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Abstract. In this paper, we provide a complete set of algorithms aimed at the design
and security evaluation of oscillator-based True Random Number Generators (TRNG).
While depending on some TRNG design assumptions, the proposed algorithms use as
inputs the statistical parameters of the underlying random physical process such as the
clock jitter originating from the thermal noise and give a lower bound of the entropy
rate of the generated bit stream as output. We describe the general structure of a TRNG
composed of multiple free-running oscillators and samplers, the outputs of which are
post-processed by an entropy conditioner. Depending on the specification of the entropy
conditioner, which can usually be any Boolean function, we describe several algorithmic
optimizations. We then explain how to compute and efficiently manage the entropy rate
at the output of such a post-processing block and at the output of the generator as a
whole.

Keywords. Hardware random number generators, Free-running oscillators, Stochastic
models, Entropy, Dedicated statistical tests.

1. Introduction

Random numbers play a crucial role in modern cryptography as confidential keys, ini-
tialization vectors, padding values, nonces, and also as random masks in side-channel
attack countermeasures. A recent implementation of a random number generator tar-
geting cryptography applications is composed of two stages: a non-deterministic stage,
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called True Random Number Generator (TRNG) and a deterministic stage, called De-
terministic Random Number Generator (DRNG).

The TRNG serves as an entropy source—it should guarantee unpredictability of gen-
erated numbers even for an attacker with an unlimited computational power. The DRNG,
which uses TRNG output as a seed, guarantees the output of the random number gener-
ator is unpredictable for an attacker with limited computational power even if the TRNG
partially or temporarily fails. DRNGs should be designed as cryptographic modes with
a model of security (see [3]) and associated proof by reducing the difficulty involved in
breaking an underlying cryptographic primitive (for instance, the AES cipher).

This paper deals with a general problem in designing a TRNG for cryptography–
entropy extraction from several low entropy sources and entropy management in the
resulting combined bit stream. Designing a TRNG with a proven security level that can
be easily implemented in logic devices is still a challenge. The security level reached
is assessed by the entropy rate per output bit or vector of bits. For practical reasons,
Shannon entropy [22] is usually used.

To rigorously estimate the entropy rate, it is necessary to go through a general TRNG
design process in several steps, some of which may be difficult to master and may also
be limited by constraints determined by the available technology.

The designer should proceed in the following steps:

1. Identify the physical process that causes the random behavior of the generator.
The causes of such a behavior in electronic equipment including logic devices are
essentially random analog electric noises: A random noise is by definition an un-
predictable phenomenon that cannot be manipulated by an attacker. Unfortunately,
analog noises are not directly exploitable in logic devices. Consequently, design-
ers have to find a way of converting the contribution of random analog noises into
random behavior in the digital domain. This may be a process that converts ana-
log noises into the clock jitter in the free-running oscillators and self-timed rings
[7,23], or into an uncertainty of the resumed state after a metastability event in
metastable flip-flops [26], or into a number of oscillations caused by the oscilla-
tory metastability [25], or to the selection of the final state after write collisions in
dual-port RAMs [12] or after a start-up of a bi-stable circuit or memory element
[24].

2. Build a stochastic model (or select an existing one) of the exploited random phys-
ical process, i.e. of a source of randomness. The stochastic model of the random
physical process gives the (statistical) law of evolution of its state in time, depend-
ing on certain input physical parameters.

3. Design a TRNG that converts the output of the random physical process into a
stream of bits or bit vectors and build a statistical model of the whole TRNG. The
stochastic model of the TRNG gives a distribution of probability of bits or vectors
of bits depending on the input noise, the way it is converted into the digital domain,
and the way the entropy is extracted from the physical process, depending on the
input parameters of the physical process. Some input parameters of the TRNG are
adjustable by design, e.g., the sampling period or accumulation time in oscillator-
based TRNGs, whereas some depend only on the technology, e.g., jitter originated
from thermal or flicker noise.
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4. Design a method (or select an existing one) to measure the input parameters of the
stochastic model built in Step 2 and/or the model built in Step 3. The measurement
can be taken inside or outside the device. Embedded measurement methods like
those presented in [10,11] for TRNGs using clock generators are preferable, since
they do not include contribution of external noise sources.

5. Compute the entropy rate at the TRNG output and adjust the TRNG design pa-
rameters. The TRNG design space is explored by using the model and its input
parameters to obtain the desired entropy rate in a process called entropy manage-
ment.

If any of the above steps in the TRNG design are omitted, the generator should not or
even must not be used in high-security cryptographic applications, but only a very limited
number of papers in which all these steps are addressed, have been published up to now.
We cite, for instance, a free-running oscillator-based TRNG [4,11] or a phase-locked
loop (PLL)-based TRNG [10].

Building a stochastic model is not straightforward, since it requires a high level of
expertise in both physics (electronics) and mathematics (statistics). Note that in the
above-mentioned TRNG design workflow, three levels of models could (and preferably
should) exist:

• Model of the origin of random behavior—obviously the model of the random elec-
tric noise(s);

• Model of the random physical process including the underlying model of the electric
noise(s) and of its conversion to the digital domain, i.e. a kind of an analog-to-digital
conversion;

• Model of the TRNG including the model of the random physical process and the
entropy extraction method (sampling of random signals, counting of random events,
etc.).

Many different TRNG designs have been published in the last few years, but only a
few include a statistical model. Some existing models are used to model dependence of
the clock period of free-running oscillators (or clock generators in general) on random
noises and especially on thermal noise [4,6,7], others estimate entropy using a simple
urn model [23] or a general model based on sampling of a noisy signal [14].

But even in the case of oscillator-based TRNG, which is arguably one of the simplest
and best understood TRNG principles, a complete solution for the last step of the afore-
mentioned TRNG design workflow has not yet been published. By a complete solution,
we mean a description of a generic algorithmic suite that is efficient and easily adaptable
to TRNGs using differences in clock phases as a source of randomness and that can be
used to compute and guarantee a precise lower bound of the entropy rate.

For instance, in practice, the formula [4, Corollary 1] cannot be used to compute the
entropy rate in most implementations of the oscillator-based TRNG. The first problem
is that the formula is based on the assumption that the duty cycle is equal to 0.5, which
is almost never the case in standard implementations. Certainly, one can easily tweak
the formula [4, Corollary 1] in order to take a biased duty cycle into account. But a more
serious concern is that this equation originates from a truncated Fourier series and as
such, is an approximation that is only valid if the quality factor is sufficiently high (for
a definition of the quality factor in this context see [4, Section 2.4]). For quality factors
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in the range of those used in practical applications, in Sect. 7, we show that the results
of [4] do not apply.

Moreover, an oscillator-based TRNG is usually a complex structure composed of
several free-running oscillators (e.g., ring oscillators) and samplers, whose outputs are
somehow combined and post-processed using an entropy extraction algorithm. It is clear
that this complex entropy extraction process has to be taken into account when estimating
entropy rate.

The authors of [27] deal with the case when the entropy conditioner is an exclusive or
(XOR) function. Their computations of a lower bound of the entropy rate of the TRNG
are based on the results of [4, Corollary 1] and rely on the assumption that each time the
TRNG produces a bit, its internal state (or to be more precise, its phase) is known by
the attacker. This hypothesis, although very convenient for entropy computation, is not
realistic, because the only knowledge the attacker gets from the TRNG when it outputs
a bit, is the bit itself.

We will see that knowledge of the internal state, although not really discussed in
[4,27], leads to significant underestimation of the entropy rate of the TRNG. To assess
the lower bound of the TRNG output entropy rate more precisely, we consider a more
realistic security assumption, in which the attacker only knows the most recent output
bits of the TRNG. Our solution is also more general since it can be used to model the
operation of the entropy conditioner based on any Boolean function.

In this paper, we provide all the algorithms needed to compute a lower bound of the
entropy rate produced by the thermal noise in a TRNG, in which multiple oscillators
generate jittered clocks. These algorithms can easily be adapted to a wide range of
designs of TRNGs using differences in clock phases as a source of randomness. We
can consider various versions of elementary oscillator-based TRNG (EO-TRNG)[4],
multiple oscillator-based TRNG (MURO-TRNG) [23,27], TRNG using self-timed rings
(STR-TRNG) [7] or even coherent sampling oscillator-based TRNG (COSO-TRNG) [6]
as suitable candidates, since in all these generators, a jittered clock signal is sampled on
the edges of a reference clock signal. Note that the proposed algorithms are not suitable
for evaluation of the transition effect ring oscillator-based TRNG (TERO-TRNG) [25],
in which the randomness does not originate from differences in clock phases, but from
the timing of collisions of two events circulating in the ring.

Furthermore, we discuss the complexity of the algorithms and potential difficulties
with their application. All the algorithms have been implemented in Python and are
freely available on a public server.

The paper is organized as follows: In Sect. 2, we describe the general scheme of
oscillator-based TRNGs we consider in the paper: Elementary Oscillator-based TRNG
(EO-TRNG) and Multi-oscillator-based TRNG (MO-TRNG). In Sect. 3, we provide an
overview of the entropy estimation algorithms and explain the main design choices we
made. In Sect. 4, we explain how to model EO-TRNGs using a Markov chain, and in
Sect. 5, we clarify how to model MO-TRNGs including digitization and post-processing.
In Sect. 6, we validate the models in simulations and illustrate the results using two secu-
rity models: model A and B. In Sect. 7, we validate the new entropy estimation method
in hardware experiments, discuss results we obtained and explain how the proposed
algorithms can be used to manage the entropy rate at the MO-TRNG output. In Sect. 8,
we conclude the paper and consider possible avenues for further study.
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2. General Scheme of Oscillator-based TRNGs

In this section, we first describe the general structure of the simplest oscillator-based
TRNG—Elementary Oscillator-based TRNG (EO-TRNG). This will help determine
notations and specify inputs and outputs of the algorithms. We then generalize the same
approach to construct what we call Multi-oscillator-based TRNG (MO-TRNG), variants
of which can be found in the scientific literature. Indeed, our generalized theory can be
adapted to many TRNG designs based on free-running oscillators, in which jittered clock
signals are sampled on the edges of the reference clock signal.

A free-running oscillator, such as a ring oscillator or self-timed ring, produces a clock
signal, the phase of which tends to drift because of the instability of the propagation
time of electric signals across logic gates, termed phase jitter. The output signal s(t) of
a free-running oscillator O can be modeled by a periodic function of time t having the
form:

s(t) = fα(ω(t + ξ(t))), (1)

where fα is a given real-valued 1-periodic function [4] such that fα(x) = 1 for 0 < x <

α, fα(x) = 0 for α < x < 1, and fα(0) = fα(α) = 1/2. Here, α is the duty cycle of
the sampled oscillator. The term φ(t) = ω(t + ξ(t)) is the total phase of the oscillator
where ω is its mean frequency and ξ accounts for the phase jitter.

The phase jitter ξ has different components, some are deterministic, e.g., periodic jitter
or data dependent jitter, and others are non-deterministic. Only the non-deterministic
(i.e. random) component of the phase jitter contributes to the output entropy of the
TRNG. The non-deterministic component of the phase jitter may be a consequence of
various physical phenomena, each of which may have different statistical properties, for
instance, thermal noise, shot noise or flicker noise.

Thermal noise is the most frequently exploited noise in TRNGs, since it has been
characterized and is well understood and modeled. Since thermal noise is statistically
independent of other kinds of noises, its contribution to the entropy rate of a TRNG is
added to contributions from other physical phenomena. As a consequence, only account-
ing for the contribution of thermal noise to the phase jitter is sufficient to determine a
lower bound of the entropy rate at the TRNG output and to guarantee the security of the
generator. In the following, we thus only consider the thermal noise component of the
phase jitter.

Exactly like in [4], we (citation) “model the evolution of the total phase φ(t) =
ω(t + ξ(t)) from Eq. (1), i.e. the phase of a ring oscillator depending on the thermal
noise, as a Wiener stochastic process �(t) with drift μ > 0 and volatility σ 2 > 0. In
other words, for any time t ≥ t0, the phase �(t) conditioned by the value �(t0) = φ(t0)
follows a Gaussian distribution of mean φ(t0) + μ(t − t0) and variance σ 2(t − t0).”
Equivalently, in terms of conditional probability density, we have for all t > t0, x , x0,

d

dx
P{�(t) ≤ x | �(t0) = x0}

= 1

σ
√

2π(t − t0)
exp

(−(x − x0 − μ(t − t0))2

2σ 2(t − t0)

)
. (2)
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Fig. 1. Schematic diagram of an elementary oscillator-based TRNG (EO-TRNG).

Comparing the definition of μ with Eq. (1), we can see that μ = ω. Consequently, the
parameters needed to model the probabilistic evolution of the phase jitter component
caused by the thermal noise in oscillator Oi are:

• αi—the duty cycle of the clock signal generated by the oscillator;
• Ti—its mean period;
• σ 2

i —the volatility of the associated Wiener process.

In the following, we call the triplet (αi , Ti , σ 2
i ), the statistical parameters of oscillator

Oi .
Once we have presented the background of a free-running oscillator, we introduce a

RNG that exploits the phase jitter to produce random bits—an oscillator-based TRNG.
In the simplest version of this kind of generator, which we call Elementary Oscillator-
based TRNG (EO-TRNG) according to [4], the output of a free-running oscillator is
sampled by a sampling operator at the time intervals defined by the reference clock. The
sampling operator may be a synchronous D flip-flop, an asynchronous D-latch, or some
more advanced structure like a synchronous or asynchronous counter.

The reference clock signal that determines the sampling periods can be produced by
another free-running oscillator or by a quartz oscillator. However, note that the use of
a free-running oscillator is preferable, because the use of two identical free-running
oscillators (which generate both sampled and sampling clocks) significantly reduces the
impact of global noises which can be manipulated. The frequency of the reference clock
signal is divided by D. The value of D determines the jitter accumulation time and hence
the entropy rate at the TRNG output (see [4]): If D increases, the output bit rate of the
EO-TRNG decreases, but the entropy per bit increases and converges to one. Figure 1
represents a typical EO-TRNG that we consider in this paper: The sampling operator is
a D flip-flop, and the sampled clock signal and reference clock signal are produced by
two ring oscillators.

In [4, Appendix C], the output of oscillator O1 with statistical parameters (α1, T1, σ
2
1 ),

sampled at time intervals determined by oscillator O0 featuring statistical parameters
(α0, T0, σ

2
0 ), is shown to produce the same distribution of output bits as a stable clock

signal (a jitter-free signal) with duty cycle 0.5 and period T0 sampling an oscillator O1
with statistical parameters (α1, T1, σ

′2
1) where

σ ′2
1 =

(
T0

T1

)2

σ 2
0 + σ 2

1 . (3)
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We have selected 0.5 arbitrarily for the duty cycle of the sampling signal as it does
not alter the distribution of the output bits, since only the rising edge of O0 affects the
output of the D-flip-flop. Taking the above-mentioned facts into account, we assume in
the following that in an EO-TRNG, the sampled oscillator is the only oscillator subject
to the phase jitter and that the sampling oscillator outputs a jitter-free clock signal.

We fix this setting in order to clarify the presentation, but it should be noted that all
the TRNG variants we have mentioned up to now and possibly others can be taken into
account in our algorithms with only minor modifications.

The sampling oscillator O0 produces a stable clock signal, which is thus described by
its triplet (0.5, T0, 0). On the other hand, the statistical parameters of the sampled oscil-
lator O1 are (α1, T1, σ

′2
1). By scaling the time by T1, the parameters of the sampling os-

cillator (resp. the sampled oscillator) become (0.5, T0/T1, 0) (resp. (α1, 1, (σ ′
1/T1)

2)).
In fine, we see that the statistical properties of an EO-TRNG depend on three parameters.

Definition 1. The statistical parameters of an EO-TRNG are:

• α = α1—the duty cycle of the sampled clock signal;
• μ = T0/T1—the drift of the Wiener process described in [4];
• σ 2 = (σ ′

1/T1)
2—the volatility of the Wiener process described in [4].

Note that in the preceding definition, knowing that the sampled signal is 1-periodic and
assuming that the distribution of the output bits of the EO-TRNG remains unchanged,
we can replace μ by μ′ = T0/T1 mod 1 if μ′ �= 0; otherwise, μ′ = 1, and replace σ 2

by σ ′2 = σ 2 μ
μ′ . In other words, if the volatility does not change, then μ ∈]0, 1].

The bit rate of a single EO-TRNG featuring a sufficient entropy rate is usually not
high enough for practical applications. Moreover, it is preferable to have some security
margin in the entropy rate obtained at the TRNG output, in order to account for possible
flaws, aging and malfunctions. This is why an oscillator-based TRNG is generally made
of several EO-TRNGs working in parallel, the outputs of which are processed together by
an entropy conditioning algorithm—a deterministic algorithm that combines (typically
via a modulo 2 operation) several (non-deterministic) inputs, and outputs a high entropy
bit stream.

Figure 2 shows the general scheme of a multi-oscillator-based TRNG (MO-TRNG)
we consider in this paper. It is composed of 	 elementary oscillators-based TRNGs,
EO-TRNGi for i = 1, . . . , 	 with statistical parameters (αi , μi , σ

2
i ) that share the same

reference clock generator (oscillator O0). The outputs of EO-TRNGi are gathered in an
entropy conditioner given by a function ζ	(x1, . . . , x	) of oscillators’ output bits.

We denote by (αi , μi , σ
2
i ) for i = 0, . . . , 	 the respective statistical parameters of O0

(the sampling oscillator) and Oi for i = 1, . . . , 	 (the sampled oscillator(s)). We have
to take care of the fact that, as EO-TRNGi share the same clock signal, we cannot use
Eq. (3) to compute σ ′2

i , i = 1, . . . , 	 for all sampled clocks. Instead, to avoid entropy
overestimation, we should consider that the MO-TRNG is made of EO-TRNGi , the
phase jitter of which only comes from the sampled oscillator and thus take σ ′

i = σi
(simple conservative approach). Alternatively, it is also possible to take into account the
entropy coming from the sampling oscillator O0 by taking σ ′2

1 = (T0/T1)
2 σ 2

0 +σ 2
1 just

for one couple of rings and use σ ′2
i = σ 2

i for i ≥ 2 (more precise solution).
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Fig. 2. Schematic diagram of a multi-oscillator-based TRNG (MO-TRNG).

Remark 1. It would also have been possible to consider a MO-TRNG made of several
EO-TRNGs each with their own clock reference. The drawback to such a design is that it
might cause significant synchronization problems at the level of the entropy conditioner.
It is nonetheless possible to simulate such a design with the techniques that we describe
in the present paper.

In this paper, we describe an efficient algorithm that takes (αi , μi , σ
2
i ) as inputs and

outputs the entropy rate per bit of the TRNG using the entropy conditioning function ζ	,
while accounting for the thermal noise component of the phase jitter. As explained above,
this entropy rate per bit guarantees the security of the TRNG aimed at cryptographic
applications. We explain how to compute the Shannon entropy rate since it is one of
important evaluation criteria in widely used evaluation methodology [21]. However,
since our method is more general, it can be used to compute the full spectrum of Rényi
entropies.

3. From Markov Chains to the New Security Model

In [4], it is shown that the output bits of an oscillator-based TRNG are not independent so
that its modeling by a non-trivial Markov chain is essential in the evaluation of entropy
rate. In this section, we develop algorithms using Markov chains for that purpose. First,
we recall the definition of a Markov chain, which is slightly adapted to our needs:

Definition 2. Let bits be an alphabet (most of the time in the following bits = {0, 1}),
k a positive integer and Sk the set of finite sequences of length k with value in bits. We
denote by R(Sk) the set of random variables with value in Sk . Let P(Sk) be the set of
subsets of Sk . We define the map succ : Sk → P(Sk), s = b1 . . . bk 
→ {b2 . . . bkb|b ∈
bits}.

For m as a positive integer, a Markov chain X with memory m ≥ 1 is a sequence
(Xi )i≥0 of elements of R(Sm), where Sm is the set of states, such that for all n, k positive
integers, n ≥ k:
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1. P(Xn = xn|Xn−1 = xn−1, . . . Xn−k = xn−k) = P(Xn = xn|Xn−1 = xn−1),

2. P(Xn = xn|Xn−1 = xn−1) does not depend on n.

Moreover, we assume that if xn /∈ succ(xn−1), then P(Xn = xn|Xn−1 = xn−1) = 0.
The matrix T (X) = (tx,y) such that tx,y = P(Xn = x |Xn−1 = y) for x, y ∈ Sm is
called the transition matrix of X . We denote by M(m,bits) the set of Markov chains
with memory m, over the alphabet bits.

It is clear that succ maps any element s ∈ Sm to the set of its possible successors. If
s′ = b1 . . . bm ∈ succ(s), then the transition from state s to s′ is labeled by sm ∈ bits.

Definition 3. We denote by T (m) the set of matrices T = (tx,y)x,y∈Sm such that
tx,y ∈ [0, 1] for all x, y ∈ Sm , tx,y = 0 if x /∈ succ(y) and

∑
y∈Sm tx,y = 1.

Note that a transition matrix of a Markov chain is in T (m). From our knowledge of a
current state distribution Xi ∈ R(Sm) and transition matrix T (X), we can compute the
next state distribution Xi+1 ∈ R(Sm) with:

P(Xi = b1 . . . bm) =
∑
b∈bits

tb1...bm ,b b1...bm−1P(Xi−1 = b b1 . . . bm−1), (4)

so that we can inductively recover (Xi )i>0 from X0. This motivates the following defi-
nition.

Lemma 1. A Markov chain X = (Xi )i≥0 is defined by the transition matrix T (X) =
(tx,y) ∈ T (m) and initial state X0 in R(Sm). We denote such a Markov chain by
X (X0, T (X)).

The representation of a Markov chain by a pair (X0, T (X)) is not efficient in terms of
time and space since most of the coefficients tx,y are 0. To obtain a representation that is
better adapted to computations, note that from X0 ∈ R(Sm) and T (X) ∈ T (m), we can
define inductively random variables that we denote by X̂0(k) ∈ R(Sk) for all k > m ≥ 1
by:

P(X̂0(k) = b1 . . . bk)

= P(Xn = bk−m+1 . . . bk |Xn−1 = bk−m . . . bk−1)P(X̂0(k − 1) = b1 . . . bk−1). (5)

Note that X̂0(m + 1) makes it possible to recover X̂0(m) using:

P(X̂0(m) = b1 . . . bm) =
∑
b∈bits

P(X̂0(m + 1) = b1 . . . bmb). (6)

But this means that X̂0(m + 1) makes it possible to recover the transition matrix tx,y
for x ∈ succ(y) using Eq. (5) with k = m + 1. Precisely, for x = b1 . . . bm and



13 Page 10 of 33 D. Lubicz, V. Fischer

y = b0 . . . bm−1 in Sm , we have:

tx,y = P(X̂0(m + 1) = b0 . . . bm)

P(X̂0(m) = b0 . . . bm−1)
. (7)

We have the following lemma:

Lemma 2. The map β : R(Sm+1) → M(m,bits), R̂(m+1) 
→ X (X0, T (X)), where
X0 and T (X) are obtained from R̂(m + 1), respectively, by Eq. (6) and (7), is bijective.

Proof. It is enough to prove that the map β0 : R(Sm+1) → R(Sm)×T (m) defined by
Eqs. (6) and (7) is bijective. Let us denote by γ : R(Sm) × T (X) → R(Sm+1) defined
in (5). It is clear that μ is an inverse of β0 and we are done. �

Definition 4. The random variable X̂0(m+1) ∈ R(Sm+1) representing X (X0, T (X))

can be encoded by a function:

fX (X0,T (X)) : Sm+1 → R,

b1 . . . bm+1 
→ P(X̂0(m + 1) = b1 . . . bm+1).
(8)

We say that fX (X0,T (X)) is the encoding function of X (X0, T (X)).

This way of encoding any Markov chain in M(m,bits) takes O(log2(|bits|m+1)) mem-
ory bits, and it is consequently optimal. Let X = (Xi )i≥0 ∈ M(m,bits) and suppose
that X = X (X0, T (X)) for X0 ∈ R(Sm) and T (X) ∈ T (m). From the pair (X0, T (X)),
one can inductively compute (X j , T (X)) using Eq. (4). Algorithm 1 does the same thing
with the encoding function fX (X j ,T (X)).

Definition 5. An element Xk0 of the Markov chain (Xi )i≥0 is stable, if for all k ≥ k0
condition Xk+1 = Xk is fulfilled.

A Markov chain (Xi )i≥0 with memory m verifies the ergodicity and irreducibility
conditions, so that according to [2], it has a unique stable element, toward which it
converges starting from any X0. We denote this stable element in R(Sm) by X∞. We
have:

lim
i→∞ Xi = X∞. (9)

Algorithm 2 uses this last limit to compute an approximation of the stable element. In
practice, the convergence is rapid: To obtain a precision of 10−3, less than 100 iterations
are usually required.

The link between the Markov chain and the Shannon entropy as a measure of security
of the TRNG we want to compute is given by Definition 6.



Entropy Computation for Oscillator-based... Page 11 of 33 13

Algorithm 1: Algorithm to compute (X j+1, T (X)) from (X j , T (X)).
notation: Let X = (X0, T (X)) be the Markov chain with initial state X0 and transition matrix T (X).
We use the notations:

• for s= b1 . . . bm ∈ Sm and k = j, j + 1

prob_state(k, b1 . . . bm ) =
∑

b∈bits
fX (Xk ,T (X)(b1 . . . bm + b)

where + is the concatenation (see formula (6)) ;
• for s= b1 . . . bm ∈ Sm , b ∈ bits:

prob_trans(b1 . . . bm , b) = fX (X j ,T (X))(b1 . . . bm + b)/prob_state( j, b1 . . . bm ),

(see formula (7)).

input : fX (X j ,T (X)) the encoding function of X (X j , T (X)) the Markov chain with initial state X j
and transition matrix T (X).

output : fX (X j+1,T (X)) the same notation as before, but with j + 1.

1 for s ∈ Sm do
2 Write s = b1 . . . bm , bi ∈ bits;
3 ps0 ←′ 0′ + b1 . . . bm−1;
4 ps1 ←′ 1′ + b1 . . . bm−1;

/* Comment: ps0 and ps1 are the previous states of s */
5 p_next ← prob_state( j, ps0) ∗ prob_trans(ps0, bm ) + prob_state( j, ps1) ∗ prob_trans(ps1, bm );

/* Comment: this is the probability of state s at time j + 1 */
6 fX (X j+1,T (X))(s +′ 0′) ← p_next ∗ prob_trans(b1 . . . bm , 0);

7 fX (X j+1,T (X))(s +′ 1′) ← p_next ∗ prob_trans(b1 . . . bm , 1);

8 end
9 return fX (X j+1,T (X));

Algorithm 2:Algorithm to compute the stable state of a Markov chain X = (Xi )i≥0.
input :

• fX (X0,T (X)) the encoding function of X = X (X0, T (X));
• ε > 0 the precision of the computation.

output: fX (X∞,T (X)) the encoding function of X (X∞, T (X)) where X∞ ∈ R(Sm ) is the stable
element of X .

1 k ← j ;
2 repeat
3 Call Algorithm 1 to compute fX (Xk+1,T (X)) from fX (Xk ,T (X));

4 until ∀s ∈ Sm+1, | fX (Xk+1,T (X))(s) − fX (Xk ,T (X))(s)| < ε;

5 return fX (Xk+1,T (X));

Definition 6. ([2]) The Shannon entropy of a memory m Markov chain X = (Xi )i≥0,
with stable element X∞ and transition matrix T = (tx,y), can be computed as:

Em(X) =
∑
x∈Sm

∑
y∈Sm

P(X̂∞(m) = y)(−tx,y log2 tx,y) (10)
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From the definition, we immediately deduce Algorithm 3 to compute the Shannon
entropy of a Markov chain.

Algorithm 3: Algorithm to compute the Shannon entropy of a Markov chain.
input :

• fX (X∞,T (X)) the encoding function of X = X (X∞, T (X)).

output: The Shannon entropy of X .

1 S ← 0 ;
2 for s ∈ Sm do
3 pr = fX (X∞,T (X))(s +′ 0′) + fX (X∞,T (X))(s +′ 1′);

/* Comment: pr is the probability of the state s */
4 tr = fX (X∞,T (X)(s +′ 0′)/pr ;

/* Comment: tr is the probability of transition to the next states
of s labelled by 0 */

5 S ← S + pr.(−tr log(tr) − (1 − tr) log(1 − tr) ;
6 end
7 return S ;

Note that our definition of the Shannon entropy depends on parameter m. This is
because we approximated the statistical behavior of the TRNG using an information
source with memory m. When m tends to infinity, under general assumptions on the
TRNG, which are fulfilled according to [4], this source of information converges toward
a perfect statistical model of the TRNG. Thus, the Shannon entropy of the TRNG is
given by:

lim
m→∞ Em(Xm), (11)

where (Xm)m≥0 is a sequence of Markov chains with memory m approximating the
output distribution of the TRNG.

This definition of the entropy rate of the TRNG may seem to be theoretical, but as
we will explain shortly, this sequence converges rapidly, so that in practice m = 10 is
usually sufficient to obtain a very good approximation of the entropy rate of the TRNG.

Before explaining the main ingredients of the algorithm, we specify the security model
of the TRNG. According to the well-known Kerckhoffs principle, we assume that the
attacker has complete knowledge of the TRNG including its initial state. Moreover, we
assume that the attacker has infinite computational power and is able to observe the
preceding TRNG output bits. The attacker aims to predict the next bit of the TRNG from
this knowledge.

In this context, we can interpret the entropy rate of the TRNG as the quantity of
additional information the attacker needs, to be able to perfectly predict one output
bit of the TRNG. For instance, if the entropy rate is 1, the attacker would need full
information contents of the following bit, which is therefore unpredictable. The general
idea behind the algorithms presented in this paper is to compute an approximation of the
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statistical distribution of the TRNG output by modeling the attacker’s knowledge using
a Markov chain with memory m, for an m that is big enough to approximate the entropy
rate of the TRNG via Eq. (10) with sufficient precision.

Using the assumptions we made on the EO-TRNG in Sect. 2, the state of an EO-TRNG
at time t is given by the total phase of the sampling oscillator ω(t + ξ(t)). Indeed, from
this knowledge, according to Eq. (1), the attacker can predict the output of the EO-TRNG
at time t via a deterministic function fα representing a period of the sampled oscillator
featuring duty cycle α.

The attacker’s knowledge of the phase of an EO-TRNG can be represented by a
random variable Xe(t) with values in R. Then, the distribution of the output bit at time t
is given by the random variable fα(Xe(t)). Let pe(t, x) : R × R → R be the statistical
distribution of Xe(t). By following the evolution of this distribution over time, one can
compute a Markov chain with memory m associated with the EO-TRNG and from the
Markov chain the corresponding entropy rate. The evolution of pe(t, x) depends on two
parameters:

• Physical noises, which tend to decrease the attacker’s knowledge of the state of the
generator;

• The sequences of output bits, which allow the attacker to get some information
about the internal state of the generator.

To compute a Markov chain with memory m associated with a multi-oscillator-based
TRNG (MO-TRNG) composed of 	 elementary oscillator-based TRNGs, EO-TRNGi

for i = 1, . . . , 	, at least two approaches are possible:

1. One can consider the space of phases V of all EO-TRNGs, with the dimension of
	 (since we have seen that the phase space of one EO-TRNG has the dimension
of 1) and then represent the attacker’s knowledge by a random variable X (t)
on V , compute the evolution of X (t) and the distribution of the output bits by
fα1,...,αn (X (t)), where fα1,...,αn is a multi-dimensional sampling function.

2. One can compute for i = 1, . . . , 	, Markov chains (Xi
j ) j≥0 with memory m for

EO-TRNGi , and then compute a final Markov chain with memory m obtained
by combining the outputs of Markov chains Xi using the entropy conditioning
function.

The first approach is very inefficient since it involves carrying out numerical integration
in a space of the dimension of 	. In this paper, instead, we develop the second approach
that is efficient and works for a general entropy conditioning function.

In Sect. 4, we explain how to compute a Markov chain with memory m associated
with an EO-TRNG, and in Sect. 5, we describe an algorithm to compute a Markov chain,
when the entropy is conditioned from 	 Markov chains.

4. Modeling the EO-TRNG using a Markov Chain

In this section, we provide an algorithm to compute a Markov chain X = (X j ) j≥0
representing the statistical distribution of output values of an EO-TRNG. Based on what
we said above, we can and will assume that the EO-TRNG is only subject to thermal
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noise. We assume we have an EO-TRNG characterized by input parameters α (i.e. the
duty cycle of the sampled oscillator), μ (i.e. the drift of the Wiener process described in
[4]), σ 2 (i.e. the volatility of the Wiener process described in [4]) that outputs a Markov
chain with memory m. In Sect. 2, we explained how to derive (α, μ, σ 2) from measures
of the duty cycle, clock periods and phase jitters of a couple of ring oscillators.

Remark 2. Needless to say, in order to obtain a good approximation of the entropy rate
of the EO-TRNG, the parameters (α, μ, σ 2) that serve as inputs in our algorithm have
to be measured highly precisely. One of the main difficulties with this measurement
is the need to distinguish between the contribution of the thermal noise to the phase
jitter and contributions from other sources of noise. Indeed, when using the phase jitter
measurement methods usually implemented in widely used oscilloscopes, the phase jitter
distribution obtained will include not only the contribution of the thermal noise but also
that of the flicker noise as well as of all the deterministic noises. Several techniques are
described in the literature to evaluate the contribution of thermal noise (see, for instance,
[11,13]).

For n ∈ N, denote by Xr (n) the random variable on Sn such that P(Xr (n) = s) for
s ∈ Sn is the empirical probability that the EO-TRNG outputs pattern s. (We assume here
that such an empirical probability exists.) In other words, the probability distribution of
Xr (n) is the same as that of the empirical distribution of the output bits of the EO-TRNG
grouped in patterns of length n.

In Sect. 3, we saw that a Markov chain X = X (X0, T (X)) with memorym determines
a random variable X̂0(m+1) on Sm+1 and that reciprocally, X̂0(m+1) encodes the initial
state X0 and transition matrix of X . Thus, the Markov chain with memory m, which best
approximates the probability distribution of the EO-TRNG, is such that X̂0(m + 1) is
the random variable Xr (m + 1). So we only need to explain how to compute Xr (m + 1)

from knowledge of the statistical parameters (α, μ, σ 2) of the EO-TRNG.

Remark 3. Let X = X (X0, T (X)) be the Markov chain defined by Xr (m + 1). In
general, the stable element of X will not be X0 so that the evaluator will need to call on
Algorithm 2 to compute X∞, in order to compute the entropy associated with X .

Let us denote by p̃(x, t | p̃0) : R×R → R the distribution of probability at time t > t0
representing the attacker’s knowledge of the phase of the EO-TRNG under the hypothesis
that at time t0 the attacker’s knowledge is given by the distribution p̃0 = p̃(x, t0). As
the sampled signal is 1-periodic, the output of the EO-TRNG at time t depends only on
the phase of the EO-TRNG mod 1, so we can consider:

p : R × R → R

(x, t) 
→ p(x, t |p0) =
∑
n∈Z

p̃(x − n, t | p̃0).
(12)

Let C[0, 1] be the set of 1-periodic real-valued functions f , and let D[0, 1] ⊂ C[0, 1]
be the set of integrable functions such that

∫ 1
0 f (x)dx = 1. It is clear that p(x, t |p0) ∈
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Fig. 3. Effect of sampling the clock signal equal to 0 (left) and 1 (right) depending on the distribution p̃(x, t),
s1(t) is the sampled clock signal.

D[0, 1]. Let us denote by G̃(μ, σ )(x) the Gaussian distribution with mean μ and standard
deviation σ , and let

G(μ, σ )(x) =
∑
n∈Z

G̃(μ, σ )(x − n) ∈ D[0, 1].

Recall that α is the duty cycle of the sampled clock signal. We mark f 1
α = fα and

f 0
α = 1 − fα . With these notations, the following result gives the probability that the

EO-TRNG outputs bit b at time t knowing p(x, t |p0) and shows how knowledge of b
affects p(x, t |p0):

Proposition 1. ([4], A.1. Lemma 2) Let b ∈ {0, 1}, the probability P(X (t) = b) that
the EO-TRNG with parameters (α, μ, σ 2) sampled at time t outputs bit b is:

P(X (t) = b|p(x, t |p0)) =
∫ 1

0
p(x, t |p0) f

b
α (x)dx . (13)

Moreover, knowing that the output of the EO-TRNG at time t is bit b, the distribution of
probability p(x, t |X (t) = b, p0) is:

p(x, t |X (t) = b, p0) = p(x, t |p0) f
b
α (x)/(

∫ 1

0
p(x, t |p0) f

b
α (x)dx). (14)

Figure 3 shows a graphical representation of the effect of sampling the clock signal equal
to 0 and 1 following a Gaussian distribution p̃(x, t). (For clarity, in this figure, we use
p̃(x, t) rather than p(x, t) as it is done in Proposition 1.)

Remark 4. Compared to [4] where the authors compute in the frequency domain, we
chose to do our computations in the time domain. The two approaches are equivalent
from an algorithmic point of view: We will see that we have to perform a product and
a convolution product whether we represent p(x, t |p0) in the time or in the frequency
domain, so that we will have to do a discrete Fourier transform. We think that the approach
in the time domain makes it easier to control the loss of precision in the computations:
Even when using a very naive Riemann integration algorithm, we obtain the lower and
upper bounds of the correct result.
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Fig. 4. Effect of evolution of time on the distribution p̃(x, t) for a short accumulation time (left panel) and
long accumulation time (right panel), s1(t) is the sampled signal.

In the following, we define the sampling operator S(b, α) by:

S(b, α) : C[0, 1] → C[0, 1]
S(b, α)(p)(x) = p(x) f bα (x).

(15)

The evolution of p(x, t) over time is given by the following proposition:

Proposition 2. ([4], A.1. Lemma 1) Assuming the attacker’s knowledge of the phase
of the EO-TRNG, modeled by a Wiener process with parameters (α, μ, σ 2), at time t0
is given by p(x, t0). Then for t > t0, we have:

p(x, t) = p(x, t0) ∗ G((t − t0)μ,
√

(t − t0)σ 2), (16)

where ∗ is the convolution product.

In the following, we denote by E(μ, σ,�t) : D[0, 1] → D[0, 1], the evolution operator
such that:

E(μ, σ,�t)(p)(x) = p(x) ∗ G(�tμ,
√

�tσ 2).

Figure 4 shows a graphical representation of the effect of time evolution on the Gaussian
distribution p̃(x, t).

From the two preceding propositions, we immediately deduce the following:

Proposition 3. Let b = b1 . . . bn ∈ Sn be an n-bit pattern. Let p0(x, t0) ∈ D[0, 1] be
the distribution of probability representing the attacker’s knowledge about the phase of
the EO-TRNG at time t0. We model the EO-TRNG by a Wiener process with parameters
(α, μ, σ 2). Let t0 < t1 < . . . < tn be the sampling times.
We denote by T (α, μ, σ, (ti ), (bi )) : C[0, 1] → C[0, 1], the operator defined by

T (α, μ, σ, (ti ), (bi ))= S(bn, α) ◦ E(μ, σ, tn−tn−1) ◦ . . . ◦ S(b1, α) ◦ E(μ, σ, t1−t0)

(17)

LetP(X (ti ) = bi , i = 1, . . . , n|p0(x, t0)) be the probability that the EO-TRNG sampled
at times (ti ) outputs the bit pattern (bi ). Then, we have:

P(X (ti ) = bi , i = 1, . . . , n|p0(x, t0)) =
∫ 1

0
T (α, μ, σ, (ti ), (bi ))p0(x, t0)dx . (18)



Entropy Computation for Oscillator-based... Page 17 of 33 13

Using Proposition 3, we obtain Algorithm 4, which can be used to compute the proba-
bility that the EO-TRNG outputs a given bit pattern b1 . . . bn .

Algorithm 4: Algorithm to compute the probability of a bit pattern at the output of
an EO-TRNG.
input :

• (α, μ, σ 2), the statistical parameters of the EO-TRNG;
• p0(x, t0) ∈ D[0, 1], representing the initial attacker’s knowledge about the phase

of the EO-TRNG;
• �t the time interval between two samplings;
• n integers and b1 . . . bn a bit pattern.

output: The joint probability P(Xr (i) = bi , i = 1, . . . , n) that the EO-TRNG outputs bits bi .

1 p(x, t0) = p0(x, t0);
2 for i ← 1 to n do
3 p(x, t) ← p(x, t) ∗ G(μ�t,

√
σ 2(�t)) ;

4 p(x, t) ← p(x, t) f
bi
α (x);

5 end

6 return
∫ 1

0 p(x, t)dx ;

Distribution f ∈ D[0, 1] can be represented either in the time domain or in the
frequency domain. In the time domain, f is given by a table of floating point numbers
[ f (i/k)]i=0,...,k . In this case,

∫ 1
0 f (x)dx can be computed via a Riemann integral, which

gives upper and lower bounds of the correct result, making it possible to control the
precision of the result. The computation of the integral in Step 3 for a fixed precision has
a linear complexity in k. Step 4 has a linear complexity in k, too. The convolution product
can be computed in the frequency domain in quasi-linear time O(k log(k)) by using a
discrete Fourier transform. So the whole Algorithm 4 has a quasi-linear complexity
O(k log(k)) in k measured in the number of floating point operations.

We end this section by addressing the choice of the distribution p0(x, t0), which
depends on the attacker’s initial knowledge and memory m of the Markov chain. We
discuss it in relation with the security model we use and the target precision of the
entropy computation. The security model usually depends on the assumed power of the
attacker. In our context, i.e. the attacker has infinite computation power, the difference
between the security models is in the attacker’s knowledge about the state of the TRNG:

Definition 7. We define two security models for free-running oscillator-based TRNGs
according to the attacker’s knowledge about the TRNG:

• Security model A: we assume the attacker has complete knowledge of the state of
the TRNG at start-up and each time the TRNG outputs a bit;

• Security model B: each time the TRNG produces a bit, only the value of this bit is
given to the attacker.

In Security model A, what we mean by the internal state of the TRNG is the phase
and duty cycle of each oscillator in the TRNG. Thus, in this security model, each time
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Table 1. Values of entropy ED(m) based on the Dirac initial distribution and of entropy EU (m) based on the
uniform initial distribution for memory m = 1, . . . , 10 .

m 1 2 3 4 5 6 7 8 9 10

ED(m) 0.111 0.306 0.424 0.466 0.476 0.475 0.471 0.468 0.466 0.465
EU (m) 0.499 0.474 0.467 0.465 0.464 0.464 0.464 0.464 0.464 0.464

the TRNG outputs a bit, the attacker is given the internal state of the TRNG from which
the value of the output bit can be recovered. Of course, Security model A gives more
power to the attacker than Security model B, so it is more stringent. Nonetheless, in
real-world scenarios, the attacker does not have access to the internal state of the TRNG.
Thus, Security model A is not realistic apart from the start-up of the TRNG, when the
initial relative phase of the two oscillators in the EO-TRNG could always be the same
and may thus be known to the attacker.

Nevertheless, this first model is useful because it greatly simplifies computations.
Indeed, each time the TRNG outputs a bit, the attacker gets complete knowledge of its
state, so he/she does not need to take the preceding bits into account to predict the next
one. Thus, all the useful information is contained in the initial distribution p0(x, t0),
which is a Dirac distribution δ(x0) with all its mass concentrated in x0. (Here, t0 is either
the start-up time of the TRNG or each time at which it outputs a bit.) In this case, we
do not need a Markov chain to model the output stream of the EO-TRNG, so we can
assume that the memory depth m is equal to 0. Note that the explicit expressions for
entropy computation published in [4,27] rely on this security assumption.

In Security model B, the attacker only obtains the value of the output bit each time
the EO-TRNG outputs a bit. Taking into account continuous operation of the TRNG,
this assumption may be viewed as realistic. Following Eq. (11), we should choose a suf-
ficiently large memory depth m of the Markov chain, which determines the distribution
of output bits of the EO-TRNG, so that the events that occur before the last m bits do
not affect the value of the following bit.

To find such an m, we can consider two very different initial distributions by taking
for p0(x, t0) either the Dirac distribution or the uniform distribution. Then, we can use
Algorithm 3 to compute entropy ED(m) (for the Dirac distribution) and EU (m) (for the
uniform distribution) depending on m. For m big enough, one can check that entropies
ED(m) and EU (m) converge toward the same value. For any m, we can take the smallest
integer such that |ED(m) − EU (m)| < ε, ε being the desired precision of our compu-
tations. Table 1 gives values of ED(m) and EU (m) for an EO-TRNG with parameters
(α, μ, σ 2) = (0.5, 1, 4.9 10−3) and m = 1, . . . , 10. It shows that the convergence is
rapid enough to achieve the required precision of 10−3 with m = 10. We checked ex-
perimentally that the convergence is quicker when σ is bigger. To compute Table 1, we
chose σ = 0.7 (which is in the order of typical values that we measure in real hardware
implementations, see for example [1]) to be sure of making a realistic assessment of the
convergence.

Remark 5. A Dirac distribution is easy to implement in our algorithms since we only
use it to compute a convolution product and we can therefore define it just as distribution
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δ(x0) such that (δ(x0) ∗ f )(x) = f (x − x0). As x0 is unknown, we have to choose the
value that minimizes the entropy rate of the generator. There is no obvious solution to
this problem, but our experience confirms that the entropy rate of the generator with
parameters (α, μ, σ 2) for μ ∈]0, 1] (see the remark just after Definition 1) is minimal
when μ = 1. This is also obvious in the entropy formula of [4, Proposition 1]. Moreover,
if μ = 1, it is easy to choose the x0 that minimizes the entropy rate: It is sufficient to
take x0 = α0/2.

5. Modeling the MO-TRNG Including Entropy Conditioner

In this section, we assume that the MO-TRNG is composed of 	 EO-TRNGs, denoted
EO-TRNGi for i = 1, . . . , 	 where EO-TRNGi is made of the sampling oscillator O0 and
the sampled oscillator Oi . Their outputs are post-processed by an entropy conditioner (see
Fig. 2). In the previous section, we explained how to compute Markov chains (Xi

j ) j≥0
that approximate the statistical distribution of the output bits of EO-TRNGi . We are now
interested in the problem of computing a Markov chain that describes the distribution at
the output of the entropy conditioner.

The only general assumption we make is that the entropy conditioner has no memory
so that it is defined by a function ζ	 : bits	 → bits, (b1, . . . , b	) 
→ ζ	(b1, . . . , b	)

taking one output bit of each EO-TRNGi for i = 1, . . . , 	 to output one bit of the
MO-TRNG. If bits = {0, 1}, ζ	 is a general Boolean function. For m ≥ 1, we denote
by ζm

	 : S	
m → Sm , the function obtained by the bit-wise operation of ζ	 on Sm that is

ζ	
m(b1

1 . . . b1
m, . . . , b	

1 . . . b	
m) = (ζ	(b1

1, . . . , b
	
1) . . . (ζ	(b1

m, . . . , b	
m)).

By combining using ζ	 the outputs of 	 Markov chains with memory m, (Xi
j ) j≥0,

we obtain the sequence of random variables (X ζ	) j≥0 = (ζm
	 (X1

j , . . . , X
	
j )) j≥0. The

following lemma confirms that this sequence is a Markov chain, too.

Lemma 3. Let (Xi
j ) j≥0 for i = 1, . . . , 	 be Markov chains over Sm. The sequence

(X ζ	) j≥0 = (ζm
	 (X1

j , . . . , X
	
j )) j≥0 of random variables over Sm is a Markov chain.

Moreover, for all k ≥ m, we have:

X̂ ζ	(k) = ζm
	 (X̂1(k), . . . , X̂	(k)) (19)

Proof. To prove the first claim, we have to check the conditions of Definition 2. We
can consider (Xi

j )
i=1,...,	
j≥0 as a sequence of random variables over S	

m . Being the joint

probability distribution of (Xi
j ) j≥0 for i = 1, . . . , 	, it is clear that (Xi

j )
i=1,...,	
j≥0 is a

Markov chain. We can compute:

P(X ζ	
n = xn|X ζ	

n−1 = xn−1, . . . X
ζ	

n−k = xn−k) (20)

as the sum:

∑
P(((Xi

n) = (sin))
i=1,...,	|((Xi

n−1) = (sin−1))i=1,...,	, . . . , ((Xi
n−k) = (sin−k))

i=1,...,	),

(21)
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which can be taken over all the (siν)
i=1,...,	
ν=n−k,...,n ∈ (S	

m)k+1 such that for ν = n−k, . . . , n,

ζm
	 (s1

ν , . . . , s	
ν) = xν . Using the fact that (Xi

j ) j≥0 is a Markov chain, we observe that
Eq. (21) is equal to:

∑
P(((Xi

n) = (sin))
i=1,...,	|((Xi

n−1) = (sin−1))
i=1,...,	), (22)

the sum being taken over all the (siν)
i=1,...,	
ν=n−1,n ∈ (S	

m)2 such that ζm
	 (s1

ν , . . . , s	
ν) = xν .

But expression (22) is none other than

P(X ζ	
n = xn|X ζ	

n−1 = xn−1), (23)

so that we have proved that

P(X ζ	
n = xn|X ζ	

n−1 = xn−1, . . . X
ζ	

n−k = xn−k) = P(X ζ	
n = xn|X ζ	

n−1 = xn−1). (24)

Because (Xi
j ) j≥0 is a Markov chain, we know that P(((Xi

n) = (sin))
i=1,...,	|((Xi

n−1) =
(sin−1))

i=1,...,	) does not depend on n. Thus, as expressions (22) and (23) are identical,

we confirm that P(X ζ	
n = xn|X ζ	

n−1 = xn−1) does not depend on n. Moreover, it is clear

that if xn /∈ succ(xn−1), then P(X ζ	
n = xn|X ζ	

n−1 = xn−1) = 0.
Next, we prove the second claim of Lemma 3. It is clear that Eq. (19) is true for k = m,

because using condition (9) we obtain:

X̂ ζ	(m) = lim
j→∞ ζm

	 (X1
j , . . . , X

	
j )

= ζm
	 ( lim

j→∞ X1
j , . . . , lim

j→∞ X	
j ) = ζm

	 (X̂1(m), . . . , X̂	(m))
(25)

Moreover, by definition, we have for k > m, b1 . . . bk ∈ Sk

P(X ζ	
n = bk−m+1 . . . bk |X ζ	

n−1 = bk−m . . . bk−1)

= P(ζm
	 (X1

n, . . . , X
	
n)=bk−m+1 . . . bk |ζm

	 (X1
n−1, . . . , X

	
n−1)=bk−m . . . bk−1)

(26)

so by an inductive application of (5), we obtain Eq. (19). �

Remark 6. From the point of view of the two security models, each of the (Xi
j ) j≥0 de-

termines the probability of guessing the next bit at the output of EO-TRNGi from knowl-
edge of the m preceding bits. At first sight, one could think that (ζm

	 (X1
j , . . . , X

	
j )) j≥0

models the security threat when the attacker knows each of the output bits of the EO-
TRNGi for i = 1, . . . , 	 and tries to guess the next output bit of the entropy conditioner.
However, this not the case: (ζm

	 (X1
j , . . . , X

	
j )) j≥0 models the probability of guessing

the next bit at the output of ζ	 from knowledge of the m preceding bits at the output of
ζ	, which is precisely our security model of the MO-TRNG.
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The preceding lemma says that (ζm
	 (X1

j , . . . X
	
j ))i≥0 is a Markov chain with memory

m. The second part of the Lemma makes it possible to compute the encoding function
(see Definition 4) of this Markov chain.

Proposition 4. Let (Xi ) j≥0 = for i = 1, . . . , 	 beMarkov chains with memory m over
alphabet bits. We denote by fXi their respective encoding function (see Definition 4).

Let fXζ	 be the encoding function for ζ	(X1
j , . . . , X

	
j ). For all s ∈ Sm+1, we have:

fXζ	 (s) =
∑

s′=(s1,...,s	)∈S	
m+1,ζ

m+1
	 (s′)=s

	∏
i=1

fXi (si ). (27)

Proof. This is an immediate consequence of the fact that for all s ∈ Sm+1, fXζ	 (s) =
P(X̂ ζ	(m + 1) = s) by definition and the preceding lemma. �

We can use the expression from Proposition 4 to recover fXζ	 from the knowledge of
fXi . However, the algorithm obtained in this way is not practical, because the sums in
Eq. (27) are calculated over the big sets S	

m+1 and S	
m so that the resulting run time

complexity is in O(|Sm+1|	).
Fortunately, two optimizations are possible in most real-world cases. Recall thatbits =

{0, 1}. In this case, ζ	 : bits	 → bits is a Boolean function that can be represented
as an algebraic normal form. The algebraic normal form of ζ	 is just a polynomial
P ∈ F2[x1, . . . , x	], the evaluation of which enables recovery of ζ	. It can be shown that
the degree of P is bounded by 	. There are

(2	
	

)
monomials of degree 	 in F2[x1, . . . , x	].

So P can be evaluated by performing
(2	

	

)
(	 + 1) operations each of which is of the

form ζ2 : bits2 → bits. Algorithm 5 deduced from Proposition 4 makes it possible
to compute ζm

2 (X1
j , X

2
j ) for an arbitrary ζ2 : bits2 → bits in time O(|Sm+1|2). We

deduce that ζm
	 (X1

j , . . . , X
	
j ), where ζm

	 is a general Boolean function, can be evaluated

in O(
(2	

	

)
(	 + 1)|Sm+1|2).

We can further improve the computation run time of ζm
	 (X1

j , . . . , X
	
j ), if we assume

that ζ	 : bits	 → bits is given as the composition of 	 times the same associative
composition law ζ 0

	 : bits2 → bits to get a running time of O(	|Sm+1|2). If, in addition,
the Markov chains X1

j , …, X	
j represent 	 copies of the same Markov chain we can use a

square and multiply algorithm to compute ζm
	 (X1

j , . . . , X
	
j ) in time O(log(	)|Sm+1|2).

This last condition is fulfilled in the classical design where the MO-TRNG is obtained
as the exclusive or function of outputs of 	 EO-TRNGs that have the same specification.

The second optimization is possible if for all k ≥ m, Sk together with the composition
law ζ k

2 : S2
k → Sk is a group. In this case, we use the convenient notation +ζ	 : S2

k → Sk
for ζ k

2 : S2
k → Sk and denote by −ζ2 the inverse operation. For 	 = 2, we can rewrite

Eq. (27) as:

fXζ2 (s) =
∑

s′∈Sm+1

fX1(s −ζ2 s′) fX2(s′), (28)
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Algorithm 5: Algorithm for computing ζm
2 (X1

j , X
2
j ).

input :
• fXi i = 1, 2 the encoding functions of two Markov chains (Xi

j ) j≥0 with memory

m associated to EO-TRNGi ;
• ζm2 : Sm × Sm → Sm obtained as the bitwise operation of ζ2 :

bits × bits → bits.

output: The encoding function fXζ2 of the Markov chain ζm2 (X1, X2).

1 ∀i ∈ Sm+1, X3[i] ← 0;
2 for x, y ∈ Sm+1 × Sm+1 do
3 i ← ζm+1

2 (x, y);
4 X3[i] ← X3[i] + f X̂ 1

[x]. f X̂ 2
[y] ;

5 end
6 return fXζ2 = X3; /* Comment: We represent fXζ2 as a table of floats

indexed by Sm+1 */

Note that Eq. (28) is a convolution product of functions Sk → R. Recall that if (G,+G) is
a finite commutative group, f, g : G → R are functions, ( f ∗g)(x) = ∑

t∈G f (t)g(x−G

t) is the convolution product of f and g that can easily be computed using a Fourier
transform.

Namely, let Ĝ be the dual group of G that is the group of characters χ : G → C
∗. If

f : G → R is a function, we denote by f̂ : Ĝ → R the function such that:

f̂ (χ) = 1

|G|
∑
x∈G

f (x)χ(−x). (29)

Using the fact that
∑

χ∈Ĝ χ(t) is 0 if t = 0 or |G| if t �= 0, we deduce that for all x ∈ G

f (x) = ∑
χ∈Ĝ f̂ (χ)χ(x). This shows that f̂ makes it possible to recover f . In our

context, f̂ is the Fourier transform of f . Using the fact that ˆ̂G is canonically isomorphic

to G, one can show that the map f 
→ f̂ is an involution, i.e. ˆ̂f = f . Using the fact that∑
t∈G χ(t) is 0 if χ �= 0 and |G| if χ = 0, we easily get the well-known proposition:

Proposition 5. Let f, g : G → R be functions, we have for all χ ∈ Ĝ:

f̂ ∗ g(χ) = f̂ (χ)ĝ(χ). (30)

This proposition gives us a way to rapidly compute convolution product of f, g : G → R,
provided that one can easily compute the Fourier transform in G.

Example 1. In the case that ζ2 : bits2 → bits is the xor map (b1, b2) 
→ b1 ⊕ b2 then
(Sm, ζm

2 ) is a group. The associated Fourier transform is called the Walsh transform, and
a quasi-optimal algorithm is known to compute it [9]. In this case, we can use Algorithm
6 to compute ζm

2 (X1
j , X

1
j ) in time of order O(|Sm+1|).
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By combining the two optimizations, if the MO-TRNG is obtained by XOR-ing the
outputs of 	 EO-TRNGs with the same specification, one obtains an algorithm to compute
the entropy rate of the TRNG with the running time complexity O(log(	)|Sm+1|).

Algorithm 6: Algorithm for computing ζm
2 (X1

j , X
2
j ) using Fourier transform.

input :
• fXi i = 1, 2 the encoding functions of two Markov chains (Xi

j ) j≥0 with memory

m associated with EO-TRNGi ;
• ζm2 : Sm+1 × Sm+1 → Sm+1 a composition law such that:

· Sm+1 together with the composition law ζm2 : Sm+1 × Sm+1 → Sm+1 is a group;
· an efficient algorithm exists to compute the Fourier transform of fXi : Sm+1 → R for i = 1, 2.

output: The encoding function fXζ2 of the Markov chain ζm2 (X1, X2).

1 f̂ X i ← FT ( fXi ) for i = 1, 2;

2 for χ ∈ Ŝm+1 do
3 f̂ Xζ2 (χ) ← f̂ X1 (χ).̂ fX2 (χ);

4 end

5 return fXζ2 = FT−1( f̂ Xζ2 ); /* Comment: We represent fXζ2 as a table of

floats indexed by Sm+1 */

6. Validation of the Model by Simulations and Its Comparison with
State-of-the-art MO-TRNG Models

Using the proposed algorithms, we simulated several MO-TRNG configurations featur-
ing different numbers of rings in order to compare our model with other state-of-the-art
MO-TRNG models and to assess the impact of design choices on the entropy rate. All
the simulated MO-TRNGs had the same architecture as that presented in Fig. 2 where,
for the sake of simplicity, the oscillators O1, . . . , O	 producing the sampled signals had
the same number of inverters. The entropy conditioner was implemented as an exclusive
or (XOR) function.

The set of algorithms presented in this paper was implemented in Python available
under GPL License. The whole set is freely accessible via GitHub [17].

We denote by EO-TRNGi the EO-TRNG made of the oscillator Oi sampled at rising
edges of the output signal of O0. For our computations, we assumed that EO-TRNGi

for i = 1, . . . , 	 has the following fixed parameters (see Definition 1): αi = 0.5 for the
duty cycle and μi = 1 for the drift of the Wiener process. We computed the entropy rate
of the resulting TRNG with the quality factor varying in the interval [0.001; 0.1]. Recall
that the quality factor (see [4, Section 2.4]) is given by σ 2�t where σ 2 is the volatility
of the Wiener process and �t is the time interval between two subsequent samplings.

First, we compared our model with the EO-TRNG model of Baudet et al. provided
in [4]. In the proof of Corollary 1 presented in [4], one can find the following closed
approximate expression for the entropy rate at the output of an EO-TRNG depending
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Table 2. Quality factor required to achieve an entropy rate of 0.997 at the output of the MO-TRNG obtained
by XOR-ing outputs of 	 EO-TRNGs .

	 2 4 8 16 32 64

Quality factor 0.082 0.047 0.029 0.020 0.015 0.011

on its quality factor:

E(Q) = 1 − 16

π2 ln(2)
e−4π2Q + O(e−6π2Q). (31)

The results obtained using this expression can be compared with the results given by
our model using Fig. 5. Note that Eq. (31) is not accurate for small quality factors,
since the error term becomes too big. (Note in particular the negative entropy rate for
the quality factor sizes up to 0.02.) When the quality factor increases further, the two
models converge toward the same value of entropy and always remain within the margin
of error. Note that the model of Baudet et al. proposed in [4] always underestimates
entropy compared to the new model, the latter being more precise. We also checked
that the results of our model regarding the computed bias were always within the error
margin appearing at the end of Eq. (31).

One could expect that, as for a cryptographic application, we would need to produce
bits with high entropy rate and consequently, we would use a TRNG with a big quality
factor where the discrepancy between the two models is small. Table 2 shows that this
assumption is not correct: In the case of an MO-TRNG obtained by XOR-ing the outputs
of 	 = 64 EO-TRNGs, which can be a realistic number of rings in practice, to achieve
the MO-TRNG entropy rate of 0.997 required by recommendations AIS 31 [15], the
required quality factor of individual EO-TRNGs would be 0.011. Note that this value is
in the area where results of the two models diverge significantly.

The previous results concerning the EO-TRNG confirm that our approach based on
Markov chains is more precise than that presented in [4]. The MO-TRNG model pre-
sented in [27] extends the model from [4] to the use of multiple oscillators as sources
of randomness. Consequently, both models have the same characteristics regarding the
impact of the quality factor on the entropy.

In Sect. 5, we showed that our method makes it possible to evaluate a lower entropy
bound following Security model A from Definition 7, on which the above-cited models
[4,27] (implicitly) rely, but the new method also makes it possible to compute entropy
with the more realistic Security model B.

Next, we assessed the impact of the choice of the security model on the proved lower
bound of the entropy rate at the output of the MO-TRNG for 	 = 1, 2 and 4. The results
are presented in Fig. 6. On the left panel in Fig. 6, we present the entropy rate computed
with Security model A, and on the right one, the rate was computed with Security model
B.

We can see that the entropy rate of the latter is significantly bigger than that of the
former. Also, as expected, in both cases, the entropy conditioner, which combines the
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σ²Δt

H1

Fig. 5. Entropy rate at the output of an EO-TRNG estimated using the model of Baudet et al. from [4] and
our model as a function of the quality factor (the vertical axis represents Shannon entropy, and the horizontal
axis represents quality factor).

Fig. 6. Shannon entropy rate as a function of quality factor in an MO-TRNG composed of 1, 2 and 4 EO-
TRNGs computed according to Security model A (left) and Security model B (right).

outputs of several EO-TRNGs by an exclusive or function, significantly increases the
entropy rate.

7. Modeling and Evaluation of the TRNG Implemented in Hardware and
Discussion

Next, we evaluated the relevance of our entropy estimation and entropy management
methods for MO-TRNGs based on ring oscillators, which were implemented in hard-
ware. We used a modular hardware dedicated to TRNG and PUF testing, which featured
the Intel 5CEBA4F17C8N device from the Cyclone V FPGA family [16]. We imple-
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mented three versions of the MO-TRNG following the circuit diagram depicted in Fig. 2
where:

• The ring oscillator O0 was always composed of 29 delay elements (one NAND gate
and 28 buffers), and it generated the sampling (reference) clock signal of 69 MHz;

• In the three versions, the oscillators Oi were made of, respectively, 39, 49 and
68 delay elements and produced sampled clock signals with mean frequencies of,
respectively, 51, 40 and 28.9 MHz. Note that to evaluate the impact of the ring fre-
quencies on the entropy, we set the number of delay elements to get approximately
the same difference in mean frequencies between the three versions of the rings,
i.e. about 11 MHz.

Remark 7. We recall that all ring oscillators are considered to be independent and
unmanipulable sources of jittered clock signals in our MO-TRNG stochastic model.
The independence of phases of generated clock signals can be ensured by a proper
hardware design (e.g., by placing the rings far apart, avoiding parallel routing, placing
a buffer at the ring output). The required independence can be easily verified as it was
done in [19, Page 4] using a suitable oscilloscope (e.g., LeCroy WaveRunner 640Zi).
Indeed, the authors show that the cumulative distribution function of the phase shift
between two independent signals must be uniformly distributed, which corresponds to
the standard deviation of the phase shift of 104 degrees. This standard deviation can be
easily measured and verified by the chosen oscilloscope [19, Figure 24].

It is also well known that ring oscillators are vulnerable to frequency attacks [5,18]
during which the rings can lock to the frequency of the external signal. Fortunately, this
kind of attacks can be easily detected by measuring online the jitter variance, as it was
proposed in [11]. This possibility is important to ensure that the Security model B is valid.
The same measures, which can constitute a basis for dedicated statistical tests, would
be able to detect entropy variations caused by aging, process variation, self-heating up,
etc.

To obtain comparable results, we fixed the placement and routing of all oscillators (i.e.
of that generating the reference clock, but also of those generating sampled clocks) for
all MO-TRNG versions. We placed the rings far apart to avoid their mutual dependence
and confirmed their independent behavior by oscilloscope. We denote by EO-TRNGν

the EO-TRNG made of ν delay elements (inverters and buffers) and by MO-TRNG(	,ν)

the MO-TRNG made of 	 EO-TRNGν .
First, we set the division factor D to 1 and generated bit streams (bi )i=1,...,κ of κ = 106

EO-TRNGν output bits. From the bit streams obtained, using algorithms published in
[11], we computed:

• The duty cycle of the sampled oscillator as E(bi ) = (
∑

bi )/κ;
• The ratio T0/Tx mod 1 (more precisely min(T0/Tx mod 1, 1−T0/Tx mod 1)),

where we denote byT0 (resp.Tx ) the mean period of the sampling (resp. the sampled)
oscillator in the EO-TRNGx as 1/2E(bi �= bi+1) according to [11, Fact 2];

• The volatility σ 2
T0

of the associated Wiener process σ 2
0 according to Eq. (2) using

[11, Fact 1].

The results are presented in Table 3.
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Table 3. Parameters of EO-TRNGν for a number of delay elements ν = 39, 49, and 68, computed using the
algorithms presented in [11] together with the Shannon entropy rate according to model B for accumulation
time D = 2000 .

Duty cyc. 1/2E(bi �= bi+1) T0/Tx mod 1 σ 2
T0

Entr. rate

EO-TRNG39 0.522 0.285 0.260 7.5 · 10−6 0.637
EO-TRNG49 0.503 0.424 0.420 4 · 10−6 0.561
EO-TRNG68 0.508 0.407 0.418 2.5 · 10−6 0.468

Recall that the method in [11] outputs σ 2
T0

, which is the variance of the jitter accu-
mulated during T0 when T1 has been scaled to 1. It means that if D is the value of the
divider from Fig. 1, then the quality factor of the EO-TRNG is equal to Dσ 2

T0
.

Note that in Table 3, the value of σ 2
T0

increases with the clock frequency (i.e. in our
case, it decreases with number of delay elements included in the ring). But in the previous
paragraph, we have seen that the quality factor of the EO-TRNG depends linearly on σ 2

T0
.

This means that an EO-TRNG is more efficient (from the point of view of the entropy rate
at its output), if the sampled signal has a higher frequency. This quite natural conclusion
is confirmed by our model, as can be seen in the last column of Table 3, which gives the
entropy rate of the EO-TRNGν for ν = 39, 49, and 68 according to Security model B
and the frequency divisor D set to 2000.

We underline the fact that the sampling oscillator had the same frequency in all
implemented EO-TRNGν versions and consequently, the output bit rate remained the
same, i.e. it was independent of the number of delay elements of the sampled rings. At
first glance, it may consequently seem that in order to increase the entropy rate, it is
preferable to select the highest frequency of the sampled clock signals possible.

However, other constrains also have to be considered when taking decisions regarding
the frequency of the sampled clocks:

• Since the slopes of the rising edges and falling edges of the clock signal are usually
very different and do not depend on the clock frequency, with increasing frequen-
cies, the duty cycle moves further from its ideal value (0.5)—this increases the bias
of the output bit values and decreases the entropy rate;

• Rings can interlock more easily at high frequencies [19, Figures 18 and 19] and
decrease the output entropy rate, and it is therefore preferable (especially in multiple
ring oscillator-based TRNGs) to reduce the frequency of generated clocks and to
spread their frequencies, while also paying attention to their harmonics.

The aim of entropy management in MO-TRNG design is to achieve a prescribed
entropy rate, e.g., 0.997 according to the current version of recommendations AIS 31
(version 2.0) [15] or even 0.9998, as required by the new draft of AIS 31 (version 2.35)
[20], by choosing the number of EO-TRNGs and the value of the frequency divider. Of
course there is a trade-off between the entropy rate, the bitrate and number of gates in
the TRNG, i.e. its cost. In practice, two entropy management strategies can be applied:

• The number and the size of oscillators (i.e. the cost) are fixed, and the designer
needs to determine the accumulation time (i.e. the bit rate) required to reach the
required entropy rate,
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Table 4. Setting the division factor D to achieve an entropy rate of 0.997 for MO-TRNG(2,ν) and ν = 39, 49,

and 68, according to Security models A and B .

Value of D for model A Value of D for model B

MO-TRNG(2,39) 10 483 7 898
MO-TRNG(2,49) 20 560 14 809
MO-TRNG(2,68) 32 896 23 694

Table 5. Setting the number of oscillators 	 to achieve entropy rate of 0.997 for MO-TRNG(	,ν) with ν =
39, 49, 68 and D = 2000, according to Security models A and B .

Value of 	 for model A Value of 	 for model B

MO-TRNG(	,39) 33 6
MO-TRNG(	,49) 273 9
MO-TRNG(	,68) 3562 12

• The required bit rate is fixed and the designer needs to determine the size (the
frequency) and the number of oscillators, required to reach the targeted entropy
rate.

Applying the first strategy, we computed the value of D to achieve a Shannon entropy
rate of 0.997 according to Security models A and B for the MO-TRNG(2,ν) with ν =
39, 49, and 68. The results are given in Table 4.

Applying the second strategy, we computed the number of oscillators 	, so that the
Shannon entropy rate at the output of the MO-TRNG(	,ν) for ν = 39, 49, and 68 was
0.997, while the divider value D was fixed to 2000. The results are shown in Table 5.

The results presented in Tables 4 and 5 allows us to conclude that while both security
models (A and B) make it possible to compute a lower bound of the entropy rate at the
MO-TRNG output, being overly pessimistic, Security model A has a huge impact in
terms of cost and performance. Specifically, we can see that to achieve the same proven
entropy rate:

• While using the same area, the output bit rate computed using Security model A is
only about 70% of what we can achieve using Security model B (see Table 4);

• To reach the same output bit rate with model A as with model B, we have to multiply
the number of rings and consequently the generator cost by up to 300 (see Table 5).

In the last phase of our experiments, we compared the entropy estimations based on
Security model B and the two entropy management strategies (fixed cost versus fixed
bit rate) presented in Tables 4 and 5 with results of five statistical tests following Test
procedure B of AIS 31, version 2.0 [15]: test T6 a) and b), test T7 a) and b) and T8. Note
that for high quality results, the test T8 estimates Shannon entropy rate per output byte.

For each MO-TRNG configuration tested, we generated one million bytes of random
data: by varying division factor D from 2000 to 25000 for the first entropy management
strategy and by modifying the number of rings 	 from 1 to 13, when the second strategy
was evaluated. The results of tests are presented in Tables 6 ,7 and 8 for the first entropy
management strategy and in Table 9 for the second one.
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Table 6. Comparison of our 0.997 Shannon entropy estimation (in gray) with the results of statistical tests
AIS31, Test procedure B and its Shannon entropy estimation according to test T8 for different accumulation
times D and number of rings 	 with mean output frequency of 51.0 MHz (39 elements per ring) .

Results of AIS31, procedure B/Shannon entropy from T8
D 	 = 1 	 = 2 	 = 3 	 = 4

2000 Failed 4x/- Failed 3x/0.576 Failed 3x/0.994 Failed 2x/0.999
3000 Failed 4x/0.540 Failed 3x/0.969 Passed/0.999 Passed/1.000
4000 Failed 3x/0.977 Failed 2x/0.998 Passed/1.000 Passed/1.000
5000 Failed 3x/0.992 Failed 1x/0.999 Passed/1.000 Passed/1.000
6000 Failed 1x/0.998 Passed/1.000 Passed/1.000 Passed/1.000
7000 Failed 1x/1.000 Passed/1.000 Passed/1.000 Passed/1.000
8000 Passed/1.000 Passed/1.000 Passed/1.000 Passed/1.000
10000 Passed/1.000 Passed/1.000 Passed/1.000 Passed/1.000

Table 7. Comparison of our 0.997 Shannon entropy estimation (in gray) with the results of statistical tests
AIS31, Test procedure B and its Shannon entropy estimation according to test T8 for different accumulation
times D and number of rings 	 with mean output frequency of 40.0 MHz (49 elements per ring) .

Results of AIS31, procedure B/Shannon entropy from T8
D 	 = 1 	 = 2 	 = 3 	 = 4

2000 Failed 4x/- Failed 4x/- Failed 4x/0.991 Failed 2x/0.978
3000 Failed 4x/0.418 Failed 3x/0.455 Failed 1x/0.997 Passed/0.999
4000 Failed 4x/0.334 Failed 3x/0.855 Failed 2x/0.999 Passed/1.000
5000 Failed 3x/0.958 Failed 1x/0.922 Failed 1x/0.999 Passed/1.000
6000 Failed 3x/0.983 Failed 2x/0.998 Passed/1.000 Passed/1.000
7000 Failed 3x/0.984 Failed 1x/0.999 Passed/1.000 Passed/1.000
8000 Failed 3x/0.997 Failed 1x/0.999 Passed/1.000 Passed/1.000
10000 Failed 1x/0.999 Passed/0.999 Passed/1.000 Passed/1.000
15000 Passed/1.000 Passed/1.000 Passed/1.000 Passed/1.000
20000 Passed/1.000 Passed/1.000 Passed/1.000 Passed/1.000

In addition to showing the success of the tests and entropy estimated by test T8, we
also specify, for how many of the five tests of the AIS 31 Test procedure B the generated
data failed. Here, it is interesting to note that the data always passed test T6 a).

The dark gray cells in Tables 6, 7 and 8 correspond to values of division factor D
from the right column of Table 4, while the cells highlighted in Table 9 correspond to
the number of oscillators 	 from the right column of Table 5. As could be expected,
our entropy estimations are always more stringent than those given by test T8 in both
entropy management strategies, mainly because the statistical tests cannot distinguish the
contribution of unpredictable and unmanipulable thermal noises from the contribution
of auto-correlated low frequency noises such as flicker noise and the contribution of
(manipulable) global noises. This fact further confirms the validity and usefulness of
our approach.
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Table 8. Comparison of our 0.997 Shannon entropy estimation (in gray) with the results of statistical tests
AIS31, Test procedure B and its Shannon entropy estimation according to test T8 for different accumulation
times D and number of rings 	 with mean output frequency of 28.9 MHz (68 elements per ring) .

Results of AIS31, procedure B/Shannon entropy from T8
D 	 = 1 	 = 2 	 = 3 	 = 4

2000 Failed 4x/- Failed 4x/0.809 Failed 4x/0.991 Failed 4x/0.996
3000 Failed 4x/- Failed 4x/0.566 Failed 4x/0.928 Failed 4x/0.982
4000 Failed 4x/- Failed 4x/0.752 Failed 3x/0.733 Failed 1x/0.999
5000 Failed 4x/0.610 Failed 3x/0.521 Failed 3x/0.985 Failed 1x/0.999
6000 Failed 4x/0.805 Failed 4x/0.810 Failed 2x/0.999 Passed/1.000
7000 Failed 3x/0.711 Failed 3x/0.667 Passed/1.000 Passed/1.000
8000 Failed 2x/0.978 Failed 2x/0.994 Passed/1.000 Passed/1.000
10000 Failed 2x/0.992 Failed 3x/0.976 Passed/1.000 Passed/1.000
15000 Failed 1x/0.999 Passed/0.999 Passed/1.000 Passed/1.000
20000 Passed/1.000 Passed/1.000 Passed/1.000 Passed/1.000
25000 Passed/1.000 Passed/1.000 Passed/1.000 Passed/1.000

Table 9. Comparison of our 0.997 Shannon entropy estimation (in gray) with the results of statistical tests
AIS31, Test procedure B and its entropy estimation according to test T8 for different number of rings 	 with
39, 49 and 68 ring elements for accumulation time D = 2000 .

Results of AIS 31, procedure B/Shannon entropy from T8
	 ν = 39 ν = 49 ν = 68

1 Failed 4x/- Failed 4x/- Failed 4x/-
2 Failed 4x/0.746 Failed 4x/0.720 Failed 4x/0.467
3 Failed 3x/0.923 Failed 4x/0.973 Failed 3x/0.865
4 Passed/0.999 Failed 1x/0.998 Failed 4x/0.921
5 Passed/1.000 Passed/1.000 Failed 1x/0.999
6 Passed/1.000 Passed/1.000 Passed/1.000
7 Passed/1.000 Passed/1.000 Passed/1.000
8 Passed/1.000 Passed/1.000 Passed/1.000
9 Passed/1.000 Passed/1.000 Passed/1.000
10 Passed/1.000 Passed/1.000 Passed/1.000
11 Passed/1.000 Passed/1.000 Passed/1.000
12 Passed/1.000 Passed/1.000 Passed/1.000
13 Passed/1.000 Passed/1.000 Passed/1.000

8. Conclusion and Perspectives

In this paper, we proposed a complete set of algorithms aimed to compute the entropy rate
at the output of oscillator-based TRNGs using differences in phases of generated clocks
as a source of randomness. The algorithms were implemented in Python and are publicly
available. They should play an essential role in the design and evaluation of oscillator-
based TRNGs, where they can be used to assess the level of security of the TRNG aimed
at cryptographic applications. They can also be used as an entropy management tool
for the evaluation of different options in the design space that represent a compromise
between the cost and the best output bit rate while achieving the required level of security.
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In the course of our study, we introduced two security models that are relevant when the
entropy rate at the output of an MO-TRNG needs to be estimated. While Security model A
has been implicitly used in previous works [4,27], especially because it greatly simplifies
computations, we have shown that it leads to an overly pessimistic underestimation of
the entropy rate at the TRNG output, which can impact the cost and performance of the
TRNG when one needs to reach a target entropy rate. Consequently, Security model B,
which is even more realistic than model A, should be preferred when the entropy rate
needs to be estimated. The only disadvantage of the Security model B compared to model
A is that it involves more computations, caused essentially by the use of Markov chains,
but, as we have shown in this paper, Security model B is still amenable to computations
for real-world MO-TRNG designs.

An interesting question for future research would be whether some function or a subset
of functions could behave better with respect to the entropy rate per bit in the class of
entropy conditioner functions. One possibility in this direction would be to generalize
the analysis made by Dichtl in [8]. Since in our model, we are dealing with a general
class of logic functions, this problem should not represent an insurmountable obstacle.
The new TRNG model based on Markov chains should make evaluation of the efficiency
of the new entropy conditioner even easier.
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