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We analyze Dieharder statistical randomness tests according to accuracy and correct interpretation of their results. We used all tests, processed 8 TB of quantum-generated data, and obtained null distributions of first-level and second-level p-values. We inspected whether the p-values are uniformly distributed. The analysis showed that more than half (out of 110) of Dierharder atomic tests (test with particular setting) produce null distributions of p-values that are biased from the expected uniform one. Additional analysis of the Kolmogorov–Smirnov (KS) test showed that the key KS test is also biased. This increases the probability of false positives (in the right tail) for all Dieharder tests as KS is used to post-process their results. Moreover, 12 tests (22 atomic) produce results significantly biased from the null distribution of the KS test which may suggest problems with the implementation of these tests.
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                                    1 Introduction
Random numbers are used in cryptography and many areas, with different criteria for their quality. Independent, uniform, and unpredictable numbers are typically required to be produced by random number generators (RNGs). There are several tools developed to detect unwanted patterns in data. Some tools use novel approaches such as adaptive learning [1], while the standard approach is based on empirical statistical testing.
While empirical tests are sometimes mandated in cryptography (certification schemes such as FIPS 140-2 [2] or Common Criteria [3]), they cannot replace the solid analysis (cryptanalysis) of the RNG. In particular, cryptographic keys should be generated using secure RNG either PRNG that withstood the cryptanalysis or TRNG with verified amount of entropy per bit. Empirical tests of randomness analyze just data produced by a given RNG without any knowledge of the RNG itself. This black-box approach can find the patterns only in “small" (GBs or TBs) portion of data. In the cryptanalysis, additional information about the RNG is used (e.g., design of PRNG); hence, it is able to find more complex patterns or patterns spread across longer data blocks.
Each statistical test of randomness examines data according to a specific feature (number of ones and zeros in the sequence, etc.). Tests are grouped into testing suites (batteries) providing more complex randomness analysis. There are three batteries commonly used to test the randomness of data: NIST STS [4], Dieharder [5] (newer version of Diehard [6]) and TestU01 [7]. A result of a randomness test is probabilistic since a good RNG generates all sequences of given length with the same probability. To improve confidence in the results of tests, each test is typically applied to many sequences generated by the RNG. Tests compute specific statistics of bits, integers, or floating point numbers. Each test is evaluated using a reference null distribution of the test statistic under the null hypothesis (random data). The distribution of a test statistic is typically known only approximately or asymptotically. This introduces some error to results of a single test. Errors are cumulated when multiple sequences are tested (by the first-level test) as the corresponding results are targeted by some uniformity test (second-level test). Cumulation of errors may cause false positives [8] (good RNG falsely fails a test). The interpretation of the result of the tests is up to the user. The probabilistic answer of a test means that some sequences generated even by good RNG will inevitably fail one or more tests. The probabilistic nature of test results and possible approximation errors make the interpretation of test results hard. Ideally, any two tests in the battery should provide independent results on the same data. In such a case, it would be easy to compute the expected number of failed tests and interpret the results of the battery. Unfortunately, some tests in batteries examine similar patterns in data, and hence their results are strongly correlated. This makes the interpretation of the battery results even harder.
This work focuses on the correct interpretation of results (first-level and second-level p-values) of the Dieharder battery. The first goal was to give the correct interpretation of a single test result/results. We analyzed the correctness of the implementation of Dieharder tests and the accuracy of results for each particular test. The second goal was to detect dependency between the tests. The standard way to “test the test” [9] is to apply the test to many sequences generated by the high-quality RNG and check whether observed distribution of results follows expected distribution for random numbers. In two scenarios corresponding to our goals, we applied all tests of the Dieharder battery and tested 8 TB of truly random data generated by quantum processes [10]. Some of the Dieharder tests are suspect [5] (Diehard OPSO—5, Diehard OQSO Test—6, Diehard DNA Test—7) or problematic (Diehard Sums Test—14) in the analyzed version (Dieharder 3.31.1), and we do not use them in our analysis. Hence, the corresponding test IDs (5,6,7,14) are missing in the tables—full names for all IDs can be found in [5]. Some of the tests are executed in more variants (test with particular setting), so altogether we analyzed 110 atomic tests (27 different tests).
The rest of the paper is divided into four sections. Section 2 outlines the main results of the paper. The correctness of Dieharder tests according to the distribution of the first-level p-values, second-level p-values, and dependencies of tests results are described here. The reader not familiar with the general testing procedure, first- and second-level p-values, and uniformity tests should read Appendix A first. Testing with the Dieharder battery is described in Appendix B. Section 3 describes the performed experiments in detail, while the analysis of the results (distribution of the first-level, second-level p-values) is given in Sect. 4. The reference distribution of the key Kolmogorov–Smirnov (KS) test and dependency of Dieharder tests is given in Sect. 4. Section 5 concludes the paper.


2 Main Results
We analyzed the Dieharder tests (110 atomic tests) to assess and eventually improve the accuracy of their results. We also analyzed the dependency of tests to improve interpretation of battery results when used with the default setting. The null distributions of Dieharder tests results under \({\mathcal {H}}_0\) were taken as a subject of the analysis. The quantum data [10] were processed by the tests to simulate the distributions of the tests results under the hypothesis. The main results of the analysis are the following: 
	
                  1.
                  
                    More than half of the atomic tests produce biased distributions of first-level p-values. The distributions are not uniform w.r.t. the whole interval [0, 1],  or both tails. The obtained frequencies for tails can be used further to interpret first-level p-values directly (if future versions of Dieharder allow to extract them) or to improve the implementation of Dieharder.

                  
                
	
                  2.
                  
                    The key Kolmogorov–Smirnov test is inaccurate—the simulated distribution of KS test suggests that KS produces several times (1.7, 3, 6 ) more values in the right-tail sub-intervals than expected. Also it produces half (0.74, 0.62, 0.5) of expected p-values in the left-tail sub-intervals. KS test produces many times more right-tail p-values which means that tests fail more frequently as the Dieharder tests are two-tailed. Obtained simulated distribution of KS test results can be used to correct all the results of the Dieharder battery. This can be done in post-processing without modification of the Dieharder code.

                  
                
	
                  3.
                  
                    For 11 tests (22 atomic tests), the second-level distributions are significantly biased from the simulated null distribution of the KS test. For these tests, the difference is more significant than for other tests. This may be caused by the improper implementation of tests and not by the non-uniformity of their null distributions. We suggest checking the implementation (used constants, approximations) and perform additional testing of these tests to identify the source of the bias.

                  
                
	
                  4.
                  
                    Few pairs of tests produce correlated results—we computed how many tests fail (second-level p-value is smaller than \(\alpha \)) simultaneously for a given sequence. The relative number of failed tests is decreasing with the \(\alpha .\) For the \(\alpha =0.01\), there are many correlated p-values, while for \(\alpha =0.001\), there are only six pairs of tests producing strongly correlated second-level p-values. Most of these dependent tests belong to the family of serial tests examining similar patterns. Moreover, except only one pair of RGB tests, all strongly correlated tests belong to the NIST STS battery implemented also in Dieharder.

                  
                

The distribution of the first-level p-values depends on the quality of randomness of the quantum data used in the analysis. Yet quantum data produced by [10] are appropriately post-processed using “(152,128,6) resilient function derived from the corresponding (152,128,7) Bose–Chaudhuri–Hocquenghem code” [11]. This should suppress (or at least reduce) all potential correlations of bits. Hence, we can assume that used data represent sequence produced by a good RNG and simulated distributions of first-level p-values are close enough to the null distribution of tests.


3 Experiments
We analyzed 8 TB of random data from a quantum generator [10] in two scenarios using 110 atomic Dieharder tests with their default setting. The first scenario was focused on the accuracy of the tests results (first-level and second-level p-values). We analyzed the distribution of p-values for each test separately. Each of the 110 datasets of first-level p-values (one for each atomic test) was used to analyze: 
	
                  1.
                  
                    the uniformity of first-level p-values (dataset) of the corresponding test,

                  
                
	
                  2.
                  
                    and the uniformity of second-level p-values computed from the dataset using Dieharder’s KS test. We also analyzed the accuracy of this KS test.

                  
                

The second scenario was focused on the dependencies of the tests results (second-level p-values) for the common use of Dieharder. We applied Dieharder with its default setting to 1000 sequences and examined the correlation of obtained results.
3.1 Scenarios
3.1.1 Continuous Processing
The first scenario was aiming to extract as many first-level p-values from the 8 TB of data as possible. This means that if the test in its single run processes 8 MB of data, from processing 8 TB of data, we will get a total of one million of first-level p-values. However, as each test processes a different amount of data, then also the total amount of p-values will differ for various tests. For this scenario, we had to modify the Dieharder code, so it would also output first-level p-values as this is not the default behavior. The computation was much more demanding on processing power than the next scenario and was conducted in cloud infrastructure [12].
3.1.2 Block Processing
The second scenario was aiming to replicate the standard usage of Dieharder. In the standard run, the tests are sequentially applied to given data. When the end of a sequence is reached during a test, the data is rewound, and the next data are taken from the start of the sequence. The next test starts on the offset where the previous test left off. To prevent the processing of the same data with one test, the provided data should be at least as long as the data consumed by the most data-demanding test. However, running Dieharder in this way is time-consuming, as the tests must run sequentially and cannot be parallelized. In this scenario, we split 8 TB of data into one thousand 8 GB files. This means that Dieharder was fully executed 1000 times. We executed each test in its default settings. (Few tests have reduced repetitions so that they would fit into 8 GB.) Tests are executed in parallel and from the start of the given 8 GB file independently. In this scenario, only second-level p-values were inspected.


4 Analysis of Results
In our analysis, we firstly focused on first-level p-values since bias in their distributions affects the distribution of second-level p-values.
4.1 Uniformity of First-Level p-Values
We have plotted out histograms of p-values obtained for quantum data. Some tests produce histograms that are biased from expected flat histogram and the bias can be identified even visually. Histograms in Fig. 1 illustrate several types of non-uniform distributions of first-level p-values computed by the selected Dieharder tests.
Fig. 1[image: figure 1]
Distribution of first-level p-values for selected tests from the Dieharder battery. Histograms show frequencies of p-values falling into 100 disjoint sub-intervals of [0, 1] each of the length 0.01. Note different scales for Y-axis caused by different amount of data used by tests to compute first-level p-values


Full size image

We can see that some tests produce highly biased p-values on the whole interval [0, 1] or also when small sub-intervals are considered (e.g., both tails of the interval). In order to statistically identify all tests producing non-uniform p-values, we have used two tests—binomial test and \({\chi }^2\) test. These tests analyze binned values; hence, they are more suitable for processing a large number of values we have in datasets than other uniformity tests (e.g., KS, Anderson–Darling, Cramer–Mises) that require sort of the values. Both tests analyze whether the observed frequency of p-values that fall within given interval/intervals (bins) match with the expected frequency/frequencies for uniform distribution.
4.1.1 Binomial and \(\chi ^2\) test
The binomial test compares the expected and observed frequency just for one sub-interval (bin) of [0, 1], while \(\chi ^2\) test takes into account frequencies of more sub-intervals (bins). We have selected \([0,\alpha ], [1-\alpha ,1]\) sub-intervals to be analyzed by the binomial test since these intervals are crucial in the context of the hypothesis testing. (Hypothesis is rejected when p-value falls into one of the tails.) We have used several values of \(\alpha = {10^{-i}}, i\in \{1,2,\cdots 8\}\) for two reasons. First, we want to identify the tests that use inappropriate approximations or parameters. It can be expected that closer to one of the tails p-value is, the higher error is introduced by approximations. Hence, the progression of errors in the tail may reveal the test issues. Second, the observed frequencies in both tails can be also used to interpret the results of the Dieharder tests just based on first-level p-values. This requires that the tester can extract first-level p-values which is not possible without modification of the Dieharder code.
The \(\chi ^2\) test examines the uniformity of p-values by comparing the expected and the observed histogram of p-values frequencies computed for all k bins. First, the histogram of observed frequencies corresponding to sub-intervals(bins) \((i/k,(i+1)/k]\) is computed. The observed histogram is then compared with the “flat” (all frequencies are equal) histogram expected for random data. We analyzed uniformity w.r.t four values of \(k=10,100,1000,1000\), i.e., different granularity were used.
We used the Python module scipy to compute the p-values for both tests. The binomial test (function scipy.binom_test) computes p-value as “exact, two-sided test of the null hypothesis that the probability of success in a Bernoulli experiment is p.” That means that no approximation of the binomial distribution B(N, p) were used and scipy.binom_test sum up values of the probability mass function:
$$\begin{aligned} P(X=x) = \left( {\begin{array}{c}N\\ x\end{array}}\right) p^i(1-p)^{N-i}. \end{aligned}$$

                    (1)
                

Second \(\chi ^2\) test (scipy.chisquare) “calculates a one-way Chi-square test.” The test statistic is computed as:
$$\begin{aligned} \chi ^2 = \sum _{i}\frac{(O_i-E_i)^2}{E_i^2}. \end{aligned}$$

                    (2)
                

where \(E_i, O_i\) denote observed and expected absolute frequencies in categories (bins). The result of the \(\chi ^2\) test is incorrect when expected values are too small (below 5 [13]). This is not a problem as total number of pvalues is sufficiently large for almost all tests and even for fine grained analysis \(k=10000\).
4.1.2 Testing Results
Table 1 provides results of the uniformity testing of first-level p-values and relevant values. We list here only testsFootnote 1 that fail binomial or \(\chi ^2\) test for significance level \(\alpha =0.001\). This should indicate a problem with the non-uniformity of the tests results. The values in the binomial part of the table represent ratio \(R=O/E\) of observed frequency and expected frequency of p-values that fall into corresponding left tail \([0, 10^{-i}]\) or right tail \([1-10^{-i}, 1].\) The ratio with the total number of computed (“count” column) p-values can be used to compute the frequency in the corresponding tail, e.g., the value 0.94 in the first row (test 000—Diehard Birthdays Test [5]) and column 1 for the left tail means that we have observed \(5133653 \pm 27306\) (= \((0.94\pm 0.005)*10^{-1}*54613333\)) in the interval [0,0.1]. Note that ratio R is rounded according to its value. The value \(R < 10\) is rounded to 2 decimal places, to 1 place for \(10< R <100\). The value 0 of the ratio is denoted by “–” to differentiate it from the rounded value 0.00. Also, note that a large ratio does not automatically mean that value is biased. If expected frequency is very small, e.g., \(E=0.1\) than ratio \(R=10\) represent absolute frequency \(O=1\) with relatively large p -value. In the \(\chi ^2\) part of the table, the logarithms of p-values are computed. The whole part of the logarithm is used here, not the rounded value. The value \(-\,5\) is taken as the smallest result since a p-value below \(10^{-5}\) clearly indicates fail of the uniformity test.
Table 1 Dieharder tests with non-uniform (failed some of the uniformity tests for the significance level \(\alpha = 10^{-3}\)) distribution of first-level p-valuesFull size table

4.2 Uniformity of Second-Level p-Values
The accuracy of the KS test implemented in Dieharder was analyzed first since it is used to compute second-level p-values for all Dieharder tests. Then, we analyzed the distribution of second-level p-values. Dieharder computes each second-level p-value from the blocks of B (called psample [14]) consecutive first-level p-values. Dieharder uses the default value \(B=100\) (only one test RGB minimum distance uses default value 1000) but we used more values (\(B=100,200,300,400, 500,600,1000,2000,5000, 10000\)) as B is optional.
4.2.1 Cause of Non-uniformity
In this section, we discuss all parameters that might cause the non-uniformity of first-level p-values for some Dieharder test. Although the goal of the paper is not to answer the question what is the root of the bias, we have performed additional analysis to confirm that the bias is caused by the Dieharder test itself and not by the external factors.
The first-level p-value of a test should be computed from the observed test statistic using null distribution (test statistic under the true \({\mathcal {H}}_0\) hypothesis). Tests often use an approximation of the null distribution instead of the exact distribution. The reasons are twofold. Either the null distribution is known only asymptotically or it is more efficient to use an approximation. For fixed sample size, the null distribution is, in fact, discrete (e.g., binomial) but some continuous distribution (e.g., normal distribution) is used typically to compute p-values. The following factors might affect obtained (Table 1) non-uniformity for some tests:
	
                      used RNG produces biased data (hypothesis \({\mathcal {H}}_0\) is not true);

                    
	
                      size of the p-value error introduced by the used approximation is affected by:

                    

	
                      number of discrete values test can produce,

                    
	
                      size of the sequence.

                    

	
                      binomial or \(\chi ^2\) test we used to test the uniformity is not accurate.

                    

In order to verify the results for quantum RNG from Table 1, we repeated the testing with an alternative RNG. We used AES in the counter mode to generate 1.8 TB and test this data using Dieharder tests that are problematic (see Table 1). The results of this testing can be found in Table 3. The results correspond with those in Table 1. Also, we have analyzed both sources using the NIST STS battery, and the results are given in Tables 6 and 7—these show similar non-uniform results (obtained for 1 TB of data each). It should be noted that this does not mean that the data are non-random (AES in counter mode is considered random). It may be caused by the “effect of discreteness” (see corresponding section in [15]).
The correctness of the binomial and \(\chi ^2\) is suggested by some results of “uniform” tests from Table 4. Moreover, we have simulated uniformly distributed values and verified that the binomial test and the \(\chi ^2\) test really produce expected (not extreme) p-values.
4.2.2 Uniformity of KS Test
First-level p-values computed by the Dieharder tests are not uniformly distributed (see the previous section). Hence, we generated new random sequences of floating-point numbers from the interval [0, 1] simulating uniform first-level p-values. We use dev/urandom as a high-quality RNG. Figure 2 illustrates the histograms of KS results for two values of parameter \(B = 100,1000\).
Fig. 2[image: figure 2]
Histograms of simulated second-level p-values computed by KS implemented in Dieharder battery. Each second-level p-value in the first (second) histogram was computed using KS processing 100 (1000) random numbers; hence, the sum of the frequencies for each histogram is different (\(10^7\) vs. \(10^6\)) as well as expected frequency for each bin (\(10^4\) vs. \(10^3\))


Full size image

The histograms are clearly biased in both tails of the [0, 1] interval. There are less second-level p-values than expected in the left tail and more p-values in the right tail which impact all results of Dieharder. In order to see more details, we analyzed distributions of second-level p-values for various blocks sizes and different sizes of the tail sub-interval. For all block sizes, we generated a fresh sequence of floats, applied the KS and obtained \(10^5\) second-level p-values. Table 2 with the observed absolute frequencies suggests that significantly more second-level p-values in the right tail than expected are computed (row “100”). Hence, all Dieharder tests are also biased and should fail with probability few orders of magnitude larger than expected.
Table 2 Tail frequency for Dieharder’s KS test and various block sizesFull size table

Table 3 Number in column i represents number of p-values computed by KS test for given block size that fall within \([0,10^{-i}]\) (\([1-10^{-i}, 1]\)) interval for the left tail (right tail)Full size table

4.2.3 Uniformity of Dieharder Tests
KS test is used by Dieharder to compute all second-level p-values from blocks of 100 first-level p-values. All correctly implemented (appropriate constants, sizes, approximations, etc.) tests should produce tail distributions close to the null distribution of the KS test (see “100” row of Table 2). We have again used the binomial test to identify a significant bias of the tail frequencies from the simulated null distribution of the KS test. Table 3 lists all tests with the problematic tail frequencies—one or more p-values computed by the binomial test for tails of the lengths 0.1, 0.01, 0.001. We have identified 22 problematic atomic tests (11 different tests). p-values computed for all 101 variants are small due to non-uniform first-level p-values. Hence, we used a smaller threshold \(10^{-6}\) to identify problematic implementation of tests. It makes sense to analyze also variants with a higher threshold (say below \(10^{-4}\)) but such p-values can be just caused by non-uniformity of first-level p-values. The first row (KS) in the table represents the reference distribution (taken from Table 2). The interesting observation is that bias in one tail is partially “compensated” in the opposite tail, e.g., for the “000” row: smaller (than expected 0.74) value 0.72 in the left tail corresponds to bigger value (than expected 1.69) in the right tail.
4.3 Dependency
The second experiment aimed to analyze the dependency of second-level p-values produced by Dieharder in its default setting. We split 8 TB of data into one thousand 8 GB files. Dieharder was fully executed 1000 times, and we obtained 1000 second-level p-values for each atomic test. We analyzed the dependency of second-level p-values according to: 
	
                    1.
                    
                      Simultaneous failure of two tests—we counted how many times (out of 1000) two tests failed (both p-values) simultaneously. We analyzed dependency for every pair of tests and \(\alpha =0.05,0.01,0.005\), 0.001.

                    
                  
	
                    2.
                    
                      The number of failed tests in a single run of the battery for \(\alpha = 0.01\).

                    
                  

Since we have only 1000 second-level p-values, \(\alpha \) have to be small to see the dependency on test results. For the \(\alpha =0.01\) it is expected that 10 (out of 1000) sequences failed each test. The probability that a sequence fails two independent tests is \(10^{-4}\). Hence, it is expected that maximally 1 (expected number of failed sequences is equal to 0.1) out of 1000 sequences should fail given a pair of the tests. For each pair of the tests, we counted number sequences which failed these test, so we examined all 5995 pair of tests. Results show that 376 of pairs of the tests produce slightly dependent p-values since exactly one sequence (out of 1000) simultaneously failed both tests in the pair. There are 24 pairs of tests that produce more dependent results—2 or 3 sequences failed these pairs of tests. Two tests taken from the NIST STS (Monobit and Serial) produce strongly dependent results since nine sequences failed both tests simultaneously.
We also inspected an overall dependency of the Dieharder results. The following image shows the difference between the frequencies of observed and expected numbers failed tests in a single run for \(\alpha =0.01\).
Fig. 3[image: figure 3]
Test failure frequency distributions in Dieharder battery for significance level \(\alpha = 0.001\). The figure also shows a p-value of Pearson’s test comparing expected and observed histograms [16]


Full size image

The number 460 in the first observed bin means that 460 sequences (of 8 GB) fully passes the Dieharder battery. The next bin represents the expected number failed tests, i.e., it is expected that 331 sequences fully pass all Dieharder test in case the tests are independent. The expected number of failing tests is computed using formula 1 since their distribution is also the binomial distribution \(B(110, \alpha ).\) We can see that for “large” \(\alpha =0.01\) the more tests fail simultaneously. For a smaller \(\alpha =0.001\), we found that six pairs of tests (Monobit, Serial:1), (Serial:11, Serial:12), (Serial:19, Serial:21), (Serial:19, Serial:23), (Serial:21, Serial:41) and (RGB Generalized Minimum Distance:4, RGB Lagged Sum:23) failed simultaneously. This suggests a strong dependency of these tests since a single test should practically fail once for analyzed 1000 sequences.


5 Conclusions
We have analyzed the results of Dieharder tests according to accuracy and correct interpretation of their results. We processed 8 TB of quantum-generated data in two scenarios. We replicated (1000 repetitions) results (1000 second-level p-values per test) of the Dieharder battery with the default setting in order to identify pairs of tests with strongly correlated results. We also processed the data in a different way in order to get as many first-level p-values as possible to analyze uniformity of the first and second-level p-values. We analyzed the distribution of first-level p-values results of Dieharder tests. Analysis showed that results of tests are not accurate. The distributions of first-level p-values are not uniform for more than half of Dieharder atomic tests. Simulated distribution of the key Kolmogorov–Smirnov test shows that the test computes significantly biased results, which affects all results (second-level p-values) of the battery as it is used to compute second-level p-values from the first-level p-values computed by particular test. The small and incorrect second-level p-value can be simply (partially) corrected. It suffices to use reference values from Table 2. Moreover, 12 tests (22 atomic tests) produce biased (w.r.t.) results hence correction according to KS test would not be sufficient. The correlation analysis showed that results of six pairs of the test are strongly correlated, but each pair (except one) consists of the same test but with different setting. Moreover, there is only one pair (RGB generalized minimum distance:4, RGB lagged sum:23) of correlated Dieharder tests. The rest of the pairs is formed by the tests taken (and re-implemented) from the NIST STS battery.



                                

                        
                    

                    Notes
	The rest of the tests can be found in the Table 4 in Appendix.
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Appendices
A Testing Procedure
1.1 A.1 Single Test
Empirical tests of randomness are based on hypothesis testing. Tests examine null hypothesis \({\mathcal {H}}_0\) that output sequence of the RNG consist of/imitate independent uniform random variables usually over the interval [0, 1] or binary set \(\{0,1\}.\) Each statistical test T is defined by a specific test statistic Y that is a real-valued function of values generated by RNG. Test computes statistic \(y= Y(s_0,\cdots ,s_n)\) for the analyzed sequence \(s_0,\cdots ,s_n\). The test evaluates how extreme is the observed test statistic y in case of good RNG. Result of an empirical test of randomness is typically p-value defined as:
$$\begin{aligned} p = P[Y \ge y | {\mathcal {H}}_0]. \end{aligned}$$

The exact p-value can be computed using distribution F of the test statistic Y under \({\mathcal {H}}_0.\) Function F is typically a complex function, and it is quite inefficient to compute the p-value using F. Hence, p-value is computed using continuous \({\tilde{F}}\) that is approximation of (typically discrete) distribution F.
p-value represents the probability that good RNG would generate the more extreme sequence (bigger y) according to the analyzed pattern (e.g., a bigger difference of zeros and ones) than sequence being tested. Extremely small p-value means that analyzed sequence is too extreme to be generated by a good RNG and in such cases hypothesis \({\mathcal {H}}_0\) is rejected, and we say RNG fails the test. If the p-value is small but does not clearly indicate that a RNG fails the test, new sequences should be generated by the RNG and tested.
1.2 A.2 Two-Level Testing with a Battery
To increase confidence in the result of a single test, batteries replicate each“first-order” test on disjoint sequences generated by the RNG being analyzed. The idea of the two-level testing is that for continuous distribution F of a test statistic Y p-values are uniformly distributed over the interval (0, 1] under \({\mathcal {H}}_0\). This, in fact, forms a second hypothesis \({\mathcal {H}}_1\): “p-values of computed by the test are uniformly distributed over the interval (0, 1]”. The hypothesis \({\mathcal {H}}_1\) is tested statistically by the “second-order” test in the batteries.
Two-level testing is performed as follows: 
	
                      1.
                      
                        First-level: a test of the battery is applied to N disjoint sequences computing set \(P=\{p_1, \ldots , p_N\}\) of N independent p-values.

                      
                    
	
                      2.
                      
                        Second-level: The uniformity of the first-order p-values is tested. Batteries use two ways to test the uniformity of p-values in P: Dieharder and TestU01 use goodness-of-fit tests such as Kolmogorov–Smirnov, Anderson–Darling, Crámer–von Mises, etc. which compares empirical distribution of first-order p-values to the expected uniform distribution. NIST STS uses \(\chi ^2\) test for categorical data that tests whether expected frequencies fit the observed frequencies in one or more categories. In the context of uniformity testing, frequencies of p-values falling into one or more intervals (subintervals of (0, 1]) are computed and compared with expected frequencies. The result of a uniformity test is again p-value (of p-values)—second-level p-value.

                      
                    

Fig. 4[image: figure 4]
Illustration of two-level testing. Second-level p-value is computed here using the Kolmogorov–Smirnov (KS) test


Full size image

1.3 A.3 Interpretation of Battery Results
Assessment of the RNG is based on a set of second-level p-values computed by all tests of the battery for multiple sequences generated by RNG. Two scenarios can be considered when testing RNG: 
	
                      1.
                      
                        RNG is evaluated only based on second-level p-values computed in a single run of the battery.

                      
                    
	
                      2.
                      
                        New sequences are generated by the RNG and tested in order to confirm suspicious results.

                      
                    

Both scenarios are equivalent according to the interpretation of results in the situations when RNG clearly fails some test (computed p-value is extremely small, e.g., less than \(10^{-10}\)), or RNG passes all tests (e.g., p-values are larger than 0.01). The scenarios are different when suspect (weak fail) p-value (e.g., 0.001) is computed. In the second scenario, a failed test is replicated with new sequences from the same generator until either failure is confirmed or suspicion disappears. We will focus on the first scenario, where we have to evaluate RNG based on a number of “weak failures” and/or structure of small p-values. The correct interpretation of this common situation is a hard task in general. There are two things which need to be taken into account when interpreting results of multiple tests:
	
                      uniformity tests often compute inaccurate second-level p-value (smaller second-level p-value),

                    
	
                      results (first and second-level p-values) of tests of the battery can be correlated.

                    

Except for the case when “weak sequence” is generated by chance, the following situations or their combinations can cause that small (not extremely small) second-level p-value is computed incorrectly: 
	
                      1.
                      
                        First-level p-values are not accurate—this happens when function \({\tilde{F}}\) is not a good approximation to exact distribution F of the test statistic,

                      
                    
	
                      2.
                      
                        uniformity test computes the inaccurate second-level p-value,

                      
                    
	
                      3.
                      
                        hypothesis \({\mathcal {H}}_1\) (first-level p-values are uniform for random data) is not true: In fact, \({\mathcal {H}}_1\) is never strictly true. The reason is that the test statistic Y is a discrete function (for fixed sequence size) which implies that F is also discrete function on (0, 1], hence different to the continuous uniform distribution. This failure is revealed only when a number of possible outcomes of test statistic Y (for given sequence size) are relatively small compared to the number N of first-level p-values used to compute the second-level p-value.

                      
                    

The interpretation of single test result/results (for disjoint sequences) is easy and statistically clear. The interpretation of multiple tests may be problematic when the results of tests are correlated. This happens when tests analyze the same data and look for similar patterns. In order to interpret multiple tests correctly, the correlation between the test results for good RNG needs to be known.
B Dieharder
Dieharder is a tool containing a set of statistical tests designed to evaluate the randomness of source based on its output developed by Robert G. Brown. While its name may lead people to believe it is just a reimplementation of older Diehard, this is not entirely true. The more true statement would be that Diehard is a subset of more complete and faster Dieharder. In total, Dieharder contains 31 statistical tests, 18 of them are reimplemented tests from Diehard, three of them are tests from NIST STS battery, and the remaining ten are original tests designed by the authors. Tests OPSO, OQSO, DNA, and Sums are flagged as suspect and should not be used in the analysis. Some tests are executed with different parameters so 110 “atomic” and correct tests can be used from the Dieharder battery.
The full execution of Dieharder consists of running all tests in their default settings on the given data. For each test, one or more p-values are provided. If more p-values are provided for a single test, it means that the test has several variants. Test variants differ only in certain parameters, but they measure similar property. An example of such a test is the STS Serial Test. This test measures the uniformity of n-bit patterns in the sequence, and when executed in default settings, it will be run multiple times, each time with different n.
Along with each p-value, Dieharder provides an evaluation of this p-value. If the p-value is smaller than \(10^{-6}\), then Dieharder returns FAILED and data are interpreted as non-random. For the p-value below 0.005 data, Dieharder returns WEAK, which suggests a potential problem with the data/RNG. For the rest of p-values (above 0.005), Dieharder returns PASS that is interpreted as random data.
Each Dieharder test is executed multiple times in sequence, and multiple first-level p-values are computed. First-level p-values are then post-processed by the Kolmogorov–Smirnov test for uniformity [17] from which the resulting second-level p-value is obtained (see Fig. 4). Tests are mostly repeated 100 times (i.e., \(N=100\)) in default run, but this number can vary based on a test.
C Other Results

                  Table 4 Dieharder tests with uniform distribution of first-level p-valuesFull size table


                  Table 5 Uniformity of selected (non-uniform results for quantum generator [10] listed in Table 1) Dieharder tests applied to random data produced by AES in the counter modeFull size table


                  Table 6 Uniformity of NIST tests applied to random data produced by quantum generator [10]Full size table


                  Table 7 Uniformity of NIST tests applied to data produced by AES in the counter modeFull size table
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