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Abstract. We construct an identity-based encryption (IBE) scheme that is tightly se-
cure in a very strong sense. Specifically, we consider a setting with many instances of
the scheme and many encryptions per instance. In this setting, we reduce the security of
our scheme to a variant of a simple assumption used for a similar purpose by Chen and
Wee (CRYPTO 2013, Springer, 2013). The security loss of our reduction isO(k) (where
k is the security parameter). Our scheme is the first IBE scheme to achieve this strong
flavor of tightness under a simple assumption. Technically, our scheme is a variation
of the IBE scheme by Chen and Wee. However, in order to “lift” their results to the
multi-instance, multi-ciphertext case, we need to develop new ideas. In particular, while
we build on (and extend) their high-level proof strategy, we deviate significantly in the
low-level proof steps.

Keywords. Public-key cryptography, Identity-based encryption, Dual-system groups,
Multi-challenge security, Tightness.

1. Introduction

Tight Security. For many cryptographic primitives, we currently cannot prove security
directly. Hence, we typically reduce the security of a given scheme to the hardness of a
computational problem, in the sense that every successful attack on the scheme yields
a successful problem solver. Now it is both a theoretically and practically interesting
question to look at the loss of such a reduction. Informally,the loss of a reduction quan-
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tifies the difference between the success of a hypothetical attacker on the cryptographic
scheme, and the success of the derived problem solver. From a theoretical perspective,
for instance, the loss of a reduction can also be viewed as a quantitative measure of
(an upper bound for) the “distance” between primitive and assumption. But “tight” (or,
“loss-free”) reductions are also desirable from a practical perspective: the tighter a re-
duction, the better are the security guarantees we can give for a specific instance of the
scheme. Hence, we can recommend smaller keylengths (which lead to more efficiency)
for schemes with tighter security reduction.

However, in most practical usage scenarios, a cryptographic primitive is used multiple
times. (For instance, in a typical multi-user encryption scenario, many instances of the
encryption scheme are used to produce even more ciphertexts.) Hence, tight security
reductions become particularly meaningful when they reduce an attacker on the whole
system (with many instances of the cryptographic scheme) to a problem solver. In fact,
while for many primitives (such as secret-key [3] or public-key [4] encryption), one-
instance security is known to imply multi-instance security, the corresponding security
guarantees for concrete schemes may indeed vanish in the number of instances [3].
Existing Tightly Secure Schemes. The loss of security reductions has been considered
explicitly by Bellare et al. [3] for the case of encryption schemes. The first “somewhat
tight” reductions (whose loss is independent of the number of instances of the scheme,
but not of the number of ciphertexts) for public-key encryption (PKE) schemes could
be given in [5]. In the following years, more tight (or somewhat tight) reductions for
encryption schemes were constructed in the random oracle model [8,12,18], or from
“q-type” assumptions [22,23].1

However, only recently, the first PKE schemes emerged [1,29,37] whose tight security
(in the multi-instance, multi-ciphertext setting) can be proved under simple assumptions
in the standard model.2 Even more recently, identity-based encryption (IBE) schemes
with “somewhat tight” security (under simple assumptions) have been constructed [7,
13]. (This required new techniques, since it is not clear how to extend the techniques of
[1,29,37] to the IBE setting.) In this case, “somewhat tight” means that their security
reduction loses only a small multiplicative factor, but still considers the standard IBE se-
curity experiment [10] with one encryption and one instance of the scheme. Nonetheless,
while the IBE schemes from [7,13] are not proved tightly secure in a multi-user, multi-
ciphertext setting, these schemes imply tightly secure PKE schemes (even in the multi-
user, multi-ciphertext setting) when plugged into the transformations of [10,29,37].3

1A “q-type” assumption may depend on the size of the investigated cryptographic system. (That is, larger
cryptographic systems may only be secure under a stronger instance of the assumption.) Hence, a tight
reduction (even in a multi-instance scenario) to a q-type assumption may not yield security guarantees that
are independent of the number of users.

2A “simple” assumption is defined through a security game in which an adversary first gets a challenge
whose size only depends on the security parameter and must then output a unique solution without further
interaction. Examples of simple assumptions are DLOG, DDH, or RSA, but not Strong Diffie–Hellman [9] or
q-ABDHE [22].

3More specifically, Boneh and Franklin [10] mention (and attribute this observation to Naor) that every
IBE scheme can be viewed as a signature scheme. The signature schemes thus derived from [7,13] are then
suitable for the conversions of [29,37], yielding PKE schemes tightly secure in the multi-user, multi-ciphertext
setting.
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Our Contribution. In this work, we construct the first IBE scheme with an almost tight
security reduction in the multi-instance, multi-ciphertext scenario. Our reduction is only
almost tight, since it loses a factor of O(k), where k is the security parameter. However,
we stress that this loss is independent of the number of ciphertexts, revealed user secret
keys, or instances of the scheme. In our security reduction, we rely on a computational
assumption in composite-order pairing-friendly groups; this assumption is a variant of
an assumption used by Chen and Wee [13] for their IBE scheme, and in particular
simple in the above sense. We note that a conversion to the prime-order setting using the
techniques from [17,27,36,38] (see also [6]) seems plausible—specifically since Chen
and Wee [13] already describe such a conversion for their assumption—but we leave
such a conversion as an open problem.
Our Approach. Our scheme is a variant of the IBE scheme by Chen and Wee [13]
(which is almost tightly secure in the one-instance, one-ciphertext setting), and our
proof strategy draws heavily from theirs. Hence, to describe our techniques, let us first
briefly sketch their strategy.

In a nutshell, Chen and Wee start with a real security game, in which an adversary
A receives a master public key mpk of the scheme, as well as access to arbitrarily
many user secret keys uskid for adversarially chosen identities id. At some point, A
selects a fresh challenge identity id∗ and two messages M∗

0 , M∗
1 , and then receives the

encryption C∗
id∗ ← Enc(mpk, id∗, Mb) (under identity id∗) of one of these messages.

After potentially querying more user secret keys (for identities id �= id∗), A eventually
outputs a guess b∗ for b. If b∗ = b, we say that A wins. Chen and Wee then show
security by gradually changing this game (being careful not to significantly decrease
A’s success), until A trivially cannot win (except by guessing).

As a first preparatory change, Chen and Wee use the user secret key uskid∗ to construct
the challenge ciphertext C∗

id∗ . (This way, the encryption random coins for C∗
id∗ do not

have to be known to the security game.) Additionally C∗
id∗ is now of a special, “pseudo-

normal” form that will later enable a gradual randomization of the encrypted message.
The core of the proof then consists of a number of hybrid steps, in which the distribution of
all generated user secret keys (including the user secret key uskid∗ used to generate C∗

id∗)
is modified. Concretely, in the i-th hybrid game, each used uskid contains an additional
“blinding term” of the form R(id|i ), where id|i is the i-bit prefix of id, and R is a truly
random function. Eventually, each user secret key uskid will be fully randomized by
a truly random value R(id). In particular, at this point, the key uskid∗ used to prepare
C∗
id∗ is blinded by a fresh random value R(id∗). By the special “pseudo-normal” form

of C∗
id∗ , this means that the corresponding encrypted message is also blinded, and A’s

view is finally independent of the challenge bit b.
We keep this high-level proof structure, extending it of course to multiple ciphertexts

and multiple instances of the scheme. However, as we will explain below, the way Chen
and Wee gradually introduce the blinding terms R(id|i ) does not immediately extend to
many ciphertexts or instances; hence, we need to deviate from their proof strategy here.
The Problem. Specifically, Chen and Wee move from the (i − 1)-th to the i-th hybrid
through a single reduction as follows: first, they guess the i-th bit id∗

i of the challenge
identity id∗. Then, they set up things such that
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(a) all user secret keys for identities id with idi = id∗
i (i.e., that coincide in the i-th bit

with id∗) behave as in the previous hybrid (i.e., carry a blinding term R(id|i−1)),
(b) all user secret keys for identities id with idi = 1 − id∗

i carry a blinding term of
R(id|i−1) · R′(id|i−1)). Depending on the input of the reduction, we have either
that R′ = 1 (such that the overall blinding term is R(id|i−1)), or that R′ is an
independently random function. (In particular, all uskid with idi = 1− id∗

i contain
an embedded computational challenge R′.)

Depending on whether or not R′ = 1, this setup simulates the (i−1)-th or the i-th hybrid.
However, we remark that the setup of Chen and Wee only allows to generate “pseudo-
normal” challenge ciphertexts C∗

id∗ for identities id∗ with the initially guessed i-th bit
id∗

i . (Intuitively, any pseudo-normal ciphertext for an identity id with idi = 1 − id∗
i

would “react with” an additional blinding term R′(id|i−1) in uskid , allowing to trivially
solve the computational challenge.)

Hence, in their i-th game hop, only challenge ciphertexts for identities with the same
i-th bit can be generated. Thus, their approach cannot in any obvious way be extended
to multiple challenge ciphertexts for different identities. (For similar reasons, a gener-
alization to multiple instances of the scheme fails.)
Our Solution. In order to move from the (i − 1)-th to the i-th hybrid, we thus follow
a different strategy that involves three reductions. The main technical ingredient in our
case is the ability to distribute the blinding terms R(id|i ) in user secret keys into two
different “compartments” (i.e., subgroups) of the composite-order group we are working
in. (In particular, a term R(id|i ) in one compartment can be changed independently of
terms in the other compartment.)

More specifically, recall that in the (i − 1)-th hybrid, all user secret keys carry an
additional R(id|i−1) blinding term, and all challenge ciphertexts are pseudo-normal (in
the sense that they “react with” the blinding terms in user secret keys). In our first step,
we move all blinding terms R(id|i−1) in the uskid into the two compartments, depending
on the i-th bit of id. (That is, if idi = 0, then the corresponding blinding term R(id|i−1)

goes into the first compartment, and if idi = 1, then it goes into the second.)
In our second step, we can now treat the embedded blinding terms for idi = 0

and idi = 1 separately. In particular, since these cases are now “decoupled” by being
in different compartments, we can completely re-randomize the underlying random
function R in exactly one of those compartments. (This does not lead to trivial distinctions
of the computational challenge since we do not introduce new blinding terms that would
“react with” pseudo-normal ciphertexts and thus become easily detectable. Instead, we
simply decouple existing blinding terms in different subgroups.) Note, however, that
since now different random functions, say, ̂R and ˜R, determine the blinding terms used
for identities with idi = 0 and idi = 1, we essentially obtain blinding terms that depend
on the first i (and not only i − 1) bits of id.

Finally, we revert the first change and move all blinding terms in the uskid into one
compartment. In summary, this series of three moves has thus created blinding terms
that depend on the first i bits of id. Thus, we have moved to the i-th hybrid. If we follow
the high-level strategy of Chen and Wee again, this yields a sequence of O(k) reductions
that show the security of our IBE scheme. (From a conceptual perspective, it might also
be interesting to note that none of our reductions needs to guess, e.g., an identity bit.)
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SubsequentWorks.Since publication of the PKC’15 version [30], a series of subsequent
works using (some of) our techniques have appeared. Attrapadung et al. [2] and Gong
et al. [24] resolved an open problem left by our work: they provide a prime-order
instantiation of an (almost) tightly secure IBE in the multi-instance multi-ciphertext
setting. Technically, [24] directly build upon our dual-system-group definition.

Shortly thereafter, Gay et al. [20] presented the first tightly and CCA-secure public-key
encryption (PKE) scheme based (solely) on the DDH assumption and without pairings.
Their work combines a number of ideas: their first ingredient is a translation of the
Chen-Wee IBE scheme from [13] to the PKE setting. In the PKE setting, there are no
(explicit) user secret keys, and during this translation they only appear as intermediate
values during decryption (that are not revealed to an adversary). Hence, this translation
can use exponents instead of group elements for user secret keys and thus only requires
a mild hardness assumption (DDH) and no pairings. Second, Gay et al. [20] apply our
randomization strategy to this translated scheme to obtain security for many challenge
ciphertexts. This application is analogous to how we refine the randomization strategy
of [13], only that [20] operate in the PKE setting.

Back in the IBE setting, Gong et al. [26] improved the performance of (almost)
tightly IBE schemes by analyzing the (almost) tightly secure IBE due to Blazy et al. [7]
in the dual-system-group framework via [24]. Moreover, Gong et al. [25] presented an
(almost) tightly and selective-opening-attack secure IBE in the composite-order setting.
Besides, Chen et al. [16] gave an IBE with a tighter security reduction and constant-size
public parameters in the composite-order setting. All of these works benefit (directly or
indirectly) from our techniques to obtain tight multi-ciphertext security.

Some further works used ideas for achieving multi-challenge security in the PKE set-
ting using the strategy from [20] mentioned above. Concretely, Gay et al. [21] combined
the approach from [20] with an even more refined randomization strategy from [28] to
obtain the first (almost) tightly secure PKE based on DDH with small public keys and
ciphertexts. Moreover, Hofheinz et al. [31] used ideas from [20] to achieve (almost)
tightly chosen-ciphertext secure IBE. Several later works dealt with (almost) tightly
secure hierarchical IBE [32,34] also in the multi-challenge setting [33,35]. Moreover,
Garg et al. [19] made an interesting connection to key-dependent-message secure IBE
by adapting our introduced paradigm in combination with [11].
Outline of the Paper. After introducing some preliminary definitions in Sect. 2, we
explain the necessary algebraic structure (mentioned in the “compartment discussion”
above) of “extended nested dual system groups” (ENDSGs) in Sect. 3. (This structure
extends a similar structure of Chen and Wee [13].) In Sect. 4, we present our IBE scheme
from ENDSGs, and in Sect. 5, we show how to instantiate ENDSGs in composite-order
pairing-friendly groups.

2. Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let k ∈ N be the security parameter. For
a finite set S, we denote by s ← S the process of sampling s uniformly from S. For an
algorithm A, let y ← A(k, x) be the process of running A on input k, x with access to
uniformly random coins and assigning the result to y. (We may omit to mention the k-
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input explicitly and assume that all algorithms take k as input.) To make the random coins
r explicit, we write A(k, x; r). We say an algorithm A is probabilistic polynomial time
(PPT) if the running time of A is polynomial in k. A function f : N → R is negligible if it
vanishes faster than the inverse of any polynomial (i.e., if ∀c ∈ N ∃k0 ∀k ≥ k0 : | f (k)| <

1/kc). Further, we write vectors in bold font, e.g., v = (v1, . . . , vn) for a vectors of
length n ∈ N and with components v1, . . . , vn . (We may also write v = (vi )i∈[n] or
even v = (vi )i in this case.) In the following, we use a component-wise multiplication of
vectors, i.e., v ·v′ = (v1, . . . , vn) ·(v′

1, . . . , v
′
n) = (v1 ·v′

1, . . . , vn ·v′
n). Further, we write

v j := (v
j
1 , . . . , v

j
n ), for j ∈ N, and v−i := (v1, . . . , vi−1, vi+1, . . . , vn), for i ∈ [n],

and sv := (sv1, . . . , svn ). For two random variables X,Y , we denote with SD (X ; Y )

is the statistical distance of X and Y . We might also say that X and Y are ε-close if
SD (X ; Y ) ≤ ε.
Identity-BasedEncryption.An identity-based encryption (IBE) scheme IBEwith iden-
tity space ID and message space M consists of the five PPT algorithms Par,Gen,

Ext,Enc,Dec. Parameter sampling Par(k, n), on input a security parameter k and an
identity length parameter n ∈ N, outputs public parameters pp and secret parameters
sp. (We assume that Ext, Enc, and Dec have implicitly access to pp.) Key generation
Gen(pp, sp), on input pp and sp, outputs a master public key mpk and a master secret
key msk. User secret key extraction Ext(msk, id), given msk and an identity id ∈ ID,
outputs a user secret key uskid associated with id. Encryption Enc(mpk, id, M), given
mpk, an identity id ∈ ID, and a message M ∈ M, outputs an id-associated cipher-
text Cid . Decryption Dec(uskid,Cid), given uskid for an identity id, and ciphertext Cid ,
outputs M ∈ M ∪ {⊥}. For correctness, we require that for any k, n ∈ N, for all
(pp, sp) ← Par(k, n), for all (mpk,msk) ← Gen(pp, sp), for all id ∈ ID, for all
uskid ← Ext(msk, id), for all M ∈ M, and for all Cid ← Enc(mpk, id, M), Dec
satisfies Dec(uskid,Cid) = M . For security, we define multi-instance, multi-ciphertext
IBE security, dubbed (μ, q)-IBE-IND-CPA security, for (μ, q) ∈ N2, as follows.
(Weak) (μ, q)-IBE-IND-CPA security.An IBE scheme IBE defined as above is (μ, q)-
IBE-IND-CPA-secure if and only if any PPT adversary A succeeds in the following ex-
periment only with probability at most negligibly larger than 1/2. Let
Enc′(mpk, id, b, M0, M1) be a PPT auxiliary encryption oracle that, given a master pub-
lic key mpk, a challenge identity id ∈ ID, a bit b ∈ {0, 1}, and two messages M0, M1 ∈
M, outputs a challenge ciphertextCid ← Enc(mpk, id, Mb). First, A gets honestly gen-
erated public parameter pp and master public keys (mpk1, . . . ,mpkμ). During the exper-
iment, A may adaptively query Ext(msk j , ·)-oracles and Enc′(mpk j , ·, b, ·, ·)-oracles,
for corresponding mpk j ,msk j and a (uniform) bit b ← {0, 1}, for all j ∈ [μ]. Even-
tually, A outputs a guess b∗. We say that A is valid if and only if A never queries
an Ext(msk j , ·) oracle on an identity id for which it has already queried the corre-
sponding Enc′(mpk j , ·, b, ·, ·) oracle (and vice versa); each message pair A selected as
input to Enc′ contained only equal-length messages; and A has only queried its Enc′-
oracles at most q times per j-instance. We say that A succeeds if and only if A is valid
and b = b∗. Concretely, the previous described experiment is given in Fig. 1 and de-
noted Exp(μ,q)-ibe-ind-cpa

IBE,A . Further, we define the advantage function for any PPT A as

Adv(μ,q)-ibe-ind-cpa
IBE,A (k, n) := | Pr

[

Exp(μ,q)-ibe-ind-cpa
IBE,A (k, n) = 1

]

− 1/2 |.
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Fig. 1. The (μ, q)-IBE-IND-CPA security experiment.

Furthermore, we call IBE weakly (μ, q)-IBE-IND-CPA secure iff Adv(μ,q)-ibe-ind-cpa
IBE,A

is negligible for allweak PPT adversaries A. Here, A is weak if it never requests challenge
ciphertexts for the same scheme instance and identity twice (i.e., if it never queries any
Enc′(mpk j , ·, b, ·, ·) oracle twice with the same identity id).

Finally, we remark that the one-instance, one-ciphertext notion (1, 1)-IBE-IND-CPA
is the standard notion of IBE security considered in, e.g., [7,10,13].
Pairings. Let G, H,GT be cyclic groups of order N . A pairing e : G × H → GT

is a map that is bilinear (i.e., for all g, g′ ∈ G and h, h′ ∈ H , we have e(g · g′, h) =
e(g, h) ·e(g′, h) and e(g, h ·h′) = e(g, h) ·e(g, h′)), non-degenerate (i.e., for generators
g ∈ G, h ∈ H , we have that e(g, h) ∈ GT is a generator), and efficiently computable.

3. Extended Nested Dual System Groups

(Nested) Dual System Groups. Nested dual system groups (NDSG) [13] can be seen
as a variant of dual system groups (DSG) [15], which itself are based on the dual
system framework introduced by Waters [38]. NDSGs were recently defined by Chen
and Wee and enabled to prove the first IBE (almost) tightly and fully secure under
simple assumptions. In the following, based on NDSGs, we construct a new notion we
call extended nested dual system groups.
A Variant of Nested Dual System Groups. We introduce a variant of Chen and Wee’s
nested dual system groups (NDSG) [13], dubbed extended NDSG (ENDSG). (Mainly,
we re-use and extend the notions from [13].) Further, let G(k, n′) be a group gener-
ator that, given integers k and n′, generates the tuple (G, H,GT , N , (gp1 , . . . , gpn′ ),
(h p1 , . . . , h pn′ ), g, h, e), for a pairing e : G × H → GT , for composite-order groups
G, H,GT , all of known group order N = p1 · · · pn′ , for k-bit primes (pi )i and in-
teger n′ ∈ O(1). Further, g and h are generators of G and H , and (gpi )i and (h pi )i
are generators of the (proper) subgroups Gpi ⊂ G and Hpi ⊂ H of order |Gpi | =
|Hpi | = pi , respectively. In this setting, an ENDSG ENDSG consists of algorithms

SampP,SampG,SampH, ̂SampG, ˜SampG:

Parameter sampling. SampP(k, n), given security parameter k and parameter n ∈ N,
samples (G, H,GT , N , (gp1 , . . . , gpn′ ), (h p1 , . . . , h pn′ ), g, h, e) ← G(k, n′),
for a constant integer n′ determined by SampP, and outputs public parameters
pp = (G, H,GT , N , g, h, e,m, n, pars) and secret parameters sp = (̂h,˜h, p̂ars,
p̃ars), where m : H → GT is a linear map, ̂h,˜h are nontrivial H -elements, and
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pars, p̂ars, p̃ars may contain arbitrary additional information used by SampG,

SampH, and ̂SampG and ˜SampG.

G-group sampling. SampG(pp), given parameter pp, outputs g = (g0, . . . , gn) ∈
Gn+1.

H -group sampling. SampH(pp), given parameter pp, outputs h = (h0, . . . , hn) ∈
Hn+1.

Semi-functional G-group sampling 1. ̂SampG(pp, sp), given pp and sp, outputs ĝ =
(ĝ0, . . . , ĝn) ∈ Gn+1.

Semi-functional G-group sampling 2. ˜SampG(pp, sp), given pp and sp, outputs g̃ =
(g̃0, . . . , g̃n) ∈ Gn+1.

The algorithmsSampG andSampH (used for correctness in our IBE scheme) sample

from a “normal” distribution, while ̂SampG and ˜SampG (used to prove security of our
IBE scheme) sample from a “semi-functional” distribution. During the security proof
of our IBE scheme (as shown later), in a bit-by-bit fashion (depending on the identity
bits of the challenge ciphertexts), normal ciphertext and secret-key elements are made
semi-functional and security follows.
Correctness of ENDSG. For correctness, for all k ∈ N, for all integers n = n(k) > 1,
for all pp, where pp is the first output of SampP(k, n), we require:

Associativity. For all (g0, . . . , gn) ← SampG(pp) and for all (h0, . . . , hn) ←
SampH(pp), we have e(g0, hi ) = e(gi , h0), for all i ∈ [n].

Projective. For all s ← Z∗
N , for all g0 which is the first output of SampG(pp; s), for

all h ∈ H , we have m(h)s = e(g0, h).

Security of ENDSG. For security, for all k ∈ N, for all integers n = n(k) > 1, for all
(pp, sp) ← SampP(k, n), we require:

Orthogonality.Form specified inpp, for̂h,˜h specified in sp, we havem(̂h) = m(˜h) = 1.

For g0, ĝ0, and g̃0 that are the first outputs of SampG(pp), ̂SampG(pp, sp),

and ˜SampG(pp, sp), respectively, we have that e(g0,̂h) = 1, e(g0,˜h) = 1,
e(ĝ0,˜h) = 1, and e(g̃0,̂h) = 1.

G- and H -subgroups. The outputs of SampG, ̂SampG, and ˜SampG are distributed
uniformly over the generators of different nontrivial subgroups of Gn+1 (that
only depend on pp) of coprime order, respectively, while the output of SampH
is uniformly distributed over the generators of a nontrivial subgroup of Hn+1

(that only depends on pp).

Non-degeneracy. For ̂h specified in sp and for the first output ĝ0 of ̂SampG(pp, sp),
it holds that e(ĝ0,̂h) is uniformly distributed over the generators of a nontrivial
subgroup of GT (that only depends on pp). Similarly, e(g̃0,˜h) is uniformly
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distributed over the generators of a nontrivial subgroup of GT (that only depends

on pp), where ˜h is specified in sp and g̃0 is the first output of ˜SampG(pp, sp).

Left-subgroup indistinguishability 1 (LS1). For any PPT adversary D, we have that
the function

Advls1
ENDSG,G,D(k, n) := | Pr

[

D(pp, g) = 1
] − Pr

[

D(pp, ĝg) = 1
] |

is negligible in k, where g ← SampG(pp), ĝ ← ̂SampG(pp, sp).

Left-subgroup indistinguishability 2 (LS2). For any PPT adversary D, we have that
the function

Advls2
ENDSG,G,D(k, n) := | Pr

[

D(pp,̂h˜h, g′̂g′, ĝg) = 1
]

− Pr
[

D(pp,̂h˜h, g′̂g′, g̃g) = 1
] |

is negligible in k, where g, g′ ← SampG(pp), ĝ, ĝ′ ← ̂SampG(pp, sp), and

g̃ ← ˜SampG(pp, sp), for ̂h and ˜h specified in sp.

Nested-hiding indistinguishability (NH). For any PPT adversary D, for all integers
q ′ = q ′(k), the function

Advnh
ENDSG,G,D(k, n, q ′) :=

max
i∈[� n

2 �]
(| Pr

[

D(pp,̂h,˜h, ĝ−(2i−1), g̃−2i , (h1, . . . ,hq ′)) = 1
]

− Pr
[

D(pp,̂h,˜h, ĝ−(2i−1), g̃−2i , (h′
1, . . . ,h′

q ′)) = 1
] |) ,

is negligible in k, where ĝ ← ̂SampG(pp, sp), g̃ ← ˜SampG(pp, sp), and

hi ′ := (hi ′,0, . . . , hi ′,n) ← SampH(pp),

h′
i ′ := (hi ′,0, . . . , hi ′,2i−1 · (̂h)γ̂i ′ , hi ′,2i · (˜h)γ̃i ′ , . . . , hi ′,n),

for ̂h,˜h specified in sp, for γ̂i ′ , γ̃i ′ ← Z∗
ord(H)

, and for all i ′ ∈ [q ′].
The LS1 property is used in the security proof of our IBE scheme to introduce

semi-functional components into the challenge ciphertexts. During the proof, via the
LS2 property, such challenge ciphertexts either contain semi-functional elements from
̂SampG or ˜SampG depending on the bits of the challenge-ciphertext. Thereby, the

orthogonality property ensures that user secret keys with elements depending on ̂h are

orthogonal to challenge-ciphertext elements sampled from ˜SampG; analogously, user
secret keys with elements depending on ˜h are orthogonal to challenge-ciphertext ele-

ments sampled from ̂SampG. The NH property can then be used to introduce fresh
randomness into user secret keys bit-by-bit (which stays unnoticed by any PPT adver-
sary). Lastly, the non-degeneracy property ensures the uniform distribution of the mes-
sage component in the challenge ciphertexts and (weak) security follows. Moreover, the
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G- and H -subgroups property allows for uniform re-randomization of the output from

SampG, ̂SampG, ˜SampG, and SampH.
(Informal) Comparison of NDSGs and ENDSGs. Loosely speaking, in contrast to the
NDSGs from [14], ENDSGs have a second semi-functionalG-group sampling algorithm
˜SampG as well as a second nontrivial H -element in sp (i.e., ˜h). Further, we omit the

SampGT-algorithm. Concerning the ENDSG properties, we extend the NDSG proper-
ties and assumptions appropriately and introduce one additional assumption (i.e., LS2).
The proof strategy of the single-instance, single-challenge IBE from NDSGs in [14]
is adapted to the multi-instance, multi-challenge case. Namely, semi-functional com-
ponents are carefully integrated into challenge ciphertexts and user secret keys (i.e.,
depending on the bits of the challenge ciphertexts, orthogonal semi-functional compo-
nents are introduced in a bit-by-bit fashion to the user secret keys). That is particularly
achieved with the help of the introduced and extended LS2 and the G- and H -subgroups
properties, respectively.

4. An (Almost) Tightly (μ, q)-IBE-IND-CPA-Secure IBE

A Variant of the IBE of Chen and Wee [13]. We are now ready to present our
variant of Chen and Wee’s IBE scheme [13]. As a basic building block we use an

ENDSGENDSG = (SampP,SampG,SampH, ̂SampG, ˜SampG) from Sect. 3. Be-
sides, for groups GT (defined below), let UH be a family of universal hash func-
tions H : GT → {0, 1}k such that for any nontrivial subgroup G ′

T ⊂ GT , and for
H ← UH, X ← G ′

T , and U ← {0, 1}k , we have SD ((H,H(X)) ; (H,U )) = O(2−k).
Let IBE = (Par,Gen,Ext,Enc,Dec) with identity space ID = {0, 1}n , for n = n(k),
and message space M = {0, 1}k be defined as follows:

Parameter generation. Par(k, n) samples (pp′, sp′) ← SampP(k, 2n), with pp′ =
(G, H,GT , N , g, h, e,m, 2n, pars) and sp′ = (̂h,˜h, p̂ars, p̃ars)), and H ←
UH, and then outputs the public and secret parameters (pp, sp), where pp =
(pp′,H) and sp = sp′.

Key generation. Gen(pp, sp), given parameters pp and sp, samples msk ← H , and
outputs a master public key mpk := (pp,m(msk)) and a master secret key msk.

Secret-key extraction. Ext(msk, id), given msk ∈ H and id = (id1 . . . idn) ∈ ID,
samples (h0, . . . , h2n) ← SampH(pp) and outputs a user secret key

uskid := (h0,msk ·
n

∏

i=1

h2i−idi ).

Encryption. Enc(mpk, id, M), given mpk = (pp,m(msk)), id = (id1 . . . idn) ∈ ID,
and a message M ∈ M, computes (g0, . . . , g2n) := SampG(pp; s), for s ←
Z∗

N , and gT := m(msk)s (= e(g0,msk)), and outputs a ciphertext
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Cid := (g0,

n
∏

i=1

g2i−idi ,H(gT ) ⊕ M).

Decryption.Dec(uskid,Cid′), given a user secret keyuskid =: (K0, K1) and a ciphertext
Cid′ =: (C0,C1,C2), outputs

M := H
(

e(C0, K1)

e(C1, K0)

)

⊕ C2.

Correctness of IBE. We have

H
(

e(C0, K1)

e(C1, K0)

)

⊕ C2 = H

(

e(g0,msk · ∏n
i=1 h2i−idi )

e(
∏n

i=1 g2i−id′
i
, h0)

)

⊕ H(gT ) ⊕ M

(∗)= H(gT ) ⊕ H(gT ) ⊕ M,

for id = id′. (∗) holds due to ENDSG’s associativity and projective properties.
(μ, q)-IBE-IND-CPA security of IBE. We base our high-level proof strategy on the
IBE-IND-CPA proof strategy of Chen and Wee [13], but deviate on the low level. First,
we define auxiliary secret-key extraction Ext and auxiliary encryption Enc, random
functions ̂R j,i and ˜R j,i , pseudo-normal ciphertexts, semi-functional type-(·, i) cipher-
texts, and semi-functional type-i user secret keys similarly to [13]:

Auxiliary secret-key extraction.Ext(pp,msk, id;h), given parameter pp, master secret
key msk, an identity id = id1 . . . idn ∈ ID, and h = (h0, . . . , h2n) ∈ (H)2n+1,
outputs a user secret key

uskid := (h0,msk ·
n

∏

i=1

h2i−idi ).

Auxiliary encryption function. Enc(pp, id, M;msk, g), given parameter pp, identity
id = id1 . . . idn ∈ ID, message M ∈ M, master secret key msk, and g =
(g0, . . . , g2n) ∈ (G)2n+1, outputs a ciphertext

Cid := (g0,

n
∏

i=1

g2i−idi ,H(e(g0,msk)) ⊕ M).

Random function families. Let id|i := id1 . . . idi be the i-bit prefix of an identity
id, and let ID|i := {0, 1}i . For an instance j and i ∈ [n] ∪ {0}, consider
functions ̂R j,i : ID|i → H, id|i �→ (̂h)γ̂ j,i (id|i ) and ˜R j,i : ID|i → H, id|i �→
(˜h)γ̃ j,i (id|i ), where γ̂ j,i : ID|i → Z∗

ord(H)
, id|i �→ γ̂ j,id|i and γ̃ j,i : ID|i →

Z∗
ord(H)

, id|i �→ γ̃ j,id|i are independently and truly random.
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Pseudo-normal ciphertexts. Pseudo-normal ciphertexts are generated as

Cid := Enc(pp, id, M;msk, ĝg)

= (g0ĝ0,

n
∏

i=1

g2i−idi ĝ2i−idi ,H(e(g0 ĝ0,msk)) ⊕ M),

for uniform g = (g0, . . . , g2n) ← SampG(pp) and ĝ = (ĝ0, . . . , ĝ2n) ←
̂SampG(pp, sp). (Hence, pseudo-normal ciphertexts have G-components sam-

pled from ̂SampG.)

Semi-functional type-(∧, i) and type-(∼, i) ciphertexts. Let ̂R j,i and ˜R j,i be random
functions as defined above. Semi-functional ciphertexts of type (∧, i) are gen-
erated as

̂Cid := Enc(pp, id, M;msk · ̂R j,i (id|i ) · ˜R j,i (id|i ), ĝg)
(1)= (g0 ĝ0,

n
∏

i=1

g2i−idi ĝ2i−idi ,H(e(g0 ĝ0,msk · ̂R j,i (id|i ))) ⊕ M)

while semi-functional ciphertexts of type (∼, i) are generated as

˜Cid := Enc(pp, id, M;msk · ̂R j,i (id|i ) · ˜R j,i (id|i ), g̃g)
(2)= (g0g̃0,

n
∏

i=1

g2i−idi g̃2i−idi ,H(e(g0 g̃0,msk · ˜R j,i (id|i ))) ⊕ M),

where g = (g0, . . . , g2n) ← SampG(pp), ĝ = (ĝ0, . . . , ĝ2n) ← ̂SampG(pp),

and g̃ = (g̃0, . . . , g̃2n) ← ˜SampG(pp), while (1) and (2) hold due toENDSG’s
properties.

Semi-functional type-i user secret keys. Let ̂R j,i and ˜R j,i be defined as above. For
h = (h0, . . . , h2n) ← SampH(pp), semi-functional type-i user secret keys are
generated as

uskid := Ext(pp,msk · ̂R j,i (id|i ) · ˜R j,i (id|i ), id;h)

= (h0,msk · ̂R j,i (id|i ) · ˜R j,i (id|i ) ·
n

∏

i=1

h2i−idi ).

Theorem 1. If ENDSG is an ENDSG system as defined in Sect.3 andH is a universal
hash function, then IBE defined as above is weakly (μ, q)-IBE-IND-CPA-secure. Con-
cretely, for any weak PPT adversary A with at most q ′ = q ′(k) key extraction queries
per instance and running time t in the (μ, q)-IBE-IND-CPA security experiment with
IBE, there are distinguishers D1 on LS1, D2 on LS2, and D3 on NH with running times
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t ′1 ≈ t ′2 ≈ t ′3 ≈ t + O(μnkc(q + q ′)), respectively, for some constant c ∈ N, with

Adv(μ,q)-ibe-ind-cpa
IBE,A (k, n) ≤ Advls1

ENDSG,G,D1
(k, 2n) + 2n · Advls2

ENDSG,G,D2
(k, 2n)

+ n · Advnh
ENDSG,G,D3

(k, 2n, μq ′) + μq · O(2−k), (1)

for group generator G defined as above.

Proof. We show the (μ, q)-IBE-IND-CPA security of IBE for any weak PPT adversary
A in a sequence of games where we successively change the games until we arrive at
a game where A has only negligible advantage (i.e., success probability of 1/2) in the
sense of (μ, q)-IBE-IND-CPA. Let SA, j be the event that A succeeds in Game j . We
give an overview how the challenge ciphertexts and user secret keys are generated in
Table 1.

Game 0. Game 0 is the (μ, q)-IBE-IND-CPA experiment as defined above.

Game 1. Game 1 is defined as Game 0 apart from the fact that all challenge ciphertexts
are pseudo-normal.

Game 2.i.0. Game 2.i.0 is defined as Game 1 except that all user secret keys are semi-
functional of type (i − 1) and all challenge ciphertexts are semi-functional of
type-(∧, i − 1), for all i ∈ [n].

Game 2.i.1. Game 2.i.1 is defined as Game 2.i.0 except that if and only if the i-th bit
of a challenge identity is 1, then the corresponding challenge ciphertext is semi-
functional of type (∼, i −1). (Otherwise, if and only if the i-th bit of a challenge
identity is 0, then the corresponding challenge ciphertext is semi-functional of
type (∧, i − 1).)

Game 2.i.2. Game 2.i.2 is defined as Game 2.i.1 except that the challenge ciphertexts
are semi-functional of type (·, i) (where · can be ∧ or ∼ as defined in Game
2.i.1, i.e., depending on the i-th challenge identity bit) and the user secret keys
are semi-functional of type i .

Game 3. Game 3 is defined as Game 2.n.0 except that the challenge ciphertexts are
semi-functional of type (∧, n) and the user secret keys are semi-functional of
type n.

Game 4. Game 4 is defined as Game 3 except that the challenge ciphertext messages
are uniform k-length bitstrings.

Lemma 1. (Game 0 to Game 1) If the G- and H-subgroups property and LS1 of
ENDSG hold, Game 0 and Game 1 are computationally indistinguishable. Concretely,
for any PPT adversary A with at most q ′ = q ′(k) extraction queries per instance and
running time t in the (μ, q)-IBE-IND-CPA security experiment with IBE there is a
distinguisher D on LS1 with running time t ′ ≈ t +O(μnkc(q + q ′)), for some constant
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Table 1. Instance- j challenge ciphertexts for challenge identity id∗
j,i ′ , for g ← SampG(pp), for ĝ ←

̂SampG(pp, sp), for g̃ ← ˜SampG(pp, sp), for R j,i ′ ← {0, 1}k , and for instance- j user secret keys for
identity id, for h ← SampH(pp), for all ( j, i ′, i) ∈ [μ] × [q] × [n].

Challenge ciphertexts for id∗
j,i ′

Game 0 Enc(mpk j , id
∗
j,i ′ , M

∗
j,i ′,b)

Game 1 Enc(pp, id∗
j,i ′ , M

∗
j,i ′,b;msk j , ĝg)

Game 2.i.0 Enc(pp, id∗
j,i ′ , M

∗
j,i ′,b;msk j · ̂R j,i−1(id∗

j,i ′ |i−1), ĝg)

Game 2.i.1 if id∗
j,i ′,i = 0 : Enc(pp, id∗

j,i ′ , M
∗
j,i ′,b;msk j · ̂R j,i−1(id∗

j,i ′ |i−1), ĝg)

if id∗
j,i ′,i = 1 : Enc(pp, id∗

j,i ′ , M
∗
j,i ′,b;msk j · ˜R j,i−1(id∗

j,i ′ |i−1), g̃g)

Game 2.i.2 if id∗
j,i ′,i = 0 : Enc(pp, id∗

j,i ′ , M
∗
j,i ′,b;msk j · ̂R j,i (id

∗
j,i ′ |i ), ĝg)

if id∗
j,i ′,i = 1 : Enc(pp, id∗

j,i ′ , M
∗
j,i ′,b;msk j · ˜R j,i (id

∗
j,i ′ |i ), g̃g)

Game 3 Enc(pp, id∗
j,i ′ , M

∗
j,i ′,b;msk j · ̂R j,n(id∗

j,i ′ ), ĝg)

Game 4 Enc(pp, id∗
j,i ′ , R j,i ′ ;msk j · ̂R j,n(id∗

j,i ′ ), ĝg)

User secret keys for id

Game 0 Ext(msk j , id)

Game 1 Ext(pp,msk j , id;h)

Game 2.i.0 Ext(pp,msk j · ̂R j,i−1(id|i−1) · ˜R j,i−1(id|i−1), id; h)

Game 2.i.1 Ext(pp,msk j · ̂R j,i−1(id|i−1) · ˜R j,i−1(id|i−1), id; h)

Game 2.i.2 Ext(pp,msk j · ̂R j,i (id|i ) · ˜R j,i (id|i ), id; h)

Game 3 Ext(pp,msk j · ̂R j,n(id) · ˜R j,n(id), id;h)

Game 4 Ext(pp,msk j · ̂R j,n(id) · ˜R j,n(id), id;h)

The differences between games are given by underlining

c ∈ N, such that

| Pr
[

SA,0
] − Pr

[

SA,1
] | ≤ Advls1

ENDSG,G,D(k, 2n). (2)

Proof. In Game 0, all challenge ciphertexts are normal in the sense of IBE while
in Game 1, all challenge ciphertexts are pseudo-normal. In the following, we give a
description and its analysis of a LS1 distinguisher that uses any efficient IBE-attacker
in the (μ, q)-IBE-IND-CPA sense.
Description. The challenge input is provided as (pp,T), where T is either g or ĝg, for

pp = (G, H,GT , N , g, h, e,m, 2n, pars),g ← SampG(pp), and ĝ ← ̂SampG(pp, sp).
First, D samples (msk j ) j ← (H)μ, sets mpk j := (pp,H,m(msk j )), for all j , for
H ← UH, and sends (mpk j ) j to A. During the experiment, D answers instance- j secret
key extraction queries to oracle Ext(msk j , ·), for id ∈ ID, as

Ext(pp,msk j , id;SampH(pp)),



Identity-based encryption with... Page 15 of 33 12

for all j . (We assume that A queries at most q ′ user secret keys per instance.) Then, D
fixes a bit b ← {0, 1}. A may adaptively query its Enc′-oracle; for A-chosen instance- j
challenge identity id∗

j,i ∈ ID and equal-length messages (M∗
j,i,0, M

∗
j,i,1). D returns

Enc(pp, id∗
j,i , M

∗
j,i,b;msk j ,Ts j,i )

to A, for s j,i ← Z∗
N , for all ( j, i) ∈ [μ] × [q]. (We assume that A queries at most

q challenge ciphertexts per instance.) Eventually, A outputs a guess b′. D outputs 1 if
b′ = b and A is valid in the sense of (μ, q)-IBE-IND-CPA, else outputs 0.
Analysis. The provided master public keys and the A-requested user secret keys yield
the correct distribution and are consistent in the sense of Game 0 and Game 1. Due to
ENDSG’s G- and H -subgroups property, we have that T is uniformly distributed over
the generators of a nontrivial subgroup of G2n+1. Hence, Ts , for s ← Z∗

N , is distributed
uniformly over the generators of a nontrivial subgroup of G2n+1 and, thus, all challenge
ciphertexts yield the correct distribution in the sense of Game 0 and Game 1. If T = g,
then the challenge ciphertexts are distributed identically as in Game 0. Otherwise, i.e., if
T = ĝg, then the challenge ciphertexts are distributed identically as in Game 1. Hence,
(2) follows. �

Lemma 2. (Game 1 to Game 2.1.0) If the orthogonality property of ENDSG holds,
the output distributions of Game 1 and Game 2.1.0 are the same. Concretely, for any
PPT adversary A in the (μ, q)-IBE-IND-CPA security experiment with IBE, it holds
that

Pr
[

SA,1
] = Pr

[

SA,2.1.0
]

. (3)

Proof. In this bridging step, we argue that each instance- j master secret keymsk j , with
msk j ← H , generated as in Game 1 and the (implicit) instance- j master secret keys
msk′

j , with msk′
j := msk′′

j · ̂R j,0(ε) · ˜R j,0(ε), for msk′′
j ← H and ̂R j,0,˜R j,0 defined as

above, generated as in Game 2.1.0, are identically distributed, for all j . Note that the
master public keys for A contain (m(msk j )) j ; but since ((m(msk′

j )) j = (m(msk′′
j )) j ,

which is due to the orthogonality property ofENDSG, no ̂R j,0-information and no ˜R j,0-
information is given out in the master public keys. Further, since (msk j ) j and (msk′′

j ) j
are identically distributed, it follows that (3) holds. �

Lemma 3. (Game 2.i.0 to Game 2.i.1) If the G- and H-subgroups property and LS2
of ENDSG hold, Game 2.i .0 and Game 2.i .1 are computationally indistinguishable.
Concretely, for any PPT adversary A with at most q ′ = q ′(k) extraction queries per
instance and running time t in the (μ, q)-IBE-IND-CPA security experiment with IBE,
there is a distinguisher D on LS2 with running time t ′ ≈ t +O(μnkc(q +q ′)), for some
constant c ∈ N, such that

| Pr
[

SA,2.i.0
] − Pr

[

SA,2.i.1
] | ≤ Advls2

ENDSG,G,D(k, 2n), (4)

for all i ∈ [n].



12 Page 16 of 33 D. Hofheinz et al.

Proof. In Game 2.i .0, we have semi-functional type-(∧, i − 1) challenge ciphertexts
while in Game 2.i .1, challenge ciphertexts are semi-functional of type (∼, i − 1) if and
only if the i-th challenge identity bit is 1.
Description. The challenge input is provided as (pp,̂h˜h, g′̂g′,T), where T is either ĝg
or g̃g, for pp as before, for ̂h,˜h specified in sp, for g, g′ ← SampG(pp), ĝ, ĝ′ ←
̂SampG(pp, sp), and g̃ ← ˜SampG(pp, sp). First, D samples (msk j ) j ← (H)μ, sets

mpk j := (pp,H,m(msk j )), for all j , for H ← UH, for m specified in pp, and sends
(mpk j ) j to A. Further, D defines a truly random function R : [μ] × {0, 1}i−1 → 〈̂h˜h〉.
During the experiment, D answers instance- j secret key extraction queries to oracle
Ext(msk j , ·) as

Ext(pp,msk j · R( j, id|i−1), id;SampH(pp)),

for id ∈ ID and all j . (Again, we assume that A queries at most q ′ user secret keys
per instance and we set id|0 = {0, 1}0 =: ε.) A may adaptively query its Enc′-oracle;
for instance- j challenge identity id∗

j,i ′ = id∗
j,i ′,1 . . . , id∗

j,i ′,n ∈ ID and equal-length
messages (M∗

j,i ′,0, M
∗
j,i ′,1), D returns

Enc(pp, id∗
j,i ′ , M

∗
j,i ′,b;msk j · R( j, id∗

j,i ′ |i−1), (g′̂g′)s j,i ′ ) if id∗
j,i ′,i = 0,

Enc(pp, id∗
j,i ′ , M

∗
j,i ′,b;msk j · R( j, id∗

j,i ′ |i−1),T
s j,i ′ ) if id∗

j,i ′,i = 1,

to A, for b ← {0, 1}, for s j,i ′ ← Z∗
N , for all ( j, i ′) ∈ [μ] × [q]. Eventually, A outputs

a guess b′. D outputs 1 if b′ = b and A is valid in the sense of (μ, q)-IBE-IND-CPA,
else outputs 0.
Analysis. The master public keys yield the correct distribution as well as the requested
user secret keys (which is due to ENDSG’s G- and H -subgroups property, i.e., the
output ofSampH is uniformly distributed over the generators of a nontrivial subgroup of
H2n+1). For the challenge ciphertexts, note that g′̂g′ andT are uniformly distributed over
the generators of their respective nontrivial subgroup ofG2n+1 and, hence, (g′̂g′)s andTs ,
for s ← Z∗

N , are distributed uniformly over the generators of their respective nontrivial
G2n+1-subgroup as well. If T = ĝg, then the challenge ciphertexts are distributed
identically as in Game 2.i.0. Otherwise, if T = g̃g, then the challenge ciphertexts are
distributed identically as in Game 2.i.1 (where, in both cases, ENDSG’s orthogonality
and non-degeneracy properties hold; thus, ̂h and ˜h must contain coprime nontrivial
elements and the challenge ciphertexts yield the correct distribution). Hence, (4) follows.

�

Lemma 4. (Game 2.i.1 to Game 2.i.2) If the G- and H-subgroups property and NH
of ENDSG hold, Game 2.i .1 and Game 2.i .2 are computationally indistinguishable.
Concretely, for any PPT adversary A with at most q ′ = q ′(k) extraction queries per
instance and running time t in the (μ, q)-IBE-IND-CPA security experiment with IBE,
there is a distinguisher D on NH with running time t ′ ≈ t +O(μnkc(q + q ′)), for some
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constant c ∈ N, such that

| Pr
[

SA,2.i.1
] − Pr

[

SA,2.i.2
] | ≤ Advnh

ENDSG,G,D(k, 2n, μq ′), (5)

for all i ∈ [n].

Proof. In Game 2.i .1, the challenge ciphertexts are semi-functional of type (∧, i − 1)

if the i-th bit of the challenge identity is 0 and semi-functional of type (∼, i − 1) if the
i-th bit of the challenge identity is 1, while in Game 2.i .2, all challenge ciphertexts are
of type (·, i).
Description. The challenge input is (pp,̂h,˜h, ĝ−(2i−1), g̃−2i , (T1,1, . . . ,Tμ,q ′)), where
T j,i ′ equals either

(h j,i ′,0, . . . , h j,i ′,2n) or (h j,i ′,0, . . . , h j,i ′,2i−1 · (̂h)
γ̂ j,i ′ , h j,i ′,2i · (˜h)

γ̃ j,i ′ , . . . , h j,i ′,2n),

forpp as before,̂h,˜h specified as in sp, for ĝ ← ̂SampG(pp, sp), for g̃ ← ˜SampG(pp, sp),
for (h j,i ′,0, . . . , h j,i ′,2n) ← SampH(pp), and for uniform γ̂ j,i ′ , γ̃ j,i ′ ← Z∗

ord(H)
, for all

( j, i ′) ∈ [μ] × [q ′]. D samples (msk j ) j ← (H)μ, sets mpk j := (pp,H,m(msk j )), for
all j , forH ← UH, form specified in pp, and sends (mpk j ) j to A. Further, D defines ran-

dom functions ̂R j,i−1,˜R j,i−1 as above. In addition, for identity id = id1 . . . idn ∈ ID,
we will define

̂R j,i (id|i ) := ̂R j,i−1(id|i−1) and (implicitly) ˜R j,i (id|i ) := ˜R j,i−1(id|i−1) · (˜h)
γ̃ j,i ′

if idi = 0 and

˜R j,i (id|i ) := ˜R j,i−1(id|i−1) and (implicitly) ̂R j,i (id|i ) := ̂R j,i−1(id|i−1) · (̂h)
γ̂ j,i ′

if idi = 1, for suitable ( j, i ′) ∈ [μ]×[q ′] as shown below. Further, during the experiment,
D returns the i ′-th secret key extraction query in instance j for an identity id, with prefix
id|i not a prefix of an already queried identity in instance j , as

Ext(pp,msk j · ̂R j,i (id|i ) · ˜R j,i−1(id|i−1), id;T j,i ′) if idi = 0,

Ext(pp,msk j · ̂R j,i−1(id|i−1) · ˜R j,i (id|i ), id;T j,i ′) if idi = 1,

for all ( j, i ′). (Note that id|i could be a valid prefix in any other instance different to
j . Further, we assume that A queries at most q ′ user secret keys per instance.) For an
identity prefixes id|i that is a prefix of an already queried identity in instance j , let
( j, i ′′) ∈ [μ] × [q ′] be the index of that query. In that case, D returns

Ext(pp,msk j · ̂R j,i (id|i ) · ˜R j,i−1(id|i−1), id;T j,i ′′ · SampH(pp)) if idi = 0,

Ext(pp,msk j · ̂R j,i−1(id|i−1) · ˜R j,i (id|i ), id;T j,i ′′ · SampH(pp)) if idi = 1,
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for all j . (Note that we use SampH to rerandomize the H2n+1-subgroup element
of T j,i ′′ .) Further, A may adaptively query its Enc′-oracle; for A-chosen instance-
j challenge identity id∗

j,i ′′′ = id∗
j,i ′′′,1 . . . , id∗

j,i ′′′,n ∈ ID and equal-length messages
(M∗

j,i ′′′,0, M
∗
j,i ′′′,1) and returns

Enc(pp, id∗
j,i ′′′ , M

∗
j,i ′′′,b;msk j · ̂R j,i (id

∗
j,i ′′′ |i ), (g−(2i−1)ĝ−(2i−1))

s j,i ′′′ ) if id∗
j,i ′′′,i = 0,

Enc(pp, id∗
j,i ′′′ , M

∗
j,i ′′′,b;msk j · ˜R j,i (id

∗
j,i ′′′ |i ), (g−2i g̃−2i )

s j,i ′′′ ) if id∗
j,i ′′′,i = 1,

to A, for s j,i ′′′ ← Z∗
N , for g ← SampG(pp), for fixed b ← {0, 1}, for all ( j, i ′′′).

(Note that a modified Enc-input is provided with only 4n instead of 4n + 2 elements.
Nevertheless, the omitted elements are not needed to generate a valid ciphertext (since
it is consistent with the challenge identities (id∗

j,i ′′′) j,i ′′′). Hence, we assume that Enc
works as desired.) Eventually, A outputs a guess b′. D outputs 1 if b′ = b and A is valid
in the sense of (μ, q)-IBE-IND-CPA, else outputs 0.
Analysis. Note that the provided master public keys yield the correct distribution. For
the A-requested user secret keys, we have that sincêh and˜h have nontrivial H -elements
of coprime order (again, this is due to ENDSG’s orthogonality and non-degeneracy
properties), the random functions ̂R j,i−1,̂R j,i and ˜R j,i−1,˜R j,i yield the correct dis-
tributions in the sense of Game 2.i.1 and Game 2.i.2, respectively. Due to the G-
and H -subgroups property of ENDSG, g−(2i−1) and ĝ−(2i−1) as well as g−2i and
g̃−2i are uniformly distributed over the generators of their respective nontrivial sub-
groups of G2n and, thus, (g−(2i−1)ĝ−(2i−1))

s and (g−2i g̃−2i )
s , for s ← Z∗

N , are dis-
tributed uniformly over the generators of their respective nontrivial subgroup of G2n .
Further, if id∗

j,i ′′′,i = 0, then it holds that ̂R j,i (id∗
j,i ′′′ |i ) = ̂R j,i−1(id∗

j,i ′′′ |i−1) and all
required components ĝ−(2i−1) to create the challenge ciphertexts are given. Analo-
gously, if id∗

j,i ′′′,i = 1, then we have ˜R j,i (id∗
j,i ′′′ |i ) = ˜R j,i−1(id∗

j,i ′′′ |i−1) and all nec-
essary components g̃−2i are provided as needed. Hence, the challenge ciphertexts and
user secret keys yield the correct distribution. If (T j,i ′) j,i ′ = (h j,i ′,0, . . . , h j,i ′,2n)i ′ ,
then the user secret keys are distributed identically as in Game 2.i.1. If (T j,i ′) j,i ′ =
(h j,i ′,0, . . . , h j,i ′,2i−1 ·(̂h)

γ̂ j,i ′ , h j,i ′,2i ·(˜h)
γ̃ j,i ′ , . . . , h j,i ′,2n) j,i ′ , then the user secret keys

are distributed identically as in Game 2.i.2. Thus, (5) follows. �

Lemma 5. (Game 2.i−1.2 to Game 2.i.0) If the G- and H-subgroups property and LS2
of ENDSG hold, Game 2.i−1.1 and Game 2.i .0 are computationally indistinguishable.
Concretely, for any PPT adversary A with at most q ′ = q ′(k) extraction queries per
instance and running time t in the (μ, q)-IBE-IND-CPA security experiment with IBE,
there is a distinguisher D with running time t ′ ≈ t+O(μnkc(q+q ′)), for some constant
c ∈ N, such that

| Pr
[

SA,2.i−1.2
] − Pr

[

SA,2.i.0
] | ≤ Advls2

ENDSG,G,D(k, 2n), (6)

for all i ∈ [n]\{1}.
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Proof. In Game 2.i −1.2, challenge ciphertexts are of type (·, i −1) and depend on the
(i − 1)-th challenge identity bit while in Game 2.i .0, challenge ciphertexts are of type
(∧, i − 1). This proof is very similar to the proof of Lemma 3 except that the challenge
ciphertexts depend on the (i − 1)-th instead of the i-th challenge identity bit. �

Lemma 6. (Game 2.n.2 to Game 3) If the G- and H-subgroups property and LS2
of ENDSG hold, Game 2.n.2 and Game 3 are computationally indistinguishable. Con-
cretely, for any PPT adversary A with at most q ′ = q ′(k) extraction queries per instance
and running time t in the (μ, q)-IBE-IND-CPA security experiment with IBE, there is a
distinguisher D with running time t ′ ≈ t +O(μnkc(q + q ′)), for some constant c ∈ N,
such that

| Pr
[

SA,2.n.2
] − Pr

[

SA,3
] | ≤ Advls2

ENDSG,G,D(k, 2n). (7)

Proof. It is easy to see that Game 3 and a potential Game 2.n+1.0 would be identical.
Hence, we can reassemble the proof of Lemma 5 with i := n+1 and (7) directly follows.
�

Lemma 7. (Game 3 to Game 4, weak adversaries)Game 3 andGame 4 are statistically
indistinguishable. Concretely, for any PPT weak adversary A on the (μ, q)-IBE-IND-
CPA security of IBE, it holds that

| Pr
[

SA,3
] − Pr

[

SA,4
] | ≤ μq · O(2−k). (8)

Proof. In Game 4, we replace each challenge message Mj,i ′,b, for challenge bit b ∈
{0, 1}, with a (fresh) uniformly random k-length bitstring R j,i ′ ← {0, 1}k . We argue
with ENDSG’s non-degeneracy property and the universality of H for this change.
Concretely, for instance- j Game-3 challenge ciphertexts

Enc(pp, id∗
j,i ′ , M

∗
j,i ′,b;msk j · ̂R j,n(id

∗
j,i ′), (ĝg)

s j,i ′ )

= ((g0ĝ0)
s j,i ′ ,

(

n
∏

i=1

g2i−id∗
j,i ′,i ĝ2i−id∗

j,i ′,i

)s j,i ′

,H(e((g0 ĝ0)
s j,i ′ ,msk j · ̂R j,n(id

∗
j,i ′)))

⊕ M∗
j,i ′,b),

for g ← SampG(pp), for ĝ ← ̂SampG(pp, sp), for s j,i ′ ← Z∗
N , for all i ′ ∈ [q], note

that

e((ĝ0)
s j,i ′ ,̂R j,n(id

∗
j,i ′)) = e((ĝ0)

s j,i ′ ,̂h)
γ̂ j,i ′ ,

for uniform γ̂ j,i ′ ∈ Z∗
ord(H)

, is uniformly distributed in a nontrivial subgroup G ′
T ⊂

GT due to the non-degeneracy property of ENDSG. Furthermore, since A is a weak
adversary, all the ̂R j,n are for different preimages and thus independently random.
Hence, since H is a (randomly chosen) universal hash function, we can conclude that
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SD ((H,H(X)) ; (H,U )) = O(2−k), for X ← G ′
T and U ← {0, 1}k . A union bound

yields (8). �

Lemma 8. (Game 4) For any PPT adversary A in the (μ, q)-IBE-IND-CPA security
experiment with IBE, it holds that

Pr
[

SA,4
] = 1/2. (9)

Proof. In Game 4, for (uniform) challenge bit b ∈ {0, 1}, we provide A with challenge
ciphertexts that include a uniform k-length bitstring instead of a A-chosen b-dependent
message, for each instance and challenge. Hence, b is completely hidden from A and
(9) follows. �

Taking (2), (3), (4), (5), (6), (7), (8), and (9) together, shows (1).
From Weak to Full (μ, q)-IBE-IND-CPA Security. The analysis above shows only
weak security: we must assume that the adversary A never asks for encryptions under the
same challenge identity and for the same scheme instance twice. We do not know how to
remove this restriction assuming only the abstract properties of ENDSGs. However, at
the cost of one tight additional reduction to (a slight variant of) the Bilinear Decisional
Diffie–Hellman (BDDH) assumption, we can show full (μ, q)-IBE-IND-CPA security.

Concretely, in Game 3, challenge ciphertexts for A are prepared using (the hash value
of) e(ĝs0,̂h

γ ) as a mask to hide the plaintext behind. Here, ĝs0 and ̂h are public (as part
of the ciphertext, resp. public parameters), s is a fresh exponent chosen randomly for
each encryption, and γ is a random exponent that however only depends on the scheme
instance and identity. (Thus, γ will be reused for different encryptions under the same
identity). Hence, if we show that many tuples (ĝsi , e(ĝsi0 ,̂hγ )) (for different si but the
same γ ) are computationally indistinguishable from random tuples, we obtain that even
multiple encryptions under the same identity hide the plaintexts, and we obtain full
security.

Of course, the corresponding reduction should be tight, in the sense that it should not
degrade in the number of tuples, or in the number of considered γ .
A (Subgroup) Variant of the BDDH Assumption (s-BDDH). For any PPT adversary
D, we have that the function

Advs-bddh
ENDSG,G,D(k, n) := | Pr

[

D(pp, g, ga, ĝ, ĝa, ĝb0 ,̂h,̂hb,̂hc, e(ĝ0,̂h)abc) = 1
]

− Pr
[

D(pp, g, ga, ĝ, ĝa, ĝb0 ,̂h,̂hb,̂hc, e(ĝ0,̂h)z) = 1
]

|

is negligible in k, for (pp, sp) ← SampP(k, n), for g ← SampG(pp), for ĝ =
(ĝ0, . . . , ĝn) ← ̂SampG(pp, sp), for ̂h specified in sp, for e specified in pp, and for
(uniform) a, b, c, z ← Z∗

N .
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Rerandomization. Fix N ∈ N, g, ĝ, ga, ĝa ∈ Gn+1, ĝb0 ∈ G, ̂h,̂hb,̂hc ∈ H , and
T = e(ĝ0,̂h)z ∈ GT , for a, b, c, z ∈ Z∗

N .

Reranda-algorithm. Reranda(N , g, ga, ĝ, ĝa, ĝb0 ,̂h,̂hb,̂hc,T) samples r1, t1 ← Z∗
N

and outputs

(gā, ĝā, ĝb0 ,̂hb,̂hc,Ta),

where

gā = (gā0 , . . . , gān ), for

gā0 = (ga0 )r1 · gt10 = ga·r1+t1
0 and gāi = (gai )

r1 · gt1i = ga·r1+t1
i , for all i ∈ [n],

ĝā = (ĝā0 , . . . , ĝān ), for

ĝā0 = (ĝa0 )r1 · ĝt10 = ĝa·r1+t1
0 and ĝāi = (ĝai )

r1 · ĝt1i = ga·r1+t1
i , for all i ∈ [n],

Ta = Tr1 · e(ĝb0 ,̂hc)t1 = Tr1 · e(ĝ0,̂h)b·c·t1

If z = abc, then ā is uniformly distributed in ZN and Ta = Tābc. If z �= abc,
then ā is uniformly distributed inZN andTa = e(ĝ0,̂h)zr1+bct1 , where zr1+bct1
is uniformly distributed in ZN .

Rerandb-algorithm. Rerandb(N , g, ga, ĝ, ĝa, ĝb0 ,̂h,̂hb,̂hc,T) samples r2, t2 ← Z∗
N

and outputs

(ga, ĝa, ĝb̄0 ,̂hb̄,̂hc,Tb),

where

ĝb̄0 = (ĝb0)r2 · ĝt20 = ĝb·r2+t2
0 ,

̂hb̄ = (̂hb)r2 ·̂ht2 = ̂hb·r2+t2 ,

Tb = Tr2 · e(ĝa0 ,̂hc)t2 = Tr2 · e(ĝ0,̂h)a·c·t2 .

If z = abc, then b̄ is uniformly distributed in ZN and Tb = Tab̄c. If z �= abc,
then b̄ is uniformly distributed inZN andTb = e(ĝ0,̂h)zr2+act2 , where zr2+act2
is uniformly distributed in ZN .

Rerandc-algorithm. Rerandc(N , g, ga, ĝ, ĝa, ĝb0 ,̂h,̂hb,̂hc,T) samples r3, t3 ← Z∗
N

and outputs

(ga, ĝa, ĝb0 ,̂hb,̂hc̄,Tc),

where

̂hc̄0 = (̂hc0)
r3 ·̂ht30 = ̂hc·r3+t3

0 ,

Tc = Tr3 · e(ĝa0 ,̂hb)t3 = Tr3 · e(ĝ0,̂h)a·b·t3 .
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If z = abc, then c̄ is uniformly distributed inZN andTc = Tabc̄. If z �= abc, then
c̄ is uniformly distributed in ZN and Tc = e(ĝ0,̂h)zr3+abt3 , where zr3 + abt3 is
uniformly distributed in ZN .

Rerandabc-algorithm. Rerandabc(N , g, ga, ĝ, ĝa, ĝb0 ,̂h,̂hb,̂hc,T) outputs

(gā, ĝā, ĝb̄0 ,̂hb̄,̂hc̄,Tabc)

by runningReranda(N , g, ga, ĝ, ĝa, ĝb0 ,̂h,̂hb,̂hc,T) → (gā, ĝā, ĝb0 ,̂hb,̂hc,Ta)

and take this output as new input (N , g, gā, ĝ, ĝā, ĝb0 ,̂h,̂hb,̂hc,Ta) forRerandb.

Then take this output (gā, ĝā, ĝb̄0 ,̂hb̄,̂hc,Tab) as appropriate input for Rerandc
to get (gā, ĝā, ĝb̄0 ,̂hb̄,̂hc̄,Tabc).

The input exponents a, b, c and z for all algorithms are required to be uniformly
distributed in Z∗

N , but if we reuse the outputs of Reranda and Rerandb, then ā and b̄
are uniformly distributed in ZN . However, the uniform distribution in ZN is statistically
indistinguishable from the uniform distribution in Z∗

N , since for a ← Z∗
N , ā ← ZN

the statistical distance SD (a ; ā) = 1
2

∑

x∈ZN
| Pr [a = x] − Pr [ā = x] | = N−ϕ(N )

N
is negligible in k, because for N = p1 · . . . · pn′ , where n′ ∈ O(1) and ps denotes

the smallest k-bit prime factor of N , we have N−ϕ(N )
N

(∗)≤ N
N − N

N + ∑n′
l=1

(n′
l

) 1
pls

≤
c(n′) · 1

ps
∈ O(2−k), for a constant c(n′) depending on n′. (Note that (∗) holds due

to ϕ(N )
N ≥ N

N + ∑n′
l=1

(n′
l

) 1
pls

.) So, if z = abc, then ā, b̄, c̄ are uniformly distributed

in ZN and Tabc = Tāb̄c̄. If z �= abc, then ā, b̄, c̄ are uniformly distributed in ZN

and, for za := zr1 + bct1, zab := zar2 + āct2 and zabc := zabr3 + āb̄t3, we have
Tabc = e(ĝ0,̂h)zabc , where za, zab and zabc are all uniformly distributed in ZN .

Lemma 9. (Game 3 to Game 4, full security)LetGbeagroupgenerator andRerandabc,
Reranda rerandomization algorithms, all as defined above. If ENDSG is an ENDSG
system, s-BDDH holds, and H is a universal hash function, Game 3 and Game 4
are computationally indistinguishable. Concretely, for any PPT adversary A with at
most q ′ = q ′(k) extraction queries per instance and running time t in the (μ, q)-IBE-
IND-CPA security experiment with IBE, there is a distinguisher D with running time
t ′ ≈ t + O(μnkc(q + q ′)), for some constant c ∈ N, such that

| Pr
[

SA,3
] − Pr

[

SA,4
] | ≤ Advs-bddh

ENDSG,G,D(k, 2n) + μq · O(2−k). (10)

Proof. In Game 3, each challenge ciphertext carries a b-dependent A-chosen message,
for b ← {0, 1}, while in Game 4, each challenge ciphertext message is replaced by
uniform k-length b-independent bitstring.
Description. D is provided with challenge input (pp, g, ga, ĝ, ĝa, ĝb0 ,̂h,̂hb,̂hc,T),
where T is either e(ĝ0,̂h)abc or e(ĝ0,̂h)z , for (pp, sp) ← SampP(k, 2n), for g ←
SampG(pp), for ĝ = (ĝ0, . . . , ĝn) ← ̂SampG(pp, sp), for ̂h specified in sp, for e
specified in pp, and for a, b, c, z ← Z∗

N . First, D samples (msk j ) j ← (H)μ, sets
mpk j := (pp,H,m(msk j )), for all j , for H ← UH, for m specified in pp, and sends
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(mpk j ) j to A. Further, D defines a truly random function ̂R : [μ] × {0, 1}n → 〈̂h〉.
During the experiment, D answers instance- j extraction queries for id ∈ ID as

Ext(pp,msk j · ̂R( j, id), id;SampH(pp)),

for all j . Further, A may adaptively query its Enc′-oracle; for A-chosen instance- j
challenge identity id∗

j,i ′ = id∗
j,i ′,1 . . . , id∗

j,i ′,n ∈ ID and messages (M∗
j,i ′,0, M

∗
j,i ′,1) ∈

(M)2 of equal length, for all ( j, i ′) ∈ [μ] × [q]. For each fresh instance- j challenge
identity id∗

j,i ′ (i.e., id∗
j,i ′ was not queried before by A in instance j), D computes

(ga j,i ′ , ĝa j,i ′ , ĝ
b j,i ′
0 ,̂hb j,i ′ ,̂hc j,i ′ ,T j,i ′) ← Rerandabc(N , g, ga, ĝ, ĝa, ĝb0 ,̂h,̂hb,̂hc,T)

and returns

((g0ĝ0)
a j,i ′ ,

(

n
∏

i=1

g2i−id∗
j,i ′,i ĝ2i−id∗

j,i ′,i

)a j,i ′

,H(e((g0 ĝ0)
a j,i ′ ,msk j ) · T j,i ′) ⊕ M∗

j,i ′,b)

to A, for b ← {0, 1}, for s j,i ′ ← Z∗
N , for all ( j, i ′). For a requeried challenge identity

id∗
j,i ′′ in instance j (where ( j, i ′′) ∈ [μ] × [q] is the index of that previous query in in-

stance j), D computes (g
a′
j,i ′′ , ĝ

a′
j,i ′′ , ĝ

b j,i ′′
0 ,̂hb j,i ′′ ,̂hc j,i ′′ ,T′

j,i ′′) ← Reranda(N , g, ga j,i ′′ ,

ĝ, ĝa j,i ′′ , ĝ
b j,i ′′
0 ,̂h,̂hb j,i ′′ ,̂hc j,i ′′ ,T j,i ′′) and returns

((g0 ĝ0)
a′
j,i ′′ ,

(

n
∏

i=1

g2i−id∗
j,i ′′,i ĝ2i−id∗

j,i ′′,i

)a′
j,i ′′

,H(e((g0 ĝ0)
a′
j,i ′′ ,msk j ) · T′

j,i ′′) ⊕ M∗
j,i ′′,b)

to A, for all ( j, i ′′). Eventually, A outputs a guess b′. D outputs 1 if b′ = b and A is
valid in the sense of (μ, q)-IBE-IND-CPA, else outputs 0.
Analysis. The master public keys yield the correct distribution as well as the requested
user secret keys. If T = e(ĝ0,̂h)abc, then the challenge ciphertext exponents (as reran-
domized in Rerandabc and Reranda, respectively) are distributed O(2−k)-close to the
challenge ciphertext exponents in Game 3. (See rerandomization paragraph above.) For
a fresh challenge identity id∗

j,i ′ , we have that

((g0ĝ0)
a j,i ′ ,

(

n
∏

i=1

g2i−id∗
j,i ′,i ĝ2i−id∗

j,i ′,i

)a j,i ′

,H(e((g0 ĝ0)
a j,i ′ ,msk j ) · T j,i ′) ⊕ M∗

j,i ′,b)

(∗)= ((g0ĝ0)
a j,i ′ ,

(

n
∏

i=1

g2i−id∗
j,i ′,i ĝ2i−id∗

j,i ′,i

)a j,i ′

,H(e((g0 ĝ0)
a j,i ′ ,msk j ·̂hb j,i ′c j,i ′ ))

⊕ M∗
j,i ′,b),

where (∗) holds due the orthogonality property of ENDSG. Note that we (implicitly)
set s j,i ′ := a j,i ′ and γ̂ j,i ′ := b j,i ′ · c j,i ′ . For a requeried challenge identity id∗

j,i ′ , we
rerandomize the previously used query value a j,i ′ , for index ( j, i ′), and leave γ̂ j,i ′ fixed.
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Otherwise, if T = e(ĝ0,̂h)z , then the challenge ciphertext exponents are distributed
O(2−k)-close to the challenge ciphertext exponents in Game 4, i.e., we have that

((g0ĝ0)
a j,i ′ ,

(

n
∏

i=1

g2i−id∗
j,i ′,i ĝ2i−id∗

j,i ′,i

)a j,i ′

,H(e((g0 ĝ0)
a j,i ′ ,msk j ) · T j,i ′) ⊕ M∗

j,i ′,b)

= ((g0 ĝ0)
a j,i ′ ,

(

n
∏

i=1

g2i−id∗
j,i ′,i ĝ2i−id∗

j,i ′,i

)a j,i ′

,H(e((g0 ĝ0)
a j,i ′ ,msk j ·̂hz′j,i ′ ))

⊕ M∗
j,i ′,b),

for some uniform a j,i ′ ∈ Z∗
N and z′j,i ′ := z j,i ′a

−1
j,i ′ ∈ Z∗

N with overwhelming prob-
ability. Further, since H is a (randomly chosen) universal hash function, we have that
SD ((H,H(X)) ; (H,U )) = O(2−k), for X ← G ′

T and U ← {0, 1}k . Finally, via a
union bound, (10) follows. �

Corollary 1. (Full (μ, q)-IBE-IND-CPA security of IBE) Let G be a group gener-
ator as defined above. If ENDSG is an ENDSG system, s-BDDH holds, and H is a
universal hash function, then IBE is (μ, q)-IBE-IND-CPA-secure. Concretely, for any
PPT adversary A with at most q ′ = q ′(k) extraction queries per instance and run-
ning time t in the (μ, q)-IBE-IND-CPA security experiment with IBE, there are distin-
guishers D1 on LS1, D2 on LS2, D3 on NH, and D4 on s-BDDH with running times
t ′1 ≈ t ′2 ≈ t ′3 ≈ t ′4 ≈ t + O(μnkc(q + q ′)), respectively, some constant c ∈ N, with

Adv(μ,q)-ibe-ind-cpa
IBE,A (k, n) ≤ Advls1

ENDSG,G,D1
(k, 2n) + 2n · Advls2

ENDSG,G,D2
(k, 2n)

+ n · Advnh
ENDSG,G,D3

(k, 2n, μq ′) + Advs-bddh
ENDSG,G,D4

(k, 2n)

+ μq · O(2−k), (11)

for group generator G defined as above.

Proof. Taking (2), (3), (4), (5), (6), (7), (10), and (9) together, yields (11). �

5. Instantiations of ENDSGs in Composite-Order Groups

Assumptions in Groups with Composite Order. We slightly modify two (known)
dual system assumptions (i.e., see DS1, DS3 below, and [14]) and define one (new) dual
system assumption (see DS2 below). Further, we give a dual system variant of the Bilinear
Decisional Diffie–Hellman assumption, dubbed DS-BDDH, and argue that DS-BDDH
implies s-BDDH from Sect. 4. Let G(k, 4) be a composite-order group generator that
outputs the following group parameters (G, H = G,GT , N , e, g, gp1 , gp2 , gp3, gp4)

with the composite-order groups G,GT , each of order N = p1 · · · p4, for pairwise-
distinct k-bit primes (pi )i . Further, gpi is a generator of the subgroup Gpi ⊂ G of order
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pi , and g is a generator of G. More generally, we write Gq ⊆ G for the unique subgroups
of order q. The assumptions in groups with composite order are as follows:

Dual system assumption 1 (DS1). For any PPT adversary D, the function

Advds1
G,D(k) := | Pr

[

D(pars, g′
p1

) = 1
]

− Pr
[

D(pars, g′
p1 p2

) = 1
]

|

is negligible in k, for (G,GT , N , e, g, (gpi )i ) ← G(k, 4),

pars := (G,GT , N , e, g, gp1 , gp3, gp4), and g′
p1

g← Gp1 , g′
p1 p2

g← Gp1 p2 .

Compared to [14, Sec. 5.1, Assumption 1], in our definition, besides the impli-
cations that N consists of four pairwise-distinct k-bit primes instead of three, the
element gp4 is given as additional input to D.

Dual system assumption 2 (DS2). For any PPT adversary D, the function

Advds2
G,D(k) := | Pr

[

D(pars, g′
p1 p2

) = 1
]

− Pr
[

D(pars, g′
p1 p3

) = 1
]

|

is negligible in k, for (G,GT , N , e, g, (gpi )i ) ← G(k, 4),

pars := (G,GT , N , e, g, gp1 , gp4 , gp1 p2 , gp2 p3),

gp1 p2

g← Gp1 p2 , gp2 p3

g← Gp2 p3 , and g′
p1 p2

g← Gp1 p2 , g′
p1 p3

g← Gp1 p3 .

Dual system assumption 3 (DS3). For any PPT adversary D, the function

Advds3
G,D(k) := | Pr

[

D(pars, gxyp2 , g
xy
p3 ) = 1

] − Pr
[

D(pars, gxy+γ ′
p2 , gxy+γ ′

p3 ) = 1
]

|

is negligible in k, for (G,GT , N , e, g, (gpi )i ) ← G(k, 4),

pars := (G,GT , N , e, g, (gpi )i , g
x
p2

̂X4, g
y
p2

̂Y4, g
x
p3

˜X4, g
y
p3

˜Y4),

̂X4, ˜X4, ̂Y4, ˜Y4
g← Gp4 , x, y,← Z∗

N , and γ ′ ← Z∗
N .

Compared to [14, Sec. 5.1, Assumption 2], in our definition, we have to reflect the
additional subgroup we use. Namely, besides the implications that N consists of
four pairwise-distinct k-bit primes instead of three, the elements (gxp2

̂X4, g
y
p2

̂Y4,

gxp3
˜X4, g

y
p3

˜Y4) are given as input to D instead of (gxp2
̂X3, g

y
p2

̂Y3), for ̂X3, ̂Y3 ←
Gp3 ; moreover, the additional elements gxyp3 and gxy+γ ′

p3 are given as input to D.
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Dual system bilinear DDH assumption (DS-BDDH). For any PPT adversary D, the
function

Advds-bddh
G,D (k) := | Pr

[

D(pars, e(gp2 , gp2)
abc) = 1

]

− Pr
[

D(pars, e(gp2 , gp2)
z) = 1

] |

is negligible in k, for (G,GT , N , e, g, (gpi )i ) ← G(k, 4), for

pars := (G,GT , N , e, g, (gpi )i , g
a
p1

, gap2
, gbp2

, gp2 p4 , g
b
p2 p4

, gcp2 p4
),

for gp2 p4

g← Gp2 p4 , a, b, c, z ← Z∗
N .

Lemma 10. (DS-BDDH implies s-BDDH) For any PPT adversary D with running
time t on s-BDDH there is a distinguisher D′ on DS-BDDH with running time t ′ ≈ t
such that

Advds-bddh
G,D′ (k) = Advs-bddh

G,D (k, n), (12)

for G as defined above. Hence, s-BDDH holds under DS-BDDH.

Proof. Description. The challenge input to D′ is provided as (pars,T), where T is
either e(gp2 , gp2)

abc ← Gp1 or e(gp2 , gp2)
z , for

pars = (G,GT , N , e, g, (gpi )i , g
a
p1

, gap2
, gbp2

, gp2 p4 , g
b
p2 p4

, gcp2 p4
),

for gp2 p4

g← Gp2 p4 , and for a, b, c, z ← Z∗
N . First, D′ sets the public parameter

as pp := (G, H := G,GT , N , g, e,m, n, pars′), for m : h′ �→ e(g1, h′), pars′ :=
(gp1, gp4 , g

w
p1

, h := g, hw), for w ← (Z∗
N )n , and for some integer n determined by D′.

Then, D′ sends

(pp, g := (gsp1
, gs·wp1

), ga, ĝ := (gŝp2
, gŝ·wp2

), ĝa, gb·ŝp2
, gp2 p4 , g

b
p2 p4

, gcp2 p4
,T),

for s, ŝ ← Z∗
N , to D. Finally, D outputs a value which D′ forwards to its own challenger.

Analysis. Note that pp is distributed as defined in s-BDDH. If T = e(gp2 , gp2)
abc, then

Pr
[

D′(pars, e(gp2 , gp2)
abc) = 1

]

= Pr
[

D(pp, g, ga, ĝ, ĝa, gbŝp2
, gp2 p4 , g

b
p2 p4

, gcp2 p4
, e(gp2 , gp2)

abc) = 1
]

follows. Otherwise, if T = e(gp2 , gp2)
z holds, then we have that

Pr
[

D′(pars, e(gp2 , gp2)
z) = 1

]

= Pr
[

D(pp, g, ga, ĝ, ĝa, gbŝp2
, gp2 p4 , g

b
p2 p4

, gcp2 p4
, e(gp2 , gp2)

z) = 1
]

.
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Hence, (12) follows. �

ENDSGs in Groups with Composite Order. Let G(k, 4) be as defined above. For
simplicity, we write gi := gpi and gi j := gpi p j , for all (i, j) ∈ [4] × [4]. We instantiate

ENDSGsENDSGco = (SampP,SampG,SampH, ̂SampG, ˜SampG) in composite-
order groups as follows:

Parameter sampling. SampP(k, n), given k and n, samples (G, H,GT , (pi )i , e, g, h,

(gi )i ) ← G(k, 4) and outputs pp := (G, H,GT , N , g, e,m, n, pars) and sp :=
(̂h,˜h, p̂ars, p̃ars), for

• m : H → GT , h′ �→ e(g1, h′),
• pars := (g1, g4, gw1 , h, hw · R4), for w ← (Z∗

N )n , R4
g← (Gp4)

n ,

• ̂h
g← Gp2 p4 ,

˜h
g← Gp3 p4 ,

• p̂ars := (g2, gw2 ), p̃ars := (g3, gw3 ).

G-Group sampling.SampG(pp), on input pp, samples s ← Z∗
N and outputs (gs1, g

s·w
1 ).

H -Group sampling.SampH(pp), on input pp, samples r ← Z∗
N and outputs (hr , hr ·w ·

R′
4), for R′

4
g← (Gp4)

n .

Semi-functional G-group sampling 1. ̂SampG(pp, sp), on input pp and sp, samples
s ← Z∗

N and outputs (gs2, g
s·w
2 ).

Semi-functional G-group sampling 2. ˜SampG(pp, sp), on input pp and sp, samples
s ← Z∗

N and outputs (gs3, g
s·w
3 ).

Correctness of ENDSGco. For all k, n ∈ N and group parameters (G, H,GT , N , e, g,
h, (gi )i ) ← G(k, 4), we have:

Associativity. For all s, r ← Z∗
N , for all (gs1, g

s·w
1 ) ← SampG(pp; s), for all (hr , hr ·w ·

R′
4) ← SampH(pp; r), for R′

4 = (R′
i )i ∈ (Gp4)

n , it holds that

e(gs1, h
r ·wi · R′

i ) = e(gs1, h
r ·wi ) = e(gs·wi

1 , hr )

for all i ∈ [n], and for w = (w1, . . . , wn) ∈ (Z∗
N )n .

Projective.For all s ← Z∗
N , for all h′ ∈ H , it holds thatm(h′)s = e(g1, h′)s = e(gs1, h

′).
(Note that gs1 is the first output of SampG(pp; s).)

Security of ENDSGco. Let G be a composite-order group generator as defined above,
for all k, n,∈ N, for all (pp, sp) ← SampP(k, n), we have:

Orthogonality. For ̂h,˜h specified in sp, we have

m(̂h) = e(g1,̂h) = e((gp2 p3 p4)γg1 , (gp1 p3)γ̂h ) = 1
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and

m(˜h) = e(g1,˜h) = e((gp2 p3 p4)γg1 , (gp1 p2)γ˜h ) = 1

for suitable exponents γg1 , γ̂h, γ˜h ∈ Z∗
N . Further, for gs1, gs

′
2 , and gs

′′
3 that are the

first outputs ofSampG(pp; s), ̂SampG(pp, sp; s′), and ˜SampG(pp, sp; s′′), for
s, s′, s′′ ← Z∗

N , we have e(gs1,̂h) = e(gs1,˜h) = e(gs
′

2 ,˜h) = e(gs
′′

3 ,̂h) = 1.

G- and H -subgroups. Since g1, g2, and g3 are generators of subgroups Gp1 , Gp2 , and

Gp3 of coprime order, the outputs ofSampG, ̂SampG, and ˜SampG are uniform
over the generators, which generates nontrivial subgroups of G of coprime order.
Since h is a generator of H and R′

4 is uniform over the generators of (Gp4)
n , the

output of SampH is uniformly distributed over the generators of H .

Non-degeneracy. For the first output gs2 of ̂SampG(pp, sp; s) (with uniform s ∈ Z∗
N ),

and for ̂h ∈ Gp2 p3 as specified in sp, it holds that e(gs2,̂h) = e(g2,̂h)s is
uniformly distributed over the generators of the subgroup generated by e(g2,̂h).

Similarly, for the first output gs3 of ˜SampG(pp, sp; s), it holds that e(gs3,˜h) =
e(g3,˜h)s is distributed uniformly over the generators of the subgroup generated
by e(g3,˜h).

Left-subgroup indistinguishability 1. We prove the following lemma

Lemma 11. (DS1 implies LS1) For any PPT adversary D with running time t on LS1
of ENDSGco as defined above, there is a distinguisher D′ on DS1 with running time
t ′ ≈ t such that

Advds1
G,D′(k) = Advls1

ENDSGco,G,D(k, n), (13)

for G as defined above. Hence, LS1 holds under DS1.

Proof. Description. The challenge input to D′ is provided as (pars,T), where T is
either g′

1 ← Gp1 or g′
12 ← Gp1 p2 , for pars = (G,GT , N , e, g, g1, g3, g4). First, D′

sets the public parameter as pp := (G, H := G,GT , N , g, e,m, n, pars′), for m : h′ �→
e(g1, h′), pars′ := (g1, g4, gw1 , h := g, hw), for w ← (Z∗

N )n , and for some integer n
determined by D′. Then, D′ sends (pp,T,Tw) to D. Finally, D outputs a value which
D′ forwards to its own challenger.
Analysis. Note that pp is distributed as defined in LS1. If T = g′

1, then (g′
1, (g

′
1)

w)

is distributed as the output of SampG(pp) as needed and Pr
[

D′(pars, g′
1) = 1

] =
Pr

[

D(pp, (g′
1, (g

′
1)

w)) = 1
]

follows. Otherwise, if T = g′
12, then (g′

12, (g
′
12)

w) is dis-

tributed as SampG(pp) · ̂SampG(pp, sp), for suitable sp, as desired and, hence, we
have that Pr

[

D′(pars, g′
12) = 1

] = Pr
[

D(pp, (g′
12, (g

′
12)

w)) = 1
]

. As a consequence,
(13) follows. �
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Left-subgroup indistinguishability 2. We prove the following lemma

Lemma 12. (DS2 implies LS2) For any PPT adversary D with running time t on LS2
of ENDSGco defined as above there is a distinguisher D′ on DS2 with running time
t ′ ≈ t such that

Advls2
ENDSGco,G,D(k, n) = Advds2

G,D′(k), (14)

for G as defined above. Hence, LS2 holds under DS2.

Proof. Description. The challenge input to D′ is provided as (pars,T), where T is
either g′

12 ← Gp1 p2 or g′
13 ← Gp1 p3 , for pars = (G,GT , N , e, g, g1, g4, g12, g23).

First, D′ defines the public parameter as pp := (G, H := G,GT , N , g, e,m, n, pars′),
for m : h′ �→ e(g1, h′), pars′ := (g1, g4, gw1 , h := g, hw), for w ← (Z∗

N )n , and for
some integer n determined by D′. Then, D′ sends (pp, g23g

γ
4 , g12,T,Tw), for γ ← Z∗

N ,
to D. Eventually, D outputs a value which is forwarded by D′ to its own challenger.
Analysis. Note that pp is distributed as defined in LS2. If T = g′

12, then (g′
12, (g

′
12)

w)

is distributed as SampG(pp) · ̂SampG(pp, sp), for suitable sp, as needed and, hence,
we have that

Pr
[

D′(pars, g′
12) = 1

] = Pr
[

D(pp, g23g
γ
4 , g12, (g

′
12, (g

′
12)

w)) = 1
]

follows. Otherwise, if T = g′
13, then (g′

13, (g
′
13)

w) is distributed as SampG(pp) ·
˜SampG(pp, sp), for suitable sp, as desired and, hence, Pr

[

D′(pars, g′
13) = 1

] =
Pr

[

D(pp, g23g
γ
4 , g12, (g′

13, (g
′
13)

w)) = 1
]

holds. As a consequence, (14) follows. �

Nested-hiding indistinguishability. We prove the following lemma

Lemma 13. (DS3 implies NH) For any PPT adversary D with running time t on NH
of ENDSGco there is a distinguisher D′ on DS3 with running time t ′ ≈ t such that

Advnh
ENDSGco,G,D(k, n, q ′) ≤ Advds3

G,D′(k), (15)

for q ′ ∈ N and G as defined above. Hence, NH holds under DS3.

Proof. The proof follows the same strategy as shown in Chen and Wee’s work [13]
except that we have to integrate two coprime-order semi-functional generators ̂h and ˜h
instead of just one as in [13].
Description. The challenge input to D′ is provided as (pars,T), where T := (̂T,˜T) is

either (gxy2 , gxy3 ) or (gxy+γ ′
2 , gxy+γ ′

3 ), for

pars =: (G,GT , N , e, g1, g2, g3, g4, g
x
2
̂X4, g

y
2
̂Y4, g

x
3
˜X4, g

y
3
˜Y4),

for ̂X4, ̂Y4, ˜X4, ˜Y4
g← Gp4 , x, y ← Z∗

N , and for γ ′ ← Z∗
N . Furthermore, D′ receives an

auxiliary input i ∈ [� n
2 �], for some integer n ∈ N determined by D′. First, D′ samples
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r, r̂ , r̃ , ŝ, s̃ ← Z∗
N , R′

4
g← (Gp4)

n , w′ ← (ZN
∗)n , and sets

h := (g1g2g3g4)
r , ̂h := (g2g4)

r̂ , ˜h := (g3g4)
r̃ ,

ĝ−(2i−1) := (gŝ2, g
ŝw′
2 )−(2i−1), g̃−2i := (gs̃3, g

s̃w′
3 )−(2i),

where h, ̂h, and ˜h are generators of G, Gp2 p4 , and Gp3 p4 . Then, D′ defines public
parameter as

pp := (G, H := G,GT , N , g, e, n,m, pars′),

for m : h′ �→ e(g1, h′) and

pars′ := (g1, g4, g
w′
1 , h, hw

′
(gy2 ̂Y4)

re2i−1(gy3 ˜Y4)
re2iR′

4)

= (g1, g4, g
w
1 , h, hwR4),

where e j is the j-th unit vector of length n and, implicitly, we have

w =

⎧

⎪

⎨

⎪

⎩

w′ mod p1 p4

w′ + y · e2i−1 mod p2

w′ + y · e2i mod p3

and R4 = R′
4 + ̂Yr

4 · e2i−1 + ˜Yr
4 · e2i .

Now, by running the algorithm from [15, Lemma 6] on input (1q
′
, (g2, g4, gx2 ̂X4,

gy2 ̂Y4,̂T)) and on input (1q
′
, (g3, g4, gx3 ˜X4, g

y
3
˜Y4,˜T)), D′ generates tuples

(g
r̂ j
2

̂X4, j ,̂T j )
q ′
j=1 and (g

r̃ j
3

˜X4, j ,˜T j )
q ′
j=1,

respectively, where

̂T j =
⎧

⎨

⎩

g
r̂ j y
2 · ̂Y4, j , if ̂T = gxy2

g
r̂ j y
2 · ̂Y4, j · gγ̂ ′

j
2 , if ̂T = gxy+γ ′

2

and

˜T j =
⎧

⎨

⎩

g
r̃ j y
3 · ˜Y4, j , if ˜T = gxy3

g
r̃ j y
3 · ˜Y4, j · gγ̃ ′

j
3 , if ˜T = gxy+γ ′

3 .

Further, D′ samples r ′
j ← Z∗

N , X′
4, j

g← (Gp4)
n , for all j ∈ [q ′], and sends

(pp,̂h,˜h, ĝ2i−1, g̃2i , (T1, . . . ,Tq ′))
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to D, where

T j = (hr
′
j · gr̂ j2

̂X4, j · gr̃ j3
˜X4, j , (h

r ′
j · gr̂ j2

̂X4, j · gr̃ j3
˜X4, j )

w′ ·
((gy2 ̂Y4)

r ′
j r̂T j )

e2i−1 · ((gy3 ˜Y4)
r ′
j r˜T j )

e2iX′
4, j )

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(hr j , hr j ·w · X4, j ) if ̂T j = g
r̂ j y
2 · ̂Y4, j

and ˜T j = g
r̃ j y
3 · ˜Y4, j

(hr j , hr j ·w · gγ̂ j e2i−1
2 · gγ̃ j e2i

3 · X4, j ) if ̂T j = g
r̂ j y
2 · ̂Y4, j · gγ̂ j

2

and ˜T j = g
r̃ j y
3 · ˜Y4, j · gγ̃ j

3

for hr j := hr
′
j · gr̂ j2

̂X4, j · gr̃ j3
˜X4, j and X4, j := X′

4, j + ̂Y
r ′
j r

4 e2i−1 + ˜Y
r ′
j r

4 e2i implicitly
and w as above.
Analysis. Note that pp is distributed as defined in NH. If T = (gxy2 , gxy3 ), then ̂T j =
g
r̂ j y
2 · ̂Y4, j and ˜T j = g

r̃ j y
3 · ˜Y4, j , for all j ∈ [q ′], and, thus, (T1, . . . ,Tq ′) is distributed

as (h1, . . . ,hq ′), for suitable sp, as needed. Else, if T = (gxy+γ ′
2 , gxy+γ ′

3 ), then ̂T j =
g
r̂ j y
2 · ̂Y4, j · gγ̂ j

2 and ˜T j = g
r̃ j y
3 · ˜Y4, j · gγ̃ j

3 for all j ∈ [q ′], and, thus, (T1, . . . ,Tq ′) is

distributed as (h′
1, . . . ,h′

q ′), for suitable sp, since (̂h, g
γ̂ j
2 · ̂Y4, j ) and (˜h, g

γ̃ j
3 · ˜Y4, j ) are

identically distributed as (̂h, (̂h)γ̂ j ·̂Y4, j ) and (˜h, (˜h)γ̃ j ·˜Y4, j ), respectively, for γ̂ j , γ̃ j ←
Z∗

N , ̂Y4, j , ˜Y4, j
g← Gp4 , for all j ∈ [q ′]. �
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