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Abstract. Bitcoin is one of the most prominent examples of a distributed cryptographic
protocol that is extensively used in reality. Nonetheless, existing security proofs are
property-based, and as such they do not support composition. In this work, we put forth
a universally composable treatment of the Bitcoin protocol. We specify the goal that Bit-
coin aims to achieve as an instance of a parameterizable ledger functionality and present
a UC abstraction of the Bitcoin blockchain protocol. Our ideal functionality is weaker
than the first proposed candidate by Kiayias, Zhou, and Zikas [EUROCRYPT’16], but
unlike the latter suggestion, which is arguably not implementable by the UC Bitcoin
protocol, we prove that the one proposed here is securely UC-realized by the protocol
assuming access to a global clock, to model time-based executions, a random oracle, to
model hash functions, and an idealized network, to model message dissemination. We
further show how known property-based approaches can be cast as special instances of
our treatment and how their underlying assumptions can be cast in UC as part of the
setup functionalities and without restricting the environment or the adversary.
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1. Introduction

Since Nakamoto first proposed Bitcoin as a decentralized cryptocurrency [41], several
early works have focused on analyzing and/or predicting its behavior under different
attack scenarios [5,22,23,32,43,47,48]. However, a core question remained unanswered
for quite a while:

What security goal does Bitcoin achieve under what assumptions?

An intuitive answer to this question was already given in Nakamoto’s original white
paper [41]: Bitcoin aims to achieve some form of consensus on a set of valid transactions.
The core difference of this consensus mechanism with traditional consensus [37–39,45]
is that it does not rely on having a known (permissioned) set of participants, but everyone
can join and leave at any point in time. This is often referred to as the permissionless
model. Consensus in this model is achieved by shifting from the traditional assumptions
on the fraction of cheating versus honest participants, to assumptions on the collective
computing power of the cheating participants compared to the total computing power
of the parties that support the consensus mechanism. The core idea is that in order for
a party’s action to affect the system’s behavior, it needs to prove that it is investing
sufficient computing resources. In Bitcoin, these resources are measured by means of
solutions to a presumably computation-intensive problem.

Although the above idea is implicit in [41], a formal description of Bitcoin’s goal had
not been proposed or known to be achieved (and under what assumptions) until the first,
seminal works of Garay, Kiayias, and Leonardos [24] and Pass, Seeman, and shelat [44],
which mainly influenced this work. In a nutshell, these works set forth models of com-
putation and, in these models, an abstraction of Bitcoin as a distributed protocol and
proved that the output of this protocol satisfies certain security properties, for example
the common prefix [24] or consistency [44] property. This property confirms—under the
assumption that not too much of the total computing power of the system is invested in
breaking it, where the exact threshold has been the study of recent works [20,27]—a
heuristic argument used by the Bitcoin specification: if some block makes it deep enough
into the blockchain of an honest party, then it will eventually make it into the blockchain
of every honest party and will never be reversed.1 In addition to the common prefix
property, other quality properties of the output of the abstracted blockchain protocol
were also defined and proved.

1.1. Bitcoin as a Service for Cryptographic Protocols

Evidently, the main use of the Bitcoin protocol is as a decentralized monetary system
with a payment mechanism, which is what it was designed for. And although the exact

1In the original Bitcoin heuristic “deep enough” is defined as six blocks, whereas in these works it is
defined as linear in an appropriate security parameter.
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economic forces that guide its sustainability are still being researched, and certain ratio-
nal models predict it is not a stable solution, it is a fact that Bitcoin has not met any of
these pessimistic predictions for several years and it is not clear it ever will do. And even
if it does, the research community has produced and is testing several alternative decen-
tralized cryptocurrencies, e.g., [6,12,19,30,31,40,42,46], that are more functional or
based on different resource assumptions than Bitcoin, some of which base their analysis
on earlier versions of this article [11].

This leads to the natural questions of how one can use this new reality to improve
the security and/or efficiency of cryptographic protocols. First answers to this question
were given in [1–3,10,28,29,33,35] where it was shown how Bitcoin can be used as
a punishment mechanism to incentivize honest behavior in higher-level cryptographic
protocols such as fair lotteries, poker, and general multi-party computation.

But in order to formally define and prove the security of the above constructions in a
widely accepted cryptographic framework for multi-party protocols, one needs to define
what it means for these protocols to be run in a world that gives them access to the
Bitcoin network as a resource to improve their security. In other words, the question
now becomes:

What functionality can Bitcoin provide to cryptographic protocols?

To address this question, Bentov and Kumaresan [10] introduced a model of compu-
tation in which protocols can use a punishment mechanism to incentivize adversaries
to adhere to their protocol instructions. As a basis, they use the universal composition
framework of Canetti [13], but the proposed modifications do not support composition
and it is not clear how standard UC cryptographic protocols can be cast as protocols in
that model.

In a different direction, Kiayias, Zhou, and Zikas [36] connected the above question
with the original question of Bitcoin’s security goal. More concretely, they proposed
identifying the resource that Bitcoin (or other decentralized cryptocurrencies) offers to
cryptographic protocols as its security goal, and expressing it in a standard language
compatible with the existing literature on cryptographic multi-party protocols. More
specifically, they modeled the ideal guarantees as a transaction-ledger functionality in
the (global) universal composition framework.

In a nutshell, the ledger proposed by [36] corresponds to a trusted third party which
keeps a state of blocks of transactions and makes it available, upon request, to any party.
Furthermore, it accepts messages/transactions from any party and records them as long
as they pass an appropriate validation procedure that depends on the above publicly
available state as well as other registered messages. Periodically, this ledger puts the
transactions that were recently registered into a block and adds them into the state. The
state is available to everyone. As proved in [36], giving multi-party protocols access
to such a transaction-ledger functionality allows for formally capturing the mechanism
of leveraging security loss with coins. The proposed ledger functionality guarantees in
an ideal manner all properties that one could expect from Bitcoin and encompasses the
properties in [24,44]. Therefore, it is natural to postulate that it is a candidate for defin-
ing the security goal of Bitcoin (and potentially other decentralized cryptocurrencies).
However, the ledger functionality proposed by [36] was not accompanied by a security
proof that any of the known cryptocurrencies implements it.
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However, as we show, despite being a step in the right direction, the ledger proposed
in [36] cannot be realized under standard assumptions about the Bitcoin network. On
the positive side, we specify a new transaction ledger functionality which still guaran-
tees all properties postulated in [24,44], and prove that a reasonable abstraction of the
Bitcoin protocol implements this ledger. In our construction, we describe Bitcoin as a
UC protocol which generalizes both the protocols proposed in [24,44]. We leave it as
an interesting open problem to integrate more recent analyses [7,17,25,26] in our UC
model, where the main changes are expected in formulating the setup assumptions and
restrictions along the lines we show in Sect. 8.1 for the initial models. Still, the main
goal remains to UC-realize our ledger functionality.

1.2. Our Contributions

We put forth the first universally composable (simulation-based) proof of security of
Bitcoin. We design a general ledger functionality whose parameters we subsequently
concretely instantiate for the Bitcoin setting. We observe that the first attempts in defining
such a functionality, notably the ledger proposed by Kiayias et al. [36], are too strong
to be implemented by our UC abstraction of Bitcoin, the main reason being that the
functionality allows too little interference of the simulator with its state, making it
impossible to emulate adversarial attacks that result, e.g., in the adversary inserting
only transactions coming from parties it wants or that result in parties holding chains of
different lengths. We detail this in Sect. 4.1. Therefore, we propose an alternative ledger
functionality in Sect. 4.2 which shares certain design properties with the proposal in [36]
but which can be provably implemented by a UC abstraction of the Bitcoin protocol,
where our protocol abstraction makes use of hybrid (idealized) functionalities such as
the bounded-delay network, the clock to model (lock-step) synchrony, and the random
oracle to idealize hash queries.

Our ledger is parametrized by a set of parameters, for example by a generic transac-
tion validation predicate, which enables it to capture decentralized blockchain protocols
beyond Bitcoin. Our functionality allows for parties/miners to join and leave the com-
putation and we support adaptive corruptions.

We formally prove for which choice of parameters the proposed ledger functionality
is implemented by Bitcoin under the assumption that miners which deviate from the
Bitcoin protocol do not control a majority of the total hashing power at any point. The
description of concrete parameters is given in Sect. 6, and the UC realization proof
appears in Sect. 7. To this end, we first describe in detail an abstraction of the Bitcoin
protocol as a UC protocol in Sect. 5. Casting Bitcoin in UC allows to precisely model the
protocol assumptions, for example the knowledge of the network delay and the number
of hash-function calls per round. We model Bitcoin to work over a network which
basically consists of bounded-delay channels. We explain how such a network could
be implemented by running the message-diffusion mechanism of the Bitcoin network
(which is run over a lower level network of unicast channels). Intuitively, this network
is built by every miner, upon joining the system, choosing some existing miners of its
choice to use them as relay nodes. Similar to the protocol in [44], the miners are not
aware of (an upper bound on) the actual delay that the network induces. As we argue,
this is a strictly weaker model assumption than assuming that the network delay is
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publicly known such as in [24]. We devote Sect. 3 to modeling the UC execution with
the appropriate setups.

Our security proof proposes a useful modularization of the Bitcoin protocol. Con-
cretely, we first identify the part of the Bitcoin code which intuitively corresponds to
the lottery aspect, provide an ideal UC functionality that reflects this lottery aspect, and
prove that this part of the Bitcoin code realizes the proposed functionality. We then
analyze the remainder of the protocol in the simpler world where the respective code
that implements the lottery aspect is replaced by invocations of the corresponding func-
tionality. Using the UC composition theorem, we can then immediately combine the
two parts into a proof of the full protocol. Finally, in Sect. 8, we show how one can cast
the theorem’s assumptions as part of the setup functionalities of the protocol. We thus
obtain a desirable corollary where we do not have to restrict the environment regarding
the distribution of hashing power (but where the restriction is enforced by the setup
functionalities), which improves the way this protocol can be formally composed with
other protocols.

As is the case with the so-called backbone protocol from [24], our above UC protocol
description of Bitcoin relies only on proofs of work and not on digital signatures. As a
result, it implements a somewhat weaker ledger, which does not guarantee that transac-
tions submitted by honest parties will eventually make it into the blockchain.2 As a last
result, we show in Sect. 9 that (similarly to [24]) by incorporating public-key cryptogra-
phy, i.e., taking signatures into account in the validation predicate, we can implement a
stronger ledger that ensures that transactions issued by honest users—i.e., users who do
not sign contradicting transactions and who keep their signing keys for themselves—are
guaranteed to be eventually included into the blockchain. The fact that our protocol is
described in UC makes this a straight-forward, modular construction using the proposed
transaction ledger as a hybrid. In particular, we do not need to consider the specifics of
the Bitcoin protocol in the proof of this step. This also allows us to identify the maximum
(worst-case) delay a user needs to wait before being guaranteed to see its transaction on
the blockchain and be assured that it will not be inverted.

Future directions. The presented analysis in UC corresponds to the first analysis of
a blockchain protocol and requires a couple of novel modeling concepts to accurately
model the execution of such decentralized protocols whose security are based on rate-
limiting resources. For Bitcoin in particular, a few interesting extensions to this work are
conceivable which all relate to the topic of bringing the model closer to reality. First, it is
an interesting open question to what extent the reliance on a local random oracle can be
relaxed while still achieving composition. A second line of research would be to model
a more realistic network functionality, taking into account limited message omissions or
bandwidth constraints. Finally, the full Bitcoin protocol includes adjusting the difficulty
of the PoW puzzles per epoch based on the observed historic performance. It appears as
a very interesting theoretical question whether the Bitcoin protocol (or possibly a variant
of it) can in fact be understood as the modular composition of a component estimating
participation and a ledger component as analyzed in this work.

2We formulate a weakened guarantee, which we then amplify using digital signatures.
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1.3. Overview of Bitcoin and Related Work

High-level introduction. At a high level, the Bitcoin protocol works as follows: The
parties (also referred to as miners) collect and circulate messages (transactions) from
users of the network, check that they satisfy some commonly agreed validity property,
put the valid transactions into a block, and then try to find appropriate metadata such that
the hash of the block-contents and this metadata is of a specific form—concretely that,
parsed as a binary string, it has a sufficient number of leading zeros. This is often referred
to as a solving a mining puzzle and the intuition behind it is that the best strategy for
finding such metadata is supposedly by trial and error. Thus, informally, the probability
that some party finds appropriate metadata increases proportional to the number of times
some party attempts a hash computation. And the more leading zeros we require from a
correct puzzle solution the harder it is to find one, since the solution space of the puzzle
is smaller.

Intuitively, a successful solution can be seen as a proof-of-work (POW) that testifies
to the fact that the miner presenting has in fact tried a large number of hash queries.
Once a miner finds such a solution, he puts it into a block and sends it to the other
miners. The miners who receive it check that it satisfies some validity property (see
below) and if so create new metadata using the hash of this (newly minted) block and
put this metadata together with transactions that are still valid into a new block and start
working on solving the puzzle induced by this block. Since a block is rendered valid by
a miner only if it includes a hash-pointer to a previous valid block in the view of this
miner, the view consists of a set of linked lists, namely a sequence of valid blocks each
with a hash-pointer to its predecessor in the list. Each such list is called a blockchain
or simply chain. All lists have a common starting point which is the so-called genesis
block of Bitcoin. Hence, the entire view of a miner could be modeled as a tree, where the
root is the genesis block, the nodes are valid blocks, and the hash-pointers correspond
to (directed) edges.

The works of Garay, Kiayias, and Leonardos [24] and that of Pass, Seeman, and she-
lat [44] contain the first formal specifications and security proofs of the Bitcoin protocol.
The proved security in these works is property-based. They prove that conditioned on
the largest part of the network following the Bitcoin protocol (in fact an abstraction and
generalization thereof), the output of this so-called backbone protocol satisfies three
properties with overwhelming probability. We only informally describe these properties
here. We will meet their formalization when analyzing the Bitcoin protocol in UC. In
the following, let t1 ≤ t2 be two points in time during the protocol execution.

• Common prefix: Any two valid chains Ct1 , Ct2 adopted by some honest parties at
times t1 and t2, respectively, share a large common prefix. This is typically quantified
by specifying a value k (the common-prefix parameter) and the size of the common
prefix is required to be at least |Ct1 | − k.

• Chain growth: For time-intervals [t1, t2] of reasonable extent, the increase in number
of blocks—measured as the difference between any two valid chains Ct1 and Ct2
adopted by some honest parties at times t1 and t2, respectively—is guaranteed to
be substantial. The relationship between time and chain-length is typically referred
to as the chain-growth coefficient.
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• Chain quality: For any honest party and its adopted valid chain Ct at time t , it holds
that any consecutive sequence of blocks of reasonable extent in Ct is guaranteed
to contain blocks contributed by honest parties. The proportion of honestly mined
blocks is typically refereed to as the chain-quality coefficient.

Chain quality and chain growth are often expressed with respect to the common-prefix
parameter k. That is, as the fraction of honestly mined blocks in a consecutive sequence
of k blocks, and as the time interval within which an increase of k blocks is guaranteed
(except with negligible probability in k).

Network assumptions and random oracle. Both [24] and [44] assume a multicast
network—i.e., a network where a party sends messages to arbitrary other parties3—and
abstract the hash function as a random oracle. Furthermore, they both have an explicit
round-based model of execution where parties proceed in rounds. There are some slight
differences between the two models. For example, in [24] every party makes q hash-
queries (i.e., q RO calls) in each round as opposed to [44] where every party makes one
hash-query per round. Second, in [44], the adversary might choose to delay message
delivery but the statements are proved assuming no message is delayed by more than �

rounds—also known as the partial-synchronous setting—while the initial model taken
by [24] was more synchronous (and was lifted to the partial synchronous model later).
We note that since the number of hash-queries is fixed in both models, this implies that
parties know exactly in which round they are, as they could simply count the number of
queries made to the random oracle (and by definition of their models no party goes to
round r + 1 before all parties have finished round r ). Note that the partial-synchronous
protocol execution model in [44] is a strictlyweaker setting than a synchronous execution
model with a fixed delay of one round.

Property-based vs simulation-based security. Proving that Bitcoin satisfies the above
properties has been an essential step into the direction of understanding the security goals
of Bitcoin. But as argued above, this does not offer the tool to be able to argue security
of cryptographic protocols that use Bitcoin—e.g., to achieve an improved fairness no-
tion [1–3,10,28,29,33,35]—without the need to always look at the Bitcoin specifics. In
other words, such property-based security definitions do not support composition. The
standard way to allow for such a generic use of blockchain protocols as a cryptographic
resource is to prove that it implements an ideal functionality in a composable framework.
Intuitively, in such frameworks, a composition theorem states that we can replace calls
to a functionality with invocation of a protocol implementing it without worrying about
the protocol’s internals.

3Unlike [24] where this operation is referred to as broadcast, we choose to call it multicast here to avoid
confusion with the standard broadcast primitive in the Byzantine agreement literature that offers stronger
consistency guarantees.
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2. Preliminaries

2.1. Overview of the UC Framework

We use the universal composability (UC) framework introduced by Canetti [13,14]. We
give a brief introduction into the main notation of this framework.

2.1.1. Basics

The goal of the UC framework is to capture what it means for a protocol to securely
carry out a task. UC first defines the process of executing a protocol in some environment
and in the presence of an adversary, next it defines an ideal process to formalize what
securely carrying out the task means, and finally one has to prove that no (efficient)
environment can distinguish the real process and the ideal process. The core defining
element of the ideal process is the ideal functionality, which can be thought of as an
incorruptible party. We briefly describe the main ingredients first and then describe the
real and ideal process.

Protocol and protocol instances.Formally, a protocol π is an algorithm for a distributed
system and formalized as an interactive Turing machine. An ITM has several tapes, for
example an identity tape (read-only), an activation tape, or input/output tapes to pass
values to its program and return values back to the caller (e.g., the environment). An
ITM also has communication tapes that model messages sent to and received from the
network.

While an ITM is a static object, UC defines the notion of an ITM instance (denoted
ITI), which is defined by the so-called extended identity (eid) of the form (M, id), where
M is the description of an ITM and id = (sid,pid) is an identity string consisting of
a session identifier sid and a party identifier pid. Each instance is associated with a
configuration, which is as usual the contents of all of its tapes and the heads, and the
control state of that ITM.

An instance, also called a session, of a protocol π (represented as an ITM Mπ ) with
respect to a session id sid is defined as a set of ITIs (Mπ , idi ) with idi = (pidi , sid).

Network and adversary. The UC model does not give any guarantee for its built-in
network. The network is asynchronous without guaranteed delivery or authenticity of
the originator. The messages are routed and controlled by the adversary unless a stronger
network is available (such as the one we define in this work). The adversary A is also
defined as an ITM. Aside of its capabilities to send and read messages, it can at any time
issue special corruption messages to corrupt protocol ITMs. When an ITM is corrupted,
the adversary does not only learn the contents of all tapes, but it can also act in the name
of this ITM, meaning that whenever this ITM is activated, the adversary gets actually
activated and can decide on the next steps. This corruption dynamics is the standard
form of corruption and we call such an adversary active and adaptive.

2.1.2. Real-World Process

The real-world process for a protocol π is defined as follows. Let Z be an environ-
ment machine and let A denote the adversary. The execution consists of a sequence of
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activations, initiated by Z , where in each activation, either Z , A or some ITI running
π is activated. We say that Z invokes a new ITI Z if it activates an ITI for the first
time (by passing some inputs) upon which this new instance gets created (in the default
configuration). All ITIs invoked by Z need to have unique extended identities and need
to have the same session-identifier (which is chosen by Z).

Activations and execution rules.An activated ITI can change its configuration based on
its code. By the UC system model (i.e., by the definition of external-write requests), an
ITI loses its activation when (1) passing an input value to a (subsidiary) ITI (like a hybrid
functionality), or (2) producing an output, i.e., writing to its subroutine output tape, or
(3) providing output to the adversary (e.g., by an ideal functionality). The next activated
ITI is the ITI that was addressed in the external-write request, or the environment if no
external-write request is made.

The environment Z can pass inputs to and read outputs from the input/output tape of
any party, respectively. The environment can thereby emulate all outside processes and
how they interact with the (challenge) protocol session. In these inputs, the environment
thereby also specifies a source (extended) identity of the input (to which supposedly some
output will be returned). We call such identities external. It is convenient to parametrize
an environment with a predicate ξ that restricts the set of allowed external identities
to use. One natural standard predicate to enforce is the one that disallows Z to use
as an external identity an extended identity of any ITI that it provides input to in the
system. Other choices of predicates may be helpful in various scenarios. Clearly, the
more relaxed the predicate ξ , the more general the security statement. More restrictive
predicates in turn lead to more restrictions on the contexts in which the protocols proved
secure with respect to those predicates can be deployed.

The adversary A can access the so-called backdoor tapes of the ITIs and in the plain
network model, thereby deliver messages. Following the external-write rules, if in some
activation, the adversary delivers a message to an ITI, then this ITI is activated next. In
addition, the adversary can corrupt parties as described above. The environment learns
the party id pid of any corrupted ITI via a special corruption-aggregation mechanism.

The UC model also follows some activation rules (specified by the control function).
As already stated, the environment is activated first, and upon completion of its actions
(entering a special waiting state), the adversary is activated as a second entity. The
remaining execution proceeds as described above. As a convention, in addition to the
above rules, the UC execution model requires that if an ITI completes without external-
write request (for example not sending a message), then the environment is activated
next.

Output and transcript. The output of the protocol execution is the output of Z , and
we assume that this output is a binary value v ∈ {0, 1}. We denote this output by
execπ,A,Z (k, z, r) where k is the security parameter, z ∈ {0, 1}∗ is the input to the
environment, and randomness r for the entire experiment. Let execπ,A,Z (k, z) denote
the random variable obtained by choosing the randomness r uniformly at random and
evaluating execπ,A,Z (k, z, r). Let execπ,A,Z denote the ensemble
{execπ,A,Z (k, z)}k∈N,z∈{0,1}∗ . By slight abuse of notation, we denote by Texecπ,A,Z
(k, z, r) the associated transcript of this execution, which is the concatenation of all in-
puts to Z , all outputs from Z , and all messages exchanged via the communication tapes
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of the ITIs (also called the joint view). The distribution Texecπ,A,Z (k, z) and ensemble
Texecπ,A,Z are defined analogously to above.

2.1.3. Ideal-World Process

Security of protocols is defined via comparing the real-world execution with an ideal-
world process that solves the task in an idealistic way. More formally, the ideal process
is formulated with respect to an ITM F which is called an ideal functionality. In the ideal
process, the environment Z interacts with F , an ideal-world adversary (often called the
simulator) S and a set of trivial, i.e., dummy ITMs representing the protocol machines.
The dummy ITMs behave as follows: whenever activated with a request x , they forward
the request x to F and output toward Z whatever they receive in return. F thereby
specify all outputs generated for each party, and the amount of information the ideal-
world adversary learn and what its active influence is via its interaction with F . By
definition of the corruption mechanism in UC, corruption of parties happens via special
corruption messages on the backdoor tape of the ideal functionality (and the party ids
pid of all corrupted (dummy) parties can be learned by the environment). We note that
an ideal functionality itself, represented as an ITI during the protocol execution, cannot
be corrupted by definition.

Based on the above definitions, the ideal-world process proceeds as the real process.
It is essentially the real-world process where the ITIs running the protocol are replaced
by the dummy ITIs interacting with F (and only one challenge session ever exists). In
this interaction, the same constraints and activation sequence restrictions are enforced
by the UC control function. For further details, we refer to [14].

We denote the output of this ideal-world process by execF ,A,Z (k, z, r) where the
inputs are as in the real-world process. Let execF ,S,Z (k, z) denote the random variable
obtained by choosing the randomness r uniformly at random and evaluating execF ,S,Z
(k, z, r). Let execF ,S,Z denote the ensemble {execF ,S,Z (k, z)}k∈N,z∈{0,1}∗ . The tran-
script is defined analogously as in the real-world process and denoted TexecF ,S,Z (k, z, r).

2.1.4. Hybrid Worlds

To model setup, the UC framework knows so-called hybrid worlds. We discuss two
important cases of hybrid worlds that differ in whether the setup, typically called the
hybrid functionality, is available only to an instance of a protocol session (standard), or
to multiple protocol sessions at the same time (shared). Note that a protocol can assume
several setup functionalities of both types.
Standard (local) setup. A standard setup is modeled in UC as an ideal-functionality
available in a real-world protocol execution, i.e., as an incorruptible ITI F that pro-
vides certain ideal guarantees to this protocol session. We consider here the natural case
that standard setups are available in real-world processes only (note that while the fol-
lowing conventions can be applied to ideal-world-processes as well, it still seems like
an uninteresting case to consider standard setups in ideal-processes). So, formally, the
F-hybrid-world process is identical to the real-world process with the following addi-
tions: The parties can interact with (an a priori unbounded number of) instances of F by
standard interaction (sending messages, passing output to them, or receiving input from
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them). Each copy ofF , i.e., each such incorruptible ITI, is identified via a unique session
identifier sid chosen by the protocol that passes in put to it. (This in particular implies a
unique identity id of this ITI.) It is stressed that by this definition, the environment can
only access F via calls to parties or via the adversary.

Since a protocol makes explicit which local functionalities it assumes we omit an
explicit reference in the formal expressions for simplicity. For example, we just write
execπ,A,Z or Texecπ,A,Z to denote the output or the transcript distribution ensembles in
such cases.

Shared (global) setup. Sometimes we want to model that a certain hybrid functionality,
say G, to be declared as shared (often also denoted to as global setup). This breaks
the isolated-session idea (subroutine respecting property) of standard UC and allows
sessions to share state, or more generally a functionality, with other sessions, resp. with
the environment. While the exact dynamics of such a global model is beyond the scope
of this introduction, the basic idea how to model such global setup in UC is relatively
easy and does not need a separate model such as the one originally proposed in [16].
Instead, we follow the modeling in [4]: a generic mapping (or operator akin to the
UC composition operator) is defined that takes a protocol π and the to-be-treated-as-
global functionality G (more precisely, the ideal protocol associated with G as described
above) and transforms the protocol (oblivious to the protocol and the functionality)
into a standard UC protocol M[π,G]. This protocol has the property that it exposes G
to the environment, while the behavior of π in its interaction with other ITIs and the
environment remains unchanged. We recall that the identity-bound predicate ξ is a handy
tool to model which external identities must be assumed to have access to the shared
functionality when proving the challenge protocol secure. Finally, since global setups
are always present in the experiments, the ideal process (that is, the ideal world) can be
simply expressed as M[F ,G], i.e., where the ideal protocol for F is considered instead
of π . We point out that global setups must satisfy a so-called regularity condition, which
can be achieved trivially by having any party that wants to interact with G to register
first with the functionality. All our ideal functionalities are of this form. If a shared setup
G is available in the real-world or ideal-world processes, we usually make it explicit in
the notation such as execG

π,A,Z or execGF ,S,Z , where we understand the normal UC
execution with the above transformation.

2.1.5. Secure Realization and Composition

In a nutshell, a protocol securely realizes an ideal functionality F if the real-world
process (where the protocol is executed) is indistinguishable from the ideal-world process
(relative to F). If the protocol uses setup, we technically consider the hybrid-world
processes instead of the plain real-world or ideal-world processes. We directly state the
definitions.

Definition 2.1. Let us denote by X = {X (k, z)}k∈N,z∈{0,1}∗ and Y = {Y (k,
z)}k∈N,z∈{0,1}∗ two distribution ensembles over {0, 1}. We say that X and Y are in-
distinguishable if for any c, d ∈ N there exists a k0 ∈ N such that |Pr[X (k, z) = 1] −
Pr[Y (k, z) = 1] | < k−c for all k > k0 and all z ∈ ⋃

κ≤kd {0, 1}κ . We use the shorthand
notation X ≈ Y to denote two indistinguishable ensembles.
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Definition 2.2. Let n ∈ N, let F be an ideal functionality, and let π be a protocol
defined for the real-world, and which potentially makes use of some local setup func-
tionality H and some global setup G. We say that π securely realizes F (in the presence
of these setup functionalities) if for any (efficient) adversary A there exists an (efficient)
ideal-world adversary (the simulator) S such that for every (efficient) environment Z it
holds that execG

π,A,Z ≈ execGF ,S,Z .

In the literature, the above condition is often referred to as π securely realizing func-
tionalityF in the (G,H)-hybrid world, where the type of setup is inferred by the context.

Composition. The notion of secure realization is composable. We do not give a detailed
explanation as it is not important to follow the results in this work. In a nutshell, assume
first that a protocol π securely realizes F in the H-hybrid world, where H denotes a
standard (local) setup functionality. Let further φ be a protocol that securely realizes F .
Then, the protocol π ′, where each call to H is replaced by an invocation of protocol
φ, securely realizes F . We refer the interested reader to [14] for the general formal
statement and on the exact definition of π ′. Along similar lines, a composition theorem
can be proven (following from the standard UC composition theorem) where local hybrid
functionalities are replaced by the protocols securely realizing them, all in the presence
of shared setups [4]. Finally, we only note in passing that one can also consider replacing
shared functionalities (i.e., the global setups) by suitable protocols. This, however, is a
very subtle issue for which we refer the interested reader to [9].

2.2. Large Deviation Bounds

We use some known results to derive large deviation bounds in our probabilistic argu-
ments. For proofs and further discussions we refer to [21].

Theorem 2.3. (Chernoff bound) Let X1, . . . , XT be independent random variables
with E[Xi ] = pi and Xi ∈ [0, 1]. Let X = ∑T

i=1 Xi and μ = ∑T
i=1 pi = E[X ]. Then,

for all � ≥ 0,

Pr[X ≥ (1 + �)μ] ≤ e− �2
2+�

μ ;
Pr[X ≤ (1 − �)μ] ≤ e− �2

2+�
μ .

Theorem 2.4. (Azuma’s inequality (Azuma; Hoeffding)) Let X0, . . . , Xn be a se-
quence of real-valued random variables so that, for all t , |Xt+1 − Xt | ≤ c for some
constant c. If E[Xt+1 | X0, . . . , Xt ] ≤ Xt for all t , then for every � ≥ 0

Pr[Xn − X0 ≥ �] ≤ exp

(

− �2

2nc2

)

.

Alternatively, if E[Xt+1 | X0, . . . , Xt ] ≥ Xt for all t , then for every � ≥ 0

Pr[Xn − X0 ≤ −�] ≤ exp

(

− �2

2nc2

)

.
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3. UC Execution Model for Permissionless PoW Blockchains

In this section, we describe our UC model of execution for the Bitcoin protocol. We
remark that providing such a formal model of execution forces us to make explicit all the
implicit assumptions from previous works. As we lay down the theoretical framework,
we will also discuss these assumptions along with their strengths and differences.

Bitcoin miners are formally represented as ITIs, which we refer to for notational con-
venience by Pi , i.e, Pi = (π, idi ), where idi = (pidi , sid) and where π will be the
Bitcoin protocol (running in session sid). We refer to Pi as a party for short. The index
i is used to distinguish two identifiers, i.e., Pi �= Pj , and otherwise carries no meaning.
Parties interact which each other by exchanging messages over an unauthenticated mul-
ticast network with eventual delivery (see below) and might make queries to a common
random oracle. We will assume a central adversary A who gets to corrupt miners and
might use them to attempt to break the protocol’s security. As is common in UC, the
resources available to the parties are described as hybrid functionalities (some of which
are treated as shared or global as we discuss later). Before we provide the formal speci-
fication of such functionalities, we first discuss a delicate issue that relates to the set of
parties (ITIs) that might interact with an ideal functionality.

3.1. Functionalities with Dynamic Party Sets

In many UC functionalities, the set of parties is defined upon initiation of the functionality
and is not subject to change throughout the lifecycle of the execution. Nonetheless, UC
does provide support for a completely dynamic generation of ITIs and thus making the
set of parties that might interact with the functionality dynamic. This feature is important
when modeling the Bitcoin protocol—where miners come and go at will. In this work,
we make this explicit by means of the following mechanism: all the functionalities
considered here include the instructions below that allow parties to join or leave the set
P that the functionality interacts with, and inform the adversary about the current set of
registered parties. Note that making the set of parties dynamic means that the adversary
needs to be informed about which parties are currently in the computation so that it can
chose how many (and which) parties to corrupt.

• Upon receiving (register, sid) from some party P4 (or from A on behalf of a
corrupted P), the functionality sets P = P ∪ {P} and returns (register, sid, P)

to the caller.
• Upon receiving (de-register, sid) from some party P ∈ P (or from A on be-

half of a corrupted P ∈ P), the functionality sets P := P\{P} and returns
(de-register, sid, P) to the caller.

• Upon receiving (get-registered, sid) from A, the functionality returns the re-
sponse (get-registered, sid,P) to A.

4Recall that P stands for any ITI, and as such the instruction is also defined for functionalities registering
to e.g., global setups.
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Finally, our functionalities will only interact with those parties that are effectively
registered to it. This makes any functionality (hybrid or realized) in this work regular
which is important for global UC.

3.2. Modeling Network Assumptions

In many situations, one cannot tolerate a complete asynchronous network such as the
standard UC communication mechanism. For example, we want to argue about liveness
properties of blockchains, which requires communication with eventual delivery guar-
antees as time goes by (see below how we model time). We describe such a network
based on ideas from [8,18,34]. In particular, we capture such communication by a net-
work functionality F�

N-MC that provides each party or miner Ps ∈ P the capability to
multicast a message. For every newly sent message, say m, the network functionality
creates a unique identifier mid for each triple (Pj , Pj ,m), where Pj ∈ P is a potential
receiver. This handle is needed to succinctly refer to a message circulating in the network
in a fine-grained manner. The network does not provide any information to any receiver
about who else is using it or where a message originates from. More precisely, messages
are buffered but the information of who is the sender is never provided to a receiver.

The adversary—who is informed about both the content of the messages and about
the handles—is allowed to delay messages by any finite amount, and allowed to deliver
them in an arbitrary out-of-order manner. To ensure that the adversary cannot arbitrarily
delay the delivery of messages submitted by honest parties, we use the following idea:
The network works in a “fetch message” mode, which means that parties need to actively
query for the message (for example, a party can query for messages once in a round). If
the adversary wishes to delay the delivery of some message with message ID mid, he
needs to submit an integer value Tmid—the delay for the message-in-transmission with
identifier mid. For example, if mid refers to the triple (Ps, Pj ,m), this will have the
effect that only after the next Tmid fetch attempts by Pj , Pj will be able to report the
receipt of this particular message m. Importantly, the network does not accept more than
� accumulative delay for any mid. To allow the adversary freedom in scheduling the
delivery of messages, we allow him to input delays more than once, which are added to the
current delay amount. If the adversary wants to deliver the message in the next activation,
all he needs to do is submit a negative delay. Furthermore, we allow the adversary to
schedule more than one messages to be delivered in the same “fetch” command. Finally,
to ensure that the adversary is able to re-order such batches of messages arbitrarily, we
allow A to send special (swap,mid,mid′) commands that have as an effect to change
the order of the corresponding messages. Last but not least, the adversary is further
allowed to do partial and inconsistent multicasts, i.e., where different messages are sent
to different parties. This is the main difference of such a multicast network from a
broadcast network. The description appears in Fig. 1.

3.2.1. Multicast from Unicast

The above multicast functionality is an ideal abstraction of a large network, where we
idealize the network delay and network topology. While the network delay is an explicit
parameter in the analysis (and could be estimated from real-world deployed networks),
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Fig. 1. The network functionality with eventual delivery guarantees. Note that for a list 
M we denote by the
symbol || the operation which appends a new element to 
M .

the topology does not appear in any way. Hence, a natural question is how to get the
above multicast network from simpler channels. Note that in Bitcoin, parties/miners
communicate over an incomplete network and a standard diffusion mechanism is em-
ployed: The sender sends the message it wishes to multicast to all its neighbors who
check that a message with the same content was not received before, and if this is the
case forward it to their neighbors, who then do the same check, and so on. In fact, a
multicast network can be built from unicast channels. That is, one essentially assumes
for each miner PR ∈ P a channel functionality F�,PR

U-CH —which is parameterized by a
receiver PR and an upper bound on the delay �—to which any other party Pi ∈ P can
connect and input messages to be delivered to PR . A miner connecting to the unicast
channel with receiver PR models the real-world process of looking up PR (e.g., a public



18 Page 16 of 84 C. Badertscher et al.

node in the network) and using this party to disseminate future messages. The unicast
channel should have some similar properties as the above network, namely:

• They guarantee (reliable) delivery of messages within a delay parameter but are
otherwise specified to be of asynchronous nature (see below) and hence no protocol
can rely on timings regarding the delivery of messages. The adversary might delay
any message sent through such a channel, but at most by �. In particular, the
adversary cannot block messages. However, he can induce an arbitrary order on the
messages sent to some party.

• The receiver gets no information other than the messages themselves. In particular,
a receiver cannot link a message to its sender nor can he observe whether or not
two messages were sent from the same sender.

• The channel offers no privacy guarantees. The adversary is given read access to all
messages sent on the network.

In Appendix A, we provide this channel functionality for completeness and explain
how a simple round-based diffusion mechanism can be used to implement a multicast
mechanism from unicast channels as long as the corresponding network among honest
parties stays strongly connected—where a network graph is called strongly connected if
there is a directed path between any two nodes in the network where the unicast channels
are the directed edges from senders to receivers.

3.3. Modeling Time and Clock-Dependent Protocol Execution

Katz et al. [34] proposed a methodology for casting synchronous protocols in UC by
assuming they have access to an ideal functionality Gclock, the clock, that allows parties
to ensure that they proceed in synchronized rounds. Informally, the idea is that the
clock keeps track of a round variable whose value the parties can request by sending it
(clock-read, sidC ). This value is updated only once all honest parties sent the clock
a (clock-update, sidC ) command. We use a variant of their clock as a global setup in
this work. The description is given in Fig. 2, where we also make explicit the behavior
of the clock-update upon corruption.

Given a clock, the authors of [34] describe how synchronous protocols can maintain
their necessary round structure in UC: For every round ρ each party first executes all its
round-ρ instructions and then sends the clock a clock-update command. Subsequently,
whenever activated, it sends the clock a clock-read command and does not advance to
round ρ +1 before it sees the clocks variable being updated. This ensures that no honest
party will start round ρ + 1 before every honest party has completed round ρ.

Idealized progression of time. We know from [34] that if we want to capture the ideal
guarantee of eventual-delivery, or more generally speaking, idealized progression of
time, an ideal functionality needs to keep track of the number of activations that an
honest party gets—so that it knows when to enforce progress in the time-domain. As a
general principle, the functionality would then have to issue a clock-update command in
the name of a party, once that party is done with its round actions (the overall clock ticks
for a session once all honest parties are done with their round actions). We now define
a notion in Definition 3.1 that simplifies this bookkeeping, that is, instead of having the
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Fig. 2. The clock functionality that we use as a global setup.

functionality manage time-progression per party, it can do it on a more coarse-grained,
session level and only contact the clock once per round.

To follow the definition recall the mechanics of activations in UC. In a protocol
execution, an ITI gets activated either by receiving an input from the environment,
subroutine output from one of its hybrid-functionalities, or an input on the backdoor
tape from the adversary. Any activation results in the activated ITI performing some
computation on its view of the protocol and its local state and ends with either the
party providing output to some of its hybrid functionalities, to the environment, or to
the adversary. In either of these cases (formally dubbed external-write requests), the ITI
loses the activation.5

For any given protocol execution, we define the honest-input sequence 
IH to consist
of all inputs given to a main ITI by the environment and the corruption messages by
the adversary (listed in the order that they were given). The inputs are annotated with
the identity of the ITI that received the input. For an execution with an environment
and adversary, where the honest parties in session sid have received m inputs in total,

IH is a vector of the form ((x1, id1), . . . , (xm, idm)), where xi is the i th input that was
given to machine idi , or a corruption message with target idi . We further define the
extended timed honest-input sequence, denoted as 
IT

H , to be the honest-input sequence
augmented with the respective clock time when an input was given. If the timed honest-

5In the latter case, the activation goes to the environment by default.
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input sequence of an execution is 
IT
H = ((x1, id1, τ1), . . . , (xm, idm, τm)), this means

that for each i ∈ [n], τi is the time of the global clock when input xi was handed to idi .

Definition 3.1. A Gclock-hybrid protocol 
 has a predictable synchronization pattern
iff there exist an efficiently computable algorithm predict-time
(·) such that for any
possible execution of 
 in a session sid (i.e., for any adversary and environment, and any
choice of random coins) the following holds: If 
IT

H = ((x1, id1, τ1), . . . , (xm, idm, τm))

is the corresponding timed honest-input sequence for this session, then for any i ∈
[m − 1] :

predict-time
((x1, id1, τ1), . . . , (xi , idi , τi )) = τi+1.

3.3.1. Using the Clock as a Global Setup/Shared Subroutine

Treating the clock as a global setup or shared subroutine has the benefit of allowing
parties across protocols to have a common denomination of time, and to be able to spec-
ify observable time-dependent ideal properties. However, modeling a setup as global
also comes with complications [4]: to complete the specification in UC to what extent
the usage to coordinate on time across protocols is sound, we have to define the (iden-
tity bound) predicate that specifies the applicable context. Recall that this predicate is
intended to restrict the set of extended identities that the environment can claim when
contacting protocols.6 We define the following identity bound ξsync first suggested in [4]:
The environment is not able to issue any request to the clock which has as a source ID
the ID of a party (i.e., ITI) that already exists in the system, or to spawn any ITI for
which it already claimed an external identity before in an interaction with the clock.
Furthermore, the environment is not allowed to access the corruption information of the
session sidC from the clock directly for the sake of a well-defined PID-wise corruption
model [4].

This identity-bound thus ensures that the clock can be used to model lock-step pro-
gression of protocols, and composition is guaranteed in any context that does not trivially
break the lock-step execution style. Finally, in order to keep the standard PID-wise cor-
ruption model simple, the environment is only allowed to access the actual corruption
set through the main session’s corruption aggregation machine, not through the shared
subroutine’s session [4].

3.4. Modeling Hash Queries

As usual in cryptographic proofs, the queries to the hash function are modeled by as-
suming access to a random oracle (functionality) Fκ

RO. This functionality is specified
as follows: upon receiving a query (eval, sid, x) from a registered party, if x has not
been queried before, a value y is chosen uniformly at random from {0, 1}κ (for security
parameter κ) and returned to the party (and the mapping (x, y) is internally stored).
If x has been queried before, the corresponding y is returned. The description appears
in Fig. 3.

6Note that having no bound in place is not an option: if the environment was allowed to issue an external
write request with the source-ID corresponding to an active party in the session, then the environment would
have the power to simply skip and ignore any party.
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Fig. 3. The random oracle functionality. The functionality makes no changes to the standard corruption mode.

3.5. Which Setup Functionalities as Shared Subroutines?

The choice which setup functionalities should be treated as local and which one as
shared is an important one and is steered by several considerations. First, from the
point of view of an outsider party, the question is how much of the inner workings of a
session are indeed relevant to observe. Second, modeling a resource as shared comes with
complications and must justify the insights. For example, if the network was modeled
as a shared network, then the protocol’s effect on the network must be replicated in the
ideal world (it does not just exist in the simulator’s head). This complication might be
justified when one studies the problem of protocols competing for bandwidth. Third, to
enable simulation, the simulator needs some edge over the real-world adversary which
often comes from the fact that the inner workings of a session are not publicly verifiable
and thus the simulator can be in charge of creating for example a local CRS or program
a random oracle.

In our work, we have three setups: the network, the clock, and the RO, where only the
clock is a shared setup. The network is a local resource to simplify the proofs. Making it
global would only make the ideal world more complex without providing more insights.
Finally, abstracting hash-queries as calls to a global random oracle (GRO) runs into
intrinsic problems in the PoW-setting because of two reasons. First, the model needs a
reasonably elegant way to achieve some closure on the amount of work invested into a
PoW blockchain, and thus it seems natural to say all work invested in Bitcoin are the RO
queries made in that session. Second, at the more technical level, a global random oracle
would force the simulator to create blocks that indeed carry sufficient work due to the
lack of programmability. Since the simulator needs to also simulate the hash queries of
honest parties, this would only be feasible if it had a much larger query budget than the
real-world adversary (and not having to do this amount of work is the simulator’s edge
since it can program the RO). Clearly, one could consider a global random oracle that
supports programmability [15], but such a more complicated model does not appear to
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offer more insights than a local RO, as it basically is a shared subroutine that offers a per-
session (and hence a local) advantage to the simulator. Additionally, the programmability
feature comes at the price of a technical condition via which an adversary can always
make a protocol abort, which is unrealistic.

3.6. Assumptions as UC-Functionality Wrappers

In order to prove statements about cryptographic protocols, one often makes assumptions
about what the environment (or the adversary) can or cannot do. For example, a standard
assumption in [24,44] is that in each round the adversary cannot do more calls to the
random oracle than what the honest parties (collectively) can do. This can be captured by
assuming a restricted environment and adversary which balances the amount of times that
the adversary queries the random oracle. In a property-based treatment such as [24,44],
this assumption is typically acceptable. Also in a composable model such restrictions
can be formulated. However, restricting the environment is not compliant with a general
composition theorem.

Therefore, instead of restricting the class of environments/adversaries, we present
an alternative approach to capture the fact that the adversary’s access to real-world
resource is restricted. The general methodology is to capture restrictions by means of a
functionality wrapper that wraps the hybrid resources and enforces the restrictions on
the adversary by limiting its access to the resource. Such restrictions can become quite
complex and we show concrete examples in Sect. 8 to cast the assumptions and derive
the equivalent composable statements.

A toy example. To illustrate the general methodology, consider the example of limiting
the rate of RO queries of an adversary over time. We can capture this assumption by
means of a functionality wrapper in aGclock hybrid world that wraps the RO functionality
and enforces a bound on the adversary, for example by assigning to each corrupted party
at most q activations per clock-tick for some parameter q. For completeness the wrapped
random-oracle functionality Wq(Fκ

RO) is given in Fig. 4.

4. The Basic Transaction-Ledger Functionality

The purpose of this section is to describe the basic structure of a ledger functionality
Gledger. The presented functionality is very generic in the sense that it is parameteriz-
able by several elements. The idea is that concrete blockchain protocols yield concrete
instances of these parameters, while the basic structure, as presented here, remains the
same and can be seen as the greatest common divisor of any such blockchain protocol
proposal.

4.1. Introduction and Overview

Our ledger is parametrized by certain algorithms/predicates that allow us to capture a
more general version of a ledger which can be instantiated by various cryptocurrencies.
Since our abstraction of the Bitcoin protocol is in the synchronous model of computation
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Fig. 4. The wrapped random oracle.

(this is consistent with known approaches in the cryptographic literature), our ledger is
also designed for this synchronous model. Nonetheless, several of our modeling choices
are made with the foresight of removing or limiting the use of the clock and leaving
room for less synchrony.

At a high level, our ledger Gledger has a similar structure as the ledger proposed
in [36]. Concretely, anyone (whether an honest miner or the adversary) might submit
a transaction which is validated by means of a predicate Validate, and if it is found
valid it is added to a buffer buffer. The adversary A is informed that the transaction
was received and is given its contents.7 Informally, this buffer also contains transactions
that, although validated, are not yet deep enough in the blockchain to be considered
out-of-reach for an adversary.8 Periodically, Gledger fetches some of the transactions in
the buffer, and using an algorithm Blockify creates a block including these transactions
and adds this block to its permanent state state, which is a data structure that includes
the part of the blockchain the adversary can no longer change. This corresponds to the
common prefix in [24,44]. Any miner or the adversary is allowed to request a read of the
contents of the state.

This sketched specification is simple, but in order to have a ledger that can be imple-
mented by existing blockchain protocols, we need to relax this functionality by giving
the adversary more power to interfere with it and influence its behavior. Before sketching

7This is inevitable since we assume non-private communication, where the adversary sees any message
as soon as it is sent, even if the sender and receiver are honest.

8E.g., in [36] the adversary is allowed to permute the contents of the buffer.
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the necessary relaxations we discuss the need for a new ledger definition and its potential
use as a global setup.

Impossibility to realize the ledger of [36]. The main reasons why the ledger function-
ality in [36] is not realizable by known protocols under reasonable assumptions are as
follows: first, their ledger guarantees that parties always obtain the same common state.
Even with strong synchrony assumptions, this is not realizable since an adversary, who
just mined a new block, is not forced to inform each party instantaneously (or at all) and
thus could, for example, make parties observe different lengths of the same prefix. Sec-
ond, the adversarial influence is restricted to permuting the buffer. This is too optimistic,
as in reality the adversary can try to mine a new block and possibly exclude certain
transactions. Also, this excludes any possibility to quantify quality. Third, letting the up-
date rate be fixed does not adequately reflect the probabilistic nature of Nakamoto-style
blockchain protocols.

On the sound usage of a ledger as a global setup.
As already pointed out in [11], one has to be extra careful when replacing a global setup

by its implementation, e.g., in the case of Gledger by the UC Bitcoin protocol. Indeed,
such a replacement does not, in general, preserve a realization proof of some ideal
functionality F that is conducted in ledger-hybrid world where the ledger is treated as a
shared subroutine, because the simulator in that proof might rely on specific capabilities
that are not available any more after replacement (as the global setup is also replaced in
the ideal world). A recent follow-up work by Badertscher et al. [9] explores the facets
of this question and gives conditions when a replacement is sound.

As this work focuses on the realization of ledger functionalities per se, this compli-
cation is not relevant to this work. We know from [9] that the distinction on whether a
functionality is “global/shared” or “local” is decision of how the functionality is being
used by a protocol (which stands in sharp contrast to prior global UC models that assign
it a new type, which can be problematic [4]). Therefore, the functionality Gledger is a
standard UC functionality in our realization proofs.

4.2. The General Ledger Functionality

We present here the formal description of the ledger functionality. An overview of its
parameters and state variables is given in Table 1 and a in-depth explanation follows in
the next section.

Functionality GLEDGER

Parameters: Integers windowSize,Delay; Algorithms Validate, ExtendPolicy, Blockify, predict-time (cf. Ta-
ble 1).

Clock-time: The functionality maintains a variable τL that is kept in-sync with clock-time: Upon any activa-
tion (and thus also initialization), the ledger first sends (clock-read, sidC ) to Gclock to receive the answer
(clock-read, sidC , τ ) and sets τL := τ and then proceeds with the remaining actions.

Variables and initialization: The functionality initializes state, sep ,NxtBC, 
IT
H ← ε, buffer ← ∅ as well as

party sets P,H,PDS ← ∅ (cf. Table 1).

Party Management:
• Upon receiving (register, sid) from some party P (or from A on behalf of a corrupted P), set P = P ∪ {P},

initialize ptP ← 1, stateP ← ε, and τ
reg
P ← τL . If P is an honest party and ifH = ∅ send (register, sidC )
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to Gclock. If P is honest then update 
IT
H and set H ← H ∪ {P} and if additionally τ

reg
P > 0 holds, set

PDS ← PDS ∪ {P}. Return (register, sid, P) to the caller.
• Upon receiving (de-register, sid) from some party P ∈ P (or from A on behalf of a corrupted P ∈ P), set

P ← P \ {P}, H ← H \ {P}, and PDS ← PDS \ {P}. If H = ∅, send (de-register, sidC ) to Gclock. If P
is honest then update 
IT

H . Return (de-register, sid, P) to the caller.

Ledger Operation:

Upon any other input I received from a party Pi ∈ P or from the adversary A the following steps are taken:

1. If Pi ∈ H or if I is a corruption message from A targeting Pi ∈ H, then update 
IT
H ← 
IT

H ||(I, Pi , τL ). If a
party Pi gets corrupted, additionally update H ← H \ {

Pi
}

and PDS ← PDS \ {
Pi

}
.

2. Let P̂ := {P ∈ PDS | τ reg
P < τL − Delay}. Set PDS := PDS \ P̂ .

3. If Pi ∈ H then additionally take the following steps:
(a) ( 
N , s′) ← ExtendPolicy( 
IT

H ,state,NxtBC,buffer; sep). Reset NxtBC ← ε and store sep ← s′.
(b) If 
N �= ε then parse 
N = ( 
N1, . . . , 
N�) and update state ←

state||Blockify( 
N1)|| . . . ||Blockify( 
N�).

(c) For each BTX ∈ buffer: if Validate(BTX,state,buffer) = 0 then buffer ← buffer\ {BTX}.
(d) If ∃P ∈ H \PDS s.t. ptP �∈ [|state| −windowSize+ 1, |state|], then set ptPk

← |state| for
all Pk ∈ H \ PDS .

4. If the input I is a ledger instruction from a party Pi ∈ P (or from A on behalf of a corrupted party Pi ∈ P),
execute the respective code:

– Submiting a transaction:
If I = (submit, sid,tx) do the following:

(a) Choose a unique transaction ID txid and set BTX ← (tx, txid, τL , Pi )

(b) If Validate(BTX,state,buffer) = 1, then buffer ← buffer ∪ {BTX}.
(c) Output (submit,BTX) to A.

– Reading the state:
If I = (read, sid) then do the following: if Pi ∈ H\PDS then set statei := state|min{pti ,|state|}.
Return (read, sid,statei ) to the caller.

– Maintaining the ledger state:
If I = (maintain-ledger, sid, minerID) and Pi ∈ H and predict-time( 
IT

H ) > τL then send
(clock-update, sidC ) to Gclock. Else send I to A.

5. If the input I is an additional adversarial capability (received on the backdoor tape from A) execute the
respective code:

– The adversary reading the state:
If I = (read, sid), then return (state,buffer, 
IT

H ) to A.
– The adversary proposing the next block:

If I = (next-block, (txid1, . . . , txid�)), update NxtBC as follows:

(a) Set listOfTxid ← ε

(b) For i = 1, . . . , � do: if there exists a BTX = (tx, txid, minerID, τL , Pi ) ∈ buffer with ID
txid = txidi then set listOfTxid := listOfTxid||txidi .

(c) Finally, set NxtBC := NxtBC||listOfTxid and output (next-block, ok) to A.

– The adversary setting state-slackness:
If I = (set-slack, (Pi1 , p̂ti1 ), . . . , (Pi� , p̂ti� )), with {Pi1 , . . . , Pi� } ⊆ H then do the following:
If for all Pi j ∈ H \ PDS , j ∈ [�]: |state| − p̂ti j < windowSize and p̂ti j ≥ |statei j |, then

update pti1 := p̂ti1 for every j ∈ [�]. Return (set-slack, ok) to A.
– The adversary setting the state for desychronized parties:

If I = (desync-state, (Pi1 ,state′
i1

), . . . , (Pi� ,state′
i�

)), with {Pi1 , . . . , Pi� } ⊆ PDS then set

statei j := state′
i j

for each j ∈ [�] and return (desync-state, ok) to A.

– The adversary obtaining the set of registered parties:
If I = (get-registered, sid), then return (get-registered, sid,P) to A.

– The adversary corrupting a party (additional steps to Item 1):
If I = (corrupt, sid, Pi ) and predict-time( 
IT

H ) > τL then send (clock-update, sidC ) to Gclock. Else
return I to A.
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Table 1. Overview of main ledger elements including its parameters and state variables.

Description

Ledger parameter
Validate Decides on the validity of a transaction with respect to the current state.

Used to clean the buffer of transactions
ExtendPolicy The (stateful) function that specifies the ledger’s guarantees in extending

the ledger state (e.g., speed, content etc.)
predict-time The function to predict the real-world time advancement
Blockify The function to format the ledger state output
windowSize A positive integer that describes the window size (number of blocks) of the

sliding window
Delay A positive integer that describes a general delay parameter for the time it

takes for a newly joining (after the onset of the computation) miner to
become synchronized

Ledger variables
P,H,PDS The party sets and categories: Registered, honest, and

honest-but-desynchronized, respectively.

IT
H The timed honest-input sequence

state The ledger state, i.e., a sequence of blocks containing the content
buffer The buffer of submitted input values
ptP , stateP , τ

reg
P The pointer of party P into state state. This prefix is denoted stateP

for brevity. The time variable τ
reg
P records the time when party P

registered to the execution most recently
sep The state of the extend-policy algorithm
τL The current time as reported by the clock
NxtBC Stores the current adversarial suggestion for extending the ledger state

4.3. On the Defining Features

We explain several of the features of the ledger functionality and give an overview of
the relevant parameters and state variables in Table 1.

4.3.1. State-Buffer Validation

The first relaxation is with respect to the invariant that is enforced by the validation
predicate Validate. Concretely, in [36] it is assumed that the validation predicate en-
forces that the buffer does not include conflicting transactions, i.e., upon receipt of a
transaction, Validate checks that it is not in conflict with the state and the buffer, and
if so the transaction is added to the buffer. However, in reality we do not know how
to implement such a strong filter, as different miners might be working on different,
potentially conflicting sets of transactions.9 The only time when it becomes clear which
of these conflicting transactions will make it into the state is once one of them has been
inserted into a block which has made it deep enough into the blockchain (i.e., has become
part of state). Hence, given that the buffer includes all transactions that might end up
in the state, it might at some point include both conflicting transactions.

9This will be the case for transactions submitted by the adversary even when signatures are used to
authenticate transactions.
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To enable us for a provably implementable ledger, in this work we take a different
approach. The validate predicate will be less restrictive as to which transactions make
it into the buffer. Concretely, at the very least, Validate will enforce the invariant that
no single transaction in the buffer contradicts the state state, while different transac-
tions in buffer might contradict each other. Looking ahead, a stronger version that
is achievable by employing digital signatures (presented in Sect. 9) could enforce that
no submitted transaction contradicts other submitted transactions. As in [36], whenever
a new transaction tx is submitted to Gledger, it is passed to Validate which takes as
input a transaction and the current state and decides if tx should be added to the buffer.
Additionally, as buffer might include conflicts, whenever a new block is added to the
state, the buffer (i.e., every single transaction in buffer) is re-validated using Validate
and invalid transactions in buffer are removed. To allow for this re-validation to be
generic, transactions that are added to the buffer are accompanied by certain metadata,
i.e., the identity of the submitter, a unique transaction ID txid,10 or the time τ when tx
was received.

4.3.2. State Update Policy and Security Guarantees

The second relaxation is with respect to the rate and the form and/or origin of transactions
that make it into a block. Concretely, instead of assuming that the state is extended in
fixed time intervals, we allow the adversary to define when this update occurs. This is
done by allowing the adversary, at any point, to propose what we refer to as the next-
block candidate NxtBC. This is a data structure containing the contents of the next block
that A wants to have inserted into the state. Leaving NxtBC empty can be interpreted as
the adversary signaling that it does not want the state to be updated in the current clock
tick.

Of course allowing the adversary to always decide what makes it into the statestate,
or if anything ever does, yields a very weak ledger. Intuitively, this would be a ledger
that only guarantees the common prefix property [24] but no liveness or chain qual-
ity. Therefore, to enable us to capture also stronger properties of blockchain protocols
we parameterize the ledger by an algorithm ExtendPolicy that, informally, enforces a
state-update policy restricting the freedom of the adversary to choose the next block
and implementing an appropriate compliance-enforcing mechanism in case the adver-
sary does not follow the policy. This enforcing mechanism simply returns a default
policy-complying block using the current contents of the buffer. We point out that a
good simulator for realizing the ledger will avoid triggering this compliance-enforcing
mechanism, as this could result in an uncontrolled update of the state which would yield
a potential distinguishing advantage. In other words, a good simulator, i.e., ideal-world
adversary, always complies with the policy.

In a nutshell, ExtendPolicy is a possibly stateful algorithm that takes the ledger state,
the current contents of the buffer buffer, along with the adversary’s recommendation
NxtBC. The output of ExtendPolicy is a vector including the blocks to be appended
to the state (where again, ExtendPolicy outputting an empty vector is a signal to not

10In Bitcoin, the value txid would be the hash-pointer corresponding to this transaction. Note that the
generic ledger can capture explicit guarantees on the ability or disability to link transactions, as this crucially
depends on the concrete choice of an ID mechanism.
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extend), together with its update internal state. To ensure that ExtendPolicy can also
enforce properties that depend on who inserted how many (or which) blocks into the
state—e.g., the so-called chain quality property from [24]—we also pass to it the timed
honest-input sequence 
IT

H (cf. Sect. 3).
Some examples of howExtendPolicy allows us to define ways that the protocol might

restrict the adversary’s interference in the state-update include the following properties
from [24]:

• Liveness corresponds to ExtendPolicy enforcing the following policy: If the state
has not been extended for more that a certain number of rounds and the simulator
keeps recommending an empty NxtBC, ExtendPolicy can choose some of the
transactions in the buffer (e.g., those that have been in the buffer for a long time)
and add them to the next block. Note that a good simulator or ideal-world adversary
will never allow for this automatic update to happen and will make sure that he keeps
the state extend rate within the right amount.

• Chain quality corresponds to ExtendPolicy enforcing the following policy: Every
block proposal made by the simulator is examined as to whether it is maximally
filled with valid transactions. Such blocks must appear frequently. If this is not the
case, the ledger will define and add a default block to the state. We point out that
unlike the original chain-quality property from [24], this policy does not enforce
which miner should receive the reward for honest blocks and it is up to the simulator
to do so (via the so-called coinbase transaction).11

We note that ExtendPolicy is a general concept capable of formulating various
properties of blockchain protocols. For example, we can capture that honest (and non-
conflicting) transactions eventually make it into the state. Another property could be to
formalize that transactions with higher rewards make it into a block faster than others
(which we do not consider in this work).

In Sect. 6, we provide one possible specification of ExtendPolicy that can be guar-
anteed for the UC Bitcoin protocol.

4.3.3. Output Slackness and Sliding Window of State Blocks

The common prefix property guarantees that blocks that are sufficiently deep in the
blockchain of an honest miner will eventually be included in the blockchain of every
honest miner. Stated differently, if an honest miner receives as output from the ledger a
state state, every honest miner will eventually receive state as its output. However,
in reality we cannot guarantee that at any given point in time all honest miners see
exactly the same blockchain length; this is especially the case when network delays are
incorporated into the model, but it is also true in the zero-delay model of [24]. Thus, it
is unclear how state can be defined so that at any point all parties have the same view
on it.

11Note that while good blocks are created and circulated in the network by an honest miner, this does not
mean that this miner is still honest when the block makes it into the ledger state unless one considers static
corruptions only (in which case one could more simply argue about the fraction of honest originators in the
ledger state). To make this difference is crucial to explicitly see the impact due to adaptive corruptions.
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Therefore, to have a ledger implementable by standard assumptions we make the
following relaxation: We interpret state as the view of the state of the miner with the
longest blockchain. And we allow the adversary to define for every honest miner Pi a
subchain statei of state of length |statei | = pti that corresponds to what Pi
gets as a response when he reads the state of the ledger (formally, the adversary can
fix a pointer pti ). For convenience, we denote by state|pti the subchain of state
that finishes in the pti th block. Once again, to avoid over-relaxing the functionality to
an unuseful setup, our ledger allows the adversary to only move the pointers forward
and it forbids the adversary to define pointers for honest miners that are too far apart,
i.e., more than windowSize state blocks. The parameter windowSize ∈ N denotes
a core parameter of the ledger. In particular, the parameter windowSize reflects the
similarity of the blockchain to the dynamics of a so-called sliding window, where the
window of sizewindowSize contains the possible views of honest miners ontostate
and where the head of the window advances with the head of the state. In addition, it
is convenient to express security properties of concrete blockchain protocols, including
the properties discussed above, as assertions that hold within such a sliding window (for
any point in time).

4.3.4. Synchrony Aspects and De-Synchronized Parties

In order to keep the ideal execution indistinguishable from the real execution, the pro-
gression of time must be the same. Since the protocol advances the clock as an effect of
executing the protocol, the ledger needs to ensure this in the ideal world (note that we
model that the protocol can make advancement without the adversary being in the loop
to capture liveness). To simplify clock-progression management, recall Definition 3.1,
where we introduce predict-time(
IT

H ), to enable a modular view how the clock proceeds
of an entire session. Thus, instead of managing each party individually, the ledger simply
registers itself to the clock, records the timed honest-input sequence 
IT

H of its session,
and signals the clock when the session is ready to advance to the next round. Observe
that the ledger can infer all protocol-relevant inputs to honest parties and thus keep track
of the honest inputs sequence 
IT

H . As the other functions explained above, we make the
function predict-time a parameter of the (general) ledger functionality that needs to be
instantiated when realizing a specific ledger such as the Bitcoin ledger (which is the
topic of Sect. 6).

A final observation is with respect to guarantees that the protocol (and therefore also
the ledger) can give to recently registered honest parties. We introduce an additional
party set, PDS , which consist of honest parties for which we are not able to give the full
guarantees yet because they are de-synchronized. The ledger parameterDelay describes
the time (in number of clock ticks) it takes for a newly joining party, that joins later than
at the onset of the execution, to become fully synchronized.

To provide more intuition why we need such a set, consider the following scenario:
An honest party registers as miner in round r and waits to receive from honest parties
the transactions to mine and the current longest blockchain. In Bitcoin, upon joining,
the miner sends out a special request on the network—we denote this here as a special
new-miner-message—and as soon as any party receives it, it responds with the set of
transactions and longest blockchain it knows. Due to the network delay, it can take a
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full round-trip time before the longest chain arrives to the newcomer. However, because
we do not make any assumption on honest parties knowing � they start mining as soon
as they see network traffic. But now the adversary, in the worst case, can make these
parties mine on any block he wants and have them accept any valid chain he wants as
the current state while they wait for the network’s response (by maximally delaying
everything sent to these parties by other honest parties, and instead immediately deliver
what he wants them to work on). However, after a constant number of rounds, this effect
will be resolved and the parties will be synchronized with the longest chain.

5. Bitcoin as a UC Protocol

5.1. Basics

A blockchain C = B1, . . . ,Bn is a (finite) sequence of blocks where a block Bi =
〈si ,sti ,ni 〉 is a triple consisting of the pointer si (identifying the predecessor block
via its hash), the state block sti , and the nonce ni . The head of chain C is the block
head(C) := Bn and the length length(C) of the chain is the number of blocks,
i.e., length(C) = n. The chain C�k is the (potentially empty) sequence of the first
length(C) − k blocks of C. A special block is the genesis block G = 〈⊥,gen,⊥〉
which contains the genesis state gen := ε and, as we will see later, is required to be the
first block in the sequence.

The state 
st encoded in C is defined as a sequence of the corresponding state blocks,
i.e., 
st := st1|| . . . ||stn . In other words, one should think of the blockchain C as
an encoding of its underlying state 
st; such an encoding might, e.g., organize C is an
efficient searchable data structure as is the case in the Bitcoin protocol where a blockchain
is a linked list implemented with hash-pointers. In the protocol, the blockchain is the data
structure storing a sequence of entries, often referred to as transactions. Furthermore,
as in [36], in order to capture a range of blockchains with syntactically different state
encoding, we assume a generic algorithm blockify B to map a vector of transactions into
a state block. Thus, each block st ∈ 
st (except the genesis state) of the state encoded
in the blockchain has the form st = blockify B( 
N ) where 
N is a vector of elements that
we simply call transactions, although our treatment is generic and does not fix the type
of data the ledger is carrying.

5.1.1. Validity and Longest Valid Chains

The validity of a blockchain C depends on two aspects: chain-level validity, also referred
to as syntactic validity, and a state-level validity also referred to as semantic validity.

Syntactic validity. This is defined with respect to a difficulty parameter D ∈ [2κ ], where
κ is the security parameter, and a given hash function H : {0, 1}∗ → {0, 1}κ ; it requires
that, for each i > 1, the value si contained in Bi satisfies si = H [Bi−1] and that
H [Bi ] < D holds (for non-genesis blocks), where the output of the hash-function is
understood as an integer. Note that for notational simplicity, we omit the hash function
as an explicit superscript.
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Algorithm validStructDB(C)

res ← true
if (length(C) = 0) or (H [head(C)] ≥ D) then

res ← false
else if length(C) = 1 then

res ← (C = G)

else � In this case, the chain is non-trivial and the most recent block is a valid proof-of-work.
C′ ← C
〈s′, ·, ·〉 ← head(C′)
repeat

C′ ← C′�1 � Chop off the head of C′.
B := 〈s,st,n〉 ← head(C′)
if (H [B] �= s′) or (length(C′) > 1 and H [head(C)] ≥ D) or (length(C′) = 1 and B �= G) then

res ← false
else

s′ ← s
until res = false or length(C′) = 1

return res

Semantic validity. This is defined on the state 
st encoded in the blockchain C and
specifies whether this content is valid (which might depend on a particular application).
We go with a generic semantic validity check of the blockchain defined by algorithm
isvalidstate B below. We assume a generic validation predicate for single transactions
that we refer to by ValidTx B (and which is an algorithm that takes a state and the
transaction that is being validated as inputs and outputs a bit). For the sake of generality,
this validity predicate is completely generic and looking ahead, our main theorem holds
for any choice of this predicate, whenever the ledger parameter Validate is chosen
accordingly as we show in Sect. 6.

The pseudo-code of the algorithm isvalidstate B which builds upon ValidTx B is
provided below. In a nutshell, the algorithm checks that a given blockchain state can
be built in an iterative manner, such that each contained transaction is considered valid
according to ValidTx B upon insertion. It further ensures that the state starts with the
genesis state and that state blocks contain a special coin-base transaction txcoin-base

minerID
which assigns them to a miner.

Algorithm isvalidstate B( 
st)

Let 
st := st1|| . . . ||stn
for each sti do

Extract the transaction sequence 
txi ← txi,1, . . . ,txi,ni contained in sti

st′ ← gen � Initialize the genesis state
for i = 1 to n do

if the first transaction in 
txi is not a coin-base transaction return false

Ni ← txi,1
for j = 2 to | 
txi | do

st ← blockify B( 
Ni )
if ValidTx B(txi, j , 
st′||st) = 0 return false

Ni ← 
Ni ||txi, j


st′ ← 
st′||sti
return true
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Definition 5.1. A chain C is valid if it satisfies syntactic and semantic validity, i.e., if,
for the chain and its encoded state 
st, the following predicate evaluates to true:

isvalidchainDB(C) := validStructDB(C) ∧ isvalidstate B( 
st).

Longest valid chain. In the Bitcoin protocol, the notion of the longest valid chain is
very crucial. The reason is that the party defines the ledger state at a certain time as a
prefix of the state encoded in the longest valid chain it knows at that time. We stick to
the nomenclature of [24] and call the function maxvalid B(C1, . . . , Ck).

Algorithm maxvalidDB(C1, . . . , Ck)

Ctemp ← ε

for i = 1 to k do
if isvalidchainDB(Ci ) and (length(Ci ) > length(Ctemp)) then

Ctemp ← Ci
return Ctemp

5.1.2. Extending Chains and Proofs-of-Work

A core step in Bitcoin is to extend a given chain C by a new block B (with certain state
content) to yield a longer chain C||B. As presented in [24] this can be captured by an
algorithm extendchainD(·) that takes a chain C, a state block st and the number of
attempts q as inputs. It tries to find a proof-of-work which allows to extend the C by a
block which encodes st.

Algorithm extendchainD(C,st, q)

Input: Chain C is valid with state 
st. The state 
st||st is valid.
Set B ← ⊥
s ← H [head(C)] � Compute the pointer s of the new block
for i ∈ {1, . . . , q} do

Choose nonce n uniformly at random from {0, 1}κ and set B ← 〈s,st,n〉.
if H [B] < D then

break
if B �= ⊥ then

C ← C||B
return C

5.2. Overview and Modeling Decisions

In Bitcoin, each party maintains a local blockchain which initially consists of the genesis
block. The chains of honest parties might differ (but as we will prove, it will have a
common prefix which will define the ledger state). New transactions are added in a
‘mining process’. First, a party collects valid transactions (according to ValidTx B) and
creates a new state block st using blockify B. Next, the party attempts to mine a new
block by solving a puzzle (and hence finding a proof-of-work) which upon success could
then be validly added to their local blockchain. After each mining attempt parties will
multicast their current chain. A party will replace its local chain if it obtains or receives a
longer valid chain. When queried to output the state of the ledger, a party reports a prefix
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of the state encoded in its longest valid chain—obtained by ignoring (or chopping-off)
the most recent T blocks (a party outputs ε if the state has less than T blocks). This
behavior will ensure that all honest parties output a consistent ledger state. T is a crucial
parameter of the Bitcoin protocol and typically, the guarantees of the security statements
depend on T (and in addition on the usual security parameter κ).

5.2.1. The Round Structure

As already mentioned in the introduction, we model Bitcoin as a lock-step (sometimes
dubbed semi-) synchronous protocol: The protocol can proceed in rounds—enabled by
having access to a global synchronization clock Gclock—but is not aware of the actual
delay of the network. In each round, two logical tasks have to be executed: an updating
or information-fetching step (where new messages from the network are processed) and
a working or mining-step, where each party tries to extend its local chain.

To simplify the UC activation handling in the analysis, we divide each logical round
into two sub-rounds (where each sub-round corresponds to a logical task; see below for
more details). This means that each logical round correspond to two actual clock-ticks
(also known as mini-rounds in the MPC literature). We say that a protocol is in round r
if the current time of the clock is τ ∈ {2r, 2r + 1}.

Having two clock-ticks per round is a standard way to model in synchronous UC that
messages (e.g., a block) sent within a round are delivered at the beginning of the next
round. In our case, each round is divided into two mini-rounds, where each mini-round
corresponds to a clock tick. We treat the first mini-round as theupdatingmini-round (fetch
messages from the network to obtain messages sent previous rounds) and the second
mini-round as the working mini-round (solving the puzzle and multicasting solutions).

5.2.2. Handling Interrupts

A protocol command might consists of a sequence of operations. However, certain
operations, such as sending a message to another party, result in the protocol machine
losing the activation token. We briefly describe a standard way to formalize that a party
that loses an activation in the middle of a multi-step command is able to resume and
complete the command following the implicit proposal of [34]. Their mechanism can be
made explicit by introducing an anchor a that stores a pointer to the current operation;
the protocol associates each anchor with such a multiple command and an input I , so
that when such an input is received it directly jumps to the stored anchor, executes the
next operation(s) and updates (increases) the anchor before releasing the activation. We
refer to such an execution as being I -interruptible.

As an example, consider a protocol that requires that upon receiving input I , the party
should run a command that consists of m steps Step 1, Step 2, . . . , Step m, but some
of these steps might result in the party losing its activation. Running this command in
an I -interruptible manner means executing the following code: Upon receiving input
I if a < m go to Step a and increase a = a + 1 before executing the first operation
that releases the activation; otherwise go to Step 1 and set a = 2 before executing any
operation that releases the activation.
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5.3. The Formal Protocol Description

We can now formally define our blockchain protocol Ledger-Protocolq,D,T (we usually
omit the parameters when clear from the context). The protocol allows an arbitrary
number of parties/miners to communicate by means of a multicast network F�

N-MC.
Note that this means that the adversary can send different messages to different parties.
New miners might dynamically join or leave the protocol by means of the registration/de-
registration commands: when they join they register with all associated functionalities
and when they leave they deregister. The pseudo-code of this UC blockchain protocol
is given in the remainder of this section. For the general structure of our UC blockchain
model, we refer to Fig. 5.

The Bitcoin ledger protocol assumes as hybrids a random oracle Fκ
RO, a network

F�,bc
N-MC for blockchains, a network F�,tx

N-MC for transactions, and clock Gclock. Note that
the two networks are simply (named) instances of F�

N-MC and can be realized from a
single network F�

N-MC using different message-IDs. The protocol is parametrized by
q, D, T where q is the number of mining attempts per round, D is the difficulty of the
proof-of-work, and T is the number of blocks chopped off to obtain the ledger state.

5.3.1. Registration, De-Registration and Initialization

Recall from Sects. 2.1.4 and 3 that we model explicit registrations to make all our func-
tionalities, and in particular the ledger functionality, regular. And thus this has to be
reflected in the real-world protocol. However, registration and de-registration can be
seen as explicit commands to start the operation of a protocol machine, and to stop
the operation of a protocol machine, and to have this feature explicitly exposed to the
higher-level protocol.

The formal registration process in the protocol works as follows. If a party receives
(register, sid) from the environment it registers to all hybrid functionalities. Once
registration has succeeded the party returns activation to the environment. Upon the
next activation to maintain the ledger (maintain-ledger), the party initializes its local
variables, multicasts a special new-party message over the network, and executes the
main maintenance sub-protocol (in an interruptible manner as further explained below).
De-registering from the ledger (via a query (de-register, sid)) from the environment)
works analogously, upon which the party erases all its state and becomes idle until its is
freshly invoked with a register-query.

Recall that the notion of de-synchronized parties is strongly connected to these reg-
istrations: if an active honest party is not registered to all hybrids for long enough after
joining the protocol execution at some time τ > 0, it is considered de-synchronized (and
otherwise the party is synchronized). In particular, honest parties that register at the onset
of the protocol execution are synchronized (until they get corrupted or de-registered).

5.3.2. Ledger-Specific Queries

Ledger-specific queries are the specific features that one wishes to implement. Our very
basic ledger supports three operations (after registration):
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Fig. 5. The main structure of the UC blockchain protocol.

Submitting a transaction. This one is very simple: when given a transaction a party
multicasts the transaction.

Ledger maintenance. Ledger maintenance refers to activating the main mining pro-
cedure of Bitcoin and is given in Fig. 6. Since ledger maintenance consists of several
complex steps that in particular lose activations, the execution proceeds in an interrupt-
ible manner as explained in Sect. 5.2.2. The main structure of maintenance enforces the
mini-round structure: in a working mini-round, the protocol tries to obtain the solution to
a proof-of-work puzzle for a newly generated state block. The core sub-protocol thereby
is:
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Sub-Protocol ExtendState(st)

Cnew ← extendchainD(Cloc,st, q)

if Cnew �= Cloc then
Update the local chain, i.e., Cloc ← Cnew.

Send (multicast, sid,Cloc) to F�,bc
N-MC � Multicast current chain

It then enters an idle mode for maintenance queries until the clock advances and enters
an update mini-round where new information is fetched from the network.

Sub-Protocol FetchInformation

Send (fetch, sid) to F�,bc
N-MC; denote the response from F�,bc

N-MC by (fetch, sid, b).
Extract chains C1, . . . ,Ck from b.
Cloc,Cexp ← maxvalidDB(Cloc,Cexp,C1, . . . ,Ck )
Send (fetch, sid) to F�,tx

N-MC; denote the response from F�,tx
N-MC by (fetch, sid, b).

Extract received transactions (tx1, . . . ,txk ) from b.
Set buffer ← buffer||(tx1, . . . ,txk ).
If a new-party message was received, set welcome ← 1. Otherwise, set welcome ← 0.

Remove all transactions from buffer which are invalid with respect to (the state of) C�T
loc

Again the protocol is idle for maintenance queries until the clock advances.

Reading the state.When asked to report the current ledger state, the protocol outputs the
prefix of the exported state, i.e., a prefix of the state encoded in Cexp. By the mini-round
structure, the exported state is updated exactly once in every update mini-rounds (after
initialization is complete).

5.3.3. Predictable Synchronization Pattern

We now show that the ledger protocol has a predictable synchronization pattern according
to Definition 3.1.

Lemma 5.2. The protocol Ledger-Protocolq,D,T satisfies Definition3.1. More specif-
ically, there is a predicate predict-timeBC that predicts the synchronization pattern of
the UC Bitcoin protocol as required by Definition3.1.

Proof Sketch. This is follows by inspection of our ledger protocol (and all protocols
that share the same structure as we will see later in all the respective hybrid worlds they
are executed in). The predicate predict-time can be implemented as follows: browse
through the entire sequence 
IT

H and determine how many times the clock advances. The
clock advances for the first time, when all miners got sufficient maintain commands to
complete their mini-round operation. By definition of Ledger-Protocol, this implies
that each party has sent a clock-update to the clock and hence the clock advances. By an
inductive argument, whenever the clock has ticked, the check when the clock advances
the next time is checked exactly the same way. Overall, this allows to check whether the
next activation of an honest party, given the history of activations will provoke a clock
update (and knowing which parties are corrupted). �
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Fig. 6. The maintenance procedure of the UC Bitcoin protocol.

6. The Bitcoin Ledger

We next show how to instantiate the ledger functionality from Sect. 4 with appropri-
ate parameters so that it is implemented by protocol Ledger-Protocol. The proof of
this appears in the next section. To define this Bitcoin ledger G B

ledger, we give the
specific instantiations of the relevant functions Validate, Blockify, ExtendPolicy, and
predict-time.

Synchrony pattern. First, predict-time is defined to be predict-timeBC to reflect
the synchronization pattern of the UC Bitcoin protocol as described in the proof of
Lemma 5.2. This shows the dependency of the realized ledger from the protocol that
achieves it.

State-buffer-validation. Similarly, in case of Validate we use the same predicate as the
protocol uses to validate the states: For a given transaction tx and a given state state,
the predicate decides whether this transaction is valid with respect to state. Given
such a validation predicate, the ledger validation predicate takes a specific simple form
which, excludes dependency on anything other than the transaction tx and the state
state, i.e., for any values of txid, τL , Pi , and buffer:

Validate((tx, txid, τL , Pi ),state,buffer) := ValidTx B(tx,state).

Ledger-output format. As with the above parameters, the function Blockify is defined
to be blockify B, i.e., the function used in the UC Bitcoin protocol. In principle, any
formatting function can be used and the security proof goes through (as long as the same
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function is used in the protocol Ledger-Protocol and functionality G B
ledger). However,

as we observe below in Definition 6.1, a meaningfulBlockify should be in certain relation
with the ledger’s Validate predicate. This relation is satisfied by the Bitcoin protocol.

The ledger policy. Finally, we define ExtendPolicy. At a high level, upon receiv-
ing a list of possible candidate blocks which should go into the state of the ledger,
ExtendPolicy does the following: for each block it first verifies that the blocks are
valid with respect to the state they extend. Only valid blocks might be added to the
state. In particular, ExtendPolicy is parameterized by three parameters—two positive
integers maxTimewindow,minTimewindow, and a positive fraction η—and ensures the
following property:

1. The speed of the ledger is not too slow. This is implemented by defining an up-
per limit maxTimewindow on the time (number of clock-ticks) it takes to add
windowSize state blocks. The enforced minimal ledger growth rate is expressed
as the fraction windowSize

maxTimewindow
.

2. The speed of the ledger is not too fast. This is implemented by defining a lower
bound minTimewindow on the time it takes to add windowSize state blocks.
The enforced maximal ledger growth rate is expressed as windowSize

minTimewindow
.

3. The adversary cannot create too many blocks with arbitrary (but valid) contents.
This is formally enforced by defining an upper bound η on the ratio these so-called
adversarial blocks within any sequence of windowSize (or more) state blocks.
This is known as chain quality. Formally, this is enforced by requiring that a certain
fraction of blocks need to satisfy higher-quality standards (to model blocks that
are honestly generated).

4. Last but not least, ExtendPolicy guarantees that if a transaction is “old enough”,
and still valid with respect to the actual state, then it is included into the state. This
is a weak form of guaranteeing that a transaction will make it into the state unless
it is in conflict. As we show in Sect. 9, this guarantee can be amplified by using
digital signatures.

In order to enforce these policies, ExtendPolicy first defines alternative blocks which
satisfy all of the above criteria in an ideal way, and whenever it catches the adversary
in trying to propose blocks that do not obey the policies, it punishes the adversary by
proposing its own generated blocks. In particular, if the adversary violates the policy
regarding minimal chain-growth, the ExtendPolicy will directly propose a sequence
of complying blocks and hence ensure liveness in a strong sense. The precise formal
description of the extend policy (as pseudo-code) for G B

ledger is given in Appendix B for
completeness.

On the relation between Blockify and Validate. As already discussed above,
ExtendPolicy guarantees that the adversary cannot block the extension of the state
indefinitely, and that occasionally an honest miner will create a block. These are im-
plications of the chain-growth and chain-quality properties from [24]. However, our
generic ExtendPolicy makes explicit that a priori, we cannot exclude that the chain
always extends with blocks that include, for example, only a coin-base transaction, i.e.,
any submitted transaction is ignored and never inserted into a new block. This issue is
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an orthogonal one to ensuring that honest transactions are not invalidated by adversarial
interaction—which, as argued in [24], is achieved by adding digital signatures.

To see where this could be problematic in general, consider a blockify that, at a certain
point, creates a block that renders all possible future transactions invalid. Observe that
this does not mean that our protocol is insecure and that this is as well possible for the
protocols of [24,44]; indeed, our proof shows that the protocol will give exactly the same
guarantees as an Gledger parametrized with such an algorithm Blockify.

Nonetheless, a look in reality indicates that this situation never occurs with Bitcoin.
To capture that this is the case,Validate andBlockify need to be in a certain relation with
each other. Informally, this relation should ensure that the above sketched situation does
not occur, i.e., Blockify should “not affect” the “true validity” of a transaction. A way
to ensure this, which is already implemented by the Bitcoin protocol, is by restricting
Blockify to only make an invertible manipulation of the blocks when they are inserted
into the state—e.g., be an encoding function—and define Validate to depend on the
inverse of Blockify. This is captured in the following definition.

Definition 6.1. A co-design of Blockify and Validate is non-self-disqualifying if there
exists an efficiently computable function Dec mapping outputs of Blockify to vectors 
N
such that there exists a validate predicate Validate′ for which the following properties
hold for any possible state state = st1|| · · · ||st�, buffer buffer vectors 
N :=
(tx1, . . . ,txm), and transaction tx:

1. Validate(tx,state,buffer) = Validate′(tx,Dec(st1)|| · · · ||Dec(st�),

buffer)

2. Validate(tx,state||Blockify( 
N ),buffer) = Validate′(tx,Dec(st1)|| . . . ||
Dec(st�)|| 
N ,buffer)

We remark that the actual validation of Bitcoin does satisfy the above definition, since
a transaction is only rendered invalid with respect to the state if the coins it is trying to
spend have already been spent, and this only depends on the transactions in the state and
not the metadata added by Blockify. Hence, in the following, we assume that ValidTx B
and blockify B satisfy the relation in Definition 6.1.

7. Security Analysis

7.1. Overview

In this section, we prove our main theorem, namely that, under appropriate assumptions,
Bitcoin realizes the instantiation of the ledger functionality from the previous section.
We prove our main theorem which can be described informally as follows:

Theorem. (Informal). For the security parameter κ and assuming windowSize =
ω(log κ), then the protocol Ledger-Protocol securely realizes the concrete ledger func-
tionality G B

ledger defined in the previous section. The assumptions on network delays and
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mining power, where mining power is roughly understood as the ability to find proofs
of work via queries to the random oracle (and will be formally defined later), are as
follows:

• In any round of the protocol execution, the collective mining power of the adver-
sary, contributed by corrupted and temporarily de-synchronized miners, does not
exceed the mining power of honest (and synchronized) parties. The exact relation
additionally captures the (negative) impact of network delays on the coordination
of mining power of honest parties.

• No message can be delayed in the network by more than � = O(1) rounds.

We prove the above theorem via what we believe is a useful modularization of the
Bitcoin protocol (cf. Fig. 7). Informally, this modularization distills out from the protocol
a reactive state-extend subprocess which captures the lottery that decides which miner
gets to advance the blockchain next and additionally the process of propagating this state
to other miners. In Lemma 7.2, we show that the state-extend-and-exchange module/-
subprocess implements an appropriate reactive UC functionality FStX. We can then use
the UC composition theorem which allows us to argue security of Ledger-Protocol in
a simpler hybrid world where, instead of using this subprocess, parties make calls to the
functionality FStX, which then leads us to our main analysis in Theorem 7.9.

7.2. First Proof Step

In a first step, we distill out from the protocol Ledger-Protocol a state-extend module/-
subprocess, denoted as StateExchange-Protocol, and show, using a “game-hopping”
argument, that a modular description of theLedger-Protocol in which every party makes
invocations of this subprocess, yields an equivalent protocol. We abstract the service pro-
vided by this subprocess by a new lottery-functionality denoted FStX. The modularized
protocol, defined for the FStX-hybrid world, is denoted by Modular-Ledger-Protocol.

As we prove, the subprocess StateExchange-Protocol UC-realizes FStX and hence
the original protocol Ledger-Protocol and the modularized protocol
Modular-Ledger-Protocol are in fact indistinguishable. This final step is a direct
consequence of the universal composition theorem: Ledger-Protocol UC emulates
Modular-Ledger-Protocol where invocations of StateExchange-Protocol are re-
placed by invocations of FStX (for appropriate parameters as precisely defined below).

Looking ahead, in the next section, we can hence focus on analyzing the simpler pro-
tocol Modular-Ledger-Protocol in order to show that the UC Bitcoin protocol realizes
the Bitcoin Ledger of Sect. 6—again by invoking the composition theorem.

7.2.1. The State-Exchange Functionality

The state-exchange functionality F�,pH ,pA
StX allows parties to submit ledger states which

are accepted with a certain probability. Accepted states are then multicast to all parties.
Informally, it can be seen as lottery on which (valid) states are exchanged among the
participants. Note that for simplicity of notation we do not write the parameters when
clear from the context.
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Fig. 7. Modularization of the Bitcoin protocol.

Parties can use FStX to multicast a valid state, but instead of accepting any submitted
state and sending it to all (registered) parties, FStX keeps track of all states that it ever
saw, and implements the following mechanism upon submission of a state 
st and a
new block st from any party: If 
st was previously accepted by FStX and 
st||st is a
valid new state, then FStX accepts 
st||st with probability pH (resp. pA for dishonest
parties) and sends it to registered parties. Each submission is evaluated independently.
The formal specification is found in Fig. 8.

7.2.2. Realizing the State-Exchange Functionality

The state-exchange functionality is realized by the protocol given below. It is obtained
by identifying the relevant instructions from the UC-ledger protocol. More precisely,
protocol StateExchange-Protocol UC-realizes the FStX functionality in the (Fκ

RO,
Fbc
N-MC)-hybrid world. Note thatFbc

N-MC is a (named) instance of theF�
N-MC functionality.

The protocol is parametrized by q and D where q is the number of mining attempts per
submission attempt and D is the difficulty of the proof-of-work.
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Fig. 8. The state exchange functionality. Parameters are the delay � and the success probabilities pH and pA
for honest and adversarial submissions.
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Protocol StateExchange-Protocolq,D(P)

Initialization:

The protocol maintains a tree T of all valid chains. Initially it contains the genesis chain (G).

Registration/De-Registration:

• Upon receiving (register, sid) do the following: send (register, sid) to Fbc
N-MC and Fκ

RO and output
(register, sid, P).

• Upon receiving (de-register, sid), send (de-register, sid) to Fbc
N-MC and Fκ

RO. Set all variables back
to their initial values and return (de-register, sid, P).

Exchange: Exchange queries are only answered once registered.

• Upon receiving (submit-new, sid, 
st,st) do

if isvalidstate B( 
st||st) = 1 then � Check if there exists a chain in T which contains the state 
st
if there exists C ∈ T with 
st then

Cnew ← extendchainD(C,st, q) � Try to extend the chain
if Cnew �= C then

Update the local tree, i.e., add Cnew to T
Output (success, sid, 1) to P .

else
Output (success, sid, 0) to P .

On response (continue, sid) send (multicast, sid,Cnew) to Fbc
N-MC. � Broadcast current

chain

• Upon receiving (fetch-new, sid) if do the following:

Send (fetch, sid) to Fbc
N-MC and denote the response by (fetch, sid, b).

Extract all valid chains C1, . . . ,Ck from b and add them to T .
Extract states 
st1, . . . , 
stk from C1, . . . ,Ck and output them.

Lemma 7.1. Let p := D
2κ . The protocol StateExchange-Protocolq,D UC-realizes

functionality F�,pH ,pA
StX in the (Fκ

RO,F�
N-MC)-hybrid model where pA := p and pH :=

1 − (1 − p)q .

Proof. We consider the following simulator:

Simulator Sstx

Initialization:

Set up a tree of valid chains T ← {(G)} and an empty network buffer 
M .
Set up an empty random oracle table H and set H [G] to a uniform random value in {0, 1}κ . If the simulator ever
tries to add a colliding entry to H , abort with collision-error.

Simulating the Random Oracle:

• Upon receiving (eval, sid, v) for Fκ
RO from A on behalf of corrupted P ∈ Pa do the following.

1. If H [v] is already defined, output (eval, sid, v, H [v]).
2. If v is of the form (s,st,n) and there existsb a chain C = B1, . . . ,Bn such that H [Bn ] = s proceed as

follows. If C �∈ T abort with tree-error. Otherwise continue. Extract the state 
st from C and extract
the state block st from v. Send (submit-new, sid, 
st,st) to FStX and denote by (success, B) the
output of FStX. If B = 1 set H [v] to a uniform random value in {0, 1}κ strictly smallerc than D. Add C||v
to T . Otherwise set H [v] to a uniform random value in {0, 1}κ larger than D. Output (eval, sid, v, H [v]).

3. Otherwise set v to a uniform random value in {0, 1}κ and output (eval, sid, v, H [v]).
Simulating the Network:

• Upon receiving (multicast, sid, (mi1 , Pi1 ), . . . , (mi�
, Pi� )) forFbc

N-MC fromA on behalf of corrupted P ∈ P
with {Pi1 , . . . , Pi� } ⊆ Pnet proceed as follows.
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1. For each (mi j
, Pi j ) where mi j

is a chain in T extract the state 
sti j from mi j
, and send

(send, sid, 
st, Pi j ) to FStX. Store the message-ID ̂midi j returned by FStX with midi j . Note that

if P has not yet received that state, it is first fetched by A on behalf of P and if an unknown state is
encoded, a random oracle query is simulated for the input to simulate the chain’s validity and its possible
inclusion into T .

2. For all remaining messages that could not be parsed as states, simply inject them as chunk messages to
FStX to obtain their mid.

3. Denote the obtained message-IDs by midi1 , . . . ,midi� , initialize � new variables Dmidi1
:= . . . :=

Dmidi�
:= 1, set 
M := 
M||(mi1 ,midi1 , Dmidi1

, Pi1 )|| . . . ||(mi�
,midi� , Dmidi�

, P�).

4. Output (multicast, sid, (mi1 , Pi1 ,midi1 ), . . . , (mi�
, Pi� ,midi� ) to A.

• Upon receiving (fetch, sid) for Fbc
N-MC from A on behalf of corrupted P ∈ Pnet proceed as follows.

1. Fetch in the name of party P from FStX and compute the list of message identifiers mid1, . . . ,mid� for
which Dmidi

≤ 0.

2. Let 
MP
0 denote the subvector 
M formed by all tuples (m,mid, Dmid, P) in the same order as they appear

in 
M , where mid appears in the above list. Delete all entries in 
MP
0 from 
M , and send 
MP

0 to A.

• Upon receiving a message (delays, sid, (Tmidi1
,midi1 ), . . . , (Tmidi�

,midi� )) do the following for each pair

(Tmid,mid) in this message:

1. If Tmid is a valid delay (i.e., it encodes an integer in unary notation) and mid is a message-ID registered
in the current 
M , set Dmid := max{1, Dmid + Tmid}; otherwise, ignore this tuple.

2. If the simulator knows a corresponding FStX-message-ID̂mid for mid send (delay, sid, Tmid,̂mid) to
FStX.

• Upon receiving a message (swap, sid,mid1,mid2) from the adversary do the following:

1. If mid1 and mid2 are message-IDs registered in the current 
M , then swap the tuples in 
M .

2. If the simulator knows for both mid1 and mid2 FStX-message-IDs ̂mid1 and ̂mid2 send

(swap, sid, ̂mid1, ̂mid2) to FStX.
3. Output (swap, sid) to A.

Interaction with the State Exchange Functionality :

• Upon receiving (submit-new, sid, 
st, Ps , (P1,̂mid1), . . . , (Pn ,̂midn )) from FStX where 
st =
st1, . . . ,stk and {P1, . . . , Pn } := Pnet proceed as follows

1. If there exist a chain C ∈ T with state 
st generate new unique message-IDs mid1, . . . ,midn , initial-
ize D1 := · · · := Dn = 1, set 
M ||(C,midi1, Dmid1

, P1)|| . . . ||(C,midn , Dmidn , Pn ), and store the

message-IDs ̂midi along the message-IDs midi .
Output (multicast, sid,C, Ps , (P1,mid1), . . . , (Pn ,midn )) to the adversary.

2. Otherwise find a chain C′ in T with state st1, . . . ,stdk−1. Choose a random nonce n and set Bk =
(H [Bk−1],stk ,n) and set H [Bk ] to a uniform random value in {0, 1}κ strictly smaller than D. Add the
chain C = C′||Bk to T .
Generate new unique message-IDs mid1, . . . ,midn , initialize D1 := · · · := Dn = 1, set

M ||(C,midi1, Dmid1

, P1)|| . . . ||(C,midn , Dmidn , Pn ), and store the message-IDs ̂midi along the
message-IDs midi . Output (multicast, sid,C, Ps , (P1,mid1), . . . , (Pn ,midn )) to the adversary.

a We do not write explicitly the instruction via which the simulator obtains P from FStX.
b This can be checked efficiently using H under the assumption that there are no collisions.
c Can be done efficiently using rejection sampling.
d Such a chain must exist as st1, . . . ,stk−1 is a successfully submitted state in FStX in which case the simulator
knows a corresponding chain.

The proof works similar as the one for Lemma 5.1 in [44]. Recall the notation from
Sect. 2.1 and introduce the shorthand notation Treal := TexecStateExchange-Protocol,A,Z (κ,z)

which is the (distribution of the) joint view of all parties in the execution of
StateExchange-Protocol for adversary A and environment Z (upon some input z).
Denote by Tideal := TexecFStX,Sstx,Z (κ, z) the joint view of all parties for FStX with
simulator Sstx. In the following, we treat the arguments κ and z as implicit.
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Define a new hybrid world, via the following random experiment: the experiment is
defined as the real-world execution except that the random oracle aborts on collisions
with collision-error and that adversarial oracle queries are emulated as inSstx. We use
the shorthand HYBA,Z to refer to this hybrid world (defined analogously to exec·,·,Z ).
The only difference is thus that in the hybrid world we may abort with collision-error
or tree-error as in the ideal execution. Let Thyb be the associated distribution of the
joint view.

Let event1 be the event that some parties query two different values v, v′ such that
H [v] = H [v′], i.e. the event that a hash-collision occurs (this event is a condition on the
realized transcript tr in the support of Treal or Thyb, respectively). For any two queries
the probability that they return the same hash value is 2−κ . By a union bound over all
queries we have that event1 happens with probability at most poly(κ) · 2−κ in both
worlds. Note that if event1 does not happen the hybrid random experiment does not
abort with collision-error.

Let event2 be the event that some party makes a query H [(s, ·, ·)] where no v exists
such that H [v] = s, but later some party makes a query v′ such that H [v′] = s. The
probability that any query H [(s, ·, ·)] a later query returns s is 2−κ in both worlds By
a union bound over all queries we have that event2 happens with probability at most
poly(κ) · 2−κ in both worlds.

Next, we show that the tree-error abort does not occur in the hybrid world execution
conditioned under event1 and event2 not happening. Assume for contradiction that
HYBA,Z aborts with tree-error with event1 and event2 not happening. Let C =
B1, . . . ,Bn be the shortest valid chain created in the experiment HYBA,Z such that
B1, . . . ,Bn−1 ∈ T but B1, . . . ,Bn �∈ T . Let Bi = (si ,sti ,ni ). Since C is a valid chain
we have H [(sn,stnnn)] < D. But at the timeBn was added to H no valid chain existed
where the last block has hash value sn (otherwise C would be in T ). This implies that
no earlier query to H could have returned sn , since if the query was Bn−1 C would not
be the shortest chain with the above property and if the query was not Bn−1 the event
event1 must have happened. This implies that event2 must have happened, which is a
contradiction.

This implies that conditioned under event1 and event2 not happening, the hybrid-
world execution proceeds the same as the real-world execution and hence the two worlds
are statistically close with respect to efficient environments Z , i.e.,
execStateExchange-Protocol,A,Z ≈ HYBA,Z .

Now we compare HYBA,Z and execFStX,Sstx,Z . Consider the event where a honest
miner queries a block (s,st,n) and fails, i.e., where H [(s,st,n)] > D. In the hybrid
execution, this query is stored in the random oracle table while the simulator in the ideal
world does not store the query in the random oracle table. Under the condition that such
failed queries are not repeated, the hybrid-world execution and the ideal-world execution
proceed in identical ways (note that the network simulation in Sstx perfectly mimics the
real and the hybrid worlds).

Note that the nonce n in a ‘failed’ query (s,st,n) is chosen uniformly at random
from {0, 1}κ by honest parties. This implies that with probability poly(κ) · 2−κ it was
never queried before. As honest miner discard ‘failed’ queries (and failed queries do not
leave the ITI and hence are hidden from the adversary) it also follows that except with
probability poly(κ) ·2−κ the query will not be queried again (by any honest or corrupted
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Fig. 9. The modular ledger protocol (differences to original protocol shown).

party) unless the nonce of that failed query would be successfully guessed. By a union
bound over all failed queries we have that failed queries are never queried twice except
with probability poly(κ) · 2−κ . Thus, execFStX,Sstx,Z ≈ HYBA,Z .

This concludes the proof. �

7.3. Modularizing the Ledger-Protocol

From the ledger protocol Ledger-Protocolq,D,T we can derive what we denote
Modular-Ledger-ProtocolT , which uses the state-exchange functionality to extend and
exchange blockchain states. This is defined in Fig. 9, where the only non-trivial modi-
fications (aside of some minor structural changes) are the replaced implementations of
algorithms ExtendState(st) and FetchInformation. The new implementations are as
follows:

Sub-Protocol ExtendState(st)

Send (submit-new, sid, 
stloc,st) to FStX.
Denote the response by (success, sid, B) of FStX.
if B = 1 then

Update the local state, i.e., 
stloc ← 
stloc||st.
Send (continue, sid) to FStX � Broadcast current state using FStX.
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and

Sub-Protocol FetchInformation

Send (fetch-new, sid) to FStX.
Denote the response from FStX by (fetch-new, sid, ( 
st1, . . . , 
stk )).
Set both 
stloc, 
stexp to the longest state in 
stloc, 
stexp, 
st1, . . . , 
stk (to resolve ties the ordering decides).

Send (fetch, sid) to F tx
N-MC; denote the response from F tx

N-MC by (fetch, sid, b).
Extract received transactions (tx1, . . . ,txk ) from b.
Set buffer ← buffer||(tx1, . . . ,txk ).
If a new-party message was received, set welcome ← 1. Otherwise, set welcome ← 0.

Remove all transactions from buffer which are invalid with respect to 
st�T
loc

We prove the soundness of this decomposition in the following lemma, which involves
a sequence of hybrid steps to convert the original protocol into the suitable modular form,
and finally by invoking Lemma,7.1.

Lemma 7.2. The UC Bitcoin protocol Ledger-Protocolq,D,T UC emulates
Modular-Ledger-ProtocolT that runs in a hybrid world with access to the functionality
F�,pH ,pA
StX with pA := D

2κ and pH = 1 − (1 − pA)q , and where � denotes the upper
bound on the network delay.

Proof. We first provide the sequence of modifications, morphing from the original
protocol to the modularized protocol in a “game-hopping” style:

We start with the original Ledger-Protocol and consider the protocol part below
where will alter the protocol step by step.

Fragments of Original Protocol Part

Initialization:

The protocol stores a local (working) chain Cloc which initially contains the genesis block, i.e., Cloc ← (G).
[...]

ExtendState(st):

Cnew ← extendchainD(Cloc,st, q)

if Cnew �= Cloc then
Update the local chain, i.e., Cloc ← Cnew.

Send (multicast, sid,Cloc) to Fbc
N-MC � Multicast current chain

FetchInformation:

� Update the local state
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract valid chains C1, . . . ,Ck from b.
Set both Cloc,Cexp to the longest valid chain in Cloc,Cexp,C1, . . . ,Ck (to resolve ties the ordering decides).
[…]

Modification 1. The first modification of the protocol (see below) proceeds as
Ledger-Protocol except (a) it stores a history of all valid chains in a tree T and (b) in
the ExtendState(st) procedure it checks that 
st||st is a valid state and that there exists
a chain in T which encodes the state 
st. We observe that the protocol calls Extend-
State(st) only with st where 
st||st is a valid state. This implies that the first check is
always satisfied. Moreover, note that the current local chain Cloc which encodes state 
st
is at any time stored in the tree T . We therefore call the state encoded in Cloc by 
stloc
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and see that the second check is therefore also always satisfied. Hence, the modified
protocol has the same input/output behavior as Ledger-Protocol.

Fragments, Modification 1

Initialization:

The protocol stores a local (working) chain Cloc which initially contains the genesis block, i.e., Cloc ← (G).
[...]
The protocol additionally maintains a tree T of valid chains which initially contains the (genesis) chain (G).

ExtendState(st):

if isvalidstate B( 
stloc||st) = 1 then
if there exists C ∈ T which encodes 
stloc then

Cnew ← extendchainD(Cloc,st, q)

if Cnew �= Cloc then
Update the local chain, i.e., Cloc ← Cnew.
Add Cloc to T

Send (multicast, sid,Cloc) to Fbc
N-MC � Multicast current chain

FetchInformation:

Send (fetch, sid) to Fbc
N-MC; denote the response from Fbc

N-MC by (fetch, sid, b).
Extract all valid chains C1, . . . ,Ck from b and add them to T .
Set both Cloc,Cexp to the longest valid chain in Cloc,Cexp,C1, . . . ,Ck (to resolve ties the ordering decides).
[…]

Modification 2. In Modification 2 (see below) the local state 
stloc is stored directly
instead of being encoded in chain Cloc. The procedures ExtendState(st) and FetchIn-
formation are modified to accommodate this change. Note that the Cloc is stored in T as
we have seen in the first modification. This implies that the behavior of ExtendState(st)
remains the same as in the first modification.

Fragments, Modification 2

Initialization:

The protocol manages [...] a local (working) state 
stloc (initially also the genesis state).[...]
The protocol additionally maintains a tree T of valid chains which initially contains the genesis chain (G).

ExtendState(st):

if isvalidstate B( 
stloc||st) = 1 then
if there exists C ∈ T which encodes 
stloc then

Cnew ← extendchainD(C,st, q)

if Cnew �= C then
Add C to T
Update the local state, i.e., 
stloc ← 
stloc||st.

Send (multicast, sid,Cloc) to Fbc
N-MC � Multicast current chain

FetchInformation:

Send (fetch, sid) to Fbc
N-MC; denote the response from Fbc

N-MC by (fetch, sid, b).
Extract all valid chains C1, . . . ,Ck from b and add them to T .
Extract all state 
st1, . . . , 
stk from chains C1, . . . ,Ck .
Set both 
stloc, 
stexp to the longest state in 
stloc, 
stexp, 
st1, . . . , 
stk (to resolve ties the ordering decides).
[…]

Modification 3. In Modification 3 (see below) parts of the procedures ExtendState(st)
and FetchInformation are split off into separate sub-procedures. Otherwise the protocol
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remains the same. As there are no changes to the program logic, the protocol still has
the same behavior as the original protocol.

Fragments, Modification 3

Initialization:

The protocol manages [...] a local (working) state 
stloc (initially also the genesis state).[...]
The protocol additionally maintains a tree T of valid chains which initially contains the (genesis) chain (G).

ExtendState(st):

B ← submit-new( 
stloc,st)

if B = 1 then
Update the local state, i.e., 
stloc ← 
stloc||st.

Execute continue. � Broadcast current chain

Procedure submit-new( 
st,st):

if isvalidstate B( 
st||st) = 1 then
if there exists C′ ∈ T which encodes 
st then

Set C ← C′. � C is assumed to be a global variable
Cnew ← extendchainD(C,st, q)

if Cnew �= C then
Add C to T
return 1

return 0

Procedure continue:

Send (multicast, sid,C) to Fbc
N-MC

FetchInformation:

( 
st1, . . . , 
stk ) ← fetch-new
Set both 
stloc, 
stexp to the longest state in 
stloc, 
stexp, 
st1, . . . , 
stk (to resolve ties the ordering decides).
[…]

Procedure fetch-new:

Send (fetch, sid) to Fbc
N-MC; denote the response from Fbc

N-MC by (fetch, sid, b).
Extract all valid chains C1, . . . ,Ck from b and add them to T .
Extract states 
st1, . . . , 
sts from C1, . . . ,Ck and output them.

Final Considerations. We identify that Modification 3 above, in particular procedures
submit-new, continue, and fetch-new, are as defined in StateExchange-Protocol,
hence invocations of this protocol. Consider the part of Modular-Ledger-Protocol
below that we observe is the same as Modification 3 except that the handling of chains
(variable T ) and the calls to sub-procedures submit-new, continue, and fetch-new
are now handled managed by the functionality FStX that is invoked at the respective
places:
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Modular-Ledger-Protocol (relevant part)

Initialization:

The protocol manages [...] a local (working) state 
stloc (initially also the genesis state). [...]

ExtendState(st):

Send (submit-new, sid, 
stloc,st) to FStX.
Denote the response by (success, sid, B) of FStX.
if B = 1 then

Update the local state, i.e., 
stloc ← 
stloc||st.
Send (continue, sid) to FStX � Broadcast current state using FStX.

FetchInformation:

Send (fetch-new, sid) to FStX.
Denote the response from FStX by (fetch-new, sid, ( 
st1, . . . , 
stk )).
Set 
stloc, 
stexp to the longest state in 
stloc, 
stexp, 
st1, . . . , 
stk (to resolve ties the ordering decides).
[…]

By Lemma 7.1, we know that StateExchange-Protocol UC-realizes FStX, there-
fore replacing calls to StateExchange-Protocol by calls to the ideal process FStX
yields an indistinguishable protocol toLedger-Protocol. This concludes the proof of the
lemma. �

7.4. Second Proof Step

We now proof that if honest parties have some advantage over the dishonest parties in
winning the lottery, then the UC Bitcoin protocol Modular-Ledger-ProtocolT realizes
the ledger functionality. By the composition theorem, we can directly conclude that
Ledger-Protocolq,D,T realizes the Bitcoin ledger functionality.

7.4.1. Relevant Quantities of the Analysis

The main theorem will require a condition on the power of the adversary, and it is useful
to describe here the random variables induced by a pair (Z,A).

Recall from Sects. 5.2.1 and 5.3.1 that a party is honest-and-synchronized if it either
joined at the onset of the execution or it joined a sufficient number of rounds ago
(depending on the delay). Furthermore, recall that a logical round consists of two clock-
ticks. In the following, we denote the round number by r (which consists of two mini-
rounds).

Definition 7.3. (Query Power) We define for the real-world execution of
Modular-Ledger-ProtocolT with respect to the pair (Z,A) the sequence of random
variables Q(r)

H to measure the number of distinct honest-and-synchronized parties that

are activated in the working mini-round of round r to submit a query to F�,pH ,pA
StX . Anal-

ogously, denote by Q(r)
A the number of submit-queries to F�,pH ,pA

StX from corrupted par-

ties in round r , and by Q(r)
H,DS the number submit-queries by honest-but-desynchronized

parties in the working mini-round of round r .
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Definition 7.4. (Mining Power.) We define mining power as simple functions of the
query-power. Note that, in our analysis, pA and pH are constants. We have:

• The total mining power T(r)
mp := Q(r)

A · pA + (Q(r)
H + Q(r)

H,DS) · pH .

• The adversarial mining power β(r) := pA · Q(r)
A + pH · Q(r)

H,DS .

• The honest mining power α(r) := 1 − (1 − pH )Q
(r)
H .

It might be useful to recall that from Bernoulli’s inequality we have α(r) ≤ pH · Q(r)
H .

For small values of pH (as usual in Bitcoin), this upper bound is a good approximation
of α(r).

Note that α(r), β(r), and T(r)
mp are random variables (on integer domains). For example.

α(r) maps the number of honest-and-synchronized submit-queries to the probability that
at least one is a successful query. More formally, conditioned on Q(r)

H = q, the random
variable α(r) is the probability of at least one success among q queries and the expected
value of α(r) corresponds to the probability of at least one successful state-extension
in round r of the execution. The reason is that F�,pH ,pA

StX treats each submit-query
independently at random. This is the main motivation to introduce this intermediate
step.

7.4.2. The Analysis

In the analysis of Bitcoin, conditions are needed that allow to reasonably lower and
upper bound expected values of the above random variables (and their variances). As we
will quickly recap below, it is shown in [44] that if the involved query power exceeds
any limits in the constant-difficulty case, then no security guarantees can be obtained.
We start with the following definition.

Definition 7.5. (Query and Mining Pattern) We say that the pair (Z,A), running for
R rounds (referred to by numbers 0, . . . , R − 1) obeys the query pattern (
h, 
a, 
d) if, for
any round r , we have

Q(r)
H ≥ hr , Q(r)

A ≤ ar , Q(r)
H,DS ≤ dr

where 
h = (h0, . . . , hR−1), 
a = (a0, . . . , aR−1), 
d = (d0, . . . , dR−1) are vectors con-
sisting of positive integers. Consequently, the pair (Z,A) obeys the associated mining
pattern denoted by (
α, 
β), where vectors 
α = (α0, . . . , αR−1) and 
β = (β0, . . . , βR−1)

are defined by the mapping

α(r) ≥ 1 − (1 − pH )hr =: αr

β(r) ≤ pA · ar + pH · dr =: βr .

Technically, these definitions imply lower and upper bounds on the expectations of the
random variables α(r) and β(r), respectively, which is what will be eventually needed.
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Definition 7.6. (Power Limits) The pair (Z,A) is said to be qtot -query-limited if
Q(r)

H + Q(r)
A + Q(r)

H,DS ≤ qtot . The pair (Z,A) is said to be Tmp-mining limited if
for all r ,

T(r)
mp ≤ Tmp.

The bounds in the theorem will depend on several worst-case quantities that we
introduce below.

Definition 7.7. For mining patterns (
α, 
β), we use the shorthand notation

αmin := min {αr }r∈[0,R−1] and αmax := max {αr }r∈[0,R−1];
βmin := min {βr }r∈[0,R−1] and βmax := max {βr }r∈[0,R−1].

For a (non-empty) subset S ⊆ {0, . . . , R − 1} of rounds, we define the corresponding
averages by

αS := 1

|S| ·
∑

r∈S
αr and βS := 1

|S| ·
∑

r∈S
βr .

For Tmp-mining limited pairs (Z,A), we define the relative-power fractions

ρh := αmin

Tmp
and ρa := βmin

Tmp
.

We call a subset S of rounds an interval if it consists of consecutive round numbers
r, . . . , r + t for some integers r, t ≥ 0.

Following [44], the theorem will take into account that the network delay � decreases
the effectiveness of the actual honest mining power:

Definition 7.8. (Discount function.) We define the function γ (α,�) := α
1+α�

for
α,� > 0.

We are now ready to state and prove the main theorem which assures that we can
realize the ledger for a given range of parameters.12

Theorem 7.9. Let p ∈ (0, 1), integer q ≥ 1, pH = 1 − (1 − p)q , and pA = p.
Let � ≥ 1 be the upper bound on the network delay, let κ be the security parame-
ter, and let T = ω(log κ) be the main protocol parameter of the ledger protocol. For
all pairs (Z,A) of PPT environments Z (w.r.t. identity bound ξsync) and PPT adver-
sariesA running for R rounds which obey the (
α, 
β) mining pattern as of Definition7.5
and which are Tmp-limited as of Definition7.6, the real-world execution of protocol

12Recall from Sect. 3.3.1 the formal definition of the identity bound ξsync to model an admissible (lock-step)
synchronous execution environment.
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Modular-Ledger-ProtocolT (in the (Gclock,F�,pH ,pA
StX ,F�

N-MC)-hybrid world) is in-

distinguishable from the ideal-world execution with ledger functionality G B
ledger (and

the simulator defined in the proof), if for some λ > 1, it holds that for any interval S of
rounds of size t ≥ 1 and any S′ ⊆ S of size t ′ ∈ [max{1, t · (1 − �αmax )}, . . . , t] the
relation

αS′ · (1 − 2 · (� + 1) · Tmp) ≥ λ · βS (1)

holds, and if the parameters of G B
ledger fulfill the relations

windowSize = T and Delay = 4�,

(1 − δ)

2
· γmin ≥ windowSize

maxTimewindow
and

(1 + δ)

2
· Tmp ≤ windowSize

minTimewindow
,

η ≥ min{(1 + δ) · βmax

γmin
, 1},

where the quantities are defined as in Definition7.7 and where γmin := γ (αmin,�), and
δ > 0 is an arbitrary constant. In particular, the distinguishing advantage is bounded
by R · negl(T ), where negl(T ) denotes a negligible function in T .

Remark. Before proving the theorem, it is instructive to recall the flat model of Bitcoin
and to see how the above quantities appear there. By the above definitions and theorem
statement, we see that we only make statements if the honest mining power is not too
small, the dishonest mining power is not too large (and stands in a certain relation to
the honest mining power) and if the respective mining power values are in a reasonable
range to the overall mining power. In particular, the theorem expresses a condition that
the average honest mining power dominates the average mining power of the adversary,
even if the honest average is taken over slightly smaller intervals (note that in particular,
for each singleton set S, we obtain that the familiar condition that αr should dominate
βr ).

Note that βmin is the most restrictive restriction (but not a lower-bound) on the ad-
versary (similarly, αmax is the best guaranteed lower-bound for honest-and-synchronous
mining power). In general, the adversary (and hence the environment) is free to activate
as many ITIs unless it would exceed Tmp if the environment is Tmp-bounded, and no
more than what is allowed by 
β. This is a more general setting in the fixed-difficulty
setting compared to previous works in the same setting. Furthermore, we show in the
next subsection how to get a better bound for chain-quality.

Looking ahead, for example in [44], the overall number of parties is fixed to be
some number n and there is an upper bound on the number of dishonest parties ρn
(and de-synchronized parties are not allowed by definition). Assume for simplicity that
pH = pA = p for a very small value p > 0. We then obtain αmin ≈ (1 − ρ) · n · p and
βmax ≈ ρH · n · p. By Tmp = n · p and since the mining pattern as defined above is flat
in flat models (cf. Sect. 8.1), the correspondence ρa = ρ and ρh = (1 − ρ) follows.
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Also, as pointed out by [44], for too large values of p in a range that would yield
Tmp = n · p > 1

�
(where � is the network delay), there is an attack against the protocol,

even if one assumes an honest majority. This indicates that the main condition of the
theorem in Eq. (1) is also necessary up to a constant factor, and recent works have
revealed the exact threshold for security [20,27].

We now prove our main theorem.

Proof of Theorem 7.9. We start with an overview followed by a sequence of claims.

Overview. We prove the theorem using the formalism of [4] to be able to model shared
functionalities. In more detail, we specify the simulator Sledg as pseudo-code in Ap-

pendix C to prove that execGclock
Modular-Ledger-ProtocolT ,A,Z ≈ execGclock

Gledger,Sledg,Z . Recall
from Sect. 2.1.4 that this means that in the real world, parties are running
M[Modular-Ledger-ProtocolT ,Gclock], and in the ideal world the parties are running

M[G B
ledger,Gclock], where the operator obliviously transforms the defined protocols

into standard UC protocols without changing their behavior, and the indistinguishability
notion is the standard UC-emulation notion.

Let us explain the general structure of the simulator and the proof: the simulator inter-
nally runs the round-based mining procedure of every honest party. Whenever a working
mini-round is over, i.e., whenever the real world parties have issued their queries toFStX,
then the simulator will assemble the views of its simulated honest-and-synchronized
miners and determine their common prefix of states, which is the longest state stored
or received by each simulated party when chopping off T blocks. The adversary will
then propose a new block candidate, i.e., a list of transactions, to the ledger to announce
that the common prefix has increased (procedure ExtendLedgerState). The ledger
will apply the Blockify on this list of transactions and add it to the state. Note that since
Blockify does not depend on time, the current time of the ledger has no influence on
this output. To reflect that not all parties have the same view on this common prefix,
the simulator can adjust the state pointers accordingly (procedure AdjustView). The
simulation inside the simulator is perfect and is simply the emulation of real-world pro-
cesses. What restricts a perfect simulation is the requirement of a consistent prefix and
the restrictions imposed by ExtendPolicy. In order to show that these restrictions are
not forbidding a proper simulation, we have to justify, why the choice of the parameters
in the theorem are sufficient to guarantee that (except with negligible probability). To
this end, we analyze the real-world execution to bound the corresponding bad events
that prevent a perfect simulation.

We basically follow the proof ideas of Pass, Seeman, and shelat [44] to bound the bad
events and adapt their observations to our setting. The analysis is divided into several
different claims about the real-world execution. They include properties such as a lower-
bound on the chain growth, the chain quality, or an upper-bound on the chain growth.
These claims prove that our simulator can simulate the real-world view perfectly, since
the restrictions imposed by the ledger prohibit that only with negligible probability,
where the distinguishing advantage is upper bounded by R · negl(T ), where R denotes
the number of rounds the protocol is running and negl(·) denotes a negligible function
in the parameter T .
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Recall that each round consists of two time-ticks. Hence, if a statement is expressed
with respect to a certain number t of rounds, it can equivalently be expressed with respect
to 2t clock-ticks. Recall that the ledger parameters have to be given with respect to the
clock, since the clock is the formal reference point of time. However, for the analysis, it is
easier to think in rounds. In the following sections, if we refer to an interval r, . . . , r + t ,
this refers to t full rounds, i.e., the time window when the clock first switched to the
value τ = 2r up to any point where the clock value satisfies τ ∈ {2(r + t), 2(r + t)+1}.
Chaindissemination.We first state an obvious useful fact about the protocol’s operation.

Lemma 7.10. (State dissemination) Let Pi and Pj be miners, and let r ≥ 0. Assume
Pi is honest in round r, and its adopted state has length �. For any honest miner Pj in
round r +� who registered to the network before round r, it holds that its adopted state
must have at least length �.

Proof. By assumption, all messages, and in particular transmitted states of honest
miners, are delayed maximally by � rounds. Thus, if such a miner receives a state of
length �, then any other honest miner will receive this state within the next � rounds
since the protocol relays its adopted state. Additionally, if an honest miner successfully
extends a ledger-state in round r , the new state is fetched by other honest miner at latest
after � rounds if they were registered before round r . Hence by then, they will have
adopted a chain of length at least �. �

Probably the most useful corollary which is used in the sequel, is to apply the above
lemma to the sub-class of honest-and-synchronized miners. Note that if Pj in the above
lemma is honest-and-synchronized at round r + � it must have been registered to the
network not later than at round max{0, r − �} and hence the statement applies.

Analyzing chain growth. We now state the relation between time (measured in number
of rounds) and guaranteed number of new state blocks.

Lemma 7.11. (Chain growth)Consider the real-world execution (under the conditions
of the theorem). Let Pi be a miner, and let r ≥ 0. Assume Pi is honest-and-synchronized
in round r, and the (longest) state adopted by Pi in round r has length �. Then, in round
r + t , it holds that for any δ > 0, except with probability R · negl(T ), the length of
the (longest) state adopted of any honest-and-synchronized miner Pj in that round has
length at least � + T if t ≥ T

(1−δ)·γmin
.

More generally, for an interval of rounds r, . . . , r + t , we can guarantee a length
increase of γ · t with γ := τ

1+τ�
if for all possible subsets S of rounds of size t ′ =

t (1 − γ�) of this interval we have αS ≥ τ . The guarantee holds except with probability
exp(−�(tγ )).

Proof. We first prove that for any real-world adversary A, there is an adversary A′
that, starting at the given round r , maximally delays messages and prove that in a real-
world execution with A′ the expected state length of an honest-and-synchronized miner
in round r + t , where the expectation is taken over the randomness of the adversarial
strategy, is no larger than with adversary A in round r + t . Given adversary A, the
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adversary A′ works as follows. It internally runs A until and including round r without
any modifications. After round r , A′ first delays all current messages in the network to
the maximally possible delay. Also, after round r , whenever an honest-and-synchronized
party sends a message containing a state, A′ sets the maximal delay � for this message.
Message delays defined by A for messages that contain valid states of honest parties are
ignored. The adversary further ignores any message sent by A on behalf of corrupted
parties after round r .

We define the following “hybrid world”, which equals the real world execution, but
with fixed randomness as follows: for random stringsσ ,σ ′, we defineHYBFStX(σ ′),A(σ ),Z
to be defined analogously to exec·,·,Z but where the internal coins of A and FStX are
fixed to σ and σ ′ respectively (note that both are poly-bounded by the run-time re-
strictions of UC). Let T hyb

A(σ ),FStX(σ ′),Z be the associated distribution of the joint view
(induced by the random coins of Z). Let Lenri (T ) be the function that maps a transcript
T (of real-world and hybrid-world executions) to the length of the (longest) adopted
chain by (honest-and-synchronized) miner i in round r .

We first give an inductive proof to show that for any r > 0, and all strings σ, σ ′,

Pr
σZ∈R{0,1}poly(κ)

[Lenr+t
i (T hyb

A(σ ),FStX(σ ′),Z(σZ )
) ≥ Lenr+t

i (T hyb
A′(A(σ )),FStX(σ ′),Z(σZ )

)] = 1.

�

Base Case(s): We give the base cases t = 0 and = 1 to already include the arguments for
the general case below. We argue for any fixed σZ and show that the condition in the event
cannot be violated. Since adversaryA andA′ behave identical up to and including round
r , the length of the longest state known or received by any party is the same. The reason
is that A′ and A play exactly the same strategy when the randomness is fixed, since A′
itself does not use additional random coins and thus case t = 0 follows. Furthermore,
when the randomness σ ′ of FStX is fixed, a miner i in any round r ′ is successful, if
and only if it is successful in round r ′ with adversary A′. Thus, the condition for t = 1
would only be violated if player i receives a longer state in round r + 1. However, since
A′ maximally delays messages, if any state arrives in round r + 1 in the real execution
with A′, then it arrives no later than r + 1 in the real execution with A. This concludes
the base cases.
Induction Step: t → t + 1: By the induction hypothesis, we have that the condition

Lenr+t
i (T hyb

A(σ ),FStX(σ ′),Z(σZ )
) ≥ Lenr+t

i (T hyb
A′(A(σ )),FStX(σ ′),Z(σZ )

)

holds with probability one. We argue that Lenr+t+1
i (·) ≥ Lenr+t+1

i (·) holds as well (on
the above arguments) with probability one. Assume this was not the case, then following
the above reasoning, it can only be due to miner i receiving a state in round r + t + 1
that would increase the value of Lenr+t+1

i (T hyb
A′(A(σ )),FStX(σ ′),Z(σZ )

) but not the value of

Lenr+t+1
i (T hyb

A(σ ),FStX(σ ′),Z(σZ )
) (since the success of miner i in round r + t + 1 is fixed

given σ ′). By the same reasoning as above, since A′ maximally delays delivery of new
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states, if any state arrives in round r in the real execution with A′, then it arrives no later
than r in the real execution with A. This concludes the induction proof.

We note that the hybrid world, if we sample σ, σ ′ this yields the distribution Texecπ,A′,Z
(κ, z) (for any fixed input z to the environment). Let us abbreviate this by Treal,A′ to save
on notation (and assuming the input z is hard-coded in the environment). Similarly, let
us denote Treal,A the distribution in an execution with A.

By taking the expectation over σ, σ ′ (and by the law of total probability), we im-
mediately get from the above arguments that for any positive integer c and any round
r :

Pr[Lenr+t
i (Treal,A) ≤ Lenri (Treal,A) + c]

≤ Pr[Lenr+t
i (Treal,A′) ≤ Lenri (Treal,A′) + c]

where we also used that for t = 0, the length distributions induced by A and A′ are
identical. Hence, chain growth can be analyzed w.r.t. adversary A′ to yield a useful
statement for any adversary A.

Let us use the following terminology: We say a round r ′ is uniform if Lenr
′
i (tr) =

Lenr
′
j (tr) holds (where tr is a transcript), for all honest-and-synchronized miners i and

j . Recall that adversary A′ does not broadcast adversarially generated states and any
new state is delayed by exactly � rounds. The slowest progress of the overall maximal
state length known to an honest-and-synchronized party occurs in case uniform rounds
are the only successful rounds (if at all). Otherwise, the honest miner with the longest
state could be successful and broadcast a longer state at round r ′, which would be
guaranteed to arrive to any other honest miner in r + �. Furthermore, by a standard
coupling argument, the probability of success of any honest-and-synchronized party in
some round r ′ is minimized by an environment Z that activates just enough parties to
obey the mining pattern αr ′ . The coupling with any other environment can be obtained
by letting the activation results be the same up to the point where enough parties have
been activated to satisfy the mining pattern. Further activations honest-and-synchronized
participants can only induce more successful state extension than what Z obtained.

We are thus left with analyzing growth w.r.t. a simple adversary and an environment
Z with a fixed activation pattern per round to match the mining pattern.

Obtaining a tail bound depending on number of blocks. Now, fix some round r .
If in round s = r + t , the length increase of the overall longest state of an honest-
and-synchronized miner is less than c blocks, then at most c · � non-uniform rounds
occurred. According to above, we can associate to each round i a random variable Xi

which is 1 if at least one honest-and-synchronized miner successfully extended the state
by a query to FStX. The Xi ’s are independent by construction and there must be at least
t − c · � uniform rounds. On the other hand, for any concrete sub-sequence of rounds
S ⊂ (r, . . . , r + t) of size t ′, the Chernoff-Hoeffding bound in Theorem 2.3 implies for
our setting (of independent heterogeneous variables) that

Pr

[
∑

i∈S
Xi ≤ (1 − δ) · αS · t ′

]

≤ exp(−�(αS · t ′)), (2)

where αS := 1
t ′

∑
i∈S αi .
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We conclude that if for the sub-sequence S of rounds in the interval from r to s, the
relations c = E

[∑
i∈S Xi

] = αS · t ′ and |S| =: t ′ = t − c� hold, we can derive a
tail-estimate depending on the number of blocks. We can define

cS := αSt

1 + αS�

and assign a corresponding growth coefficient

γS := αS

1 + αS�
.

and thus except with exponentially small probability in tγS = cS , the length-increase is
at least cS for this particular interval.

For the first part of the statement, observe that αS ≥ αmin , for all subsets S, and that
the function x

1+kx , where k is a positive integer and x ∈ (0, 1), is monotone in x . We
get the guaranteed minimal growth by t · γmin in any interval of size t rounds for an
honest-and-synchronized party except with negligible probability in t · γmin by taking
the union bound overall all rounds r . What remains to prove is that this bound applies
also to the growth of the state if one compares any two honest-and-synchronized miners
which we do below (still following the proof steps of [44]).

For the second part of the statement, we generalize the above observation: if we have
a guaranteed lower bound τ on the average αS (better than αmin as used before) with
respect to any subset of the required size within the given interval r, . . . , r + t (note that
indeed we only have a bound for the size of S in our experiments but no guarantee that
a particularly “good” one is chosen), the second part of the statement follows.

Bound for any honest-and-synchronized party. By Lemma 7.10, we know that if an
honest-and-synchronized miner knows some state, then within � rounds, every other
honest miner will be aware of that state. A similar calculation shows that the lower bound
on the time to have a state increase by T blocks by all honest-and-synchronized parties
follows the same law (and hence the perceived ledger speed is the same). By requiring
s = r + t − � above, and thus considering t ′ := t − � − c · � = t − (c + 1)� does
not change the asymptotic behavior since γSt − 1 < γSt − γS� < γSt for all t and S
since �γS < 1. Hence, this additional additive term can be compensated by choosing a
sufficiently small constant δ in Eq. (2). �
Mining limits. We state some helpful facts about bounds on the mining behavior.

Lemma 7.12. The number of successful state-extensions that happenwithF�,pH ,pA
StX in

any given interval of t rounds (in the real-world execution under the theorem conditions),
where pA = p and pH = 1 − (1 − p)q for some q ≥ 1 and p ∈ (0, 1) is bounded
by (1 + δ) · t · Tmp for any δ > 0, except with probability negl(Tmp · t). Consequently,
for a number T of state-extensions to occur, the number of required rounds is less than

T
(1+δ)Tmp

only with negligible probability in T . Finally, the number of adversarial state

extensions in a sub-set S of t rounds is no more than (1+δ)βS · t except with probability
exp(−�(βS · t)) (for any δ > 0.
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Proof. Since the state-exchange functionality evaluates each query independently, we
can upper bound the number of successes of these independent Bernoulli-trials. We prove
the bound for the environment Z (and A) that makes as many queries as allowed per
round (as limited by βr and Tmp). As in the previous lemma, a coupling argument shows
that any other query-distribution cannot induce a larger probability exceeding the given
bound than Z , for which the query distribution is fixed. For a round, let X (r) = ∑

i Xi

model the sum of the involved independent trials to the state-exchange functionality.
Clearly, βr ≤ E[X (r)] ≤ Tmp. Let S be a set of t rounds. By linearity of expectation and
invoking Theorem 2.3 we get the tail-estimate

Pr

[
∑

i∈S
X (i) ≥ (1 + δ) · t · Tmp

]

≤ exp(−�(βS · t))

≤ exp(−�(Tmp · t)),

where the last step invokes the theorem assumption that ∀r : βr ≥ ρaTmp for the
relative-power coefficient ρa .

Similarly, denote by Y (r) = ∑
i Yi the number of adversarial state-extensions in round

r . Again it is sufficient to consider a maximizing Z which has an expected value of t ·βS
over a sub-set of rounds of size t . Hence, we again can obtain an estimate of the form

Pr

[
∑

i∈S
Y (i) ≥ (1 + δ) · t · βS

]

≤ exp(−�(βS · t)).

As a final conclusion, we observe that for any number of state blocks T , the probability
that for any δ > 0 it takes less than t = T

(1+δ)Tmp
rounds to get T state extensions is

negligible in T . Consequently, for this large time interval, all tail bounds hold except
with probability exp(−�(T )), where the constant hidden in �(·) depend on δ and on
the relative-power coefficient ρa . �

Block withholding. From chain growth and the theorem’s condition, we derive that if an
honest-and-synchronized miner adopts a new state that contains a block the adversary
obtained by FStX then either this block has been published by the adversary before, or
it was mined quite recently by a corrupted party.

Lemma 7.13. (Bound on Withholding strategies) In the real-world execution (under
the conditions of the theorem), assume that in round r, an honest-and-synchronized
miner adopts a new longer state state. Assume there is a block st in this new state
that was accepted upon an adversarial query to FStX and that is not part of any state
adopted by any honest-and-synchronized party before round r. The probability that such
a block stwas first accepted byFStX before round r−ωt happens only with probability
negl(βS · t), for any constant 0 < ω < 1, where S denotes the interval r − ωt, . . . , r .

Proof. Let us define 
st(r) = st0|| . . . ||stk to be the state adopted by the honest-

and-synchronized miner in round r as assumed in the lemma statement. Let 
st(r ′) be



18 Page 58 of 84 C. Badertscher et al.

the longest prefix of 
st(r) such that 
st(r ′) is either the genesis block or a state newly
accepted by FStX upon a query by an honest-and-synchronized party in round r ′ ≤ r .
Hence all the blocks in that prefix are known to at least one honest-and-synchronized
party by round r ′. In light of the lemma statement, we consider the case that r −r ′ ≥ ωt .

Let S denote the set of rounds from r ′ to r . The number of new states mined by the
adversary does not exceed (1 + δ′) · βSωt (except with probability negl(βS · t)) by the
previous lemma.

At the same time, Eq. (1) implies that on any subset S′ of size t ′ = ωt (1 − αmax�)

the condition αS′(1 − �αS′) ≥ (1 + δ)βS has to hold for some constant δ ∈ (0, 1).
This is the case since for all x,� > 0, x

1+x� > x(1 − x�) (and Tmp ≥ αS′ ) and

this implies that γ := αS′
1+αS′� ≥ (1 + δ)βS . Lemma 7.11 gives us a chain growth of

| 
st(r)| − | 
st(r ′)| ≥ (1 − δ′) · γωt except with probability negl(βS · t).
Since all | 
st(r)| − | 
st(r ′)| blocks must have been mined by the adversary, we have

| 
st(r)| − | 
st(r ′)| ≤ (1 + δ′′) · βSωt . We get a contradiction, since now

(1 − δ′) · γωt ≤ (1 + δ′′) · βS · ωt,

which, for sufficiently small δ′, δ′′ would imply that γ < (1 + δ)βS . �

Chain-growth upper-bound. Our ledger also restricts the growth over time. This is
based on the following observation.

Lemma 7.14. (Chain-Growth Upperbound) Consider the real-world execution (under
the conditions of the theorem) and let Pi be a miner, and let r ≥ 0. Assume Pi is honest-
and-synchronized in round r, and the longest state received or stored by Pi in round r
has length �. Then, in round r + t , it holds, except with probability R · negl(T ), that the
length of the longest state (received or stored) of at least one honest-and-synchronized
miner Pj in that round has length at most � + T if t ≤ T

(1+δ)·Tmp
for any δ > 0.

Proof. We can combine the previous observations to upper bound the number of ac-
cepted blocks. By Lemma 7.12, the number of rounds to generate T new extensions of
states is at least t ′ ≥ T

(1+δ′)Tmp
except with probability negl(T ) (for any δ′ > 0) and

thus with overwhelming probability, in t ′ ≤ T
(1+δ′)Tmp

, no more than T new blocks are
mined.

In addition, we can invoke Lemma 7.13 to conclude that a new state that contains a
block that the adversary is withholding since a round prior to r − ωt is accepted by an
honest-and-synchronized party only with probability negl(βmint), for any 0 < ω < 1
(since βmin can be achieved in any round by an adversarial strategy and hence can serve
as the lower bound in the exponent of the tail bound). Analogously to Lemma 7.12, by
the definition ρa · Tmp = βmin this error probability is thus negligible in T .

Both observations together imply that in t ′ = t (1 + ω) ≤ T
(1+δ′)Tmp

rounds, no
honest-and-synchronized party experiences a state increase of more than T blocks for
any δ′ except with negligible probability in T . This is equivalent to the condition that
t ≤ T

(1+ω)(1+δ′)Tmp
and we can choose δ′ sufficiently small to obtain the bound with
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respect to t ≤ T
(1+δ)Tmp

and any given δ > 0 as required by the statement. The claim
follows by taking the union bound over all rounds as the arguments above hold for any
round r . �

Worst-case chain quality. We give a very coarse bound on the overall chain quality in
any sequence of T blocks as follows:

Lemma 7.15. (Fraction of honest blocks) Let Pi be a miner, and let r ≥ 0. Assume Pi
is honest-and-synchronized in round r and that the length of the longest state received
or stored is � ≥ T . The fraction of adversarially mined blocks within a sequence of T
blocks in the state is at most min{1, (1 + δ) · βmax

γmin
} except with probability R · negl(T )

for any δ > 0.

Proof. Let us assume that at round r , the state adopted by miner Pi is 
str ′ = st0|| . . . ||
stk . We show that in any sub-sequence of T state blocks st j+1, . . . ,st j+T in 
str ,
the fraction of adversarially mined blocks is bounded. Without loss of generality, one
can assume that the state 
st< j := st0|| . . . ||st j as well as the state 
st> j+T :=
st0|| . . . ||st j+T+1 are mined by honest-and-synchronized miners (or j +T equals the
length of the state). Otherwise, one can enlarge T to meet this condition — this can
only increase the fraction of adversarial blocks in the sequence of T blocks and since
any state is finite and starts with the genesis block, the condition will be fulfilled for
some T . We further assume that 
st< j is mined at round r ′, and that in round r ′ + t ,
the state 
st> j+T appears for the first time as the state, or the prefix of a state, of at
least one honest-and-synchronized miner. We conclude that if an adversary successfully
extended the state during some round by a new state block st j+s of the above sequence
st j+1, . . . ,st j+T , then this happens in a round between r ′ and r ′ + t .

We now relate the number t of rounds to the number T of blocks. Since t is assumed to
be the minimal number of rounds until the first honest-and-synchronized miner adopted
a state containing st j+1, we can make use of the minimal chain-growth Lemma 7.11 to
conclude that the probability that the condition t > T

(1−δ′)γmin
occurs in such an execution

is at most negl(T ). We hence have t ≤ T
(1−δ′)γmin

with overwhelming probability in T .
Similar to above, by Lemma 7.12 the time it takes to generate T blocks is at least

t ≥ T
(1+δ)Tmp

except with probability negl(T ) and thus with overwhelming probability,

in t ≤ T
(1+δ)Tmp

, no more than T blocks are mined.

Furthermore, also by Lemma 7.12, we get a worst-case upper bound. Let Nt
A denote

the expected value in t rounds, invoking Lemma 7.12 gives us that Nt
A ≤ (1 + δ)βmax t

except with probability negl(βmint) (where we again use the minimum to bound the
average of any interval). Hence, since ρa · Tmp = βmin by definition it follows as in
previous lemmata that the bound holds except with probability negl(T ).

Putting things together, we conclude that except with negligible probability in T , the
number of times the adversary was successful in extending the state by one block is
upper bounded by the quantity

N
T

(1−δ′)γ
A ≤ 1 + δ

1 − δ′ · T · βmax

γmin
.
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Hence, the fraction of adversarial blocks within T consecutive blocks cannot be more
than f = min{1, (1 + δ′′)βmax

γmin
} for any δ′′ and sufficiently small constants δ, δ′ > 0,

except with negligible probability in the length T of the sequence.
Since our arguments hold for any interval, the proof is concluded by taking the

union bound over the number of such sequences (which is in the order of number of
rounds). �

Consistency (common prefix).We now state the lemma on the common-prefix property
in our setting.

Lemma 7.16. (Consistent states) Consider the real-world execution under the con-
dition of the main theorem. Let Pi and Pj be miners (potentially the same), and let
r ′ ≥ r ≥ 0. Assume Pi is honest-and-synchronized in round r, and Pj is honest-and-
synchronized in round r ′. Assume that the length of the longest state received or stored
by Pi in round r is � ≥ T . Then, the � − T -prefix of that longest state of Pi in round r is
identical to the � − T -prefix of the state of Pj stored or received in round r ′ except with
probability R · negl(T ).

Proof. We again follow the basic line of reasoning in [44] and adapt the appropriate
arguments to our setting. First, since an inconsistency at round r implies an inconsistency
at round r ′ > r , if the claim is proven for the case r ≤ r ′ ≤ r + 1, then by an inductive
argument, the claim holds for any r ′ ≥ r .

The protocol mandates that the honest-and-synchronized miners truncates the T
newest blocks from the current respective state. Thus, we need to argue that the block
which is T +1 far away from the head will be part of any state output by any honest-and-
synchronized miner. Suppose we are at round r ′ in the protocol, then the time it takes to
generate the last T blocks is at least t ≥ T

(1+δ)Tmp
except with negligible probability in

T as established in Lemma 7.12 and any 0 < δ < 1.
Looking ahead, we will eventually conclude that with overwhelming probability

within the interval of rounds s = r − t, . . . , r ′ ∈ {r, r + 1} (where r ≥ t), the honest-
and-synchronized miners have an opportunity to agree on a common state and hence at
round r ′, they will still agree on a large common prefix of the current state at round r ′.

In the interval of rounds, let this set be denoted as usual by S, between round s and
round r ′ = r , the expected number of rounds, where at lest one honest-and-synchronized
miner is successful, is at least αSt . Thus, again by a standard Chernoff bound, the
probability that the number of these successful rounds is smaller than q̄min := (1 − δ′) ·
αSt is no more than exp(−�(tαS)) in the real-world UC random experiment. Again, a
coupling argument as in Lemma 7.11 yields that this tail-bound (where the environment
activates the least number of parties possible and hence the random variables that describe
the success are independent) applies to any environment. Finally, the conditions of the
theorem in particular assure that αS > βmin and hence this probability can be upper
bounded by negl(βmint).

Unfortunately, the “race” between the good guys and the bad guys is not yet conclu-
sively analyzed, since the mere superiority of honestly mined blocks does not imply that
the honest parties will reach agreement. In particular, not all of the expected honestly
mined blocks are equally useful to obtain a so-called convergence opportunity. In par-
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ticular, we need to know how many of the honestly mined blocks happen in isolated,
sufficiently silent intervals.

Formally, let us introduce the random variable Ri that measures the number of elapsed
round between successful round i − 1 and successful round i in the real-world UC
execution, where R1 measures the number of elapsed rounds to the first successful
round. Based on Ri , the random variable Xi is defined as follows: Xi = 1 if and only
if Ri > � and exactly one honest-and-synchronized miner mines a new state (i.e.,
successfully appends a new block to the state) in the i th successful round.

Let Ei
1 be the event that there is at least one successful round in the interval of �

rounds starting after successful round i − 1 (or at the onset of the experiment). Let Ei
2

be the event that strictly more than one miner is successful in the following successful
round i .

Overall, our goal is to suitably bound the number of blocks that prevent those events
of “success & silence” (i.e., bound the probability of the event Xi = 0) in an interval
of t rounds. We call these the undesirable blocks. They have to be infrequent enough
such that in combination with adversarially mined blocks, they do not prevent too many
convergence opportunities. We hence need to suitably bound the occurrence of the above
two bad events Ei

j in our experiment.
By a union bound, and invoking that αr ≤ Tmp, we directly have that Pr[Xi = 0] =

Pr[Ei
1 ∪Ei

2] ≤ �Tmp +Tmp, hence, on the positive side, Pr[Xi = 1] ≥ 1−Tmp(�+1).

Let X := ∑q̄min
i=1 Xi , and let us define q̄ ′

min := (1−δ′′) ·(1−Tmp(�+1)) · q̄min . Since
by Eq. (1) the term 1−2(�+1)Tmp must be positive, we have that Tmp(�+1) ≤ 1

2 and,
because FStX treats each new state-submission independently of previous submission,
we conclude that Pr[Xi = 1 | X1, . . . , Xi−1] ≥ 1

2 . Since we do not argue here about
any particular optimal strategy by an environment-adversary pair (Z,A), we need to
invoke Lemma 7.17 from which we get

Pr[X ≤ q̄ ′
min] ≤ exp

(
−(δ′′)2q̄min/2

)
. (3)

To express this w.r.t. βmin , observe that not only αr > βr (and thus αmin > βmin) by

Eq. (1) but also there is an actual constant 0 < δ̂ < 1 such that Tmp(� + 1) < 1 − δ̂.
This is true since by the theorem condition we deduce that

(1 − 2(� + 1)Tmp) ≥ λ(βmin/αmin)

�⇒ 1 − λ(βmin/αmin) ≥ 2(� + 1)Tmp > (� + 1)Tmp.

And since λ > 1, i.e., we get can bound the constant by 0 < δ̂ < λ(βmin/αmin) and
obtain

(1 − Tmp(� + 1)) · q̄min > δ̂(1 − δ′) · αSt > δ̂(1 − δ′) · βSt.

And hence conclude by Eq. (3) that Pr[X ≤ q̄ ′
min] ≤ exp(−�(βmint)). We thus have a

(high-probability) lower bound on the number of silent patterns.
We are actually interested in the number of times that Xi = Xi+1 = 1. This situation,

as already introduced above, means that we have a situation, in which for � rounds, no
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miner is successful, then exactly one honest-and-synchronized miner is successful, and
afterward, we again have � rounds of silence. This is denoted in [44] as a convergence
opportunity. For example, a convergence opportunity has the desirable property, that
at the end of such an opportunity, if the adversary is unable to provide a longer state
to the honest-and-synchronized miners during this period, all honest-and-synchronized
miners will reach an agreement on the current longest state. Thus, in order to prevent
this, an adversary needs to be successful in mining roughly at the rate of the number of
convergence opportunities within t rounds.

We have already seen that with overwhelming probability, there are at least q̄min suc-
cessful rounds, and among which (q̄min − q̄ ′

min) can disturb convergence opportunities.
Since a single disturbing round can at most prevent two convergence opportunities (it
violates the condition for a convergence opportunity with its neighbors in the sequence
X1, . . . , Xk), the number of effective convergence opportunities C is lower bounded
(except with negligible probability) by

C ≥ q̄min − 2(q̄min − q̄ ′
min) = 2q̄ ′

min − q̄min

≥ (1 − δ′)αSt[1 − 2Tmp(� + 1) − 2δ′′].

For any constant ε, by picking δ′ and δ′′ sufficiently small, this yields a bound (except
with negligible probability as derived above) of

C > (1 − ε)(1 − 2Tmp(� + 1))αSt.

The final argument is a counting argument. Let us denote by Sr ′ the set of maximal
states known to FStX at round r ′ (i.e., any path from the root to some a leaf) of length at
least � + C , where � is the length of the longest state known to at least one honest-and-
synchronized miner at round s. Note that S�+C

r ′ is non-empty: since each convergence
opportunity increases the length by at least one, and before each successful round, there
is a period of � rounds where no honest miner mines a new state, there has to exist at
least one state with length at least � + C at round r ′.

Assume that the number of successful state extensions made by the adversary (to
FStX) between round s and r ′ is TA < C . Then, by the pigeonhole principle, for all

st ∈ Sr ′ , it holds that there is at least one block stk , such that functionality FStX

is successfully queried by exactly one honest-and-synchronized miner P in round i to
extend the state to length k + 1, but no query by the adversary to extend a state of length
k to a state of length k + 1 has been successful up to and including round r ′. Even
more, TA < C implies that such an i has to exist that also constitutes a convergence
opportunity.

After this convergence opportunity at round i , all honest-and-synchronized miners
have a state whose first k + 1 blocks are 
sti = st0 . . . ,stk . Unless the adversary
provides an alternative state with a prefix 
st′

i of length k + 1, such that st′
l �= stl for

at least one index 0 < l ≤ k, no honest-and-synchronized miner will ever mine on a
state whose first k + 1 blocks do not agree with 
sti .
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The existence of an alternative prefix 
st′
i of length k + 1 for any such i and for

all states 
st ∈ S�+C
r ′ implies TA ≥ C and therefore contradicts the assumption that

TA < C .
What is left to prove is that for any such interval of size t (from round s to round r ′),

the probability that TA < C holds in any real-world execution except with negligible
probability in βmint . Analogously to Lemma 7.12, by the definition ρa · Tmp = βmin

(and recalling that we established a lower bound on t in the beginning) we get that this
error probability is negligible in T .

First, by Lemma 7.13, for any ω > 0, the probability that any new state accepted by
an honest-and-synchronized miner during the period of at most t + 1 rounds (from s to
r ′) is actually a state extension that the adversary withheld since round s − ω(t + 1) (or
even before) is at most negl(βmint). By Lemma 7.12, the number of adversarial blocks
(i.e., successful state extensions by A) generated within this slightly larger interval S′
of size |S′| = (1 + ω)(t + 1) rounds is (except with probability negl(βmint)) upper
bounded by TA ≤ (1 + δ)(1 + ω)(t + 1)βS′ . Also by picking constant ω sufficiently
small, we have that |S| ≥ (1 − αmax�)|S′| and thus αS dominates βS′ by the theorem
assumptions. We hence get TA ≤ (1+δ)(1+ω)

λ
(t + 1)αS · (1 − 2Tmp · (�+ 1)) by Eq. (1).

By picking the constants δ and ω, and ε sufficiently small relative to λ, we hence get
TA < C except with probability negl(βmint). Since our arguments hold for any particular
intervals S, we again apply the union bound over the number of rounds and get the desired
claim. �

We used the following useful lemma in the previous proof to bound the deviation with
respect to an arbitrary environment (inducing a certain sequence of random variables):

Lemma 7.17. Let τ ≥ 1
2 and consider boolean random variables X1, . . . , Xn for

which it holds that Pr[Xi = 1 | X1, . . . , Xi−1] ≥ τ . Then, for any δ > 0,

Pr

[
n∑

i=1

Xi ≤ (1 − δ)τn

]

≤ exp
(
−δ2n/2

)
.

Proof. We define the random variables Yk := ∑k
i=1(Xi −τ) = (

∑k
i=1 Xi )−kτ . First,

they satisfy the sub-martingale condition, i.e., for all k, E[Yk | Y1, . . . Yk−1] ≥ Yk−1: let
Pr[Yk = yk−1 + (1 − τ) | Yk−1 = yk−1] = Pr[Xk = 1 | X1, . . . , Xk−1] =: p1 ≥ τ and
Pr[Yk = yk−1 + (−τ) | Yk−1 = yk−1] = Pr[Xk = 0 | X1, . . . , Xk−1] := p0 ≤ 1 − τ .
The (conditional) expected value is p1(yk−1 +(1−τ))+ p0(yk−1 −τ) ≥ yk−1 + p1(1−
τ) − p0τ ≥ yk−1 + [τ(1 − τ) − (1 − τ)τ ] = yk−1.

Second, we have a bounded difference of |Yk − Yk−1| ≤ max(τ, 1 − τ) = τ by the
condition τ ≥ 1/2. Applying the Azuma-Hoeffding bound given by Theorem 2.4 to the
variables Yk gives

Pr[Yn ≤ −δτn] ≤ exp(−δ2n/2).

And by definition Yn ≤ −δτn ↔ Xn ≤ nτ − nδτ , the statement follows. �
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Concluding observations. Finally, we conclude the proof by noting that after a delay of
� rounds, all honestly multicast transactions are known to all honest-and-synchronized
miners and would be included into the next honestly minded block if valid. In the simu-
lation, the simulator also does it in the ideal world and hence will never propose blocks
of honest parties that do not comply with the conditions of the defined ExtendPolicy
of G B

ledger. Further, the synchronization of a party takes at most Delay = 4� clock
ticks: if Pj joins the network, his knowledge of the longest chain and the set of valid
transactions relative to that state, which is known to at least one honest and synchronized
miner is only reliable after 2� rounds (4� clock ticks) since it takes at most � rounds
to multicast the initial message that the miner has joined the network, and additional
� rounds until the replies are received. During this 2� round the new miner will also
have received all messages sent at or after he joined the network, and in particular all
transactions that are more than � rounds (2� = Delay

2 ) old and potentially valid.
The pointers of honest-and-synchronized parties can also not be too distant, i.e., the

slackness is upper bounded by windowSize ≥ T as otherwise we would have a
common-prefix violation in that execution (assume the prefix of the chain known to a
honest-and-synchronized party was further away than T blocks from the prefix of the
actual longest chain, this would yield a fork with substantial probability). The theorem
follows. �

7.5. Improving the Chain-Quality Parameter

As long as αmin > βmax , we see that among windowSize state blocks, there is at least
an honestly generated block, because then, by Eq. (1), we also have γmin > βmax and
thus βmax

γmin
< 1. Such an assumption is usually taken in existing analyses. However, we

can derive more general bounds for chain-quality (where the above case is one special
case) to obtain bounds for more general scenarios. In light of the chain-growth statement
in Lemma 7.11, we introduce the following useful quantity:

Definition 7.18. Let the mining pattern be (
α, 
β) for R rounds, let the network delay
be �, and let S be an interval. Define

cg�(S) := max{τ ∈ (0, 1) | ∀S′ ⊆ S with |S′| ≥ max{1, |S|(1 − � · γ (τ,�))} : αS′

≥ τ };

and define the fraction

fcq := max
S⊆{0,...,R−1}

βS

γ (cg�(S),�)
.

Both quantities are well-defined as functions since we assume that ∀r : αr > 0. We
derive a more general worst-case guarantee for the fraction of adversarial blocks which
in particular shows that this fraction is less than one under the theorem condition.

Lemma 7.19. (Generalization of Lemma 7.15) Consider a real-world execution as
in Theorem7.9. Let Pi be a miner, and let r ≥ 0. Assume Pi is honest-and-synchronized
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in round r and that the length of the longest state received or stored is � ≥ T . The
fraction of adversarially mined blocks within a sequence of T blocks in the state is at
most min{1, (1 + δ) · fcq} except with probability R · negl(T ) for any δ > 0 and where
fcq is defined as in Definition7.18. Under the condition of Theorem7.9, this means that

for the ledger G B
ledger, we can guarantee

η ≥ min{(1 + δ) · fcq , 1},

with fcq < 1 (and for any δ > 0).

Proof. The proof proceeds as the one of Lemma 7.15: consider any sub-sequence of T
state blocks st j+1, . . . ,st j+T in 
str . We again assume that 
st< j is mined at round

r ′ (by an honest-and-synchronized party), and that in round r ′ + t , the state 
st> j+T

appears for the first time as the state, or the prefix of a state, of at least one honest-and-
synchronized miner. Recall that if an adversary successfully extended the state during
some round by a new state block st j+s of the above sequence st j+1, . . . ,st j+T , then
this happens in a round between r ′ and r ′ + t . Let us denote this interval by the set S of
rounds.

Since t is assumed to be the minimal number of rounds until the first honest miner
adopted a state containingst j+1, we can actually make use of the general part of Lemma
7.11 to conclude that the probability that the condition t ≥ T

(1−δ′)γ (cg�(S),�)
occurs in

such an execution is at most negl(T ) and obtain t ≤ T
(1−δ′)γ (cg�(S),�)

with overwhelming
probability in T . On the other hand, the lower bound on t is as in the proof of Lemma 7.15.

Let again Nt
A denote the expected value of adversarial blocks in t rounds, invok-

ing Lemma 7.12 gives us that Nt
A ≤ (1 + δ)βSt except with probability negl(βSt).

The number of times the adversary was successful in extending the state by one block
can therefore be upper bounded by the quantity

N
T

(1−δ′)γ
A ≤ 1 + δ

1 − δ′ · T · βS

γ (cg�(S),�)
.

Since our arguments hold for any interval, the proof is concluded by taking the worst
case over all rounds and the maximal fraction equals fcq as claimed.

To establish the last part of the statement, we observe that Eq. (1) in particular implies
that for any interval S (of sufficient size), we have that any subset S′ of rounds of size
(1 − αmax�)|S| fulfills αS′(1 − Tmp�) > (1 + ε)βS for some ε > 0. Since a lower
bound x for αS′ over all subsets of size (1 − αmax�)|S| implies that x is also a lower
bound for any larger subset S′′ and hence for cg�(S). Observing that for x,� > 0,

x
1+x� > x(1 − x�) and Tmp ≥ cg�(S), we get γ (cg�(S),�) > βS as required to
conclude that fcq < 1. �
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8. Special Cases of our Model and Functionality Wrappers

In this section, we first explain how our main theorem relates to the influential initial
provable security analyses of Bitcoin. Afterward, we show how to use functionality wrap-
pers to enforce the main theorem’s conditions in order to obtain composable statements
(i.e., with respect to all environments).

8.1. Special Cases and Existing Works

We demonstrate how the protocols, assumptions, and results from the two existing works
analyzing security of Bitcoin (in a property based manner) can be cast as special cases
of our construction. We focus on the early analyses of Pass et al. [44] (PSs for short) and
the original analysis of Garay et al. [24] (GKL for short). Both initial models assume a
fixed upper bound n on the number of active participants in the protocol execution. All
honest parties are assumed to be synchronized (e.g., by special initialization messages
by the environment).

GKL analysis (fixed difficulty and delay). We start with the result in [24], in particular
with the so-called flat (every party has the same hashing power) and synchronous model
with next-round delivery. The relevant variables are defined as follows:

• Each party is allowed to perform q ≥ 1 hash queries. This translates to a success
probability of pH = 1 − (1 − p)q and pA = p, and to a total mining power
TGKL
mp := p · q · n.

• The adversary gets (at most) q queries per corrupted party with probability pA = p
(there are no desynchronized parties). If tr denotes the number of corrupted parties
in round r , the expected value would be tr · q · p, and thus, we can define the upper
bound on the adversarial mining power βGKL

max = p · q · (ρ · n), where ρn is the
(assumed) upper bound on the number of miners contributing to the adversarial
mining power (independent of r ). Since the adversary is free to go to the limit in
the model, the mining pattern is also flat: 
β = (βGKL

max , . . . , βGKL
max ).

• Each honest and synchronized miner gets exactly one activation per round and has
success probability pH = 1 − (1 − p)q ∈ (0, 1), for some integer q > 0 and hence
we get a minimal honest mining power of αGKL

min = 1−(1− p)q(1−ρ)·n (independent
of r ). Note that since n is assumed to be fixed in their model, q(1 − ρ) · n is in
fact a lower bound on the honest and synchronized hashing power. Since the model
assumes that this lower bound could potentially always be allowed, we again define
the flat mining pattern 
α = (αGKL

min , . . . , αGKL
min ).

• If instant delivery is assumed, this translates to defining �GKL := 1, i.e., guaranteed
delivery in the next round.

PSs analysis (fixed difficulty). Similarly, we can instantiate the above values with the
assumptions of [44]:

• For each corrupted party, the adversary gets at most one query per round. Each
honest miner makes exactly one query per round. In total, there are n parties among
which ρn can be corrupted (in any round).
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• In the PSs model, pH = pA = p and hence TPSs
mp = p · n. With these values we get

βPSs
max = p · (ρ ·n). Putting things together, we also have αPSs

min = 1 − (1 − p)(1−ρ)·n ,
where (1 − ρ) · n is the lower bound on the honest (and hence also synchronized)
parties. As before, the mining pattern is flat.

• The delay of the network is upper bounded by a constant �PSs (as usual, unknown
to the participants).

The security is established by the following lemma:

Lemma 8.1. For the special settings above, if we impose the assumption that

α
{GKL, PSs}
min · (1 − 2 · (�{GKL, PSs} + 1) · α

{GKL, PSs}
min ) ≥ λ · β{GKL, PSs}

max (4)

then this implies the secure realization of the Bitcoin ledger with the parameters assured
by Theorem7.9 for the above choices of values, respectively.

Proof Sketch. The statement of course follows from the arguments given in the respec-
tive works [24] and [44] since our execution model in particular allows us to formulate
the above assumptions. However, it is instructive to see how the security follows in
view of Theorem 7.9. In particular, why security follows when replacing the condi-
tion in Eq. (1) by Eq. (4). At first sight, the condition is stronger as it implies that the
best strategy of the adversary is dominated by the worst strategy of the honest play-
ers. However, the discount factor (1 − 2 · (�{GKL, PSs} + 1) · α

{GKL, PSs}
min ) is better than

(1 − 2 · (�{GKL, PSs} + 1) ·TGKL,PSs
mp ). The key observation why Eq. (4) subsumes Eq. (1)

in the special cases described above are the following:

• Since the number n of parties is fixed and exactly divided into honest and adver-
sarial, and because the worst-case honest strategy still dominates the adversary’s
best strategy, we can use to following argument to justify why Eq. (4) is actually
sufficient. Still, the best strategy of the adversary is to activate as many corrupted
parties, say t , as allowed by the upper bound βmax . Since the number of parties is
fixed, this implies that at most n − t activations of honest parties remain and by
definition αmin = 1 − (1 − p)(n − t) is the matching lower bound. Hence, and
in contrast to the more general setting, here the best strategy for corrupted parties
induces a concrete strategy for honest parties.13 A bit more formally, let x denote
the number of queries such that αmin = 1− (1− p)x holds. Assume in some round
r , more honest parties are activated, say qrH . By definition, βmax ≥ p · (n − x)
and we can formally assign the difference (qrH − x) to the adversary’s budget (and
the condition αmin > βmax is preserved as stated below). First, observe that for
integers x, y > 1,

13Note that in a more general setting, this not need to be the case: even if the bound on the adversary is
small, by activating a huge fraction of honest parties the consensus of honest parties could still be disturbed
and hence our analysis has to consider such “malicious” strategies as well.
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αr − α = (1 − (1 − p)x+y) − (1 − (1 − p)x ) = (1 − p)x − (1 − p)x+y

= (1 − p)x · (1 − (1 − p)y) ≤ (1 − (1 − p)y) ≤ (1 − (1 − y · p))
= y · p,

where the last inequality is a consequence of Bernoulli’s inequality. The adversary’s
mining power is thus increased, however not beyond βmax since the identity n−x =
(n − qrH ) + (qrH − x) is guaranteed because n and x are fixed for the analysis.

• Looking at the proof of Theorem 7.9, we see that the quantities αS and βS can be
identified by αmin and βmax , respectively, and in addition the relationship αmin >

βmax is implied by Eq. (4) (and thus αS > βS for any subset S of rounds of any
size. With this, all Lemmata in the proof of Theorem 7.9 simplify and no further
condition in addition to Eq. (4) is needed.

With this in mind, replacing the condition in Eq. (1) by Eq. (4) the proof of Theorem
7.9, under the conditions imposed by the above models, yields the statement of the
lemma. �

8.2. Restrictions and Composition

Note that the theorem statement a-priori holds for any environment (but simply yields
a void statement if the conditions are violated). In order to turn this into a composable
statement without restrictions, we follow the approach proposed in Sect. 3 and model
restrictions in the setup of the protocol via wrapper functionalities. The general con-
ceptual principle behind this is the following: For the hybrid world, that consists of a
network FN-MC, a clock Gclock and a random oracle Fκ

RO with output length κ (or al-
ternatively the state-exchange functionality FStX instead of the random oracle), define
a wrapper functionality W which enforces a given mining pattern (
α, 
β) (and the upper
bounds on the mining power). If the conditions of Theorem 7.9 are met, then we get a
UC-realization statement with respect to all (efficient) environments.

A general wrapper. We define such a general wrapper for our setting and denote it by

W�,Tmp


α, 
β,D
(F�

N-MC,Fκ
RO) in Fig. 10. Note that this wrapper slightly changes the synchrony

pattern of the real-world execution: since a lower bound on honest mining power is
enforced (otherwise, the clock does not go on), we realize the ledger with a slightly
different predicate predict-timeBC to reflect this assumption. It is easy to see that this is
a straightforward extension to the derivation in Lemma 5.2. We note that this change to
the synchronization pattern just stems from the fact how we implement such restricting
assumptions but does not affect other modeling decisions and the we still realize the
ledger (this is actually a major motivation to abstract the time-dependency of the ledger
using such an abstract predicate, such that minor details have only local effects). For this
wrapper we have the following desired corollary to Theorem 7.9 and Lemma,7.2. This
statement is guaranteed to compose according to the UC composition theorem.

Corollary 8.2. The protocol Ledger-Protocolq,D,T , defined in the

(Gclock,W
�,Tmp


α, 
β,D
(F�

N-MC,Fκ
RO))-hybrid world, UC-realizes functionality G B

ledger (for

the parameters established by Theorem7.9 and the extended predicate predict-timeBC
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Fig. 10. The wrapper that restricts the adversarial access to the real-world resources.

as described above) if the parameters of the wrapper (and thus formally enforced by the
setup-functionality of the protocol), satisfy equation (1).

Remark. It is straightforward to design different wrappers capturing a range of assump-
tions that one might want to make (and which imply the conditions of Theorem 7.9), such
as an explicit restriction on number of active participants etc. An additional interesting
observation is that if Bitcoin did require that block extensions are accompanied by their
hash explicitly, i.e., report y := H [Bi ] along with a new block Bi (and honest parties
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consequently ignored a received block that is not paired with the right hash value), then
the wrapper could be simplified. As the adversary would not be able to abuse honest
verifications as actual (adversarial) work, the wrapper would not have to consider the
special case of adversarial multicast-messages in Fig. 10 when computing the budget.

As a final remark, we point out that the wrapper enforces that honest and adversarial
attempts at solving PoW-puzzles (modeled via evaluations of the RO) are made in tan-
dem, that is, the adversary cannot consume the budget of future rounds ahead of time.
This also means that, effectively, the execution starts at the same time for everyone.
This is one of two ways how to render pre-computation attacks ineffective, the other one
being to define the start of the execution to be the point when a random genesis block is
published—by an additional hybrid functionality as done for example in [6] in the PoS
case.

9. Modular Constructions Based on the Ledger

The ledger functionality can be enhanced in a modular way in various directions. In this
section, we show a simple extension to strengthen liveness thanks signatures. Informally,
the stronger guarantee ensures that every transaction submitted by an honest participant
will eventually make it into the state. In this section we present this stronger ledger
and show how such an implementation can be captured as a UC protocol which makes
black-box use of the Ledger-Protocol to implement this ledger. The UC composition
theorem makes such a proof immediate, as we do not need to think about the specifics
of the invoked ledger protocol, and we can instead argue security in a hybrid world with
access to G B

ledger.

Protection of transactions using addresses. In Bitcoin, a participant creates a unique
address denoted by AddrID by generating a signature key pair and hashing the public
key. Any transaction of this party includes this address, i.e., tx = (AddrID,tx′). An
important property is that a transaction of a certain address cannot be invalidated by a
transaction with a different address ID. Hence, to protect the validity of a transaction,
upon submitting tx, party Pi has to sign it, append the signature and verification key to
get a transaction ((AddrID,tx′), vk, σ ). The validation predicate now additionally has
to check that the address is the hash of the public key and that the signature σ is valid
with respect to the verification key vk. Roughly, an adversary can invalidate tx, only
by either forging a signature relative to vk, or by possessing key pair whose hash of the
public key collides with the address of the honest party.

The realized ledger abstraction, denoted by G B+
ledger, is a ledger functionality as the

one from the previous section, but which additionally allows parties to create unique
addresses. Upon receiving a transaction from party Pi ,G B+

ledger only accepts a transaction
containing the AddrID that was previously associated to Pi and ensures that parties are
restricted to issue transactions using their own addresses. As we explain, this amplifies
transaction liveness.
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9.1. A Stronger Ledger with Address Management

9.1.1. Overview and Definitions

To achieve stronger guarantees than our original Bitcoin ledger, a party issues transac-
tions relative to an address. More abstractly speaking, a transaction contains an identifier,
AddrID, which can be seen as the abstract identity that claims ownership of the trans-
action. More specifically, we can represent this situation by having transactions tx be
pairs (AddrID,tx′) with the above meaning. Signatures enter the picture at this level:
an honest participant will issue only signed transactions. In order to link verification key
to the address, AddrID is the hash of the verification keys, where we require collision
resistance. More concretely, whenever a miner is supposed to submit a transaction tx, it
signs it and appends the signature and its verification key. The validation consists of three
parts. First, it is verified that the public key matches the address, second, the signature
is verified, and third, its validated whether the actual transaction (AddrID,tx′) is valid,
with respect to a separate validation predicate ValidTx B on states and transactions tx
of the above format. Only if all three tests succeed, the transactions is valid. We make
use of an existentially unforgeable digital signature scheme and recall its definition here:

Definition 9.1. A digital signature scheme DSS := (Gen,Sign,Ver) for a message
space M, signature space S, and key space K = SK×PK consists of a (probabilistic)
key generation algorithm Gen that returns a key pair (sk, vk) ∈ K, a (possibly prob-
abilistic) signing algorithm Sign, that given a message m ∈ M and the signing key
sk ∈ SK returns a signature s ← Sign(sk,m), and a (possibly probabilistic, but usually
deterministic) verification algorithm Ver, that given a message m ∈ M, a candidate
signature s′ ∈ S, and the verification key vk ∈ PK returns a bit Ver(vk,m, s′). The
bit 1 is interpreted as a successful verification and 0 as a failed verification. We require
correctness, that is, we demand that Ver(vk,m,Sign(sk,m)) = 1 for all m ∈ M and
all pairs (vk, sk) in the support of Gen.

Definition 9.2. A digital signatures scheme is existentially unforgeable under chosen
message attacks if no efficient adversary A can win the following security experiment
better than with negligible probability: the challenger first chooses a key pair (sk, vk) ←
Gen. Then it acts as a signing oracle, receiving messages m ∈ M from the adversary
and responding with Sign(sk,m). At any point, A can undertake a forging attempt by
providing a message m′ and a candidate signature s′ to the challenger. The adversary
wins if and only if Ver(vk,m′, s′) = 1 and m′ was never queried before by A.

9.1.2. The Protocol for Address Management

Hybrid ledger functionality. Let ValidTx B and blockify B be as in the previous section
but with the following additional property: each transaction is a pairtx = (AddrID,tx′)
where the first part is bitstring of fixed length and the second part is an arbitrary transac-
tion payload. In addition we require the following property: for any state state and any
transaction tx it holds that ValidTx B(tx,state) = 1 implies, for any state extension
state||st′, that ValidTx B(tx,state||st′) = 1, if st′ does not contain a transac-
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tion with the same identifier AddrID (this is clearly satisfied for Bitcion for example).
Recall that we also assume that Definition 6.1 is satisfied.

Our protocol is defined w.r.t. a Bitcoin ledger functionality with the following valida-
tion predicate, which is defined relative to a hash function H , and a signature scheme
DSS.

Algorithm to describe the assumed validation predicate

function ValDSS(BTX,state,buffer)
Let BTX = (tx, txid, τL , pi )
Parse tx as ((AddrID,tx′), vk, σ ) (Return 0 in case of a wrong format)
if AddrID = H(vk) and Ver(vk,tx, σ ) = 1 then

return ValidTx B(tx,state)

else
return 0

Protocol. The protocol is straightforward: whenever the protocol is given an input of
the form (AddrID,tx) it first checks that it is the party associated with this address ID.
Then, it receives the newest state from the ledger and checks, whether this input is valid
with respect to the current state. If this is the case, the party signs the input and submits
it to the ledger.

Protocol addrMgmt(P)

General Behavior:

This protocol exports the same interface as Gledger, and only changes the behavior of read or submit-queries
to the ledger. Any other command is simply relayed to Gledger and the corresponding output is given to the
environment.

Address Management:

• The protocol maintains a counter i (initially 0).
• Upon receiving (CreateAddress, sid), execute (sk, vk) ← Gen, update i ← i + 1 and set AddrIDi ←

H(vk). Return (CreateAddress, sid,AddrIDi )

Ledger Read and Write:

• Upon receiving (read, sid) send (read, sid) to Gledger and receive as answer the current state =
st1|| . . . ||stn . Then do the following:

state′ ← st1 � Genesis state
for i = 2 to n do

From state block sti , extract the contents (tx1, vk1, σ1)|| . . . ||(txn , vkn , σn )

Define new block-content 
x ′ ← tx1|| . . . ||txn
state′ ← state||blockify B(
x ′)

Return (read, sid,state′)

• Upon receiving (submit, sid,tx), check that tx = (AddrID,tx′) for AddrID ∈ {AddrID1, . . .AddrIDi }.
If the check fails, ignore the input. Otherwise, do the following:

1. Read the state state from Gledger as above.
2. If ValidTx B(tx,state) = 1, then sign the input by σ ← Sign(sk,tx) and send

(submit, sid, (tx, vk, σ ))

9.1.3. The Enhanced Ledger Functionality

We present an enhanced ledger functionality with a validation predicate that enforces that
an adversarial transaction cannot prevent a transaction by an honest party to eventually
make it into the stable state of the ledger.
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Functionality G B+
LEDGER

G B+
ledger is identical to G B

ledger except with the following changes:

Difference to standard Ledger:
• Upon receiving (CreateAddress, sid) from party Pi (or the adversary on behalf of a party Pi ), send

(AccountReq, sid, Pi ) to A and upon receiving a reply (AccountReq, sid, Pi ,AddrID) do the fol-
lowing:

1. If AddrID is not yet associated to any party, store the pair (AddrID, Pi ) internally and return
(CreateAddress, sid,AddrID) to Pi .

2. If AddrID is already associated to a party, then output (CreateAddress, sid, Fail) to Pi .

Standard Bitcoin Ledger:

• Identical to G B
ledger with validation predicate Valstrong and with the fixed transaction format described

above. We omit the formal specification here.

The following validation predicate is used within G B+
ledger.

Algorithm to define the strong validation

function Valstrong(BTX,state,buffer)
Let BTX = (tx, txid, τL , pi )
if tx = (AddrID,tx′) and AddrID is associated to Pi then

return ValidTx B(tx,state)

else
return 0

On the better guarantees. The stronger guarantee for honestly submitted transactions
stems from two facts. First, by Definition 6.1, the state blocks contain transactions be-
yond coin-base transactions. Second, since a transaction of a party is associated with
its address, and cannot be invalidated by another transaction with a different address,
this implies that the transaction remains valid relative to state (unless the honest
party itself issues a transaction that contradicts a previous transaction for one of its ad-
dresses, but we neglect this here). As an example, assume an honest party submits a
single transaction for one of its addresses, and assume this transaction is valid relative
to the state state. Then, by the defined enforcing mechanism of ExtendPolicy, this
transaction is guaranteed to enter the state after staying in the buffer for long enough,
because the ledger continuously enforces that a certain fraction of blocks contain all
those unconfirmed (and still valid) transactions that are older than a certain threshold.

We have the following lemma:

Lemma 9.3. Let DSS be a secure digital signature scheme and let H be a collision
resistant hash function. Then the protocol addrMgmt in the G B

ledger-hybrid world UC-
realizes ledger G B+

ledger, where the functionalities are instantiated as described above.

Proof Sketch. It is straightforward to write a simulator in the ideal-world execution that
perfectly mimics the protocol as long as no hash-collision or signature forgery occurs.
This is because the only non-trivial property that the ledger enforces (in addition to what
the assumed ledger guarantees) is that only the address holder can submit a transaction
but no one else. If no hash-function collision is found, the only possible way is to forge
a signature. If both events do not happen, the real world indeed implements the stronger
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validation predicate. Assuming a collision-resistant hash function and a signature scheme
that is unforgeable under chosen-message attacks, this implies the statement. �
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A. Further Details on the Model

This section includes complementary material for Sect. 3.

A.1. Unicast Channels

A unicast channel can be defined as follows:

Functionality F�,PR
U-CH

The functionality is parametrized with a receiver PR , and and upper bound � on the delay of any channel. It
keeps track of the set of possible senders P . Any newly registered (resp. deregistered) party is added to (resp.
deleted from) P . The list of messages is stored in 
M , initially empty.

• Upon receiving (send,m) from some Ps ∈ P or from the adversary A, choose a new unique message-
ID mid for m, initialize variables Dmid := 1 and DMAX

mid = 1, set 
M := 
M||(m,mid, Dmid), and send
(m,mid, Dmid) to the adversary.

• Upon receiving (fetch) from PR :

1. For all registered mids, set Dmid := Dmid − 1.
2. Let 
M0 denote the subvector 
M including all triples (m,mid, Dmid) with Dmid = 0 (in the same

order as they appear in 
M). Delete all entries in 
M0 from 
M and send 
M0 to PR .

• Upon receiving (delay, Tmid,mid) from the adversary, if DMAX
mid +Tmid ≤ � and mid is a message-ID

registered in the current 
M , set Dmid := Dmid +Tmid and DMAX
mid := DMAX

mid +Tmid; otherwise, ignore
the message.

• Upon receiving (swap,mid,mid′) from the adversary, if mid and mid′ are message-IDs registered in
the current 
M , then swap the triples (m,mid, Dmid) and (m,mid′, Dmid′ ) in 
M . Return (swap-ok) to
the adversary.

A.2. On realizing Multicast from Unicast

We briefly sketch how to realize such a multicast network, in particular its synchronized version along the
lines of [34], by means of a synchronized message-diffusion protocol over a network of unicast channels (and
implicitly assuming a local clock to obtain the round structure). The core of this diffusion protocol are the
assumed and known (e.g., by a common list of IP addresses) relay-nodes to which parties thus can connect
and which forward in each round all new messages they received (either from registered parties or other relay

http://creativecommons.org/licenses/by/4.0/
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nodes) in the previous round to all the unicast channels they are connected to as senders.14 Let G = (V, E)

denote the (dynamically updatable) directed graph whose vertices V are the parties and the relay-nodes which
are currently participating in the execution and an edge (pi , p j ) is in E iff pi is one of the senders of the
multicast channel with receiver p j . It is straightforward to verify that provided that G restricted to the honest
parties (i.e., when corrupted parties and the edges that use them are deleted fromG) remains strongly connected
(i.e., there is a directed path between any two honest parties, in either direction), then the diffusion mechanism
executed over unicast channels with delay at most � security realizes a multicast network with delay �d
where d is an upper bound of the diameter of G. Indeed, the simulator, which is given any message submitted
to any unicast channel and enough activations when the dummy parties themselves get activated (note that it is
essentially a synchronous computation among the relay-nodes) needs to simply simulate when the respective
parties would see a message and schedule the corresponding deliveries by using the delays submitted by the
adversary. The fact that each channel has at most � delay means that it will take delay at most �L rounds
for it to travel through an honest path of length L . Last but not least, in order to receive messages from the
network established this way, when a party joins the network, it has to multicast a special message to the
relay-nodes that has to contain its identifier such that the relay-nodes can start sending messages to that party.
This induces at most a delay of � rounds until the party is guaranteed to receive the messages sent over the
network. For simplicity, we ignore this additional delay incurred by the registration to the network, and omit it
in our specification of the multicast functionality in Sect. 3.2. If one implements the network using the above
sketched method, one would formally obtain the a multicast functionality as given in Fig. 1, but where the
party set P contains all parties that have joined (and not yet left) the network at least � rounds ago, since
the sketched solution does not support instant registration. All remaining guarantees remain unchanged with
respect to this new party set.

B. Further Details on the Bitcoin Ledger

This section includes complementary material for Section Sect. 6. We here give the formal description of

the Extend Policy for G B
ledger. It is easy to observe that the computation performed by this algorithm is

well-defined for any definition of Validate and Blockify.
Compared to previous versions of this work, the presentation is now logically divided into the step of

deriving a default extension and the actual tests whether the adversarial proposal is admissible. The default
extension is taken as the ledger-state extension if and only the proposal by the adversary does not pass the test
specified and implemented by ExtendPolicy. The derivation of the default extension is given as pseudo-code
below. Note also that the policy makes the initial bootstrapping time of the chain now explicit, where by
bootstrapping time we mean the time it takes for the first state block to be inserted into the ledger state.

14In order to ensure that parties can send some messages twice, a nonce is attached to each input message
that is to be multicasted. The relayers do not add another nonce to the message they relay.
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Algorithm for Default State Extension

function DefaultExtension( 
IT
H ,state,NxtBC,buffer, sep)

We assume call-by-value and hence the function has no side effects.
The function returns a policy-compliant extension of the ledger state.

Let τL be current ledger time (computed from 
IT
H )

Read 
τstate and 
hf from the passed state sep

Ndf ← ε

Set 
N0 ← txcoin-base
minerID of an honest miner

Sort buffer according to time stamps and let 
tx = (tx1, . . . ,txn ) be the transactions in buffer
Set st ← blockify B( 
N0)

repeat
Let 
tx = (tx1, . . . ,txn ) be the current list of (remaining) transactions
for i = 1 to n do

if ValidTx B(txi ,state||st) = 1 then

N0 ← 
N0||txi

Remove txi from 
tx
Set st ← blockify B( 
N0)

until 
N0 does not increase anymore
c ← 0
if |state| < windowSize − 1 then � First extend to windowSize − 1 state blocks.

while |state| + c < windowSize − 1 do
if c > 0 then

Set 
Nc ← txcoin-base
minerID of an honest miner


Ndf ← 
Ndf|| 
Nc

τstate ← 
τstate||τL
c ← c + 1


τstate ← 
τstate||τL � Check whether more extensions possible.
hr ← maxs=1,...,|
τstate|−windowSize+1;t=s+windowSize−1,...,|
τstate| : t−s+1


τstate[t]−
τstate[s]+1

while hr ≤ windowSize
minTimewindow

do

if c > 0 then
Set 
Nc ← txcoin-base

minerID of an honest miner

Ndf ← 
Ndf|| 
Nc

τstate ← 
τstate||τL
c ← c + 1
hr ← maxs=1,...,|
τstate|−windowSize+1;t=s+windowSize−1,...,|
τstate| :

t−s+1

τstate[t]−
τstate[s]+1

return 
Ndf
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Algorithm ExtendPolicy for G B
ledger - Part 1

function ExtendPolicy( 
IT
H ,state,NxtBC,buffer, 
τstate)

We assume call-by-value and hence the function has no side effects.
This Function implements the Extend Policy of the Bitcoin Ledger.


Ndf ← DefaultExtension( 
IT
H ,state,NxtBC,buffer; sep) � Extension if adversary violates

policy.
Let τL be current ledger time (computed from 
IT

H )

Read 
τstate and 
hf from state sep . If the state is empty, initialize two empty vectors.
Parse NxtBC as a vector ((hFlag1,NxtBC1), · · · , (hFlagn ,NxtBCn ))


N ← ε � Initialize Result
if |state| ≥ windowSize then � Determine time of the block which is windowSize blocks behind
the state head

Set τlow ← 
τstate[|state| − windowSize + 1]
else

Set τlow ← 0
for each list NxtBCi of transaction IDs do � Compute the next state block and verify validity


Ni ← ε

Use the txid contained in NxtBCi to determine the list of transactions
Let 
tx = (tx1, . . . ,tx|NxtBCi |) denote the transactions of NxtBCi
if tx1 is not a coin-base transaction then


τstate ← 
τstate||τL || . . . ||τL , 
hf ← 
hf||1|| . . . ||1 (extended by | 
Ndf | elements) and store the
vectors in sep.
return 
Ndf and new state sep

else

Ni ← tx1
for j = 2 to |NxtBCi | do

Set sti ← blockify B( 
Ni )
if ValidTx B(tx j ,state||sti ) = 0 then


τstate ← 
τstate||τL || . . . ||τL , 
hf ← 
hf||1|| . . . ||1 (extended by | 
Ndf | elements) and store
the vectors in sep.
return 
Ndf and new state sep � Ignore the adversarial proposal if invalid.


Ni ← 
Ni ||tx j

Set sti ← blockify B( 
Ni )
hFlagi ← 1

for each BTX = (tx, txid, τ ′, Pi ) ∈ buffer of an honest party Pi with time τ ′ < τlow − Delay
2 do

if ValidTx B(tx,state||sti ) = 1 but tx �∈ 
Ni then
hFlagi ← 0 � Block is not honestly filled with transactions.


N ← 
N || 
Ni
state ← state||sti

τstate ← 
τstate||τL , 
hf ← 
hf||hFlagi and store those vectors in sep.
if |state| ≥ windowSize then

Set τlow ← 
τstate[|state| − windowSize + 1]
else

Set τlow ← 0
if τL < maxTimewindow ∧ state = ε then

return ε

.

.

.

See Part 2
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Algorithm ExtendPolicy for G B
ledger - Part 2

.

.

.

� Lowest growth rate, highest growth rate (if applicable), and adversarial rate are within their bounds.
inv ← 0 � invalid flag
if |state| < windowSize then � Ensure a timely startup with enough honest blocks.

lr ← min j=0,...,τL−maxTimewindow;i= j+maxTimewindow...τL
: windowSize+|{n∈[|
τstate|] : j≤
τstate[n]≤i}|

i− j+1

ar ← |{n∈[|state|] : 
hf[n]=0}|
windowSize

if lr < windowSize
maxTimewindow

∨ ar > η then

inv ← 1
if |state| ≥ windowSize then � Ensure ledger growth limits and enough honest blocks.

lr ← mins=1,...,|
τstate|−windowSize+1;t=s+windowSize−1,...,|
τstate| : t−s+1

τstate[t]−
τstate[s]+1

hr ← maxs=1,...,|
τstate|−windowSize+1;t=s+windowSize−1,...,|
τstate| : t−s+1

τstate[t]−
τstate[s]+1

ar ← maxs=1,...,|state|−windowSize+1;t=s+windowSize−1,...,|state| : |{n∈[s...t] : 
hf[n]=0}|
t−s+1

if lr < windowSize
maxTimewindow

∨ hr > windowSize
minTimewindow

∨ ar > η then

inv ← 1
if inv = 0 then

return 
N and new state sep
else


τstate ← 
τstate||τL || . . . ||τL , 
hf ← 
hf||1|| . . . ||1 (extended by | 
Ndf | elements) and store the vectors in sep.
return 
Ndf and new state sep

C. The Simulator of the Main Theorem

The simulator interacts with the backdoor tapes of the ideal protocol M[G B
ledger,Gclock] (to give instructions

and receive replies), and since these are two ideal processes, only the backdoor tape of the functionalities

G B
ledger andGclock are relevant. Note that technically, communication to these backdoor tapes is accomplished

via the backdoor tape of a special shell sh[G B
ledger], where by definition this allows direct interaction between

the simulator and the backdoor tape of the ITI running inside the shell (this holds analogously for the real-world
protocol and the real-world adversary).
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Simulator Sledg

Initialization:
The simulator manages internally a simulated state-exchange functionality FStX, a simulated network FN-MC. An

honest miner P registered toG B
ledger is simulated as registered in all simulated functionalities. Moreover, the simulator

maintains the local state 
stP and the buffer of transactionsbufferP of such a party. Upon any activation, the simulator
will query the current party set from the ledger (and simulate the corresponding message they send out to the network
in the first maintain-ledger activation after registration), query all activations from honest parties 
IT

H , and read the
current clock value to learn the time. In particular, the simulator knows which parties are honest and synchronized and
which parties are de-synchronized.

General Structure:
The simulator internally runs adversary A in a black-box way and simulates the interaction between A and the
(emulated) hybrid functionalities. The inputs from A to the clock are relayed (and the replies given back to A).

Messages from the Clock:

• Upon receiving (clock-update, sidC , P) from Gclock, first check whether the clock for the challenge session
has advanced from time τ to τ + 1 due to this clock-update activation. If this is the case then do the following:

1. If P is the identity of the ledger functionality, then inspect 
IT
H (obtained via a read request) and check

which miner P has issued the last (maintain-ledger, sid, minerID) request. Conclude the final step
of (the interruptible computation of) SimulateMining(PminerID, τ ) for this party. And in case τ is a
working mini-round, execute ExtendLedgerState before sending the final (clock-update, sidC , P)

to the adversary.
2. If P is not the identity of the ledger functionality and τ is a working mini-round, then execute Exten-

dLedgerState before outputting (clock-update, sidC , P) to A.

If no such clock advancement occurs, then do the following:

1. If the identity P corresponds to this ledger functionality, then inspect 
IT
H (obtained via a read request)

and check which miner P has issued the last (maintain-ledger, sid, minerID) request. Conclude the
final step of (the interruptible computation of) SimulateMining(PminerID, τ ) for this party.

2. If P is not the identity of the ledger functionality, then just output (clock-update, sidC , P) to A.

Messages from the Ledger:

• Upon any input from the ledger, the simulator first inspects 
IT
H (obtained by reading from the ledger functional-

ity) and obtains the time τ and if τ is an update mini-round, it executes, for each party P that had I = (read, sid)

in this round, the fetch-information step of procedure SimulateMining before proceedings with the specific
actions below.

• Upon receiving (submit,BTX) from G B
ledger where BTX := (tx, txid, τ, P) forward (multicast, sid,tx) to

the simulated network FN-MC in the name of P . Output the answer of FN-MC to the adversary.

• Upon receiving (maintain-ledger, sid, minerID) from G B
ledger, extract from 
IT

H (obtained by reading from
the ledger functionality) the identity Pi that issued this query. If Pi is already done in this mini-round, then ignore
the request. Otherwise, execute (as an interruptible computation) the procedure SimulateMining(PminerID, τ )
for this party.

Simulation of the State Exchange Functionality:

• Upon receiving (submit-new, sid, 
st,st) from A on behalf of a corrupted P ∈ Pst x , then relay it to the
simulated FStX and do the following:

1. If FStX returns (success, B) give this reply to A
2. If A replies with (continue, sid), input (continue, sid) to the simulated FStX
3. If the current mini-round is an update mini-round, then execute ExtendLedgerState

• Upon receiving (fetch-new, sid) from A (on behalf of a corrupted P) forward the request to the simulated
FStX and return whatever is returned to A.

• Upon receiving (send, sid, s, P ′) from A on behalf some corrupted party P , do the following:

1. Forward the request to the simulated FStX.
2. If the current mini-round is an update mini-round, then execute ExtendLedgerState
3. Return to A the return value from FStX.

• Upon receiving (swap, sid,mid,mid′) from A, forward the request to the simulated FStX and return whatever
is returned to A.

• Upon receiving (delay, sid, T,mid) from A forward the request to the simulated FStX and do the following:

1. Query the ledger state state
2. Execute AdjustView(state)
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3. Return to A the output of FStX

Simulation of the Network (over which transactions are sent) :

• Upon receiving (multicast, sid, (mi1 , Pi1 ), . . . , (mi�
, Pi� ) with list of transactions from A on behalf some

corrupted P ∈ Pnet , then do the following:

1. Submit the transactions to the ledger on behalf of this corrupted party, and receive for each transaction
the transaction id txid

2. Forward the request to the internally simulatedFN-MC , which replies for each message with a message-ID
mid

3. Remember the association between each mid and the corresponding txid
4. Provide A with whatever the network outputs.

• Upon receiving (an ordinary input) (multicast, sid,m) from A on behalf of some corrupted P ∈ Pnet , then
execute the corresponding steps 1. to 4. as above.

• Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet forward the request to the simulated
FN-MC and return whatever is returned to A.

• Upon receiving (delays, sid, (Tmidi1
,midi1 ), . . . , (Tmidi�

,midi� )) from A forward the request to the simu-

lated FN-MC and return whatever is returned to A.
• Upon receiving (swap, sid,mid,mid′) fromA forward the request to the simulatedFN-MC and return whatever

is returned to A.

Simulation of Corruptions:

• Upon corruption of a party P ∈ P , corrupt the party in all hybrid functionalities and the clock, and remember
this party as corrupted. If the corruption leads to a clock advancement, then execute the same steps as above
upon a (clock-update, sidC , P) from Gclock.

procedure SimulateMining(P, τ )
Simulate the (interruptible) mining procedure of P of the ledger protocol:
if time-tick τ corresponds to a working mini-round and P is not done yet then

Execute Step 2 of the mining protocol. This includes:
-Define the next state block st using the transaction set bufferP
-Send (submit-new, sid, 
stP ,st) to simulated functionality FStX
-If successful, store 
stP ||st as the new 
stP
-If successful, distribute the new state via FStX
-If done with all actions, the last action is outputting (clock-update, sidC , P) to A

else if time-tick τ corresponds to an update sub-round and P is not done yet then
Execute Step 3 of the mining protocol. This means that if the new
information has not been fetched in this round already, then the
following is executed:

-Fetch transactions (tx1, . . . ,txu ) (on behalf of P) from
simulated FN-MC and add them to bufferP

-Fetch states 
st1, . . . , 
sts (on behalf of P) from the simulated
FStX and update 
stP to the largest state among 
stP and 
sti

-If done with all actions, the last action is outputting (clock-update, sidC , P) to A
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procedure ExtendLedgerState
Consider all honest and synchronized players P:

- Let 
st be the longest state among all states 
stP or states contained
in a receiver buffer 
MP with delay 1 (and hence is a potential
output in the next round)

Compare 
st�T with the current state state of the ledger

if |state| > | 
st�T | then
Execute AdjustViiew(state)

if state is not a prefix of 
st�T then
Abort the simulation (due to inconsistency)

Define the difference diff to be the block sequence s.t. state||diff = 
st�T .
Let n ← |diff|
for each block diff j , j = 1 to n do

Map each transaction tx in this block to its unique transaction ID txid
If a transaction does not yet have an txid, then submit it to the ledger

and receive the corresponding txid from G B
ledger

Let list j = (txid j,1, . . . , txid j,� j
) be the corresponding list for this block.

Output (next-block, list j ) to G B
ledger (receiving (next-block, ok) as an immediate answer)

Execute AdjustView(state||diff)
procedure AdjustView(state)

pointers ← ε

for each honest and synchronized party Pi do
Using the simulated functionality FStX do the following:

- Let 
st be the longest state among 
stPi
and those contained in the

receiver buffer 
MPi
with delay 1

Determine the pointer pti s.t. 
st�T = state|pti
if such a pointer value does not exist then

Abort simulation (due to inconsistency)
if Party Pi has not executed step 3 of the mining protocol in this
current mini-round then � As otherwise, the new state is only fetched in the next round

pointers ← pointers||(Pi ,pti )
Output (set-slack,pointers) to G B

ledger
pointers ← ε

desyncStates ← ε

for each honest but de-synchronized party Pi do
Using the simulated functionality FStX do the following:

- Let 
st be the longest state among 
stPi
and those contained in the

receiver buffer 
MPi
with delay 1

if Party Pi has not executed step 4 of the mining protocol in this
current mini-round then � As otherwise, the new state is only fetched in the next round

Set the pointer pti to be | 
st�T |
pointers ← pointers||(Pi ,pti )
desyncStates ← desyncState||(Pi , 
st�T

)

Output (set-slack,pointers) to G B
ledger

Output (desync-state, desyncStates) to G B
ledger
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