi ,⊥).

Enc(mpk, x,m): Upon input the master public key mpk = ekn+1, an input x ∈
Xn+1, and a message m ∈ Mn+1, the randomized encryption algorithm computes
c ←$ Enc1(ekn+1, x,m).

Dec(dkv1, . . . ,dkvn , c): Upon input n secret decryption keys dkv1 = (cv1 ,dkP ),

. . . ,dkvn = (cvn ,dkP ) and a ciphertext c, the deterministic decryption algorithm
outputs mn+1 where (m1, . . . ,mn+1) = Dec1(dkP , cv1 , . . . , cvn , c).

Correctness follows from the correctness of iPE. As for security, we establish the
following result.

Theorem 4. Let iPE be as above. For t ∈ [2], if iPE is CPA-t-sided secure in the 1-
hybrid model without collusions (Definition 14) then the n-key PE scheme � from Con-
struction 1 is CPA-t-sided secure (Definition 11).

Proof. (CPA-1-sided security of �) Without loss of generality, we assume that the ad-
versary A submits (at least) one query to each key generation oracle KGen(msk1, ·),
. . . ,KGen(mskn, ·) (proving the security of � against this adversary implies the secu-
rity of � against any other adversary that does not query an oracle KGen(msk j , ·, ·)
for a j ∈ [n]). Suppose there exists a valid PPT adversary A with a non-negligible
advantage in breaking the CPA-1-sided security of �. We build an adversary A′ that
breaks the 1-hybrid CPA-1-side security (without collusions) of iPE. A′ is defined as
follows:

1. Receive ekn+1 from the challenger and send it to A.
2. Send the query P (i.e., the predicate supported by iPE) to the KGen1 oracle and

receive dkP .
3. item:answerspsqueriesspsmultispskeyspsPEspsfromspsmultispsinputspsPE Initial-

ize Li = {∅} for i ∈ [n]. A′ answers to the incoming oracle queries as follows:

• On input vi ∈ Xi for KGen(mski , ·), forward the query (vi ,⊥) to oracle
Enc1(eki , ·, ·) and receive the answer cvi . Add vi to Li and return dkvi =
(cvi ,dkP ).

4. Receive the challenge (m0,m1, x0, x1) from A. A′ sends the challenge ((m0
1, . . . ,

m0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n)) where mi
1 = . . . = mi

n = ⊥,
mi

n+1 = mi , xij = x1−i
j = x̄ j ←$ L j , and xin+1 = xi , for j ∈ [n] and i ∈ ←$ .

5. Receive the challenge ciphertexts c1, . . . , cn+1 and forward cn+1 to A.
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6. Answer to the incoming oracle queries as in Item 3.
7. Return the output of A.

Let d be the challenge bit sampled by the challenger. A′ perfectly simulates the view of
A. Moreover, sinceA is a valid adversary, we have that ∀v1 ∈ QKGen(msk1,·), . . . ,∀vn ∈
QKGen(mskn ,·), we have Pv1,...,vn (x

0) = Pv1,...,vn (x
1) = 0. In order to be valid, A′ needs

to satisfy the condition of Definition 14. Let Qb
i as defined in Definition 14. First, note

that, for i ∈ [n], we have that Q0
i = Q1

i = QKGen(mski ,·) = Li since xdi = x1−d
i = x̄i

are sampled from Li (i.e.,Qi does not contain any value that depends on the challenge
bit d). Hence, the only case in which the adversary A′ may evaluate the predicate P on
an input that depends on the challenge bit d (i.e., the cases captured by Definition 14)
is when A′ uses the challenge ciphertext cn+1. However, when cn+1 is used, the validity
of A implies that ∀(v1, . . . , vn) ∈ Qb

1 × · · · × Qb
n (recall Qb

i = Q1−b
i for i ∈ [n]),

P(v1, . . . , vn, x
0
n+1) = Pv1,...,vn (x

0) = Pv0,...,vn (x
1) = P(v1, . . . , vn, x

1
n+1) = 0,

where xin+1 = xi for i ∈ ←$ . Hence, A′ submits only a single query to oracle KGen1

and is also a valid adversary for G�-hyb-CPA-1-iPE
iPE,A′ (λ). This concludes the proof.

(CPA-2-sided security of �) The reduction is identical. The only difference is the
analysis of the validity of A′. By definition A is a valid adversary with respect to the
CPA-2-sided security of iPE, i.e., ∀v1 ∈ QKGen(msk1,·), . . . ,∀vn ∈ QKGen(mskn ,·), we
have

Either Pv1,...,vn (x
0) = Pv1,...,vn (x

1) = 0 or

Pv1,...,vn (x
0) = Pv1,...,vn (x

1) ∧ m0 = m1.

If A satisfies the first part of the above condition, then the analysis of A’s validity is
identical to that of CPA-1-sided security. On the other hand, if A satisfies the second
part of the above condition, then the validity of A follows by using an similar argument
to that of CPA-1-sided security and, in addition, observing that

P(v1, . . . , vn, x
0
n+1) = Pv1,...,vn (x

0) = Pv1,...,vn (x
1) = P(v1, . . . , vn, x

1
n+1),

and m0
n+1 = m0 = m1 = m1

n+1. This concludes the proof. �

5. Constructions

In this section, we give different constructions of multi-key and multi-input PE (see
also Sect. 1.2) for predicates P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn).

In particular, in Sect. 5.1 we give a construction of n-key PE from single-input PE and
lockable obfuscation for n = poly(λ). This construction is secure against unbounded
collusions.

In Sects. 5.2 and 5.3, we give two constructions of n-input PE from single-input PE,
lockable obfuscation, and SKE/PKE. The first handles poly(λ)-arity and it is CPA-1-side



Multi-key and Multi-input Predicate Encryption Page 37 of 100    24 

Cc(dk1, . . . , dkn)

Initialize: cn = c

For i from n to 1 do:
Deci(dki, ci) = ci−1

end for.
return c0

Cc,k(c1, . . . , cn−1, dkP )

Initialize: k1 = k, cn = c

For i from n to 1 do:
Dec1(dkP ,Dec2(ki, ci)) = vi

If vi = ⊥: return ⊥
Else: let vi = (yi, ki+1)

end for.
return yn where vn = (yn, k1)

Fig. 7. On the left, the definition of the circuit Cc of Construction 2. On the right, the definition of the circuit
Cc,k of Construction 3.

secure without collusions and in the secret-key setting. The second handles O(1)-arity
and it is CPA-1-side secure without collusions and in the (n − 1)-corruptions setting.
This second construction leverages a new nesting execution technique of (lockable ob-
fuscated) circuits.

Both multi-input constructions support conjunctions of arbitrary predicates with wild-
cards, i.e., for every i ∈ [n], there exists (possibly unique) a wildcard x�

i such that for
every i th predicate Pi we have Pi (x�

i ) = 1 (in Sect. 5.4 we discuss how to remove the
wildcard when no corruptions are in place).

Also, our constructions are generic and achieve CPA-2-sided security if the underlying
single-input PE is CPA-2-sided secure (in case of no corruptions, our CPA-2-sided secure
multi-input Construction 3 supports n = O(log(λ))).

5.1. Multi-key PE from PE and Lockable Obfuscation

Construction 2. Consider the following primitives:

1. For i ∈ [n], a PE scheme PEi = (Setupi ,KGeni ,Enci ,Deci ) with message
space Mi , input space Xi , and predicate space Pi = {Pv(x)}v∈Vi indexed by
Vi . Without loss of generality, we assume that PEi has ciphertext space Yi ,
M1 = ←$ m(λ), and Mi = Yi−1 for every i ∈ [n]\{1}. In order to do not
incur into an exponential ciphertext growth (e.g., for n = poly(λ)), each ith PE
scheme must have a ciphertext expansion of poly(λ) + |mi | where |mi | is the
length of the messages mi ∈ Mi supported by the i th PE scheme (this can be
obtained generically from any PE scheme by leveraging hybrid encryption, i.e.,
Enci (mpk, x, s)||PRG(s) ⊕ mi where s ←$ ←$ λ).23

2. A lockable obfuscation scheme LOBF = (Obf,Eval) with message space M for
the family of circuits Cn,s,d(λ) = {Cc} as defined in Fig.7, where n(λ), s(λ), d(λ)

depends on the schemes PE1, . . . ,PEn used, and the circuits Cn,s,d(λ).

We build a n-key PE scheme� with message spaceM, input spaceX = X1 ×· · ·×Xn,
and predicate space P = {Pv1,...,vn (x1, . . . , xn) = Pv1(x1) ∧ · · · ∧ Pvn (xn)}(v1,...,vn)∈V
indexed by V = V1 × · · · × Vn (and Pvi ∈ Pi for i ∈ [n]), as follows:

23We stress eachPEi requires a different PRG with a particular stretch depending on the size of the message
we wish to encrypt. Alternatively, it is possible to use a single PRG if the latter has an arbitrary polynomial
stretch.
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Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm
outputs mpk = (mpk1, . . . ,mpkn) and msk1, . . . ,mskn where (mpki ,mski )
←$ Setupi (1

λ) for i ∈ [n].
KGen(mski , vi ): Let i ∈ [n]. Upon input the i th master secret key mski and the

i th predicate index vi ∈ Vi , the randomized key generator outputs dkvi ←$

KGeni (msk1, Pvi ) where Pvi ∈ Pi .
Enc(mpk, x,m): Upon input the master public key mpk = (mpk1, . . . ,mpkn), an

input x = (x1, . . . , xn) ∈ X , and a message m ∈ M, the randomized encryption
proceeds as follows:

1. Sample y ←$ ←$ s(λ) and let c0 = y.
2. For i ∈ [n], compute ci ←$ Enci (mpki , xi , ci−1).

Finally, it outputs c = ˜C where ˜C ←$ Obf(1λ,Ccn , y,m).
Dec(dkv1, . . . ,dkvn , c): Upon input n decryption keys dkv1, . . . ,dkvn and a cipher-

text c = ˜C, the deterministic decryption algorithm outputs m = Eval(˜C, (dkv1,

. . . ,dkvn )).

Correctness follows from the correctness of the underlying schemes. We establish the
following result.

Theorem 5. Let n = poly(λ), PE1, . . . ,PEn and LOBF be as above.

1. If each PE1, . . . ,PEn is CPA secure (Definition 8) and LOBF is secure (Defini-
tion 2), then the n-key PE scheme � from Construction 2 is CPA-1-sided secure
(Definition 11).

2. If each PE1, . . . ,PEn is CPA-2-sided secure (Definition 9) and LOBF is secure
(Definition 2), then the n-key PE scheme � from Construction 2 is CPA-2-sided
secure (Definition 11).

5.1.1. Proof of Theorem 5

CPA-1-sided security of � (Theorem 5). Consider the predicate space P of Construc-
tion 2, i.e.,

P = {Pv1,...,vn (x1, . . . , xn)}(v1,...,vn)∈V
= {Pv1(x1) ∧ . . . ∧ Pvn (xn)}(Pv1 ,...,Pvn )∈P1×...×Pn . (3)

Also, consider the validity condition of GCPA-1-kPE
�,A (Definition 11). We can write such a

validity condition for the predicate space P as follows: ∀v1 ∈ QKGen(msk1,·), . . . , vn ∈
QKGen(mskn ,·),

Pv1,...,vn (x
0
1 , . . . , x0

n ) = Pv1,...,vn (x
1
1 , . . . , x1

n)

=
(

Pv1(x
0
1 ) ∧ . . . ∧ Pvn (x

0
n )

)

= 0 ∧
(

Pv1(x
0
1 ) ∧ . . . ∧ Pvn (x

0
n )

)

= 0,

where x0 = (x0
1 , . . . , x0

n ) and x1 = (x1
1 , . . . , x1

n) are the two input challenges output
by the adversary. The above equation can be rewritten as follows: ∃ j0, j1 ∈ [n], ∀v j0 ∈
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QKGen(msk j0 ,·), ∀v j1 ∈ QKGen(msk j1 ,·),

Pv j0
(x0

j0) = 0 ∧ Pv j1
(x1

j1) = 0. (4)

Hence, in order to be valid with respect to GCPA-1-kPE
�,A , A needs to satisfy the above

equation. Let Validity j0, j1 the validity condition (as defined in Eq. (4)) with respect to
some j0, j1 ∈ [n]. By taking into account the above point, the CPA-1-sided security
of Construction 2 follows by proving the following lemma.

Lemma 1. Let j0, j1 ∈ [n]. If both PE j0 and PE j1 are CPA secure (Definition 8) and
LOBF is secure (Definition 2), then

∣

∣

∣

∣

P

[

GCPA-1-kPE
�,A (λ) = 1

∣

∣

∣Validity j0, j1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Consider the following hybrid experiments:

Hb
0(λ): This is exactly the experiment GCPA-1-kPE

�,A conditioned to Validity j0, j1 where
the challengebit is b, i.e., the adversary is valid and satisfies conditionValidity j0, j1 .

Hb
1(λ): Same as Hb

0 , except that the challenger computes c jb ←$ Enc jb (mpk jb , x
b
jb
,

w) where w ←$ M jb (instead of c jb ←$ Enc jb (mpk jb , x
b
jb
, c jb−1).

Hb
2(λ): Same asHb

1 , except that the challenger simulates the challenge ciphertext c =
˜C using the simulator of the lockable obfuscation scheme LOBF, i.e.,˜C ←$ S(1λ,

1|Cc|, 1|mb|).

Claim 1. Hb
0(λ) ≈c Hb

1(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb
0(λ)

andHb
1(λ)with non-negligible probability. We build an adversaryA that breaks the CPA

security of PE jb . A is defined as follows:

1. Receive mpk jb from the challenger.
2. Send mpk = (mpk1, . . . ,mpkn) to D where (mpki ,mski ) ←$ Setupi (1

λ) for
i ∈ [n]\{ jb}.

3. A answers to the incoming oracle queries as follows:

• On input vi ∈ Vi for KGen(mski , ·), A proceeds as follows: If jb = i , it for-
wards the query Pvi ∈ P jb to KGen jb and returns the answer dkvi . Otherwise
(if jb �= i ), it returns dkvi ←$ KGeni (mski , Pvi ) for Pvi ∈ Pi .

4. Receive the challenge (m0,m1, (x0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n)) from D.
5. Sample y ←$ ←$ s(λ) and set c0 = y.
6. For i ∈ [ jb − 1], compute ci ←$ Enci (mpki , x

b
i , ci−1).

7. Send the challenge (m0∗,m1∗, xbjb ) where m0∗ = c jb , m
1∗ ←$ M jb and receive the

challenge ciphertext c∗.
8. For i ∈ [n] \ [ jb], compute ci ←$ Enci (mpki , x

b
i , ci−1) where c jb = c∗.

9. Finally, send c = ˜C ←$ Obf(1λ,Ccn , y,m
b) to D.
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10. Answer to the incoming oracle queries as in Item 3.
11. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulatesHb

0(λ). On the other hand, if d = 1, A
simulatesHb

1(λ). In addition, sinceD is valid and satisfies the conditionValidity j0, j1 , we
conclude that ∀v j0 ∈ V j0 , Pv j0

(x0
jb
) = 0. This implies that ∀P ∈ QKGen jb

, P(x0
jb
) = 0.

Hence,A is a valid adversary with the same advantage ofD. This concludes the proof.�

Claim 2. Hb
1(λ) ≈c Hb

2(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb
1(λ)

and Hb
2(λ) with non-negligible probability. We build an adversary A that breaks the

security of lockable obfuscation LOBF. A is defined as follows:

1. Send mpk = (mpk1, . . . ,mpkn) to D where (mpki ,mski ) ←$ Setupi (1
λ) for

i ∈ [n].
2. A answers to the incoming oracle queries as follows:

• On input vi ∈ Vi for RKGen(mski , ·), A returns dkvi ←$ KGeni (mski , Pvi )

for Pvi ∈ Pi .

3. Receive the challenge (m0,m1, (x0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n)) from D.
4. For i ∈ [n] \ [ jb], compute ci ←$ Enci (mpki , x

b
i , ci−1) where c jb ←$ M jb .

5. TheadversaryA sends (Ccn ,m
b) to the challenger and receives back theobfuscated

circuit ˜C from the challenger.
6. A returns c = ˜C to D.
7. Answer to the incoming oracle queries as in Item 2.
8. Return the output of D.

Let d be the challenge bit sampled by the challenger. When d = 0, A simulates Hb
1(λ);

otherwise, if d = 1, A simulatesHb
2(λ). Thus, A has the same non-negligible advantage

of D with respect to the experiment Glock-sim
LOBF,A,S(λ). This concludes the proof. �

Claim 3. Hb
2(λ) ≡ H1−b

2 (λ).

Proof. The claim follows by observing that these experiments do not depend on the
challenge bit b. �

Lemma 1 follows by combining Claims 1–3. �
By leveraging Lemma 1, we conclude that � of Construction 2 is CPA-1-sided secure.

CPA-2-sided security of � (Theorem 5). Consider the validity condition of GCPA-2-kPE
�,A

(Definition 11). This can be rewritten with respect to the definition of P (Eq. (3)) as
follows: ∃ j0, j1 ∈ [n], ∀v j0 ∈ QKGen(msk j0 ,·), ∀v j1 ∈ QKGen(msk j1 ,·), ∀(v1, . . . , vn) ∈
QKGen(msk1,·) × · · · × QKGen(mskn ,·),

Either Pv j0
(x0

j0) = 0 ∧ Pv j1
(x1

j1) = 0

or Pv1(x
0
1 ) = Pv1(x

1
1) ∧ . . . ∧ Pvn (x

0
n ) = Pvn (x

1
n) ∧ m0 = m1 (5)
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Consider the following conditions:

Validity0, j0, j1 : ∀v j0 ∈ QKGen(msk j0 ,·),∀v j1 ∈ QKGen(msk j1 ,·),

Pv j0
(x0

j0) = 0 ∧ Pv j1
(x1

j1) = 0

Validity1 : ∀(v1, . . . , vn) ∈ QKGen(msk1,·) × . . . × QKGen(mskn ,·),
Pv1(x

0
1 ) = Pv1(x

1
1) ∧ . . . ∧ Pvn (x

0
n ) = Pvn (x

1
n) ∧ m0 = m1.

By leveraging the above validity conditions we can rephrase Eq. (5) as follows: ∃ j0, j1 ∈
[n] such that

Either Validity0, j0, j1 or Validity1.

Hence, in order to be valid with respect toGCPA-2-kPE
�,A ,A needs to satisfy the above equa-

tion. By taking into account the above point, the CPA-2-sided security of Construction 2
follows by proving the following lemmas.

Lemma 2. Let j0, j1 ∈ [n]. If both PE j0 and PE j1 are CPA-2-sided secure (Defini-
tion 9) and LOBF is secure (Definition 2), then

∣

∣

∣

∣

P

[

GCPA-2-kPE
�,A (λ) = 1

∣

∣

∣Validity0, j0, j1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. The lemma follows by using an identical argument to that of Lemma 1. �

Lemma 3. If each PE1, . . . ,PEn are CPA-2-sided secure (Definition 9), then

∣

∣

∣

∣

P

[

GCPA-2-kPE
�,A (λ) = 1

∣

∣

∣Validity1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Consider the following hybrid experiments:

Hb
0(λ): This is exactly the experiment GCPA-2-kPE

�,A conditioned to Validity1 where the
challenge bit is b, i.e., the adversary is valid and satisfies the condition Validity1.

Hb
i (λ) for i ∈ [n]: Same as Hb

i−1, except that the challenger computes ci ←$ Enci (
mpki , x

1−b
i , ci−1) (instead of ci ←$ Enci (mpki , x

b
i , ci−1).

Claim 4. For i ∈ [n], Hb
i−1(λ) ≈c Hb

i (λ).

Proof. Suppose there exists a PPT distinguisherD that distinguishes betweenHb
i−1(λ)

and Hb
i (λ) with non-negligible probability. We build an adversary A that breaks the

CPA-2-sided security of PEi . A is defined as follows:

1. Receive mpki from the challenger.
2. Send mpk = (mpk1, . . . ,mpkn) to D where (mpk j ,msk j ) ←$ Setupi (1

λ) for
j ∈ [n]\{i}.
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3. A answers to the incoming oracle queries as follows:

• On input v j ∈ V j for RKGen(msk j , ·), A proceeds as follows: If j = i , it
forwards the query Pv j ∈ Pi toKGeni and returns the answer dkv j . Otherwise
(if j �= i ), it returns dkv j ←$ KGen j (msk j , Pv j ) for Pv j ∈ P j .

4. Receive the challenge (m0,m1, (x0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n)) from D.
5. Sample y ←$ ←$ s(λ) and set c0 = y.
6. For j ∈ [i − 1], compute c j ←$ Enc j (mpk j , x

1−b
j , c j−1).

7. Send the challenge (m0∗,m1∗, x0 = xbi , x1 = x1−b
i ) where m0∗ = m1∗ = ci−1, and

receive the challenge ciphertext c∗.
8. For j ∈ [n] \ [i], compute c j ←$ Enc j (mpk j , x

b
j , c j−1) where ci = c∗.

9. Finally, send c = ˜C ←$ Obf(1λ,Ccn , y,mb) to D.
10. Answer to the incoming oracle queries as in Item 3.
11. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulatesHb

i−1(λ). On the other hand, if d = 1,
A simulatesHb

i (λ). In addition, sinceD is valid and satisfies the conditionValidity1, we
conclude that ∀vi ∈ QKGen(mski ,·), Pvi (x

0
i ) = Pvi (x

1
i ). Hence, A is a valid adversary

with the same advantage of D. This concludes the proof. �

Claim 5. Hb
n(λ) ≡ H1−b

n (λ).

Proof. Since Validity1 holds, we know that m0 = m1. Hence, these experiments are
identically distributed. �

Lemma 3 follows by combining Claims 4 and 5. �
By combining Lemmas 2 and 3 we conclude that � of Construction 2 is CPA-2-sided

secure.

5.2. Secret-key Setting: Multi-input PE from PE, Lockable Obfuscation and SKE

Secret-key setting. We present our n-input PE construction that is CPA-1-sided secure
in the secret-key setting without collusions, for n = poly(λ). It leverages a CPA-1-sided
secure single-input PE, lockable obfuscation, and SKE. The same construction is CPA-
2-sided secure in the secret-key setting without collusions for n = O(log(λ)), if the
initial single-input PE is CPA-2-sided secure.

Construction 3. (n-input PE in the secret-key setting). Consider the following primi-
tives:

1. A PE scheme PE1 = (Setup1,KGen1,Enc1,Dec1) with message space M1 =
←$ m(λ) × M′

1, input space X1 = X1,1 × · · · × X1,n, and predicate space
P1 = {P(x1, . . . , xn)} = {P1(x1) ∧ · · · ∧ Pn(xn)}. Without loss of generality, we
assume thatPE has ciphertext spaceM2 and there exists a (single) wildcard input
(x�

1, . . . , x�
n) ∈ X1 such that ∀(P1(x1)∧· · ·∧ Pn(xn)) ∈ P1,∀i ∈ [n], Pi (x�

i ) = 1.



Multi-key and Multi-input Predicate Encryption Page 43 of 100    24 

2. A SKE scheme SKE = (KGen2,Enc2,Dec2) with message space M2. Without
loss of generality, we assume that SKE has key spaceM′

1
3. A lockable obfuscation scheme LOBF = (Obf,Eval) with message spaceM3 for

the family of circuits Cn,s,d(λ) = {Cc,k} as defined in Fig.7, where n(λ), s(λ), d(λ)

depends on the schemes PE and SKE used, and the circuit depth of the circuits
Cn,s,d(λ).

We build a n-input PE scheme with message spaceM =
n

︷ ︸︸ ︷

M3 × · · · × M3, input space
X = X1, and predicate space P = P1 = {P(x1, . . . , xn)} = {P1(x1) ∧ · · · ∧ Pn(xn)}
withwildcard (i.e., there exists a (single)wildcard (x�

1, . . . , x�
n) ∈ X such that∀(P1(x1)∧

· · · ∧ Pn(xn)) ∈ P ,∀i ∈ [n], Pi (x�
i ) = 1), as follows:

Setup(1λ): Upon input the security parameter1λ, the randomized setup algorithmout-
puts (ek1, . . . ,ekn) and msk where (mpk,msk) ←$ Setup1(1

λ), eki = (mpk,
ki , ki+1), kn+1 = k1, and ki ←$ KGen2(1λ) for i ∈ [n].

KGen(msk, P): Upon input the master secret key msk and a predicate P ∈ P , the
randomized key generator outputs dkP ←$ KGen1(msk, P).

Enc(eki , xi ,mi ): Let i ∈ [n]. Upon input an encryption key eki = (mpk, ki , ki+1),
an input xi ∈ X1,i , and amessagemi ∈ M3, the randomized encryption algorithm

samples yi ←$ ←$ s(λ) andcompute c(1)
i ←$ Enc1(mpk, (x1, . . . , xn), (yi , ki+1))

where x j = x�
j for any j ∈ [n]\{i}. Finally, it outputs c = (˜Ci , c

(2)
i ) where

˜Ci ←$ Obf(1λ,C
c(2)
i ,ki+1

, yi ,mi ) and c(2)
i ←$ Enc2(ki , c

(1)
i ).

Dec(dkP , c1, . . . , cn): Upon input a secret decryption key dkP for predicate P ∈ P ,
and n ciphertexts (c1, . . . , cn) such that ci = (˜Ci , c

(2)
i ) for i ∈ [n]. The deter-

ministic decryption returns (m1, . . . ,mn) where mi = Eval(˜Ci , (c
(2)
i+1, . . . , c

(2)
n ,

c(2)
1 , . . . , c(2)

i−1,dkP )) for i ∈ [n].

As usual, correctness follows from the correctness of the underlying primitives. Below,
we establish the following result.

Theorem 6. Let PE, SKE, and LOBF be as above.

1. For n = poly(λ), if PE is CPA-1-sided secure without collusions (Definition 9),
SKE is CPA secure (Definition 4), and LOBF is secure (Definition 2), then the
n-input PE scheme � from Construction 3 is CPA-1-sided secure in the secret-key
setting without collusions (Definition 13).

2. For n = O(log(λ)), if PE is CPA-2-sided secure without collusions (Definition 9),
SKE is CPA secure (Definition 4), and LOBF is secure (Definition 2), then the
n-input PE scheme � from Construction 3 is CPA-2-sided secure in the secret-key
setting without collusions (Definition 13).

5.2.1. Proof of Theorem 6

CPA-1-sided security of � (Theorem 6). Consider the predicate spaceP = {P(x1, . . . ,
xn)} of Construction 3 where P(x1, . . . , xn) = P1(x1) ∧ · · · ∧ Pn(xn). Let P∗ ∈ P be
the only predicate for which the adversary will ask the decryption key dkP∗ during
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the experiment G0-CPA-1-iPE
�,A (recall that we prove the security of Construction 3 in the

scenario without collusions, i.e., |QKGen| = 1). Also, consider the validity condition of
G0-CPA-1-iPE

�,A . We can write such a validity condition with respect to P∗ ∈ QKGen = {P∗}
as follows: ∀ j ∈ [n], ∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1],

P∗(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n )

= P∗(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n )

= P∗
1 (x (i1,0)

1 ) ∧ · · · ∧ P∗
j−1(x

(i j−1,0)

j−1 ) ∧ P∗
j (x

0
j ) ∧ P∗

j+1(x
(i j+1,0)

j+1 ) ∧ · · · ∧ P∗
in (x

(in ,0)
n )

= P∗
1 (x (i1,1)

1 ) ∧ · · · ∧ P∗
j−1(x

(i j−1,1)

j−1 ) ∧ P∗
j (x

1
j ) ∧ P∗

j+1(x
(i j+1,1)

j+1 ) ∧ · · · ∧ P∗
n (x (in ,1)

n ) = 0,

where Qb
i = {x (1,b)

i , . . . , x (ki ,b)
i , x (ki+1,b)

i = xbi } is the ordered list composed of the ki
predicate inputs Qi submitted to oracle Enc(eki , ·, ·) and the challenge input xbi (as
defined in Definition 13). The above equation can be rewritten as follows: ∃ j0, j1 ∈ [n],
∀(x ′

1, . . . , x
′
n) ∈ Q1 × · · · × Qn ,

((

P∗
1 (x0

1 ) = 0 ∧ · · · ∧ P∗
n (x0

n ) = 0
)

∨
(

P∗
j0(x

0
j0) = 0 ∧ P∗

j0(x
′
j0) = 0

))

∧
((

P∗
1 (x1

1) = 0 ∧ · · · ∧ P∗
n (x1

n) = 0
)

∨
(

P∗
j1(x

1
j1) = 0 ∧ P∗

j1(x
′
j1) = 0

))

. (6)

Note that in the above equation we made explicit the challenge inputs and the inputs
submitted to the encryption oracles. For this reason, it is enough to quantify over all
(x ′

1, . . . , x
′
n) ∈ Q1 × · · · ×Qn where Qi = {x (1)

i , . . . , x (ki )
i } are the inputs submitted to

oracle Enc(eki , ·, ·). Hence, in order to be valid, A needs to satisfy the condition defined
by Eq. (6). These conditions are defined by the events below: for some j0, j1 ∈ [n],

Validity1 :
P∗

1 (x0
1 ) = 0 ∧ · · · ∧ P∗

n (x0
n ) = 0 ∧ P∗

1 (x1
1) = 0 ∧ · · · ∧ P∗

n (x1
n) = 0.

Validity2, j0, j1 : ∀x ′
j0 ∈ Q j0 ,∀x ′

j1 ∈ Q j1 ,

P∗
j0(x

0
j0) = 0 ∧ P∗

j0(x
′
j0) = 0 ∧ P∗

j1(x
1
j1) = 0 ∧ P∗

j1(x
′
j1) = 0.

Validity3, j0 : ∀x ′
j0 ∈ Q j0 ,

P∗
j0(x

0
j0) = 0 ∧ P∗

j0(x
′
j0) = 0 ∧ P∗

1 (x1
1) = 0 ∧ · · · ∧ P∗

n (x1
n) = 0.

Validity4, j1 : ∀x ′
j1 ∈ Q j1 ,

P∗
1 (x0

1 ) = 0 ∧ · · · ∧ P∗
n (x0

n ) = 0 ∧ P∗
j1(x

1
j1) = 0 ∧ P∗

j1(x
′
j1) = 0.

For the sake of clarity, in the rest of this proof, we use the notation Vi
def= C

c(2)
i ,ki+1

where c(2)
i and ki+1 will be clear from the context. Also, [a : b]+n = {a, a+ 1, . . . , n, 1,

2, . . . , b}. If 1 ≤ a ≤ b ≤ n, we have [a : b]+n = {a, a + 1, . . . , b}. Similarly,
[a : b]−n = {a, a − 1, . . . , 1, n, n − 1, . . . , b}. If 1 ≤ b ≤ a ≤ n, we have [a : b]−n =
{a, a − 1, . . . , b}.
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Lemma 4. If PE is CPA-1-sided secure without collusions (Definition 9) and LOBF
is secure (Definition 2), then

∣

∣

∣

∣

P

[

G0-CPA-1-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Consider the following hybrid experiments:

Hb,0
0 (λ): This is exactly the experiment G0-CPA-1-iPE

�,A (λ) conditioned to the event
Validity1 where the challenge bit is b, i.e., the adversary is valid and satisfies
the condition Validity1.

Hb,i
0 (λ) for i ∈ [n]: Same as Hb,i−1

0 , except that the challenger changes how it com-

putes the challenger ciphertext ci . The value c
(1)
i challenge ciphertext ci = (˜Ci , c

(2)
i )

is computed as c(1)
i ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) (instead of

c(1)
i ←$ Enc1(mpk, (x1, . . . , xn), (yi , ki+1))) where 0s(λ)+k(λ) ∈ M1 (for some

function k), xi = x0
i , and x j = x�

j for j ∈ [n]\{i}. Observe that c(1)
i is computed

by fixing xi = x0
i (instead of xi = xbi ), i.e., the input (x1, . . . , xn) used to compute

the i th challenge ciphertext is fixed and does not depend on the challenge bit b.
Hb,0

1 (λ): Identical to Hb,n
0 (λ).

Hb,i
1 (λ) for i ∈ [n]: Same as Hb,i−1

1 , except that the challenger changes how it com-
putes the challenger ciphertext ci . Formally, the value ˜Ci of challenge ciphertext
ci = (˜Ci , c

(2)
i ) is simulated by the challenger using the simulator of the lockable

obfuscation scheme LOBF, i.e., ˜Ci ←$ S(1λ, 1|Vi |, 1|mb
i |).

Claim 6. Hb,i−1
0 (λ) ≈c H

b,i
0 (λ) for i ∈ [n].

Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,1−i
0 (λ)

and Hb,i
0 (λ) with non-negligible probability. We build an adversary A that breaks the

CPA-1-sided security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.
2. Compute k j ←$ KGen2(1λ) for j ∈ [n]. Let eki = (mpk, ki , ki+1) for i ∈ [n]

where kn+1 = k1.
3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the
answer dkP .

• On input (x,m) ∈ X1×M3 forEnc(ek j , ·, ·), return c j = (˜C j , c
(2)
j ) ←$ Enc(

ek j , x,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
5. For any j ∈ [n], A proceeds as follows:

Case j < i : Sample y j ←$ ←$ s(λ). Execute c(1)
j ←$ Enc1(mpk, (x1, . . . , xn),

0s(λ)+k(λ)) where x j = x0
j , and x j ′ = x�

j ′ for j ′ ∈ [n]\{ j}.
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Case j = i : Send the challenge (m0∗ = (yi , ki+1),m1∗ = 0s(λ)+k(λ), x0∗ = (x0∗1,

. . . , x0∗n), x1∗ = (x1∗1, . . . , x
1∗n))where yi ←$ ←$ s(λ), 0s(λ)+k(λ) ∈ M1, x0∗i =

xbi , x
1∗i = x0

i , and x0∗ j = x1∗ j = x�
j for j ∈ [n]\{i}. Receive the challenge

ciphertext c∗ from the challenger. Set c(1)
i = c∗.

Case j > i : Sample y j ←$ ←$ s(λ) and compute c(1)
j ←$ Enc1(mpk, (x1, . . . ,

xn), (y j , k j+1)) where x j = xbj , and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

6. Compute c j = (˜C j , c
(2)
j ) where c(2)

j ←$ Enc2(ek j , c
(1)
j ) and ˜C j ←$ Obf(1λ,

V j , y j ,mb
j ) for any j ∈ [n].

7. Send the challenge ciphertexts (c1, . . . , cn) to D.
8. Answer to the incoming oracle queries as in Item 3.
9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,i−1

0 (λ). On the other hand,

if d = 1, A simulates Hb,i
0 (λ). Moreover, conditioned to the event Validity1 (i.e., D

satisfies Validity1), we know that D asks for a single decryption key dkP∗ for P∗ and
P∗
i (x0

i ) = 0 ∧ P∗
i (x1

i ) = 0. Because of this, A submits a single query P∗ to oracle
KGen(msk, ·) and it is also a valid adversary for the experiment GCPA-1-PE

PE,A (λ) with
the same advantage of D. This concludes the proof. �

Claim 7. Hb,i−1
1 (λ) ≈c H

b,i
1 (λ) for i ∈ [n].

Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,1−i
1 (λ)

and Hb,i
1 (λ) with non-negligible probability. We build an adversary A that breaks the

security of the lockable obfuscation scheme LOBF. A is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ) where ek j = (mpk, k j , k j−1) for
j ∈ [n]. Let kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk, P∗).
• On input (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·) where j ∈ [n], return c j =

(˜C j , c
(2)
j ) ←$ Enc(ek j , x,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. For any j ∈ [n], compute c(1)

j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) and c(2)
j

←$ Enc2(k j , c
(1)
j ) where x j = x0

j , and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

5. For any j ∈ [n] \ {i}, A proceeds as follows:

Case j < i : Compute ˜C j ←$ S(1λ, 1|V j |, 1|mb
j |).

Case j = i : Send the challenge (Vi ,mb
i ) to the challenger and receive ˜C. Set

˜Ci = ˜C.
Case j > i : Compute ˜C j ←$ Obf(1λ,V j , y j ,mb

j ) where y j ←$ ←$ s(λ).
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6. Set c j = (˜C j , c
(2)
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to

D.
7. Answer to the incoming oracle queries as in Item 2.
8. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view ofD. In particular, if d = 0,A simulatesHb,i−1

1 (λ). On the other hand, if d = 1,

A simulatesHb,i
1 (λ). Hence,A has the same advantage ofD. This concludes the proof.�

Claim 8. Hb,n
1 (λ) ≡ H1−b,n

1 (λ).

Proof. The distribution of these two experiments does not depend on the bit b. �

By combining Claims 6–8 and the fact that Validity1 is satisfied, we conclude that

Hb,0
0 ≈c · · · ≈c H

b,n
0 ≡ Hb,0

1 ≈c · · · ≈c H
b,n
1 ≡ H1−b,n

1 .

This concludes the proof. �

Lemma 5. Let j0, j1 ∈ [n]. If PE is CPA-1-sided secure without collusions (Defini-
tion 9), SKE is CPA secure (Definition 4), and LOBF is secure (Definition 2), then

∣

∣

∣

∣

P

[

G0-CPA-1-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity2, j0, j1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Without loss of generality, let q = |Q1| = · · · = |Qn| ∈ poly(λ). Consider the
following hybrid experiments:

Hb
0(λ): This is exactly the experiment G0-CPA-1-iPE

�,A (λ) conditioned to the event
Validity2, j0, j1 where the challenge bit is b, i.e., the adversary is valid and sat-
isfies Validity2, j0, j1 .

Hb
1(λ): Same as Hb

0 , except that the challenger changes how it computes the chal-

lenger ciphertext c jb . Formally, the value c(1)
jb

of the challenge ciphertext c jb =
(˜C jb , c

(2)
jb

) is computed as c(1)
jb

←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) (instead of

c(1)
jb

←$ Enc1(mpk, (x1, . . . , xn), (y jb , k jb+1))) where 0s(λ)+k(λ) ∈ M1 (for some

function k), x jb = xbjb , and x j = x�
j for j ∈ [n]\{ jb}. Note that c(1)

jb
still depends on

the challenge bit b since it is computed over the input (x1, . . . xn) where x jb = xbjb .

We will remove this dependency in Hb,0,0,0
5+n−1.

24

Hb,0
2 : Identical to Hb

1(λ).

Hb,i
2 (λ) for i ∈ [q]: Same as Hb,i−1

2 (λ) except that the challenger changes how it
answers to the first i queries for oracle Enc(ek jb , ·, ·). Formally, on input the

i ′th query (x,m) such that i ′ ≤ i , the challenger computes c(1)
jb

←$ Enc1(mpk,

24This allow us to reuse the proof in Lemmas 6 and 7.
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(x1, . . . , xn), 0s(λ)+k(λ)) where x jb = x, and x j = x�
j for j ∈ [n]\{ jb}. Fi-

nally, the challenger returns c jb = (˜C jb , c
(2)
jb

) where c(2)
jb

←$ Enc2(k jb , c
(1)
jb

),

y jb ←$ ←$ s(λ), and ˜C jb ←$ Obf(1λ,V jb , y jb ,m). Otherwise, on input the i ′th
query (x,m) such that i ′ > i , the challenger answers as usual, i.e., as defined in
Hb,0

2 .

Hb
3(λ): Same as Hb,q

2 , except that the challenger changes how it computes the chal-

lenger ciphertext c jb . Formally, the value˜C jb of challenge ciphertext c jb = (˜C jb , c
(2)
jb

)

is simulated by the challenger using the simulator of the lockable obfuscation

scheme LOBF, i.e., ˜C jb ←$ S(1λ, 1|V jb |, 1
|mb

jb
|
).

Hb,0
4 : Identical to Hb

3(λ).

Hb,i
4 (λ) for i ∈ [q]: Same as Hb,i−1

4 (λ) except that the challenger changes how it an-
swers to the first i queries for oracle Enc(ek jb , ·, ·). Formally, on input the i ′th
query (x,m) such that i ′ ≤ i , the challenger returns c jb = (˜C jb , c

(2)
jb

) where
˜C jb is computed using the simulator of the lockable obfuscator scheme LOBF,
i.e.,˜C jb ←$ S(1λ, 1|V jb |, 1|m|). Otherwise, on input the i ′th query (x,m) such that

i ′ > i , the challenger answers as usual, i.e., as defined in Hb,0
4 .

Hb,q,q,1
4 : Identical to Hb,q

4 (λ).

Hb,0,0,0
5+i for i ∈ {0} ∪ [n − 1]: Same as Hb,q,q,1

5+i−1 except that the challenger changes
how it computes the challenger ciphertext cv where v = ( jb + i mod n)+1. For-
mally, the value c(1)

v is computed as c(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ))

where 0s(λ)+k(λ) ∈ M1 (for some function k), xv = x0
v , and x j = x�

j for

j ∈ [n]\{v}. Observe that c(1)
v is computed by fixing xv = x0

v (instead of xv = xbv ),
i.e., the predicate input (x1, . . . , xn) used to compute the vth challenge ciphertext
is fixed and does not depend on the challenge bit b.

Hb,t1,0,0
5+i for t1 ∈ [q], i ∈ {0} ∪ [n − 2]: Same as Hb,t1−1,0,0

5+i (λ) except that the chal-
lenger changes how it answers to the first t1 queries for oracleEnc(ekv, ·, ·)where
v = ( jb + i mod n) + 1. On input the t ′1th query (x,m) such that t ′1 ≤ t1, the

challenger computes c(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where xv = x,

and x j = x�
j for j ∈ [n]\{v}. Finally, the challenger returns cv = (˜Cv, c

(2)
v )where

c(2)
v ←$ Enc2(kv, c

(1)
v ), ˜Cv ←$ Obf(1λ,Vv, yv,m), and yv ←$ ←$ s(λ). Other-

wise, on input the t ′1th query (x,m) such that t ′1 > t1, the challenger answers

as usual, i.e., as defined in Hb,0,0,0
5+i .

Hb,q,t2,0
5+i for t2 ∈ [q],i ∈ {0} ∪ [n − 2]: Same as Hb,q,t2−1,0

5+i (λ) except that the chal-
lenger changes how it answers to the first t2 queries for oracle Enc(ekv, ·, ·)
where v = ( jb + i mod n)+ 1. Formally, on input the t ′2th query (x,m) such that

t ′2 ≤ t2, the challenger returns cv = (˜Cv, c
(2)
v ) where ˜Cv is computed using the

simulator of the lockable obfuscator scheme LOBF, i.e.,˜Cv ←$ S(1λ, 1|Vv |, 1|m|).
Otherwise, on input the t ′2th query (x,m) such that t ′2 > t2, the challenger answers

as usual, i.e., as defined in Hb,q,0,0
5+i .
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Hb,q,q,1
5+i for i ∈ {0} ∪ [n − 2]: Same as Hb,q,q,0

5+i (λ) except that the challenger com-
putes the challenger ciphertext cv differently for v = ( jb + i mod n) + 1. For-
mally, the value ˜Cv of challenge ciphertext cv = (˜Cv, c

(2)
v ) is simulated by the

challenger using the simulator of the lockable obfuscation scheme LOBF, i.e.,
˜Cv ←$ S(1λ, 1|Vv |, 1|mb

v |).

Claim 9. Hb
0(λ) ≈c Hb

1(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb
0(λ)

and Hb
1(λ) with non-negligible probability. We build an adversary A that breaks the

CPA-1-sided security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.
2. Compute k j ←$ KGen2(1λ) for j ∈ [n]. Let ek j = (mpk, k j , k j+1) for j ∈ [n]

where kn+1 = k1.
3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the
answer dkP∗ .

• On input (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·) where j ∈ [n], return c j =
(˜C j , c

(2)
j ) ←$ Enc(ek j , x,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D. Send the challenge (m0∗ = (y jb , k jb+1),m1∗ = 0s(λ)+k(λ), x0∗ = (x0∗1,

. . . , x0∗n), x1∗ = (x1∗1, . . . , x
1∗n)) where y jb ←$ ←$ s(λ), 0s(λ)+k(λ) ∈ M1, x0∗ jb =

x1∗ jb = xbjb and x0∗ j = x1∗ j = x�
j for j ∈ [n]\{ jb}.

5. Receive the challenge ciphertext c∗ from the challenger. Set c(1)
jb

= c∗.
6. For any j ∈ [n]\{ jb}, compute c(1)

j ←$ Enc1(mpk, (x1, . . . , xn), (y j , k j+1))where

y j ←$ ←$ s(λ), x j = xbj , and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

7. Compute c j = (˜C j , c
(2)
j ) where c(2)

j ←$ Enc2(ek j , c
(1)
j ) and ˜C j ←$ Obf(1λ,V j ,

y j ,mb
j ) for any j ∈ [n].

8. Send the challenge ciphertexts (c1, . . . , cn) to D.
9. Answer to the incoming oracle queries as in Item 3.

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulatesHb

0(λ). On the other hand, if d = 1, A
simulatesHb

1(λ). Moreover, since D submits a single query P∗ to oracle KGen(msk, ·)
and it satisfies the conditionValidity2, j0, j1 , we know that P∗

jb
(xbjb ) = 0. Because of this,

A submits only a query to oracle KGen1(msk, ·) (i.e., security without collusions) and,
it is also a valid adversary for the experimentGCPA-1-PE

PE,A (λ) with the same advantage of
D. This concludes the proof. �

Claim 10. Hb,i−1
2 (λ) ≈c H

b,i
2 (λ) for i ∈ [q].
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Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,i−1
2 (λ)

and Hb,i
2 (λ) with non-negligible probability. We build an adversary A that breaks the

CPA-1-sided security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.
2. Compute k j ←$ KGen2(1λ) for j ∈ [n]. Let kn+1 = k1.
3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the
answer dkP∗ .

• On input i ′th query (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·) where j ∈ [n], A
proceeds as follows:

Case j �= jb: Sample y j ←$ ←$ s(λ). Compute c(1)
j ←$ Enc1(mpk, (x1, . . . ,

xn), (y j , k j+1)) where x j = x and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

Case j = jb and i ′ < i : Sample y j ←$ ←$ s(λ). Compute c(1)
j ←$ Enc1(mpk,

(x1, . . . , xn), 0s(λ)+k(λ)) where x jb = x and x j ′ = x�
j ′ for j ′ ∈ [n]\{ jb}.

Case j = jb and i ′ = i : Sample y jb ←$ ←$ s(λ) and send (m0∗ = (y jb , k jb+1),

m1∗ = 0s(λ)+k(λ), x0∗ = (x0∗1, . . . , x
0∗n), x1∗ = (x1∗1, . . . , x

1∗n)) to the chal-
lenger where x0∗ jb = x1∗ jb = x and x0

∗ j ′ = x1
∗ j ′ = x�

j ′ for j ′ ∈ [n]\{ jb}.
Receive the challenge ciphertext c∗ and c(1)

jb
= c∗.

Case j = jb and i ′ > i : Sample y jb ←$ ←$ s(λ). Compute c(1)
jb

←$ Enc1

(mpk, (x1, . . . , xn), (y jb , k jb+1)) where x jb = x and x j ′ = x�
j ′ for j ′ ∈

[n]\{ jb}.
Finally, return c j = (˜C j , c

(2)
j ) where c(2)

j ←$ Enc2(k j , c
(1)
j ) and ˜C j ←$ Obf

(1λ,V j , y j ,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n)

from D.
5. For every j ∈ [n] \ { jb}, sample y j ←$ ←$ s(λ) and compute c(1)

j ←$ Enc1(mpk,

(x1, . . . , xn), (y j , k j+1)) where x j = xbj and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

6. Sample y jb ←$ ←$ s(λ) and compute the ciphertext c(1)
jb

←$ Enc1(mpk, (x1, . . . ,

xn), 0s(λ)+k(λ)) where x jb = xbjb and x j ′ = x�
j ′ for j ′ ∈ [n]\{ jb}.

7. Compute the ciphertext c j = (˜C j , c
(2)
j ) where c(2)

j ←$ Enc2(k j , c
(1)
j ) and

˜C j ←$ Obf(1λ,V j , y j ,mb
j ) for any j ∈ [n].

8. Send the challenge ciphertexts (c1, . . . , cn) to D.
9. Answer to the incoming oracle queries as in Item 3.

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversary A perfectly
simulates the view of D. In particular, if d = 0, A simulates Hb,i−1

2 (λ). On the other

hand, if d = 1, A simulates Hb,i
2 (λ). Moreover, since D submits a single query P∗ to

oracle KGen(msk, ·) and it satisfies the condition Validity2, j0, j1 , we know that ∀x ′
jb

∈
Q jb , P

∗
jb
(x ′

jb
) = 0. Because of this, A submits a single query to oracle KGen1(msk, ·)
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and it is also a valid adversary for the experimentGCPA-1-PE
PE,A (λ)with the same advantage

of D. This concludes the proof. �

Claim 11. Hb,q
2 (λ) ≈c Hb

3(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes betweenHb,q
2 (λ)

and Hb
3(λ) with non-negligible probability. We build an adversary A that breaks the

security of the lockable obfuscation scheme LOBF. A is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ) where ek j = (mpk, k j , k j+1) for
j ∈ [n]. Let kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk, P∗).
• On input (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·), A proceeds as follows:

Case j = jb: Sample y jb ←$ ←$ s(λ). Compute c(1)
jb

←$ Enc1(mpk,

(x1, . . . , xn), 0s(λ)+k(λ)) where x jb = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{ jb}.

Case j �= jb: Runc(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (y j , k j+1))where y j ←$

←$ s(λ), x j = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{ j}.

Finally, return c j = (˜C j , c
(2)
j ) where c(2)

j ←$ Enc2(k j , c
(1)
j ) and˜C j ←$ Obf(

1λ,V j , y j ,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. Compute c(1)

jb
←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ))andc(2)

jb
←$ Enc2(k j , c

(1)
jb

)

where x jb = xbjb , and x j = x�
j for j ∈ [n]\{ jb}.

5. For any j ∈ [n] \ { jb}, sample y j ←$ ←$ s(λ) and compute c(1)
j ←$ Enc1(mpk,

(x1, . . . , xn), (y j , k j+1)), c
(2)
j ←$ Enc2(k j , c

(1)
j ), and˜C j ←$ Obf(1λ,V j , y j ,mb

j )

where x j = xbj , and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

6. Send the challenge (V jb ,m
b
jb
) to the challenger and receive ˜C. Set ˜C jb = ˜C.

7. Set c j = (˜C j , c
(2)
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to

D.
8. Answer to the incoming oracle queries as in Item 2.
9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulatesHb,q

2 (λ). On the other hand, if d = 1,
A simulatesHb

3(λ). Hence, A has the same advantage of D. This concludes the proof. �

Claim 12. Hb,i−1
4 (λ) ≈c H

b,i
4 (λ) for i ∈ [q].
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Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,i−1
4 (λ)

and Hb,i
4 (λ) with non-negligible probability. We build an adversary A that breaks the

security of the lockable obfuscation scheme LOBF. A is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ) where ek j = (mpk,ek j ,ek j−1)

for j ∈ [n]. Let kn+1 = k1.
2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk, P∗).
• On input the i ′th query (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·), A proceeds as
follows:

Case j= jb and i ′<i : Run ˜C jb ←$ S(1λ, 1|V jb |, 1|m|), c(2)
jb

←$ Enc2(k jb ,

c(1)
jb

), and c(1)
jb

←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where x jb = x,
x j ′ = x�

j ′ for any j ′ ∈ [n]\{ jb}.
Case j = jb and i ′ = i : Compute c(2)

jb
←$ Enc2(k jb , c

(1)
jb

) and c(1)
jb

←$ Enc1

(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where x jb = x, x j ′ = x�
j ′ for any j ′ ∈

[n]\{ jb}. Send the challenge (V jb ,m) to the challenger and receive the
answer ˜C

∗. Set ˜C jb = ˜C
∗.

Case j = jb and i ′ > i : Compute˜C jb ←$ Obf(1λ,V jb ,m), c(2)
jb

←$ Enc2(k jb ,

c(1)
jb

), and c(1)
jb

←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where y jb ←$

←$ s(λ), x jb = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{ jb}.

Case j �= jb: Compute˜C j ←$ Obf(1λ,V j , y j ,m), c(2)
j ←$ Enc2(k j , c

(1)
j ), and

c(1)
j ←$ Enc1(mpk, (x1, . . . , xn), (y j , k j+1))where y j ←$ ←$ s(λ), x j =

x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{ j}.

Finally, return c j = (˜C j , c
(2)
j ).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.

4. Run ˜C jb ←$ S(1λ, 1|V jb |, 1
|mb

jb
|
), c(1)

jb
←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)),

and c(2)
jb

←$ Enc2(k j , c
(1)
jb

) where x jb = xbjb , and x j = x�
j for j ∈ [n]\{ jb}.

5. For any j ∈ [n] \ { jb}, sample y j ←$ ←$ s(λ) and compute c(1)
j ←$ Enc1(mpk,

(x1, . . . , xn), (y j , k j+1)), c
(2)
j ←$ Enc2(k j , c

(1)
j ), and˜C j ←$ Obf(1λ,V j , y j ,mb

j )

where x j = xbj , and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

6. Set c j = (˜C j , c
(2)
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to

D.
7. Answer to the incoming oracle queries as in Item 2.
8. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,i−1

4 (λ). On the other hand, if

d = 1, A simulates Hb,i
4 (λ). Hence, A has the same advantage of D. This concludes the

proof. �
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Claim 13. Hb,q,q,1
5+i−1 (λ) ≈c H

b,0,0,0
5+i (λ) for i ∈ {0} ∪ [n − 1].

Proof. Let v = ( jb + i mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between Hb,q,q,1

5+i−1 (λ) and Hb,0,0,0
5+i (λ) with non-negligible probability. We

build an adversary A that breaks the CPA security of SKE. A is defined as follows:

1. Compute (mpk,msk) ←$ Setup1(1
λ) and ek j = (ek, k j , k j−1) for j ∈ [n]\{v}.

If v �= 1, let kn+1 = k1.
2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk, P∗).
• On input (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·), A proceeds as follows:

Case j ∈ [ jb : v − 1]+n : Compute˜C j ←$ S(1λ, 1|V j |, 1|m|), c(2)
j ←$ Enc2(k j ,

c(1)
j ), and c(1)

j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where x j = x,
x j ′ = x�

j ′ for any j ′ ∈ [n]\{ j}.
Case j = v: Run c(1)

v ←$ Enc1(mpk, (x1, . . . , xn), (yv, kv+1))where yv ←$

←$ s(λ), xv = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{v}. Send the query c(1)

v to the

oracleEnc2 and receive theanswer c
(2)
v . Compute˜Cv ←$ Obf(1λ,Vv, yv,m).

Case i < n − 2 (hence, v �∈ { jb − 1, jb}) and j ∈ [v + 1 : jb − 1]+n : Run ˜C j

←$ Obf(1λ,V j , y j ,m), the ciphertext c(2)
j ←$ Enc2(k j , c

(1)
j ), and c(1)

j

←$ Enc1(mpk, (x1, . . . , xn), (y j , k j+1)) where y j ←$ ←$ s(λ), x j = x,
x j ′ = x�

j ′ for any j ′ ∈ [n]\{ j}.
Finally, return c j = (˜C j , c

(2)
j ).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. Case i < n − 1 (hence, v �= jb): For every j ∈ [n], the adversary A proceeds as

follows:

Case j ∈ [ jb, v − 1]+n : Run c(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where

x j = xbj , and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}. Finally, compute ˜C j ←$ S(1λ,

1|V j |, 1|mb
j |) and c(2)

j ←$ Enc2(k j , c
(1)
j ).

Case j = v: Runc(1,0)
v ←$ Enc1(mpk, (x0∗1, . . . , x

0∗n), (yv, kv+1))andc
(1,1)
v ←$

Enc1(mpk, (x1∗1, . . . , x
1∗n), 0s(λ)+k(λ))where yv ←$ ←$ s(λ), x0∗v = xbv , x

1∗v =
x0
v , and x0

∗ j ′ = x1
∗ j ′ = x�

j ′ for j ′ ∈ [n]\{v}. Send the challenge (m0 =
c(1,0)
v ,m1 = c(1,1)

v ) to the challenger and receive the answer c∗. Set c(2)
v and

compute ˜Cv ←$ Obf(1λ,Vv,mb
v).

Case i < n − 2 (hence, v �∈ { jb − 1, jb}) and j ∈ [v + 1 : jb − 1]+n : Runc(1)
j ←$

Enc1(mpk, (x1, . . . , xn), (y j , k j+1)) where y j ←$ ←$ s(λ), x j = xbj , and

x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}. Finally, compute ˜C j ←$ Obf(1λ,V j , y j ,mb

j ) and

c(2)
j ←$ Enc2(k j , c

(1)
j ).
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5. Otherwise, case i = n − 1 (hence, v = jb): For every j ∈ [n], the adversary A
proceeds as follows:

Case j ∈ [ jb + 1 : jb − 1]+n : Execute c(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ))

where x j = xbj , and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}. Finally, compute ˜C j ←$

S(1λ, 1|V j |, 1|mb
j |) and c(2)

j ←$ Enc2(k j , c
(1)
j ).

Case j = jb: Runc(1,0)
jb

←$ Enc1(mpk, (x0∗1, . . . , x
0∗n), 0s(λ)+k(λ))andc(1,1)

jb
←$

Enc1(mpk, (x1∗1, . . . , x
1∗n), 0s(λ)+k(λ)) where x0∗ jb = xbjb , x

1∗ jb = x0
jb
, and

x0
∗ j ′ = x1

∗ j ′ = x�
j ′ for j ′ ∈ [n]\{ jb}. Send the challenge (m0 = c(1,0)

jb
,m1 =

c(1,1)
jb

) to the challenger and receive the answer c∗. Set c(2)
jb
. Finally, compute

˜C jb ←$ ˜C j ←$ S(1λ, 1|V jb |, 1
|mb

jb
|
).

6. Set c j = (˜C j , c
(2)
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to

D.
7. Answer to the incoming oracle queries as in 2.
8. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,q,q,1

5+i−1 (λ). On the other hand, if

d = 1, A simulates Hb,0,0,0
5+i (λ). Hence, A has the same advantage of D. This concludes

the proof. �

Claim 14. Hb,t1−1,0,0
5+i (λ) ≈c H

b,t1,0,0
5+i (λ) for t1 ∈ [q] and i ∈ {0} ∪ [n − 2].

Proof. Let v = ( jb + i mod n) + 1 Suppose there exists a PPT distinguisher D that
distinguishes between Hb,t1−1,0,0

5+i (λ) and Hb,t1,0,0
5+i (λ) with non-negligible probability.

We build an adversary A that breaks the CPA security of SKE. A is defined as follows:

1. Compute (mpk,msk) ←$ Setup1(1
λ) and ek j = (ek, k j , k j−1) for j ∈ [n]\{v}.

If v �= 1, let kn+1 = k1.
2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk, P∗).
• On input the t ′1th query (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·), A proceeds as
follows:

Case j ∈[ jb : v − 1]+n : Execute ˜C j ←$ S(1λ, 1|V j |, 1|m|), c(2)
j ←$

Enc2(, k j , c
(1)
j ), and c(1)

j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where
x j = x, x j ′ = x�

j ′ for any j ′ ∈ [n]\{ j}.
Case j = v and t ′1 < t1: Sample yv ←$ ←$ s(λ). Run c(1)

v ←$ Enc1(mpk,
(x1, . . . , xn), 0s(λ)+k(λ)) where xv = x, x j ′ = x�

j ′ for any j ′ ∈ [n]\{v}.
Send the query c(1)

v to the oracle Enc2 and receive the answer c
(2)
v . Com-

pute ˜Cv ←$ Obf(1λ,Vv, yv,m).
Case j = v and t ′1 = t1: Compute c(1,0)

v ←$ Enc1(mpk, (x1, . . . , xn),

(yv, kv+1)) and c(1,1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where yv
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←$ ←$ s(λ), xv = x, and x j ′ = x�
j ′ for j ′ ∈ [n]\{v}. Send the challenge

(m0 = c(1,0)
v ,m1 = c(1,1)

v ) to the challenger and receive the answer c∗.
Set c(2)

v . Finally, compute ˜Cv ←$ Obf(1λ,Vv, yv,m).
Case j = v and t ′1 > t1: Sample yv ←$ ←$ s(λ). Run c(1)

v ←$ Enc1(mpk,
(x1, . . . , xn), (kv, kv+1)) where xv = x, x j ′ = x�

j ′ for any j ′ ∈ [n]\{v}.
Send the query c(1)

v to the oracle Enc2 and receive the answer c
(2)
v . Com-

pute ˜Cv ←$ Obf
(1λ,Vv, yv,m).

Case i < n − 2 (hence, v �= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run ˜C j ←$

Obf(1λ,V j , y j ,m), c(2)
j ←$ Enc2(k j , c

(1)
j ), and c(1)

j ←$ Enc1

(mpk, (x1, . . . , xn), (y j , k j+1)) where y j ←$ ←$ s(λ), x j = x, x j ′ = x�
j ′

for any j ′ ∈ [n]\{ j}.
Finally, return c j = (˜C j , c

(2)
j ).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. For every j ∈ [n], the adversary A proceeds as follows:

Case j ∈ [ jb : v − 1]+n : Run c(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where

x j = x0
j , and x j ′ = x�

j ′ for j ′ ∈ [n]\{ j}. Finally, compute ˜C j ←$ S(1λ,

1|V j |, 1|mb
j |) and c(2)

j ←$ Enc2(k j , c
(1)
j ).

Case j = v: Sample yv ←$ ←$ s(λ)+k(λ) and compute c(1)
v ←$ Enc1(mpk, (x1,

. . . , xn), 0s(λ)+k(λ)) where yv ←$ ←$ s(λ), xv = x0
v , and x j ′ = x�

j ′ for j ′ ∈
[n]\{v}. Send the query c(1)

v to the oracle Enc2 and receive the answer c(2)
v .

Compute ˜Cv ←$ Obf(1λ,Vv, yv,m).
Case i < n − 2 (hence, v �= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run c(1)

j ←$

Enc1(mpk, (x1, . . . , xn), (y j , k j+1)) where y j ←$ ←$ s(λ), x j = xbj , and

x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}. Finally, compute ˜C j ←$ Obf(1λ,V j , y j ,mb

j ) and

c(2)
j ←$ Enc2(k j , c

(1)
j ).

5. Set c j = (˜C j , c
(2)
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to

D.
6. Answer to the incoming oracle queries as in Item 2.
7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,t1−1,0,0

5+i (λ). On the other hand, if

d = 1, A simulatesHb,t1,0,0
5+i (λ). Hence, A has the same advantage of D. This concludes

the proof. �

Claim 15. Hb,q,t2−1,0
5+i (λ) ≈c H

b,q,t2,0
5+i (λ) for t2 ∈ [q] and i ∈ {0} ∪ [n − 2].
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Proof. Let v = ( jb + i mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between Hb,q,t2−1,0

5+i (λ) and Hb,q,t2,0
5+i (λ) with non-negligible probability.

We build an adversary A that breaks the security of the lockable obfuscator scheme
LOBF. A is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ) where ek j = (mpk, k j , k j+1) for
j ∈ [n]. Let kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk, P∗).
• On input the t ′2th query (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·), A proceeds as
follows:

Case j ∈ [ jb : v − 1]+n : Execute ˜C j ←$ S(1λ, 1|V j |, 1|m|), c(2)
j ←$ Enc2

(k j , c
(1)
j ), and c(1)

j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where x j =
x, x j ′ = x�

j ′ for any j ′ ∈ [n]\{ j}.
Case j = v and t ′2 < t2: Run˜Cv ←$ S(1λ, 1|Vv |, 1|m|), c(2)

v ←$ Enc2(kv, c
(1)
v ),

c(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where xv = x, x j ′ = x�

j ′ for
any j ′ ∈ [n]\{v}.

Case j = v and t ′2 = t2: Compute c(2)
v ←$ Enc2(kv, c

(1)
v ) and c(1)

v ←$ Enc1

(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where xv = x, and x j ′ = x�
j ′ for j ′ ∈

[n]\{v}. Send the challenge (Vv,m) to the challenger and receive the
answer ˜C

∗. Set ˜Cv = ˜C
∗.

Case j = v and t ′2 > t2: Sample yv ←$ ←$ s(λ). Compute c(1)
v ←$

Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where xv = x, x j ′ = x�
j ′ for any

j ′ ∈ [n]\{v}. Send the query c(1)
v to the oracle Enc2 and receive the

answer c(2)
v . Compute ˜Cv ←$ Obf(1λ,C

c(2)
v ,kv+1

, yv,m).

Case i < n − 2 (hence, v �= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run ˜C j ←$

Obf(1λ,V j , y j ,m), c(2)
j ←$ Enc2(k j , c

(1)
j ), and c(1)

j ←$ Enc1(mpk, (x1,

. . . , xn), (y j , k j+1)) where y j ←$ ←$ s(λ), x j = x, x j ′ = x�
j ′ for any

j ′ ∈ [n]\{ j}.
Finally, return c j = (˜C j , c

(2)
j ).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. For every j ∈ [n], the adversary A proceeds as follows:

Case j ∈ [ jb : v − 1]+n : Run c(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where

x j = x0
j , and x j ′ = x�

j ′ for j ′ ∈ [n]\{ j}. Finally, compute ˜C j ←$ S(1λ,

1|V j |, 1|mb
j |) and c(2)

j ←$ Enc2(k j , c
(1)
j ).

Case j = v: Sample yv ←$ ←$ s(λ)+k(λ) and compute c(1)
v ←$ Enc1(mpk, (x1,

. . . , xn), 0s(λ)+k(λ)) where yv ←$ ←$ s(λ), xv = x0
v , and x j ′ = x�

j ′ for j ′ ∈
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[n]\{v}. Finally, compute ˜C j ←$ Obf(1λ,Vv, yv,mb
v) and c(2)

v ←$

Enc2(kv, c
(1)
v ).

Case i < n − 2 (hence, v �= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run c(1)
j ←$

Enc1(mpk, (x1, . . . , xn), (y j , k j+1)) where y j ←$ ←$ s(λ), x j = xbj , and

x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}. Finally, compute ˜C j ←$ Obf(1λ,V j , y j ,mb

j ) and

c(2)
j ←$ Enc2(k j , c

(1)
j ).

5. Set c j = (˜C j , c
(2)
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to

D.
6. Answer to the incoming oracle queries as in Item 2.
7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,q,t2−1,0

5+i (λ). On the other hand, if

d = 1, A simulatesHb,q,t2,0
5+i (λ). Hence, A has the same advantage of D. This concludes

the proof. �

Claim 16. Hb,q,q,0
5+i (λ) ≈c H

b,q,q,1
5+i (λ) for i ∈ {0} ∪ [n − 2].

Proof. Let v = ( jb + i mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between Hb,q,q,0

5+i (λ) and Hb,q,q,1
5+i (λ) with non-negligible probability. We

build an adversary A that breaks the security of the lockable obfuscator scheme LOBF.
A is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ) where ek j = (mpk, k j , k j+1) for
j ∈ [n]. Let kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk, P∗).
• On input (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·), A proceeds as follows:

Case j ∈ [ jb : v]+n : Run ˜C j ←$ S(1λ, 1|V j |, 1|m|), c(2)
j ←$ Enc2(k j , c

(1)
j ),

and c(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where x j = x, x j ′ =

x�
j ′ for any j ′ ∈ [n]\{ j}.

Case i < n − 2 (hence, v �= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run ˜C j ←$

Obf(1λ,V j , y j ,m), c(2)
j ←$ Enc2(k j , c

(1)
j ), and c(1)

j ←$

Enc1(mpk, (x1, . . . , xn), (y j , k j+1))where y j ←$ ←$ s(λ), x j = x, x j ′ =
x�
j ′ for any j ′ ∈ [n]\{ j}.

Finally, return c j = (˜C j , c
(2)
j ).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. For every j ∈ [n], the adversary A proceeds as follows:
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Case j ∈ [ jb : v − 1]+n : Run c(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where

x j = x0
j , and x j ′ = x�

j ′ for j ′ ∈ [n]\{ j}. Finally, compute ˜C j ←$ S(1λ,

1|V j |, 1|mb
j |) and c(2)

j ←$ Enc2(k j , c
(1)
j ).

Case j = v: Run c(2)
v ←$ Enc2(kv, c

(1)
v ) and c(1)

v ←$ Enc1(mpk, (x1, . . . , xn),
0s(λ)+k(λ)) where xv = x0

v and x j ′ = x�
j ′ for j ′ ∈ [n]\{v}. Send the chal-

lenge (Vv,mb
v) to the challenger and receive the answer ˜C

∗. Set ˜Cv = ˜C
∗.

Case i < n − 2 (hence, v �= jb − 1) and j ∈ [v + 1 : jb − 1]+n : Run c(1)
j ←$

Enc1(mpk, (x1, . . . , xn), (y j , k j+1)) where y j ←$ ←$ s(λ), x j = xbj , and

x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}. Finally, compute ˜C j ←$ Obf(1λ,V j , y j ,mb

j ) and

c(2)
j ←$ Enc2(k j , c

(1)
j ).

5. Set c j = (˜C j , c
(2)
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to

D.
6. Answer to the incoming oracle queries as in Item 2.
7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,q,q,0

5+i (λ). On the other hand, if

d = 1, A simulates Hb,q,q,1
5+i (λ). Hence, A has the same advantage of D. This concludes

the proof. �

Claim 17. H1−b,q,q,q
5+n (λ) ≡ Hb,q,q,1

5+n (λ).

Proof. The distributions of these two experiments do not depend on the bit b. �

By combining Claims 9–17 and the fact that Validity2, j0, j1 holds, we conclude that

Hb
0 ≈c Hb

1 ≡ Hb,0
2 ≈c · · · ≈c H

b,q
2 ≈c Hb

3 ≡ Hb,0
4 ≈c · · · ≈c H

b,q
4 ≡

Hb,q,q,1
4 ≈c H

b,0,0,0
5 ≈c · · · ≈c H

b,q,0,0
5 ≈c · · · ≈c H

b,q,q,0
5 ≈c

Hb,q,q,1
5 ≈c · · · ≈c H

b,0,0,0
5+n−1 ≡ H1−b,0,0,0

5+n−1 .

This concludes the proof. �

Lemma 6. Let j0 ∈ [n]. IfPE is CPA-1-sided secure without collusions (Definition 9),
SKE is CPA secure (Definition 4), and LOBF is secure (Definition 2), then

∣

∣

∣

∣

P

[

G0-CPA-1-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity3, j0

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Without loss of generality, let q = |Q1| = . . . = |Qnim | ∈ poly(λ). Consider
the hybrid experiments of Lemmas 4 and 5. Formally,
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• Let H1,i
0 (λ) and H1,i

1 (λ) for i ∈ {0} ∪ [n] be the hybrids of Lemma 4 (for the
challenge bit b = 1) except that are conditioned to the event Validity3, j0 (instead
of Validity1).

• Let H0
0(λ),H0

1(λ),H0,i
2 (λ),H0

3(λ),H0,i
4 (λ),H0,q,q,1

4 (λ),H0,i,0,0
5+ j (λ),H0,q,i,0

5+ j (λ),

H0,q,q,k
5+ j (λ), andH0,0,0,0

5+n−1(λ), for (i, j, k) ∈ ({0}∪ [q])× ({0}∪ [n−2])× ←$ , be
the hybrids of Lemma 5 (for the challenge bit b = 0) except that are conditioned
to the event Validity3, j0 (instead of Validity2, j0, j1 ).

In addition, consider the following additional hybrids experiments:

H0,q,q
5+n : Identical to H0,0,0,0

5+n−1.

H0,0,0
5+n+i for i ∈ [n]: Identical to H0,q,q

5+n+i−1.

H0,0,t2
5+n+i for t2 ∈ [q], i ∈ [n]: Same as H0,0,t2−1

5+n+i except that the challenger changes
how it answers to the first t2 queries for oracle Enc(ekv, ·, ·) where v = ( j0 −
i − 1 mod n) + 1. Formally, on input the t ′2th query (x,m) such that t ′2 ≤ t2,

the challenger returns cv = (˜Cv, c
(2)
v ) where ˜Cv ←$ Obf(1λ,Vv, yv,m) where

yv ←$ ←$ s(λ). Otherwise, on input the t ′2th query (x,m) such that t ′2 > t2, the

challenger answers as usual, i.e., as defined in H0,0,0
5+n+i .

H0,t1,q
5+n+i for t1 ∈ [q], i ∈ [n]: Same as H0,t1−1,q

5+n+i except that the challenger changes
how it answers to the first t1 queries for oracle Enc(ekv, ·, ·) where v = ( j0 −
i − 1 mod n) + 1. Formally, on input the t ′1th query (x,m) such that t ′1 ≤
t1, the challenger computes c(1)

v ←$ Enc1(mpk, (x1, . . . , xn), (yv, kv+1)) where
yv ←$ ←$ s(λ), xv = x, and x j = x�

j for j ∈ [n]\{v}. Finally, the challenger re-
turns cv = (˜Cv, c

(2)
v ) where c(2)

v ←$ Enc2(kv, c
(1)
v ), ˜Cv ←$ Obf(1λ,Vv, yv,m).

Otherwise, on input the t ′1th query (x,m) such that t ′1 > t1, the challenger answers

as usual, i.e., as defined in H0,0,q
5+n+i .

Claim 18. H0
0(λ) ≈c H

0,0,0,0
5+n−1(λ).

Proof. The proof of Claim 18 is identical to that of Lemma 5 where the challenge bit
is b = 0. �

Claim 19. H0,0,t2−1
5+n+i (λ) ≈c H

0,0,t2
5+n+i (λ) for t2 ∈ [q] and i ∈ [n].

Proof. Let v = ( j0 − i − 1 mod n) + 1. Suppose there exists a PPT distinguisher D
that distinguishes betweenH0,0,t2−1

5+n+i (λ) andH0,0,t2
5+n+i (λ) with non-negligible probability.

We build an adversary A that breaks the security of the lockable obfuscator scheme
LOBF. A is defined as follows:

1. Compute (ek1, . . . ,ek1,msk) ←$ Setup(1λ) where ek j = (mpk, k j , k j+1) for
j ∈ [n]. Let kn+1 = k1.

2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk, P∗).
• On input the t ′2th query (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·), A proceeds as
follows:
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Case i > 1 and j ∈ [ j0 − 1 : v + 1]−n : Compute ˜C j ←$ Obf(1λ,V j , y j ,m),

c(2)
j ←$ Enc2(k j , c

(1)
j ), and c(1)

j ←$ Enc1(mpk, (x1, . . . , xn), (y j , k j+1))

where y j ←$ ←$ s(λ), x j = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{ j}.

Case j = v and t ′2 < t2: Compute ˜C j ←$ Obf(1λ,Vv, yv,m), c(2)
v ←$ Enc2

(kv, c
(1)
v ), and c(1)

v ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ))where yv ←$

←$ s(λ), xv = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{v}.

Case j = v and t ′2 = t2: Compute c(2)
v ←$ Enc2(kv, c

(1)
v ), and c(1)

v ←$ Enc1

(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where xv = x, x j ′ = x�
j ′ for any j ′ ∈

[n]\{v}. Send the challenge (C
c(2)
v ,kv+1

,m) to the challenger and receive
˜C

∗. Set ˜Cv = ˜C
∗.

Case j = v and t ′2 > t2: Run˜Cv ←$ S(1λ, 1|Vv |, 1|m|), c(2)
v ←$ Enc2(kv, c

(1)
v ),

c(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where xv = x, x j ′ = x�

j ′ for
any j ′ ∈ [n]\{v}.

Case i �= n and j ∈ [v − 1 : j0]−n : Compute˜C j ←$ S(1λ, 1|V j |, 1|m|), c(2)
j ←$

Enc2(k j , c
(1)
j ), and c(1)

j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where
x j = x, x j ′ = x�

j ′ for any j ′ ∈ [n]\{ j}.
Finally, return c j = (˜C j , c

(2)
j ).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. For every j ∈ [n], the adversary A computes c(1)

j ←$ Enc1(mpk, (x1, . . . , xn),

0s(λ)+k(λ)) where x j = x0
j , and x j ′ = x�

j ′ for j ′ ∈ [n]\{ j}. Finally, compute
˜C j ←$ S(1λ, 1|V j |, 1|m0

j |) and c(2)
j ←$ Enc2(k j , c

(1)
j ).

5. Set c j = (˜C j , c
(2)
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to

D.
6. Answer to the incoming oracle queries as in Item 2.
7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates H0,0,t2

5+n+i (λ). On the other hand, if

d = 1, A simulatesH0,0,t2−1
5+n+i (λ). Hence, A has the same advantage ofD. This concludes

the proof. �

Claim 20. H0,t1−1,q
5+n+i (λ) ≈c H

0,t1,q
5+n+i (λ) for t1 ∈ [q] and i ∈ [n − 1].

Proof. Let v = ( j0 − i − 1 mod n) + 1. Suppose there exists a PPT distinguisher D
that distinguishes betweenH0,t1,q

5+n+i (λ) andH0,t1−1,q
5+n+i (λ) with non-negligible probability.

We build an adversary A that breaks the CPA security of SKE. A is defined as follows:

1. Compute (mpk,msk) ←$ Setup1(1
λ) and ek j = (mpk,ek j ,ek j−1) for j ∈

[n]\{v}. If v �= 1, let kn+1 = k1.
2. A answers to the incoming oracle queries as follows:
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• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk, P∗).
• On input the t ′1th query (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·), A proceeds as
follows:

Case i > 1 and j ∈ [ j0 − 1 : v + 1]−n : Run˜C j ←$ Obf(1λ,Vv, y j ,m), c(2)
j ←$

Enc2(k j , c
(1)
j ), and c(1)

j ←$ Enc1(mpk, (x1, . . . , xn), (y j , k j+1)) where

y j ←$ ←$ s(λ), x j = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{ j}.

Case j = v and t ′1 < t1: Run c(1)
v ←$ Enc1(mpk, (x1, . . . , xn), (yv, kv+1))

where yv ←$ ←$ s(λ), xv = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{v}. Send

the query c(1)
v to the oracle Enc2 and receive the answer c(2)

v . Compute
˜C j ←$ Obf(1λ,Vv, yv,m).

Case j = v and t ′1 = t1: Run c(1,0)
v ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ))

andc(1,1)
v ←$ Enc1(mpk, (x1, . . . , xn), (yv, kv+1))where yv ←$ ←$ s(λ),

xv = x, and x j ′ = x�
j ′ for j ′ ∈ [n]\{v}. Send the challenge (m0 =

c(1,0)
v ,m1 = c(1,1)

v ) to the challenger and receive the answer c∗. Set c(2)
v

and compute ˜Cv ←$ Obf(1λ,Vv, yv,m).
Case j = v and t ′1 > t1: Run c(1)

v ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ))

where xv = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{v}. Send the query c(1)

v

to the oracle Enc2 and receive the answer c(2)
v . Compute ˜C j ←$ Obf(

1λ,Vv, yv,m) where yv ←$ ←$ s(λ).
Case j ∈ [v − 1 : j0]−n : Run˜C j ←$ S(1λ, 1|Vv |, 1|m|), c(2)

j ←$ Enc2(k j , c
(1)
j ),

and c(1)
j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where x j = x, x j ′ =

x�
j ′ for any j ′ ∈ [n]\{ j}.

Finally, return c j = (˜C j , c
(2)
j ).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. For every j ∈ [n], the adversary A proceeds as follows:

Case j = v: Compute c(1)
v ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where xv =

x0
v , and x j ′ = x�

j ′ for j ′ ∈ [n]\{v}. Send the query c(1)
v to the oracle Enc2 and

receive the answer c(2)
v . Finally, compute ˜C j ←$ S(1λ, 1|V j |, 1|m0

j |).
Case j �= v: Compute c(1)

j ←$ Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where x j =
x0
j , and x j ′ = x�

j ′ for j ′ ∈ [n] \ { j}. Finally, run˜C j ←$ S(1λ, 1|V j |, 1|m0
j |) and

c(2)
j ←$ Enc2(k j , c

(1)
j ).

5. Set c j = (˜C j , c
(2)
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to

D.
6. Answer to the incoming oracle queries as in Item 2.
7. Return the output of D.
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Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates H0,t1−1,q

5+n+i (λ). On the other hand, if

d = 1, A simulates H0,t1,q
5+n+i (λ). Hence, A has the same advantage of D. This concludes

the proof. �

Claim 21. H0,t1−1,q
5+2n (λ) ≈c H

0,t1,q
5+2n (λ) for t1 ∈ [q].

Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenH0,t1,q
5+2n (λ)

and H0,t1−1,q
5+2n (λ) with non-negligible probability. We build an adversary A that breaks

the CPA-1-sided security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.
2. Compute k j ←$ KGen2(1λ) for j ∈ [n]. Let kn+1 = k1.
3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the
answer dkP∗ .

• On input t ′1th query (x,m) ∈ X1 × M3 for Enc(ek j , ·, ·) where j ∈ [n], A
proceeds as follows:

Case j �= j0: Sample y j ←$ ←$ s(λ) and compute c(1)
j ←$ Enc1(mpk, (x1,

. . . , xn), (y j , k j+1)) where x j = x and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

Case j = j0 and t ′1 < t1: Compute c(1)
j0

←$ Enc1(mpk, (x1, . . . , xn),
(y j0 , k j0+1)) where x j0 = x and x j ′ = x�

j ′ for j ′ ∈ [n]\{ j0}.
Case j = j0 and t ′1 = t1: Sample y j0 ←$ ←$ s(λ) and send the challenge (m0∗ =

0s(λ)+k(λ),m1∗ = (y j0 , k j0+1), x0∗ = (x0∗1, . . . , x
0∗n), x1∗ = (x1∗1, . . . , x

1∗n))
to the challenger where x0∗ j0 = x1∗ j0 = x and x0

∗ j ′ = x1
∗ j ′ = x�

j ′ for

j ′ ∈ [n]\{ j0}. Receive the challenge ciphertext c∗ and c(1)
j0

= c∗.
Case j = j0 and t ′1 > t1: Sample y j0 ←$ ←$ s(λ) and compute c(1)

j0
←$

Enc1(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where x j0 = x and x j ′ = x�
j ′ for

j ′ ∈ [n]\{ j0}.
Finally, return c j = (˜C j , c

(2)
j ) where c(2)

j ←$ Enc2(k j , c
(1)
j ) and˜C j ←$ Obf(

1λ,V j , y j ,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n)

from D.
5. For every j ∈ [n], the adversary A computes c(1)

j ←$ Enc1(mpk, (x1, . . . , xn),

0s(λ)+k(λ)) where x j = x0
j and x j ′ = x�

j ′ for j ′ ∈ [n]\{ j}.
6. For every j ∈ [n], the adversary A computes c(2)

j ←$ Enc2(ek j , c
(1)
j ) and

˜C j ←$ S(1λ, 1|V j |, 1|m0
j |).

7. Set c j = (˜C j , c
(2)
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn) to

D.
8. Answer to the incoming oracle queries as in Item 3.
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9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates H0,t1−1,q

5+2n (λ). On the other hand, if

d = 1, A simulates H0,t1,q
5+2n (λ). Moreover, since D submits a single query P∗ to oracle

KGen(msk, ·) and it satisfies Validity3, j0 , we know that ∀x ′
j0

∈ Q j0 , P
∗
j0
(x ′

j0
) = 0.

Because of this, A submits a single query to oracle KGen1(msk, ·) and it is also a
valid adversary for the experiment GCPA-1-PE

PE,A (λ) with the same advantage of D. This
concludes the proof. �

Claim 22. H1,0
0 (λ) ≈c H

1,q
1 (λ).

Proof. The proof of Claim 22 is identical to that of Lemma 4 where the challenge bit
is b = 1. �

Claim 23. H0,q,q
5+2n(λ) ≡ H1,q

1 (λ).

Proof. Claim 23 follows by observing that experiments H0,q,q
5+2n(λ) and H1,q

1 (λ) are
identical (and does not depend on the bit b). �

By combining Claims 18–23 and the fact that Validity3, j0, is satisfied, we conclude
that

H0
0 ≈c H

0,0,0,0
5+n−1 ≡ H0,q,q

5+n ≡ H0,0,0
5+n+1 ≈c . . . ≈c H

0,0,q
5+n+1 ≈c . . . ≈c

H0,q,q
5+n+1 ≡ H0,0,0

5+n+2 ≈c . . . ≈c H
0,0,q
5+2n ≈c . . . ≈c H

0,q,q
5+2n ≡ H1,q

1 ≈c H
1,0
0

This concludes the proof. �

Lemma 7. Let j1 ∈ [n]. IfPE is CPA-1-sided secure without collusions (Definition 9),
SKE is CPA secure (Definition 4), and LOBF is secure (Definition 2), then

∣

∣

∣

∣

P

[

G0-CPA-1-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity4, j1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Lemma 7 follows by using a symmetrical argument to that of Lemma 6. �

By combining Lemmas 4–7, we conclude that � is CPA-1-sided secure without col-
lusions.
CPA-2-sided security of � for n = O(log(λ)) (Theorem 6). As usual, consider
the predicate space P = {P(x1, . . . , xn)} of Construction 3 where P(x1, . . . , xn)
= P1(x1) ∧ . . . ∧ Pn(xn). Let P∗ ∈ P be the only predicate for which the adver-
sary will ask for the decryption key dkP∗ during the experiment G0-CPA-2-iPE

�,A (recall
that we prove the security of Construction 3 in the scenario without collusions, i.e.,
|QKGen| = 1). Also, consider the validity condition of G0-CPA-2-iPE

�,A and consider the
following observations:



   24 Page 64 of 100 D. Francati et al.

1. Suppose that ∀ j ∈ [n],∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], we have

P∗(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n )

= P∗(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) = 0,

where Qb
i = {x (1,b)

i , . . . , x (ki ,b)
i , x (ki+1,b)

i = xbi } for i ∈ [n], b ∈ ←$ as defined
in Definition 13. This means that the adversary cannot decrypt any part of the
challenge ciphertext.

2. Otherwise, if ∃ j ∈ [n], ∃i1 ∈ [k1 + 1], . . . , ∃in ∈ [kn + 1] such that

P∗(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n )

= P∗(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) = 1, (7)

we are guaranteed that the adversary can retrieve the message mb
j contained

into the j th challenge ciphertext c j . By taking into account the definition of
P∗(x1, . . . , xn) = P∗

1 (x1)∧. . .∧P∗
n (xn), Eq. (7) implies that, for any j ′ ∈ [n]\[ j],

the adversary can satisfy the i th predicate P∗
i for i ∈ [n]\[ j ′] (e.g., by taking the

ciphertexts corresponding to the indexes i1, . . . , i j−1, i j+1, . . . , in and the j th
challenge ciphertext c j ). Hence, the secrecy of the challenge message mb

j ′ solely

depends on the evaluation of P∗
j ′ over the challenge input xbj ′ .

By taking into account the following observations, we can rewrite the validity condition
of G0-CPA-2-iPE

�,A (Definition 13) in the following way:

Either Validity1 or Validity2

where Validity1 and Validity2 formalize the observations of Items 1 and 2 respectively,
i.e.,

Validity1 : ∀ j ∈ [n],∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1],
P∗(x (i1,0)

1 , . . . , x
(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n ) =

P∗(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) = 0

Validity2 : ∀ j ∈ [n], Either P∗
j (x

0
j ) = P∗

j (x
1
j ) = 0 or P∗

j (x
0
j ) = P∗

j (x
1
j ) ∧ m0

j = m1
j

where Qb
i = {x (1,b)

i , . . . , x (ki ,b)
i , x (ki+1,b)

i = xbi } for i ∈ [n], b ∈ ←$ as defined
in Definition 13. Hence, the CPA-2-sided security of Construction 3 follows by proving
the following lemmas.

Lemma 8. If PE is CPA-1-sided secure without collusions (Definition 9), SKE is CPA
secure (Definition 4), and LOBF is secure (Definition 2), then

∣

∣

∣

∣

P

[

G0-CPA-2-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).
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Proof. Note that Validity1 is equivalent to the validity condition of CPA-1-sided se-
curity. Hence, the lemma follows by leveraging an identical argument to that of the
CPA-1-sided case (Sect.5.2.1). �

Lemma 9. If PE is CPA-2-sided secure without collusions (Definition 9) and LOBF
is secure (Definition 2), then

∣

∣

∣

∣

P

[

G0-CPA-2-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity2

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. In this lemma, we restrict the adversary to submit the (single) query to KGen
only before the challenge phase, i.e., the oracleKGen is not available after the challenge
phase. Under this restriction, we prove Lemma 9 for any n = poly(λ). Then, we use
complexity leveraging to show that the lemma holds when n = O(log(λ)) and the oracle
KGen is available after the challenge phase. Without loss of generality, we assume the
adversary always submit a query to KGen. Finally, for the sake of clarity, in the rest of
this proof we use the notation Vi

def= C
c(2)
i ,ki+1

where c(2)
i and ki+1 will be clear from the

context.
Consider the following hybrid experiments:

Hb,0
0 (λ): This is exactly the experiment G0-CPA-2-iPE

�,A (λ) conditioned to the event
Validity2 where the challenge bit is b, i.e., the adversary is valid and satisfied
Validity2. Recall that the oracle KGen is not available after the challenge phase.

Hb,i
0 (λ) for i ∈ [n]: Same as Hb,i−1

0 , except that the challenger changes how it com-
putes the challenger ciphertext ci . Let P∗ ∈ QKGen and ((x0

1 , . . . , x0
n ), (x

1
1 ,

. . . , x1
n)) be the predicate submitted to the oracle KGen before the challenge

phase and the challenge inputs chosen by the adversary. If P∗
i (x0

i ) = P∗
i (x1

i ) = 0,

the value c(1)
i challenge ciphertext ci = (˜Ci , c

(2)
i ) is computed as c(1)

i ←$ Enc1(

mpk, (x1, . . . , xn), 0s(λ)+k(λ)) where 0s(λ)+k(λ) ∈ M1 (for some function k) xi =
x0
i , and x j = x�

j for j ∈ [n]\{i}. Otherwise, if P∗
i (x0

i ) = P∗
i (x1

i ) = 1, the

value c(1)
i challenge ciphertext ci = (˜Ci , c

(2)
i ) is computed as c(1)

i ←$ Enc1(

mpk, (x1, . . . , xn), (yi , ki+1)) where yi ←$ ←$ s(λ), xi = x0
i , and x j = x�

j for

j ∈ [n]\{i}. Observe that c(1)
i is computed by fixing xi = x0

i (instead of xi = xbi ),
i.e., the input (x1, . . . , xn) used to compute the i th challenge ciphertext is fixed
and does not depend on the challenge bit b.

Hb,0
1 (λ): Identical to Hb,n

1 (λ).

Hb,i
1 (λ) for i ∈ [n]: Same as Hb,i−1

1 , except that the challenger changes how it com-
putes the challenger ciphertext ci . Let P∗ ∈ QKGen and ((x0

1 , . . . , x0
n ), (x

1
1 ,

. . . , x1
n)) be the predicate submitted to the oracle KGen before the challenge

phase and the challenge inputs chosen by the adversary. If P∗
i (x0

i ) = P∗
i (x1

i ) = 0,

the value ˜Ci of challenge ciphertext ci = (˜Ci , c
(2)
i ) is simulated by the chal-

lenger using the simulator of the lockable obfuscation scheme LOBF, i.e., ˜Ci ←$

S(1λ, 1|Vi |, 1|mb
i |). Otherwise, if P∗

i (x0
i ) = P∗

i (x1
i ) = 1, the value ˜Ci is computed

as in Hb,0
1 (λ).
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Claim 24. Hb,i−1
0 (λ) ≈c H

b,i
0 (λ) for i ∈ [n].

Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,1−i
0 (λ)

and Hb,i
0 (λ) with non-negligible probability. We build an adversary A that breaks the

CPA-2-sided security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.
2. Compute k j ←$ KGen2(1λ) for j ∈ [n]. Let eki = (mpk, ki , ki+1) for i ∈ [n]

where kn+1 = k1.
3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the
answer dkP .

• On input (x,m) ∈ X1×M3 forEnc(ek j , ·, ·), return c j = (˜C j , c
(2)
j ) ←$ Enc(

ek j , x,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
5. Let P∗(x1, . . . , xn) = P∗

1 (x1) ∧ · · · ∧ P∗
n (xn) be the predicate submitted by A to

the oracle KGen. For any j ∈ [n], A proceeds as follows:

Case j < i and P∗(x0
j ) = P∗(x1

j ) = 0: Compute c(1)
j ←$ Enc1

(mpk, (x1, . . . , xn), 0s(λ)+k(λ))where x j = x0
j , and x j ′ = x�

j ′ for j
′ ∈ [n]\{ j}.

Case j < i and P∗(x0
j ) = P∗(x1

j ) = 1: Sample y j ←$ ←$ s(λ) and execute c(1)
j

←$ Enc1(mpk, (x1, . . . , xn), (y j , k j+1)) where x j = x0
j , and x j ′ = x�

j ′ for
j ′ ∈ [n]\{ j}.

Case j = i and P∗(x0
j ) = P∗(x1

j ) = 0: Send the challenge (m0∗ = (yi , ki+1),

m1∗ = 0s(λ)+k(λ), x0∗ = (x0∗1, . . . , x
0∗n), x1∗ = (x1∗1, . . . , x

1∗n)) where yi ←$

←$ s(λ), 0s(λ)+k(λ) ∈ M1, x0∗i = xbi , x
1∗i = x0

i , and x0∗ j = x1∗ j = x�
j

for j ∈ [n]\{i}. Receive the challenge ciphertext c∗ from the challenger. Set
c(1)
i = c∗.

Case j = i and P∗(x0
j ) = P∗(x1

j ) = 1: Send the challenge (m0∗ = (yi , ki+1),

m1∗ = (yi , ki+1), x0∗ = (x0∗1, . . . , x
0∗n), x1∗ = (x1∗1, . . . , x

1∗n)) where yi ←$

←$ s(λ), x0∗i = xbi , x
1∗i = x0

i , and x
0∗ j = x1∗ j = x�

j for j ∈ [n]\{i}. Receive the
challenge ciphertext c∗ from the challenger. Set c(1)

i = c∗.
Case j > i : Sample y j ←$ ←$ s(λ) and compute c(1)

j ←$ Enc1(mpk, (x1, . . . ,

xn), (y j , k j+1)) where x j = xbj , and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

6. Compute c j = (˜C j , c
(2)
j ) where c(2)

j ←$ Enc2(ek j , c
(1)
j ) and ˜C j ←$ Obf(1λ,

V j , y j ,mb
j ) for any j ∈ [n].

7. Send the challenge ciphertexts (c1, . . . , cn) to D.
8. Answer to the incoming oracle queries for Enc(ek j , ·, ·) as in Item 3.
9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,i−1

0 (λ). On the other hand, if
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d = 1, A simulates Hb,i
0 (λ). Moreover, since D satisfies Validity2 and it asks for a

single decryption key dkP∗ for P∗, we have that either P∗
i (x0

i ) = P∗
i (x1

i ) = 0 or
P∗
i (x0

i ) = P∗
i (x1

i )∧m0
i = m1

i . This implies thatA is a valid adversary for the experiment
GCPA-2-PE

PE,A (λ) with the same advantage of D. This concludes the proof. �

Claim 25. Hb,i−1
1 (λ) ≈c H

b,i
1 (λ) for i ∈ [n].

Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,1−i
1 (λ)

and Hb,i
1 (λ) with non-negligible probability. We build an adversary A that breaks the

security of the lockable obfuscation scheme LOBF. A is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ) for j ∈ [n]whereek j = (mpk, k j ,

k j+1). Let kn+1 = k1.
2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP ←$ KGen(msk, P).
• On input (x,m) ∈ X1×M3 forEnc(ek j , ·, ·), return c j = (˜C j , c

(2)
j ) ←$ Enc(

ek j , x,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. Let P∗(x1, . . . , xn) = P∗

1 (x1) ∧ . . . ∧ P∗
n (x) be the predicate submitted by A to

the oracle KGen. For any j ∈ [n], A proceeds as follows:

Case j < i and P∗(x0
j ) = P∗(x1

j ) = 0: Compute c(1)
j ←$ Enc1

(mpk, (x1, . . . , xn), 0s(λ)+k(λ))where x j = x0
j , and x j ′ = x�

j ′ for j
′ ∈ [n]\{ j}.

Finally, set c j = (˜C j , c
(2)
j ) where c(2)

j ←$ Enc2(k j , c
(1)
j ) and

˜C j ←$ S(1λ, 1|V j |, 1|mb
j |).

Case j = i and P∗(x0
j ) = P∗(x1

j ) = 0: Compute c(1)
i ←$ Enc1

(mpk, (x1, . . . , xn), 0s(λ)+k(λ)) and c(2)
j ←$ Enc2(ki , c

(1)
i ) where xi = x0

i ,

and x j ′ = x�
j ′ for j ′ ∈ [n]\{i}. Send the challenge (Vi ,mb

i ) to the challenger

and receive ˜Ci . Set ci = (˜Ci , c
(2)
i ).

Case j > i and P∗(x0
j ) = P∗(x1

j ) = 0: Compute c(1)
j ←$ Enc1(mpk, (x1, . . . , xn),

0s(λ)+k(λ)) where x j = x0
j , and x j ′ = x�

j ′ for j ′ ∈ [n]\{ j}. Finally, set
c j = (˜C j , c

(2)
j )where c(2)

j ←$ Enc2(k j , c
(1)
j )and˜C j ←$ Obf(1λ,V j , y j ,mb

j )

where y j ←$ ←$ s(λ).
Case P∗(x0

j ) = P∗(x1
j ) = 1: Compute c j ←$ Enc(ek j , x0

j ,m
b
j ).

5. Send the challenge ciphertexts (c1, . . . , cn) to D.
6. Answer to the incoming oracle queries for Enc(ek j , ·, ·) as in Item 2.
7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,i−1

1 (λ). On the other hand, if



   24 Page 68 of 100 D. Francati et al.

d = 1, A simulates Hb,i
1 (λ). Hence, A retains the same advantage of D. This concludes

the proof. �

Claim 26. Hb,n
1 (λ) ≡ H1−b,n

1 (λ).

Proof. The claim follows by leveraging the validity condition Validity2. Indeed, for
every i ∈ [n], if P∗

i (x0
i ) = P∗

i (x1
i ) = 0 we have that the j th ciphertext c j does not

depend on the bit b. On the other hand, if P∗
i (x0

i ) = P∗
i (x1

i ) = 1, we have that the j th
ciphertext c j depends on either m0

j or m
1
j . However, since the adversary satisfies the

validity condition Validity2 we have that m
0
j = m1

j . Hence, H
b,n
1 (λ) andH1−b,n

1 (λ) are
identically distributed. This concludes the proof. �

By combining Claims 24–25 and conditioned to the event Validity2, we conclude
that H0,0

0 ≈c . . . ≈c H0,n
0 ≡ H0,0

1 ≈c . . . ≈c H0,n
1 ≡ H1,n

1 . Note that this holds if
n = poly(λ) and the adversary is restricted to submitting the (single) key generation
query before the challenge phase, i.e., KGen oracle not available after challenge phase.
By using complexity leveraging, we conclude that the same result holds also when the
KGen oracle is available after the challenge phase when n = O(log(λ)). This concludes
the proof. �

By leveraging Lemmas 8 and 9, we conclude that � of Construction 2 is CPA-2-sided
secure for n = O(log(λ)).

5.3. Corruption Setting: Multi-input PE from PE, Lockable Obfuscation and PKE

We now move on to our construction of n-input PE that is CPA-1-sided secure in the (n−
1)-corruptions setting without collusions. This construction handles constant arity (i.e.,
n ∈ O(1)) since the decryption running time is O(nn). It is based on CPA secure single-
input PE, lockable obfuscation, and PKE and it leverages the nested execution technique
described in Sect. 1.2. Also, the same construction achieves CPA-2-sided security if the
initial single-input PE is CPA-2-sided secure.

Construction 4. (n-input PE in the corruption setting)/ Consider the following primi-
tives:

1. A PE scheme PE = (Setup1,KGen1,Enc1,Dec1) with message space M1 =
←$ m3(λ)+m4(λ), input space X1 = X1,1 × . . . × X1,n, and predicate space P1 =
{P(x1, . . . , xn)} = {P1(x1) ∧ . . . ∧ Pn(xn)}. Without loss of generality, we as-
sume that PE has ciphertext space Y1 and there exists a (single) wildcard input
(x�

1, . . . , x�
n) ∈ X1 such that ∀(P1(x1)∧ . . .∧ Pn(xn)) ∈ P1,∀i ∈ [n], Pi (x�

i ) = 1.
2. For i ∈ [n], a PKE scheme PKE2,i = (KGen2,i ,Enc2,i ,Dec2,i ) with message

spaceM2,i . Without loss of generality, we assume that PKEi has ciphertext space
Y2,i and secret-key spaceK2,i . Moreover, we assume thatM2,1 = Y1, andM2,i =
Y2,i−1 for every i ∈ [n]\{1}.

3. A lockable obfuscation scheme LOBF3 = (Obf3,Eval3) with message space
M3 = (K2,1 ∪ . . . ∪ K2,n) × ←$ �log2(n)�+1 for the family of circuits C inn3,s3,d3

(λ)
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Cin
c,sk,i(C1, . . . ,Cn−2, sk1, . . . , skn, dkP )

Initialize:
cn = c, ski = sk,Cn−1 = ⊥, k = ⊥, ∀j ∈ [n] \ {i}, skj = skj

If ∃w ∈ [n − 2] such that Cw = ⊥ and Cw+1 = ⊥: k = w

end initialize.
If k = ⊥ do: // If k = ⊥, no circuit to execute.

// Execute each circuit received in input in order to retrieve the related secret key.
For t ∈ [k] do:

Eval3(Ct, (Ct+1, . . . ,Ck,

n−2+t−k

⊥, . . . , ⊥, sk1, . . . , skn, dkP )) = r

If r = ⊥: return ⊥
Else: skh = sk where r = (sk, h) // Save the secret key returned by Ct.

end for.
end if.
// At this point, all secret keys are known.
For j from n to 1 do: Dec2,j(skj , cj) = cj−1

Dec1(dkP , c0) = v

If v = ⊥: return ⊥
Else: return yin

i where v = (yin
i , yout

i )

Cout
c,sk,i(C1, . . . ,Cn−1, dkP )

Initialize: cn = c, ski = sk, ∀j ∈ [n] \ {i}, skj = ⊥
// Execute each circuit received in input in order to retrieve the related secret key.
For t from 1 to n − 1 do:

Eval3(Ct, (Ct+1, . . . ,Cn−1,

t−1

⊥, . . . , ⊥, sk1, . . . , skn, dkP )) = r

If r = ⊥: return ⊥
Else: skh = sk where r = (sk, h) // Save the secret key returned by Ct.

end for.
// At this point, all secret keys are known.
For j from n to 1 do: Dec2,j(skj , cj) = cj−1

Dec1(dkP , c0) = v

If v = ⊥: return ⊥
Else: return yout

i where v = (yin
i , yout

i )

Fig. 8. Definitions of the circuits Cin
c,sk,i and C

out
c,sk,i supported by the lockable obfuscation schemes LOBF3

and LOBF4 of Construction 4.

= {Cin
c,sk,i } defined in Fig.8, where n3(λ), s3(λ), d3(λ) depends on the schemes

PE,PKE2,1, . . . ,PKE2,n used, and the circuits C inn3,s3,d3
(λ).

4. A lockable obfuscation scheme LOBF4 = (Obf4,Eval4) with message spaceM4
for the family of circuits Coutn4,s4,d4

(λ) = {Cout
c,sk,i } defined in Fig.8, where n4(λ),

s4(λ), d4(λ) depends on the schemes PE,PKE2,1, . . . ,PKE2,n,LOBF3 used, and
the circuits Coutn4,s4,d4

(λ).
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We build a n-input PE scheme with message spaceM =
n

︷ ︸︸ ︷

M4 × · · · × M4, input space
X = X1, and predicate space P = P1 = {P(x1, . . . , xn)} = {P1(x1) ∧ · · · ∧ Pn(xn)}
withwildcard (i.e., there exists a (single)wildcard (x�

1, . . . , x�
n) ∈ X such that∀(P1(x1)∧

. . . ∧ Pn(xn)) ∈ P , ∀i ∈ [n], Pi (x�
i ) = 1), as follows:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm out-
puts (ek1, . . . ,ekn) and msk where (mpk,msk) ←$ Setup1(1

λ),
eki = (mpk, ski ,pk1, . . . ,pkn), and (ski ,pki ) ←$ KGen2,i (1λ) for i ∈ [n].

KGen(msk, P): Upon input the master secret key msk and a predicate P ∈ P , the
randomized key generator algorithm outputs dkP ←$ KGen1(msk, P).

Enc(eki , xi ,mi ): Let i ∈ [n]. Upon input an encryption key eki = (mpk, ski ,
pk1, . . . ,pkn), an input xi ∈ X1,i , and a message mi ∈ M4, the randomized
encryption algorithm samples (y ini , youti ) ←$ ←$ s3(λ)+s4(λ) and proceeds as fol-
lows:

1. Compute c(0)
i ←$ Enc1(mpk, (x1, . . . , xn), (y ini , youti ))where x j = x�

j for j ∈
[n]\{i}.

2. For j ∈ [n], compute c( j)
i ←$ Enc2, j (pk j , c

( j−1)
i ).

Finally, it outputs ci = (˜Cout
i ,˜Cin

i ), where ˜C
out
i ←$ Obf4(1λ,Cout

c(n)
i ,ski ,i

, youti ,mi )

and ˜C
in
i ←$ Obf3(1λ,Cin

c(n)
i ,ski ,i

, y ini , (ski , i)).

Dec(dkP , c1, . . . , cn): Upon input a decryption key dkP for predicate P ∈ P , and n
ciphertexts (c1, . . . , cn) such that ci = (˜Cout

i ,˜Cin
i ) for i ∈ [n]. The deterministic

decryption algorithm returns (m1, . . . ,mn) where mi =
Eval4(˜Cout

i , (˜Cin
1 , . . . ,˜Cin

i−1,
˜C
in
i+1, . . . ,

˜C
in
n ,dkP )) for i ∈ [n].

Correctness follows from the one of the underlying primitives (see also Fig. 8 for
the definitions of Cin

c,sk,i and C
out
c,sk,i ). Moreover, decryption is polynomial time when

n ∈ O(1). Below, we establish the following result.

Theorem 7. Let n = O(1), PE, PKE2,1, . . . ,PKE2,n, LOBF3, and LOBF4 be as
above.

1. If PE is CPA secure without collusions (Definition 8), each PKE2,i (for i ∈ [n]) is
CPA secure (Definition 6), and both LOBF3 and LOBF4 are secure (Definition 2),
then the n-input PE scheme � from Construction 4 is CPA-1-sided secure in the
(n − 1)-corruptions setting without collusions (Definition 13).

2. If PE is CPA-2-sided secure without collusions (Definition 9), each PKE2,i (for
i ∈ [n]) is CPA secure (Definition 6), and both LOBF3 and LOBF4 are secure
(Definition 2), then the n-input PE scheme � from Construction 4 is CPA-2-sided
secure in the (n − 1)-corruptions setting without collusions (Definition 13).

5.3.1. Proof of Theorem 7

CPA-1-sided security of � (Theorem 7) Consider the predicate space
P = {P(x1, . . . , xn)} of Construction 4 where P(x1, . . . , xn) = P1(x1)∧ · · · ∧ Pn(xn).
Let P∗ ∈ P be the only predicate for which the adversary will ask the decryption key
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dkP∗ during the experiment G(n−1)-CPA-1-iPE
�,A (recall that we prove the security of Con-

struction 4 in the �-corruptions setting without collusions (i.e., |QKGen| = 1). Consider
the validity condition of G(n−1)-CPA-1-iPE

�,A and let Qi = {x |∃(x,m) ∈ QEnc(eki ,·,·)}
for i ∈ [n]\QCorr, and Qi = X1,i for i ∈ QCorr (recall that |QCorr| ≤ n − 1)
as defined in Definition 13. We can write such a validity condition with respect to
P∗ ∈ QKGen = {P∗} as follows: ∀ j ∈ [n], ∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1],

P∗(x
(i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x(in ,0)
n )

= P∗(x
(i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x(in ,1)
n )

= P∗
1 (x

(i1,0)
1 ) ∧ · · · ∧ P∗

j−1(x
(i j−1,0)

j−1 ) ∧ P∗
j (x

0
j ) ∧ P∗

j+1(x
(i j+1,0)

j+1 ) ∧ · · · ∧ P∗
in (x(in ,0)

n )

= P∗
1 (x

(i1,1)
1 ) ∧ · · · ∧ P∗

j−1(x
(i j−1,1)

j−1 ) ∧ P∗
j (x

1
j ) ∧ P∗

j+1(x
(i j+1,1)

j+1 ) ∧ · · · ∧ P∗
n (x(in ,1)

n ) = 0,

where Qb
i = {x (1,b)

i , . . . , x (ki ,b)
i , x (ki+1,b)

i = xbi } is the ordered list composed of the
ki predicate inputs Qi and the challenge input xbi (as defined in Definition 13). Note
that Construction 4 has input space X1 = X1,1 × · · · × X1,n (that is identical to the
one of the underlying PE). Hence, we can conclude that for each X1,i for i ∈ [n]
there exists x�

i ∈ X1,i such that P∗
i (x�

i ) = 1. As a consequence, an adversary is valid
only if there exists j0, j1 ∈ [n]\QCorr such that P∗

j0
(x0

j0
) = P∗

j1
(x1

j1
) = 0. Otherwise,

an adversary is able to decrypt at least one out the two challenges by leveraging the
corrupted encryption keys {eki }i∈QCorr and computing |QCorr| ciphertexts, each under
the i th predicate wildcard x�

i ∈ X1,i for i ∈ QCorr.
According to the above observation, the A’s validity can be rewritten as follows:

∃ j0, j1 ∈ [n]\QCorr, ∀(x ′
1, . . . , x

′
n) ∈ Q1 × · · · × Qn ,

((

P∗
1 (x0

1 ) = 0 ∧ · · · ∧ P∗
n (x0

n ) = 0
)

∨
(

P∗
j0(x

0
j0) = 0 ∧ P∗

j0(x
′
j0) = 0

))

∧
((

P∗
1 (x1

) = 0 ∧ · · · ∧ P∗
n (x1

n) = 0
)

∨
(

P∗
j1(x

1
j1) = 0 ∧ P∗

j1(x
′
j1) = 0

))

. (8)

Note that in the above equation we made explicit the challenge inputs and the inputs
of Qi . For this reason, it is enough to quantify over all (x ′

1, . . . , x
′
n) ∈ Q1 × · · · × Qn

where Qi is equal to the inputs {x (1)
i , . . . , x (ki )

i } submitted to oracle Enc(eki , ·, ·), if
i �∈ QCorr. Otherwise (if i ∈ QCorr), Qi is equal to the i th input space X1,i . Hence, in
order to be valid, A needs to satisfy the condition defined by Eq. (8). This is equivalent
to considering the events below: For some j0, j1 ∈ [n] \ QCorr,25

Validity1 :
P∗

1 (x0
1 ) = 0 ∧ · · · ∧ P∗

n (x0
n ) = 0 ∧ P∗

1 (x1
1) = 0 ∧ · · · ∧ P∗

n (x1
n) = 0.

Validity2, j0, j1 : ∀x ′
j0 ∈ Q j0 ,∀x ′

j1 ∈ Q j1 ,

25Since we are in the (n−1)-corruptions setting (i.e, |QCorr | ≤ n−1) such as j0, j1 ∈ [n] \QCorr always
exist.
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P∗
j0(x

0
j0) = 0 ∧ P∗

j0(x
′
j0) = 0 ∧ P∗

j1(x
1
j1) = 0 ∧ P∗

j1(x
′
j1) = 0.

Validity3, j0 : ∀x ′
j0 ∈ Q j0 ,

P∗
j0(x

0
j0) = 0 ∧ P∗

j0(x
′
j0) = 0 ∧ P∗

1 (x1
1) = 0 ∧ · · · ∧ P∗

n (x1
n) = 0.

Validity4, j1 : ∀x ′
j1 ∈ Q j1 ,

P∗
1 (x0

1 ) = 0 ∧ · · · ∧ P∗
n (x0

n ) = 0 ∧ P∗
j1(x

1
j1) = 0 ∧ P∗

j1(x
′
j1) = 0.

For the sake of clarity, in the rest of this proof, we use the notation V
in
i

def= C
in
c(n)
i ,ski ,i

(resp. Vout
i

def= C
out
c(n)
i ,ski ,i

) where c(n)
i , ski , and i will be clear from the context. Also,

[a : b]+n = {a, a + 1, . . . , n, 1, 2, . . . , b}. If 1 ≤ a ≤ b ≤ n, we have [a : b]+n =
{a, a + 1, . . . , b}.

Lemma 10. IfPE is CPA secure without collusions (Definition 8), LOBF3 and LOBF4
are secure (Definition 2), then

∣

∣

∣

∣

P

[

G(n−1)-CPA-1-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Consider the following hybrid experiments:

Hb,0
0 (λ): This is exactly the experimentG(n−1)-CPA-1-iPE

�,A (λ) conditioned to the validity
eventValidity1 where the challenge bit is b, i.e., the adversary is valid and satisfies
Validity1.

Hb,i
0 (λ) for i ∈ [n]: Same as Hb,i−1

0 , except that the challenger changes how it com-
putes the challenger ciphertext ci . Formally, it computes value
c(0)
i ←$ Enc1(mpk, (x1, . . . , xn), 0s3(λ)+s4(λ)) (instead of c(0)

i ←$

Enc1(mpk, (x1, . . . , xn), (y ini , youti ))) where c(0)
i is the value used to compute the

challenge ciphertext xi = x0
i , and x j = x�

j for j ∈ [n]\{i}. Observe that ci is com-
puted by fixing xi = x0

i (instead of xi = xbi ), i.e., the predicate input (x1, . . . , xn)
used to compute the i th challenge ciphertext is fixed and does not depend on the
challenge bit b.

Hb,0
1 (λ): Identical to Hb,n

0 (λ).

Hb,i
1 (λ) for i ∈ [n]: Same as Hb,i−1

1 , except that the challenger changes how it com-
putes the challenger ciphertext ci . Formally, the value ˜C

in
i of challenge ciphertext

ci = (˜Cin
i ,˜Cout

i ) is simulated by the challenger using the simulator S3 of the

lockable obfuscation scheme LOBF3, i.e., S(1λ, 1|Vin
i |, 1|(ski ,i)|).

Hb,0
2 (λ): Identical to Hb,n

1 (λ).

Hb,i
2 (λ) for i ∈ [n]: Same as Hb,i−1

2 , except that the challenger changes how it com-
putes the challenger ciphertext ci . Formally, the value˜C

out
i of challenge ciphertext

ci = (˜Cin
i ,˜Cout

i ) is simulated by the challenger using the simulator S4 of the

lockable obfuscation scheme LOBF4, i.e., S(1λ, 1|Vout
i |, 1|mb

i |).
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Claim 27. Hb,i−1
0 (λ) ≈c H

b,i
0 (λ) for i ∈ [n].

Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,1−i
0 (λ)

and Hb,i
0 (λ) with non-negligible probability. We build an adversary A that breaks the

CPA security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.
2. Compute (sk j ,pk j ) ←$ KGen2, j (1λ) and set ek j = (mpk, sk j ,pk1, . . . ,pkn)

for j ∈ [n].
3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the
answer dkP∗ .

• On input j ∈ [n] for Corr, return ek j .
• On input (x,m) ∈ X1, j × M4 for Enc(ek j , ·, ·) where j ∈ [n], return
c j ←$ Enc(ek j , x,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
5. For any j ∈ [n], A proceeds as follows:

Case j < i : Sample (y inj , youtj ) ←$ ←$ s3(λ)+s4(λ). Compute

c(0)
j ←$ Enc1(mpk, (x1, . . . , xn), 0s3(λ)+s4(λ)) where x j = x0

j , and x j ′ = x�
j ′

for j ′ ∈ [n]\{ j}.
Case j = i : Send the challenge (m0 = (y ini , youti ),m1 = 0s3(λ)+s4(λ), x = (x1,

. . . , xn)) where (y inj , youtj ) ←$ ←$ s3(λ)+s4(λ), xi = xbi , and x j = x�
j for j ∈

[n]\{i}. Receive the challenge ciphertext c∗ from the challenger. Set c(0)
i = c∗.

Case j > i : Sample (y inj , youtj ) ←$ ←$ s3(λ)+s4(λ). Compute

c(−1)
j ←$ Enc1(mpk, (x1, . . . , xn), (y inj , youtj )) where x j = x0

j , and x j ′ = x�
j ′

for j ′ ∈ [n]\{ j}.
6. For every j ∈ [n], compute c(v)

j ←$ Enc2,v(pkv, c
(v−1)
j ) for v ∈ [n].

7. Compute c j = (˜Cin
j ,˜Cout

j )where˜C
in
j ←$ Obf3(1λ,Vin

j , y inj , (sk j , j))and˜C
out
j ←$

Obf4(1λ,Vout
j , youtj ,mb

j ) for any j ∈ [n].
8. Send the challenge ciphertexts (c1, . . . , cn) to D.
9. Answer to the incoming oracle queries as in Item 3.

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,i−1

0 (λ). On the other hand, if

d = 1, A simulates Hb,i
1 (λ). Moreover, since D satisfies Validity1 and it asks for a

single decryption key dkP∗ for P∗, we have that P∗
i (x0

i ) = 0 ∧ P∗
i (x1

i ) = 0. Because of
this, A submits a single query P∗ to oracle KGen1 and it is also a valid adversary for
the experiment GCPA-PE

PE,A (λ) with the same advantage of D. This concludes the proof. �

Claim 28. Hb,i−1
1 (λ) ≈c H

b,i
1 (λ) for i ∈ [n].
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Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,1−i
1 (λ)

and Hb,i
1 (λ) with non-negligible probability. We build an adversary A that breaks the

security of the lockable obfuscation scheme LOBF3. A is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ)whereek j = (mpk, sk j ,pk1, . . . ,

pkn) for j ∈ [n].
2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk, P∗).
• On input j ∈ [n] for Corr, return ek j .
• On input (x,m) ∈ X1, j × M4 for Enc(ek j , ·, ·) where j ∈ [n], return
c j ←$ Enc(ek j , x,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. For every j ∈ [n], run c(0)

j ←$ Enc1(mpk, (x1, . . . , xn), 0s3(λ)+s4(λ)) where x j =
x0
j , and x j ′ = x�

j ′ for j ′ ∈ [n]\{ j}.
5. For every j ∈ [n], compute c(v)

j ←$ Enc2,v(pkv, c
(v−1)
j ) for v ∈ [n].

6. For any j ∈ [n], A proceeds as follows:

Case j < i : Compute ˜C
in
j ←$ S3(1λ, 1|Vin

j |
, 1|(sk j , j)|).

Case j = i : Send the challenge (Vin
i , (ski , i)) to the challenger and receive ˜C

in
i .

Case j > i : Compute˜C
in
j ←$ Obf3(1λ,Vin

j , y inj , (sk j , j))where y inj ←$ ←$ s3(λ).

7. For every j ∈ [n], compute ˜C
out
j ←$ Obf4(1λ,Vout

j , youtj ,mb
j ) where youtj ←$

←$ s4(λ).
8. Set c j = (˜Cin

j ,˜Cout
j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn)

to D.
9. Answer to the incoming oracle queries as in Item 2.

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view ofD. In particular, if d = 0,A simulatesHb,i−1

1 (λ). On the other hand, if d = 1,

A simulatesHb,i
1 (λ). Hence,A has the same advantage ofD. This concludes the proof.�

Claim 29. Hb,i−1
2 (λ) ≈c H

b,i
2 (λ) for i ∈ [n].

Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,1−i
2 (λ)

and Hb,i
2 (λ) with non-negligible probability. We build an adversary A that breaks the

security of the lockable obfuscation scheme LOBF4. A is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ)whereek j = (mpk, sk j ,pk1, . . . ,

pkn) for j ∈ [n].
2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk, P∗).
• On input j ∈ [n] for Corr, return ek j .
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• On input (x,m) ∈ X1, j × M4 for Enc(ek j , ·, ·) where j ∈ [n], return
c j ←$ Enc(ek j , x,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. For every j ∈ [n], compute c(0)

j ←$ Enc1(mpk, (x1, . . . , xn), 0s3(λ)+s4(λ)) where

x j = x0
j , and x j ′ = x�

j ′ for j ′ ∈ [n]\{ j}.
5. For every j ∈ [n], run c(v)

j ←$ Enc2,v(pkv, c
(v−1)
j ) for v ∈ [n].

6. For every j ∈ [n], compute ˜C
in
j ←$ S3(1λ, 1|Vin

j |
, 1|(sk j , j)|).

7. For every j ∈ [n], A proceeds as follows:

Case j < i : Compute ˜C
out
j ←$ S4(1λ, 1|Vout

j |
, 1|mb

j |).
Case j = i : Send the challenge (Vout

i ,mb
i ) to the challenger and receive ˜C

out
i .

Case j > i : Compute˜C
out
j ←$ Obf4(1λ,Vout

j , youtj ,mb
j )where y

out
j ←$ ←$ s4(λ).

8. Set c j = (˜Cin
j ,˜Cout

j ) for j ∈ [n] and send the challenge ciphertexts (c1, . . . , cn)
to D.

9. Answer to the incoming oracle queries as in Item 2.
10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view ofD. In particular, if d = 0,A simulatesHb,i−1

2 (λ). On the other hand, if d = 1,

A simulatesHb,i
2 (λ). Hence,A has the same advantage ofD. This concludes the proof.�

Claim 30. Hb,n
2 (λ) ≡ H1−b,n

2 (λ).

Proof. The distribution of these two experiments does not depend on the bit b. �

By combining Claims 27–30 and conditioned to the event Validity1, we conclude that

Hb,0
0 ≈c . . . ≈c H

b,n
0 ≡ Hb,0

1 . . . ≈c H
b,n
1 ≡ Hb,0

2 ≈c . . . ≈c H
b,n
2 ≡ H1−b,n

2 .

This concludes the proof. �

Lemma 11. Let j0, j1 ∈ [n] \ QCorr. If PE is CPA secure without collusions (Defini-
tion 8), PKE2, j0 and PKE2, j1 are CPA secure (Definition 6), LOBF3 and LOBF4 are
secure (Definition 2), then

∣

∣

∣

∣

P

[

G(n−1)-CPA-1-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity2, j0, j1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Without loss of generality, let q = |Q j0 | = |Q j1 | ∈ poly(λ) (recall j0, j1 �∈
QCorr). Consider the following hybrid experiments:

Hb
0(λ): This is exactly the experiment G(n−1)-CPA-1-iPE

�,A (λ) conditioned to the validity
event Validity2, j0, j1 where the challenge bit is b, i.e., the adversary is valid and
satisfies the validity event Validity2, j0, j1 .
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Hb
1(λ): Same asHb

0 , except that the challenger changes how it computes the challenge

jbth ciphertext c jb . Specifically, it computes c(0)
jb

←$ Enc1(mpk, (x1, . . . , xn),

0s3(λ)+s4(λ)) (instead of c(0)
jb

←$ Enc1(mpk, (x1, . . . , xn), (y ini , youti ))) where the

value c(0)
jb

is used to compute the challenge ciphertext, xi = xbi , and x j = x�
j for

j ∈ [n]\{ jb}.
Hb,0

2 : Identical to Hb
1(λ).

Hb,i
2 (λ) for i ∈ [q]: Same as Hb,i−1

2 (λ) except that the challenger changes how it
answers to the first i queries for oracle Enc(ek jb , ·, ·). Formally, on input the

i ′th query (x,m) such that i ′ ≤ i , the challenger computes c(0)
jb

←$ Enc1(mpk,

(x1, . . . , xn), 0s3(λ)+s4(λ)) where x jb = x, and x j = x�
j for j ∈ [n]\{ jb}. Finally,

the challenger returns c jb = (˜Cin
jb
,˜Cout

jb
) where c(v)

jb
←$ Enc2,v(pkv, c

(b−1)
jb

) for

v ∈ [n], (y injb , youtjb
) ←$ ←$ s3(λ)+s4(λ),˜Cin

jb
←$ Obf3(1λ,Vin

jb
, y injb , (sk jb , jb)), and

˜C
out
jb

←$ Obf4(1λ,Vout
jb

, youtjb
,mb

jb
). Otherwise, on input the i ′th query (x,m) such

that i ′ > i , the challenger answers as usual, i.e., as defined in Hb,0
2 .

Hb
3(λ): Same as Hb,q

2 , except that the challenger changes how it computes the chal-
lenge jbth ciphertext c jb . Formally, the value ˜C

in
jb

of challenge jbth ciphertext

c jb = (˜Cin
jb
,˜Cout

jb
) is simulated by the challenger using the simulatorS3 of the lock-

able obfuscation scheme LOBF3, i.e.,˜Cin
jb
is computed by executing S3(1λ, 1

|Vin
jb

|
,

1|(sk jb , jb)|).
Hb

4(λ): Same asHb
3 , except that the challenger changes how it computes the challenge

jbth ciphertext c jb . Formally, the value ˜C
out
jb

of challenge jbth ciphertext c jb =
(˜Cin

jb
,˜Cout

jb
) is simulated by the challenger using the simulator S4 of the lockable

obfuscation scheme LOBF4, i.e., ˜C
out
jb

is computed by executing S4(1λ, 1
|Vout

jb
|
,

1
|mb

jb
|
).

Hb,0
5 : Identical to Hb

4(λ).

Hb,i
5 (λ) for i ∈ [q]: Same as Hb,i−1

5 (λ) except that the challenger changes how it an-
swers to the first i queries for oracle Enc(ek jb , ·, ·). Formally, on input the i ′th
query (x,m) such that i ′ ≤ i , the challenger returns c jb = (˜Cin

jb
,˜Cout

jb
) where ˜C

in
jb

is computed using the simulatorS3 of the lockable obfuscator scheme LOBF3, i.e.,
˜C
in
jb

←$ S3(1λ, 1
|Vin

jb
|
, 1|(sk jb , jb)|). Otherwise, on input the i ′th query (x,m) such

that i ′ > i , the challenger answers as usual, i.e., as defined in Hb,0
5 .

Hb,0
6 : Identical to Hb,q

5 (λ).

Hb,i
6 (λ) for i ∈ [q]: Same as Hb,i−1

6 (λ) except that the challenger changes how it an-
swers to the first i queries for oracle Enc(ek jb , ·, ·). Formally, on input the i ′th
query (x,m) such that i ′ ≤ i , the challenger returns c jb = (˜Cin

jb
,˜Cout

jb
) where˜C

out
jb

is computed using the simulator S4 of the lockable obfuscator scheme LOBF4,

i.e., ˜Cout
jb

←$ S4(1λ, 1
|Vout

jb
|
, 1|m|). Otherwise, on input the i ′th query (x,m) such

that i ′ > i , the challenger answers as usual, i.e., as defined in Hb,0
6 .
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Hb,1,1
6 : Identical to Hb,q

6 (λ).

Hb,0,0
7+i for i ∈ {0} ∪ [n − 2]: Same asHb,1,1

7+i−1 except that the challenger changes how
it computes the challenge ciphertext cr where r = ( jb + i mod n) + 1. Formally,
the value c( jb)

r is computed as c( jb)
r ←$ Enc2, jb (pk jb , w) where w ←$ M2, jb .

Hb,1,0
7+i for i ∈ {0} ∪ [n − 2]: Same as Hb,1,0

7+i (λ) except that the challenger changes
how it computes the challenge ciphertext cr where r = ( jb + i mod n) + 1.
Formally, the value ˜C

in
v of challenge ciphertext cr = (˜Cin

r ,˜Cout
r ) is simulated by

the challenger using the simulator of the lockable obfuscation scheme LOBF3, i.e.,
˜C
in
v is computed by executing S3(1λ, 1|Vin

r |, 1|(skr ,r)|).
Hb,1,1

7+i for i ∈ {0} ∪ [n − 2]: Same as Hb,1,0
7+i (λ) except that the challenger changes

how it computes the challenge ciphertext cr where r = ( jb + i mod n) + 1.
Formally, the value ˜C

out
v of challenge ciphertext cr = (˜Cin

r ,˜Cout
r ) is simulated by

the challenger using the simulator of the lockable obfuscation scheme LOBF4, i.e.,
˜C
out
v is computed by executing S4(1λ, 1|Vout

r |, 1|mb
r |).

Claim 31. Hb
0(λ) ≈c Hb

1(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes between Hb
0(λ)

andHb
1(λ)with non-negligible probability. We build an adversaryA that breaks the CPA

security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.
2. Compute (sk j ,pk j ) ←$ KGen2, j (1λ) and set ek j = (mpk, sk j ,pk1, . . . ,pkn)

for j ∈ [n].
3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the
answer dkP∗ .

• On input j ∈ [n] for Corr, return ek j .
• On input (x,m) ∈ X1, j × M4 for Enc(ek j , ·, ·) where j ∈ [n], return
c j ←$ Enc(ek j , x,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D. Send the challenge (m0 = (y injb , y
out
jb

),m1 = 0s3(λ)+s4(λ), x = (x1,

. . . , xn)) where (y injb , y
out
jb

) ←$ ←$ s3(λ)+s4(λ), x jb = xbjb and x j = x�
j for j ∈

[n]\{ jb}.
5. Receive the challenge ciphertext c∗ from the challenger. Set c(0)

jb
= c∗.

6. For every j ∈ [n] \ { jb}, compute c(0)
j ←$ Enc1(mpk, (x1, . . . , xn), (y inj , youtj ))

where (y inj , youtj ) ←$ ←$ s3(λ)+s4(λ), x j = xbj , and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

7. For every j ∈ [n], compute c(v)
j ←$ Enc2,v(pkv, c

(v−1)
j ) for v ∈ [n].

8. Compute c j = (˜Cin
j ,˜Cout

j )where˜C
in
j ←$ Obf3(1λ,Vin

j , y inj , (sk j , j))and˜C
out
j ←$

Obf4(1λ,Vout
j , youtj ,mb

j ) for any j ∈ [n].
9. Send the challenge ciphertexts (c1, . . . , cn) to D.

10. Answer to the incoming oracle queries as in Item 3.
11. Return the output of D.
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Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb

0(λ). On the other hand, if d = 1,
A simulates Hb

1(λ). Moreover, D submits a single query P∗ to oracle KGen and it
satisfies the validity condition Validity2, j0, j1 , we know that P∗

jb
(xbjb ) = 0. Because of

this, A submits a single query to oracle KGen1 and, it is also a valid adversary for the
experiment GCPA-PE

PE,A (λ) with the same advantage of D. This concludes the proof. �

Claim 32. Hb,i−1
2 (λ) ≈c H

b,i
2 (λ) for i ∈ [q].

Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,i−1
2 (λ)

and Hb,i
2 (λ) with non-negligible probability. We build an adversary A that breaks the

CPA security without collusions of PE. A is defined as follows:

1. Receive mpk from the challenger.
2. Compute (sk j ,pk j ) ←$ KGen2, j (1λ) and set ek j = (mpk, sk j ,pk1, . . . ,pkn)

for j ∈ [n].
3. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the
answer dkP∗ .

• On input j ∈ [n] for Corr, return ek j .
• On input i ′th query (x,m) ∈ X1, j × M4 for Enc(ek j , ·, ·) where j ∈ [n], A
proceeds as follows:

Case j �= jb: Sample (y inj y
out
j ) ←$ ←$ s3(λ)+s4(λ). Run c(0)

j ←$ Enc1(mpk, (

x1, . . . , xn), (y inj , youtj )) where x j = x and x j ′ = x�
j ′ for j ′ ∈ [n]\{ j}.

Case j = jb and i ′ < i : Sample (y injb , y
out
jb

) ←$ ←$ s3(λ)+s4(λ). Compute

c(0)
jb

←$ Enc1(mpk, (x1, . . . , xn), 0s3(λ)+s4(λ)) where x jb = x and x j ′ =
x�
j ′ for j ′ ∈ [n]\{ jb}.

Case j = jb and i ′ = i : Sample (y injb , y
out
jb

) ←$ ←$ s3(λ)+s4(λ). Send the chal-

lenge (m0 = (y injb , y
out
jb

),m1 = 0s3(λ)+s4(λ), x = (x1, . . . , xn)) to the
challenger where x jb = x and x j ′ = x�

j ′ for j ′ ∈ [n]\{ jb}. Receive the

challenge ciphertext c∗ and set c(0)
jb

= c∗.
Case j = jb and i ′ > i : Sample (y inj , youtj ) ←$ ←$ s3(λ)+s4(λ). Compute

c(−1)
jb

←$ Enc1(mpk, (x1, . . . , xn), (y inj , youtj )) where x jb = x and x j ′ =
x�
j ′ for j ′ ∈ [n]\{ jb}.

Finally, return c j = (˜Cin
j ,˜Cout

j ) where c(v)
j ←$ Enc2,v(pkv, c

(v−1)
j ) for v ∈

[n],˜Cin
j ←$ Obf3(1λ,Vin

j , y inj , (sk j , j))and˜C
out
j ←$ Obf4(1λ,Vout

j , youtj ,m).

4. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
5. Compute c(0)

jb
←$ Enc1(mpk, (x1, . . . , xn), 0s3(λ)+s4(λ)) where x jb = xbjb , x j ′ =

x�
j ′ for j ′ ∈ [n]\{ jb}, and (y injb , y

out
jb

) ←$ ←$ s3(λ)+s4(λ).
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6. Compute c(v)
jb

←$ Enc2,v(pkv, c
(v−1)
jb

) for v ∈ [n].
7. Compute c jb = (˜Cin

jb
,˜Cout

jb
)where˜C

in
jb

←$ Obf3(1λ,Vin
jb
, y injb , (sk jb , jb)) and˜C

out
jb

←$ Obf4(1λ,Vout
jb

, youtjb
,mb

jb
).

8. For every j ∈ [n] \ { jb}, compute c j ←$ Enc(ek j , xbj ,m
b
j ).

9. Send the challenge ciphertexts (c1, . . . , cn) to D.
10. Answer to the incoming oracle queries as in Item 3.
11. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulates Hb,i−1

2 (λ). On the other hand, if

d = 1, A simulates Hb,i
2 (λ). Moreover, since D submits a single query P∗ to oracle

KGen and it satisfies the validity conditionValidity2, j0, j1 , we have that jb �∈ QCorr and
∀x ′

jb
∈ Q jb ⊂ X1, jb , P

∗
jb
(x ′

jb
) = 0. Because of this, A submits a single query to oracle

KGen1 and it is also a valid adversary for the experiment GCPA-PE
PE,A (λ) with the same

advantage of D. This concludes the proof. �

Claim 33. Hb,q
2 (λ) ≈c Hb

3(λ).

Proof. Suppose there exists a PPT distinguisher D that distinguishes betweenHb,q
2 (λ)

and Hb
3(λ) with non-negligible probability. We build an adversary A that breaks the

security of the lockable obfuscation scheme LOBF3. A is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ)whereek j = (mpk, sk j ,pk1, . . . ,

pkn) for j ∈ [n].
2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen(msk, P∗).
• On input j ∈ [n] for Corr, return ek j .
• On input (x,m) ∈ X1, j × M4 for Enc(ek j , ·, ·), A proceeds as follows:

Case j = jb: Sample (y injb , y
out
jb

) ←$ ←$ s3(λ)+s4(λ). Run c(0)
jb

←$ Enc1(mpk,

(x1, . . . , xn), 0s3(λ)+s4(λ)) where x jb = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{ jb}.

Case j �= jb: Compute c(0)
j ←$ Enc1(mpk, (x1, . . . , xn), (y inj , youtj )) where

(y inj , youtj ) ←$ ←$ s3(λ)+s4(λ), x j = x, x j ′ = x�
j ′ for any j ′ ∈ [n]\{ j}.

Finally, return c j = (˜Cin
j ,˜Cout

j ) where c(v)
j ←$ Enc2,v(pkv, c

(v−1)
j ) for v ∈

[n],˜Cin
j ←$ Obf3(1λ,Vin

j , y inj , (sk j , j))and˜C
out
j ←$ Obf4(1λ,Vout

j , youtj ,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. Compute c(0)

jb
←$ Enc1(mpk, (x1, . . . , xn), 0s3(λ)+s4(λ))where x jb = xbjb and x j ′ =

x�
j ′ for j ′ ∈ [n]\{ jb}.

5. Compute c(v)
jb

←$ Enc2,v(pkv, c
(v−1)
jb

) for v ∈ [n].
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6. Send the challenge (Vin
jb
, (sk jb , jb)) to the challenger and receive ˜C. Compute

c jb = (˜Cin
jb
,˜Cout

jb
) where ˜C

in
jb

= ˜C, ˜C
out
jb

←$ Obf4(1λ,Vout
jb

, youtjb
,mb

jb
) and

youtjb
←$ ←$ s4(λ).

7. For every j ∈ [n] \ { jb}, compute c j ←$ Enc(ek j , xbj ,m
b
j ).

8. Send the challenge ciphertexts (c1, . . . , cn) to D.
9. Answer to the incoming oracle queries as in Item 2.

10. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view of D. In particular, if d = 0, A simulatesHb,q

2 (λ). On the other hand, if d = 1,
A simulatesHb

3(λ). Hence, A has the same advantage of D. This concludes the proof. �

Claim 34. Hb,i−1
4 (λ) ≈c H

b,i
4 (λ).

Proof. Claim 34 follows by leveraging a similar argument to that of Claim 33. �

Claim 35. Hb,i−1
5 (λ) ≈c H

b,i
5 (λ) for i ∈ [q].

Proof. Suppose there exists aPPTdistinguisherD that distinguishes betweenHb,i−1
5 (λ)

and Hb,i
5 (λ) with non-negligible probability. We build an adversary A that breaks the

security of the lockable obfuscation scheme LOBF3. A is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ).
2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, forward the query P∗ to KGen1 and return the
answer dkP∗ .

• On input j ∈ [n] for Corr, return ek j .
• On input i ′th query (x,m) ∈ X1, j × M4 for Enc(ek j , ·, ·) where j ∈ [n], A
proceeds as follows:

Case j �= jb: Return c j = (˜Cin
j ,˜Cout

j ) ←$ Enc(ek j , x,m).

Case j = jb and i ′ < i : Sample youtjb
←$ ←$ s4(λ). Run c(0)

jb
←$ Enc1(mpk, (

x1, . . . , xn), 0s3(λ)+s4(λ)) where x jb = x and x j ′ = x�
j ′ for j ′ ∈ [n]\{ jb}.

Return c jb = (˜Cin
jb
,˜Cout

jb
) where c(v)

jb
←$ Enc2,v(pkv, c

(v−1)
jb

) for v ∈ [n],
˜C
in
jb

←$ S3(1λ, 1
|Vin

jb
|
, 1|(sk jb , jb)|), and ˜C

out
jb

←$ Obf4(1λ,Vout
jb

, youtjb
,m).

Case j = jb and i ′ = i : Sample youtjb
←$ ←$ s4(λ). Run c(0)

jb
←$ Enc1(mpk, (

x1, . . . , xn), 0s3(λ)+s4(λ)) where x jb = x and x j ′ = x�
j ′ for j ′ ∈ [n]\{ jb}.

Send the challenge (Vin
jb
, (sk jb , jb)) to the challenger where

c(v)
jb

←$ Enc2,v(pkv, c
(v−1)
jb

) for v ∈ [n]. Receive the challenge ciphertext
˜Cand set˜Cin

jb
= ˜C. Return c jb = (˜Cin

jb
,˜Cout

jb
)where˜C

out
jb

←$ Obf4(1λ,Vout
jb

,

youtjb
,m).
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Case j = jb and i ′ > i : Sample (y inj , youtj ) ←$ ←$ s3(λ)+s4(λ). Compute

c(0)
jb

←$ Enc1(mpk, (x1, . . . , xn), 0s3(λ)+s4(λ)) where x jb = x and x j ′ =
x�
j ′ for j

′ ∈ [n]\{ jb}. Return c jb = (˜Cin
jb
,˜Cout

jb
)where c(v)

jb
←$ Enc2,v(pkv,

c(v−1)
jb

) for v ∈ [n], ˜Cin
jb

←$ Obf3(1λ,Vin
jb
, y injb , (sk jb , jb)), and ˜C

out
jb

←$

Obf4(1λ,Vout
jb

, youtjb
,m).

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.

4. Compute c jb = (˜Cin
jb
,˜Cout

jb
) where ˜C

in
jb

←$ S3(1λ, 1
|Vin

jb
|
, 1|(sk jb , jb)|) and ˜C

out
jb

←$ S4(1λ, 1
|Vout

jb
|
, 1

|mb
jb

|
).

5. For every j ∈ [n] \ { jb}, compute c j ←$ Enc(ek j , xbj ,m
b
j ).

6. Send the challenge ciphertexts (c1, . . . , cn) to D.
7. Answer to the incoming oracle queries as in Item 2.
8. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view ofD. In particular, if d = 0,A simulatesHb,i−1

5 (λ). On the other hand, if d = 1,

A simulatesHb,i
5 (λ). Hence,A has the same advantage ofD. This concludes the proof.�

Claim 36. Hb,i−1
6 (λ) ≈c H

b,i
6 (λ) for i ∈ [q].

Proof. Claim 36 follows by leveraging a similar argument to that of Claim 35. �

Claim 37. Hb,1,1
7+i−1(λ) ≈c H

b,0,0
7+i (λ) for i ∈ {0} ∪ [n − 2].

Proof. Let r = ( jb + i mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes between Hb,1,1

7+i−1(λ) and Hb,0,0
7+i (λ) with non-negligible probability. We

build an adversary A that breaks the CPA security of PKE2, jb . A is defined as follows:

1. Compute (mpk,msk) ←$ Setup1(1
λ) and (sk j ,pk j ) ←$ KGen2, j (1λ) for j ∈

[n]\{ jb}.
2. Receive pk jb from the challenger.
3. Set ek j = (mpk, sk j ,pk1, . . . ,pkn) for j ∈ [n]\{ jb}.
4. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk, P∗).
• On input j ∈ [n] for Corr, return ek j .
• On input (x,m) ∈ X1, j × M4 for Enc(ek j , ·, ·), A proceeds as follows:

Case j = jb: Run c j = (˜Cin
j ,˜Cout

j ) where ˜C
in
j ←$ S3(1λ, 1|Vin

j |
, 1|(sk j , j)|)

and ˜C
out
j ←$ S4(1λ, 1|Vout

j |
, 1|m|).

Case j �= jb: Compute c j ←$ Enc(ek j , x,m).

Finally, return c j .

5. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
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6. For every j ∈ [n], the adversary A proceeds as follows:

Case j ∈ [ jb : r − 1]+n : Compute c j = (˜Cin
j ,˜Cout

j ) where ˜C
in
j ←$ S3(1λ, 1|Vin

j |
,

1|(sk j , j)|) and ˜C
out
j ←$ S4(1λ, 1|Vout

j |
, 1|mb

j |).
Case j = r: Sample (y inr , youtr ) ←$ ←$ s3(λ)+s4(λ) andcompute c(0)

r ←$ Enc1(mpk, (x1,

. . . , xn), (y inr , youtr )) where xr = xbr , x j ′ = x�
j ′ for any j ′ ∈ [n]\{r}. Com-

pute c(v)
r ←$ Enc2,v(pkv, c

(v−1)
r ) for v ∈ [ jb − 1]. Send the challenge (m0 =

c(v)
r ,m1 = w) to the challengerwherew ←$ M2, jb . Receive the answer c

∗ and
set c( jb)

r = c∗. Compute c(v)
r ←$ Enc2,v(pkv, c

(v−1)
r ) for v ∈ [n]\[ jb]. Set cr =

(˜Cin
r ,˜Cout

r ) where ˜C
in
r ←$ Obf3(1λ,Vin

r , y inr , (skr , r)) and ˜C
out
r ←$ Obf4(1λ,

V
out
r , youtr ,mb

r ).
Case i < n − 2 and j ∈ [r + 1 : jb − 1]+n : Compute c j ←$ Enc(ek j , xbj ,m

b
j ).

7. Send the challenge ciphertexts (c1, . . . , cn) to D.
8. Answer to the incoming oracle queries as in Item 4.
9. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view ofD. This is because, by theValidity2, j0, j1 we have that jb �∈ QCorr, i.e., A can
simulate the view of D without knowing sk jb (sampled by the challenger). Moreover,

if d = 0, A simulates Hb,1,1
7+i−1(λ). On the other hand, if d = 1, A simulates Hb,0,0

7+i (λ).
Hence, A has the same advantage of D. This concludes the proof. �

Claim 38. Hb,0,0
7+i (λ) ≈c H

b,1,0
7+i (λ) for i ∈ {0} ∪ [n − 2].

Proof. Let r = ( jb + i mod n) + 1. Suppose there exists a PPT distinguisher D that
distinguishes betweenHb,0,0

7+i (λ) andHb,1,0
7+i (λ)with non-negligible probability. We build

an adversary A that breaks the security of the lockable obfuscation scheme LOBF3. A
is defined as follows:

1. Compute (ek1, . . . ,ekn,msk) ←$ Setup(1λ).
2. A answers to the incoming oracle queries as follows:

• On input P∗ ∈ P for KGen, return dkP∗ ←$ KGen1(msk, P∗).
• On input j ∈ [n] for Corr, return ek j .
• On input (x,m) ∈ X1, j × M4 for Enc(ek j , ·, ·), A proceeds as follows:

Case j = jb: Run c j = (˜Cin
j ,˜Cout

j ) where ˜C
in
j ←$ S3(1λ, 1|Vin

j |
, 1|(sk j , j)|)

and ˜C
out
j ←$ S4(1λ, 1|Vout

j |
, 1|m|).

Case j �= jb: Compute c j ←$ Enc(ek j , x,m).

Finally, return c j .

3. Receive the challenge ((m0
1, . . . ,m

0
n), (m

1
1, . . . ,m

1
n), (x

0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n))

from D.
4. For every j ∈ [n], the adversary A proceeds as follows:



Multi-key and Multi-input Predicate Encryption Page 83 of 100    24 

Case j ∈ [ jb : r − 1]+n : Compute c j = (˜Cin
j ,˜Cout

j ) where ˜C
in
j ←$ S3(1λ, 1|Vin

j |
,

1|(sk j , j)|) and ˜C
out
j ←$ S4(1λ, 1|Vout

j |
, 1|mb

j |).
Case j = r: Compute c(v)

r ←$ Enc2,v(pkv, c
(v−1)
r ) for v ∈ [n]\[ jb − 1] where

c( jb−1)
r = w ←$ M2, jb . Send the challenge (Vin

r , (skr , r)) to the challenger
and receive the answer ˜C

∗. Set cr = (˜Cin
r ,˜Cout

r ) where ˜C
in
r = ˜C

∗, youtr
←$ ←$ s4(λ), and ˜C

out
r ←$ Obf4(1λ,Vout

r , youtr ,mb
r ).

Case i < n − 2 and j ∈ [r + 1 : jb − 1]+n : Compute c j ←$ Enc(ek j , xbj ,m
b
j ).

5. Send the challenge ciphertexts (c1, . . . , cn) to D.
6. Answer to the incoming oracle queries as in Item 2.
7. Return the output of D.

Let d be the challenge bit sampled by the challenger. The adversaryA perfectly simulates
the view ofD. In particular, if d = 0,A simulatesHb,0,0

7+i (λ). On the other hand, if d = 1,

A simulates Hb,1,0
7+i (λ). Hence, A has the same advantage of D. This concludes the

proof. �

Claim 39. Hb,1,0
7+i (λ) ≈c H

b,1,1
7+i (λ) for i ∈ {0} ∪ [n − 2].

Proof. Claim 39 follows by leveraging a similar argument to that of Claim 38. �

Claim 40. H1−b,1,1
7+n−2 (λ) ≈c H

b,1,1
7+n−2(λ).

Proof. The distribution of these two experiments does not depend on the bit b. �

By combining Claims 31–40 and conditioned to the eventValidity2, j0, j1 , we conclude
that

Hb
0 ≈c Hb

1 ≡ Hb,0
2 ≈c · · · ≈c H

b,q
2 ≈c Hb

3 ≈c Hb
4 ≡ Hb,0

5 ≈c · · · ≈c H
b,q
5 ≡

Hb,0
6 ≈c · · · ≈c H

b,q
6 ≡ Hb,1,1

6 ≈c H
b,0,0
7 ≈c · · · ≈c H

b,1,1
7+n−2 ≡ H1−b,1,1

7+n−2 .

This concludes the proof. �

Lemma 12. Let j0 ∈ [n]\QCorr. IfPE is CPA secure without collusions (Definition 8),
PKE2, j0 is CPA secure (Definition 6),LOBF3 andLOBF4 are secure (Definition 2), then

∣

∣

∣

∣

P

[

G(n−1)-CPA-1-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity3, j0

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Without loss of generality, let q = |Q j0 | ∈ poly(λ) (recall j0 �∈ QCorr). Con-
sider the hybrid experiments of Lemmas 4 and 11. Formally,

• Let H1,i
0 (λ),H1,i

1 (λ),H1,i
2 (λ) for i ∈ [n] be the hybrid of Lemma 10 (for the

challenge bit b = 1) except that are conditioned to the event Validity3, j0 (instead
of Validity1).
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• LetH0
0(λ),H0

1(λ),H0,t
2 (λ),H0

3(λ),H0
4(λ),H0,t

5 (λ),H0,t
6 (λ),H0,1,1

6 (λ),H0,k1,k2
7+ j (λ),

for i ∈ [n], t ∈ [q], j ∈ {0}∪[n−2], (k1, k2)× ←$ 2, be the hybrids of Lemma 11
(for the challenge bit b = 0) except that are conditioned to the event Validity3, j0
(instead of Validity2, j0, j1 ).

In addition, consider the following additional hybrids experiments:

H0,0
7+n−1: Identical to H0,1,1

7+n−2.

H0,i
7+n−1 for i ∈ [q]: Same as H0,i−1

7+n−1 except that the challenger changes how it an-
swers to the first i queries for oracle Enc(ek j0 , ·, ·). Formally, on input the i ′th
query (x,m) such that i ′ ≤ i , the challenger returns c j0 = (˜Cin

j0
,˜Cout

j0
) where

˜C
out
v ←$ Obf4(1λ,Vout

j0
, youtj0

,m)where youtj0
←$ ←$ s4(λ). Otherwise, on input the

i ′th query (x,m) such that i ′ > i , the challenger answers as usual, i.e., as defined
in H0,0

7+n−1.

H0,0
7+n: Identical to H0,q

7+n−1.

H0,i
7+n for i ∈ [q]: Same asH0,i−1

7+n except that the challenger changes how it answers to
the first i queries for oracleEnc(ek j0 , ·, ·). Formally, on input the i ′th query (x,m)

such that i ′ ≤ i , the challenger returns c j0 = (˜Cin
j0
,˜Cout

j0
) where ˜C

in
j0

←$ Obf3(1λ,

V
in
j0
, y inj0 , (sk j0 , j0)) where y inj0 ←$ ←$ s3(λ). Otherwise, on input the i ′th query

(x,m) such that i ′ > i , the challenger answers as usual, i.e., as defined in H0,0
7+n.

H0,0
7+n+1: Identical to H0,q

7+n.

H0,i
7+n+1 for i ∈ [q]: Same as H0,i−1

7+n+1 except that the challenger changes how it an-
swers to the first i queries for oracle Enc(ek j0 , ·, ·). On input the i ′th query
(x,m) such that i ′ ≤ i , the challenger samples (y inj0 , y

out
j0

) ←$ ←$ s3(λ)+s4(λ)

and computes c(0)
j0

←$ Enc1(mpk, (x1, . . . , xn), (y inj0 , y
out
j0

)) where x j0 = x, and

x j = x�
j for j ∈ [n]\{ j0}. Finally, the challenger returns c j0 = (˜Cin

j0
,˜Cout

j0
)

where c(v)
j0

←$ Enc2,v(pkv, c
(v−1)
j0

) for v ∈ [n], ˜C
in
j0

←$ ←$ Obf3(1λ,Vin
j0
, y inj0 ,

(sk j0 , j0)), ˜C
out
v ←$ Obf4(1λ,Vout

j0
, youtj0

,m). Otherwise, on input the i ′th query

(x,m) such that i ′ > i , the challenger answers as usual, i.e., as defined inH0,0
7+n+1.

Claim 41. H0
0(λ) ≈c H

0,1,1
7+n−2(λ).

Proof. The proof of Claim 41 is identical to that of Lemma 5 where the challenge bit
is b = 0. �

Claim 42. H0,i−1
7+n−1(λ) ≈c H

0,i
7+n−1(λ) for i ∈ [q].

Proof. Claim 42 follows by leveraging a similar argument to that of Claim 36. �

Claim 43. H0,i−1
7+n (λ) ≈c H

0,i
7+n(λ) for i ∈ [q].

Proof. Claim 43 follows by leveraging a similar argument to that of Claim 35. �
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Claim 44. H0,i−1
7+n+1(λ) ≈c H

0,i−1
7+n+1(λ) for i ∈ [q].

Proof. Claim 44 follows by leveraging a similar argument to that of Claim 32. �

Claim 45. H1,0
0 (λ) ≈c H

1,q
2 (λ).

Proof. The proof of Claim 45 is identical to that of Lemma 4 where the challenge bit
is b = 1. �

Claim 46. H0,q
7+n+1(λ) ≡ H1,q

2 (λ).

Proof. Claim 46 follows by observing that experiments H0,q
7+n+1(λ) and H1,q

2 (λ) are
identical (and does not depend on the bit b). �

By combining Claims 41–46 and the fact that Validity3, j0, holds, we conclude that

H0
0 ≈c H

0,1,1
7+n−2 ≡ Hb,0

7+n−1 ≈c . . . ≈c H
b,q
7+n−1 ≡ Hb,0

7+n ≈c . . . ≈c H
b,q
7+n

≡ Hb,0
7+n+1 ≈c . . . ≈c H

b,q
7+n+1 ≡ H1,q

2 ≈c H
1,0
0 .

This concludes the proof. �

Lemma 13. Let j1 ∈ [n]\QCorr. IfPE is CPA secure without collusions (Definition 8),
PKE2, j1 is CPA secure (Definition 6),LOBF3 andLOBF4 are secure (Definition 2), then

∣

∣

∣

∣

P

[

G(n−1)-CPA-1-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity4, j1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Lemma 13 follows by using a symmetrical argument to that of Lemma 12. �

By combining Lemmas 10–13 we conclude that � is CPA secure in the (n − 1)-
corruptions setting without collusions.
CPA-2-sided security of � (Theorem 7) As usual, consider the predicate space P =
{P(x1, . . . , xn)} of Construction 4 where P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn). Let
P∗ ∈ P be the only predicate for which the adversary will ask for the decryption keydkP∗

during the experiment G(n−1)-CPA-2-iPE
�,A (recall that we prove the security of Construc-

tion 4 in the scenario without collusions, i.e., |QKGen| = 1). We can leverage a similar
argument to that used to prove Theorem 6 for the CPA-2-sided case (see Sect. 5.2.1) in
order to rewrite the validity condition of G(n−1)-CPA-2-iPE

�,A (Definition 13) as follows:

Either Validity1 or Validity2

where

Validity1 : ∀ j ∈ [n],∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1],
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P∗(x (i1,0)
1 , . . . , x

(i j−1,0)

j−1 , x0
j , x

(i j+1,0)

j+1 , . . . , x (in ,0)
n ) =

P∗(x (i1,1)
1 , . . . , x

(i j−1,1)

j−1 , x1
j , x

(i j+1,1)

j+1 , . . . , x (in ,1)
n ) = 0

Validity2 : ∀ j ∈ [n], Either P∗
j (x

0
j ) = P∗

j (x
1
j ) = 0 or P∗

j (x
0
j ) = P∗

j (x
1
j ) ∧ m0

j = m1
j

for Qb
i = {x (1,b)

i , . . . , x (ki ,b)
i , x (ki+1,b)

i = xbi } for i ∈ [n], b ∈ ←$ as defined in Defi-
nition 13. Recall that, if i �∈ QCorr, then Qb

i is the ordered list composed of the inputs
submitted to the oracleEnc(eki , ·, ·) and the challenge input xbi . Otherwise, if i ∈ QCorr,
then Qb

i is equal to the i th input space X1,i that, in turn, contains also the challenge input
xbi . Hence, the CPA-2-sided security of Construction 4 follows by proving the following
lemmas.

Lemma 14. If PE is CPA secure without collusions (Definition 8), SKE is CPA secure
(Definition 4), and LOBF is secure (Definition 2), then

∣

∣

∣

∣

P

[

G(n−1)-CPA-2-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Note that Validity1 is equivalent to the validity condition of CPA-1-sided se-
curity. Hence, the lemma follows by leveraging an identical argument to that of the
CPA-1-sided case (Sect.5.3.1). �

Lemma 15. If PE is CPA-2-sided secure without collusions (Definition 9) and LOBF
is secure (Definition 2), then

∣

∣

∣

∣

P

[

G(n−1)-CPA-2-iPE
�,A (λ) = 1 ∧ |QKGen| = 1

∣

∣

∣Validity2

]

− 1

2

∣

∣

∣

∣

≤ negl(λ).

Proof. Let P∗ ∈ QKGen and ((x0
1 , . . . , x0

n ), (x
1
1 , . . . , x1

n)) be the predicate submitted
to the oracle KGen and the challenge inputs chosen by the adversary, respectively.
Despite P∗ is chosen adaptively, we assume that the values {zi }i∈[n] such that P∗

i (x0
i ) =

P∗
i (x1

i ) = zi are known before the challenge phase. Indeed, {zi }i∈[n] can be guessed
with non-negligible probability since n = O(1).

Consider the following hybrid experiments:

Hb,0
0 (λ): This is exactly the experiment G(n−1)-CPA-2-iPE

�,A (λ) conditioned to the event
Validity2 where the challenge bit is b, i.e., the adversary is valid and satisfies
Validity2.

Hb,i
0 (λ) for i ∈ [n]: Same as Hb,i−1

0 , except that the challenger changes how it com-
putes the challenge ciphertext ci with respect to zi . If zi = 0 (i.e., P∗

i (x0
i ) =

P∗
i (x1

i ) = 0), the value c(0)
i is computed as c(0)

i ←$ Enc1(mpk, (x1, . . . , xn),
0s3(λ)+s4(λ)) where xi = x0

i , and x j = x�
j for j ∈ [n]\{i}. Otherwise, if zi = 1

(i.e., P∗
i (x0

i ) = P∗
i (x1

i ) = 1), the value c(0)
i is computed as c(0)

i ←$ Enc1(

mpk, (x1, . . . , xn), (y ini , yout1 )) where (y ini , youti ) ←$ ←$ s3(λ)+s4(λ), xi = x0
i , and
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x j = x�
j for j ∈ [n]\{i}. Observe that c(0)

i is computed by fixing xi = x0
i (instead

of xi = xbi ), i.e., the input (x1, . . . , xn) used to compute the i th challenge ciphertext
is fixed and does not depend on the challenge bit b.

Hb,0
1 (λ): Identical to Hb,n

1 (λ).

Hb,i
1 (λ) for i ∈ [n]: Same as Hb,i−1

1 , except that the challenger changes how it com-
putes the challenger ciphertext ci with respect to zi . If zi = 0 (i.e., P∗

i (x0
i ) =

P∗
i (x1

i ) = 0), the value ˜C
out
i of challenge ciphertext ci = (˜Cin

i ,˜Cout
i ) is simulated

by the challenger using the simulator of the lockable obfuscation scheme LOBF4,

i.e., ˜Cout
i ←$ S4(1λ, 1|Vout

i |, 1|mb
i |) where Vout

i = C
out
c(n)
i ,ski ,i

. Otherwise, if zi = 1

(i.e., P∗
i (x0

i ) = P∗
i (x1

i ) = 1), the value ˜C
out
i is computed as in Hb,0

1 (λ).

We can prove that the indistinguishability of the above hybrids by leveraging similar
techniques to that of Sects.5.2.1 and 5.3.1.

Claim 47. Hb,i−1
0 (λ) ≈c H

b,i
0 (λ) for i ∈ [n].

Proof. Note that the values {zi }i∈[n] (i.e., P∗
i (x0

i ) = P∗
i (x1

i ) = zi ), can be correctly
guessed with non-negligible probability since n = O(1). Conditioned to the above, the
claim follows from the CPA-2-sided security of PE. �

Claim 48. Hb,i−1
1 (λ) ≈c H

b,i
1 (λ) for i ∈ [n].

Proof. As usual, the values {zi }i∈[n] (i.e., P∗
i (x0

i ) = P∗
i (x1

i ) = zi ), can be correctly
guessed with non-negligible probability since n = O(1). Conditioned to the above, the
claim follows from the security of the lockable obfuscation scheme LOBF4. �

Claim 49. Hb,n
1 (λ) ≡ H1−b,n

1 (λ).

Proof. The claim follows by leveraging the fact thatValidity2 holds (i.e., the adversary
satisfiesValidity2) and observing that the values {zi }i∈[n] (i.e., P∗

i (x0
i ) = P∗

i (x1
i ) = zi ),

can be correctly guessed with non-negligible probability since n = O(1). Conditioned
to the above, for every i ∈ [n], if P∗

i (x0
i ) = P∗

i (x1
i ) = zi = 0 we have that the j th

challenge ciphertext c j does not depend on the bit b. On the other hand, if P∗
i (x0

i ) =
P∗
i (x1

i ) = zi = 1, we have that the j th challenge ciphertext c j depends on either m0
j

or m1
j . However, by the validity condition Validity2 we have that m0

j = m1
j . Hence,

Hb,n
1 (λ) and H1−b,n

1 (λ) are identically distributed. This concludes the proof. �

By combining Claims 47–49 and the fact that Validity2 holds, we conclude that
H0,0

0 ≈c . . . ≈c H
0,n
0 ≡ H0,0

1 ≈c . . . ≈c H
0,n
1 ≡ H1,n

1 . This concludes the proof. �
By leveraging Lemmas 14 and 15, we conclude that � of Construction 4 is CPA-2-

sided secure.
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5.4. Additional Discussion

On wildcards. Wildcards affect the security guarantee and the expressiveness of the
multi-input PE construction depending on the presence of corruptions. In the case of no
corruptions (Construction 3), the (single) wildcard can be removed by simply requiring
each i th sender not to compute a ciphertext ci under the corresponding i th wildcard x�

i ,
i.e., Enc(eki , xi ,mi ) outputs ⊥ whenever xi = x�

i . In other words, we can transform
any secure multi-input PE for P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) with wildcard
(x�

1, . . . , x�
n) into a secure multi-input PE for the same predicate P(x1, . . . , xn) without

the wildcard. On the other hand, this cannot be done when corruptions are in place
(Construction 4). Indeed, if the adversary gets an encryption key eki , then it can use
the latter to always produce a ciphertext ci under x�

i . This means that the adversary can
always use eki (of the corrupted user) and satisfy the i th predicate Pi (this also affects
the security proof of Construction 4. See Sects. 5.3.1, 5.3.1).

On unbounded collusions For completeness, we highlight that if we start from an
initial single-input PE scheme PE (of Theorems 6, 7) that is CPA-1-sided secure against
unbounded collusions, both our Constructions 3 and 4 are CPA-1-sided secure with
respect to a weaker form of unbounded collusions (but still stronger than no collusions).
For the sake of clarity, we focus on our secret-key Construction 3, but the same argument
holds for our Construction 4 against corruptions.

In case of no collusions, at the beginning of the proof of Theorem 6 (see Sect. 5.2.1), we
show that the adversary’s validity condition (of Definition 13) is equivalent to satisfying
at least one of the following four conditions: for some j0, j1 ∈ [n],

Validity1 :
P∗

1 (x0
1 ) = 0 ∧ · · · ∧ P∗

n (x0
n ) = 0 ∧ P∗

1 (x1
1) = 0 ∧ · · · ∧ P∗

n (x1
n) = 0 (9)

Validity2, j0, j1 : ∀x ′
j0 ∈ Q j0 ,∀x ′

j1 ∈ Q j1,

P∗
j0(x

0
j0) = 0 ∧ P∗

j0(x
′
j0) = 0 ∧ P∗

j1(x
1
j1) = 0 ∧ P∗

j1(x
′
j1) = 0 (10)

Validity3, j0 : ∀x ′
j0 ∈ Q j0 ,

P∗
j0(x

0
j0) = 0 ∧ P∗

j0(x
′
j0) = 0 ∧ P∗

1 (x1
1) = 0 ∧ · · · ∧ P∗

n (x1
n) = 0 (11)

Validity4, j1 : ∀x ′
j1 ∈ Q j1 ,

P∗
1 (x0

1 ) = 0 ∧ · · · ∧ P∗
n (x0

n ) = 0 ∧ P∗
j1(x

1
j1) = 0 ∧ P∗

j1(x
′
j1) = 0 (12)

where P∗(x1, . . . , xn) = (P∗
1 (x1) ∧ · · · ∧ P∗

n (xn)) ∈ QKGen is the single key genera-
tion query submitted by the adversary A, ((x0

1 , . . . , x0
n ), (x

1
1 , . . . , x1

n)) is the adversarial
challenge inputs, and Qi are the predicate inputs submitted to the encryption oracle
Enc(eki , ·, ·) for i ∈ [n].

When working with CPA-1-sided security against (fully fledged) unbounded collu-
sions, a valid adversary can obtain two decryption keys for P and P ′ that satisfy Eq. (10)
(or Eqs (11), (12)) with respect to two different indexes j0, j1 ∈ [n] and j ′0, j ′1 ∈ [n], i.e.,
( j0, j1) �= ( j ′0, j ′1). When this happens the proof fails since, as we discussed in Sect. 1.2,
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our reduction will make an invalid set of queries to the KGen oracle of the single-input
PE. However, we observe that the exact same proof of Theorem 5 goes through when we
allow A to asking for multiple decryption keys under the restriction that: ∃ j0, j1 ∈ [n],
∀P(x1, . . . , xn) = (P1(x1) ∧ . . . ∧ Pn(xn)) ∈ QKGen, such that either one condi-
tion between Eqs. (9)–(12) is satisfied (i.e., the same indexes j0, j1 for all predicates
P ∈ QKGen).

6. Applications

In this section, we show the applications of our constructions. In Sect. 6.1, we provide
the definitions of ME and we show a construction from multi-key PE. In Sect. 6.2, we
define CPA-1-sided reusable robust NI-MPC for all-or-nothing functions and we provide
a construction from multi-input PE.

6.1. Matchmaking Encryption from 2-Key PE

Definition ofME. In ME, a trusted authority generates a decryption key for the receiver,
associated to an arbitrary policy of his choice. The receiver is able to decrypt the message
if and only if a match occurs, i.e. the sender’s attribute match the receiver policy, and
vice versa. Differently from [10,11], we consider honest senders (i.e., we do not consider
authenticity security). Hence, the sender do not need to receive an encryption key from
the authority, but can encrypt a message directly with the sender’s attribute as an input.
Security against malicious senders (i.e., authenticity) can be achieved by relying on
similar techniques of [10,11,26], by combining non-interactive zero-knowledge proofs
and digital signatures.

Formally, an ME with message space M, sender’s policy and attribute spaces P1
and U1, receiver’s policy and attribute spaces P2 and U2 is composed of the following
polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ, the randomized setup algorithm out-
puts the master public key mpk and the master secret key msk.

RKGen(msk, ρ): The randomized receiver-key generator takes as input the master
secret key msk, and attributes ρ ∈ U2. The algorithm outputs a secret decryption
key dkρ for attributes ρ.

PolGen(msk,S): The randomized receiver policy generator takes as input the master
secret key msk, and a policy S ∈ P2. The algorithm outputs a secret decryption
key dkS for the circuit S.

Enc(mpk, σ,R,m): The randomized encryption algorithm takes as input the master
public key mpk, attributes σ ∈ U1, a policy R ∈ P1, and a message m ∈ M. The
algorithm produces a ciphertext c linked to both σ and R.

Dec(dkρ,dkS, c): The deterministic decryption algorithm takes as input a secret de-
cryption key dkρ for attributes ρ ∈ U2, a secret decryption key dkS for a circuit
S ∈ P2, and a ciphertext c. The algorithm outputs a message m.
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GCPA-t-ME
Π,A (λ)

(mpk,msk) ←$ Setup(1λ)

(m0, m1,R0,R1, σ0, σ1, α) ←$ ARKGen(msk,·),PolGen(msk,·)
0 (1λ,mpk)

b ←$ {0, 1}, c ←$ Enc(mpk, σb,Rb, mb)

b ←$ ARKGen(msk,·),PolGen(msk,·)
1 (1λ, c, α)

If (b = b): return 1

Else: return 0

Fig. 9. Games defining CPA-t-sided security of ME.

Correctness states that the receiver can obtain the message with overwhelming prob-
ability if a match occurs. As for security, we consider the standard definition of ME,
namely CPA-1-sided and CPA-2-sided security. Informally, CPA-1-sided security cap-
tures the secrecy of the sender’s attributes, the sender’s policy, and the message when
a match does not occur. On the other hand, CPA-2-sided security extends this secrecy
even when a match occurs.

Definition 15. (Correctness of ME). An ME with message space M, sender’s policy
and attribute spaces P1 and U1, receiver’s policy and attribute spaces P2 and U2, is
correct if ∀λ ∈ N, ∀m ∈ M, ∀σ ∈ U1,∀ρ ∈ U2, ∀R ∈ P1, ∀S ∈ P2 such that
S(σ ) = 1 ∧ R(ρ) = 1:

P
[

Dec(dkρ,dkS,Enc(mpk, σ,R,m)) = m
] ≥ 1 − negl(λ),

where ∀(mpk,msk) ←$ Setup(1λ), dkρ ←$ RKGen(msk, ρ), and dkS ←$

PolGen(msk,S). The above probability is taken over the random coins of
Setup,RKGen,PolGen, and Enc.

Definition 16. (CPA-1-sided and CPA-2-sided security of ME). Let t ∈ [2]. We say
that an ME � is CPA-t-sided secure if for all valid PPT adversaries A = (A0,A1):

∣

∣

∣

∣

P

[

GCPA-t-ME
�,A (λ) = 1

]

− 1

2

∣

∣

∣

∣

≤ negl(λ),

where game GCPA-t-ME
�,A (λ) is depicted in Fig. 9. Adversary A is called valid if ∀ρ ∈

QRKGen,∀S ∈ QPolGen,

• Case t = 1 (mismatch only):

(R0(ρ) = R
1(ρ) = 0) ∨ (S(σ 0) = S(σ 1) = 0)

∨ (R0(ρ) = S(σ 1) = 0) ∨ (R1(ρ) = S(σ 0) = 0); (13)
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• Case t = 2 (mismatch and match): Either

(R0(ρ) = R
1(ρ) = 0) ∨ (S(σ 0) = S(σ 1) = 0)

∨ (R0(ρ) = S(σ 1) = 0) ∨ (R1(ρ) = S(σ 0) = 0)

or (R0(ρ) = R
1(ρ)) ∧ (S(σ 0) = S(σ 1)) ∧ (m0 = m1). (14)

We stress that CPA-1-sided and CPA-2-sided security reflects the “mismatch condi-
tion” and “match condition” of the original work of Ateniese et al. [10, Definition 5].
We chose to change their names to avoid confusion and make the notation consistent
with respect to the one of PE. Also, we stress that [10, Definition 5] defines security of
ME only in term of CPA-2-sided security (whereas, in this work, we also consider the
weaker notion of CPA-1-sided security).

6.1.1. Construction of ME from 2-Key PE

Construction 5. Let kPE = (Setup1,KGen1,Enc1,Dec1) be a 2-key PE scheme
with message space M, input space X = X1 × X2, and predicate space
4P = {Pρ,R(x1, x2)}(ρ,R)∈V indexed by V = V1 × V2 such that

Pρ,R(σ,S) = Pρ(S) ∧ PR(σ ) = S(ρ) ∧ R(σ ),

where σ ∈ X1, S ∈ X2, ρ ∈ V1, and R ∈ V2. We build an ME scheme with message
space M, sender’s policy and attribute spaces X2 and X1, and receiver’s policy and
attribute spaces V2 and V1, in the following way:

Setup(1λ): Upon input the security parameter 1λ, the randomized setup algorithm
outputs mpk = mpk and msk = (msk1,msk2) where (mpk,msk1,msk2) ←$

Setup1(1
λ).

RKGen(msk, ρ): Upon input the master secret key msk = (msk1,msk2) and at-
tributes ρ ∈ V1, the randomized receiver-key generator outputs dkρ ←$ KGen1(

msk1, ρ).
PolGen(msk,S): Upon input the master secret key msk = (msk1,msk2) and a

policy S ∈ V2, the randomized receiver policy generator outputs dkS ←$ KGen1(

msk2,S).
Enc(mpk, σ,R,m): Upon input the master public key mpk, attributes σ ∈ X1, a

policy R ∈ X2, and a message m ∈ M, the randomized encryption algorithm
computes c ←$ Enc1(mpk, (σ,R),m).

Dec(dkρ,dkS, c): Upon input a secret decryption key dkρ for attributes ρ ∈ V1, a
secret decryption key dkS for a policy S ∈ V2, and a ciphertext c, the deterministic
decryption algorithm outputs m = Dec1(dkρ,dkS, c).

Correctness follows from the correctness of kPE. Below, we establish the following
result.

Theorem 8. Let kPE be as above.
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1. If kPE is CPA-1-sided secure (Definition 11) then the ME scheme � from Con-
struction 5 is CPA-1-sided secure (Definition 16).

2. If kPE is CPA-2-sided secure (Definition 11) then the ME scheme � from Con-
struction 5 is CPA-2-sided secure (Definition 16).

Proof. (CPA-1-sided security of �) Suppose there exists a valid PPT adversary A with
a non-negligible advantage in breaking the CPA-1-sided security of �. We build an
adversary A′ that breaks the CPA-1-sided security of kPE. A′ is defined as follows:

1. Receive mpk from the challenger and send it to A.
2. A′ answers to the incoming oracle queries as follows:

• On input ρ ∈ V1 for RKGen, forward the query ρ to KGen(msk1, ·) and
return the answer dkρ .

• On input R ∈ V2 from PolGen, forward the query R to KGen(msk2, ·) and
return the answer dkR.

3. Receive the challenge (m0,m1,R0,R1, σ 0, σ 1) from A′. Send the challenge
(m0,m1, x0, x1) where xi = (σ i ,Si ) for i ∈ ←$ . Forward the challenge ci-
phertext c to A.

4. Answer to the incoming oracle queries as in Item 2.
5. Return the output of A.

Let d be the challenge bit sampled by the challenger. A′ perfectly simulates the view of
A. Moreover, A is a valid adversary, i.e., it satisfies the mismatch condition of Eq. (13).
This implies that ∀ρ ∈ QKGen(msk1,·),R ∈ QKGen(msk2,·), Pρ,R(σ 0,S0) = S

0(ρ) ∧
R(σ 0) = 0 and Pρ,R(σ 1,S1) = S

1(ρ) ∧R
1(σ ) = 0. Hence, A′ is a valid adversary for

GCPA-1-kPE
kPE,A′ (λ). This concludes the proof.
(CPA-2-sided security of �) The reduction is identical. The only difference is the

analysis of the validity of A′. Since A is a valid adversary with respect to the CPA-
2-sided security experiment of kPE, i.e., it satisfies Eq. (14). This implies that ∀ρ ∈
QKGen(msk1,·),R ∈ QKGen(msk2,·), either Pρ,R(σ 0,S0) = Pρ,R(σ 1,S1) = 0 or
Pρ,R(σ 0,S0) = Pρ,R(σ 1,S1) ∧ m0 = m1. Hence, A′ is a valid adversary for
GCPA-2-kPE

kPE,A′ (λ). This concludes the proof. �

6.2. Non-interactive Multi Party Computation (with Correlated Randomness) from
Multi-input PE

Definition of CPA-1-sided reusable k-robust NI-MPC for all-or-nothing functions.
A NI-MPC protocol for a function f : V1 ×· · ·×Vn → Y is a (non-interactive) protocol
between n parties and an evaluator.26 On initialization, a trusted party executes the setup
algorithm (crs,ek1, . . . ,ekn) ←$ Setup(1λ, f ). Then, it publishes the common refer-
ence string crs and sends the (possibly correlated) encryption keys to the corresponding
parties, i.e., the i th party receives the i th encryption key eki . After the setup phase,
each party, owning an input vi ∈ Vi , sends a single message ci ←$ Enc(crs,eki , vi )

26Depending on the scenario, the evaluator can be any of the parties running the NI-MPC protocol.
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to the evaluator. The latter will be able to compute the output of the function f by ex-
ecuting f (v1, . . . , vn) = Eval(crs, c1, . . . , cn). We focus on NI-MPC without session
identifiers, i.e., the encryption algorithm does not take in input the unique identifier for
the current round. Hence, messages computed in different rounds can be interleaved by
design (this will affect the security definition of NI-MPC).

Formally, a NI-MPC protocol � for a function f : V1 × · · · × Vn → Y consists of
the following algorithms:

Setup(1λ, f ): Upon input the security parameter 1λ and a function f : V1×· · ·×Vn →
Y , the setup algorithm outputs the common reference string crs and n encryption
keys ek1, . . . ,ekn .

Enc(crs,eki , vi ): Upon input a common reference string crs, an input vi ∈ Vi , and an
encryption key eki , the randomized encryption algorithm outputs a ciphertext ci .

Eval(crs, c1, . . . , cn): Upon input a common reference string crs and n ciphertexts
c1, . . . , cn , the deterministic evaluation algorithm outputs a value y ∈ Y .

Correctness states that the evaluation of n ciphertext (c1, . . . , cn), computed over the
inputs (v1, . . . , vn), outputs f (v1, . . . , vn)

Definition 17. (Correctness of NI-MPC). A NI-MPC protocol for a function f : V1 ×
· · · × Vn → Y is correct if ∀λ ∈ N, ∀(v1, . . . , vn) ∈ V1 × · · · × Vn , we have:

P
[

Eval(crs, c1, . . . , cn) = f (v1, . . . , vn)
] = 1 − negl(λ),

where (crs,ek1, . . . ,ekn) ←$ Setup(1λ, f ) and ci ←$ Enc(crs,eki , vi ) for i ∈ [n].
The above probability is taken over the random coins of Setup and Enc.

As for security, a k-robust NI-MPC guarantees the secrecy of the inputs of hon-
est parties even in the presence of an adversary that corrupts a set QCorr of k parties
(when an adversary corrupts the i th party it obtains its encryption key eki and the
latter gives to the adversary the ability of producing adversarially chosen messages
using eki ). Following the blueprint of Halevi et al. [32] (see also [14]), this is formal-
ized by an indistinguishability-based definition that states the infeasibility of distin-
guishing between (Enc(crs,ek1, v

0
1), . . . ,Enc(crs,ekn, v0

n)) and (Enc(crs,ek1, v
1
1),

. . . ,Enc(crs,ekn, v1
n)),

27 so long as any interleaving of the honest inputs with any ad-
versarially chosen input v′

i ∈ Vi , belonging to a corrupted party i ∈ QCorr, produces
the same function evaluation. In addition, security of NI-MPC can be formulated in two
different settings, named non-reusable and reusable NI-MPC:

• Non-reusable NI-MPC guarantees the secrecy of parties’ inputs only if the setup
is executed after each round (i.e., a single evaluation f (v1, . . . , vn) per setup is
allowed).

• On the other hand, reusable NI-MPC provides a stronger security guarantees allow-
ing parties to use the same setup in multiple rounds. As defined in [32], full-fledged

27Simulation-based security of NI-MPC for general functions is impossible. Indeed, simulation-based NI-
MPC implies virtual black box (VBB) obfuscation [14,29,32] and the latter is impossible for certain class of
circuits/functions [13].
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Gni-mpc
Π,A (λ)

(crs, ek1, . . . , ekn) ←$ Setup(1λ, fP )

((v0
1 , . . . , v0

n), (v
1
1 , . . . , v1

n), α) ←$ A
Corr(·),{Enc(crs,eki,·)}i∈[n]
0 (1λ, crs)

b ←$ {0, 1}, c1 ←$ Enc(crs, ek1, vb
1), . . . , cn ←$ Enc(crs, ekn, vb

n)

b ←$ A
Corr(·),{Enc(crs,eki,·)}i∈[n]
1 (1λ, c1, . . . , cn, α)

If (b = b): return 1

Else: return 0

Fig. 10. Game defining (CPA-1-sided) reusable k-robust security of NI-MPC for all-or-nothing functions and
without session identifiers. On input i ∈ [n], the corruption oracle Corr(·) returns the i th encryption key eki .

reusability NI-MPC makes use of session identifiers in order to block interleaving
of messages produced in different rounds. In particular, in each round of computa-
tion, the parties compute their messages c1, . . . , cn by attaching to them a unique
session identifiers �. Only messages c1, . . . , cn with the same identifier � can be
evaluated together yielding f (v1, . . . , vn) = Eval(crs, c1, . . . , cn).

We focus on a weaker notion of reusability without session identifiers, specifically
tailored for all-or-nothing functions, that allows to re-use the same setup until a certain
condition is satisfied. An all-or-nothing function fP : V1 × · · · × Vn → (M1 × · · · ×
Mn)∪{⊥} returns parties’ messages (m1, . . . ,mn) ∈ M1×· · ·×Mn only if a predicate
P(x1, . . . , xn) is satisfied, i.e.,

fP (v1, . . . , vn) =
{

(m1, . . . ,mn) if P(x1, . . . , xn) = 1

⊥ otherwise
(15)

where vi = (xi ,mi ) ∈ Vi = Xi × Mi for i ∈ [n]. We named our weaker notion of
reusability CPA-1-sided reusability and, in a nutshell, it allows parties to reuse the same
setup (without affecting the security of the protocol) so long as fP evaluates ⊥ for any
combinations of the honest inputs and every input associated to the corrupted parties.28

This condition resembles the CPA-1-sided security of multi-input PE (Definition 13).

Definition 18. (CPA-1-sided reusable k-robust security of NI-MPC for all-or-nothing
functions). Let fP : V1 × · · · × Vn → (M1 × · · · × Mn) ∪ {⊥} be an all-or-nothing
function as defined in Eq. (15). We say that a NI-MPC protocol � for fP is CPA-1-sided
reusable k-robust secure if for any valid PPT adversary A = (A0,A1) we have:

∣

∣

∣

∣

P

[

Gni-mpc
�,A (λ)

]

− 1

2

∣

∣

∣

∣

≤ negl(λ)

where Gni-mpc
�,A (λ) is depicted in Fig. 10. Let Qi = QEnc(crs,eki ,·) for i ∈ [n]\QCorr and

Qi = Xi for i ∈ QCorr. Adversary A is called valid if |QCorr| ≤ k and ∀d ∈ ←$ ,

28We consider every combination of the inputs due to the lack of session identifiers.
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∀ j ∈ [n], ∀(v′
1, . . . , v

′
n) ∈ Q1 ∪ {vd1 } × · · · × Qn ∪ {vdn }, we have that

fP (v′
0, . . . , v

′
j−1, v

d
j , v

′
j+1, . . . , v

′
n−1) = ⊥.

We stress that both the flavors of corruption and challenge selection considered in
our Definition 18 are stronger than the one of Halevi et al. [32]. In Definition 18, the
adversary can both choose which parties want to corrupt and the challenge adaptively.
On the other hand, [32] only covers selective security on both aspects.

Remark 3. (On the relation between NI-MPC, iO, and null iO). As note by previ-
ous works [14,32], NI-MPC has strong relations with iO. Taking into account full-
fledged reusability, indistinguishability-based 0-robust NI-MPC for general functions
that supports n = poly(λ) parties implies iO. The construction is reminiscent to that
of iO from multi-input functional encryption [29]. Analogously, we can translate the
above implications to the setting of CPA-1-sided reusability and null iO (and, in turn
WE) [19,31,48], i.e., CPA-1-sided reusable 0-robust NI-MPC for general functions that
supports n = poly(λ) parties implies null iO. This shows that nonetheless CPA-1-sided
reusability is a weakening of standard reusability, it is non-trivial to achieve for general
functions. Moreover, if we consider 1-robustness, we can get rid of both the (CPA-
1-sided) reusability and n = poly(λ) parties requirements. In particular, as described
in Sect. 1.4, we can build iO (resp. null iO) from indistinguishability-based (resp. CPA-
1-sided) non-reusable 1-robust NI-MPC supporting n = 2 parties.29

6.2.1. Construction of NI-MPC for all-or-nothing functions from Multi-input PE

Here, we build a CPA-1-sided reusable k-robust NI-MPC protocol for fP : V1 × · · · ×
Vn → (M1 × · · · × Mn) ∪ {⊥} (defined as in Eq. (15)) from any CPA-1-sided secure
n-input PE in the k-corruptions setting without collusions.

Construction 6. Let iPE1 = (Setup1,KGen1,Enc1,Dec1) be a n-input PE scheme
withmessage spaceM = M1×· · ·×Mn, input spaceX = X1×· · ·×Xn, and predicate
spaceP1 = {P(x1, . . . , xn)}. Let Vi = Xi ×Mi for i ∈ [n]. For every P ∈ P1, we build
a NI-MPC protocol for the function fP : V1 × · · · × Vn → (M1 × · · · × Mn) ∪ {⊥}
(as defined in Eq. (15)) in the following way:

Setup(1λ, fP ): Upon input the security parameter 1λ and a function fP , the random-
ized setup algorithm computes (ek1, . . . ,ekn,msk) ←$ Setup1(1

λ) and dkP =
KGen1(msk, P) where P ∈ P1 is the predicate defining the function fP . Finally,
it returns crs = dkP and ek1, . . . ,ekn.

Enc(crs,eki , vi ): Let i ∈ [n].Upon input the common reference stringcrs = dkP , the
encryption key eki , and the input vi = (xi ,mi ) ∈ Vi , the randomized encryption
algorithm outputs ci ←$ Enc1(eki , xi ,mi ).

29Non-reusable 1-robust security of NI-MPC means that the honest encryption key eki is used only once
(i.e., to compute a single message) whereas ek1−i is revealed to the adversary (i.e., the adversary can use it
multiple times without breaking the security of the NI-MPC protocol).
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Eval(crs, c1, . . . , cn): On input the common reference string crs = dkP and n ci-
phertexts c1, . . . , cn, the evaluation algorithm outputs Dec1(dkP , c1, . . . , cn).

Correctness follows from that of the underlying n-input PE iPE1. In particular, cor-
rectness for the case fP ((x1,m1), . . . , (xn,mn)) = ⊥ (i.e., P is not satisfied) can be
obtained by extending the iPE1’s correctness to the case of P is not satisfied, i.e.,
Dec(dkP , c1, . . . , cn) = ⊥ whenever P(x1, . . . , xn) = 0.30

Security of Construction 6 is formalized by Theorem 9. By combining Theorems 9
and 6 (and [30]), we obtain a CPA-1-sided reusable 0-robust NI-MPC protocol for
n = poly(λ) parties (based on the LWE assumption) for all-or-nothing functions fP
(Eq. (15)) where P is a conjunctions of arbitrary predicates with wildcards. Similarly,
by combining Theorems 9 and 7, we obtain a CPA-1-sided reusable (n − 1)-robust NI-
MPC protocol for n = O(1) parties for the same class of functions. Both settings are
non-trivial, and they both imply null iO (and WE) in the case of NI-MPC for general
functions (see Sects. 1.3 and Remark 3).

Theorem 9. Let iPE1 as above. If iPE1 is CPA-1-sided secure in the k-corruptions
setting without collusions (Definition 13), then � of Construction 6 is CPA-1-sided
reusable k-robust secure (Definition 18).

Proof. Suppose there exists a valid PPT adversary A with a non-negligible advantage
in breaking the partial reusability k-robust security of NI-MPC. we build an adversary
A′ that breaks the CPA-1-sided security in the k-corruptions setting without collusions
of iPE1. A′ proceeds as follows:

1. Send P to the oracle KGen1(msk, ·) and receive dkP .
2. Send crs = dkP to A.
3. A′ answers the incoming oracle queries as follows:

• On input vi = (x,m) ∈ Vi for Enc(crs,eki , ·) where i ∈ [n], forward the
query (x,m) to Enc1(eki , ·, ·) and return the answer ci to A.

• On input i ∈ [n] forCorr(·), forward the query i to oracleCorr1(·) and return
the answer eki to A.

4. Receive the challenge (v0
1 = (x0

1 ,m0
1), . . . , v

0
n = (x0

n ,m
0
n)) and (v1

1 = (x1
1 ,

m1
1), . . . , v

1
n = (x1

n ,m
1
n)).

5. Send ((m0
1, . . . ,m

0
n), (x

0
1 , . . . , x0

n )) and ((m1
1, . . . ,m

1
n), (x

1
1 , . . . , x1

n)) to the chal-
lenger.

6. Receive the ciphertexts (c1, . . . , cn) and forward them to A.
7. Answer to the incoming oracle queries as in Item 3.
8. Return the output of A.

The adversaryA′ perfectly simulates the view ofA. Moreover, by combining |QKGen1 | =
1 (A submits a single query to theKGen1 oracle) andA’s validity, we can easily conclude

30Correctness for the case P(x1, . . . , xn) = 0 can be seamlessly added to any multi-input PE scheme
by applying an efficiently computable and invertible padding 	(·) (e.g., 	(m) = m||1||0λ where λ is the
security parameter) before encrypting the message mi , i.e., Enc(eki , xi ,	(mi )). On decryption, the n-input
PE scheme will return ⊥ whenever the padding is invalid.
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that A′ is a valid adversary for the experiment Gk-CPA-1-iPE
iPE,A′ (λ) without collusions. This

concludes the proof. �
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