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Abstract. The common approach in secure communication channel protocols is to
rely on ciphertexts arriving in-order and to close the connection upon any rogue cipher-
text. Cryptographic security models for channels generally reflect such design. This
is reasonable when running atop lower-level transport protocols like TCP ensuring in-
order delivery, as for example, is the case with TLS or SSH. However, protocols like
QUIC or DTLS which run over a non-reliable transport such as UDP, do not—and in
fact cannot—close the connection if packets are lost or arrive in a different order. Those
protocols instead have to carefully catch effects arising naturally in unreliable networks,
usually by using a sliding-window technique where ciphertexts can be decrypted cor-
rectly as long as they are not misplaced too far. In order to be able to capture QUIC
and the newest DTLS version 1.3, we introduce a generalized notion of robustness
of cryptographic channels. This property can capture unreliable network behavior and
guarantees that adversarial tampering cannot hinder ciphertexts that can be decrypted
correctly from being accepted. We show that robustness is orthogonal to the common
notion of integrity for channels, but together with integrity and chosen-plaintext security
it provides a robust analog of chosen-ciphertext security of channels. In contrast to prior
work, robustness allows us to study packet encryption in the record layer protocols of
QUIC and of DTLS 1.3 and the novel sliding-window techniques both protocols employ.
We show that both protocols achieve robust chosen-ciphertext security based on cer-
tain properties of their sliding-window techniques and the underlying AEAD schemes.
Notably, the robustness needed in handling unreliable network messages requires both
record layer protocols to tolerate repeated adversarial forgery attempts. This means we
can only establish non-tight security bounds (in terms of AEAD integrity), a security
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degradation that was missed in earlier protocol drafts. Our bounds led the responsible
IETF working groups to introduce concrete forgery limits for both protocols and the
IRTF CFRG to consider AEAD usage limits more broadly.

Keywords. Secure channel, Robustness, Robust integrity, AEAD, QUIC, DTLS 1.3,
UDP.

1. Introduction

Cryptographic channel protocols should provide confidentiality and authenticity of com-
munication in the presence of network adversaries. Consider for example the latest ver-
sion of TLS in version 1.3 [38]. Ignoring subtle issues like fragmentation, the record
layer protocol should ensure that the sender’s ciphertexts,1 c1, c2, c3, . . . are correctly
decrypted to the encapsulated messages at the receiver’s side if they arrive in this order.
Any (accidental or malicious) reordering or modifications of the ciphertexts should be
detectable and, in case of suspicious behavior, the standard specifies that the connection
must be closed:

If the decryption fails, the receiver MUST terminate
the connection with a "bad_record_mac" alert.

TLS therefore assumes, or at least hopes, that packets are delivered reliably on the
network. If a ciphertext accidentally gets lost on the transport layer then this most
likely closes the channel connection on the application level. Put differently, this way of
dealing with errors is closely associated to the TCP protocol as the underlying reliable,
connection-oriented transport layer.

Other cryptographic channels like QUIC [26,49] or DTLS [39,41], however, run atop
an unreliable, datagram-oriented transport layer, UDP in these cases. From the channel’s
point of view this means that ciphertexts (or, fragments of ciphertexts) may be lost on the
network or arrive in different order. Such protocols thus need to support more ample error
handling. Usually, they use a sliding-window technique to decrypt ciphertexts within the
window, moving the window forward whenever a valid ciphertext beyond the current
window arrives.

The sliding-window technique is interesting for the cryptographic channel for two
reasons. One is that, currently, most cryptographic models for secure channels focus
on the aborting type of protocols and thus do not touch upon the window technique
(this includes, e.g., the initial formalization of stateful authenticated encryption [7,8]
used to analyze the SSH protocol [50], length-hiding authenticated encryption variants
used to study the TLS protocol [28,35], as well as more specialized models covering
fragmentation [13], streaming [20], bidirectionality [34], or secure messaging [4,27]).
Another interesting aspect is that such protocols necessitate another property besides
correctness and the common security notions, which was mostly neglected so far.

1With ciphertext we refer to all cryptographically relevant parts of a network packet; this includes packet
headers like packet numbers that are not necessarily encrypted.
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As we will see, this gap between cryptographic modeling and real-world behavior of
unreliable channels has led draft versions of QUIC (before draft-29 [48]) and DTLS 1.3
(before draft-38 [40]) to miss a crucial degradation of the underlying AEAD scheme’s
security. Capturing the sliding-window technique and handling of unreliable transport
messages, we introduce a cryptographic channel framework that brings this degradation
to light, and ultimately led to both protocol drafts being updated to mandate concrete
forgery limits:

The integrity protections in authenticated encryption also
depend on limiting the number of attempts to forge packets.
[...]
endpoints MUST count the number of received packets that
fail authentication
during the lifetime of a connection. If the total number of
received packets
that fail authentication [...] exceeds the integrity limit
for the selected
AEAD, the endpoint MUST immediately close the connection
[...]

— QUIC RFC 9001 [49]

1.1. Robustness of Channels as a First-Class Property

In this work, we bring out robustness as a core property of cryptographic channels that
primarily focuses on protocols over an unreliable network, but also extends to reliable
networks under active attacks. Robustness roughly says that malicious ciphertexts on the
network cannot disturb the expected behavior of the channel. As a concrete example, ro-
bustness guarantees that an adversarially injected ciphertext cannot make the window of
the sliding technique shift further, such that previous ciphertexts, which would otherwise
have been inside the admissible window, would now get rejected. Let us emphasize that,
despite at first glance similar in spirit, robustness does not aim at preventing network
denial-of-service (DoS) attacks (a goal beyond classical cryptographic mechanisms).
Instead it captures that a channel should maintain functionality according to a certain
robustness level for those received ciphertexts (e.g., under DoS attacks, but not only
there).

We remark that robustness as a notion has so far not been captured by previous
security definitions for channels when it comes to where it is most relevant, namely,
for unreliable network transmission. In the realm of secure messaging [11], Jaeger and
Stepanovs [27] discuss a restricted form of robustness for bidirectional channels as part
of their correctness definition, but intentionally only treat reliable transport protocols.
Boyd et al. [14], in their generalization of different levels of authentication/AEAD in
a hierarchy similar to the one introduced by Kohno, Palacio, and Black [31], come
closest to the idea of a more fine-grained approach to different properties like reordering
or dropping of ciphertexts. Likewise, Rogaway and Zhang [44] capture different level
sets for permissible ordering for stateful authenticated encryption, capturing a hierarchy
similar to [14,31]. Yet, it turns out that QUIC [26,49] and DTLS 1.3 [41], for example,
would be declared as insecure according to their models. This is due to technically
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Fig. 1. Illustration of a channel over unreliable transport using a sliding window at the receiver, leading to
some packet being first rejected (left) and upon later retransmission accepted (right). After having received
only packet 0 (left-hand side), the channel will reject packet 6 as it is reordered “too far,” beyond the receiver’s
sliding window of (toy) size 4. At a later point, having also received packets 3 and 4, packet 6 is retransmitted
and now accepted, being within the (now shifted) sliding window. Such revisiting of acceptance decisions can
happen in real-world protocols like QUIC or DTLS 1.3, but is ruled out as insecure by prior channel models
[14,31,44].

subtle, but model-inherent reasons resulting from the deployed dynamic sliding-window
technique and the protocols’ novel approach to only transmit partial packet numbers.
Concretely, this can lead to a too-far-reordered packet first being rejected by a receiver,
and then upon later retransmission being accepted; see Fig. 1 for an illustration. We
provide more details in Sect. 3.3 when introducing our formalism.

In a different light, Chen et al. [15] (and similarly Lychev et al. [33] in prior work for
an early version) study the QUIC record layer as part of an overall ACCE-type analysis
[28]. While their formalism treats QUIC as having no reordering and replay protection
(level 1 in the hierarchy of [14]), they informally argue that packet number authentication
in QUIC “essentially” achieves TLS-like authentication and reordering protection. Our
work provides a more fine-grained and formal analysis of the properties that sliding-
window cryptographic channel protocols achieve over an unreliable network.

We note that the term robustness has already been used in other settings, notably
close, e.g., for (public-key and symmetric) encryption [1,19] to express the difficulty
to produce a ciphertext correctly decrypting under two keys. In our setting, robustness
expresses that a communication channel’s expected behavior cannot be disturbed by
malicious ciphertexts.

1.2. Defining General Robustness

Defining robustness as a general notion is delicate because we need to compare the
behavior in presence of an active adversary to the expected behavior of the channel
under non-malicious alteration due to the network, be it reliable or unreliable. To capture
different expected channel behaviors like the ability to recover from ciphertext losses or
from ciphertext reordering in a single definition, we parameterize the channel protocol
by a predicate supp describing supported ciphertexts, i.e., ciphertexts which should
be processed correctly by the channel.2 This predicate operates on the sequences of

2To be precise, we will optionally allow the predicate supp to associate an index with a positive decision,
recovering a received ciphertext’s position in the original sequence of sent ciphertexts. This enables us to
capture non-unique ciphertexts in channels that rely on sliding windows.
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sent and received ciphertexts so far, and thus represents a global view on the network
communication.

We show how such support predicates allow us to capture various scenarios for desired
channel behavior, spanning both reliable and unreliable networks. On the extreme ends
this includes a strict ordering of ciphertexts at the receiver’s side, as in TLS 1.3 over
reliable networks, and (almost) no guarantees as in DTLS 1.2 with no replay protection.
Our notion also allows to portray different sliding-window techniques with both static
and dynamic window sizes, which is what enables us to capture the mechanisms deployed
in QUIC and DTLS 1.3.

Introducing supp as a parameter already affects the correctness definition of a chan-
nel. Correctness then says that the protocol acts as expected on supported ciphertext
sequences, now defined as a game with a weak network adversary which can only tam-
per with the order of ciphertexts. Once we have the advanced notion of correctness we
can define robustness in a generalized way. Our robustness notion, denoted ROB, com-
pares the real behavior of the channel with the correct behavior that would be obtained
when filtering out any maliciously modified or injected ciphertext by an active adversary.
For a robust channel we expect both behaviors to be quasi identical, implying that the
malicious ciphertexts cannot make the protocol deviate. In particular, if a channel uses
sliding windows to identify admissible ciphertexts, then malicious network data cannot
falsely modify the window boundaries.

1.3. Relations Between the Security Notions

We relate the notion of robustness to the classical notions of channel integrity and con-
fidentiality (indistinguishability under network-passive (IND-CPA) and -active attacks
(IND-CCA)). For this we first recapture the (stateful) notion of ciphertext integrity
INT-sfCTXT [8] within our framework with the predicate supp, yielding our integrity
definition of INT. For chosen-ciphertext security we adopt the (stateless) IND-CCA3
notion of Shrimpton [45] which combines integrity and confidentiality into a single
game. The notion is called INT-IND-CCA in our setting. Let us emphasize that these
integrity and indistinguishability notions are generalizations or reformulations of the
established channel notions, parameterized via the supp predicate to handle different
channel behaviors.

We first argue that robustness and integrity are orthogonal in the sense that neither one
implies the other. But we can define a combined notion called robust integrity (ROB-INT)
which is implied by both notions together, and vice versa implies both notions. Arguably,
this combined robust-integrity notion should be the target integrity notion for unreliable-
transport protocols in practice, serving as stepping stone for full security (as we see for
QUIC and DTLS 1.3 below). We then define a notion ROB-INT-IND-CCA which is the
“robust analog” of INT-IND-CCA security for channels, capturing the strongest guar-
antees by combining confidentiality, integrity, and robustness, and overall the ultimate
target for protocols like QUIC and DTLS 1.3. We show that this robust notion can be
achieved either by considering an IND-CPA secure channel which also provides robust
integrity. Alternatively, one can add robustness to a INT-IND-CCA channel to derive the
notion, too. Conversely,ROB-INT-IND-CCA implies robust integrity and IND-CPA se-
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Fig. 2. Overview over relationships of robustness, integrity, and indistinguishability notions for any fixed
predicate supp; with notions encoding robustness highlighted in gray. Solid arrows from A to C via B (with
a “+”) indicate implications A ∧ B ⇒ C . Dotted arrows from A to B indicate explicitly shown implications
A ⇒ B; further implications follow by transitivity. Dashed, struck-through arrows between A and B indicate
separations of A and B. Numbers indicate the corresponding propositions .

curity and thus also INT-IND-CCA. Our results about the relations between the notions
are summarized in Fig. 2.

1.4. Robustness of QUIC and DTLS 1.3

Turning to the record layer protocols of QUIC and DTLS 1.3 we provide an abstract
representation of their packet encryption as a cryptographic channel. Both protocols rely
on an AEAD scheme to protect the payload. With minor differences, both use packet
numbers as nonces for AEAD encryption but only transmit parts of the packet number
with the ciphertext. As a result, the receiver must be able to recover the correct packet
number from the fraction transmitted with the ciphertext. This is accomplished by using a
sliding window for determining the nearest packet number matching the received partial
information. Remarkably, the sliding window’s size is variable. For example in QUIC,
the sender adaptively chooses to send only the least 1–4 bytes of the packet number,
which the the receiver then interprets in a sliding window around the last processed
packet number, with a window of dynamic size 28, 216, 224, or 232 (depending on the
truncated packet number length). Note that this approach is different from previous
approaches such as DTLS 1.2 which transmits the full packet number in clear.

The above window is required to determine the full packet number but does not
necessarily provide protection against replay attacks. For instance, sending the same
ciphertext twice immediately would yield the correct packet number in both cases, since
the window has not progressed too far the second time. Therefore, both protocols use
another (fixed-size) sliding window on the receiver side to detect replayed ciphertexts.
Both these replay-check windows reach backwards from the last valid packet number
on the receiver’s side.

We establish that QUIC achieves the intended level of robustness with respect to its
supported in-window reordering with replay protection. Robustness of QUIC, beyond
the appropriate encoding of (truncated) packet numbers within the sliding window, relies
on the underlying AEAD scheme’s integrity. Our proof actually shows robustness and
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integrity in one go, so that we can immediately deduce that the channel achieves the
ROB-INT property above. Arguing that QUIC is IND-CPA is straightforward using
the confidentiality of the AEAD scheme, such that we can immediately conclude with
our general results that the protocol provides ROB-INT-IND-CCA. We achieve similar
results in our robustness analysis of DTLS 1.3.

The robustness results for QUIC and DTLS 1.3 surface a noteworthy security degra-
dation: The fact that channels over unreliable networks need to keep the connection
open when receiving (possibly maliciously) disordered ciphertexts gives an adversary
multiple forgery attempts. This induces a non-tight security bound for robustness in the
reduction to the underlying AEAD scheme’s integrity. Upon closer inspection, this loss
coincides with the security bounds of many AEAD schemes [24,29,37], including those
underlying DTLS 1.3 and QUIC, and is also reminiscent of experiences with practical
attacks being easier to mount on unreliable networks, e.g., as observed in the Lucky
Thirteen attack on the (D)TLS record protocols [3]. Maybe surprisingly, this higher in-
tegrity security loss (compared to reliable-transport protocols like TLS) was overlooked
in prior DTLS versions and earlier drafts of the QUIC and DTLS 1.3 protocols. This is
despite TLS 1.3 already defining limits on key usage [38, Section 5.5] for confidential-
ity, with the underlying analysis by Luykx and Paterson [32] pointing out that integrity
bounds for DTLS would need to be considered differently. We communicated our secu-
rity bounds to the respective IETF working groups, which led them to specify concrete
forgery limits for packet protection for QUIC in draft-29 [46,48,48] and for DTLS 1.3
in draft-38 [40,40,47], and the IRTF CFRG to work on a document guiding users in
taking AEAD usage limits into consideration [22].

1.5. Contributions

To summarize, our core contributions are:

1. We introduce a general robustness definition for secure channels, which is param-
eterized through a support predicate describing which ciphertext sequences a chan-
nel aims to support. In contrast to prior channel models [14,31], it is this notion
of a support predicate that allows us to capture the dynamic sliding windows and
partially transmitted packet numbers in QUIC and DTLS 1.3.

2. We relate robustness to the established notions for confidentiality and integrity,
and define an integrated notion ROB-INT-IND-CCA which combines both of
them with robustness.

3. We analyze QUIC by modeling it as secure channel supporting dynamic sliding
window and replay protection. We establish that QUIC achieves the intended strong
ROB-INT-IND-CCA security.

4. We analyze DTLS 1.3, establishing similar results as for QUIC. Observe that we
capture in our analysis that replay protection is optional. We establish that DTLS 1.3
achieves the intended strong ROB-INT-IND-CCA security when considered with
and without replay protection.

5. Our results surface a noteworthy security loss linear in the number of forgery
attempts compared to the underlying AEAD scheme’s integrity. The QUIC and TLS
IETF working groups added concrete forgery limits for both QUIC and DTLS 1.3,
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acknowledging our work. The IRTF CFRG is further drafting a general standard
providing guidance on AEAD usage limits.

2. Preliminaries

We introduce some notation used throughout the paper. Additionally, we provide a brief
recap of syntax and security of authenticated encryption with associated data [42].

2.1. Notation

We write a bit as b ∈ {0, 1} and a (bit) string as s ∈ {0, 1}∗ with |s| indicating its (binary)
length. We implicitly interpret natural numbers as bit strings (of appropriate length) and
vice versa, depending on the context, en-/decoding to/from big-endian binary encoding.
For a bit string s and i, j ∈ [1, |s|], we denote with s[i] the i-th bit of s and with s[i.. j]
the substring of s starting with the i-th bit and ending with, and including, the j-th bit,
where for j < i we set s[i.. j] to be the empty string, denoted by ε. We write s � t if s is
a prefix of t (i.e., t[1..|s|] = s), s‖t for the concatenation and s⊕ t for the bit-wise XOR
of s, t . For a bit string s of length |s| = n andm ∈ N∪{0} we denote by s 	 m the string
s[1 +m..n +m]‖0min(m,n) of same length n resulting from shifting in m zeros from the
right. Note that the notation also covers the case that m > n and hence the resulting
(shifted) substring s[1 +m..n +m] is outside of the original range of the string. Hence
this substring is initially empty and we concatenate a zero-string of length min(m, n) to
assign each position in s[1 + m..n + m] a bit 0.

Similarly, for lists s, t , s‖t denotes concatenation, with s
‖←− x being a shorthand

for s ← s‖(x), i.e., appending x as the next entry to s. We write |s| for the number of
entries, s[i] = si for the i-th entry in s, starting with index 1, and s[i, j] the sub-list of s
starting with the i-th entry and ending with the j-th entry. We write x ∈ s if s[i] = x for
some i and i = index(x, s) if this i is unique, () for the empty list. For an m-entries list
of n-entries lists t = ((t1

1 , t1
2 , . . . , t1

n ), . . . , (tm1 , tm2 , . . . , tmn )) and i ∈ [1, n] we denote
by t〈i〉 = (t1

i , . . . , tmi ) the m-entries list consisting of all i-th entries of t’s sublists.
For a (finite) set S, we use the notation s $←− S to denote that the string s was sampled

uniformly at random from S. By y $←− A(x) we denote the random output y of algorithm
A for input x , where the probability is over A’s internal randomness. When providing an
algorithm oracle access, we express this as superscript to the algorithm AO. We simply
use the arrow ← for any assignment statements. For return values, we use distinct
symbols � to denote the rejection of disallowed queries and ⊥ to denote an error output
of a cryptographic scheme.

We provide all security results in terms of concrete security but occasionally also need
asymptotic behaviors, e.g., when defining a general property like robustness (ROB). In
this case it is understood that all algorithms, including the adversary, then receive the
security parameter in unary. In this case terms like “negligible” and “polynomial time”
then refer to this security parameter.
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Fig. 3. Multi-target authenticity of an AEAD scheme (cf. [6,9]).

2.2. Authenticated Encryption with Associated Data

Definition 2.1. (AEAD) An authenticated encryption with associated data (AEAD)
schemeAEAD = (Enc,Dec) is a pair of efficient algorithms associated with key, nonce,
associated-data, and message spaces K, N , H, resp. M such that:

• Deterministic encryption Enc : K × N × H × M → {0, 1}∗ takes as input a
secret key K , a nonce N , associated data AD, and a message m, and outputs a
ciphertext c.

• Deterministic decryption Dec : K×N ×H×{0, 1}∗ → M∪{⊥} takes as input a
secret key K , a nonce N , associated data AD, and a ciphertext c, and outputs either
a message m ∈ M or a dedicated error symbol ⊥ indicating that the ciphertext is
invalid.

We say that an AEAD scheme is correct if for all K ∈ K, N ∈ N , AD ∈ H and
m ∈ M, it holds that

Dec(K , N , AD,Enc(K , N , AD,m)) = m.

We define confidentiality (IND-CPA security) of an AEAD scheme as the distinguish-
ing advantage of an adversary querying inputs (N , AD,m0,m1), with |m0| = |m1| and
never repeating N (“nonce-respecting”), to a left-or-right encryption oracle EncK ,b re-
turning Enc(K , N , AD,mb) under a random key K ∈ K and bit b ∈ {0, 1}:

AdvIND-CPA
AEAD,A = Pr[AEncK ,b ⇒ b | K $←− K, b $←− {0, 1}] − 1/2.

Authenticity, or integrity of ciphertexts, INT-CTXT, of an AEAD scheme is classically
[42] defined w.r.t. an adversary’s ability to forge a single ciphertext (i.e., to output a fresh
triple (N , AD, c) decrypting to a non-error), given an encryption oracle. As we will see
in our analyses of QUIC and DTLS 1.3, channels running atop unreliable transport
however have to tolerate multiple attempts of an attacker trying to break the channels
integrity. The reason is that the connection is not closed when receiving an invalid
ciphertext. We therefore recap a more general, multi-target INT-CTXT notion for AEAD
schemes in Fig. 3 in which the adversary is permitted multiple forgery attempts through
a (responseless) Forge oracle [9]. (This notion is equivalent to adaptively learning
the forgery’s validity, cf. Bellare et al. [6,9]; similar strengthening of [42] was, e.g.,
considered by Rogaway [43].) We define the authenticity advantage of an adversary A
making at most qF queries to its Forge oracle as

AdvINT-CTXT
AEAD,A (qF) = Pr

[
ExptINT-CTXT

AEAD,A ⇒ 1
]
.
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Clearly, AdvINT-CTXT
AEAD,A (1) corresponds to the classical one-forgery authenticity by Rog-

away [42]. By a standard hybrid argument, we furthermore have AdvINT-CTXT
AEAD,A (qF) ≤

qF ·AdvINT-CTXT
AEAD,A (1). This linear loss in the number of forgery attempts indeed surfaces

in the security bounds of many AEAD schemes, including AES-CCM [29], AES-GCM
[23–25], and ChaCha20+Poly1305 [16,37] underlying DTLS 1.3 and QUIC. The forgery
limits for packet encryption added to QUIC in draft-29 and DTLS 1.3 in draft-38 [40,46–
48] following our analysis are determined based on these AEAD schemes’ integrity
bounds, aiming at similar security margins as for the key usage limits in TLS 1.3 for
confidentiality (cf. Luyx and Paterson [32]). Both standards, as well as an IRTF CFRG
draft on AEAD usage limits [22], further take the protocols’ rekeying mechanisms into
account through multi-user AEAD bounds [12,16,23].

3. Channels

In this section we give an augmented definition of channel protocols which will allow
us to capture channel behavior over unreliable networks. As usual, a channel consists of
three algorithms, for initialization, sending messages on the sender side, and receiving
messages on the receiver side. However, we introduce two definitional twists that will
allow us to capture different and possibly dynamic channel behaviors (depending on the
underlying network): First, we parameterize the definition of correctness to capture dif-
ferent levels of supported variations in the ciphertext sequence (caused by the underlying
network). Second, we provide the sending algorithm with an additional, auxiliary infor-
mation (beyond the message to be transmitted) which is generic and recoverable from
the ciphertext; this allows to capture dynamic sending behavior (like the variable-length
packet number encoding we will see in QUIC and DTLS 1.3) that affects correctness
properties.

Definition 3.1. (Channel protocol) A channel (protocol) Ch = (Init,Send,Recv,
aux) with associated sending and receiving state spaceSS resp.SR , message spaceM ⊆
{0, 1}≤M for some maximum message length M ∈ N, ciphertext space C, auxiliary
information space X , error symbol ⊥ with ⊥ /∈ M, consists of three main algorithms
and one helper algorithm defined as follows.

• Init() $−→ (stS, stR). This probabilistic algorithm outputs initial sending and re-
ceiving states stS ∈ SS , resp. stR ∈ SR .

• Send(stS,m, aux) $−→ (stS, c). On input a sending state stS ∈ SS , a message m ∈
M, and auxiliary information aux ∈ X , this (possibly) probabilistic algorithm
outputs an updated state stS ∈ SS and a ciphertext (or error symbol) c ∈ C ∪ {⊥}.

• Recv(stR, c) → (stR,m). On input a receiving statestR ∈ SR and a ciphertext c ∈
C, this deterministic algorithm outputs an updated state stR ∈ SR and a message
(or error symbol) m ∈ M ∪ {⊥}.

• aux(c) → aux. On input a ciphertext c ∈ C, this deterministic helper algorithm
outputs the corresponding auxiliary information aux ∈ X .
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3.1. Correctness

We define correctness of a channel protocol in terms of a correctness experiment. In order
to capture the underlying network possibly arbitrarily dropping or reordering (yet not
modifying) packets, we define correctness with a “semi-malignant” adversary which
determines the message inputs to the sender and the arrival order of ciphertexts (but
cannot modify or inject ciphertexts).

Involving a “semi-malignant” adversary in correctness—which should capture func-
tionality in the absence of attacks—may seem odd at first. Note however that an unreli-
able network means that there is an infinite combinatorial space of sending and receiving
sequences, each possibly progressing adaptively. While this can in principle be formal-
ized without an adversarial experiment, we deem the game formalism to be much more
intuitive. It turns out to be particularly valuable when defining robustness against ac-
tual adversaries (cf. Sect. 4): the “correct” receiving instance there corresponds to the
correctness game, capturing the intuition behind robustness.

In the experiment we specify correctness with respect to a supported sequence of
received ciphertexts, formalized through a predicate supp.3 The predicate supp(CS,

DCR, c), on input a sequence of sent ciphertexts CS ∈ C∗, a (combined) sequence of
so-far supportedly received ciphertexts and support decisions DCR ∈ (D × C)∗, as
well as a next ciphertext c ∈ C to be received, outputs a decision d ∈ D whether this
next ciphertext is supported. We distinguish two types of predicates: Boolean predicates
output merely the binary decision whether the given next ciphertext c is supported or
not (i.e., D = {true,false}). Index-recovering predicates output an index i ∈ N

if c is supported (and in which case we subsequently interpret the integer d as true in
conditional checks), and d = false otherwise. Formally, supp is a function

supp : C∗ × (D × C)∗ × C → D.

We require that supp(CS, DCR, c) = false for any support predicate supp, se-
quencesCS and DCR , and any c /∈ CS . Conversely, we require that if an index-recovering
predicate outputs an index d = supp(CS, DCR, c), then indeed CS[d] = c. This re-
quirement encodes that supp is a correctness predicate and should only be true for
genuinely sent ciphertexts. Correctness w.r.t. supp further encodes that supp must at
least support channel ciphertext sequences delivered perfectly in-order.

The correctness experiment Exptcorrect(supp)

Ch,A in Fig. 4 initializes the channel state,
three empty lists CS, DCR , and T for keeping track of processed data, and a flag win
which shall indicate the adversary’s success in violating correctness. Then the adver-
sary is run with access to both Send and Recv oracles, providing interfaces to send-
ing/receiving, with the restriction that Recv may be queried only on ciphertexts output
by Send which are supported.4 (Recall that correctness captures the channel’s operation

3Capturing correctness as a predicate-based experiment borrows from a similar approach taken by Back-
endal [5] using Boolean predicates, combining the level-set concepts from [44] with channel correctness games
as in [27,34].

4Disallowed requests are rejected by returning a dedicated symbol � /∈ {0, 1}∗ ∪ {⊥}; here and in all
following experiments, such rejection happens purely as bookkeeping and is decided on information known
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Fig. 4. Experiment for correctness w.r.t. support class supp of a channel protocol Ch. The framed code is
used only for index-recovering support predicates .

under normal, yet unpredictably unreliable network behavior, hence the restriction to a
“semi-malignant” adversary.) The adversary’s goal is to violate correctness w.r.t. supp
by either (1) making aux incorrectly recover the auxiliary information used in Send
(Line 7); (2) making supp reject a ciphertext in a perfectly in-order sequence (Line 18);
or (3) makingRecv output an incorrect message on input a supported ciphertext (Line 22,
this is the usual, core correctness requirement). More specifically, the Send and Recv
oracles work as follows:

Send. On input a message m and auxiliary information aux the Send algorithm is run
to obtain a ciphertext and an updated sending state. The oracle then enforces
condition (1) from above, checking that aux correctly recovers the auxiliary
information from the ciphertext; otherwise, the flag win is set to 1 indicating
that the adversary has won. The ciphertext is then appended to the list of sent
ciphertexts CS and, together with m, stored in the lookup table T . Finally, the
oracle returns the ciphertext to the adversary.

Recv. The oracle is invoked with an index j indicating that the j-th ciphertext output
by Send should be received. (This encodes the “semi-malignant” adversary
capturing the unreliable network, which reorders but does not modify or inject
ciphertexts.)

In case the index j is outside of the range, the oracle rejects (with �). Otherwise,
the oracle considers the message-ciphertext pair (m, c) from T at position j , and
determines the support decision d for that ciphertext. It then checks that, if all cipher-
texts C∗

R so far (including c) have been received in the same order as they were sent,
supp decides on true, declaring the adversary won by violating condition (2) from
above otherwise in Line 18. Further, nothing is done (and the query rejected) if c is

Footnote 4 continued
to the adversary. As such, the dedicated symbol merely serves to improve readability; returning ⊥ would be
equivalent.
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not supported; this encodes that correctness is concerned with the correct receipt of
supported ciphertexts only.5

If supported, c is now received through Recv and the resulting message m′ compared
with the sent message m; the adversary wins if the two differ, encoding the main
correctness property (condition (3) above) that receiving supported ciphertexts (only)
must yield the correct sent messages. Finally, DCR is appended with (d, c) and m′
returned to the adversary.

Definition 3.2. (Correctness of channels) Let Ch = (Init,Send,Recv,aux) be a
channel, supp a correctness support predicate, and experiment Exptcorrect(supp)

Ch,A for an
adversary A be defined as in Fig. 4.

We define the advantage of A in breaking correctness w.r.t. supp of Ch as

Advcorrect(supp)

Ch,A := Pr
[
Exptcorrect(supp)

Ch,A ⇒ 1
]
,

and say that Ch is (perfectly) correct w.r.t. supp if Advcorrect(supp)

Ch,A = 0 for any (un-
bounded) A.

One can easily define ε-correctness of the channel by requiring that the above advantage
term is bounded by ε.

3.2. Examples of Support Classes

In the following, we discuss a few examples of different support classes which reflect
different protocol purposes and environments (in terms of accepted reordering and replay
protection). The examples illustrate the versatility of our supported predicate approach
through a series of more and more complex designs; to assist understanding we underline
for each predicate the major change w.r.t. to the previous one. In particular, our examples
encompass the Internet security protocols DTLS [39,41], IPsec (with and without the
Extended Sequence Number (ESN) option for sequence-number truncation) [30], and
QUIC [26,49], but additionally include conceivable alternative support classes of channel
protocols. Some classes reflect prior authentication hierarchy levels put forward in the
works by Kohno et al. [31], Boyd et al. [14], and Rogaway and Zhang [44]. In Sect. 3.3
below, we explain why inherent aspects of those prior approaches however prevent them
from modeling our more complex support classes that capture DTLS 1.3 and QUIC.

To ease readability, let us define the following shorthands. We write DR = DCR〈1〉
and CR = DCR〈2〉 for the separated support decisions and the sequence of received
supported ciphertexts, respectively, in DCR . For index-recovering support predicates
(i.e., DR ⊆ N), we furthermore let max = max(DR) be the largest recovered index
among all supportedly received ciphertexts, and nxt = max + 1 denote the “next ex-
pected” ciphertext index on the receiver’s end (one past max). Finally, when defining

5Note that index-recovering predicates for supported ciphertexts output an index d ∈ N, and for those
predicates we demand correct receipt (only) if that index matches j . Correctness hence encodes that the
channel protocol matches the ordering decisions of supp. See also the paragraph on (non-)unique ciphertexts
in Sect. 3.3 for further discussion of modeling choices.
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support predicates capturing sliding windows, we often have to check if a ciphertext c
is contained within a certain window CS[x, y] in the sequence of sent ciphertexts CS ,
and if so, determine that occurrence’s index within the full CS . For this, we define the
following check-index shorthand:

cindex(c,CS[x,y]) :=
{
index(c,CS[x,y])+x−1 ifc∈CS[x,y]
false otherwise

We are now ready to specify the support classes. Note that, in particular, all sup-
port predicates adhere to the requirement that supp(CS, DCR, c) = false for any
sequences CS and DCR , and any c /∈ CS ; i.e., they are false for any non-genuine cipher-
text.

No ordering. A channel that accepts packets in any order where the packets can also
be duplicates; e.g., DTLS 1.2 without replay protection [39] and IPsec
without replay protection [30]. This is equivalent to level/type 1 in
the authentication hierarchy of [14,31] and level L0 in [44], essentially
capturing plain authenticated encryption.
The corresponding (Boolean) predicate only ensures that each ciphertext
was genuinely sent. Formally,
suppno(CS , DCR , c):

1 return
[
c ∈ CS

]

No ordering with global anti-replay. A channel that accepts packets in any order,
but rejects duplicates. This is equivalent to level/type 2 in [14,31] and
level L∞

1 in [44], and similar to the “immediate decryption” property in
secure messaging [4].
The corresponding (Boolean) predicate ensures that each ciphertext was
genuinely sent and not received before. Formally,
suppno-r(CS , DCR , c):

1 return
[
c ∈ CS ∧ c /∈ CR

]

While Boyd et al. [14] classify DTLS 1.2 with replay protection in their
level 2 (equivalent to suppno-r), DTLS 1.2 actually suggests a sliding
anti-replay window [39, Section 4.1.2.6] and hence cannot provide global
(anti-)replay decisions. Indeed, DTLS 1.2 would not achieve correctness
w.r.t. suppno-r since it rejects old ciphertexts past its replay window which
suppno-r would require to be supported. Note that, likewise, the L�

1 level
of [44] only addresses reorderings up to some lag �, but does not capture
sliding anti-replay windows. For DTLS 1.2, we hence consider a more
fine-grained approach towards replay protection next.

No ordering with anti-replay window. A channel that accepts packets in a window
of size wr before max (the highest last received packet index), or newer,
rejecting duplicates; e.g.,DTLS1.2with replayprotection [39] and IPsec
with replay protection [30]. Here, wr defines the size of the anti-replay
window in which the channel checks for duplicates; any ciphertext older
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than what can be checked within this sliding window is conservatively
rejected.
The corresponding (index-recovering) predicate ensures that each cipher-
text was genuinely sent, not received before, and is not older than wr

positions before the highest supportedly received ciphertext. Formally,
suppno-r[wr ](CS , DCR , c):

1 i ← cindex(c,CS [max − wr , |CS |]) // is c∈CS at index≥max−wr ?

2 if i ∈ DR then i ← false // do not accept c twice at index i

3 return i

Observe that an infinite anti-replay window equals global anti-replay, i.e.,
suppno-r[∞] = suppno-r.

Static sliding window. A channel that accepts packets in any order within a sliding
window around the next expected ciphertext index nxt, reaching back
wb positions and forward w f positions; e.g., IPsec with ESN, without
replay protection [30]. Formally,
suppsw[wb,w f ](CS , DCR , c):

1 return cindex(c,CS [nxt − wb, nxt + w f ])
Observe that an infinite static window equals no ordering, i.e.,suppsw[∞,∞]
= suppno. Further, a zero-sized static window corresponds to what we
call robust strict ordering as an extension for reliable transport (i.e.,
suppsw[0,0]
= supprso); see the note on TLS below and Appendix A.

Static sliding windowwith anti-replaywindow.A channel that accepts packets in any
order within a sliding window (reaching wb positions backward and w f

positions forward) around the next expected ciphertext index, if they addi-
tionally check as non-duplicates within an anti-replay window of sizewr ;
e.g., IPsec with ESN, with replay protection [30].
The corresponding (index-recovering) predicate combines wr and wb in
its in-window check since the received ciphertext index must be greater
than or equal to bothnxt−wb andmax−wr = nxt−(wr+1). Formally,
suppsw[wb,w f ]-r [wr ](CS , DCR , c):

1 i ← cindex(c,CS [nxt − min(wb, wr + 1), nxt + w f ])
2 if i ∈ DR then i ← false // do not accept c twice at index i

3 return i

Observe that an infinite static window equals no ordering with the same
anti-replay window, i.e., suppsw[∞,∞]-r[wr ] = suppno-r[wr ] for any wr .
For an infinitely sized (i.e., global) anti-replay window wr = ∞ and
sliding-window sizes w f = � and wb = � + 2, this is equivalent to
level L�

1 in [44].
Dynamic sliding window with anti-replay window. A channel that accepts packets

in any order within a sliding window (around the expected next ciphertext
index nxt) that is dynamically determined for each ciphertext sent, if they
additionally check as non-duplicates within an anti-replay window of size wr ;
e.g., DTLS 1.3 with replay protection [41] and QUIC [26,49].
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We assume the dynamic backward and forward window size wb, resp. w f ,
is encoded in the auxiliary information provided to Send as tuple aux =
(wb, w f ) ∈ X . (For concrete instances see the treatments of QUIC and
DTLS 1.3 in Sect. 6 and Sect. 7, respectively.) The (index-recovering) sup-
port predicate then individually determines for each ciphertext c whether it
was received within the dynamic window determined by wc

b, wc
f as specified

for c. Again, the backward window combines wc
b and the anti-replay window

size wr . Formally,

suppdw-r [wr ](CS , DCR , c):

1 (wc
b, w

c
f ) ← aux(c)

2 i ← cindex(c,CS [nxt − min(wc
b, wr + 1), nxt + wc

f ])
3 if i ∈ DR then i ← false // do not accept c twice at index i

4 return i

Observe that for a single-entry auxiliary information space X = {(wb, w f )},
dynamic and static sliding window (with same replay window) coincide, i.e.,
suppdw-r [wr ] = suppsw[wb,w f ]-r [wr ] for any wr .

Dynamic sliding window without anti-replay window. A channel that accepts pack-
ets in any order within a sliding window (around the expected next cipher-
text index nxt) that is dynamically determined for each ciphertext sent, e.g.,
DTLS 1.3 without replay protection [41].
As in the previous support predicate, we assume the dynamic backward and
forward window size wb, resp. w f , is encoded in the auxiliary information
provided to Send as tuple aux = (wb, w f ) ∈ X . (For concrete instances
see the treatment of DTLS 1.3 in Sect. 7.) As before, the (index-recovering)
support predicate then individually determines for each ciphertext c whether it
was received within the dynamic window determined by wc

b, wc
f as specified

for c. In contrast to suppdw-r [wr ] above, there is no replay check though.
Formally,

suppdw(CS , DCR , c):

1 (wc
b, w

c
f ) ← aux(c)

2 return cindex(c,CS [nxt − wc
b, nxt + wc

f ])

3.3. Discussion and Comparison

Note that one cannot make a fair comparison between the support predicates. For exam-
ple, the support predicate suppno is “more robust” when receiving ciphertexts compared
to suppno-r[wr ] since the latter rejects replays. However, this does not entail that a pro-
tocol being secure w.r.t. the former is “better,” but rather illustrates that the usage of a
support predicate primarily depends on the network and application context.

As mentioned before, prior channel-hierarchy models [14,31,44] do not capture QUIC
and DTLS 1.3, and cannot easily be adapted to do so. This is due to both protocols
deploying a dynamic sliding-window technique and their novel approach to only transmit
partial packet numbers.
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The need to revisit acceptance decisions. Sliding windows can lead to previously re-
jected ciphertexts being later, upon being re-sent or re-delivered by the network, (right-
fully) accepted. Modeling replay protection, [14,31,44] (in their levels/types 2, resp.
L�

1) demand that a scheme must reject any ciphertext that has already been processed
earlier. A scheme with a sliding-window technique may however first reject a ciphertext
which is “too new” (too far ahead of the current window), but then later, when re-sent,
rightfully accept this ciphertext (when it is within the window) without opening up to
replay attacks. (See Fig. 1 for an illustration.) Accepting the ciphertext the second time
however violates the notions in [14,44], meaning those do not reflect the behavior in
QUIC or DTLS 1.3. Our formalism allows to correctly capture such real-world behavior.

The need to handle non-unique ciphertexts. Prior models [14,31,44] defined some-
what simpler notions based on the pivotal assumption (explicit in [31], implicit in
[14,44]) that sent ciphertexts never repeat. The sliding-window approach and packet
encoding specified for QUIC and DTLS 1.3 however requires us to handle non-unique
ciphertexts. As we will see in more detail in Sects. 6 and 7, both protocols transmit
truncated packet numbers as part of the overall channel ciphertext, which means that,
in principle, such ciphertexts are unique only within a sliding window, but may repeat
across different sliding windows—without hindering correct receipt. While one can ar-
gue such repetitions are unlikely based on the core AEAD ciphertexts not colliding,
this would mean to take such security properties into account even for correctness. Our
more fine-grained approach instead allows the supp predicate to recover indices, en-
abling us to precisely capture the nature of these sliding-window approaches and their
(unconditionally) correct functioning: Our correctness notion, in the (unlikely) case of
a ciphertext repetition, stipulates that a repeated ciphertext may “correctly” be received
earlier, if this is what the supp predicate determines. That way we can capture that pro-
tocols like QUIC and DTLS 1.3 in such case would indeed process a repeated ciphertext
earlier, and decrypt it to the correct message in that position.

ANote on TLS. We focus on modeling robust channel behavior for unreliable transport.
For completeness we discuss in Appendix A how reliable-transport channels like TLS
can be captured through extended support predicates, relating our support classes further
to the hierarchies in [14,31,44]. In particular, we discuss a conceivable robust version of
TLS that rejects invalid ciphertextswithout terminating the connection, and the resulting
security degradation that—similarly to QUIC and DTLS 1.3—would need to be taken
into account.

Further Extension. Recently, Albrecht et al. [2] analyzed a variant of MTProto, the
channel protocol underlying the widely used instant messenger Telegram, building on our
support predicate framework. They introduce support functions that upon an accepting
decision also return the expected message output, to cater for Telegram’s bidirectional
communication channel [34]. Degabriele and Karadžić [17] recently used our support
predicate framework in order to transform any nonce-set AEAD scheme into a secure
channel protocol.
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Fig. 5. Experiment for robustness w.r.t. support class supp of a channel protocol Ch.

4. Robust Channels

We now introduce our new notion of robustness for channel protocols. With this notion,
we aim to model behavior that is already present in protocols like QUIC [26,49] and
DTLS 1.3 [41], namely that ciphertexts can be delivered out-of-order within a certain
(sliding) window, and in addition the receiver is robust against any interleaved ciphertext
which do not fit into the window (or are even maliciously crafted by a network adversary).
Robustness here refers to a channel’s property to filter out any misplaced ciphertexts and
correctly receive those ciphertexts that fit into the supported order.

We define robustness according to Fig. 5. The experiment processes the received se-
quence of ciphertexts (into which the adversary is free to inject forged ciphertexts)
through two separate receiving instances: The first, “real” receiving instance (run on
state strR) is called on every received ciphertext (Line 10). The second, “correct” re-
ceiving instance (run on state stcR) is only given those ciphertexts that are supported
according to the predicate supp (Lines 12 and 14). Robustness then demands that, on
any supported ciphertext, the output of the “correct” receiving instance never differs
from the “real” instance’s output.

To unpack the intuition behind our robustness formalism, recall first that we require
supp(CS, DCR, c) = false on any non-genuine ciphertext c /∈ CS . In the robust-
ness experiment, the “correct” receiving instance is hence only called on (and DCR

augmented with) genuine and supported ciphertexts c ∈ CS . Observe that this exactly
corresponds to the Recv oracle’s behavior in the correctness experiment (Fig. 4), where
the adversary may only submit genuine and supported ciphertexts. Correctness hence
ensures that the “correct” receiving instance (run on state stcR) outputs the expected (i.e.,
correct) messages (as per supp), and so, transitively, the “real” instance, too, does so on
supported ciphertexts.

Definition 4.1. (Robustness of channels, ROB) Let Ch = (Init,Send,Recv) be a
channel, supp a correctness support predicate, and experiment ExptROB(supp)

Ch,A for an
adversary A be defined as in Fig. 5.

We define the advantage of A in breaking robustness w.r.t. supp of Ch as

AdvROB(supp)

Ch,A := Pr
[
ExptROB(supp)

Ch,A ⇒ 1
]
,
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and say that Ch is robust w.r.t. supp if AdvROB(supp)

Ch,A is negligible for any polynomial-
time A.

5. Robustness, Integrity, and Indistinguishability

In this section we relate the notion of robustness to the classical notions of channel
integrity and indistinguishability.

5.1. Defining Robustness and Integrity

Robustness of a channel allows one to make a statement about the behavior of the channel
on supported sequences, even if there are malicious ciphertexts in-between. We can also
define a notion of integrity of channels over unreliable networks. This notion says that
the receiver should not decrypt any ciphertext to a valid message, unless the ciphertext
is supported. We first give a “classical” definition of integrity and then introduce an
equivalent version which is cast in the style of our notion of robustness.

On the upper right-hand side of Fig. 6, we present the notion of integrity, and in the
lower left-hand side our alternative notion of integrity. Note that the given experiment
ExptINT(supp)

Ch,A only differs in the receive oracle compared to the robustness experiment
(cf. Fig. 5) and hence we simply provide the details of the receive oracle as a description
of the experiment. In more detail, in this experiment we only check on unsupported
ciphertexts if they decrypt to a valid message mr different from mc. The latter is always
set to ⊥ in Line 31 and not changed for unsupported ciphertexts, because the if-clause
in Line 33 is skipped.

We first argue that the notions of integrity, the classical one and our alternative notion,
are equivalent. This is easy to see since in both experiments the receiver’s oracle behavior
on supported ciphertexts is identical—in our notion one only performs a redundant
receiving step—and on unsupported ciphertexts the receiver checks the received message
against ⊥. Hence, we can define integrity with respect to either receive oracle:

Definition 5.1. (Integrity of channels, INT) Let Ch = (Init,Send,Recv,aux) be a
channel, supp a support predicate, and experiment ExptINT(supp)

Ch,A for an adversary A be
defined as on the upper right-hand side or lower left-hand side in Fig. 6.

We define the advantage of A in breaking integrity w.r.t. supp of Ch as

AdvINT(supp)

Ch,A := Pr
[
ExptINT(supp)

Ch,A ⇒ 1
]
.

We say that Ch provides integrity (is integrous) w.r.t. supp if AdvINT(supp)

Ch,A is negligible
for any polynomial-time A.

Let us emphasize that our notion of integrity w.r.t. supp generalizes established in-
tegrity notions, as per the connections to prior hierarchies drawn in Sect. 3.2. For example,
INT(suppno) encodes conventional stateless integrity, corresponding to the ct-int-ctxt1
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Fig. 6. Receiver oracles in the experiments for robustness (upper left), integrity (upper right), alternative
integrity (lower left), and robust integrity (lower right) w.r.t. support class supp of a channel protocol Ch.
Differences are highlighted in gray boxes .

and auth1 notions of Kohno et al. [31], resp. Boyd et al. [14], and INT(suppno-r) corre-
sponds to ct-int-ctxt2 resp. auth2 of [14,31].

The lower right-hand side of Fig. 6 shows a combination of both notions which we
call robust integrity. The difference compared to integrity is that we now check if the
message decrypts to the expected value (correct mc, resp. mc = ⊥) on both supported
and unsupported ciphertexts.

Definition 5.2. (Robust integrity of channels, ROB-INT) Let Ch = (Init,Send,

Recv,aux) be a channel, supp a support predicate, and experiment ExptROB-INT(supp)

Ch,A
for an adversary A be defined as on the lower right-hand side in Fig. 6. We define the
advantage of A in breaking robust integrity w.r.t. supp of Ch as

AdvROB-INT(supp)

Ch,A := Pr
[
ExptROB-INT(supp)

Ch,A ⇒ 1
]
,

and say that Ch achieves robust integrity w.r.t. supp if AdvROB-INT(supp)

Ch,A is negligible
for any polynomial-time adversary A.



Robust Channels Handling Unreliable Networks Page 21 of 49 9

5.2. Relating Robustness and Integrity

We next show that robustness and integrity imply robust integrity and vice versa. This
establishes the combined ROB-INT notion as the target integrity notion for unreliable-
transport protocols in practice; we will use it in Sects. 6 and 7 to analyze QUIC and
DTLS 1.3, respectively.

We start by showing that robust integrity implies the other two notions.

Proposition 5.3. (ROB-INT ⇒ ROB ∧ INT) Let Ch = (Init,Send,Recv,aux) be
a channel, supp a support predicate. Then for any adversary A we have

AdvROB(supp)

Ch,A ,AdvINT(supp)

Ch,A ≤ AdvROB-INT(supp)

Ch,A .

Proof. The proposition is straightforward from the experiments. Consider an adversary
against robustness resp. against integrity. Consider the first query c to the receive oracle
which causes win to become true. Up to this point all three experiments for integrity,
robustness, and robust integrity display an identical behavior, always returning ⊥ in the
receiver’s oracle and keeping the same listsCS , DCR of sent ciphertexts and supportedly
received ciphertexts and support decisions. If an adversary now triggerswin to become 1
in either the robustness experiment (on a supported ciphertext) or the integrity experiment
(on an unsupported ciphertext), then the if-clause in Line 47 of the robust-integrity
experiment (cf. Fig. 6) also sets win to 1. �

Robustness and integrity individually are incomparable, though. Assume that we have
a channel which processes supported ciphertexts as expected, but on unsupported cipher-
texts always outputs the message m = 0. This channel would be robust because it works
correctly on supported ciphertexts, but it does not provide integrity nor robust integrity,
because it returns the message m = 0 �= ⊥ on all unsupported ciphertexts. Note that
this channel would nonetheless be correct.

Next, assume that we have a channel which, when receiving the first unsupported
ciphertext will output ⊥ but from then on decrypt all supported ciphertexts to message
m = 0. This behavior is encoded in the channel’s state. This channel is still correct
because the bad event is never triggered on genuine ciphertext sequences. Furthermore,
the channel provides integrity because on all unsupported ciphertexts the behavior cor-
rectly returns an error ⊥. However, the channel clearly does not provide robustness nor
robust integrity because of the wrong decryption on supported ciphertexts after the first
unsupported ciphertext, returning m = 0 �= ⊥ on all such ciphertexts.

The above examples show that robustness or integrity alone do not suffice to guarantee
robust integrity. In combination, though, they achieve the stronger notion as the next
proposition shows

Proposition 5.4. (ROB ∧ INT ⇒ ROB-INT) Let Ch = (Init,Send,Recv,aux) be
a channel, supp a support predicate. Then for any adversary A we have

AdvROB-INT(supp)

Ch,A ≤ AdvROB(supp)

Ch,A + AdvINT(supp)

Ch,A .
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Proof. Assume that we have an adversary A which causes win to become true because
the if-clause mr �= mc in Line 47 of Fig. 6 is satisfied. Consider the first query where this
happens. Up to this point all experiments behave identically. In particular, the sequence
DCR is the same in all runs in all cases. This implies that the set of supported ciphertexts
is also identical up till then. There are now two cases when the robust integrity adversary
triggers the bad event:

• Either the call is for a supported ciphertext c, in which case we will run the “correct”
receiver to get mc and will thus also reach Line 17 in the robustness experiment
(cf. Fig. 6) for the same value mc, setting win to true there.

• Or, the call is for an unsupported ciphertext c, in which case mc = ⊥ and we will
reach Line 37 in the integrity experiment (cf. Fig. 6), and win will become true
there.

Hence, any break in the robust integrity experiment means that the adversary breaks
robustness or integrity, such that we can bound the advantage for the former by the sum
of the advantages for the latter. �

We give a more formal separation of robustness and integrity here, based on the support
predicates for no ordering (suppno) and no ordering with global anti-replay (suppno-r)
as put forward in Sect. 3.2.

Proposition 5.5. (ROB �⇒ INT) Let Ch = (Init,Send,Recv,aux) be a perfectly
correct, robust, and integrous channel w.r.t. support predicate suppno with unique ci-
phertexts. Then there is a channel protocol Ch∗ = (Init∗,Send∗,Recv∗,aux∗) such
that for any adversary A, there exist adversaries B and C such that

Advcorrect(suppno-r)

Ch∗,A = 0 and AdvROB(suppno-r)

Ch∗,A = AdvROB(suppno)

Ch,B ,

but

AdvINT(suppno-r)

Ch∗,C = 1.

Proof. The new channel Ch∗ only modifies the receiver algorithm Recv from Ch and
leaves Init, Send and aux essentially unchanged, only the initial receiver state becomes
st∗R = (stR, ()). Define

Recv∗(st∗R , c):

1 parse st∗R = (stR ,CR)

2 (stR ,m) ← Recv(stR , c)
3 if c /∈ CR ∧ m �= ⊥ then
4 CR

‖←− c
else

56 m ← 0
7 return ((stR ,CR),m)

Observe that since Ch is correct, robust and integrous, Recv outputs m �= ⊥ if and only
if suppno(CS, DCR, c) = [

c ∈ CS
] = true. The check in Line 3 exactly corresponds

to the check by suppno-r(CS, DCR, c) = [
c ∈ CS ∧ c /∈ CR

]
.
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We first argue that correctness is preserved. This follows as the receiver in the correct-
ness experiment is only invoked on supported ciphertexts, in which case Recv∗ behaves
like Recv. The sender-side and in-order receiving conditions are satisfied as Send is
unchanged and by ciphertext uniqueness.

For robustness, the output of Recv∗ deviates (m ← 0) from that of Recv only
on unsupported ciphertexts, without modifying stR . Since any ciphertext supported
by suppno-r is also supported by suppno, any robustness violation on Ch∗ translates to
one on Ch via a reduction B relaying the Recv calls to its Recv oracle.

Finally consider an adversary C against the integrity of Ch∗ which sends an arbitrary
ciphertext c twice to the receiver oracle. The second query will be unsupported (as
c ∈ CR at this point), so Recv∗ returns the message 0. The integrity game then sets win
to true as mr = 0 �= ⊥ = mc. �

Proposition 5.6. (INT-IND-CCA �⇒ ROB) Let Ch = (Init,Send,Recv,aux) be
a perfectly correct, robust, and INT-IND-CCA-secure channel w.r.t. support predi-
cate suppno with unique ciphertexts. Then there is a channel protocol Ch∗ = (Init∗,
Send∗,Recv∗,aux∗) such that for any adversary A, there exist adversaries B and C
such that

Advcorrect(suppno-r)

Ch∗,A = 0 and AdvINT-IND-CCA(suppno-r)

Ch∗,A = AdvINT-IND-CCA(suppno)

Ch,B ,

but

AdvROB(suppno-r)

Ch∗,C = 1.

Proof. The channel protocolCh∗ alters the receiver algorithmRecv fromCh and leaves
Init,Send andaux unmodified, only the initial receiver state becomes st∗R = (stR, (), 0).
Define

Recv∗(st∗R , c):

1 parse st∗R = (stR ,CR , f )
2 (stR ,m) ← Recv(stR , c)
3 if c ∈ CR then
4 m ← ⊥
5 if c /∈ CR ∧ m �= ⊥ then
6 CR

‖←− c
7 if f = 1 then
8 m ← 0
9 else

10 f ← 1
11 return ((stR ,CR , f ),m)

As in the proof of Proposition 5.5, the check in Line 5 mimics the check by suppno-r(CS,

DCR, c) = [
c ∈ CS ∧ c /∈ CR

]
.

Correctness is preserved because the receiver in the correctness experiment is only ex-
ecuted on supported ciphertexts, such that the bit f remains 0 and the receiver algorithms
answers faithfully for all queries. The sender-side and in-order receiving conditions are
satisfied as Send is unchanged and by ciphertext uniqueness.
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Fig. 7. Experiment for IND-CPA of a channel protocol Ch.

In order to violate INT-IND-CCA security, the adversary A needs to make Recv∗
output a message m �= ⊥ on an unsupported ciphertext c, i.e., for c /∈ CS or c ∈ CR .
In the latter case, Recv∗ always outputs ⊥. Otherwise, it relays the output of Recv, so
if c /∈ CS , Recv outputting m �= ⊥ is a violation of the INT-IND-CCA security of Ch
w.r.t. suppno. A simple relaying reduction B hence yields the claim.

The adversary C against robustness first calls the sender about the message m = 1 to
get a ciphertext c. Then it calls the receiver oracle on c twice. Since this ciphertext is
supported in the first call and unsupported in the second call, the latter turns the receiver’s
state st∗,r

R to (stR, (c), 1), but leaves st∗,c
R unaltered from the previous valid call. Then

the adversary calls the sender about message m = 1 again to get a ciphertext c′ and
forwards c′ to the receiver oracle. According to correctness of the original channel the
ciphertext c′ must be supported and result in the message mc = 1; the reason is that from
the receiver’s viewpoint with state stcR it has received two genuine ciphertexts so far such
that correctness ensures that the message decrypts correctly. Our modified receiver state
st∗,r

R , on the other hand, yields mr = 0 by construction, because f = 1 at this point.
Hence our adversary wins the robustness game with probability 1. �

Note that Proposition 5.6 in particular separates INT �⇒ ROB, since INT-IND-CCA
⇒ INT.

5.3. Robustness and Chosen-Ciphertext Security

Let us begin this section with defining IND-CPA security.

Definition 5.7. (IND-CPA) Let Ch = (Init,Send,Recv) be a channel and experi-
ment ExptIND-CPA

Ch,A for an adversary A be defined as in Fig. 7.
We define the advantage of A in breaking indistinguishability of chosen plaintexts

of Ch as

AdvIND-CPA
Ch,A := Pr

[
ExptIND-CPA

Ch,A ⇒ 1
]

− 1

2
,

and say that Ch is IND-CPA-secure if AdvIND-CPA
Ch,A ≈ 0 for any polynomial-time A.

We next define ROB-INT-IND-CCA as the strongest notion for channels, combining
confidentiality and integrity into a single experiment (following the paradigm called
IND-CCA3 in [45]) which also covers robustness. This will be our ultimate target notion
when analyzing QUIC and DTLS 1.3 in Sects. 6 and 7, respectively.
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Fig. 8. Experiment for ROB-INT-IND-CCA w.r.t. support class supp of a channel protocol Ch.

The formal details ofROB-INT-IND-CCA are displayed in Fig. 8. The idea is to return
a message different from ⊥ by the receiver oracle if the adversary has broken robustness
or integrity via the submitted ciphertext c, and if b = 1 (whereas we always return ⊥ if
b = 0). This enables the adversary to determine the bit b when breaking robust integrity.
For this we overwrite mr with ⊥ if mr = mc and no break has occurred (Line 21). But
if the messages are distinct we return the message which is not ⊥ (Line 23).

Definition 5.8. (Robust integrity/indistinguishability of channels,ROB-INT-IND-CCA)
Let Ch = (Init,Send,Recv,aux) be a channel, supp a support predicate, and exper-
iment ExptROB-INT-IND-CCA(supp)

Ch,A for an adversary A be defined as in Fig. 8. We define
the advantage ofA in breaking robust integrity/indistinguishability of chosen ciphertexts
w.r.t. supp of Ch as

AdvROB-INT-IND-CCA(supp)

Ch,A := Pr
[
ExptROB-INT-IND-CCA(supp)

Ch,A ⇒ 1
]

− 1

2
,

and say thatCh isROB-INT-IND-CCA-secure w.r.t. supp ifAdvROB-INT-IND-CCA(supp)

Ch,A
is negligible for any polynomial-time adversary A.

The next proposition says that a channel achieves ROB-INT-IND-CCA if it has both
robust integrity (ROB-INT) and IND-CPA confidentiality.

Proposition 5.9. (ROB-INT ∧ IND-CPA ⇒ ROB-INT-IND-CCA) Let Ch = (Init,
Send,Recv,aux) be a channel, supp a support predicate. Then for any adversary A
there exist adversaries B and C with comparable run time such that

AdvROB-INT-IND-CCA(supp)

Ch,A ≤ AdvROB-INT(supp)

Ch,B + AdvIND-CPA
Ch,C .

Proof. Consider an attacker A against the ROB-INT-IND-CCA property in experi-
ment ExptROB-INT-IND-CCA(supp)

Ch,A . Assume that we change A’s experiment by letting
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the receiver oracle in the experiment always return ⊥. We claim that the difference is
negligible from A’s perspective, since the oracle never returns a message m �= ⊥ with
overwhelming probability. We argue this by embedding A into an adversary B playing
the robust integrity experiment ExptROB-INT(supp)

Ch,B . If the receiver oracle in A’s original
attack ever returns m �= ⊥ then we claim that B immediately breaks (robust) integrity.

Adversary B initially picks a bit b $←− {0, 1} and starts a simulation of A. Any Send
call (m0,m1, aux) of A is answered by first checking that |m0| = |m1|, returning � if
not, and otherwise forwarding (mb, aux) to B’s own oracle Send, feeding the reply back
to A. Adversary B answers any query c of A to the receiver oracle as follows: If b = 0
then B immediately returns ⊥. Else it sends c to its own oracle Recv and receives ⊥. It
returns ⊥ to A.

First observe that, up to the first query of A to Recv yielding a message m �= ⊥ as
output, B’s simulation perfectly mimics the actual attack from A’s point of view in the
sense that even the concrete executions match. In particular, the lists of sent and received
ciphertexts are identical. Assume that A in its original attack at some point obtains a
response distinct from ⊥ from the (genuine or simulated) receiver oracle for a ciphertext
c. This can only happen if b = 1 and

• the decrypted message mr is different from ⊥ and from mc (Line 21), or
• mr = ⊥ but mc �= ⊥ (Line 23).

In this case, the receiver’s oracle of B will evaluate the condition mr �= mc in Line 47
(cf. Fig. 6) to true and make win become 1. It follows that B wins against robust integrity
if A ever makes the receiver oracle return a message m �= ⊥.

Given that we have now turned the receiver oracle in A’s attack into the always
rejecting ⊥(·) oracle, we can easily wrap A into an adversary C against the IND-CPA
property. For this we let C answer each receiver query of A with ⊥, and let C relay all
send queries faithfully. It follows that A’s advantage is bounded by C’s advantage. �

In the following, we show that robust integrity (ROB-INT) and IND-CPA are both
necessary to achieve the ROB-INT-IND-CCA property.

Proposition 5.10. (ROB-INT-IND-CCA⇒ROB-INT ∧ IND-CPA) Let Ch = (Init,
Send,Recv,aux) be a channel, supp a support predicate. Then for any adversary A
there exists adversary B with comparable run time such that we have

4 · AdvROB-INT(supp)

Ch,A ≤ AdvROB-INT-IND-CCA(supp)

Ch,B and

AdvIND-CPA
Ch,A ≤ AdvROB-INT-IND-CCA(supp)

Ch,B .

Proof. Clearly, if we can break IND-CPA security of the channel, then we also break
ROB-INT-IND-CCA security (by omitting calls to the receiver oracle). We next argue
that we can break ROB-INT-IND-CCA if we can break robust integrity, too. Assume
that we have an attacker A against robust integrity. We build an attacker B against
the ROB-INT-IND-CCA property. Algorithm B simulates A by answering each call
(m, aux) to the Send oracle by forwarding (m,m, aux) to its own Send oracle and
handing back the ciphertext c. Each of A’s call to Recv is forwarded by B to its own
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Fig. 9. Experiment for INT-IND-CCA w.r.t. support class supp of a channel protocol Ch.

receiver oracle, and B returns ⊥ to A. If the receiver oracle at some point returns a
message m �= ⊥ to B then B immediately outputs 1; in any other case it outputs a
random bit.

Note that B perfectly simulates the environment for A’s attack, independently of the
secret bit b. By assumption, A hence breaks robust integrity in the simulation with the
same probability. Whenever this happens and b = 1 then B obtains a message m �= ⊥
and thus outputs b′ = 1. If we denote this event, that A breaks integrity and that b = 1,
by Succ, then the probability of B predicting b correctly if lower bounded by the sum
that the event happens plus the probability that the event does not occur but B’s random
guess is correct:

Pr[b′ = b] ≥ Pr[Succ] + 1

2
· Pr[Succ]

= 1

2
+ 1

2
· Pr[Succ]

≥ 1

2
+ 1

4
· AdvROB-INT(supp)

Ch,A ,

where the latter follows since A’s success probability is independent of the random bit
b in B’s experiment. �

We next show that instead of starting from IND-CPA and using robust integrity to
achieve ROB-INT-IND-CCA, we can also add robustness to a channel which already
provides INT-IND-CCA to arrive there. This gives an alternative construction and proof
method for such channels. One option to show this would be to argue that INT-IND-CCA
implies integrity. This would allow to conclude that robustness with integrity implies ro-
bust integrity, and that the latter yieldsROB-INT-IND-CCA together with the IND-CPA
security of the channel. Here, we show the security of the transform directly starting
from INT-IND-CCA and adding robustness.

Definition 5.11. (INT-IND-CCA) Let Ch = (Init,Send,Recv,aux) be a channel,
supp a support predicate, and experiment ExptINT-IND-CCA(supp)

Ch,A for an adversary A be
defined as in Fig. 9. We define the advantage ofA in breaking integrity/indistinguishability
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of chosen ciphertexts w.r.t. supp of Ch as

AdvINT-IND-CCA(supp)

Ch,A := Pr
[
ExptINT-IND-CCA(supp)

Ch,A ⇒ 1
]

− 1

2
,

and say that Ch is INT-IND-CCA-secure w.r.t. supp if AdvINT-IND-CCA(supp)

Ch,A ≈ 0 for
any polynomial-time A.

As for integrity, we emphasize that our INT-IND-CCA notion w.r.t. a support predi-
cate supp is a generalization of prior combined confidentiality/integrity notions. Follow-
ing the connections drawn in Sect. 3.2, INT-IND-CCA(suppno) and
INT-IND-CCA(suppno-r), for example, correspond to the notions aead1 resp. aead2
as formalized by Boyd et al. [14].

Proposition 5.12. (ROB ∧ INT-IND-CCA⇒ROB-INT-IND-CCA) Let Ch = (Init,
Send,Recv,aux) be a channel, supp a support predicate. Then for any adversary A
there exist adversaries B and C with comparable run time such that

AdvROB-INT-IND-CCA(supp)

Ch,A ≤AdvROB(supp)

Ch,B + 4 · AdvINT-IND-CCA(supp)

Ch,C .

Proof. Assume an attacker A against ROB-INT-IND-CCA. Note that the only way for
A to get some output m �= ⊥ from the receiver oracle for a query c is when b = 1 and

• the ciphertext is supported and mr �= mc, or
• the ciphertext is unsupported, in which case mc = ⊥, and we then have mr �= ⊥.

Note that one of the two cases must happen first. We first show that if this is the first
case then we can break robustness of the channel protocol. The second case will be
covered by the INT-IND-CCA property which only overwrites the message for supported
ciphertexts.

For the first case note that all queries of A to the receiver oracle up to the point where
it submits an supported ciphertext c yielding mr �= mc return ⊥.

We argue that this cannot happen too often by the robustness of the channel protocol.
We can therefore simulate A through an adversary B playing the robustness game.

Algorithm B first picks a random bit b and answers A’s oracle queries (m0,m1, aux)
to Send by checking that |m0| = |m1|, returning � if not, and otherwise forwarding
(mb, aux) to its own Send oracle. Adversary B returns the oracle’s reply to A. To
simulate the receive oracle B replies to each query c of A with ⊥ if b = 0, and otherwise
forwards the query to its own Recv oracle, but returns ⊥ to A.

The simulation through B is perfect up to the submission of A’s supported ciphertext
c in question, because we assume that all queries to Recv before return ⊥. For query c
attacker B then causes its experiment to satisfy the if-clause mr �= mc in Line 16 in the
robust experiment in Fig. 5. This sets win to true and thus makes B break robustness.

If the first query in A’s attack to Recv returning a message different from ⊥ is for
an unsupported ciphertext c, then it holds that mr �= ⊥. We can now run a black-box
simulation C of A, where C answers each Recv call with ⊥ but forwards the query to its
own oracle. If at some point C receives a reply distinct from ⊥ in one of such queries then
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it immediately outputs 1, else it eventually outputs a random bit. An analysis similar to
the one of Proposition 5.10 shows that C succeeds with an advantage of at least 1

4 times
the probability that A wins with an unsupported ciphertext. �

6. QUIC

QUIC was initially designed and implemented by Google. In an extensively revised form,
the protocol was recently standardized by the IETF: RFC 9000 [26] describes the core
protocol and RFC 9001 [49] the underlying cryptographic details, in parts borrowing
heavily from TLS [38].

QUIC distinguishes a variety of different packet types, mostly following either a long
or short packet format [26, Section 17]. For reference, we illustrate both formats in
Fig. 10. Our analysis focuses on the short packet format, which in particular is used for
sending main application data.

6.1. QUIC Encryption Specifications

In the following, we provide a brief overview of the encryption specifics of QUIC.
QUIC packets consist of a header and a payload, the latter being encrypted using an
AEAD scheme. For this encryption, the packet number forms the AEAD nonce (with
a random offset per key), and the unprotected header is used as the associated data.
Headers in particular contain between 1 and 4 bytes of the packet number, with the
sender dynamically determining for each packet how many bytes to send (based on
network conditions). This allows the receiver to reconstruct the correct packet number
of (possibly reordered) packets within an appropriately sized sliding window.

After packet encryption, QUIC additionally applies a header protection mechanism
based on one of the nonce-hiding AE constructions proposed by Bellare et al. [10], and
further allows keys to be updated during the channel’s lifetime. Delignat-Lavaud et al.
[18] treat the header protection mechanism in their analysis of the QUIC protocol, and we
defer the interested reader to their paper as well as the specification [26,49]. Following
TLS 1.3 [38], QUIC further allows to update encryption keys within a connection; see
Günther and Mazaheri [21] for a security model for such multi-key channel design over
reliable transport. In our analysis of QUIC, we do not treat header protection or key
updates. We argue that our results still provide reasonable insights into the robustness of
the QUIC channel, if one is willing to assume that header protection (happening after our
sending, resp. before our receiving steps) and key updates (corresponding to a sequence
of robust channels per phase) work as intended. Analyzing the QUIC channel in a model
treating all these aspects is left as an avenue for future work.

6.2. QUIC as a Channel Protocol

When capturing QUIC as a cryptographic channel protocol, the first question arising is
which interfaces to higher- and lower-level protocols should be considered. The lower-
level interface is simple: running over UDP, QUIC outputs distinct (atomic) chunks of
ciphertexts accompanied by headers in a datagram-oriented manner.
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Fig. 10. QUIC packet formats for long (left) and short (right) packets [26, Section 17]. The first byte contains
flags T: Type, R: Reserved, P: Packet number length, S: Spin, K: Key phase. Field bit length is given in
parentheses, (*) indicating variable length .

For the higher-level interface, things are less clear: While QUIC offers a multiplexed
interface of several parallel data streams to an application, its cryptographic packet
protection merely works on atomic chunks of payload data which results from QUIC-
internal, higher-level multiplexing and other processing.

The focus of this work being robustness of channels, we restrict ourselves to the
core cryptographic packet protection mechanism of QUIC which handles robustness in
transmitting a sequence of atomic payload chunks over the underlying UDP protocol.
This means we do not consider meta-information (like handling connection identifiers),
handling of multiplexed streams of data or the option to switch encryption keys (see
[20,21,36] for treatments of reliable-transport channel notions treating those aspects);
we accordingly consider a restricted packet header. Note that this still goes beyond the
basic AEAD encryption process itself. In particular, we treat the parsing process of QUIC
packet headers which play a crucial role for robustness in determining which packets
can (still) be correctly received within a reordered sequence, and capture the integrity
security loss arising from QUIC’s robust treatment of the underlying network.

6.2.1. Construction

We capture QUIC as the channel protocol ChQUIC = (Init,Send,Recv,aux) de-
scribed in Fig. 11. It is built from any AEAD scheme AEAD = (Enc,Dec) with asso-
ciated key space K and error symbol ⊥, the latter being inherited by the construction.
QUIC employs a dynamic sliding window with an anti-replay window (for some ar-
bitrary, but fixed replay window size wr ), i.e., we can precisely capture the supported
network behavior by QUIC through the support predicate suppdw-r[wr ] as defined in
Sect. 3.2. QUIC’s sliding window is set dynamically on the sender side, spanning 1–
4 bytes wide around the next expected packet number pnR (i.e., the one subsequent
to the highest successfully received packet number), where pnR is the rightmost en-
try in the left half of the window. We formalize this through an auxiliary information



Robust Channels Handling Unreliable Networks Page 31 of 49 9

Fig. 11. The abstract ChQUIC channel protocol based on a generic AEAD scheme AEAD = (Enc,Dec).

space X = {(27 −1, 27), (215 −1, 215), (223 −1, 223), (231 −1, 231)} corresponding to
8, 16, 24, and 32 bit wide windows, respectively, with (almost) half-sized wb+1 = w f .6

Packet numbers play a crucial role for the sliding-windows technique in QUIC, and
hence also in the construction. As described in Sect. 6.1, QUIC packet numbers determine
the nonce and also (partially) the associated data for the AEAD scheme. Packet numbers
are a running integer counter on the sender’s side in the range from 0 to 262 − 1. QUIC
then derives the nonce for packet encryption as the XOR of a (static) initialization
vector I V (a 96-bit value obtained through key generation) and the packet number
(accordingly padded with 0-bits). In our construction, this translates to sampling I V at
random upon channel initialization and deriving the sending nonce based on a running
sending counter pnS . While QUIC puts various header information in its packets (which
enters the AEAD encryption as associated data), we focus here only on the partial,
encoded packet number epn; i.e., the ciphertext space C = {0, 1}8,16,24,32 × {0, 1}∗
consists of the encoded packet number (of length n ∈ {8, 16, 24, 32}) and a (variable-
length) AEAD ciphertext. Upon sending, epn is derived as the last n bits (for a dynamic
sliding window size n) of the sending packet number pnS . Upon receiving, epn (of
length n) is decoded to the (unique) packet number matching epn in its last n bits number
which is contained in the 2n-sized window centered around the next expected packet
number pnR [26, Appendix A]. We capture these encoding and decoding steps through

6Recall that in the formalization of suppdw-r[wr ], the next expected packet index nxt is always contained
in the dynamic window, hence the backwards window reaches back only l/2 − 1 positions for an l-sized
window.
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Fig. 12. Packet number encoding/decoding in QUIC.

Fig. 13. Exemplary illustration of a dynamic sliding receiving window of (toy) size 2n = 8 (i.e., wb = 3
and w f = 4) around the next expected packet number pnR = 5 = 01012, replay-check window of
size wr + 1 = 4. Packet numbers 1 and 4 have been received before, crossed-out in the replay-window.
Grayed-out packet numbers are outside the current sliding window.
In this situation, a received partial packet number epn = 0002 will be (uniquely) decoded to pn = 8 = 10002
within the window (marked with diagonal lines), leading pnR to be updated to pn′

R = 9, moving both windows
forward next .

the sub-algorithms Encode and Decode specified in Fig. 12 and illustrate decoding
within a sliding window in Fig. 13.

In more detail, the construction works as follows.

Init. The initialization algorithm samples uniformly at random a key K from the
AEAD key space K and (static) initialization vector I V of 96 bits length. The
sending and receiving state, beyond K and I V , contain counters for the next
packet number to be sent pnS , resp. to be received pnR , initialized to 0. Further-
more, the receiving state holds a (initially all-zero) bitmap R of size wr +1 later
used to record previously seen packet numbers in a window of size wr before
the last successfully received packet number (+1 to account for the latter, too).

Send. The sending algorithm first ensures that the sending packet number pnS does
not exceed the maximal value of 262 − 1. It derives the encoded packet num-
ber epn to be transmitted as the least significant 1–4 bytes of pnS , captured
through the Encode algorithm given in Fig. 12. It then computes the packet
encryption nonce N as the XOR of the static IV and the running packet num-
ber pnS (implicitly padded to a 96-bit bitstring). The ciphertext c′ is computed
as the AEAD-encryption of the input message m, using N as nonce and epn
as associated data. The encoded packet number epn together with c′ form the
full ciphertext c. The final output is the sending state, with the packet number
incremented, together with c.

Recv. The receiving algorithm begins with decoding the encoded packet number epn
in the ciphertext to the full packet number pn within the dynamic sliding win-
dow around pnR determined by |epn|; captured in the Decode algorithm given
in Fig. 12. It then AEAD-decrypts the ciphertext c′ using N = I V⊕ pn as nonce
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and epn as associated data, rejecting if this step fails (Line 24 of Fig. 11). The
algorithm also rejects if pn is older than what is represented in the replay-
check window (of wr positions before the last successfully received packet
number pnR − 1) and hence cannot be ensured to not be replayed (Line 25).
Finally, it rejects if pn has been processed previously (determined by the bit-
mask R being 1 at the position corresponding to pn, Line 26). Otherwise, R
is marked with a 1 at the position corresponding to pn, possibly shifted before
in case pn is greater than the previously highest received packet number. The
final output is the updated state and message m.

aux. The auxiliary sliding-window information of a ciphertext (epn, c′) is recovered
as backward/forward windows half the size of epn, i.e., aux = (wc

b, w
c
f ) =

(2n−1 − 1, 2n−1), where n = |epn|.
6.2.2. Correctness

To establish correctness w.r.t. support class suppdw-r[wr ] (as defined in Sect. 3.2), we
have to show that (1) aux correctly recovers the auxiliary information used to sent a
ciphertext; (2) suppdw-r[wr ] = true when ciphertexts are delivered in perfect order;
and (3) Recv correctly receives messages of supported, genuinely sent ciphertexts. We
will show that this holds unconditionally, i.e., Advcorrect(suppdw-r[wr ])

ChQUIC,A = 0.
Observe that (1) follows directly from the definition of Encode, and (2) follows

from the construction, as ciphertexts are unique within their dynamic sliding window
and hence always supported when delivered perfectly in-order. For (3), observe that
a genuine QUIC channel ciphertext (epn, c′) is unique within the sliding window (of
size |epn|) it defines. This gives rise to the following property of QUIC’s packet number
encoding, which we denote as correct decodability: For any expected next packet number
to be received pnR ∈ [0, 262 − 1], sliding window (wb, w f ) ∈ X , and (sending) packet
number pnS ∈ [pnR − min(wb, wr + 1), pnR + w f ], it holds that

Decode(Encode(pnS, aux), pnR) = pnS .

This is achieved in QUIC by interpreting the encoded packet number in a window of
bit size the encoded number’s length (i.e., (wb + 1 + w f ) ∈ {28, 216, 224, 232}) [26,
Appendix A], while dropping packets outside of the replay window wr before the last
successfully received packet.

In order to violate correct message receipt, an adversary needs to invoke Recv on j
for a supported ciphertext c = c j (i.e., d = suppdw-r[wr ](CS, DCR, c) needs to yield the
index j in Line 19 of Fig. 4) such that c decrypts to a different message than the message
m j sent. The support predicate suppdw-r[wr ] ensures that the index of a sent ciphertext
(corresponding to pnS + 1, as QUIC packet number begins with 0) is in the interval
[nxt − min(wc

b, wr + 1),nxt + wc
f ], where (wc

b, w
c
f ) is the auxiliary information from

the Send call and nxt is the next expected index (corresponding to pnR + 1). QUIC’s
correct decodability then ensures that the decoded packet number pn equals the pnS
value used within the call to Send that output c. Hence, as AD = epn and c′ is part of c,
Recv invokes AEAD decryption Dec on c′ with the same nonce and associated data as
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in the corresponding encryption step in Send. By correctness of the AEAD scheme, the
decrypted message will hence always equal the sent message.

6.3. Robust Security of the QUIC Channel Protocol

We can now turn to the security analysis of QUIC, taking its robust handling of the
underlying unreliable network into account. As we will show, QUIC achieves robust
confidentiality and integrity (according to the combined notion ROB-INT-IND-CCA),
receiving ciphertexts within a dynamic sliding window and with a window-based replay
protection; i.e., formally w.r.t. the support predicate suppdw-r[wr ] from Sect. 3.2. Lever-
aging the relations between notions, we separately establish robust integrity as well as
indistinguishability under chosen-plaintext attacks, yielding the combined robust confi-
dentiality and integrity guarantees via Proposition 5.9

Compared to secure channels over reliable transports (like TLS over TCP), the in-
tegrity bound is not tight but, at its core, contains a loss linear in the number of received ci-
phertexts (denoted by qR in the theorem statement below): the channel’s robustness leads
to the adversary being able make multiple forgery attempts on the underlying AEAD
scheme—in principle with every delivered ciphertext. This result matches the linear
loss in the security bounds of many AEAD schemes, including AES-CCM [29], AES-
GCM [23–25], and ChaCha20+Poly1305 [16,37] underlying QUIC and DTLS 1.3. It
also coincides with the observation that vulnerabilities in a channel’s encryption scheme
are easier to exploit over non-reliable networks; see, e.g., the Lucky Thirteen attack on
the (D)TLS record protocols [3]. Surprisingly, this higher security loss (compared to
TLS) was so far not considered in DTLS version up to 1.2 and earlier versions of QUIC
(prior to draft-29) and DTLS 1.3 (prior to draft-38). Based on our work, both protocol’s
IETF working groups added concrete forgery limits on packet protection [40,46–48],
requiring that implementations “MUST count the number of received packets that fail
authentication” and ensure this number stays below certain thresholds (236 for AES-
GCM and ChaCha20+Poly1305, 223.5 for AES-CCM, factoring in the precise security
degradation of each scheme and a targeted INT-CTXT advantage of at most 2−57).

Theorem 6.1. (Robust integrity of QUIC) Let ChQUIC be the channel construction
from Fig.11 from an AEAD scheme AEAD = (Enc,Dec), and support predicate
suppdw-r[wr ] be defined as in Sect.3.2. LetA be an adversary against ChQUIC in the ro-
bust integrity experimentExptROB-INT(suppdw-r[wr ])

ChQUIC,A fromFig.6making qS queries toSend
and qR queries to Recv. There exists an adversary B (given in the proof) against the
multi-target authenticity of AEAD that makes qS queries to its encryption oracle Enc
and at most qR queries to its Forge oracle, such that

AdvROB-INT(suppdw-r[wr ])
ChQUIC,A ≤ AdvINT-CTXT

AEAD,B (qR).

Proof. The core idea of the proof is to show that whenever the receiving oracle Recv
is called in the robust integrity experiment ExptROB-INT(suppdw-r[wr ])

ChQUIC,A on a ciphertext c =
(epn, c′) such that suppdw-r[wr ](CS, DCR, c) = false (and hence correct receiving
is skipped), we have that (a) the real receiving state strR remains unchanged in that
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oracle call, and (b) the real received message is an error, i.e., mr = ⊥. We argue
these properties by showing that Recv(strR, c), in Lines 24–26 of Fig. 11, for such a call
toRecv always returns an error due to the replay checks or AEAD decryption yielding an
error; henceRecv(strR, c) returns (a) unchanged receiving state and (b) an error output, as
claimed. Having shown (b), the adversary cannot win anymore on input a non-supported
ciphertext, as mr = mc = ⊥ in Line 47 of experiment ExptROB-INT(suppdw-r[wr ])

ChQUIC,A (Fig. 6)

in this case. Furthermore, property (a), strR remaining unchanged on non-supported
ciphertexts, implies that in any query toRecv on a supported ciphertext, leavesstrR = stcR
in the two calls to Recv in Lines 40 and 44 in Fig. 6. Thus, the two states are always
in-sync. Due to Recv being deterministic, this implies that mr = mc always holds in
Line 47, preventing A from winning.

We show (a) and (b) hold for unsupported ciphertexts because Recv always returns
an error in this case, either due to replay checks or AEAD decryption yielding an error.
This holds unconditionally for the replay checks, while we argue the AEAD error case
via a reduction B to the INT-CTXT security of the AEAD scheme. We call the event
that an unsupported ciphertext is not rejected because of replay checks—and we are
hence relying on the AEAD error—a “forgery attempt.” Observe that B can identify
such forgery attempts itself by checking the results of supp and the replay check. In
the argument below, we show that upon such a forgery attempt, B can send some (N ,

AD, c′) to its Forge oracle which is (in principle) a permissible forgery because c′ was
never output by encryption using nonce N and associated data AD. The reduction B
will make at most qR such calls, and if any of the forgery attempt event does not yield
in an AEAD decryption error, B breaks the multi-target integrity of the AEAD scheme,
which gives the bound of the theorem.

The reduction B simulates the robust integrity game ExptROB-INT(suppdw-r[wr ])
ChQUIC,A for A

by not sampling a key K itself but using its encryption oracle to emulate the Enc calls
within Send (qS times overall). To simulate the Recv oracle, B proceeds as follows:
Whenever suppdw-r[wr ](CS, DCR, c) = true, B accounts for changes of pnR , obtain-
ing the packet number regularly as Decode(epn, pnR). Otherwise, it checks for replays
and in case of a “forgery attempt,” B submits (N = I V ⊕Decode(epn, pnR), epn, c′)
as an attempted forgery to its Forge oracle. It does not need to update pnR . In either
case, B does not need to perform decryption as Recv always returns ⊥.

First observe that, with unsupported ciphertexts being rejected in Lines 24–26, we
have that pnR is only updated on supported ciphertexts and equals nxt = max(DR)+ 1
in the support predicate. Let us consider the cases in which a ciphertext c = (epn, c′)
input to Recv is unsupported (i.e., suppdw-r[wr ](CS, DCR, c) = false).

1. If c /∈ CS[nxt − min(wc
b, wr + 1),nxt + wc

f ] is not in the admissible window
(and hence cindex returns false), then we distinguish the cases according to the
relationship of the replay-window size and the backward-window size:

1.1. If wr + 1 < wc
b, it might be that c ∈ CS[nxt − wc

b,nxt − wr − 2] still lies in
the overhanging part of the sliding window. But then Recv decodes a packet
number pn < nxt − 1 − wr , leading to rejection (Line 25).

1.2. If wc
b ≤ wr + 1, we know from c /∈ CS[nxt − wc

b,nxt + wc
f ] that c was never

output by Send using the decoded packet number pn. This is the “forgery
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attempt” event, enablingB to send (N = I V⊕ pn, AD = epn, c′) to itsForge
oracle.

2. If cindex(c,CS[nxt − min(wc
b, wr + 1),nxt + wc

f ]) ∈ DR then this index has
been output by supp before, and in particular the ciphertext has been processed by
Recv earlier. The index corresponds to (one plus) the decoded packet number pn ∈
[pnR−wc

b..pnR+wc
f ], which is unique as |epn| = log2(w

c
b+wc

f +1). This packet
number is either within the replay-check window (hence was marked previously,
and is now rejected in Line 26) or is beyond that window (and hence rejected in
Line 25).

Finally, observe that properties (a) and (b) above may only be violated in case 1.2.
above when Dec(N = I V ⊕ pn, AD = epn, c′) �= ⊥. In this case, B wins through
its Forge call; B making at most qR such calls yields the overall ROB-INT bound
of AdvINT-CTXT

AEAD,B (qR). �

On closer examination, the INT-CTXT reduction B in the ROB-INT proof for QUIC
makes one Forge call per AEAD decryption which should output ⊥. The upper bound
on the number of failed forgery attempts is precisely what QUIC (and DTLS 1.3, cf.
Sect. 7) chose to limit in order to keep the AEAD INT-CTXT advantage for the deployed
algorithms (AES-CCM, AES-GCM, ChaCha20+Poly1305) small [46,49].

Theorem 6.2. (Confidentiality of QUIC) LetChQUIC be the channel construction from
Fig.11 fromanAEADschemeAEAD = (Enc,Dec), and support predicatesuppdw-r[wr ]
be defined as in Sect.3.2. LetA be an adversary againstChQUIC in the IND-CPA exper-
iment ExptIND-CPA

ChQUIC,A from Fig.7 making qS queries to Send. There exists an adversary B
(given in the proof) against the IND-CPA security of AEAD that makes qS queries to its
encryption oracle Enc such that

AdvIND-CPA
ChQUIC,A ≤ AdvIND-CPA

AEAD,B .

Proof. From an adversary A against the IND-CPA security of ChQUIC we construct
a reduction B to the IND-CPA security of AEAD as follows. Adversary B simulates
the (left-or-right) IND-CPA experiment for A faithfully, with the only exception that
it does not pick a challenge bit b and AEAD encryption key itself. Instead, it uses its
encryption oracle Enc (on the derived nonce and associated data, and the two left-or-
right messages m0 and m1) in place of the AEAD encryption step within Send. When
A eventually outputs a bit b′ guess, B forwards b′ as its own guess.

Having B perfectly simulating the ExptIND-CPA
ChQUIC,A experiment for A, inheriting the

challenge bit from its own IND-CPA game, we have that AdvIND-CPA
ChQUIC,A ≤ AdvIND-CPA

AEAD,B .
�

7. DTLS 1.3

DTLS can be seen as a variant of TLS, running atop the unreliable transport protocol UDP,
aiming to provide similar security guarantees even if records arrive out-of-order or may
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Fig. 14. DTLS header types: General ciphertext header (left), and examples for full (middle) and minimal
(right) DTLS 1.3 ciphertext structures [41, Section 4]. The three leftmost bits of the first byte are set to
001 indicating that the packet is a ciphertext. Furthermore, the first byte also contains flags, indicated as
C: Connection ID, S: size of sequence number, L: length, E: Epoch. If the bit in C and L are set then those
parts are present. In case S is set to 0 then the ciphertext structure contains an 8-bit sequence number, otherwise
16 bits. E includes the low order two bits of the epoch .

be duplicated—by the network, or an active adversary. Recently, the next protocol version
DTLS 1.3 [41] has been standardized by the IETF.

In the following we provide the full details on our channel construction for DTLS 1.3.
We first describe the encryption specification for DTLS 1.3 and then provide the full
details about the construction. In the final part, we show that this channel construc-
tion is ROB-INT-IND-CCA secure. Our analysis reveals that DTLS 1.3, like QUIC,
has to tolerate multiple forgery attempts leading to a loss linear in the number of re-
ceived ciphertexts (qR) through a multi-target INT-CTXT bound with (up to) this many
forgeries. We have informed the responsible IETF TLS working group about our ob-
servation. Based on this input, the working group has added concrete forgery limits on
packet protection in DTLS 1.3 draft-38 [40,47]. Those place an effective upper bound
on the robust integrity loss by requiring that implementations ensure that the number of
received packets that fail authentication remains below certain specified thresholds (cf.
Sect. 6.3).

7.1. DTLS Encryption Specifications

The record layer of DTLS 1.3 is different from the one in TLS 1.3 in the sense that
DTLS 1.3 adds an explicit sequence number and an epoch to the ciphertext. DTLS 1.3
ciphertexts follow either the full or minimal format illustrated in Fig. 14.

Let us have a closer look at the encryption specifics in DTLS 1.3. A DTLS ciphertext
consists of a (protected) header and an encrypted record which is generated using an
AEAD scheme. As an input, the encryption algorithm takes (as usual) four inputs,
namely the key K , the nonce N , the associated data AD, as well as the message m. The
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specification of DTLS 1.3 [41] details how the above inputs are derived. The (per-record)
nonce [41, Section 4] is derived by concatenating a 16-bit (key) epoch number with a
48-bit sequence number obtaining a 64-bit record sequence number.7 This value is then
left-padded with zeros up to the nonce length. Finally this padded sequence number is
XORed with a static, random initialization vector I V (derived along with the key) to
obtain the nonce. The associated data covers the ciphertext header (full or minimal, cf.
Fig. 14), in particular including the truncated 8- or 16-bit sequence number field.

Similar to QUIC, DTLS 1.3 employs a form of header protection [41, Section 4.2.3],
namely encrypting the sequence number. For this, a separate sequence number key is
derived that is used with the underlying encryption algorithm to generate a mask which
is then XORed with the sequence number.

We do not treat key updates and header protection in our following channel construc-
tion of DTLS 1.3. However, we argue that our results provide meaningful insights into
the robustness of the DTLS 1.3 channel as long as one assumes that both the key updates
and header protection function as intended. Similar to QUIC, we leave it as an avenue for
future work to confirm these assumptions and analyze the DTLS 1.3 channel covering
all of these aspects.

7.2. DTLS as a Channel Protocol

In the following, we aim to provide a cryptographic channel protocol capturing DTLS 1.3.
As in Sect. 6, our focus for DTLS 1.3 is to show that our construction is indeed a robust
channel.

7.2.1. Construction

We capture DTLS as the channel protocol ChDTLS = (Init,Send,Recv,aux) de-
scribed in Fig. 15 in its two modes with replay protection (including the gray boxes)
for support predicate suppdw-r [wr ] and without replay protection for support predicate
suppdw. Observe that the generality of our framework enables us to precisely state both
modes depending on their respective support predicates. The channel protocol uses an
arbitrary AEAD scheme AEAD = (Enc,Dec) (as defined in Sect. 2.2) with associated
key spaceK and error symbol ⊥, the latter being inherited by the construction. Similar to
QUIC’s behavior of ciphertext processing, the construction of DTLS 1.3 with replay pro-
tection also employs a dynamic sliding-window technique with an anti-replay window
as derived from the support predicate suppdw-r[wr ] for some scheme-dependent fixed
replay window size wr as detailed in Sect. 3.2. The sliding window is set dynamically on
the sender side which is spanned around the next expected sequence number snR and has
a size of either 8 or 16 bits. Note that the expected sequence number corresponds to the
largest successfully received sequence number (on the receiving side) plus one modeling
that the channel expects that the next receiving sequence number is being incremented
since a new ciphertext may be received and hence the window “moves” towards the
right. We formalize this through an auxiliary information space X = {(27 − 1, 27),

7The epoch number is increased upon a key update, which also resets the sequence number to 0.
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Fig. 15. The abstract ChDTLS channel protocol (without and with replay protection) based on a generic

AEAD scheme AEAD = (Enc,Dec). The framed code is used only in the version with replay protection .

(215 − 1, 215)} corresponding to 8-bit and 16-bit wide windows, respectively, with (al-
most) half-sized limits wb + 1 = w f .

In DTLS, sequence numbers and epochs play a crucial role for the sliding-window
technique. Both values are used to compute the nonce and additionally the epoch serves
the purpose to keep track of key updates, i.e., the epoch is incremented whenever a key
update has occurred. As mentioned above, we do not model key updates here and hence
do not consider epochs explicitly in the construction and only rely on sequence numbers.
Note that the concept of sequence numbers is in spirit very close to the packet numbers
being used in QUIC.

As described in Sect. 7.1, sequence numbers are used in deriving the nonce and also
(partially) the associated data for the AEAD scheme. Sequence numbers are a running
48-bit integer counter on the sender’s side in the range from 0 to 248 − 1. DTLS 1.3
then derives the nonce as the XOR of the initialization vector I V which is an r -bit
value (where r is the AEAD scheme’s nonce length) obtained though key generation,
and the sequence number which is accordingly padded with zeros from the left. In our
construction, this translates to sampling I V at random upon channel initialization and
deriving the nonce on sending based on the running snS counter. DTLS 1.3 includes
various header information into the associated data that enters the AEAD encryption
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Fig. 16. Sequence number encoding/decoding in DTLS 1.3.

process, we limit that information for modeling purposes to the encoded sequence num-
ber consisting of the least 8 or 16 bits of the full sequence number. The ciphertext
space C = {0, 1}n × {0, 1}∗ accordingly consist of the encoded sequence number of
length n ∈ {8, 16} and a variable-length AEAD ciphertext. Upon sending the encrypted
record, DTLS 1.3 includes in the header an encoded sequence number whose encoding
is derived in the sending algorithm based on the sequence number snS and the dynamic
sliding window size given through the auxiliary input. While receiving the ciphertext,
the receiver algorithm aims to reconstruct the (full) sequence number from the encoded
one which is numerically closest to the next expected sequence number snR (cf. [41,
Section 4.2.2]). Note that this corresponds to the same encoding/decoding principle as
put forward by QUIC (cf. Section 6.2.1). Therefore, we have the sub-algorithms given
in Fig. 16 that handle encoding and decoding, respectively:

In more detail, the construction works as follows.

Init. The initialization algorithm starts with sampling a key K uniformly at random
from the key space K of the AEAD scheme, as well as a random (static) initial-
ization vector I V of r bits length (where r is the AEAD scheme’s nonce length).
The sending and receiving state, beyond K and I V , contain sending and receiv-
ing packet numbers pnS and pnR , respectively, initialized to 0. Optionally, in
case of replay protection the receiving state furthermore contains an (initially
all-zero) bitmap R of size wr+1 to record previously received sequence numbers
and providing for later use a replay protection mechanism.

Send. The sending algorithm first ensures that the sending (record) sequence num-
ber snS does not exceed the maximal value of 248 − 1. It then sets this sequence
number to correspond to associated data. Then it continues computing the per-
record nonce N as the XOR of the sequence number (implicitly padded to an
r -bit string) with the initialization vector. The ciphertext c′ is the computed as
the AEAD-encryption of the input message m, using N as nonce and snS as as-
sociated data. Next it derives the encoded sequence number esn as the least 8 or
16 bits of snS which is captured by running the Encode algorithm from Fig. 16.
The full ciphertext c is then formed as the pair consisting of encoded sequence
number esn and the AEAD ciphertext c′. The final output is the sending state,
with the sequence number incremented, together with c.

Recv. The receiving algorithm begins with decoding the encoded sequence number
in the ciphertext to the full sequence number sn within the dynamic sliding
window centered around snR and determined through the length of esn which
we capture by running the decoding algorithm Decode from Fig. 16. In order to
avoid timing attacks, the algorithm first prepares the required inputs to perform
the AEAD decryption algorithm and in case of replay protection only checks



Robust Channels Handling Unreliable Networks Page 41 of 49 9

afterwards if the sequence number is valid ensuring that no replay has occurred.
In more detail, in case the construction is run without replay protection, the
algorithm rejects if the AEAD decryption failed. If run with replay protection,
the algorithm also rejects if the received sequence number is older than (and
hence before) the current replay window, or if the sequence number has indeed
been previously processed which is determined by checking whether R contains
a bit 1 at the respective position of the sequence number. Otherwise, if the
previous checks were successful then R is marked with 1 at the corresponding
position of sn (either directly or after shifting the replay window in case sn is
greater than the previously highest received sequence number snR). The final
output is the receiving state, with the sequence number being incremented, and
the successfully decrypted message m.

aux. This helper algorithm recovers the auxiliary sliding-window information of a
ciphertext (esn, c′) as backward/forward windows that are half of the size of
esn. Hence we obtain aux = (wc

b, w
c
f ) = (2n−1 − 1, 2n−1), where n = |esn|.

7.2.2. Correctness

In order to argue correctness for the DTLS 1.3 channel construction w.r.t. support classes
suppX with X ∈ {dw, dw-r [wr ]} depending on the mode, we need to show that (1) aux
correctly recovers the auxiliary information used to sent a ciphertext; (2) suppX = true
for X ∈ {dw, dw-r [wr ]} when ciphertexts are delivered in perfect order; and (3) Recv
correctly receives messages of supported, genuinely sent ciphertexts. We will show that
this holds unconditionally.

For (1), we can conclude from the definition of the encoding algorithm Encode
that aux correctly recovers the auxiliary information. For (2), ciphertexts being unique
within their dynamic sliding window ensures they are always supported when deliv-
ered perfectly in-order. For (3), we need to argue that DTLS 1.3 correctly receives
messages from ciphertexts w.r.t. to the support predicates suppX = true for X ∈
{dw, dw-r [wr ]}. Let us first observe that we require the same property as in QUIC from
the sequence number encoding for the AEAD scheme, namely correct decodability (cf.
Section 6.2.1). In more detail, we require that for any next expected sequence number
to be received snR ∈ [0, 248 − 1], any sliding window (wb, w f ) ∈ X , and (i) for
suppdw any sequence number snS ∈ [snR − wb, snR + w f ] and (ii) for suppdw-r [wr ]
any sequence number snS ∈ [snR − min(wb, wr + 1), snR + w f ], it holds that

Decode(Encode(snS, aux), snR) = snS .

The above construction of DTLS achieves this property by interpreting the encoded
sequence number within a window of the sequence number’s length, i.e., (wb+1+w f ) ∈
{28, 216}. Furthermore, in case of replay protection any packet containing a sequence
number which is outside of the replay window will be discarded.

In order to violate correct receipt of a message, an adversary needs to invoke Recv
on a supported ciphertext c = c j (i.e., both d = suppdw(CS, DCR, c) and d =
suppdw-r[wr ](CS, DCR, c) yielding the index j in Line 19 of Fig. 4) such that the ci-
phertext c decrypts to a different message than the message m j sent. The given sup-
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port predicate (i) suppdw ensures that the sent index of a ciphertext is in the interval
[nxt−wc

b,nxt+wc
f ] while (ii) suppdw-r[wr ] ensures that the sent index is in the interval

[nxt−min(wc
b, wr+1),nxt+wc

f ], where (wc
b, w

c
f ) is the auxiliary sliding-window infor-

mation from the aux call and nxt is the next expected index (corresponding to snR + 1).
The correct decodability property of DTLS 1.3 ensures that the decoded (full) sequence
number sn equals the snS sequence number used within the call to Send that output c.
Hence, as AD = sn and c′ is part of c, Recv invokes AEAD decryption Dec on c′ with
the same nonce and associated data as in the corresponding encryption step in Send. By
correctness of the AEAD scheme, the decrypted message will hence always equal the
sent message, and thus the adversary has no further advantage in breaking correctness.

7.3. Robust Security of the DTLS Channel Protocol

We finally turn to analyzing the robust security of DTLS 1.3. In more detail, we wish
to show on the one hand that our above channel construction from Fig. 15 achieves
robust integrity for the support predicate suppdw in case the protocol is run without
replay protection and suppdw-r[wr ] with replay protection. Additionally, we show that
this construction also achieves confidentiality for the same support predicates. Following
the implication that we established in Sect. 5.3 with Proposition 5.9, we then finally argue
that our channel construction for DTLS 1.3 achieves the combinedROB-INT-IND-CCA
notion.

Before diving into the formal details, let us emphasize that—similar to our QUIC
analysis—the integrity bound is not tight and contains a loss linear in the number of
received ciphertexts (denoted by qR in the following theorem statement).

Theorem 7.1. (Robust Integrity ofDTLS)LetChDTLS be the channel construction from
Fig.15 from an AEAD schemeAEAD = (Enc,Dec), and support predicate suppX with
X ∈ {dw, dw-r [wr ]} be defined as in Sect.3.2 and corresponding to ChDTLS being run
without or with replay protection. Let A be an adversary against ChDTLS in the robust

integrity experiment ExptROB-INT(suppX )

ChDTLS,A from Fig.6 making qS queries to Send and qR
queries toRecv. There exists an adversaryB (given in the proof) against the multi-target
authenticity of AEAD that makes qS queries to its encryption oracle Enc and at most
qR queries to its Forge oracle, such that

AdvROB-INT(suppX )

ChDTLS,A ≤ AdvINT-CTXT
AEAD,B (qR).

Proof. The idea of the proof is identical to the robust integrity proof of QUIC (cf. The-
orem 6.1) and mainly only the syntax differs. We start with reviewing the idea and then
provide the respective details for our channel construction ChDTLS.

The main idea of the proof is to show that whenever the receiving oracleRecv is called

in the robust integrity experiment ExptROB-INT(suppX )

ChDTLS,A with X ∈ {dw, dw-r [wr ]} on a
ciphertext c such that depending on the mode either suppdw(CS, DCR, c) = false or
suppdw-r[wr ](CS, DCR, c) = false (and hence correct receiving is skipped), we have
that (a) the real receiving state strR remains unchanged in that oracle call, and (b) the
real received message is an AEAD error, i.e., mr = ⊥.
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Observe that for such a ciphertext call to Recv(strR, c), i.e., executing Line 23 of
Fig. 15, it calls the Recv oracle always resulting into a AEAD decryption error which
is output in Line 24 for both support predicates or it returns an error due to the replay
checks (only for support predicate suppdw-r[wr ]) failing in Lines 25 and 26, respec-
tively. This simply results in (a) outputting an unchanged receiving state strR , and (b)
an erroneous output as claimed. Having shown (b), the adversary cannot win anymore
on input of a non-supported ciphertext, as mr = mc = ⊥ in Line 47 of experiment

ExptROB-INT(suppX )

ChDTLS,A for X ∈ {dw, dw-r [wr ]} in this case. Furthermore (a), the receiving

state strR remains unchanged on non-supported ciphertexts which implies that in any
query to Recv on a supported ciphertext, strR = stcR in the two calls to Recv in Lines 40
and 44 in Fig. 6. Due to Recv being deterministic, this implies that mr = mc always
holds in Line 47, preventing A from winning.

In the following, we show that both properties (a) and (b) hold for non-supported
ciphertexts since Recv always returns an error which is

due to the AEAD decryption error or the employed replay checks in case of replay
protection. This holds unconditionally for the latter case, and for the former one (AEAD
decryption error) we argue via a reduction B to the INT-CTXT of the AEAD scheme.
We start with calling such an event a “forgery attempt/” Observe that the reduction
B can identify such forgery attempts by checking the results of the support predicate
for X ∈ {dw, dw-r [wr ]} and the replay check for the latter support predicate. In the
following, we show that upon such a forgery attempt, B sends some triple of the form
(N , AD, c′) to its Forge oracle since the ciphertext was never an output by an AEAD
encryption using the nonce N and associated data AD. B will make at most qR calls
of this form, and if any of these forgery attempts does not output an AEAD decryption
error, then B breaks the multi-target integrity of the AEAD scheme yielding our bound
of the theorem.

The reduction B simulates the robust integrity game ExptROB-INT(suppX )

ChDTLS,A for X ∈
{dw, dw-r [wr ]} for A by not sampling a key K itself but using its encryption oracle
to emulate the Enc calls within Send. To simulate the Recv oracle, B proceeds as
follows: Whenever the ciphertext is supported, i.e., suppX (CS, DCR, c) = true for
X ∈ {dw, dw-r [wr ]}, then B accounts for changes of snR (obtaining the sequence
number as usual via Decode(esn, snR)). Otherwise, it checks for replays and in case of
a forgery attempt, B provides (I V ⊕Decode(esn, snR), esn, c′) as its forgery attempt
to its Forge oracle, and does not need to update snR here. Note that in both cases, B
does not perform decryption as Recv always simply returns ⊥.

Observe that an unsupported ciphertext is rejected in Lines 24–26, and hence the
sequence number snR is only updated on supported ciphertexts and equals nxt =
max(DR)+ 1 in the support predicate. Let us now consider the cases where a ciphertext
of the form c = (esn, c′) as input to Recv can be unsupported.

Next we perform a case distinction depending on the mode. We start with the protocol
without replay protection.

1. Here we have that if c /∈ CS[nxt−wc
b,nxt+wc

f ] then c was never output by Send
using the decoded sequence number sn. This is the forgery attempt, enabling B to
send (N = I V ⊕ sn, AD = esn, c′) to its Forge oracle.
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Next we examine the cases for the protocol when run with replay protection. It follows:

2. If c /∈ CS[nxt− min(wc
b, wr + 1),nxt+wc

f ] is not in the admissible window (and
hence cindex returns false), then we have to distinguish the two cases according
to the relationship of the replay-window size and backwards window size:

2.1. If wr + 1 < wc
b, it might be that c ∈ CS[nxt − wc

b,nxt − wr − 2] still lies
in the overhanging part of the sliding window. However, Recv then decodes a
sequence number sn < nxt − 1 − wr , leading to rejection (Line 25).

2.2. If wc
b ≤ wr + 1, we know from c /∈ CS[nxt − wc

b,nxt + wc
f ] that c was never

output by Send using the decoded sequence number sn. This is the forgery
attempt, enablingB to send (N = I V ⊕sn, AD = esn, c′) to its Forge oracle.

3. If cindex(c,CS[nxt − min(wc
b, wr + 1),nxt + wc

f ] ∈ DR then this index has
been an output from supp before, and in particular the ciphertext hash been
processed by Recv. The index corresponds to (one plus) the uniquely decoded
sequence number sn ∈ [snR − wc

b..snR + wc
f ] which is indeed unique since

|esn| = log2(w
c
b + wc

f + 1). This sequence number is either within the replay-
check window (hence was marked previously, and is now rejected in Line 26) or
is beyond that window (and hence rejected in Line 25).

Finally, we can observe that the properties (a) and (b) can only be violated in Case 1
(no replay protection) or in Case 2.2. (with replay protection) when Dec(N = I V ⊕ sn,

AD = esn, c′) �= ⊥, in which case B wins through this Forge call. Since B makes at
most qR such calls, the overall bound is AdvINT-CTXT

AEAD,B (qR). �

Theorem 7.2. (Confidentiality of DTLS) LetChDTLS be the channel construction from
Fig.15 from an AEAD schemeAEAD = (Enc,Dec), and support predicate suppX with
X ∈ {dw, dw-r [wr ]} be defined as in Sect.3.2 and corresponding to ChDTLS being run
without or with replay protection. Let A be an adversary against ChDTLS in the IND-
CPA experiment ExptIND-CPA

ChDTLS,A from Fig.7 making qS queries to Send. There exists an
adversary B (given in the proof) against the IND-CPA security of AEAD that makes qS
queries to its encryption oracle Enc such that

AdvIND-CPA
ChDTLS,A ≤ AdvIND-CPA

AEAD,B .

Proof. Assume that A is an adversary attacking ChDTLS in the IND-CPA sense. Then
we construct a new adversary B, running A as a sub-routine, attacking the IND-CPA
security of AEAD.

Adversary B simulates the (left-or-right) IND-CPA experiment for A faithfully with
the only exception that it does not sample its own key K as well as does not pick the
challenge bit b. To simulate the Send oracle, B proceeds as follows. It performs an
initialization phase where it samples at random an initialization vector I V as well as
initializes the sending sequence number snS to 0. Furthermore,B prepares the nonce and
associated data by setting the sequence number to correspond to the associated data, and
it performs an XOR operation of the initialization vector and the (appropriately padded)
sequence number obtaining the nonce. Upon receiving a message pair (m0,m1) from
A, B sends the tuple (N , AD,m0,m1) to its oracle. It receives back a ciphertext c′. B
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then encodes the sequence number obtaining esn which together with c′ builds the full
ciphertext c and it increments the sequence number. Next, it provides the ciphertext c to
A. When A eventually outputs a guess b′, then B simply forwards b′ as its own guess.

Note that B perfectly simulates the experiment ExptIND-CPA
Ch,A for A, inheriting the

challenge bit from its own IND-CPA experiment. Thus, we have that AdvIND-CPA
ChDTLS,A ≤

AdvIND-CPA
AEAD,B . �

Using the results from the above proofs, we can conclude via Proposition 5.9 that our
channel construction for DTLS 1.3 achieves ROB-INT-IND-CCA security.

8. Conclusion

In this work, we introduced the notion of robustness for cryptographic channels. Pa-
rameterized by a support predicates, our generic channel model allows us to capture
the supported ciphertext sequences of novel protocols using dynamic sliding-window
techniques over unreliable transport. Equipped with the model, we analyzed the packet
encryption in the record layers of the QUIC and DTLS 1.3 protocols. Our security bounds
unveiled a notable security degradation through repeated forgery attempts which led the
responsible IETF working groups to introduce forgery limits to both standards.

Our work has been already built upon, for example to analyze a variant of the MTProto
protocol in the Telegram messaging app [2] or to provide a generic transform from nonce-
set AEAD to a secure channel [17]. Avenues for further research include extending
our analysis also capture the header protection mechanisms of QUIC and DTLS 1.3.
Furthermore, it could be interesting to study whether certain handling of unreliable
transport, i.e., certain support predicates, are more amenable to traffic analysis or side
channel exploitation than others.
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A. Capturing TLS

Our formalism of support predicates capturing robust behavior focuses on channel over unreliable transport
like DTLS or QUIC. In principle, we can however further extend this formalism to capture (non-robustness
and robustness of) reliable transport channels like TLS. Although simpler, traditional channel model exists
for capturing reliable transport (starting with Bellare, Kohno, and Namprempre [7]), such extension allows
further connection and comparison to the authentication hierarchy levels put forward in the prior work by
Kohno et al. [31], Boyd et al. [14], and Rogaway and Zhang [44].
We leave a fully formal extension as potential future work to not further increase complexity, but briefly outline
how support predicates for reliable-transport protocols like TLS may be captured.

Strict ordering (with termination). A channel that accepts ciphertexts only exactly in the order they
were sent and terminates upon deviation (always rejecting from thereon); e.g., TLS
[38]. This is equivalent to the stateful authenticated encryption notion introduced in [7],
level/type 4 in the authentication hierarchy of [14,31], and level L3 in [44].
To capture TLS’ terminating behavior after receiving any misplaced ciphertext, we further
allow supp(CS , DCR , c) to output a value
terminate; indicating that c is unsupported and that supp will output terminate
from here on. Formally, (terminate, c) is added to DCR as a “marker.”
The predicate capturing strict ordering with termination then requires that the sequence
of received ciphertexts CR together with the (next) ciphertext c is a prefix of the sent
ciphertext sequence CS ; terminating (forever) otherwise. Formally,

suppso(CS , DCR , c):

1 if CR‖(c) � CS ∧ terminate /∈ DR then
2 return |CR | + 1
3 else return terminate

Robust strict ordering. A channel that accepts ciphertexts only exactly in the order they were sent, but
keeps receiving ciphertexts after rejecting bogus packets. It can be seen as a robust version of
TLS which exhibits some form of resilience against denial-of-service attacks by ignoring
any invalid ciphertext without terminating the connection, allowing continued operation
when the correct next in-sequence ciphertext is delivered. This is equivalent to type 5 in the
hierarchy of [31].
Formally this can be captured as

supprso(CS , DCR , c):

1 return
[
CR‖(c) � CS

]

It is important to be aware that such a robust version of TLS would need to tolerate a similar
degradation in the integrity bound as exhibit by QUIC and DTLS 1.3, due to granting an
adversary possibly many forgery attempts.

http://creativecommons.org/licenses/by/4.0/
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