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Abstract. Non-malleable codes were introduced by Dziembowski et al. (in: Yao (ed)
ICS2010, Tsinghua University Press, 2010), and its main application is the protection
of cryptographic devices against tampering attacks on memory. In this work, we ini-
tiate a comprehensive study on non-malleable codes for the class of partial functions,
that read/write on an arbitrary subset of codeword bits with specific cardinality. We
present two constructions: the first one is in the CRS model and allows the adversary
to selectively choose the subset of codeword bits, while the latter is in the standard
model and adaptively secure. Our constructions are efficient in terms of information
rate, while allowing the attacker to access asymptotically almost the entire codeword.
In addition, they satisfy a notion which is stronger than non-malleability, that we call
non-malleability with manipulation detection, guaranteeing that any modified code-
word decodes to either the original message or to ⊥. We show that our primitive implies
All-Or-Nothing Transforms (AONTs), and as a result our constructions yield efficient
AONTs under standard assumptions (only one-way functions), which, to the best of our
knowledge, was an open question until now. Furthermore, we construct a notion of con-
tinuous non-malleable codes (CNMC), namely CNMC with light updates, that avoids
the full re-encoding process and only uses shuffling and refreshing operations. Finally,
we present a number of additional applications of our primitive in tamper resilience.
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1. Introduction

Non-malleable codes (NMC) were introduced by Dziembowski, Pietrzak and Wichs
[39] as a relaxation of error correction and error detection codes, aiming to provide
strong privacy but relaxed correctness. Informally, non-malleability guarantees that any
modified codeword decodes either to the original message or to a completely unrelated
one, with overwhelming probability. The definition of non-malleability is simulation-
based, stating that for any tampering function f , there exists a simulator that simulates
the tampering effect by only accessing f , i.e., without making any assumptions on the
distribution of the encoded message.

The main application of non-malleable codes that motivated the seminal work by
Dziembowski et al. [39] is the protection of cryptographic implementations from active
physical attacks against memory, known as tampering attacks. In this setting, the adver-
sary modifies the memory of the cryptographic device, receives the output of the compu-
tation, and tries to extract sensitive information related to the private memory. Security
against such types of attacks can be achieved by encoding the private memory of the
device using non-malleable codes. Besides that, various applications of non-malleable
codes have been proposed in subsequent works, such as CCA secure encryption schemes
[29] and non-malleable commitments [4].

Due to their important applications, constructing non-malleable codes has received
a lot of attention over recent years. As non-malleability against general functions is
impossible [39], various subclasses of tampering functions have been considered, such as
split-state functions [1–3,38,39,51,55], bit-wise tampering and permutations [4,5,39],
bounded-size function classes [45], bounded depth/fan-in circuits [14], space-bounded
tampering [42], and others (cf. Sect. 1.4). One characteristic shared by those function
classes is that they allow full access to the codeword, while imposing structural or
computational restrictions to the way the function computes over the input. In this work,
we initiate a comprehensive study on non-malleability for functions that receive partial
access over the codeword, which is an important yet overlooked class, as we elaborate
below.
The class of partial functions. The class of partial functions contains all functions

that read/write on an arbitrary subset of codeword bits with specific cardinality. The
elements of the subset can be chosen selectively or adaptively. Concretely, let c be a
codeword with length ν. For α ∈ [0, 1), the function class Fαν (or Fα for brevity)
consists of all functions that operate over any subset of bits of c with cardinality at most
αν, while leaving the remaining bits unseen and intact. The work of Cheraghchi and
Guruswami [27] explicitly defines this class and uses a subclass (the one containing
functions that always touch the first αν bits of the codeword) in a negative way, namely
as the tool for deriving capacity lower bounds for information-theoretic non-malleable
codes against split-state functions. Partial functions were also studied implicitly by Faust
et al. [45], while aiming for non-malleability against bounded-size circuits.1

1 Specifically, in [45], the authors consider a model where a common reference string (CRS) is available,
with length roughly logarithmic in the size of the tampering function class; as a consequence, the tampering
function is allowed to read/write the whole codeword while having only partial information over the CRS.
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Even though capacity lower bounds for partial functions have been derived (cf. [27]),
our understanding about explicit constructions is still limited. Existential results can be
derived by the probabilistic method, as shown in prior works [27,39],2 but they do not
yield explicit constructions. On the other hand, the capacity bounds do not apply to
the computational setting, which could potentially allow more practical solutions. We
believe that this is a direction that needs to be explored, as besides the theoretical interest,
partial functions is a natural model that complies with existing attacks that require partial
access to the registers of the cryptographic implementation [16,19–21,63].3

Besides the importance of partial functions in the active setting, i.e., when the function
is allowed to partially read/write the codeword, the passive analogue of the class, i.e.,
when the function is only given read access over the codeword, matches the model con-
sidered by All-Or-Nothing Transforms (AONTs), which is a notion originally introduced
by Rivest [60], providing security guarantees similar to those of leakage resilience: read-
ing an arbitrary subset (up to some bounded cardinality) of locations of the codeword
does not reveal the underlying message. As non-malleable codes provide privacy, non-
malleability for partial functions is the active analogue of (and in fact implies) AONTs,
that find numerous applications [22,23,59,60,62].
Plausibility. At a first glance, one might think that partial functions better comply

with the framework of error-correction/detection codes (ECC/EDC), as they do not
touch the whole codeword. However, if we allow the adversary to access asymptotically
almost the entire codeword (which can be more than the minimum distance that an
ECC can achieve), it is conceivable it can use this generous access rate, i.e., the fraction
of the codeword that can be accessed (see below), to create correlated encodings; thus,
we believe solving non-malleability in this setting is a natural question. Additionally,
ECC/EDC cannot guarantee security against selective failure attack for high access rate
tampering adversaries and thus provide weaker security compared with the simulation-
based non-malleable codes. Below we elaborate.

We illustrate the separation between the notions using the following example. Consider
the set of partial functions that operate either on the right or on the left half of the
codeword (the function chooses if it is going to be left or right), and the trivial encoding
scheme that on input message s outputs (s, s). The decoder, on input (s, s′), checks
if s = s′, in which case it outputs s, otherwise it outputs ⊥. This scheme is clearly
an EDC against the aforementioned function class,4 as the output of the decoder is
in {s,⊥}, with probability 1; however, it is considered malleable since the tampering
function can create encodings whose validity depends on the message. On the other hand,
an ECC would provide a trivial solution in this setting; however, it requires restriction
of the adversarial access fraction to 1/2 (of the codeword); by accessing more than this
fraction, the attacker can possibly create invalid encodings depending on the message,
as general ECCs do not provide privacy. Thus, the ECC/EDC setting is inapt against this
type of selective failure tampering in the presence of attackers that access almost the

2Informally, prior works [27,39] showed existence of non-malleable codes for classes of certain bounded
cardinalities. The results cover the class of partial functions.

3The attacks by [16,20,21] require the modification of a single (random) memory bit, while in [19] a
single error per each round of the computation suffices. In [63], the attack requires a single faulty byte.

4It is not an ECC as the decoder does not know which side has been modified by the tampering function.
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entire codeword. Later in this section, we provide an extensive discussion on challenges
of non-malleability for partial functions.

Besides the plausibility and the lack of a comprehensive study, partial functions can
potentially allow stronger primitives, as constant functions are excluded from the class.
This is similar to the path followed by Jafargholi and Wichs [49], aiming to achieve
tamper detection (cf. Sect. 1.4) against a class of functions that implicitly excludes
constant functions and the identity function. In this work, we prove that this intuition
holds, by showing that partial functions allow a stronger primitive that we define as
non-malleability with manipulation detection (MD-NMC), which guarantees that any
tampered codeword will either decode to the original message or to ⊥, and additionally,
the outcome can be simulated without knowing the underlying message. This implies
that the notion can defend against the selective failure tampering attacks, as the decoding
of the tampered outcome would not only be either the original message or ⊥, but also
independent of the underlying message. Thus, MD-NMC is not subject to the selective
failure attacks, providing stronger security than what ECC/EDC can provide as we
argued above.

Given the above, we believe that partial functions is an interesting and well-motivated
model. The goal of this work is to answer the following (informally stated) question:

Is it possible to construct efficient (high information rate) non-malleable
codes for partial functions, while allowing the attacker to access almost the
entire codeword?

We answer the above question in the affirmative. Before presenting our results (cf.
Sect. 1.1) and the high level ideas behind our techniques (cf. Sect. 1.2), we identify the
several challenges that are involved in tackling the problem.
Challenges. We first define some useful notions used throughout the paper.

• Information rate: the ratio of message to codeword length, as the message length
goes to infinity.

• Access rate: the fraction of the number of bits that the attacker is allowed to access
over the total codeword length, as the message length goes to infinity.

The access rate measures the effectiveness of a non-malleable code in the partial function
setting and reflects the level of adversarial access to the codeword. In this work, we aim
at constructing non-malleable codes for partial functions with high information rate and
high access rate, i.e., both rates should approach 1 simultaneously. Before discussing the
challenges posed by this requirement, we first review some known impossibility results.
First, non-malleability for partial functions with concrete access rate 1 is impossible,
as the function can fully decode the codeword and then re-encode a related message
[39]. Second, information-theoretic non-malleable codes with constant information rate
(e.g., 0.5) are not possible against partial functions with constant access rate [27],5 and
consequently, solutions in the information-theoretic settings such as ECC and Robust
Secret Sharing (RSS) do not solve our problem. Based on these facts, in order to achieve

5Informally, in [27] (Theorem 5.3) the authors showed that any information-theoretic non-malleable code
with a constant access rate and a constant information rate must have a constant distinguishing probability.
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our goal, the only path is to explore the computational setting, aiming for access rate at
most 1 − ε, for some ε > 0.

At a first glance, one might think that non-malleability for partial functions is easier
to achieve, compared to other function classes, as partial functions cannot touch the
whole codeword. Having that in mind, it would be tempting to conclude that existing
designs/techniques with minor modifications are sufficient to achieve our goal. However,
we will show that this intuition is misleading, by pointing out why prior approaches fail
to provide security against partial functions with high access rate.

The current state of the art in the computational setting considers tools such as (Authen-
ticated) Encryption [1,35,36,41,51,55], non-interactive zero-knowledge (NIZK) proofs
[35,41,43,55], and �-more extractable collision resistant hashes (ECRH) [51], where
others use KEM/DEM techniques [1,36]. Those constructions share a common struc-
ture, incorporating a short secret key sk (or a short encoding of it), as well as a long
ciphertext, e, and a proof π (or a hash value). Now, consider the partial function f that
gets full access to the secret key sk and a constant number of bits of the ciphertext e, par-
tially decrypts e and modifies the codeword depending on those bits. Then, it is not hard
to see that non-malleability falls apart as the security of the encryption no longer holds.
The attack requires access rate only O((|sk|)/(|sk| + |e| + |π |)), for [35,41,55] and
O(poly(k)/|s|) for [1,36,51]. A similar attack applies to [43], which is in the continual
setting.

One possible route to tackle the above challenges is to use an encoding scheme over
the ciphertext, such that partial access over it does not reveal the underlying message.6

The guarantees that we need from such a primitive resemble the properties of AONTs;
however, this primitive does not provide security against active, i.e., tampering, attacks.
Another approach would be to use Reconstructable Probabilistic Encodings [14] which
provide error-correcting guarantees, yet still it is unknown whether we can achieve
information rate 1 for such a primitive. In addition, the techniques and tools for protecting
the secret key can be used to achieve optimal information rate as they are independent
of the underlying message, yet at the same time, they become the weakest point against
partial functions with high access rate. Thus, the question is how to overcome the above
challenges, allowing access to almost the entire codeword.

In this paper, we solve the challenges presented above based on the following ob-
servation: in existing solutions the structure of the codeword is fixed and known to
the attacker, and independently of the primitives that we use, the only way to resolve
the above issues is by hiding the structure via randomization. This requires a structure
recovering mechanism that can either be implemented by an “external” source, or oth-
erwise the structure needs to be reflected in the codeword in some way that the attacker
cannot exploit. In the present work, we implement this mechanism in both ways, by
first proposing a construction in the common reference string (CRS) model, and then
we show how to remove the CRS using slightly bigger alphabets. Refer to Sect. 1.2 for
a technical overview.

6In the presence of NIZKs, we can have attacks with low access rate that read sk, e, and constant number
of bits from the proof.
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1.1. Our Results

We initiate the study of non-malleable codes with manipulation detection (MD-NMC),
and we present the first (to our knowledge) construction for this type of codes. We
focus on achieving simultaneously high information rate and high access rate, in the
partial functions setting, which by the results of [27], it can be achieved only in the
computational setting.

Our contribution is threefold. First, we construct an information rate 1 non-malleable
code in the CRS model, with access rate 1 − 1/Ω(log k), where k denotes the security
parameter. Our construction combines Authenticated Encryption together with an inner
code that protects the key of the encryption scheme (cf. Sect. 1.2). The result is informally
summarized in the following theorem.

Theorem 1.1. (Informal) Assuming one-way functions, there exists an explicit com-
putationally secure MD-NMC over the binary alphabet in the CRS model, against
selective selection of codeword locations, achieving information rate 1 and access rate
1 − 1/Ω(log k), where k is the security parameter.

Our scheme, in order to achieve security with error 2−Ω(k), produces codewords of
length |s| + O(k2 log k), where |s| denotes the length of the message and uses a CRS
of length O(k2 log k log(|s| + k)). We note that our construction does not require the
CRS to be fully tamper-proof, and we refer the reader to Sect. 1.2 for a discussion on
the topic.

In our second result, we show how to remove the CRS by slightly increasing the
size of the alphabet. Our result is a computationally secure MD-NMC in the standard
model, achieving information and access rate 1−1/Ω(log k). Our construction is proven
secure by a reduction to the security of the scheme presented in Theorem 1.1. Below,
we informally state our result.

Theorem 1.2. (Informal) Assuming one-way functions, there exists an explicit, com-
putationally secureMD-NMC in the standard model against adaptive selection of code-
word locations, with alphabet length O(log k), information rate 1 − 1/Ω(log k) and
access rate 1 − 1/Ω(log k), where k is the security parameter.

Our scheme produces codewords of length |s|(1 + 1/O(log k)) + O(k2 log2 k).
In Sect. 1.2, we consider security against continuous attacks. We show how to achieve

a weaker notion of continuous security, while avoiding the use of a self-destruct mecha-
nism, which was originally achieved by [41]. Our notion is weaker than full continuous
security [43], since the codewords need to be updated with a mechanism that is heavier
than self-destruct, still it is deterministic and more efficient than the re-encoding process
of [39,55]; it uses only shuffling and refreshing operations, i.e., we avoid cryptographic
computations such as group operations and NIZKs. We call such an update mechanism
a “light update.” Informally, we prove the following result.

Theorem 1.3. (Informal) One-way functions imply continuous non-malleable codes
with deterministic light updates and without self-destruct against adaptive selection of
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codeword locations, in the standard model, with alphabet length O(log k), information
rate 1 − 1/Ω(log k) and access rate 1 − 1/Ω(log k), where k is the security parameter.

As we have already stated, non-malleable codes against partial functions implyAONTs
[60]. The first AONT was presented by Boyko [22] in the random oracle model, and
then, Canetti et al. [23] consider AONTs with public/private parts as well as a secret-
only part, which is the full notion. Canetti et al. [23] provide efficient constructions for
both settings, yet the fully secure AONT (called “secret-only” in that paper) is based on
non-standard assumptions.7

Assuming one-way functions, our results yield efficient, fully secure AONTs, in the
standard model. This resolves, the open question left in [23], where the problem of
constructing AONT under standard assumptions was posed. Our result is presented in
the following theorem.

Theorem 1.4. (Informal) Assuming one-way functions, there exists an explicit secret-
onlyAONT in the standardmodel,with information rate1andaccess rate1−1/Ω(log k),
where k is the security parameter.

The above theorem is derived by the Informal Theorem 1.1, yielding an AONT whose
output consists of both the CRS and the codeword produced by the NMC scheme in the
CRS model. A similar theorem can be derived with respect to the Informal Theorem 1.2.
Finally, and in connection to AONTs that provide leakage resilience, our results imply
leakage-resilient codes [55] for partial functions. In Sect. 2.3, we present the connection
between MD-NMC and AONT with a formal description.

We provide concrete instantiations of our constructions, using textbook instantiations
[50] for the underlying authenticated encryption scheme. For completeness, we also
provide information theoretic variants of our constructions that maintain high access
rate and thus necessarily sacrifice information rate.

1.2. Technical Overview

On the manipulation detection property. In the present work, we exploit the fact that
the class of partial functions does not include constant functions and we achieve a notion
that is stronger than non-malleability, which we call non-malleability with manipulation
detection. We formalize this notion as a strengthening of non-malleability, and we show
that our constructions achieve this stronger notion. Informally, manipulation detection
ensures that any tampered codeword will either decode to the original message or to ⊥.
A MD-NMC in the CRS model. For the exposition of our ideas, we start with a naive
scheme (which does not work) and then show how we resolve all the challenges. Let
(KGen,E,D) be a (symmetric) authenticated encryption scheme and consider the fol-
lowing encoding scheme: to encode a message s, the encoder computes (sk||e), where
e ← Esk(s) is the ciphertext and sk ← KGen(1k), is the secret key. We observe that
the scheme is secure if the tampering function can only read/write on the ciphertext,
e, assuming the authenticity property of the encryption scheme, however, restricting

7In [62] the authors present a deterministic AONT construction that provides weaker security.
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(Bits)

z

e ← Encryptsk(s)

← SecretShare sk||sk3

Secret key: sk

Message: s

Locations defined by the CRS

Fig. 1. Description of the scheme in the CRS model.

access to sk, which is short, is unnatural and makes the problem trivial. On the other
hand, even partial access to sk, compromises the authenticity property of the scheme,
and even if there is no explicit attack against the non-malleability property, there is no
hope for proving security based on the properties of (KGen,E,D), in black-box way.

A solution to the above problems would be to protect the secret key using an inner
encoding, yet the amount of tampering is now restricted by the capabilities of the inner
scheme, as the attacker knows the exact locations of the “sensitive” codeword bits,
i.e., the non-ciphertext bits. In our construction, we manage to protect the secret key
while avoiding the bottleneck on the access rate by designing an inner encoding scheme
that provides limited security guarantees when used standalone, still when it is used in
conjunction with a shuffling technique that permutes the inner encoding and ciphertext
bit locations, it guarantees that any attack against the secret key will create an invalid
encoding with overwhelming probability, even when allowing access to almost the entire
codeword (Figs. 1, 2).

Our scheme is depicted in Fig. 3 and works as follows: on input message s, the encoder
(i) encrypts the message by computing sk ← KGen(1k) and e ← Esk(s), (i i) computes
an m-out-of-m secret sharing z of (sk||sk3) (interpreting both sk and sk3 as elements
in some finite field),8 and outputs a random shuffling of (z||e), denoted as PΣ(z||e),
according to the common reference string Σ . Decoding proceeds as follows: on input
c, the decoder (i) inverts the shuffling operation by computing (z||e) ← P−1

Σ (c), (i i)
reconstructs (sk||sk′), and (i i i) if sk3 = sk′, outputs Dsk(e), otherwise, it outputs ⊥.

Intuitively, the properties that we require from the inner encoding scheme, i.e., the
secret sharing and shuffling of (sk||sk3), are similar to those provided by a robust secret
sharing scheme [58], which guarantees tamper detection during the reconstruction phase.
In our work, we additionally require simulatability of whether the reconstructed message
will be the same or ⊥. In Sect. 3, we present the intuition behind our construction and a
formal security analysis. Our instantiation yields a rate 1 computationally secure MD-
NMC in the CRS model, with access rate 1 − 1/Ω(log k) and codewords of length
|s| + O(k2 log k), under mild assumptions (e.g., one-way functions).

8In general, any polynomial of small degree, e.g., skc , would suffice, depending on the choice of the
underlying finite field. Using sk3 suffices when working over fields of characteristic 2. We could also use sk2

over fields of characteristic 3 (but not of characteristic 2).
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On the CRS. In our work, the tampering function, and consequently the codeword
locations that the function is given access to, are fixed before sampling the CRS and this
is critical for achieving security. However, proving security in this setting is non-trivial.
In addition, the tampering function receives full access to the CRS when tampering with
the codeword. This is in contrast to the work by Faust et al. [45] in the information-
theoretic setting, where the (internal) tampering function receives partial information
over the CRS.

In addition, our results tolerate adaptive selection of the codeword locations, with
respect to the CRS, in the following way: each time the attacker requests access to a
location, he also learns if it corresponds to a bit of z or e, together with the index of that
bit in the original string. In this way, the CRS is gradually disclosed to the adversary
while picking codeword locations.

Finally, our CRS sustains a substantial amount of tampering that depends on the
codeword locations chosen by the attacker: an attacker that gets access to a sensitive
codeword bit is allowed to modify the part of the CRS that defines the location of that
bit in the codeword. The attacker is allowed to modify all but O(k log(|s| + k)) bits of
the CRS, that is of length O(k2 log k log(|s| + k)). To our knowledge, this is the first
construction that tolerates, even partial modification of the CRS. In contrast, existing
constructions in the CRS model are either using NIZKs [35,41,43,55], or they are based
on the knowledge of exponent assumption [51], thus tampering access to the CRS might
compromise security.
Removing the CRS. A first approach would be to store the CRS inside the codeword
together with PΣ(z||e) and give to the attacker read/write access to it. However, the
tampering function, besides getting direct (partial) access to the encoding of sk, it also
gets indirect access to it by (partially) controlling the CRS. Then, it can modify the CRS
in way such that, during decoding, ciphertext locations of its choice will be treated as
bits of the inner encoding, z, increasing the tampering rate against z significantly. This
makes the task of protecting sk hard, if not impossible (unless we restrict the access rate
significantly).

To handle this challenge, we embed the structure recovering mechanism inside the
codeword and we emulate the CRS effect by increasing the size of the alphabet, giving
rise to a block-wise structure.9 Notice that, non-malleable codes with large alphabet
size (i.e., poly(k) + |s| bits) might be easy to construct, as we can embed in each
codeword block the verification key of a signature scheme together with a secret share
of the message, as well as a signature over the share. In this way, partial access over the
codeword does not compromise the security of the signature scheme while the message
remains private, and the simulation is straightforward. This approach, however, comes
with a large overhead, decreasing the information rate and access rate of the scheme
significantly. In general, and similar to error correcting codes, we prefer smaller alphabet
sizes—the larger the size is, the more coarse access structure is required, i.e., in order
to access individual bits we need to access the blocks that contain them. In this work,
we aim at minimizing this restriction by using small alphabets as below.

9Bigger alphabets have been also considered in the context of error-correcting codes, in which the codeword
consists of symbols.
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z

e ← Encryptsk(s)

← SecretShare sk||sk3

Secret key: sk

Message: s

1||index||z[index]

Randomly chosen blocks

0||epart

(Blocks) (Contents)

Fig. 2. Description of the scheme in the standard model.

Our approach on the problem is the following. We increase the alphabet size to
O(log k) bits, and we consider two types of blocks: (i) sensitive blocks, in which we
store the inner encoding, z, of the secret key, sk, and (i i) non-sensitive blocks, in which
we store the ciphertext, e, that is fragmented into blocks of size O(log k). The first bit of
each block indicates whether it is a sensitive block, i.e., we set it to 1 for sensitive blocks
and to 0, otherwise. Our encoder works as follows: on input message s, it computes z, e,
as in the previous scheme and then uses sampling without replacement to generate the
indices, ρ1, . . . , ρ|z|, for the sensitive blocks. Then, for every i ∈ {1, . . . , |z|}, ρi is a sen-
sitive block, with contents (1||i ||z[i]), while the remaining blocks keep ciphertext pieces
of size O(log k). Decoding proceeds as follows: on input codeword C = (C1, . . . ,Cbn),
for each i ∈ [bn], if Ci is a non-sensitive block, its data will be part of e, otherwise, the
last bit of Ci will be part of z, as it is dictated by the index stored in Ci . If the number
of sensitive blocks is not the expected, the decoder outputs ⊥, otherwise, z, e, have
been fully recovered and decoding proceeds as in the previous scheme. Our scheme is
depicted in Fig. 5.

The security of our construction is based on the fact that, due to our shuffling technique,
the position mapping will not be completely overwritten by the attacker, and as we prove
in Sect. 4, this suffices for protecting the inner encoding over sk. We prove security of
the current scheme (cf. Theorem 4.8) by a reduction to the security of the scheme in the
CRS model. Our instantiation yields a rate 1 − 1/Ω(log k) MD-NMC in the standard
model, with access rate 1 − 1/Ω(log k) and codewords of length |s|(1 + 1/O(log k))+
O(k2 log2 k), assuming one-way functions.

It is worth pointing out that the idea of permuting blocks containing sensitive and
non-sensitive data was also considered by [61] in the context of list-decodable codes;
however, the similarity is only in the fact that a permutation is being used at some point
in the encoding process, and our objective, construction and proof are different.
Continuously non-malleable codeswith light updates.We observe that the codewords
of the block-wise scheme can be updated efficiently, using shuffling and refreshing
operations. Based on this observation, we prove that our code is secure against continuous
attacks, for a notion of security that is weaker than the original one [43], as we need
to update our codeword. However, our update mechanism is using cheap operations,
avoiding the full decoding and re-encoding of the message, which is the standard way
to achieve continuous security [39,55]. In addition, our solution avoids the usage of
a self-destruction mechanism that produces ⊥ in all subsequent rounds after the first
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round in which the attacker creates an invalid codeword, which was originally achieved
by [41], and makes an important step toward practicality.

The update mechanism works as follows: in each round, it randomly shuffles the
blocks and refreshes the randomness of the inner encoding of sk. The idea here is that,
due to the continual shuffling and refreshing of the inner encoding scheme, in each
round the attacker learns nothing about the secret key, and every attempt to modify the
inner encoding, results to an invalid key, with overwhelming probability. Our update
mechanism can be made deterministic if we further encode a seed of a PRG together
with the secret key, which is similar to the technique presented in [55].

Our results are presented in Sect. 5 (cf. Theorem 5.3), and the rates for the current
scheme match those of the one-time secure, block-wise code.

1.3. Applications

Security against passive attackers - AONTs. Regarding the passive setting, our model
and constructions find useful application in all settings where AONTs are useful (cf.
[22,23,59,60]), e.g., for increasing the security of encryption without increasing the
key-size, for improving the efficiency of block ciphers and constructing remotely keyed
encryption [22,60], and also for constructing computationally secure secret sharing [59].
Other uses of AONTs are related to optimal asymmetric encryption padding [22].
Security againstmemory tampering - (Binary alphabets, Logarithmic lengthCRS).
As with every NMC, the most notable application of the proposed model and construc-
tions is when aiming for protecting cryptographic devices against memory tampering.
Using our CRS based construction, we can protect a large tamperable memory with a
small (logarithmic in the message length) tamperproof memory, that holds the CRS.

The construction is as follows. Consider any device performing cryptographic opera-
tions, e.g., a smart card, whose memory is initialized when the card is being issued. Each
card is initialized with an independent CRS, which is stored in a tamper-proof memory,
while the codeword is stored in a tamperable memory. Due to the independency of the
CRS values, it is plausible to assume that the adversary is not given access to the CRS
prior to tampering with the card; the full CRS is given to the tampering function while it
tampers with the codeword during computation. This idea is along the lines of the only
computation leaks information model [56], where data can only be leaked during com-
putation, i.e., the attacker learns the CRS when the devices perform computations that
depend on it. We note that in this work we allow the tampering function to read the full
CRS, in contrast to [45], in which the tampering function receives partial information
over it (our CRS can also be tampered, cf. the above discussion). In subsequent rounds,
the CRS and the codeword are being updated by the device, which is the standard way
to achieve security in multiple rounds while using a one-time NMC[39].
Security against memory tampering - (Logarithmic length alphabets, no CRS).
In modern architectures, data are stored and transmitted in chunks; thus, our block-
wise encoding scheme can provide tamper resilience in all these settings. For instance,
consider the case of arithmetic circuits, having memory consisting of consecutive blocks
storing integers. Considering adversaries that access the memory of such circuits in a
block-wise manner, is a plausible scenario. In terms of modeling, this is similar to
tamper resilience for arithmetic circuits [47], in which the attacker, instead of accessing
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individual circuit wires carrying bits, accesses wires carrying integers. The case is similar
for RAM computation where the CPU operates over 32 or 64 bit registers (securing
RAM programs using NMC was also considered by [34–36,44]). We note that the
memory segments in which the codeword blocks are stored do not have to be physically
separated, as partial functions output values that depend on the whole input in which
they receive access to. This is in contrast to the split-state setting in which the tampering
function tampers with each state independently, and thus, the states need to be physically
separated.
Security against adversarial channels. In Wiretap Channels [17,57,64] the goal is to
communicate data privately against eavesdroppers, under the assumption that the channel
between the sender and the adversary is “noisier” than the channel between the sender and
the receiver. The model that we propose and our block-wise construction can be applied
in this setting to provide privacy against a wiretap adversary under the assumption that
due to the gap of noise there is a small (of rate o(1)) fraction of symbols that are delivered
intact to the receiver and dropped from the transmission to the adversary. This enables
private, key-less communication between the parties, guaranteeing that the receiver will
either receive the original message, or ⊥. In this way, the communication will be non-
malleable in the sense that the receiver cannot be lead to output ⊥ depending on any
property of the plaintext. Our model allows the noise in the receiver side to depend on
the transmission to the wiretap adversary, that tampers with a large (of rate 1 − o(1))
fraction of symbols, leading to an “active” variant of the wiretap model.

1.4. Related Work

Manipulation detection has been considered independently of the notion of
non-malleability, in the seminal paper by Cramer et. al. [30], who introduced the notion
of algebraic manipulation detection (AMD) codes, providing security against additive
attacks over the codeword. A similar notion was considered by Jafargholi and Wichs
[49], called tamper detection, aiming to detect malicious modifications over the code-
word, independently of how those affect the output of the decoder. Tamper detection
ensures that the application of any (admissible) function to the codeword leads to an
invalid decoding.

Non-malleable codes for other function classes have been extensively studied, such as
constant split-state functions [26,37], block-wise tampering [24,28], while the work of
[2] develops beautiful connections among various function classes. There has been even
richer classes studied in recent years, such as small depth circuits [12], bounded-degree
polynomials over finite fields [11], and bounded polynomial time/depth functions [13,
33,40]. The results [11,12] are information-theoretic, and the others [13,33,40] require
stronger complexity/cryptographic assumptions. On the other hand, the constructions of
this work only rely on the minimal cryptographic assumption—the existence of one-way
functions.

In addition, other variants of non-malleable codes have been proposed, such as con-
tinuous non-malleable codes [43], augmented non-malleable codes [1], locally decod-
able/updatable non-malleable codes [25,34–36,44], and non-malleable codes with split-
state refresh [41]. In [15], the authors consider AC0 circuits, bounded-depth decision
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trees and streaming, space-bounded adversaries. Leakage resilience was also considered
as an additional feature, e.g., by [25,36,41,53,55].

A related line of work in tamper resilience aims to protect circuit computation against
tampering attacks on circuit wires [31,32,46,48] or gates [54], [9,10] aim at protecting
circuits against hardware Trojans, while [18] relies on trusted hardware. In this setting,
using non-malleable codes for protecting the circuit’s private memory is an option, still
in order to achieve security the encoding and decoding procedures should be protected
against fault injection attacks using the techniques from [31,32,46,48,54]. The work
of [52] is the first that constructs (one-time) NMCs for the class of partial functions
that tamper with almost the entire codeword. Whether NMCs could be useful in secure
messaging remains an interesting open question [6–8].

2. Preliminaries

In this section, we present basic definitions and notation that will be used throughout
the paper.

Definition 2.1. (Notation) Let t , i , j , be nonnegative integers. Then, [t] is the set
{1, . . . , t}. For bit strings x , y, x ||y, is the concatenation of x , y, |x | denotes the length
of x , for i ∈ [|x |], x[i] is the i-th bit of x ,

�t
j=1 x j := x1|| . . . ||xt , and for i ≤ j ,

x[i : j] = x[i]|| . . . ||x[ j]. For a set I , |I |, P(I ), are the cardinality and power set of
I , respectively, and for I ⊆ [|x |], x|I is the projection of the bits of x with respect to
I . For a string variable c and value v, c ← v denotes the assignment of v to c, and
c[I ] ← v, denotes an assignment such that c|I equals v. For a distribution D over a
set X , x ← D denotes sampling an element x ∈ X , according to D, x ← X denotes
sampling a uniform element x from X , UX denotes the uniform distribution over X
and x1, . . . , xt

rs← X denotes sampling a uniform subset of X with t distinct elements,
using rejection sampling. The statistical distance between two random variables X, Y ,
is denoted by Δ(X,Y ), “≈” and “≈c”, denote statistical and computational indistin-
guishability, respectively, and negl(k) denotes an unspecified, negligible function, in
k.

2.1. Non-malleable Codes

Below, we define coding schemes, based on the definitions of [39,55].

Definition 2.2. (Coding scheme [39]) A (κ, ν)-coding scheme, κ, ν ∈ N, is a pair of
algorithms (Enc,Dec) such that: Enc : {0, 1}κ → {0, 1}ν is an encoding algorithm,
Dec : {0, 1}ν → {0, 1}κ ∪ {⊥} is a decoding algorithm, and for every s ∈ {0, 1}κ ,
Pr[Dec(Enc(s)) = s] = 1, where the probability runs over the randomness used by
(Enc,Dec).

We can easily generalize the above definition for larger alphabets, i.e., by considering
Enc : {0, 1}κ → Γ ν and Dec : Γ ν → {0, 1}κ ∪ {⊥}, for some alphabet Γ .



17 Page 14 of 48 A. Kiayias et al.

Definition 2.3. (Coding scheme in the Common Reference String (CRS) Model
[55]) A (κ, ν)-coding scheme in the CRS model, κ, ν ∈ N, is a triple of algorithms
(Init,Enc,Dec) such that: Init is a randomized algorithm which receives 1k , where k de-
notes the security parameter, and produces a common reference string Σ ∈ {0, 1}poly(k),
and (Enc(1k,Σ, ·),Dec(1k,Σ, ·)) is a (κ, ν)-coding scheme, κ, ν = poly(k).

For brevity, 1k will be omitted from the inputs of Enc and Dec.
Below we definenon-malleable codeswithmanipulation detection, which is a stronger

notion than the one presented in [39], in the sense that the tampered codeword will always
decode to the original message or to ⊥. Our definition is with respect to alphabets, as in
Sect. 4 we consider alphabets of size O(log k).

Definition 2.4. (Non-Malleability with Manipulation Detection (MD-NMC)) Let Γ

be an alphabet, let (Init,Enc,Dec) be a (κ, ν)-coding scheme in the common reference
string model, and F be a family of functions f : Γ ν → Γ ν . For any f ∈ F and
s ∈ {0, 1}κ , define the tampering experiment

Tamper fs :=
{

Σ ← Init(1k), c ← Enc(Σ, s), c̃ ← fΣ(c), s̃ ← Dec(Σ, c̃)
Output : s̃.

}

which is a random variable over the randomness of Enc, Dec and Init. The coding
scheme (Init,Enc,Dec) is non-malleable with manipulation detection with respect to
the function family F , if for all, sufficiently large k and for all f ∈ F , there exists a
distribution D(Σ, f ) over {0, 1}κ ∪ {⊥, same∗}, such that for all s ∈ {0, 1}κ , we have:

{
Tamper fs

}
k∈N ≈

{
s̃ ← D(Σ, f )

Output s if s̃ = same∗, and ⊥ otherwise

}
k∈N

where Σ ← Init(1k) and D(Σ, f ) is efficiently samplable given access to f , Σ . Here,
“≈” may refer to statistical, or computational, indistinguishability.

In the above definition, f is parameterized by Σ to differentiate tamper-proof input,
i.e., Σ , from tamperable input, i.e., c.

2.2. Partial Functions

Below we define the tampering function class that will be used throughout the paper.

Definition 2.5. (The class of partial functions Fαν
Γ (or Fα)) Let Γ be an alphabet,

α ∈ [0, 1) and ν ∈ N. Any f ∈ Fαν
Γ , f : Γ ν → Γ ν , is indexed by a set I ⊆ [ν],

|I | ≤ αν, and a function f ′ : Γ αν → Γ αν , such that for any x ∈ Γ ν , ( f (x))|I = f ′ (x|I
)

and ( f (x))|Ic = x|Ic , where I c := [ν]\I .

For simplicity, in the rest of the text we will use the notation f (x) and f (x|I ) (instead
of f ′ (x|I

)
). Also, the length of the codeword, ν, according to Γ , will be omitted from

the notation, and whenever Γ is omitted we assume that Γ = {0, 1}. In Sect. 3, we
consider Γ = {0, 1}, while in Sect. 4, Γ = {0, 1}O(log k), i.e., the tampering function
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operates over blocks of size O(log k). When considering the CRS model, the functions
are parameterized by the common reference string.

The following lemma is useful for proving security throughout the paper.

Lemma 2.6. Let (Enc,Dec) be a (κ, ν)-coding scheme andF be a family of functions.
For every f ∈ F and s ∈ {0, 1}κ , define the tampering experiment

Tamper fs :=
{

c ← Enc(s), c̃ ← f (c), s̃ ← Dec(c̃)
Output same∗ if s̃ = s, and s̃ otherwise.

}

which is a random variable over the randomness of Enc and Dec. (Enc,Dec) is an
MD-NMC with respect to F , if for any f ∈ F and all sufficiently large k: (i) for

any pair of messages s0, s1 ∈ {0, 1}κ ,
{
Tamper fs0

}
k∈N ≈

{
Tamper fs1

}
k∈N, and (i i)

for any s, Pr
[
Tamper fs /∈ {⊥, s}

]
≤ negl(k). Here, “≈” may refer to statistical, or

computational, indistinguishability.

Proof. By Definition 2.4, we have that (Enc,Dec) is anMD-NMC againstF , if for any
f ∈ F , there exists an efficiently samplable distribution D f over {0, 1}k ∪{⊥, same∗},
such that for any message s

{
c ← Enc(s), c̃ ← f (c), s̃ ← Dec(c̃)

Output : s̃
}

≈
{

s̃ ← D f

Output s if s̃ = same∗, and ⊥ otherwise

}
(1)

Let 0 be the zero message in {0, 1}κ . For any f ∈ F , we define D f as follows:

– Sample c ← Enc(0) and compute c̃ ← f (c), s̃ ← Dec(c̃).
– Output: if s̃ = 0, set s̃ ← same∗, else, s̃ ← ⊥. Output s̃.

From the above, we have that for any s,

⎧⎨
⎩

s̃ ← D f

Output s if s̃ = same∗, and ⊥ otherwise

⎫⎬
⎭

≡
⎧⎨
⎩
{

c ← Enc(0), c̃ ← f (c), s̃ ← Dec(c̃)
if s̃ = 0, s̃ ← same∗, else, s̃ ← ⊥. Output s̃

}

Output s if s̃ = same∗, and ⊥ otherwise

⎫⎬
⎭

≈
⎧⎨
⎩
{

c ← Enc(s), c̃ ← f (c), s̃ ← Dec(c̃)
if s̃ = s, s̃ ← same∗, else, s̃ ← ⊥. Output s̃

}

Output s if s̃ = same∗, and ⊥ otherwise

⎫⎬
⎭

≈
{
c ← Enc(s), c̃ ← f (c), s̃ ← Dec(c̃)

Output : s̃
}

,

where the first relation follows by the definition of D f , the second one follows from
the main assumption which states that for any pair of messages s0, s1, Tamper fs0

≈
Tamper fs1

, and the third one follows from the assumption that Pr
[
Tamper fs /∈ {⊥, s}

]
≤
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negl(k). This concludes our proof since for any f ∈ F and any message s, Relation 1
is satisfied. �

For coding schemes in the CRS model the above lemma is similar, and Tamper fs
internally samples Σ ← Init(1k).2.3. All-Or-Nothing-Transform

Here we present the definition of all-or-nothing-transform (AONT), by adopting the
notion of [23] and presenting it with respect to coding schemes against partial codeword
leakage.

Definition 2.7. Let Γ be an alphabet, and (Enc,Dec) be a (κ, ν) coding scheme over
the alphabet Γ . The encoding is anAONT for parameter α ∈ (0, 1) if for any pair of mes-
sages (s0, s1) and every subset I ⊂ [ν]with cardinalityαν, we have

(
s0, s1,Enc(s0)|I

) ≈(
s0, s1,Enc(s1)|I

)
, where the indistinguishability may be information-theoretic or com-

putational.

Next, we present a simple theorem, showing that MD-NMC against partial functions
(with a sufficiently large access rate) implies AONT.

Theorem 2.8. Let Γ be an alphabet, and (Enc,Dec) be a (κ, ν) coding scheme over
the alpha bet Γ . Suppose the coding scheme is MD-NMC with respect to the partial
function classFα for some α > 0.5, then the coding scheme is anAONTwith parameter
α.

Proof. We first note that by Lemma 2.6, an equivalent formulation of MD-NMC against

an f ∈ Fα can be stated as: (1) for any messages s0, s1, we have
{
Tamper fs0

}
k∈N ≈{

Tamper fs1

}
k∈N, and (2) for any s, Pr

[
Tamper fs /∈ {⊥, s}

]
≤ negl(k).

We prove the theorem via a reduction. Assume that there exist a subset I with |I | = αν,
messages s0, s1, and a distinguisherD that breaks theAONTsecurity; then, we construct a
reductionA that uses a carefully chosen function f ∈ Fα to break theMD-NMCsecurity.
Without loss of generality, we assume that s0 and s1 are both nonzero messages.

First we define the function f : the function has hardcoded (s0, s1) and receives as input
a partial codeword C∗. f first runs the distinguisher, i.e., computes b∗ = D(s0, s1,C∗).
If b∗ = 1, then f outputs Enc(0κ)|I ; otherwise, f acts as the identity function, i.e., just
outputting the input C∗. Now, we prove that the coding scheme is not an MD-NMC.

First, we assume that Pr
[
Tamper fs /∈ {⊥, s}

]
= negl(k) for any message s. Oth-

erwise, the manipulation detection property is broken, implying a contradiction. Then,
we claim that in either case of s = s0 or s = s1, we have Tamper fs = ⊥, with
an overwhelming probability. We observe that f has changed an α > 0.5 fraction
of the codeword into Enc(0κ)|I . This effect is the same as another related tampering
function g ∈ Fα who changes a (1 − α) < 0.5 fraction of Enc(0κ) into Enc(s)
on the set [ν] \ I , meaning that Tamper fs ≈ Tamperg0κ . By assumption, we have
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Pr
[
Tamper fs ∈ {⊥, s}

]
= Pr

[
Tamperg0κ ∈ {⊥, 0κ }] = 1 − negl(k), implying that

Tamper fs = Tamperg0κ = ⊥, with overwhelming probability.

Next, we show that
{
Tamper fs0

}
k∈N �≈

{
Tamper fs1

}
k∈N. We notice that forb ∈ {0, 1},

Tamper fsb outputs ⊥ with probability the same as that ofD(s0, s1,Enc(sb)|I ) outputting
1. As the distinguisherD has a non-negligible gap outputting 1 between b = 0 and b = 1,
the two tampering experiments can be distinguished with non-negligible probability. This
breaks the non-malleability property of the coding scheme, reaching a contradiction. �

By the above theorem, we derive that any MD-NMC code against partial functions
with sufficiently large access rate, i.e., for Fα for α > 0.5, is also an AONT with
the same parameter α. On the other hand, we notice that α > 0.5 is necessary for the
theorem, as otherwise we can construct a simple counter example—first we observe
that the repetition code with majority decoding10 is an MD-NMC against Fβ for any
β < 0.5, as any tampering function in this class cannot change the outcome of the
decoding. However, this is certainly not an AONT, as reading one bit is sufficient to
recover the underlying message.

2.4. One-Time Authenticated Encryption

Below, we define the security notion of authenticated encryption required by our con-
struction of non-malleable codes.

Definition 2.9. (Authenticated encryption) Let k be the security parameter and
(KGen,E,D) be a symmetric encryption scheme. Then, (KGen,E,D) is authenticated,
semantically secure against (1-query) key recovery attacks, if it satisfies the following
properties:

1. (Correctness): For every message s, Pr[Dsk(Esk(s)) = s] = 1, where sk ←
KGen(1k).

2. (Semantic security): for any pair of messages s0, s1,
(
Esk(s0)

)
≈
(
Esk(s1)

)
,

where sk ← KGen(1k).
3. (1-query key recovery security): for any message s and any adversary A, we

have

Pr

[
sk′ = sk

∣∣∣∣ sk ← KGen(1k);
e ← Esk(s); sk′ ← A(e)

]
≤ negl(k).

4. (Unforgeability): For any algorithm A = (A1,A2),

Pr

[
ẽ �= e ∧ Dsk(ẽ) �= ⊥

∣∣∣∣ sk ← KGen(1k); (s, st) ← A1(1k);
e ← Esk(s); ẽ ← A2(e, st)

]
≤ negl(k).

10That is, to encode a bit b, the codeword is simply outputting bk (concatenation of k b’s). To decode, the
algorithm just outputs the majority.
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When the scheme is computationally secure, we consider computational indistinguisha-
bility instead of statistical, and A is PPT .

We notice that the notions of semantic security and key-recovery are not compatible
just from the definitions, i.e., key-recovery security clearly does not imply semantic
security, and the other way implication does not hold in general, i.e., if the key space is
small (e.g., one-time pad with bit messages and keys), there is always a 1/2 probability
guessing the key correctly. Nevertheless, below we instantiate two simple schemes which
satisfy the key-recovery security.

Next we provide the definition of one-time message authentication code (MAC) fol-
lowing [50].

Definition 2.10. (One-time MAC [50]) Let k be the security parameter. A message
authentication code Π = (Gen,Mac,Vrfy) is one-time ε-secure, if for all algorithms
A = (A1,A2),

Pr[Mac − forgeA,Π (k) = 1] ≤ ε,

where,

Mac − forgeA,Π (k) :
sk ← Gen(1k)
(s, st) ← A1(1k)
t ← Macsk(s)
(s̃, t̃) ← A2(t, st)
Output 1 if Vrfysk(s̃, t̃) = 1 and s̃ �= s.

Below we describe two instantiations of one-time authenticated encryption; the first
is a computationally secure rate 1 scheme, while the latter is information-theoretically
secure with a lower rate.

Instantiation 2.11. (Computationally secure authenticated encryption) Let Fr be a
pseudo-random function, Fr : {0, 1}k → {0, 1}k , let PRG be a pseudo-random gener-
ator, PRG : {0, 1}k → {0, 1}|s|, and let (MKGen,Mac,Vrfy) be a message authenti-
cation code that outputs tags of length k (cf. [50]). We define a symmetric encryption
scheme (KGen,E,D), as follows:

– KGen(1k): sample r ← {0, 1}k , mk ← MKGen(1k) and output sk = (r,mk).
– Esk(·): On input s, sample τ ← {0, 1}k , set e = (PRG(Fr (τ )) ⊕ s, τ ), t =
Macmk(e), and output (e, t).

– Dsk(·): On input (e, t), if Vrfymk(e, t) = 1, parse e as (e′, τ ) and output s =(
PRG(Fr (τ )) ⊕ e′), otherwise output ⊥.

It is not hard to see that the scheme defined above is a rate 1, computationally secure
authenticated encryption scheme [50]. The semantic security follows from the security
of PRF/PRG. From the security of the pseudo-random function, the scheme is also secure
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against 1-query key recovery attack. Particularly, from any adversary who can break the
1-query key recovery security, we can easily derive a reduction who can invert the PRF,
i.e., recovering the key r given (Fr (τ ), τ ). The reduction can then be used to distinguish
Fr (·) from the truly random function given oracle access, as the truly random function
cannot be compressed into a short key r , following the compression argument.

Next we describe a simple one-time information theoretic construction.

Instantiation 2.12. (Information-theoretically secure authenticated encryption) Let
H, H̄, be pair-wise independent hash function families, such that for any h ∈ H,
h : {0, 1}O(|s|) → {0, 1}|s| and for any h̄ ∈ H̄, h̄ : {0, 1}O(|s|) → {0, 1}|s|. We de-
fine a symmetric encryption scheme (KGen,E,D), as follows:

– KGen(1k): sample h ← H, h̄ ← H̄ and set sk = (h, h̄).
– Esk(·): On input s, sample r ← {0, 1}|s|, set e = (r ||(h(r) + s)) and output

(e, h̄(e)).
– Dsk(·): On input (e, t), if h̄(e) = t , parse e as (r ||e′) and output s = h(r) + e′,
otherwise output ⊥.

It is easy to verify that the security (i.e., semantic, unforgeability) of the above scheme
comes from the pair-wise independence of H, H̄. As long as |h| > |s| + k, then the
conditional entropy of sk given e is still greater to k, meaning that the information-
theoretic adversary has at most 2−k probability to predict sk successfully.

2.5. Secret Sharing

In this section, we present the definition and a concrete instantiation of the m-out-of-m
secret sharing scheme later used in this work.

Definition 2.13. An m-out-of-m secret sharing scheme has the following two algo-
rithms (SSm,Recm) that works as follow:

– SSm : on input x outputs shares (z1, . . . , zm). Denote z = �m
i=1 zi , where

�
denotes

concatenation.
– Recm : on input shares (z1, . . . , zm) (denoted as z as above) outputs the message x .

The correctness requires thatRecm(SSm(x)) = x holds with probability 1. The security
requires that the message x is information-theoretically hidden given any proper subset
of shares (z1, . . . , zm).

Instantiation. Given any finite field GF(pe) where p is some prime and e is some
non-negative integer, there is a simple additive m-out-of-m secret sharing scheme that
works as follow. SSm takes input x ∈ GF(pe) and samples uniformly random shares
(z1, . . . , zm) where each zi ∈ GF(pe) and x = ∑i∈[m] zi . Similarly, Recm takes input
(z1, . . . , zm) and just outputs

∑
i∈[m] zi . It is easy to verify that both the correctness and

security hold.
Remark. In this work, we always refer the particular instantiation above as (SSm,Recm).
Moreover, to simplify the presentation, we use SSm(x‖y) to denote SSm(x)‖SSm(y)
for sharing multiple inputs. For this case, the reconstruction works analogously.
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3. An MD-NMC for Partial Functions, in the CRS Model

In this section, we consider Γ = {0, 1} and we construct a rate 1 MD-NMC for Fα ,
with access rate α = 1 − 1/Ω(log k).

Before presenting the encoding scheme for Fα , we provide the intuition behind the
construction. As a staring point, we consider a naive scheme (which does not work)
and then show how we resolve all the challenges. Let (KGen,E,D) be a (symmetric)
authenticated encryption scheme and consider the following encoding scheme: to encode
a message s, the encoder computes (sk||e), where e ← Esk(s) is the ciphertext and
sk ← KGen(1k), is the secret key. We observe that the scheme is secure if the tampering
function can only read/write on the ciphertext, e, assuming the authenticity property of
the encryption scheme, however, restricting access to sk, which is short, is unnatural and
makes the problem trivial. On the other hand, even partial access to sk, compromises
the authenticity property of the scheme, and even if there is no explicit attack against
the non-malleability property of the code, there is no hope for proving security based on
the properties of (KGen,E,D), in a black-box way.

A solution to the above problems would be to protect the secret key using an inner
encoding, yet the amount of tampering is now restricted by the capabilities of the inner
scheme, as the attacker knows the exact locations of the “sensitive” codeword bits, i.e.,
the non-ciphertext bits. In the proposed construction, we manage to protect the secret
key while avoiding the bottleneck on the access rate, by designing an inner encoding
scheme that provides limited security guarantees when used standalone, still when it
is used in conjunction with a shuffling technique that permutes the inner encoding and
ciphertext bit locations, it guarantees that any attack against the secret key will create an
invalid encoding with overwhelming probability, even when allowing access to almost
the entire codeword.

The proposed scheme is depicted in Fig. 3 and works as follows: on input message s,
the encoder (i) encrypts the message by computing sk ← KGen(1k) and e ← Esk(s),
(i i) computes an m-out-of-m secret sharing, z, of (sk||sk3) (interpreting both sk and sk3

as elements in some finite field),11 and outputs a random shuffling of (z||e), denoted as
PΣ(z||e), according to the common reference string, Σ . Decoding proceeds as follows:
on input c, the decoder (i) inverts the shuffling operation by computing (z||e) ← P−1

Σ (c),
(i i) reconstructs (sk||sk′), and (i i i) if sk3 = sk′, it outputs Dsk(e), otherwise, it outputs
⊥. The proposed instantiation yields a rate 1 computationally secure MD-NMC in the
CRS model, with access rate 1−1/Ω(log k) and codewords of length |s|+O(k2 log k),
under mild assumptions, e.g., one-way functions.

Below, we formally define our construction.

Construction 3.1. Let k, m ∈ N, let (KGen,E,D) be a symmetric encryption scheme,
(SSm,Recm) be an m-out-of-m secret sharing scheme as Sect.2.5, and let l ← 2m|sk|,
where sk follows KGen(1k). We define an encoding scheme (Init,Enc,Dec), that out-
puts ν = l + |e| bits, e ← Esk(s), as follows:

11In general, any polynomial of small degree, e.g., skc , would suffice, depending on the choice of the
underlying finite field. Using sk3 suffices when working over fields of characteristic 2. We could also use sk2

over fields of characteristic 3.
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(Bits)

z

e ← Encryptsk(s)

← SecretShare sk||sk3

Secret key: sk

Message: s

Locations defined by the CRS

Fig. 3. Description of the MD-NMC scheme in the CRS model .

– Init(1k): Sample r1, . . . , rl
rs← {0, 1}log(ν), and output Σ := (r1, . . . , rl).

– Enc(Σ, ·): for input message s, sample sk ← KGen(1k), e ← Esk(s).

• (Secret share)Sample z ← SSm(sk||sk3), where z = �2|sk|
i=1 zi , z ∈ {0, 1}2m|sk|,

and for i ∈ [|sk|], zi (resp. z|sk|+i ) is an m-out-of-m secret sharing of sk[i]
(resp. sk3[i]).
• (Shuffle) Compute c ← PΣ(z||e) as follows:
1. (Sensitive bits): Set c ← 0ν . For i ∈ [l], c[ri ] ← z[i].
2. (Ciphertext bits): Set i ← 1. For j ∈ [l + |e|], if j /∈ {rp | p ∈ [l]}:

c[ j] ← e[i], i++.

Output c.
– Dec(Σ, ·): on input c, compute (z||e) ← P−1

Σ (c), (sk||sk′) ← Recm(z), and if
sk3 = sk′, output Dsk(e), otherwise output ⊥.

The set of indices of zi in the codeword will be denoted by Zi .

In the above, we consider sk, sk3, as elements over GF(2poly(k)).
In a high level, the construction presented above combines authenticated encryption

with an inner encoding that works as follows. It interprets sk as an element in the finite
field GF(2|sk|) and computes sk3 as a field element. Then, for each bit of (sk||sk3),
it computes an m-out-of-m secret sharing of the bit, for some parameter m (we note
that elements in GF(2|sk|) can be interpreted as bit strings). Then, by combining the
inner encoding with the shuffling technique, we get an encoding scheme whose security
follows from the observations that we briefly present below:

– For any tampering function which does not have access to allm shares of a single bit
of (sk||sk3), the tampering effect on the secret key can be expressed essentially as
a linear shift, i.e., as ((sk+ δ)||(sk3 +η)) for some (δ, η) ∈ GF(2|sk|)×GF(2|sk|),
independent of sk.

– By permuting the locations of the inner encoding and the ciphertext bits, we have
that with overwhelming probability any tampering function who reads/writes on a
(1 − o(1)) fraction of codeword bits, will not learn any single bit of (sk||sk3).

– With overwhelming probability over the randomness of sk and the CRS, for non-
zero η and δ, (sk+δ)3 �= sk3+η, and this property enables us to design a consistency
check mechanism whose output is simulatable, without accessing sk.
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– The security of the final encoding scheme follows by composing the security of the
inner encoding scheme with the authenticity property of the encryption scheme.

Intuitively, the properties that we require from the inner encoding scheme (after the shuf-
fling operation) employed by our construction are similar to those provided by a robust
secret sharing scheme [58], which guarantees tamper detection during the reconstruction
phase. In our work, we additionally require simulatability of whether the reconstructed
message will be the same or ⊥.

Below we present the formal security proof of the above ideas.

Theorem 3.2. Let k, m ∈ N and α ∈ [0, 1). Assuming (SSm,Recm) is an m-out-of-m
secret sharing scheme and (KGen,E,D) is 1-IND-CPA secure (cf. Definition 2.9),12

authenticated encryption scheme, the code of Construction 3.1 is a MD-NMC against
Fα (cf. Definition 2.5), for any α, m, such that (1 − α)m = ω(log(k)).

Proof. Let I be the set of indices chosen by the attacker and I c = [ν]\I , where
ν = 2m|sk|+ |e|. The tampered components of the codeword will be denoted using the
symbol “~” on top of the original symbol, i.e., we have c̃ ← f (c), the tampered secret
key sk (resp. sk3) that we get after executing Recm(z̃) will be denoted by s̃k (resp. s̃k

′
).

Also the tampered ciphertext will be ẽ. We prove the needed using a series of hybrid
experiments that are depicted in Fig. 4. Below, we describe the hybrids.

– ExpΣ, f,s
0 : We prove security of our code using Lemma 2.6, i.e., by showing that

(i) for any s0, s1, Tamper fs0
≈ Tamper fs1

, and (i i) for any s, Pr
[
Tamper fs /∈

{⊥, s}] ≤ negl(k), where Tamper fs is defined in Lemma 2.6. For any f , s, the

first experiment, ExpΣ, f,s
0 , matches the experiment Tamper fs in the CRS model,

where Σ is sampled by Tamper fs .

– ExpΣ, f,s
1 : In the second experiment we define Zi , i ∈ [2|sk|], to be the set of

codeword indices in which the secret sharing zi is stored, |Zi | = m. The main
difference from the previous experiment is that the current one outputs ⊥, if there
exists a bit of sk or sk3 for which the tampering function reads all the shares of
it, while accessing at most αν bits of the codeword. Intuitively, and as we prove
in Claim 3.3, by permuting the location indices of z||e, this event happens with
probability negligible in k, and the attacker does not learn any bit of sk and sk3,
even if it is given access to (1 − o(1))ν bits of the codeword.

– ExpΣ, f,s
2 : By the previous hybrid, we have that for all i ∈ [2|sk|], the tampering

function will not access all bits of zi , with overwhelming probability. In the third
experiment, we unfold the encoding procedure, and in addition, we substitute the

secret sharing procedure SSm with S̄S
f
m that computes shares z∗i that reveal no

information about sk||sk3; for each i , S̄S
f
m simply “drops” the bit of zi with the

largest index that is not being accessed by f . We formally define S̄S
f
m below.

12This is an abbreviations for indistinguishability under chosen plaintext attack, for a single pre-challenge
query to the encryption oracle.
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ExpΣ,f,s
0 :

Σ ← Init(1k)
c ← Enc(Σ, s), c̃ ← 0ν

c̃[I ] ← fΣ(c|I ), c̃[I
c] ← c|Ic

s̃ ← Dec(c̃)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
1 :

Σ ← Init(1k)
c ← Enc(Σ, s), c̃ ← 0ν

c̃[I ] ← fΣ(c|I ), c̃[I
c] ← c|Ic

If ∃i : |(I ∩ Zi)| = m:

s̃ ← ⊥
Else:

s̃ ← Dec(c̃)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
2 :

Σ ← Init(1k)

sk ← KGen(1k), e ← Esk(s)

z∗ ← S̄Sf
m(Σ, sk), c ← PΣ(z∗||e)

c̃ ← 0ν , c̃[I ] ← fΣ(c|I ), c̃[I
c] ← c|Ic

If ∃i : |(I ∩ Zi)| = m:
s̃ ← ⊥

Else:
If ∃i : j∈(I∩Zi)

c[j] = j∈(I∩Zi)
c̃[j]:

s̃ ← ⊥
Else:

s̃ ← Dsk(ẽ)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
3 :

Σ ← Init(1k)
sk ← KGen(1k), e ← Esk(s)
z∗ ← S̄Sf

m(Σ, sk), c ← PΣ(z∗||e)

c̃ ← 0ν , c̃[I ] ← fΣ(c|I )

If ∃i : |(I ∩ Zi)| = m:
s̃ ← ⊥

Else:

If ∃i : j∈(I∩Zi)
c[j] = i∈(I∩Zi)

c̃[j]:
s̃ ← ⊥

Else: s̃ ← ⊥
If ẽ = e:

s̃ ← same∗

Output s̃.

Fig. 4. The hybrid experiments for the proof of Theorem 3.2. The gray part signifies the portion of the code
of an experiment that differs from the previous one.

S̄S
f
m(Σ, sk):

1. Sample
(
z1, . . . , z2|sk|

)← SSm
(
sk||sk3

)
and set z∗i ← zi , i ∈ [2|sk|].

2. For i ∈ [2|sk|], let li := maxd {d ∈ [m] ∧ Ind (zi [d]) /∈ I )}, where Ind returns
the index of zi [d] in c, i.e., li is the largest index in [m] such that zi [li ] is not
accessed by f .

3. (Output): For all i set z∗i [li ] = ∗, and output z∗ :=‖2|sk|
i=1 z∗i .

In ExpΣ, f,s
1 , z = �2|sk|

i=1 zi , and each zi is an m-out-of-m secret sharing for a bit of sk or
sk3. From Claim 3.3, we have that for all i , |I ∩ Zi | < m with overwhelming probability,
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and we can observe that the current experiment is identical to the previous one up to the
point of computing f (c|I ), as c|I and f (c|I ) depend only on z∗, that carries no information
about sk and sk3.
Another difference between the two experiments is in the external “Else” branch:ExpΣ, f,s

1

makes a call to the decoder while ExpΣ, f,s
2 , before calling Dsk(ẽ), checks if the tamper-

ing function has modified the shares in a way such that the reconstruction procedure
((s̃k, s̃k

′
) ← Recm(z̃)) will give s̃k �= sk or s̃k

′ �= sk′. This check is done by the
statement “If ∃i : ⊕ j∈(I∩Zi ) c[ j] �= ⊕

j∈(I∩Zi ) c̃[ j]”, without touching sk or sk3.13 In
case modification is detected the current experiments outputs ⊥. The intuition is that an
attacker that partially modifies the shares of sk and sk3, creates shares of s̃k and s̃k

′
,

such that s̃k
3 = s̃k

′
, with negligible probability in k. We prove this by a reduction to

the 1-IND-CPA security of the encryption scheme: any valid modification over the inner
encoding of the secret key gives us method to compute the original secret key sk, with
non-negligible probability. The ideas are presented formally in Claim 3.4.

– ExpΣ, f,s
3 : The difference between the current experiment and the previous one is that

instead of executing the decryption, Dsk(ẽ), we first check if the attacker has modified the
ciphertext, in which case the current experiment outputs ⊥, otherwise it outputs same∗.
By the previous hybrid, we reach this newly introduced “Else” branch of ExpΣ, f,s

3 , only
if the tampering function didn’t modify the secret key. Thus, the indistinguishability
between the two experiments follows from the authenticity property of the encryption
scheme in the presence of z∗: given that s̃k = sk and s̃k

′ = sk′, we have that if the attacker
modifies the ciphertext, then with overwhelming probability Dsk(ẽ) = ⊥, otherwise,
Dsk(ẽ) = s, and the current experiment correctly outputs ⊥ or same∗ (cf. Claim 3.5).

– Finally, we prove that for any f ∈ Fα , and message s, Exp f,s
3 is indistinguishable from

Exp f,0
3 , where 0 denotes the zero message. This follows by the semantic security of the

encryption scheme, and gives us the indistinguishability property required by Lemma 2.6.
The manipulation detection property is derived by the indistinguishability between the
hybrids and the fact that the output of ExpΣ, f,s

3 is in the set {same∗,⊥}.
In what follows, we prove indistinguishability between the hybrids using a series of
claims.

Claim 3.3. For k, m ∈ N, assume (1 − α)m = ω(log(k)). Then, for any f ∈ Fα

and any message s, we have ExpΣ, f,s
0 ≈ ExpΣ, f,s

1 , where the probability runs over the
randomness used by Init, Enc.

Proof. The difference between the two experiments is that ExpΣ, f,s
1 outputs ⊥ when

the attacker learns all shares of some bit of sk or sk3, otherwise it produces output as
ExpΣ, f,s

0 does. Let E be the event “∃i : |(I ∩ Zi )| = m”. Clearly, ExpΣ, f,s
0 = ExpΣ, f,s

1
conditioned on ¬E , thus the statistical distance between the two experiments is bounded
by Pr[E]. In the following, we show that Pr[E] ≤ negl(k). We define by Ei the event
in which f learns the entire zi . Assuming the attacker reads n bits of the codeword, we

13Recall that our operations are over GF(2poly(k)).
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have that for all i ∈ [2|sk|],

Pr
Σ

[Ei ] = Pr
Σ

[ |I ∩ Zi | = m ] =
m−1∏
j=0

n − j

ν − j
≤
(n

ν

)m
.

We have n = αν and assuming α = 1 − ε for ε ∈ (0, 1], we have

Pr[Ei ] ≤ (1 − ε)m ≤ 1/emε,

and

Pr[E] = Pr
Σ

⎡
⎣2|sk|⋃

i=1

Ei

⎤
⎦ ≤ 2|sk|

emε
,

which is negligible when (1 − α)m = ω(log(k)), and the proof of the claim is
complete. �

Claim 3.4. Assuming (KGen,E,D) is secure against the 1-query key recovery attack
as Definition 2.9, then for any f ∈ Fα and any message s, ExpΣ, f,s

1 ≈ ExpΣ, f,s
2 , where

the probability runs over the randomness used by Init, Enc.

Proof. In ExpΣ, f,s
2 , we unfold the encoding procedure; however, instead of calling

SSm , we make a call to S̄S
f
m . As we have already stated above, this modification does not

induce any difference between the output ofExpΣ, f,s
2 andExpΣ, f,s

1 , with overwhelming
probability, as z∗ is indistinguishable from z in the eyes of f . Another difference between
the two experiments is in the external “Else” branch:ExpΣ, f,s

1 makes a call on the decoder

whileExpΣ, f,s
2 , before callingDsk(ẽ), checks if the tampering function has modified the

shares in a way such that the reconstruction procedure will give s̃k �= sk or s̃k
′ �= sk′.

This check is done by the statement “If ∃i :⊕ j∈(I∩Zi ) c[ j] �=⊕ j∈(I∩Zi ) c̃[ j]”, without

touching sk or sk3 (cf. Claim 3.3).14 We define the events E , E ′ as follows

E : Dec(c̃) �= ⊥, E ′ : ∃i :
⊕

j∈(I∩Zi )
c[ j] �=

⊕
j∈(I∩Zi )

c̃[ j].

Clearly, conditioned on ¬E ′ the two experiments are identical, since we have s̃k =
sk and s̃k

′ = sk′, and the decoding process will output Dsk(ẽ) in both experiments.
Thus, the statistical distance is bounded by Pr[E ′]. Now, conditioned on E ′ ∧ ¬E , both
experiments output ⊥. Thus, we need to bound Pr[E ∧ E ′]. Assuming Pr[E ∧ E ′] > p,
for p = 1/poly(k), we define an attacker A that simulates ExpΣ, f,s

2 , and uses f , s to
break the 1-query key recovery security of (KGen,E,D) in the presence of z∗, with
probability at least p/2.

14Recall that our operations are over GF(2poly(k)).
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First we prove that any secure (against 1-query key recovery attacks) encryption

scheme, remains secure even if the attacker receives z∗ ← S̄S
f
m(Σ, sk). This is because

that z∗ can be simulated without knowing sk, by using random shares on positions that
the tampering function can see and ∗’s otherwise. Then this fact follows by a simple
reduction argument.

Now we prove our claim. Assuming Pr[E ∧ E ′] > p, for p = 1/poly(k), we define
an attacker A that breaks the 1-query key recovery security of (KGen,E,D) in the
presence of z∗, with non-negligible probability. A receives the encryption of s, which
corresponds to the oracle query right before receiving the challenge ciphertext, the
challenge ciphertext e ← Esk(sb), for uniform b ∈ {0, 1} and uniform messages s0, s1,
as well as z∗. A is defined below.
A
(
z∗ ← S̄S

f
m(Σ, sk), e′ ← Esk(s), e ← Esk(sb)

)
:

1. (Define the shares that will be accessed by f ): For i ∈ [2|sk|], define wi :=
(z∗i )|[m]\{li } and for i ∈ [m − 1] define Ci = �|sk|

j=1 w j [i], Di = �2|sk|
j=|sk|+1 w j [i].

2. (Apply f ) Set c ← PΣ(z∗||e), compute c̃[I ] ← fΣ(c|I ) and let C̃i , D̃i , i ∈ [m],
be the tampered shares resulting after the application of f to c|I .

3. (Searching the secret key) Let U =∑m−1
i=1 Ci , V =∑m−1

i=1 Di , i.e., U , V denote
the sum of the shares that are being accessed by the attacker (maybe partially),
and Ũ = ∑m−1

i=1 C̃i , Ṽ = ∑m−1
i=1 D̃i , are the corresponding tampered values after

applying f on U , V . Define

p(X) := (U − Ũ )X2 + (U 2 − Ũ 2)X + (U 3 − Ũ 3 − V + Ṽ ),

and compute the set of roots of p(X), denoted as X , which are at most two. Then
set

ˆSK := {x +U |x ∈ X } . (2)

4. (Output) Just output a random element in ˆSK.

In the first step, A removes the dummy symbol “∗” and computes the shares that will
be partially accessed by f , denoted as Ci for sk and as Di for sk3. In the second step,
it simulates the codeword partially, applies the tampering function on it, and defines
the tampered shares, C̃i , D̃i . Conditioned on E ′, it is not hard to see that A simulates
perfectly ExpΣ, f,s

2 . In particular, it simulates perfectly the input to f as it receives
e ← Esk(s) and all but 2|sk| of the actual bit-shares of sk, sk3. Part of those shares will
be accessed by f . Since for all i , |I ∩ Zi | < m, the attacker is not accessing any single
bit of sk, sk3. Let Cm , Dm , be the shares (not provided by the encryption oracle) that
completely define sk and sk3, respectively. By the definition of the encoding scheme
and the fact that sk, sk3 ∈ GF(2poly(k)), we have

∑m
i=1 Ci = sk,

∑m
i=1 Di = sk3, and

(U + Cm)3 = V + Dm . (3)
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In order for the decoder to output a non-bottom value, the shares created by the attacker

must decode to s̃k, s̃k
′
, such that s̃k

3 = s̃k
′
, or in other words, if

(
Ũ + Cm

)3 = Ṽ + Dm . (4)

From 3 and 4 we receive

(U − Ũ )C2
m + (U 2 − Ũ 2)Cm + (U 3 − Ũ 3) = V − Ṽ . (5)

Clearly, Pr[E ∧ E ′ ∧ (U = Ũ )] = 0. Thus, assuming Pr[E ∧ E ′] > p, for p >

1/poly(k), we receive

p = Pr
[
E ∧ E ′ ∧ (U �= Ũ )

]
≤ Pr

[
Dec(c̃) �= ⊥ ∧ E ′ ∧U �= Ũ

]

≤ Pr
[
s̃k

3 = s̃k
′ ∧ E ′ ∧ (U �= Ũ )

]
(5,2)= Pr [Cm ∈ X ]

(2)≤ Pr
[
sk ∈ ˆSK

]
, (6)

and A manages to recover Cm , and thus the set ˆSK that contains sk, with non-negligible
probability at least p. As ˆSK is derived from solving a quadratic equation, the cardinality,
i.e., | ˆSK| is at most 2. Thus, a random guess would hit the sk with probability at least
p/2. This is a contradiction to the 1-query key recovery security of (KGen,E,D).

Thus, we have Pr[E ∧ E ′] ≤ negl(k), and both experiments output ⊥ with over-
whelming probability. �

Claim 3.5. Assuming the authenticity property of (KGen,E,D), for any f ∈ Fα and
any message s, ExpΣ, f,s

2 ≈ ExpΣ, f,s
3 , where the probability runs over the randomness

used by Init, KGen and E.

Proof. Before proving the claim, recall that the authenticity property of the encryption
scheme is preserved under the presence of z∗ (cf. Claim 3.4). Let E be the event s̃k =
sk ∧ s̃k

′ = sk3 and E ′ be the event ẽ �= e. Conditioned on ¬E , the two experiments
are identical, as they both output ⊥. Also, conditioned on E ∧ ¬E ′, both experiments
output same∗. Thus, the statistical distance between the two experiments is bounded
by Pr[E ∧ E ′]. Let B be the event Dsk(ẽ) �= ⊥. Conditioned on E ∧ E ′ ∧ ¬B both
experiments output ⊥. Thus, we need to bound Pr[E ∧ E ′ ∧ B].

Assuming there exist s, f , for which Pr[E ∧ E ′ ∧ B] > p, where p = 1/poly(k), we
define an attacker A = (A1,A2) that simulates ExpΣ, f,s

3 and breaks the authenticity
property of the encryption scheme in the presence of z∗, with non-negligible probability.
A is defined as follows: sample (s, st) ← A1(1k), and then, on input (z∗, e, st), where
e ← Esk(s), A2, samples Σ ← Init(1k), sets c̃ ← 0ν , c ← PΣ(z∗||e), computes
c̃[I ] ← f (c|I ), c̃[I c] ← c|Ic , (z̃∗||ẽ) ← P−1

Σ (c̃), and outputs ẽ. Assuming Pr[E ∧ E ′ ∧
B] > p, we have that Dsk(ẽ) �= ⊥ and ẽ �= e, with non-negligible probability and the
authenticity property of (KGen,E,D) breaks. �
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Claim 3.6. Assuming (KGen,E,D) is semantically secure, for any f ∈ Fα and any
message s, ExpΣ, f,s

3 ≈ ExpΣ, f,0
3 , where the probability runs over the randomness used

by Init, KGen, E. “≈” may refer to statistical or computational indistinguishability, and
0 denotes the zero message.

Proof. Recall that (KGen,E,D) is semantically secure even in the presence of z∗ ←
S̄S

f
m(Σ, sk) (cf. 3.4), and toward contradiction, assume there exist f ∈ Fα , message

s, and PPT distinguisher D such that

∣∣∣Pr
[
D
(
Σ,ExpΣ, f,s

3

)
= 1
]

− Pr
[
D
(
Σ,ExpΣ, f,0

3

)]
= 1
∣∣∣ > p,

for p = 1/poly(k). We are going to define an attackerA that breaks the semantic security
of (KGen,E,D) in the presence of z∗, using s0 := s, s1 := 0. A, given z∗, e, executes
Program.

Program(z∗, e) :
c ← PΣ(z∗||e), c̃ ← 0ν, c̃[I ] ← f (c|I )
If ∃i : |(I ∩ Zi )| = m : s̃ ← ⊥
Else:

If ∃i :⊕ j∈(I∩Zi ) c[ j] �=⊕ j∈(I∩Zi ) c̃[ j] :
s̃ ← ⊥

Else: s̃ ← ⊥
If ẽ = e :

s̃ ← same∗
Output s̃.

It is not hard to see that A simulates ExpΣ, f,sb
3 ; thus, the advantage of A against the

semantic security of (KGen,E,D) is the same with the advantage ofD in distinguishing
between ExpΣ, f,s0

3 ,ExpΣ, f,s1
3 , which by assumption is non-negligible. We have reached

a contradiction, and the proof of the claim is complete. �

From the above claims, we have that for any f ∈ Fα and any s,ExpΣ, f,s
0 ≈ ExpΣ, f,0

3 ,

thus for any f ∈ Fα and any s0, s1, ExpΣ, f,s0
0 ≈ ExpΣ, f,s1

0 . Also, by the indistin-

guishability between ExpΣ, f,s
0 and ExpΣ, f,0

3 , the second property of Lemma 2.6 has

been proven as the output of ExpΣ, f,0
3 is in {s,⊥}, with overwhelming probability, and

non-malleability with manipulation detection of our code follows by Lemma 2.6, since
ExpΣ, f,s

0 is identical to Tamper fs of Lemma 2.6. �
Instantiations and rates. By instantiating Construction 3.1 with the authenticated en-
cryption scheme 2.11, Theorem 3.2, for m = k log k, α = 1 − 1/Ω(log k), yields a rate
1MD-NMC, with access rate 1−1/Ω(log k) and codewords of length |s|+O(k2 log k),
assuming one-way functions. Furthermore, by instantiating Construction 3.1 with 2.12,
Theorem 3.2, for m = |s| log |s|, α = 1 − 1/O(log(|s|)), yields an unconditionally
secure MD-NMC in the CRS model, with concrete information rate 1/O(|s| log(|s|)),
access rate 1 − 1/Ω(log(|s|)) and codewords of length O(|s|2 log |s|).
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On the CRS. In the above, the tampering function, and consequently the codeword
locations that the function is given access to, are fixed before sampling the CRS and this
is critical for achieving security. However, by the proof of Theorem 3.2, we observe that
proving security in this setting is highly non-trivial. In addition, the tampering function
receives full access to the CRS when tampering with the codeword, which is in contrast
to the work by Faust et. al. [45] in the information-theoretic setting, where the (internal)
tampering function receives partial information over the CRS.

In addition, the proposed scheme tolerates adaptive selection of the codeword loca-
tions, with respect to the CRS, in the following way: each time the attacker requests
access to a location, he also learns if it corresponds to a bit of z or e, together with the
index of that bit in the original string. In this way, the CRS is gradually disclosed to the
adversary while picking codeword locations.

Finally, our CRS sustains a substantial amount of tampering that depends on the
codeword locations chosen by the attacker: an attacker that gets access to a sensitive
codeword bit is allowed to modify the part of the CRS that defines the location of that
bit in the codeword. The attacker is allowed to modify all but O(k log(|s| + k)) bits of
the CRS, that is of length O(k2 log k log(|s| + k)). To our knowledge, this is the first
construction that tolerates, even partial modification of the CRS. In contrast, existing
constructions in the CRS model are either using NIZKs [35,41,43,55], or they are based
on the knowledge of exponent assumption [51], thus tampering access to the CRS would
compromise security.

4. Removing the CRS

In the present section, we show how to construct an MD-NMC for partial functions, in
the standard model.

A first approach would be to store the CRS of Construction 3.1, inside the codeword
together with PΣ(z||e), and give to the attacker read/write access to it. However, the
tampering function, besides getting direct (partial) access to the encoding of sk, it also
gets indirect access to it by (partially) controlling the CRS. Then, it can modify the CRS
in a way such that, during decoding, ciphertext locations of its choice will be treated as
bits of the inner encoding, z, increasing the tampering rate against z significantly. This
makes the task of protecting sk hard, if not impossible (unless we restrict the access rate
significantly).

To handle this challenge, we embed a structure recovering mechanism inside the
codeword and we emulate the CRS effect by increasing the size of the alphabet, giving
rise to a block-wise structure.15 Notice that, non-malleable codes with large alphabet
size (i.e., poly(k) + |s| bits) might be easy to construct, as we can embed in each
codeword block the verification key of a signature scheme together with a secret share
of the message, as well as a signature over the share. In this way, partial access over the
codeword does not compromise the security of the signature scheme while the message
remains private, and the simulation is straightforward. This approach, however, comes

15Bigger alphabets have been also considered in the context of error-correcting codes, in which the codeword
consists of symbols.
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z

e ← Encryptsk(s)

← SecretShare sk||sk3

Secret key: sk

Message: s

1||index||z[index]

Randomly chosen blocks

0||epart

(Blocks) (Contents)

Fig. 5. Description of the scheme in the standard model.

with a large overhead, decreasing the information rate and access rate of the scheme
significantly. In general, and similar to error correcting codes, we prefer smaller alphabet
sizes—the larger the size is, the more coarse access structure is required, i.e., in order to
access individual bits we need to access the blocks that contain them. The present work
aims at minimizing this restriction by using small alphabets, as described below.

Our approach on the problem is the following. We increase the alphabet size to
O(log k) bits, and we consider two types of blocks: (i) sensitive blocks, in which we
store the inner encoding, z, of the secret key, sk, and (i i) non-sensitive blocks, in which
we store the ciphertext, e, that is fragmented into blocks of size O(log k). The first bit of
each block indicates whether it is a sensitive block, i.e., we set it to 1 for sensitive blocks
and to 0, otherwise. Our encoder works as follows: on input message s, it computes z,
e, as in the previous scheme and then uses rejection sampling to sample the indices,
ρ1, . . . , ρ|z|, for the sensitive blocks. Then, for every i ∈ {1, . . . , |z|}, Cρi is a sensitive
block, with contents (1||i ||z[i]), while the remaining blocks keep ciphertext pieces of
size O(log k). Decoding proceeds as follows: on input codeword C = (C1, . . . ,Cbn),
for each i ∈ [bn], if Ci is a non-sensitive block, its data will be part of e, otherwise, the
last bit of Ci will be part of z, as it is dictated by the index stored in Ci . If the number of
sensitive blocks is not the expected, the decoder outputs ⊥, otherwise, z, e, have been
fully recovered and decoding proceeds as in the previous scheme. The proposed scheme
is depicted in Fig. 5.

The security of our construction is based on the fact that, due to our shuffling technique,
the position mapping will not be completely overwritten by the attacker, and we prove
later in this section, this suffices for protecting the inner encoding over sk. We prove
security of the current scheme (cf. Theorem 4.8) by a reduction to the security of the
scheme in the CRS model. Our instantiation yields a rate 1 − 1/Ω(log k) MD-NMC in
the standard model, with access rate 1 − 1/Ω(log k) and codewords of length |s|(1 +
1/O(log k)) + O(k2 log2 k), assuming one-way functions.

It is worth pointing out that the idea of permuting blocks containing sensitive and
non-sensitive data was also considered by [61] in the context of list-decodable codes;
however, the similarity is only in the fact that a permutation is being used at some point
in the encoding process, and our objective, construction and proof are different.

In what follows, we consider alphabets of size O(log(k)) and we provide a computa-
tionally secure, rate 1 − 1/Ω(log k) encoding scheme in the standard model, tolerating
modification of (1−o(1))ν blocks, where ν is the total number of blocks in the codeword.
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The projection operation will be also used with respect to bigger alphabets, enabling the
projection of blocks.

Our construction is defined below.

Construction 4.1. Let k, m ∈ N, let (KGen,E,D) be a symmetric encryption scheme
and (SSm,Recm) be an m-out-of-m secret sharing scheme. We define an encoding
scheme (Enc∗,Dec∗), as follows:
– Enc∗(1k, ·): for input message s, sample sk ← KGen

(
1k
)
, e ← Esk(s).

• (Secret share)Sample z ← SSm(sk||sk3), where z = �2|sk|
i=1 zi , z ∈ {0, 1}2m|sk|,

and for i ∈ [|sk|], zi (resp. z|sk|+i ) is an m-out-of-m secret sharing of sk[i]
(resp. sk3[i]).
• (Construct blocks & permute) Set l ← 2m|sk|, bs ← log l + 2, d ←
|e|/bs, bn ← l + d, sample ρ := (ρ1, . . . , ρl)

rs← {0, 1}log(bn) and compute
C ← Πρ(z||e) as follows:
1. Set t ← 1, Ci ← 0bs, i ∈ [bn].
2. (Sensitive blocks) For i ∈ [l], set Cρi ← (1||i ||z[i]).
3. (Ciphertext blocks) For i ∈ [bn], if i �= ρ j , j ∈ [l], Ci ← (0||e[t :

t + (bs − 1)]), t ← t + (bs − 1).16

Output C := (C1|| . . . ||Cbn).
– Dec∗(1k, ·): on input C, parse it as (C1|| . . . ||Cbn), set t ← 1, l ← 2m|sk|, z ← 0l ,
e ← 0, L = ∅ and compute (z||e) ← Π−1(C) as follows:

• For i ∈ [bn],
∗ (Sensitive block) If Ci [1] = 1, set j ← Ci [2 : bs−1], z [ j] ← Ci [bs],
L ← L ∪ { j}.
∗ (Ciphertext block) Otherwise, set e[t : t + bs − 1] = Ci [2 : bs],
t ← t + bs − 1.

• If |L| �= l, output ⊥, otherwise output (z||e).
If Π−1(C) = ⊥, output ⊥, otherwise, compute (sk||sk′) ← Recm(z), and if sk3 = sk′,
output Dsk(e), otherwise output ⊥.

The set of indices of the blocks in which zi is stored will be denoted by Zi .

We prove security for the above construction by a reduction to the security of Con-
struction 3.1. We note that our reduction is non-black box with respect to the coding
scheme in which security is reduced to; a generic reduction, i.e., non-malleable reduction
[2], from the standard model to the CRS model is an interesting open problem and thus
out of the scope of the present work.

In the following, we consider Γ = {0, 1}O(log(k)).17 The straightforward way to prove
that (Enc∗,Dec∗) is secure against Fα

Γ by a reduction to the security of the bit-wise
code of Sect. 3, would be as follows: for any α ∈ [0, 1), f ∈ Fα

Γ and any message s, we

16Here we assume that bs − 1, divides the length of the ciphertext e. We can always achieve this property
by padding the message s with zeros, if necessary.

17Recall that, whenever Γ is omitted from the notation, we assume that Γ = {0, 1}.
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have to define α′, g ∈ Fα′
, such that the output of the tampered execution with respect

to (Enc∗,Dec∗), f , s, is indistinguishable from the tampered execution with respect to
(Init,Enc,Dec), g, s, and g is an admissible function for (Init,Enc,Dec). However,
this approach might be tricky as it requires the establishment of a relation between α and
α′ such that the sensitive blocks that f will receive access to, will be simulated using
the sensitive bits accessed by g. Our approach is cleaner: for the needs of the current
proof we leverage the power of Construction 3.1, by allowing the attacker to choose
adaptively the codeword locations, as long as it does not request to read all shares of
the secret key. Then, for every block that is accessed by the block-wise attacker f , the
bit-wise attacker g requests access to the locations of the bit-wise code that enable him
to fully simulate the input to f . We formally present our ideas in the following sections.
In Sect. 4.1 we introduce the function class Fad that considers adaptive adversaries with
respect to the CRS and we prove security of Construction 3.1 in Corollary 4.3 against a
subclass of Fad, and then, we reduce the security of the block-wise code (Enc∗,Dec∗)
against Fα

Γ to the security of Construction 3.1 against Fad (cf. Sect. 4.2).

4.1. Security Against Adaptive Adversaries

In the current section, we prove that Construction 4.1 is secure against the class of
functions that request access to the codeword adaptively, i.e., depending on the CRS, as
long as they access a bounded number of sensitive bits. Below, we formally define the
function class Fad, in which the tampering function picks up the codeword locations
depending on the CRS, and we consider Γ = {0, 1}.
Definition 4.2. (The function class Fν

ad (or Fad)) Let (Init,Enc,Dec) be an (κ, ν)-
coding scheme and let Σ be the range of Init(1k). For any g = (g1, g2) ∈ Fν

ad, we
have g1 : Σ → P ([ν]), gΣ

2 : {0, 1}|range(g1)| → {0, 1}|range(g1)| ∪ {⊥}, and for any

c ∈ {0, 1}ν , gΣ (c) = g2

(
c|g1(Σ)

)
. For brevity, the function class will be denoted as

Fad.

Construction 3.1 remains secure against functions that receive full access to the ci-
phertext, as long as they request to read all but one shares for each bit of sk and sk3. The
result is formally presented in the following corollary.

Corollary 4.3. Let k, m ∈ N. Assuming (SSm,Recm) is an m-out-of-m secret sharing
scheme and (KGen,E,D) is 1-IND-CPA secure authenticated encryption scheme, the
code of Construction 4.1 is an MD-NMC against any g = (g1, g2) ∈ Fad, assuming
that for all i ∈ [2|sk|], (Zi ∩ g1(Σ)) < m, where sk ← KGen(1k) and Σ ← Init(1k).

Proof. Let g = (g1, g2) be as stated above. For any message s, the tampered execution
with respect to g and (Init,Enc,Dec), is defined as follows.

Tampergs :=

⎧⎪⎪⎨
⎪⎪⎩

Σ ← Init(1k), c ← Enc(Σ, s), I ← g1(Σ)

c̃ ← gΣ
2 (c|I ), s̃ ← Dec(Σ, c̃)

If s̃ = s, output same∗, otherwise, output s̃.

⎫⎪⎪⎬
⎪⎪⎭
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The proof is along the lines of the proof of Theorem 3.2, i.e., we prove that for any
g having the properties stated above, and any pair of messages s0, s1, Tampergs0

≈
Tampergs1

, and the output of the tampered execution is either the original message, or
⊥, with overwhelming probability. Below, we revisit the hybrids of Theorem 3.2 and we
prove that the indistinguishability between adjacent hybrids, holds with respect to g.

– ExpΣ,g,s
0 : For any f , s, the first experiment,ExpΣ,g,s

0 , is identical to the experiment
Tampergs .

– ExpΣ,g,s
1 : In the second experiment, we have Zi , i ∈ [2|sk|], to be the set of indices

in which zi is stored, |Zi | = m. The main difference from the previous experiment
is that the current one outputs ⊥, if there exists a bit of sk or sk3 for which the
tampering function reads all shares of it. However, by the definition of g we know
that this happens with zero probability; thus, we have that the following claim holds,

Claim 4.4. Let k, m ∈ N. For any g = (g1, g2) ∈ Fad, assuming that for all i ∈
[2|sk|], (Zi ∩ g1(Σ)) < m and any message s, we have ExpΣ,g,s

0 = ExpΣ,g,s
1 , where

sk ← KGen(1k), Σ ← Init(1k).

– ExpΣ,g,s
2 : In the current experiment, we unfold the encoding procedure, and in

addition, we substitute the secret sharing procedure SSm with S̄S
g
m , where S̄S

g
m

is defined as S̄S
f
m does with respect to f , in Claim 3.4 of Theorem 3.2. From the

above claim, we have that for all i , |I ∩ Zi | < m, and we observe that the current
experiment is identical to the previous one up to the point of computing g(c|I ), as
c|I carries no information about sk and sk3. Thus, the transition between the current
experiment and the previous one is identical to that of Theorem 3.2: an attacker
that partially modifies the shares of sk and sk3, creates shares of s̃k and s̃k

′
, such

that s̃k
3 = s̃k

′
, with negligible probability in k, which is proved by a reduction to

the 1-IND-CPA security of the encryption scheme in the presence of z∗. Thus, we
have the following claim.

Claim 4.5. Assuming (KGen,E,D) is 1-IND-CPA secure (cf. Definition 2.9), for any
g ∈ Fad and any message s, ExpΣ,g,s

1 ≈ ExpΣ,g,s
2 , where the probability runs over the

randomness used by Init, Enc.

– ExpΣ,g,s
3 : As in Theorem 3.2, the indistinguishability between the two experiments

follows from the authenticity property of the encryption scheme in the presence of
z∗. Thus, the following holds.

Claim 4.6. Assuming the authenticity property of (KGen,E,D), for any g ∈ Fad and
any message s, ExpΣ, f,s

2 ≈ ExpΣ, f,s
3 , where the probability runs over the randomness

used by Init, KGen and E.

– Finally, since g learns nothing about sk, we have that for any g ∈ Fad, and message
s, Expg,s3 is indistinguishable from Expg,03 , where 0 denotes the zero message.



17 Page 34 of 48 A. Kiayias et al.

This follows by the semantic security of the encryption scheme (Definition 2.9).
Formally, we prove the following claim.

Claim 4.7. Assuming (KGen,E,D) is semantically secure, for any g ∈ Fad and any
message s, Expg,s3 ≈ Expg,03 , where the probability runs over the randomness used by
Init, KGen, E, “≈” may refer to statistical or computational indistinguishability, and 0
is the zero message.

From the above claims we have that for any g ∈ Fad and any s0, s1, assuming that
for all i ∈ [2|sk|], (Zi ∩ g1(Σ)) < m, Expg,s0

0 ≈ Expg,s1
0 , and non-malleability with

manipulation detection follows by Lemma 2.6, since Expg,s0 is identical to Tampergs of

Lemma 2.6, and by the indistinguishability between ExpΣ,g,s
0 and ExpΣ,g,s

3 , the second

property of Lemma 2.6 has been proven as the output of ExpΣ,g,s
3 is in {s,⊥}, with

overwhelming probability. �

4.2. MD-NMC Security of the Block-Wise Code

In the current section, we prove security of Construction 4.1 against Fα
Γ , for Γ =

{0, 1}O(log(k)).

Theorem 4.8. Let k,m ∈ N,Γ = {0, 1}O(log(k)) andα ∈ [0, 1). Assuming (SSm,Recm)

is an m-out-of-m secret sharing scheme and (KGen,E,D) is a 1-IND-CPA secure au-
thenticated encryption scheme, the code of Construction 4.1 is an MD-NMC against
Fα

Γ , for any α, m, such that (1 − α)m = ω(log(k)).

Proof. Following Lemma 2.6, we prove that for any f ∈ Fα
Γ , and any pair of mes-

sages s0, s1, Tamper fs0
≈ Tamper fs1

, and for any s, Pr
[
Tamper fs /∈ {⊥, s}

]
≤ negl(k),

where Tamper denotes the experiment defined in Lemma 2.6 with respect to the en-
coding scheme of Construction 4.1, (Enc∗,Dec∗). Our proof is given by a series of
hybrids depicted in Fig. 9. We reduce the security (Enc∗,Dec∗), to the security of Con-
struction 3.1, (Init,Enc,Dec), against Fad (cf. Corollary 4.3). The idea is to move from
the tampered execution with respect to (Enc∗,Dec∗), f , to a tampered execution with
respect to (Init,Enc,Dec), g, such that the two executions are indistinguishable and
(Init,Enc,Dec) is secure against g.

Let Ib be the set of indices of the blocks that f chooses to tamper with, where
|Ib| ≤ αν, and let l ← 2m|sk|, bs ← log l + 2, bn ← l + |e|/bs. Below we describe
the hybrids of Fig. 9.

– Exp f,s
0 : The current experiment is the experiment Tamper fs , of Lemma 2.6, with

respect to (Enc∗,Dec∗), f , s.
– Exp(g1,g2),s

1 : The main difference betweenExp f,s
0 andExp(g1,g2),s

1 is that in the latter
one, we introduce the tampering function (g1, g2), that operates over codewords of
(Init,Enc,Dec) and we modify the encoding steps so that the experiment creates
codewords of the bit-wise code (Init,Enc,Dec). (g1, g2) simulates partially the
block-wise codeword C , while given partial access to the bit-wise codeword c ←
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g1(Σ = (r1, . . . , rl)) :
• (Simulate block shuffling):

Sample ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn)

• (Construct I): Set I = ∅,
(Add ciphertext locations to I):
For j ∈ [|e| + l], if j /∈ {ri|i ∈ [l]}, I ← (I ∪ j).
(Add sensitive bit locations to I according to Ib):
For j ∈ [bn], if j ∈ Ib and ∃i ∈ [l] such that j = ρi, I ← (I ∪ ri).

• Output: Output I .

*
*

Fig. 6. The function g1 that appears in the hybrid experiments of Fig. 9 .

Enc(s). As we prove in Claim 4.9, it simulates perfectly the tampering effect of f
against C ← Enc∗(s).

g1 operates as follows (cf. Figure 6): it simulates perfectly the randomness for the per-
mutation of the block-wise code, denoted as ρ, and constructs a set of indices I , such
that g2 will receive access to, and tamper with, c|I .
The set I is constructed with respect to the set of blocks Ib, that f chooses to access, as
well as Σ , that reveals the original bit positions, i.e., the ones before permuting (z||e). g2
receives c|I , reconstructs I , simulates partially the blocks of the block-wise codeword,
C , and applies f on the simulated codeword. The program of g2 is given in Fig. 7.
In Claim 4.9, we show that g2, given c|I , simulates perfectly C|Ib , which implies that

gΣ
2 (c|I ) = f (C|Ib ), and the two executions are identical.

– Exp(g1,g3),s
2 : In the current experiment, we substitute the function g2 with g3, and Dec∗

withDec, respectively. By inspecting the code of g2 and g3 (cf. Figures 7,8, respectively),
we observe that latter function executes the code of the former, plus the “Check labels and
simulate c̃[I ]” step. Thus, the two experiments are identical up to the point of computing
f (C∗|Ib ).
The main idea here is that we want the current execution to be with respect to (Init,Enc,Dec)
against (g1, g3). Thus, we substitute Dec∗ with Dec, and we expand the function g2 with
some extra instructions/checks that are missing fromDec. We name the resulting function
as g3 and we prove that the two executions are identical.

– Finally, we prove that for any f and any s,

Pr
[
Exp(g1,g3),s

2 /∈ {⊥, s}
]

≤ negl(k).

We do so by proving that (g1, g3) is admissible for (Init,Enc,Dec, ), i.e., (g1, g3) ∈ Fad,
and g3 will not request to access more that m − 1 shares for each bit of sk, sk3 (cf.
Corollary 4.3). This implies security according to Lemma 2.6.

In what follows, we prove indistinguishability between the hybrids.

Claim 4.9. For any f ∈ Fα
Γ and any s, Exp f,s

0 = Exp(g1,g2),s
1 .18

18For random variables X , Y , X = Y denotes that the random variables are identical.
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gΣ
2 (c|I ):

t ← 1, C∗
i ← 0bs, i ∈ [bn].

• (Reconstruct I): Compute I ← g1(Σ).
• (Simulate ciphertext blocks):

For i ∈ [bn], if i = ρj for j ∈ [l], C∗
i ← (0||e[t : t+ (bs− 1)]), t ← t+ (bs− 1).

• (Simulate sensitive blocks):
For i ∈ [|I |], if ∃j ∈ [l], such that Ind(c|I [i]) = rj , set C∗

ρj
← 1||j||c|I [i] .

Set C∗ := (C∗
1 || . . . ||C∗

bn) and C̃∗ := C∗.
• (Apply f): compute C̃∗[Ib] ← f(C∗

|Ib
).

• (Output): Output C̃∗
|Ib .

*
*

Fig. 7. The function g2 that appears in the hybrid experiments of Fig. 9 .

gΣ
3 (c|I ):

t ← 1, C∗
i ← 0bs, i ∈ [bn].

• (Reconstruct I): Compute I ← g1(Σ).
• (Simulate ciphertext blocks):

For i ∈ [bn], if i = ρj , j ∈ [l], C∗
i ← (0||e[t : t + (bs − 1)]), t ← t + (bs − 1).

• (Simulate sensitive blocks):
For i ∈ [|I |], if ∃j ∈ [l], such that Ind(c|I [i]) = rj , set C∗

ρj
← 1||j||c|I [i] .

Set C∗ := (C∗
1 || . . . ||C∗

bn) and C̃∗ := C∗.
• (Apply f): compute C̃∗[Ib] ← f(C∗

|Ib
).

• (Check labels and simulate c̃[I ]): For i ∈ {ρj |j ∈ [l]}\Ib, C∗
i ← (1||i||0). If

Π−1(C̃∗) = ⊥, set d ← 1, otherwise set (z̃∗||ẽ) ← Π−1(C̃∗), c̃∗ ← PΣ(z̃∗||ẽ).
• (Output): If d = 1 output ⊥, otherwise output c̃∗

|I .

*
*

Fig. 8. The function g3 that appears in the hybrid experiments of Fig. 9 .

Proof. The main difference between Exp0 and Exp1 is that in Exp1, we introduce
the tampering function g = (g1, g2) that operates over codewords of (Init,Enc,Dec),
and simulates partially the block-wise code. We observe that g1 simulates perfectly
the randomness of the permutation for the block-wise code, denoted as ρ. Thus, the
computation C ← Πρ(z||e) does not induce any statistical difference between the two
experiments. By the definition of g1, we have that c|I consists of all ciphertext bits, as
well as the indices ri , for which ρi ∈ Ib, i ∈ [l], i.e., if f requests access to the sensitive
block with index ρi , containing z[i], g1 will request access to the ri -th bit of c, which
is z[i]. Thus, g2 will receive as input the entire ciphertext and all the sensitive bits that
f will request access to, with respect to Ib, thus it can fully simulate C|Ib while being
consistent with the distribution of blocks in C|Icb

, as ρ is generated by g1. Thus, we have

that gΣ
2 (c|I ) is identical to f (C|Ib ), and the proof of the claim is complete. �

Claim 4.10. For any f ∈ Fα
Γ and any s, Exp(g1,g2),s

1 = Exp(g1,g3),s
2 .

Proof. InExp2 we substitute the function g2 with g3, andDec∗ withDec, respectively.
By inspecting the code of g2 and g3, we observe that latter function executes the code of
the former, plus the “Check labels and simulate c̃[I ]” step. Thus, the two experiments are
identical up to the point of computing f (C|Ib ). We unfold the code of the two experiments
from that point of the computation and on (cf. Figure 10). The idea is that the consistency
check on the labels of the block-wise code is transferred from Dec∗ in Exp1 to g3 in
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Expf,s
0 :

sk ← KGen 1k , e ← Esk(s)
z ← SSm(sk||sk3)

ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn)

C ← Πρ(z||e), C̃ ← C

C̃[Ib] ← f(C|Ib )

s̃ ← Dec∗(C̃)

Output same∗ if s̃ = s and s̃ otherwise.

Exp(g1,g2),s
1 :

sk ← KGen 1k , e ← Esk(s)
z ← SSm(sk||sk3)

Σ ← Init(1k), c ← PΣ(z||e)
I ← g1(Σ)

C ← Πρ(z||e), C̃ ← C

C̃[Ib] ← gΣ
2 (c|I )

s̃ ← Dec∗(C̃)

Output same∗ if s̃ = s and s̃ otherwise.

Exp(g1,g3),s
2 :

Σ ← Init(1k)
sk ← KGen 1k , e ← Esk(s)
z ← SSm(sk||sk3)

c ← PΣ(z||e), c̃ ← c
I ← g1(Σ)

c̃[I ] ← gΣ
3 (c|I )

s̃ ← Dec(Σ, c̃)

Output same∗ if s̃ = s and s̃ otherwise.

Fig. 9. The hybrid experiments for the proof of Theorem 4.8 .

Exp2, and Dec∗ is substituted by Dec, so that Exp(g1,g3),s
2 is the tampering experiment

of Lemma 2.6 with respect to (Init,Enc,Dec) and (g1, g3).
In order to show that Exp(g1,g2),s

1 = Exp(g1,g3),s
2 , is suffices to prove that Dec∗(C̃) =

Dec(c̃). By inspectingExp(g1,g3),s
2 , we have that c̃ = ⊥ if and only if Π−1(C̃∗) = ⊥. By

the definition of Π−1 (cf. Construction 4.1), Π−1(C̃∗) = ⊥, if and only if the tampering
function creates an inconsistent set of labels, an effect that can be decided by g3 by
only partially accessing C , since it fully simulates the labels for the block-wise code.
By Claim 4.9, C|Ib = C∗|Ib and thus C̃|Ib = C̃∗|Ib , which implies that Π−1(C̃∗) = ⊥ if

and only if Π−1(C̃) = ⊥. We conclude that c̃ = ⊥ if and only if Π−1(C̃) = ⊥. Let
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Exp(g1,g2),s
1 :

...

gΣ
2 (c|I ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...
C̃∗[Ib] ← f(C∗

|Ib )

C̃[Ib] ← C̃∗
|Ib

Dec∗(C̃) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If Π−1(C̃) = ⊥ :
(z̃||ẽ) ← Π−1(C̃)
(s̃k||s̃k ) ← Recm(z̃)

If s̃k
3
= s̃k : s̃ ← Ds̃k(ẽ)

Else: s̃ ← ⊥
Else: s̃ ← ⊥
Output s̃

...

Exp(g1,g3),s
2 :

...

...
C̃∗[Ib] ← f(C∗

|Ib )
If Π−1(C̃∗) = ⊥ : d ← 1
Else:

(z̃∗||ẽ) ← Π−1(C̃∗)
c̃∗ ← PΣ(z̃∗||ẽ)

If d = 1: output ⊥
Else: output c̃∗

|I

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

: gΣ
3 (c|I )

If c̃ = ⊥ :
(z̃||ẽ) ← P −1

Σ (c̃)
(s̃k||s̃k ) ← Recm(z̃)

If s̃k
3
= s̃k : s̃ ← Ds̃k(ẽ)

Else: s̃ ← ⊥
Else: s̃ ← ⊥
Output s̃

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

: Dec(c̃)

...

Fig. 10. The unfolded code of Exp1 and Exp2.

E be the event in which c̃ �= ⊥. Clearly, conditioned on ¬E the two experiments are
identical, as both output ⊥. It remains to prove the same conditioned on E .

By inspecting the two experiments, and conditioned on E , we have

c̃|I = c̃∗|I =
[
PΣ

(
Π−1(C̃∗)

)]
|I

=
[
PΣ

(
Π−1(C̃)

)]
|I

, (7)

where the last equality follows from the fact that
[
PΣ

(
Π−1(C̃∗)

)]
|I

is independent of

the blocks of C̃ that Exp2 does not have access to. Moreover,

c̃|Ic = c|Ic =
[
PΣ

(
Π−1(C)

)]
|Ic

=
[
PΣ

(
Π−1(C̃)

)]
|Ic

, (8)

where the last equality follows from the fact that c̃|Ic is not being accessed by the

tampering function. From the above relations, we have that c̃ = PΣ

(
Π−1(C̃)

)
, thus

P−1
Σ (c̃) = Π−1(C̃), and the two executions are identical conditioned on E . �

Claim 4.11. Assuming (1 − α)m = ω(log(k)), for any f ∈ Fα
Γ and any s,

Pr
[
Exp(g1,g3),s

2 /∈ {⊥, s}
]

≤ negl(k),
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over the randomness of Exp2.

Proof. Assuming (1 − α)m = ω(log(k)), it suffices to prove that for any f ∈ Fα
Γ , the

function (g1, g3) ∈ Fad is admissible for (Init,Enc,Dec, ), i.e., g1 will not request to
access more thatm−1 shares for each bit of sk, sk3, and the proof of the claim will follow
by Corollary 4.3 and Lemma 2.6. We prove that for any f ∈ Fα

Γ , the corresponding
(g1, g3) will not access the entire zi , for all i ∈ [|2sk|], with overwhelming probability.
Such an event takes place if and only if ∃i : |(Ib ∩ Zi )| = m. We define by Ei the event
in which f request access to all blocks in which zi is stored. Assuming f reads n blocks,
we have that for all i ∈ [2|sk|],

Pr
ρ

[Ei ] = Pr
ρ

[ |Ib ∩ Zi | = m ] =
m−1∏
j=0

n − j

ν − j
≤
(n

ν

)m
.

We have n = αν and assuming α = 1 − ε for ε ∈ (0, 1], we have Pr[Ei ] ≤ (1 − ε)m ≤
1/emε and

Pr[E] = Pr
ρ

⎡
⎣2|sk|⋃

i=1

Ei

⎤
⎦ ≤ 2|sk|

emε
,

which is negligible when (1 − α)m = ω(log(k)). �

The security of the block-wise code follows from the above claims and the MD-NMC
security of (Init,Enc,Dec). �
Instantiations and rates. By instantiating Construction 4.1, with 2.11, Theorem 4.8,
for m = k log k, α = 1−1/Ω(log k), yields rate 1−1/Ω(log k)MD-NMC, with access
rate 1−1/Ω(log k) and codewords of length |s|(1+1/O(log k))+O(k2 log2 k), assum-
ing one-way functions. In addition, by instantiating Construction 4.1, with 2.12, Theo-
rem 4.8, for m = |s| log |s|, α = 1 − 1/O(log(|s|)), yields unconditionally secure, rate
1/O(|s| log2(|s|))MD-NMC in the standard model, with access rate Ω(1−1/ log(|s|))
and codewords of length O(|s|2 log2 |s|).

5. Continuous MD-NMC with light Updates

In this section, we enhance the block-wise scheme of Sect. 4 with an update mechanism,
that uses only shuffling and refreshing operations. The resulting code is secure against
continuous attacks, for a notion of security that is weaker than the original one [45],
as we need to update the codeword after each round of execution. However, our update
mechanism is using cheap operations, avoiding the full decoding and re-encoding of the
message, which is the standard way to achieve continuous security [39,55] using a one-
time NMC. In addition, our solution avoids the usage of a self-destruction mechanism
that produces ⊥ in all subsequent rounds after the first round in which the attacker
creates an invalid codeword, which was originally proposed by [41]. Avoiding the self-
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destruction mechanism was originally proposed by [41], and it is an important step
toward practicality, as (i) the mechanism is subjective to denial of service attacks, and
(i i) it renders the device useless in the presence of non-adversarial hardware faults. Our
solution enables normal use of the device in the presence of such faults and provides
security against malicious attacks.19

The update mechanism of the proposed scheme works as follows: in each round, it
randomly shuffles the blocks and refreshes the randomness of the inner encoding of sk.
The idea here is that, due to the continual shuffling and refreshing of the inner encoding
scheme, in each round the attacker learns nothing about the secret key, and every attempt
to modify the inner encoding, results to an invalid key, with overwhelming probability.
Our update mechanism can be made deterministic if we further encode the seed of a
PRG together with the secret key, which is similar to the technique presented in [55].

Below we define the update mechanism, which is denoted as Update∗.

Construction 5.1. Let k, m ∈ N, and let (KGen,E,D), (SSm,Recm), Enc∗, Dec∗,
be as in Construction 4.1. We define the update procedure, Update∗, for the encoding
scheme of Construction 4.1, as follows:

– Update∗(1k, ·): on input C, parse it as (C1|| . . . ||Cbn), set l ← 2m|sk|, L̂ = ∅,
and set Ĉ := (Ĉ1|| . . . ||Ĉbn) to zeros.

• (Secret share 02|sk|): Sample z ← SSm
(
02|sk|), where z = �2|sk|

i=1 zi , z ∈
{0, 1}2m|sk|, and for i ∈ [2|sk|], zi is an m-out-of-m secret sharing of the 0 bit.

• (Shuffle & Refresh): Sample ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn). For i ∈

[bn],
∗ (Sensitive block) If Ci [1] = 1,

· (Shuffle): Set j ← Ci [2 : bs − 1], Ĉρ j ← Ci .

· (Refresh): Set Ĉρ j [bs] ← Ĉρ j [bs] ⊕ z[ j].
∗ (Ciphertext block)

If Ci [1] = 0, set j ← minn
{
n ∈ [bn]∣∣n /∈ L̂, n �= ρi , i ∈ [l]

}
, and Ĉ j ← Ci , L̂ ←

L̂ ∪ { j}.
Output Ĉ.

The following definition of security is along the lines of the one given in [45], adapted
to the notion of non-malleability with manipulation detection. Also, after each invocation
the codewords are updated, where in our case the update mechanism is only using
shuffling and refreshing operations. In addition, there is no need for self-destruct after
detecting an invalid codeword [41].

Definition 5.2. (Continuous MD-NMC with light updates) Let CS = (Enc,Dec) be
an encoding scheme, F be a function class and k, q ∈ N. Then, CS is a q-continuously
non-malleable code with manipulation detection (q-MD-CNMC) with light updates, if

19We assume that the attacks against the memory are non-persistent.
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for every, sufficiently large k ∈ N, any pair of messages s0, s1 ∈ {0, 1}poly(k), and any
algorithm A,

{
TamperAs0

(k)
}
k∈N ≈

{
TamperAs1

(k)
}
k∈N ,

where,

TamperAs (k) :
C ← Enc(1k, s), s̃ ← 0
For τ ∈ [q] :

f ← A(s̃), C̃ ← f (C), s̃ ← Dec(C̃)

If s̃ = s : s̃ ← same∗
C ← Update∗(1k,C)

out ← A(s̃)
Return : out

and for each round the output of the decoder is not in {s,⊥} with negligible probability
in k, over the randomness of TamperAs .

Below we prove that the scheme of Construction 5.1 is continuously non-malleable
with manipulation detection and light updates.

Theorem 5.3. Let q, k, m, ∈ N, Γ = {0, 1}O(log(k)) and α ∈ [0, 1). Assuming
(SSm,Recm) is an m-out-of-m secret sharing scheme and (KGen,E,D) is a 1-IND-
CPA, authenticated encryption scheme, the scheme of Construction 5.1 is aMD-CNMC
with light updates, against Fα

Γ , for any α, m, such that (1 − α)m = ω(log(k)).

Proof. Let A be any adversary playing against TamperAs , for any s. Let Ib be the set of
indices chosen by the attacker in each round and I c = [ν]\I . The tampered components
of the codeword will be denoted using the symbol “~” on top of the original symbol.
Our proof follows the strategy of the one given in Theorem 3.2, using a series of hybrid
experiments that are depicted in Fig. 11. Below, we describe the hybrids.

– ExpA,s,q
0 : For any A, s, q, the experiment ExpA,s,q

0 is the experiment TamperAs ,
of Definition 5.2.

– ExpA,s,q
1 : In the second experiment and for each round of the execution, we define

Zi , i ∈ [2|sk|], to be the set of indices in which zi is stored, |Zi | = m. Intuitively,
in each round, by calling the Update∗ procedure that permutes the blocks using
a fresh permutation key and updates the shares of sk and sk3, we achieve the
following: in each round, the attacker finds all shares for a bit of sk, and sk3, with
negligible probability in k, thus the tampering function is not accessing any bit
of sk and sk3, even if it is given access to (1 − o(1))ν blocks of the codeword.
Thus, the indistinguishability between the current experiment and the previous one
comes from a claim analogous to Claim 3.3, made in the proof of Theorem 3.2. In
particular, we have the following claim.
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ExpA,s,q
0 :

C ← Enc(s), s̃ ← 0, C̃ ← C
For τ ∈ [q] :

f ← A(s̃)

C̃|Ib ← f(C|Ib ), s̃ ← Dec(C̃)
If s̃ = s :

s̃ ← same∗

C ← Update∗(1k, C)

out ← A(s̃)
Return : out

ExpA,s,q
1 :

C ← Enc(s), s̃ ← 0, C̃ ← C
For τ ≤ [q] :

f ← A(s̃), s̃ ← ⊥
If ∀i : |(Ib ∩ Zi)| < m:

C̃|Ib ← f(C|Ib ), s̃ ← Dec(C̃)
If s̃ = s :

s̃ ← same∗

C ← Update∗(1k, C)

out ← A(s̃)
Return : out

ExpA,s,q
2 :

ρ
rs← {0, 1}log(bn)

sk ← KGen(1k), e ← Esk(s)
s̃ ← 0
For τ ∈ [q] :

f ← A(s̃), s̃ ← ⊥
z∗ ← S̄Sf,ρ

m (sk), C ← Πρ(z∗||e)
If ∀i : |(Ib ∩ Zi)| < m:

C̃|Ib ← f(C|Ib )

wi ← j∈(Ib∩Zi)
Cj [bs]

w̃i ← j∈(Ib∩Z̃i)
C̃j [bs]

If ∀i : wi = w̃i:

s̃ ← Dsk(ẽ)

If s̃ = s :
s̃ ← same∗

C ← Update∗(1k, C)

out ← A(s̃)
Return : out

ExpA,s,q
3 :

ρ
rs← {0, 1}log(bn)

sk ← KGen(1k), e ← Esk(s)
s̃ ← 0

For τ ∈ [q] :
f ← A(s̃), s̃ ← ⊥
z∗ ← S̄Sf,ρ

m (sk), C ← Πρ(z∗||e)
If ∀i : |(Ib ∩ Zi)| < m:

C̃ ← f(C|Ib )
wi ← j∈(Ib∩Zi)

Cj [bs]
w̃i ← j∈(Ib∩Z̃i)

C̃j [bs]

If ∀i : wi = w̃i :
If ẽ = e:

s̃ ← same∗

C ← Update∗(1k, C)

out ← A(s̃)
Return : out

Fig. 11. Hybrids for the proof of Theorem 5.3. The gray part signifies the portion of the code of an experiment
that differs from the previous one.
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Claim 5.4. For k, q, m ∈ N, assume (1 − α)m = ω(log(k)). Then, for any A that
chooses its tampering strategy from Fα

Γ , and any message s, we have ExpA,s,q
0 ≈

ExpA,s,q
1 , where the probability runs over the randomness used by Enc∗, Update∗.

– ExpA,s,q
2 : In the third experiment, we define by Z̃i to be the set of indices in which

z̃i is stored, |Z̃i | = m. The main difference with the previous experiment is that
we unfold the encoding procedure, and in addition, we substitute the secret sharing

procedure SSm with S̄S
f,ρ
m , defined as follows:

S̄S
f,ρ
m (sk):

1. Sample
(
z∗1, . . . , z∗2|sk|

)
← SSm

(
sk||sk3

)
.

2. For i ∈ [2|sk|]:

li := max
d

{d ∈ [m] ∧ Ind (zi [d]) /∈ Ib)} ,

where Ind returns the index of zi [d] in C , i.e., li is the largest index in [m] such
that the codeword block containing zi [li ], is not accessed by f .

3. (Output): For all i set z∗i [li ] = ∗, and output z∗ :=‖2|sk|
i=1 z∗i .

In ExpA,s,q
1 , we have z = �2|sk|

i=1 zi , and each zi is an m-out-of-m secret sharing for a
bit of sk or sk3. From the first transition we have that for all i , |Ib ∩ Zi | < m with
overwhelming probability, and the current experiment is identical to the previous one up
to the point of computing f (C|Ib ), as C|Ib and f (C|Ib ) depend only on z∗, that gives no

information about sk and sk3.
Another difference between the two experiments is that, after applying the tampering
function, ExpA,s,q

1 makes a call on the decoder while ExpA,s,q
2 , checks if the tampering

function has modified the shares in a way such that the reconstruction procedure will give
s̃k �= sk or s̃k

′ �= sk′. In case modification is detected the current experiments sends ⊥ to
the attacker. The main idea here is that, a tampering function that modifies the shares of

sk and sk3, creates shares of s̃k and s̃k
′
, such that s̃k

3 = s̃k
′
, with negligible probability

in k. We prove this by a reduction to the 1-IND-CPA security of the encryption scheme in
the presence of z∗, that as we have already stated, it gives no information about the secret
key. The indistinguishability between the two experiments comes from the following
claim, whose proof is similar to the one given in Claim 3.4.

Claim 5.5. Assuming (KGen,E,D) is 1-IND-CPA secure (cf. Definition 2.9), for any
A choosing its tampering strategy from Fα

Γ , and any message s, ExpA,s,q
1 ≈ ExpA,s,q

2 ,
where the probability runs over the randomness used by Enc∗, Update∗.

– ExpA,s,q
3 : In the final experiment, in each round of the execution, instead of calling

the decryption Dsk(ẽ), we first check if the attacker has modified the ciphertext,
in which case the current experiment outputs ⊥, otherwise it outputs same∗. This
part of the program is reached only if the tampering function does not modify the
secret key. Thus, the indistinguishability between the two experiments follows from
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the authenticity property of the encryption scheme in the presence of z∗, which is
updated in each round depending on the set Ib. Clearly, requesting z∗ adaptively in
each round does not compromise the security of the encryption scheme, as z∗ carries
no information about sk. Thus, in each round, given that s̃k = sk and s̃k

′ = sk′, we
have that if the attacker modifies the ciphertext, then with overwhelming probability
Dsk(ẽ) = ⊥, otherwise, Dsk(ẽ) = s, and the current experiment correctly sends
s̃ = same∗ to the attacker. Thus, we have the following claim.

Claim 5.6. Assuming the authenticity property of (KGen,E,D), for any A choosing
its tampering strategy from Fα

Γ , and any message s, ExpA,s,q
2 ≈ ExpA,s,q

3 , where the
probability runs over the randomness used by KGen, E and Update∗.

– Finally, we have that for any A choosing its tampering strategy from Fαν
Γ , and any

message s, ExpA,s,q
3 is indistinguishable from ExpA,0,q

3 , where 0 denotes the zero
message. This follows by the semantic security of the encryption scheme in the
presence of z∗, for the multi-round case.

Claim 5.7. Assuming (KGen,E,D) is semantically secure, for any A choosing its
tampering strategy from Fα

Γ , ExpA,s,q
3 ≈ ExpA,0,q

3 , where the probability runs over the
randomness used by KGen, E, Update, “≈” may refer to statistical or computational
indistinguishability, and 0 denotes the zero message.

The above claims conclude our proof. Clearly, the manipulation detection property fol-
lows from the fact that the output of Exp3 is in {same∗,⊥}, with overwhelming prob-
ability. �

In the above theorem, q can be polynomial (resp. exponential) in k, assuming the
underlying encryption scheme is computationally (resp. unconditionally) secure.
Instantiations and rates. By instantiating Construction 5.1, with 2.11, Theorem 5.3,
for m = k log k, α = 1−1/Ω(log k), yields rate 1−1/Ω(log k)MD-NMC, with access
rate 1−1/Ω(log k) and codewords of length |s|(1+1/O(log k))+O(k2 log2 k), assum-
ing one-way functions. In addition, by instantiating Construction 5.1, with 2.12, Theo-
rem 5.3, for m = |s| log |s|, α = 1 − 1/O(log(|s|)), yields unconditionally secure, rate
1/O(|s| log2(|s|))MD-NMC in the standard model, with access rate Ω(1−1/ log(|s|))
and codewords of length O(|s|2 log2 |s|).

Acknowledgements

Feng-Hao Liu was supported by the NSF award CNS 2402031. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the sponsors.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the



(Continuous) Non-malleable Codes for Partial Functions… Page 45 of 48 17

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] D. Aggarwal, S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran, Optimal computational
split-state non-malleable codes, in E. Kushilevitz, T. Malkin, editors, TCC 2016-A: 13th Theory of
Cryptography Conference, Part II. Lecture Notes in Computer Science, vol. 9563 (Springer, Heidelberg,
2016), pp. 393–417, Tel Aviv, Israel, Jan. 10–13, 2016

[2] D. Aggarwal, Y. Dodis, T. Kazana, M. Obremski, Non-malleable reductions and applications, in R.A.
Servedio, R. Rubinfeld, editors, 47th Annual ACM Symposium on Theory of Computing (ACM Press,
Portland, 2015), pp. 459–468

[3] D. Aggarwal, Y. Dodis, S. Lovett. Non-malleable codes from additive combinatorics, in D.B. Shmoys,
editor, 46th Annual ACM Symposium on Theory of Computing (ACM Press, New York, 2014), pp.
774–783

[4] S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran, Explicit non-malleable codes against bit-
wise tampering and permutations, in R. Gennaro, M.J.B. Robshaw, editors, Advances in Cryptology—
CRYPTO2015, Part I. Lecture Notes in Computer Science, vol. 9215, Santa Barbara, CA, USA, Aug. 16–
20, 2015 (Springer, Heidelberg, 2015), pp. 538–557

[5] S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran, A rate-optimizing compiler for non-
malleable codes against bit-wise tampering and permutations, in Y. Dodis, J.B. Nielsen, editors,
TCC 2015: 12th Theory of Cryptography Conference, Part I. Lecture Notes in Computer Science, vol.
9014, Warsaw, Poland, Mar. 23–25, 2015 (Springer, Heidelberg, 2015), pp. 375–397

[6] J. Alwen, S. Coretti, Y. Dodis, Y. Tselekounis, Security analysis and improvements for the IETF MLS
standard for group messaging, in D. Micciancio, T. Ristenpart, editors, Advances in Cryptology—
CRYPTO 2020 (Springer, Cham, 2020), pp. 248–277

[7] J. Alwen, S. Coretti, Y. Dodis, Y. Tselekounis, Modular design of secure group messaging protocols
and the security of MLS, in Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21 (Association for Computing Machinery, New York, 2021), pp. 1463–
1483

[8] J. Alwen, M. Mularczyk, Y. Tselekounis, Fork-resilient continuous group key agreement, in H. Hand-
schuh, A. Lysyanskaya, editors, Advances in Cryptology—CRYPTO 2023 (Springer, Cham, 2023), pp.
396–429

[9] G. Ateniese, A. Kiayias, B. Magri, Y. Tselekounis, D. Venturi, Secure outsourcing of circuit manufac-
turing. Cryptology ePrint Archive, Paper 2016/527, 2016. https://eprint.iacr.org/2016/527

[10] G. Ateniese, A. Kiayias, B. Magri, Y. Tselekounis, D. Venturi, Secure outsourcing of cryptographic
circuits manufacturing, in J. Baek, W. Susilo, J. Kim, editors, Provable Security (Springer, Cham, 2018),
pp. 75–93

[11] M. Ball, E. Chattopadhyay, J.-J. Liao, T. Malkin, L.-Y. Tan, Non-malleability against polynomial tam-
pering, in D. Micciancio, T. Ristenpart, editors, Advances in Cryptology—CRYPTO 2020, Part III.
Lecture Notes in Computer Science, vol. 12172, Santa Barbara, CA, USA, Aug. 17–21, 2020 (Springer,
Heidelberg, 2020), pp. 97–126

[12] M. Ball, D. Dachman-Soled, S. Guo, T. Malkin, L.-Y. Tan, Non-malleable codes for small-depth circuits,
in M. Thorup, editor, 59thAnnual SymposiumonFoundations ofComputer Science, Paris, France, Oct. 7–
9, 2018 (IEEE Computer Society Press, 2018), pp. 826–837

[13] M. Ball, D. Dachman-Soled, M. Kulkarni, H. Lin, T. Malkin, Non-malleable codes against bounded
polynomial time tampering, in Y. Ishai, V. Rijmen, editors,Advances inCryptology –EUROCRYPT2019,
Part I. Lecture Notes in Computer Science, vol. 11476, Darmstadt, Germany, May 19–23, 2019 (Springer,
Heidelberg, 2019), pp. 501–530

[14] M. Ball, D. Dachman-Soled, M. Kulkarni, T. Malkin, Non-malleable codes for bounded depth, bounded
fan-in circuits, in M. Fischlin, J.-S. Coron, editors,Advances in Cryptology—EUROCRYPT 2016, Part II.

http://creativecommons.org/licenses/by/4.0/
https://eprint.iacr.org/2016/527


17 Page 46 of 48 A. Kiayias et al.

Lecture Notes in Computer Science, vol. 9666, Vienna, Austria, May 8–12, 2016 (Springer, Heidelberg,
2016), pp. 881–908

[15] M. Ball, D. Dachman-Soled, M. Kulkarni, T. Malkin, Non-malleable codes from average-case hardness:
AC0, decision trees, and streaming space-bounded tampering, in J.B. Nielsen, V. Rijmen, editors, Ad-
vances in Cryptology—EUROCRYPT 2018, Part III. Lecture Notes in Computer Science, vol. 10822,
Tel Aviv, Israel, Apr. 29 – May 3, 2018 (Springer, Heidelberg, 2018), pp. 618–650

[16] F. Bao, R.H. Deng, Y. Han, A. Jeng, A.D. Narasimhalu, T. Ngair, Breaking Public Key Cryptosystems
on Tamper Resistant Devices in the Presence of Transient Faults (Springer, Berlin, 1998), pp. 115–124

[17] M. Bellare, S. Tessaro, A. Vardy. Semantic security for the wiretap channel, in R. Safavi-Naini, R. Canetti,
editors, Advances in Cryptology—CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, Santa
Barbara, CA, USA, Aug. 19–23, 2012 (Springer, Heidelberg, 2012), pp. 294–311

[18] P. Bhatotia, M. Kohlweiss, L. Martinico, Y. Tselekounis, Steel: composable hardware-based stateful
and randomised functional encryption, in J.A. Garay, editor, Public-Key Cryptography—PKC 2021
(Springer, Cham, 2021), pp. 709–736

[19] E. Biham, A. Shamir, Differential fault analysis of secret key cryptosystems, in B.S. Kaliski Jr., editor,
Advances in Cryptology—CRYPTO’97. Lecture Notes in Computer Science, vol. 1294, Santa Barbara,
CA, USA, Aug. 17–21, 1997 (Springer, Heidelberg, 1997), pp. 513–525

[20] D. Boneh, R.A. DeMillo, R.J. Lipton, On the importance of checking cryptographic protocols for faults
(extended abstract), in W. Fumy, editor, Advances in Cryptology—EUROCRYPT’97. Lecture Notes in
Computer Science, vol. 1233, Konstanz, Germany, May 11–15, 1997 (Springer, Heidelberg, 1997), pp.
37–51

[21] D. Boneh, R.A. DeMillo, R.J. Lipton, On the importance of eliminating errors in cryptographic compu-
tations. J. Cryptol. 14(2), 101–119 (2001)

[22] V. Boyko, On the security properties of OAEP as an all-or-nothing transform, in M.J. Wiener, editor,
Advances in Cryptology—CRYPTO’99. Lecture Notes in Computer Science, vol. 1666, Santa Barbara,
CA, USA, Aug. 15–19, 1999 (Springer, Heidelberg, 1999), pp. 503–518

[23] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, A. Sahai, Exposure-resilient functions and all-or-nothing
transforms, in B. Preneel, editor, Advances in Cryptology—EUROCRYPT 2000. Lecture Notes in Com-
puter Science, vol. 1807, Bruges, Belgium, May 14–18, 2000 (Springer, Heidelberg, 2000), pp. 453–469

[24] N. Chandran, V. Goyal, P. Mukherjee, O. Pandey, J. Upadhyay, Block-wise non-malleable codes, in
I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani, D. Sangiorgi, editors, ICALP 2016: 43rd International
Colloquium on Automata, Languages and Programming. LIPIcs, vol. 55, Rome, Italy, July 11–15, 2016
(Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016), pp. 31:1–31:14

[25] N. Chandran, B. Kanukurthi, S. Raghuraman, Information-theoretic local non-malleable codes and
their applications, in E. Kushilevitz, T. Malkin, editors, TCC 2016-A: 13th Theory of Cryptography
Conference, Part II. Lecture Notes in Computer Science, vol. 9563, Tel Aviv, Israel, Jan. 10–13, 2016
(Springer, Heidelberg, 2016), pp. 367–392.

[26] E. Chattopadhyay, D. Zuckerman, Non-malleable codes against constant split-state tampering, in 55th
Annual Symposium on Foundations of Computer Science, Philadelphia, PA, USA, Oct. 18–21, 2014
(IEEE Computer Society Press, 2014), pp. 306–315

[27] M. Cheraghchi, V. Guruswami, Capacity of non-malleable codes, in M. Naor, editor, ITCS 2014: 5th
Conference on Innovations in Theoretical Computer Science, Princeton, NJ, USA, Jan. 12–14, 2014
(Association for Computing Machinery, 2014), pp. 155–168

[28] S.G. Choi, A. Kiayias, T. Malkin, BiTR: built-in tamper resilience, in D.H. Lee, X. Wang, editors,
Advances in Cryptology—ASIACRYPT 2011. Lecture Notes in Computer Science, vol. 7073, Seoul,
South Korea, Dec. 4–8, 2011 (Springer, Heidelberg, 2011), pp. 740–758

[29] S. Coretti, U. Maurer, B. Tackmann, D. Venturi, From single-bit to multi-bit public-key encryption
via non-malleable codes, in Y. Dodis, J.B. Nielsen, editors, TCC 2015: 12th Theory of Cryptography
Conference, Part I. Lecture Notes in Computer Science, vol. 9014, Warsaw, Poland, Mar. 23–25, 2015
(Springer, Heidelberg, 2015), pp. 532–560.

[30] R. Cramer, Y. Dodis, S. Fehr, C. Padró, D. Wichs, Detection of algebraic manipulation with applica-
tions to robust secret sharing and fuzzy extractors. In N. P. Smart, editor, Advances in Cryptology—
EUROCRYPT 2008. Lecture Notes in Computer Science, vol. 4965, Istanbul, Turkey, Apr. 13–17, 2008
(Springer, Heidelberg, 2008), pp. 471–488



(Continuous) Non-malleable Codes for Partial Functions… Page 47 of 48 17

[31] D. Dachman-Soled, Y.T. Kalai, Securing circuits against constant-rate tampering, in Proceedings of the
32Nd Annual Cryptology Conference on Advances in Cryptology—CRYPTO 2012 vol. 7417 (2012), pp.
533–551

[32] D. Dachman-Soled, Y.T. Kalai, Securing circuits and protocols against 1/poly(k) tampering rate, in
Y. Lindell, editor, Theory of Cryptography: 11th Theory of Cryptography Conference, TCC 2014, San
Diego, CA, USA, February 24–26, 2014. Proceedings (2014)

[33] D. Dachman-Soled, I. Komargodski, R. Pass, Non-malleable codes for bounded parallel-time tampering,
in T. Malkin, C. Peikert, editors, Advances in Cryptology—CRYPTO 2021, Part III. Lecture Notes in
Computer Science, vol. 12827, Virtual Event, Aug. 16–20, 2021 (Springer, Heidelberg, 2021), pp. 535–
565

[34] D. Dachman-Soled, M. Kulkarni, A. Shahverdi, Tight upper and lower bounds for leakage-resilient,
locally decodable and updatable non-malleable codes, in S. Fehr, editor, PKC 2017: 20th International
Conference on Theory and Practice of Public Key Cryptography, Part I. Lecture Notes in Computer
Science, vol. 10174, Amsterdam, The Netherlands, Mar. 28–31, 2017 (Springer, Heidelberg, 2017), pp.
310–332

[35] D. Dachman-Soled, M. Kulkarni, A. Shahverdi, Local non-malleable codes in the bounded retrieval
model, in M. Abdalla, R. Dahab, editors, PKC 2018: 21st International Conference on Theory and
Practice of Public Key Cryptography, Part II. Lecture Notes in Computer Science, vol. 10770, Rio de
Janeiro, Brazil, Mar. 25–29, 2018 (Springer, Heidelberg, 2018), pp. 281–311

[36] D. Dachman-Soled, F.-H. Liu, E. Shi, H.-S. Zhou, Locally decodable and updatable non-malleable codes
and their applications, in In Y. Dodis, J.B. Nielsen, editors, TCC 2015: 12th Theory of Cryptography
Conference, Part I, Lecture Notes in Computer Science, vol. 9014, Warsaw, Poland, Mar. 23–25, 2015
(Springer, Heidelberg, 2015), pp. 427–450

[37] N. Döttling, J.B. Nielsen, M. Obremski, Information theoretic continuously non-malleable codes in the
constant split-state model. Cryptology ePrint Archive, Report 2017/357, 2017. https://eprint.iacr.org/
2017/357

[38] S. Dziembowski, T. Kazana, M. Obremski, Non-malleable codes from two-source extractors, in
R. Canetti, J.A. Garay, editors, Advances in Cryptology—CRYPTO 2013, Part II. Lecture Notes in Com-
puter Science, vol. 8043, Santa Barbara, CA, USA, Aug. 18–22, 2013 (Springer, Heidelberg, 2013), pp.
239–257

[39] S. Dziembowski, K. Pietrzak, D. Wichs, Non-malleable codes, in A.C.C. Yao, editor, ICS 2010: 1st Inno-
vations in Computer Science, Tsinghua University, Beijing, China, Jan. 5–7, 2010 (Tsinghua University
Press, 2010), pp. 434–452

[40] N. Ephraim, C. Freitag, I. Komargodski, R. Pass, Non-malleable time-lock puzzles and applications.
Cryptology ePrint Archive, Report 2020/779, 2020. https://eprint.iacr.org/2020/779

[41] A. Faonio, J.B. Nielsen, Non-malleable codes with split-state refresh, in S. Fehr, editor, PKC 2017: 20th
International Conference on Theory and Practice of Public Key Cryptography, Part I, Lecture Notes in
Computer Science, vol. 10174, Amsterdam, The Netherlands, Mar. 28–31, 2017 (Springer, Heidelberg,
2017), pp. 279–309

[42] S. Faust, K. Hostáková, P. Mukherjee, D. Venturi, Non-malleable codes for space-bounded tampering,
J. Katz, H. Shacham, editors, Advances in Cryptology—CRYPTO 2017, Part II. Lecture Notes in Com-
puter Science, vol. 10402, Santa Barbara, CA, USA, Aug. 20–24, 2017 (Springer, Heidelberg, 2017),
pp. 95–126

[43] S. Faust, P. Mukherjee, J.B. Nielsen, D. Venturi, Continuous non-malleable codes, in Y. Lindell, editor,
TCC 2014: 11th Theory of Cryptography Conference. Lecture Notes in Computer Science, vol. 8349,
San Diego, CA, USA, Feb. 24–26, 2014 (Springer, Heidelberg, 2014), pp. 465–488

[44] S. Faust, P. Mukherjee, J.B. Nielsen, D. Venturi, A tamper and leakage resilient von neumann architecture,
in J. Katz, editor, PKC 2015: 18th International Conference on Theory and Practice of Public Key
Cryptography. Lecture Notes in Computer Science, vol. 9020, Gaithersburg, MD, USA, Mar. 30 – Apr. 1,
2015 (Springer, Heidelberg, 2015), pp. 579–603

[45] S. Faust, P. Mukherjee, D. Venturi, D. Wichs, Efficient non-malleable codes and key-derivation
for poly-size tampering circuits, in P.Q. Nguyen, E. Oswald, editors, Advances in Cryptology—
EUROCRYPT 2014. Lecture Notes in Computer Science, vol. 8441, Copenhagen, Denmark, May 11–15,
2014 (Springer, Heidelberg, 2014), pp. 111–128

https://eprint.iacr.org/2017/357
https://eprint.iacr.org/2017/357
https://eprint.iacr.org/2020/779


17 Page 48 of 48 A. Kiayias et al.

[46] S. Faust, K. Pietrzak, D. Venturi, Tamper-proof circuits: How to trade leakage for tamper-resilience, in
Automata, Languages and Programming: 38th International Colloquium, ICALP 2011, Zurich, Switzer-
land, July 4-8, 2011, Proceedings, Part I (2011), pp. 391–402

[47] D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai, E. Tromer, Circuits resilient to additive attacks with
applications to secure computation, in D.B. Shmoys, editor, 46th Annual ACM Symposium on Theory of
Computing, New York, NY, USA, May 31–June 3, 2014 (ACM Press, 2014), pp. 495–504

[48] Y. Ishai, M. Prabhakaran, A. Sahai, D. Wagner, Private circuits ii: keeping secrets in tamperable circuits, in
Advances inCryptology—EUROCRYPT2006, St. Petersburg,Russia,May28 - June1, 2006.Proceedings
(Springer, Berlin, 2006), pp. 495–504

[49] Z. Jafargholi, D. Wichs, Tamper detection and continuous non-malleable codes, in Y. Dodis, J.B. Nielsen,
editors,TCC2015: 12th Theory of CryptographyConference, Part I. Lecture Notes in Computer Science,
vol. 9014, Warsaw, Poland, Mar. 23–25, 2015 (Springer, Heidelberg, 2015), pp. 451–480

[50] J. Katz, Y. Lindell, Introduction to Modern Cryptography, 2nd edition (Chapman & Hall/CRC, 2014).
[51] A. Kiayias, F.-H. Liu, Y. Tselekounis, Practical non-malleable codes from l-more extractable hash

functions, in E.R. Weippl, S. Katzenbeisser, C. Kruegel, A.C. Myers, S. Halevi, editors, ACM CCS
2016: 23rd Conference on Computer and Communications Security, Vienna, Austria, Oct. 24–28, 2016
(ACM Press, 2016), pp. 1317–1328

[52] A. Kiayias, F.-H. Liu, Y. Tselekounis, Non-malleable codes for partial functions with manipulation
detection, in H. Shacham, A. Boldyreva, editors, Advances in Cryptology—CRYPTO 2018 (Springer,
Cham , 2018), pp. 577–607

[53] A. Kiayias, F.-H. Liu, Y. Tselekounis, Leakage resilient l-more extractable hash and applications to
non-malleable cryptography. Cryptology ePrint Archive (2022)

[54] A. Kiayias, Y. Tselekounis, Tamper resilient circuits: the adversary at the gates, in K. Sako, P. Sarkar,
editors, Advances in Cryptology—ASIACRYPT 2013 (Springer, Berlin, 2013), pp. 161–180

[55] F.-H. Liu, A. Lysyanskaya, Tamper and leakage resilience in the split-state model, in R. Safavi-Naini,
R. Canetti, editors, Advances in Cryptology—CRYPTO 2012. Lecture Notes in Computer Science, vol.
7417, Santa Barbara, CA, USA, Aug. 19–23, 2012 (Springer, Heidelberg, 2012), pp. 517–532

[56] S. Micali, L. Reyzin, Physically observable cryptography (extended abstract), in M. Naor, editor,
TCC 2004: 1st Theory of Cryptography Conference. Lecture Notes in Computer Science, vol. 2951,
Cambridge, MA, USA, Feb. 19–21, 2004 (Springer, Heidelberg, 2004), pp. 278–296

[57] L.H. Ozarow, A.D. Wyner, Wire-tap channel ii. AT T Bell Lab. Tech. J.
[58] T. Rabin, M. Ben-Or, Verifiable secret sharing and multiparty protocols with honest majority (extended

abstract), in 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 15–17,
1989 (ACM Press, 1989), pp. 73–85

[59] J.K. Resch, J.S. Plank, AONT-RS: blending security and performance in dispersed storage systems, in
FAST’11 (2011)

[60] R.L. Rivest, All-or-nothing encryption and the package transform, in E. Biham, editor, Fast Software
Encryption—FSE’97. Lecture Notes in Computer Science, vol. 1267, Haifa, Israel, Jan. 20–22, 1997
(Springer, Heidelberg, 1997), pp. 210–218

[61] R. Shaltiel, J. Silbak, Explicit list-decodable codes with optimal rate for computationally bounded
channels, in APPROX/RANDOM 2016 (2016)

[62] D.R. Stinson, Something about all or nothing (transforms). Designs Codes Cryptogr. 22(2), 133–138
(2001)

[63] M. Tunstall, D. Mukhopadhyay, S. Ali, Differential Fault Analysis of the Advanced Encryption Standard
Using a Single Fault (Springer, Berlin, 2011), pp. 224–233

[64] A.D. Wyner, The wire-tap channel. Bell Syst. Tech. J. (1975)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.


	(Continuous) Non-malleable Codes for Partial Functions with Manipulation Detection and Light Updates
	1. Introduction
	1.1. Our Results
	1.2. Technical Overview
	1.3. Applications
	1.4. Related Work

	2. Preliminaries
	2.1. Non-malleable Codes
	2.2. Partial Functions
	2.3. All-Or-Nothing-Transform
	2.4. One-Time Authenticated Encryption
	2.5. Secret Sharing

	3. An MD-NMC for Partial Functions, in the CRS Model
	4. Removing the CRS
	4.1. Security Against Adaptive Adversaries
	4.2. MD-NMC Security of the Block-Wise Code

	5. Continuous MD-NMC with light Updates
	Acknowledgements
	References




