J Cryptol (2018) 31:1164-1182

https://doi.org/10.1007/s00145-018-9298-8 Journal of

CRYPTOLOBY () comven

Fast Multi-precision Multiplication for Public-Key
Cryptography on Embedded Microprocessors*

Michael Hutter
Rambus Cryptography Research Division, 425 Market Street, 11th Floor, San Francisco, CA 94105, USA
Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology,
Inffeldgasse 16a, 8010 Graz, Austria
michael.hutter @ cryptography.com

Erich Wenger
Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology,
Inffeldgasse 16a, 8010 Graz, Austria
wenger.erich@gmail.com

Communicated by Mitsuru Matsui.

Received 3 October 2012 / Revised 21 September 2017
Online publication 28 June 2018

Abstract. Multi-precision multiplication is one of the most fundamental operations
on microprocessors to allow public-key cryptography such as RSA and elliptic curve
cryptography (ECC). In this paper, we present a novel multiplication technique that
increases the performance of multiplication by sophisticated caching of operands. Our
method significantly reduces the number of needed load instructions which is usually
one of the most expensive operations on modern processors. We evaluate our new tech-
nique on an 8-bit ATmegal28 and a 32-bit ARM7TDMI microcontroller and compare
the results with existing solutions. For the ATmegal28, our implementation needs only
2395 clock cycles for a 160-bit multiplication. The number of required load instruc-
tions is reduced from 167 (needed for the best known hybrid multiplication) to only 80.
On the ARM7TDMI, our implementation needs only 281 clock cycles as opposed to
357. For both platforms, the proposed technique outperforms related work by a factor
of about 10-23%. We also show that the method scales very well even for larger Inte-
ger sizes (required for RSA) and limited register sets. It fully complies with existing
multiply—accumulate instructions that are integrated in most of the available processors.

Keywords. Multi-precision arithmetic, Microprocessors, Elliptic curve cryptography,
RSA, Embedded devices.

1. Introduction

Multiplication is one of the most important arithmetic operations in public-key cryptog-
raphy. It engrosses most of the resources and execution time of modern microprocessors

*This work was done while the authors were at Graz University of Technology (IAIK).

© International Association for Cryptologic Research 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-018-9298-8&domain=pdf

Fast Multi-precision Multiplication for Public-Key Cryptography 1165

(up to 80% for elliptic curve cryptography (ECC) and RSA implementations [8]). In
order to increase the performance of multiplication, most effort has been put by re-
searchers and developers to reduce the number of instructions or minimize the amount
of memory-access operations.

Common multiplication methods are the schoolbook or Comba [5] technique which
are widely used in practice. They require at least 2n> load instructions to process all
operands and to calculate the necessary partial products. In 2004, Gura et al. [8] presented
a new method that combines the advantages of these methods (hybrid multiplication).
They reduced the number of load instructions to only 2[n?/d] where the parameter
d depends on the number of available registers of the underlying architecture. They
reported a performance gain of about 25% compared to the classical Comba multipli-
cation. Their 160-bit implementation needs 3106 clock cycles on an 8-bit ATmegal28
microcontroller. Since then, several authors applied this method [10,15,21,22,24] and
proposed various enhancements to further improve the performance. Most of the related
work reported between 2593 and 2881 clock cycles on the same platform.

In this paper, we present a novel multiplication technique that reduces the number
of needed load instructions to only 2n%/e where e > d. We propose a new way to
process the operands which allows efficiently caching of required operands. In order to
evaluate the performance, we implemented a 160-bit multiplication on an ATmegal28
and an ARM7TDMI microcontroller and compare the results with related work. For the
ATmegal28, only 2395 clock cycles are required which is an improvement by a factor
of 10% compared to the best reported implementation of Scott et al.[21] (which need
2651 clock cycles) and by a factor of about 23% compared to the work of Gura et al. [8].
For the ARM7TDMI, only 281 clock cycles are needed which is a reduction by about
20% compared to the best reported solution in the literature so far. We further compare
our solution with different Integer sizes (160, 192, 256, 512, 1024, and 2048) and a
parameter e that depends on the number of available registers (e = 2, 4, 8, 10, and 20).
It shows that our solution needs about 15% less clock cycles for any chosen Integer
size. Our solution also scales very well for different register sizes without significant
loss of performance. Besides this, the method fully complies with common architec-
tures that support multiply—accumulate instructions using a (Comba-like) triple-register
accumulator.

The paper is organized as follows. In Sect. 2, we describe related work on that topic and
give performance numbers for different multiplication techniques. Section3 describes
different multi-precision multiplication techniques used in practice. We describe the
operand-scanning, product-scanning, and the hybrid methods and compare them with our
solution. In Sect. 4, we present the results of our evaluations. We describe the ATmegal28
and ARM7TDMI architecture and give details about the implementation. Summary and
conclusions are given in Sect. 5.

2. Related Work

In this section, we describe related work on multi-precision multiplication over prime
fields. Most of the work given in the literature makes use of the hybrid multiplication
technique [8] which provides best performance on most microprocessors. This technique

1166 M. Hutter, E. Wenger

was first presented at CHES 2004 where the authors reported a speed improvement
of up to 25% compared to the classical Comba multiplication technique [5] on 8-bit
platforms. Their implementation requires 3106 clock cycles for a 160-bit multiplication
on an ATmegal28[1]. Several authors adopted the idea and applied the method for
different devices and environments, e.g., sensor nodes. Wang et al.[25] and Ugus et
al.[23] made use of this technique and implemented it on the MICAz motes which
featured an ATmegal28 microcontroller. Results for the same platform have been also
reported by Liu et al.[14] and Szczechowiak et al.[22] in 2008 who provide software
libraries (TinyECC and NanoECC) for various sensor-mote platforms. One of the first
who improved the implementation of Gura has been due to Uhsadel et al.[24]. They
have been able to reduce the number of needed clock cycles to only 2881. Further
improvements have been also reported by Scott et al.[21]. They introduced additional
registers (so-called carry catchers) and could increase the performance to 2651 clock
cycles. Note that they fully unrolled the execution sequence to avoid additional clock
cycles for loop instructions. Similar results have been also obtained by Kargl et al. [10]
in 2008 which reported 2593 clock cycles for an unrolled 160-bit multiplication on the
ATmegal28.

In 2009, Lederer et al.[12] showed that the needed number of addition and move
instructions can be reduced by simply rearranging the instructions during execution
of the hybrid multiplication method. Similar findings have been also reported recently
by Liu et al.[15] who reported the fastest looped version of the hybrid multiplication
needing 2865 clock cycles in total.

In view of the ARM7TDMI, most of the related work focused on ECC implementations
and reported numbers mainly for scalar multiplication, e.g., the work of Aydos et al. [3],
Medwed et al.[16], or Xu and Batina[26]. Pelzl et al. [19] presented a hyper-elliptic
curve implementation on the ARM7TDMI in 2003. For a GF(2'°!) field multiplication,
they reported 50.7 s for an implementation that runs at a clock frequency of 80 MHz.
This corresponds to about 4056 clock cycles. A paper that discusses multi-precision
multiplication on that platform has been presented by Scott et al. [21]. For a 192-bit
multiplication, they need 580 clock cycles for the Comba and 487 clock cycles for the
hybrid multiplication. They make use of a single carry-catcher register that efficiently
handles carry propagation on the ARM7TDMI which allowed them to lower the execu-
tion time compared to related work.

3. Multi-precision Multiplication Techniques

In the following subsections, we describe common multiplication techniques that are
often used in practice. We describe the operand scanning, product scanning, and hybrid
multiplication method.! The methods differ in several ways how to process the operands
and how many /oad and store instructions are necessary to perform the calculation. Most
of these methods lack in the fact that they load the same operands not only once but

Note that we do not consider multiplication methods such as Karatsuba—Ofman or FFT in this paper
since they are considered to require more resources and memory accesses on common microcontrollers than
the given methods[11].

Fast Multi-precision Multiplication for Public-Key Cryptography 1167

several times throughout the algorithm which results in additional and unnecessary clock
cycles. We present a new multiplication technique that improves existing solutions by
efficiently reducing the load instructions through sophisticated caching of operands.

Throughout the paper, we use the following notation. Let @ and b be two m-bit
large Integers that can be written as multiple-word array structures A = (A[n —
11, ..., A[2], A[1], A[O]) and B = (B[n — 1],..., B[2], B[1], B[0]). Further let W
be the word size of the processor (e.g., 8, 16, 32, or 64 bits) and n = [m/ W] the
number of needed words to represent the Integers a or b. We denote the result of the
multiplication by ¢ = ab and represent it in a double-size word array C = (C[2n —
1], ..., C[2], C[1], C[O]).

3.1. Operand-Scanning Method

The simplest way to perform large Integer multiplication is the operand-scanning method
(or often referred as schoolbook or row-wise multiplication method). The multiplication
can be implemented using two nested loop operations. The outer loop loads the operand
Ali] atindex i = 0...n — 1 and keeps the value constant inside the inner loop of the
algorithm. Within the inner loop, the multiplicand B[] is loaded word by word and
multiplied with the operand A[i]. The partial product is then added to the intermediate
result of the same column which is usually buffered in a register or stored in data memory.
Figure 1 shows the structure of the algorithm on the left side. The individual row levels
can be clearly discerned. On the right side of the figure, all n? partial products are
displayed in form of a rhombus. Each point in the thombus represents a multiplication
A[i] x B[j]. The most right-sided corner of the rhombus starts with the lowest indices
i, j = 0, and the most left-sided corner ends with the highest indices i, j = n — 1.
By following all multiplications from the right to the lower-mid corner of the rhombus,
it can be observed that the operand A[i] keeps constant for any index i € [0, n). The
same holds true for the operand B[j] and j € [0, n) by following all multiplications
from right to the upper-mid corner of the rhombus. Note that this is also valid for the
left-handed side of the rhombus.

== C[i4] C&7] C[o]
== e ALTIBI0]
C
=
e
e
5:::5? A[7IB[7] A[0]B[0]
e
e
=
e A[0IB[7]

Fig. 1. Operand-scanning multiplication of 8-word large Integers a and b.

1168 M. Hutter, E. Wenger

r

C[14] 7 C[o]

A[7]B[0]

E A[7]B[;] { { ATO]B[O]
Y Y
£ E%

== A[0]B[7]

Fig. 2. Product-scanning multiplication of 8-word large Integers a and b.

For the operand-scanning method, it can be seen that the partial products are calculated
from the upper-right side to the lower-left side of the rhombus (we marked the processing
of the partial products with a black arrow). In each row, » multiplications have to be
performed. Furthermore, 2n load operations and n sfore operations are required to load
the multiplicand and the intermediate result C[i + j] and to store the result C[i + j] <
Cli + jl + Ali] x B[j]. Thus, 3n% + 2n memory operations are necessary for the
entire multi-precision multiplication. Note that this number decreases to n”> + 3n for
architectures that can maintain the intermediate result in available working registers.

3.2. Product-Scanning Method

Another way to perform a multi-precision multiplication is the product-scanning method
(also referred as Comba [5] or column-wise multiplication method). There, each partial
product is processed in a column-wise approach. This has several advantages. First, since
all operands of each column are multiplied and added consecutively (within a multiply—
accumulate approach), a final word of the result is obtained for each column. Thus, no
intermediate results have to be stored or loaded throughout the algorithm. In addition,
the handling of carry propagation is very easy because the carry can be simply added
to the result of the next column using a simple register-copy operation. Second, only
five working registers are needed to perform the multiplication: two registers for the
operand and multiplicand and three registers for accumulation.” This makes the method
very suitable for low-resource devices with limited registers.

Figure 2 shows the structure of the product-scanning method. By having a look at the
rhombus, it shows that by processing the partial products in a column-wise instead of
a row-wise approach, only one store operation is needed to store the final word of the
result. For the entire multi-precision operation, 2n° load operations are necessary to
load the operands A[i] and B[j] and 2n store operations are needed to store the result.
Therefore, 2n> + 2n memory operations are needed.

2We assume the allocation of three registers for the accumulator register, whereas 2 + [loga(n)/ W1
registers are actually needed to maintain the sum of partial products.

Fast Multi-precision Multiplication for Public-Key Cryptography 1169
C[14] C[7] C[0]
' ' A[71B[0] '

A[0]B[7]

Fig. 3. Hybrid multiplication of 8-word large Integers a and b (d = 4).

3.3. Hybrid Method

The hybrid multiplication method [8] combines the advantages of the operand-scanning
and product-scanning method. It can be implemented using two nested loop structures
where the outer loop follows a product-scanning approach and the inner loop performs
a multiplication according to the operand-scanning method.

The main idea is to minimize the number of load instructions within the inner loop.
For this, the accumulator has to be increased to a size of 2d + 1 registers. The parameter d
defines the number of rows within a processed block. Note that the hybrid multiplication
is equal to the product-scanning method if parameter d is chosen as d = 1 and it is equal
to the operand-scanning method if d = n.

Figure3 shows the structure of the hybrid multiplication for d = 4. It shows that
the partial products are processed in the form of individual blocks. (We marked the
processing sequence of the blocks from 1 to 4.) Within one block, all operands are
processed row by row according to the operand-scanning approach. Note that these
blocks use operands with a very limited range of indices. Thus, several load instructions
can be saved in cases where enough working registers are available. However, the outer
loop of the hybrid method processes the blocks in a column-wise approach. So between
two consecutive blocks no operands can be shared and all operands have to be loaded from
memory again. This becomes clear by having a look at the processing of Block 1-3. Block
2 and 3 do not share any operands that possess the same indices. Therefore, all operands
that have already been loaded for Block 1 and that can be reused in Block 3 have to be
loaded again after processing of Block 2 which requires additional and unnecessary load
instructions. However, in total, the hybrid method needs 2[1?/d] 4 2n memory-access
instructions which provides good performances on devices that have many registers.

3.4. Operand-Caching Method

We present a new method to perform multi-precision multiplication. The main idea is to
reduce the number of memory accesses to a minimum by efficiently caching of operands.
We show that by spending a certain amount of sfore operations, a significant amount

1170 M. Hutter, E. Wenger

} by C[14] C[7] C[0]
J v

{AU]B[O]
N 4; 1 ®{ 5

ﬁ
! @ X 7
A[7]B[7]®{ A[0]B[0]
-1
3
iy A[0]B[7]

Fig. 4. Operand-caching multiplication of 8-word large Integers a and b (e = 3).

N

of load instructions can be saved by reusing operands that have been already loaded in
working registers.

The method basically follows the product-scanning approach but divides the calcula-
tion into several rows. In fact, the product-scanning method provides best performance if
all needed operands can be maintained in working registers. In such a case, only 2n load
instructions and 2n store instructions would be necessary. However, the product-scanning
method becomes inefficient if not enough registers are available or if the Integer size is
too large to cache a significant amount of operands. Hence, several load instructions are
necessary to reload and overwrite the operands in registers.

In the light of this fact, we propose to separate the product-scanning method into
individual rows r = |n/e]. The size e of each row is chosen in a way that all needed
words of one operand can be cached in the available working registers. Figure 4 shows
the structure of the proposed method for parameter e = 3. That means, 3 registers are
reserved to store 3 words of operand a and 3 registers are reserved to store 3 words of
operand b. Thus, we assume [= 2e¢ + 3 = 9 available registers including a triple-word
accumulator. The calculation is now separated into » = [8/3] = 2 rows, i.e., ro and
r1, and consists of one remaining block which we further denote as initialization block
binir. This block calculates the partial products which are not processed by the rows.

All rows are further separated into four parts. Parts 1 and 4 use the classical product-
scanning approach. Parts 2 and 3 perform an efficient multiply—accumulate operation of
already cached operands.

The algorithm starts with the calculation of b;,;; and processes the individual rows
afterward (starting from the smallest to the largest row, i.e., from the top to the bottom
of the thombus). Furthermore, all partial products are generated from right to left. In
the following, we describe the algorithm in more detail. A pseudocode algorithm of the
method is given in “Appendix A.”

Initialization Block b; ,;;. This block (located in the upper-mid of the rhombus) performs
the multiplication according to the classical product-scanning method. The Integer size
of the b;,;; multiplicationis (n —re), i.e., 8—6 = 2 in our example, which is by definition
smaller than e. Because of that, all operands can be loaded and maintained within the

Fast Multi-precision Multiplication for Public-Key Cryptography 1171

A[3] x B[5] A[2] x B[1]
©) P @ P
A[l1] x B[7] A[0] x B[3]
+ [C[§] + | C[3]
Al4] x B[3] A[2] x B[2]
A[2] x B[7] A[0] x B[4]
+ | C[9] +
A[7] x B[5] A[2] x B[5]
: : : : [ACC, | AcCC, | ACG, |
A[5] x B[7] A[0] x B[7]
+ [C[12] + [C[7]

Fig. 5. Processing of Parts 2 and 3 of the row r.

available registers resulting in only 4(n — re) memory-access operations. Note that the
calculation of b;,;, is only required if there exist remaining partial products, i.e., » mod

e # 0.

If n mod e = 0, the calculation of b;,;, is skipped. Furthermore, consider the

special case when n < e where only b;,;; has to be performed skipping the processing
of rows (trivial case).

Processing of Rows. In the following, we describe the processing of each row p =

r—1.

Part 1.

Part 2.

Part 3.

.. 0. Each row consists of four parts.

This part starts with a product-scanning multiplication. All operands for that row
are first loaded into registers, i.e., A[i] withi = pe...e(p + 1) — 1 and B[]
with j = 0...e — 1. The sum of all partial products A[i] x B[] is then stored
as intermediate result to the memory location C[i] (same index range as A[i]).
Therefore, 2e load instructions and e store instructions are needed.

The second part processes n — e(p + 1) columns using a multiply—accumulate
approach. Since all operands of A[i] were already loaded and used in Part 1, only
one word B[j] has to be loaded from one column to the next. The operands A[i]
are kept constant throughout the processing of Part 2. Next to the needed load
instructions for B[], we have to load and update the intermediate result of Part
1 with the result obtained in Part 2. Thus, 2(n —e(p + 1)) load andn —e(p + 1)
store instructions are required for that part.

The third part performs the same operation as described in Part 2 except that
the already loaded operands B[] are kept constant and that one word A[i] is
loaded for each column. Figure 5 shows the processing of Parts 2 and 3 of row ry
(p = 0). For each column, two load instructions are necessary (marked in gray).
All other operands have been loaded and cached in previous parts. Operands
which are not required for further processing are overwritten by new operands,
e.g., B[1]... B[4] in Part 2 of our example.

1172 M. Hutter, E. Wenger

Table 1. Memory-access complexity of b;,;; and each part of row p =0...r — 1.

Component Load instr. Store instr. Total

binit 2(n —re) 2(n —re) 4(n —re)

Part 1 2e e 3e

Part 2 2(n —e(p+1)) n—e(p+1) 3n—e(p+1)
Part 3 2(n —e(p+1)) n—e(p+1) 3(n—e(p+1))
Part 4 0 e e

Table 2. Memory-access complexity of different multiplication techniques.

Method Load instructions Store instructions Memory instructions
Operand scanning m? +n n?+n 3n2 +2n

Product scanning [5] 2n? 2n 202 +2n

Hybrid [8] 2Mn2/d) 2n 2[n?/d] + 2n
Operand caching 2n2/e n2/e +n 3n2/e +n

Part 4. The last part calculates the remaining partial products. In contrast to Part 1, no
load instructions are required since all operands have been already loaded in Part
3. Hence, only e memory-access operations are needed to store the remaining
words of the (intermediate) result c.

Table 1 summarizes the memory-access complexity of the initialization block and the
individual parts of a row p. By summing up all load instructions, we get

r—1

2 2
2(n—re)+Z(4n—4pe—2e)=2n+4rn—2er2—2er < i (D
p=0 ¢
The total number of store operations can be evaluated by

r—1 nz
2(n—re)+Z(2n—2pe) =2 +2rm—er’—er < — +n.)

e

p=0

Table 2 lists the complexity of different multi-precision multiplication techniques.
It shows that the hybrid method needs 2(%1 load instructions, whereas the operand-

caching technique needs about zi’fz Since the total number of available registers f equals
to 2e + 3 for the operand-caching technique (2e registers for the operand registers and
three registers for the accumulator) and 3d + 2 for the hybrid method (d + 1 registers
for the operands and 2d + 1 registers for the accumulator), we obtain

3d
f=2e4+3=3d+2 = e= and e > d. (3)

If we compare the total number of memory-access instructions for the hybrid and the
operand-caching method and express both runtimes using f, we get

Fast Multi-precision Multiplication for Public-Key Cryptography 1173

n2 2

2 — +2n>L+n (@Y)
=] |7

Note that there are more parameters to consider. The number of additions of the
operand-caching method is 3n%, and the number of additions of the hybrid method
isn?(2 +d /2) (upper bound). Also the pseudocode of Gura et al.[8] for the hybrid
multiplication method is inefficient in the special case of n mod d # 0.

4. Results

In order to demonstrate the performance of our method, we implemented all multipli-
cation techniques described in Sect.3 on two different platforms. The first platform is
an 8-bit ATmegal28 microcontroller, and the second platform is a 32-bit ARM7TDMI
microcontroller. In order to facilitate the evaluation, we implemented a code generator
(based on Java language) that generates the Assembler source code for all multiplica-
tion methods. The code generator allows flexible adjustment of individual settings such
as operand sizes, available registers, and used compiler (supported compilers are the
avrgec[18], Crossworks for AVR [20], and the IAR compiler[9]). Furthermore, it can
be adjusted if the multiplication should be implemented using a loop (to limit code size)
or if the instructions should be unrolled in Assembler (to increase speed). It also allows
to generate code for devices without a dedicated hardware multiplier which is the case
for the ATtiny family of microcontrollers from Atmel, for instance.

4.1. Performance Results for the 8-bit ATmegal28

The ATmegal28 is part of the megaAVR family from Atmel[1]. It has been widely
used in embedded systems, automotive environments, and sensor-node applications.
It is based on a RISC architecture and provides 133 instructions[2]. The maximum
operating frequency is 16 MHz. The device features 128 kB of flash memory and 4 kB
of internal SRAM. There exist 32 8-bit general-purpose registers (RO to R31). Three
16-bit register pairs can be used for memory addressing, i.e., R26:R27, R28:R29, and
R30:R31 which are often denoted as X, Y, and Z. Note that the processor also allows pre-
decrement and post-increment functionalities that can be used for efficient addressing
of operands. The ATmegal28 further provides a hardware multiplier that performs an
8 x 8-bit multiplication within two clock cycles. The 16-bit result is stored in the registers
RO (lower word) and R1 (higher word).

For the ATmegal28, we used register R22 to store a zero value. Furthermore, we
reserved R23, R24, and R25 as accumulator registers. Thus, 20 registers, i.e., R2...R21,
can be used to store and cache the words of the operands (e = 10 registers for each
operand a and b).

3The code generator is available from http://www.iaik.tugraz.at/content/research/sesys/tools/
mulopcache/.

http://www.iaik.tugraz.at/content/research/sesys/tools/mulopcache/
http://www.iaik.tugraz.at/content/research/sesys/tools/mulopcache/

1174 M. Hutter, E. Wenger

Table 3. Unrolled instruction counts for a 160-bit multiplication on the ATmegal28.

Method Instruction Clock cycles
LD ST MUL ADD MOVW Others

Operand scanning 820 440 400 1600 2 464 5427
Product scanning 800 40 400 1200 2 159 3957
Hybrid (d = 4) 200 40 400 1250 202 109 2904
Operand caching (e = 10) 80 60 400 1240 2 68 2395

As a first comparison, we decided to focus on a 160 x 160-bit multiplication as it has
been done by most of the related work. Note that for RSA and ECC, larger Integer sizes
are recommended in practice [13,17]. The Standards for Efficient Cryptography (SEC)
already removed the recommended secp160r1 elliptic curve from their standard since
SEC version 2 of 2010[4].

Table3 summarizes the instruction counts for the operand scanning, product scan-
ning, hybrid, and operand-caching implementation. The operand-scanning and product-
scanning methods have been implemented without using all the available registers (as it
usually would be implemented). For hybrid multiplication, we applied d = 4 because it
allows a better optimization regarding necessary addition operations compared to a mul-
tiplication with d = 5. The carry propagation problem has been solved by implementing
a similar approach as proposed by Liu et al. [15]. Thus, 200 MOVW instructions have been
necessary to handle the carry propagation accordingly. For a fair comparison, all methods
have been optimized for speed and provide unrolled instruction sequences. Furthermore,
we implemented all accumulators as ring buffers to reduce necessary MOV instructions.
After each partial-product generation, the indices of the accumulator registers are shifted
so that no MOV instructions are necessary to copy the carry.

Best results have been obtained for the operand-caching technique. By trading addi-
tional 20 store instructions, up to 120 load instructions could be saved when we compare
the result with the best reference values (hybrid implementation). Note that load, store,
and multiply instructions on the ATmegal28 are more expensive than other instructions
since they require two clock cycles instead of only one. For operand-caching multi-
plication, almost the same amount of load and store instructions are required. In total
2395 clock cycles are needed to perform the multiplication. Compared to the hybrid
implementation, a speed improvement of about 18% could be achieved.

We also compare the performance of the implemented multi-precision methods for
different Integer sizes. Table4 shows the result for Integer sizes from 160 up to 2048
bits.# The operand-caching technique provides the best performance for any Integer size.
It is therefore also well suited for large Integer sizes such as it is in the case of RSA. On
average, a speed improvement of about 15% could be achieved compared to the hybrid
method. Figure 6 shows the appropriate performance chart in a double logarithmic scale.

Table5 and Fig.7 show the performance for different Integer sizes in relation to
parameter e. The parameter e is defined by the number of available registers to store

4Note that a fully unrolled implementation using such large Integer multiplications might be impractical
due to the huge amount of code.

Fast Multi-precision Multiplication for Public-Key Cryptography 1175

Table 4. Comparison of multiplication methods for different Integer sizes.

Size (bit) Op. scan. Prod. scan. Hybrid method Operand caching
160 5427 3957 2904 2395
192 7759 5613 4144 3469
256 13,671 9789 7284 6123
512 53,959 38,013 28,644 24,317
1024 214,407 149,757 113,604 96,933
2048 854,791 594,429 452,484 387,195
10°
R
2
310
o
oy
i)
& \ ttrrttt Op. Scan.
o ‘= '="Prod. Scan.
= = = Hybrid
10° ‘ ‘ Qp. Caching
160 256 512 1024 2048

Integer size

Fig. 6. Comparison chart.

Table 5. Performance of operand-caching multiplication for different Integer sizes and available registers.

Size e=2 e=4 e=238 e=10 e=20
160 3915 2965 2513 2395 2205
192 5611 4255 3577 3469 3207
256 9915 7531 6339 6123 5671
512 39,291 29,915 25,227 24,317 22,451
1024 156,411 119,227 100,635 96,933 89,529
2048 624,123 476,027 401,979 387,195 357,581

words of one operand, i.e., e = %, where f = 2e + 3 denotes the number of available
registers in total (including the triple-size register for the accumulator). It shows that
for e > 10 no significant improvement in speed is obtained. The performance decreases
for smaller e and higher Integer sizes. However, if we compare our solution (160-bit
multiplication with smallest parameter ¢ = 2 — f = 7 registers) with the product-
scanning method (needing f = 5 registers), we obtain 3915 clock cycles for the operand-
caching method and 3957 clock cycles for the product-scanning method. It therefore
provides a good performance even for a smaller set of available registers. For the special
case e = 20, where all 20 words of one 160-bit operand can be maintained in registers
(ideal case for product scanning), it shows that the number of clock cycles reaches nearly
the optimum of 2160 clock cycles, i.e., 4n = 80 memory-access instructions, n? = 400
multiplications, and 3n% = 1200 additions.

1176 M. Hutter, E. Wenger

10 2048
1024
g 10’ 312
° 256
° 192
g . 160
O 107 =~
[—
T ~——
10° ‘ .
2 4 8 10 20
Available registers e
Fig. 7. Performance chart.
Table 6. Comparison with related work.
Method Instruction Clock cycles
LD ST MUL ADD MOVW Others
Hybrid
Guraet al.[8] (d = 5) 167 40 400 1360 355 197 3106
Uhsadel et al.[24] (d = 5) 238 40 400 986 355 184 2881
Scott et al. [21] (d = 4)° 200 40 400 1263 70 38 2651
Liuetal.[15] (d = 4) 200 40 400 1194 212 179 2865
Operand caching
With looping®€ (e = 9) 92 66 400 1252 41 276 2685
Unrolled®€ (e = 10) 80 60 400 1240 2 68 2395

2 binir, Part 1, and Part 4 unrolled. Part 2 and Part 3 looped.
b Fully unrolled implementation without overhead of loop instructions.
¢ w/o PUSH/POP/CALL/RET

We compare our result with related work in Table 6. For a fair comparison, we also
implemented an operand-caching version that does not unroll the algorithm but includes
additional loop instructions. It shows that the operand-caching method provides best
performance. Compared to Gura et al. [8] 23% less clock cycles are needed for a 160-bit
multiplication. A 10% improvement could be achieved compared to the best solution
reported in the literature [21]. Note that most of the related work needs to be between
167 and 238 load instructions which mostly explains the higher amount of needed clock
cycles.

4.2. Performance Results for the 32-bit ARM7TDMI

The ARM7TDMI (ARM7 Thumb Debug Multiplier ICE) was introduced by ARM
in 1994 and has been used in a wide range of applications, e.g., mobile devices (e.g.,
produced by Nokia, Sony-Ericsson, Motorola, ...), Apple’s iPod, video game consoles
(e.g., integrated by companies like Nintendo, SEGA, or Sony), routers, and automobile
systems. Itis a 32-bit RISC microcontroller that has been especially designed for low area
and low power embedded systems. For the device, there exist two different instruction

Fast Multi-precision Multiplication for Public-Key Cryptography 1177

sets: one that makes use of high-performance 32-bit instructions (the ARM set), and one
that uses only 16-bit instructions (the THUMB set which is essentially a subset of the
ARM instruction set). The latter configuration, however, has the main advantage that it
significantly reduces the power consumption and the code size (approximately twice the
density of a standard ARM code) and is therefore often applied in resource-constrained
environments.

The controller essentially features a three-stage pipeline architecture (fetch, decode,
and execute) and provides a Barrel shifter and a 32 x 8-bit hardware multiplier. For
the standard ARM operating mode, 16 general-purpose registers are available to users
RO...R15 whereas R13, R14, and R15 are special registers (program counter, link reg-
ister, and stack pointer) that might not be used within custom applications. In THUMB
mode, only 8 registers are available, i.e., RO...R7 which in general limits the applicabil-
ity for many cryptographic algorithms. In the following, we therefore used the standard
ARM operating mode since at least 10 registers are needed to perform a multi-precision
multiplication.

We used RO, R1, and R2 as pointer registers to point to the memory location of the two
operands and the final result. Furthermore, we reserved R3:R4:R5 as a triple accumulator
register. R6 and R7 are used to store the result of partial products. Hence, 6 registers
remain that can be used to hold (and cache) operands during multiplication. In order to
improve performance, we also reused the link register R14 in subroutines by caching
the value on the stack.

A single multiply—accumulate step basically requires four instructions. First, the
operands are loaded using the LDR instruction. The loading of one operand needs 3 clock
cycles. Then, a single 32 x 32-bit multiplication is performed using the UMULL instruc-
tion. This instruction needs up to 4 clock cycles to calculate a 64-bit result (depending
on the value of the operands®). After that, three additional add-with-carry instructions
(ADDS, ADCS, and ADC) are needed that add the partial product to the accumulator
register. Storing (STR) of a 32-bit value needs 2 clock cycles. This results in up to 12
clock cycles in total.

For the hybrid multiplication method, we chose d = 2 which is the highest possible
parameter on that platform. Similar to[21], we also decided to implement one carry-
catcher register that stores two carries, i.e., in the lower and higher byte of the register.
This can be done by using the ADDCS instruction which allows to add a carry into a
specific byte of a register. The extraction of the carries can then be performed using 4
clock cycles. We further used 5 accumulator registers and shifted the values by simple
code rearranging.

Table 7 shows the results for the implemented multiplication methods and different
Integer sizes up to 256 bits. It shows that operand-caching multiplication needs only 281
clock cycles for 160-bit operands. 392 clock cycles are needed for 192-bit operands.
Compared to Scott et al.[21], who implemented a 192-bit multiplication on the same
platform, the results could be improved by a factor of 19.5%: the authors reported 580
clock cycles for product-scanning multiplication and 487 clock cycles for the hybrid
multiplication.

5The early-terminating multiplier of the ARM7TDMI is susceptible to side-channel attacks that exploit
the data-dependent runtime of the multiplier as shown in[6].

1178 M. Hutter, E. Wenger

Table 7. ARM7TDMI results for different Integer sizes.

Size (bit) Op. scan. Prod. scan. Hybrid method Operand caching
160 493 357 - 281
192 699 506 424 392
256 1219 882 726 700

5. Conclusions

We presented a novel multiplication technique that is especially interesting for embed-
ded microprocessors. The multiplication method significantly reduces the number of
necessary load instructions through sophisticated caching of operands. Our solution is
similar to the product-scanning method but divides the processing of operands into sev-
eral parts/rows. This allows the scanning of sub-products where most of the operands
are kept within the register-set throughout the algorithm.

In order to evaluate our solution, we implemented our and three other multiplication
techniques using different Integer sizes on both the ATmegal28 and ARM7TDMI mi-
crocontrollers. Using operand-caching multiplication, 2395 clock cycles are required for
a 160-bit multiplication on the ATmegal28. This outperforms the best reported solution
by a factor of 10% [21]. Compared to the hybrid multiplication of Gura et al. [8], we
achieved a speed up of 23%. Our evaluation further showed that our solution scales very
well for different Integer sizes used for ECC and RSA. We obtained an improvement of
about 15% for bit sizes between 256 and 2048 bits compared to a reference implemen-
tation of the hybrid multiplication. For the ARM7TDMI, operand caching requires only
281 clock cycles which improves the state-of-the-art performance by a factor of about
20%.

It is also worth to note that our multiplication method is perfectly suitable for pro-
cessors that support multiply—accumulate (MULACC) instructions such as ARM9 or the
dsPIC family of microcontrollers. It also fully complies with architectures which support
instruction set extensions for MULACC operations such as proposed by Grof3schédl and
Savag[7].

Acknowledgements
The work has been supported by the European Commission through the ICT Program
under Contract ICT-2007-216646 (European Network of Excellence in Cryptology—
ECRYPT II) and under Contract ICT-SEC-2009-5-258754 (Tamper Resistant Sensor
Node—TAMPRES).

A Algorithm for Operand-Caching Multiplication

The following pseudocode shows the algorithm for multi-precision multiplication using
the operand-caching method. Variables that are located in data memory are denoted by

Fast Multi-precision Multiplication for Public-Key Cryptography

1179

M, where x represents the name of the Integer a or b. The parameter e describes the
number of locally usable registers R,[e—1, ..., 0]and Rp[e—1, ..., 0]. The triple-word

accumulator is denoted by ACC = (ACC3, ACCy, ACCy).

Require: word size n, parameter e, n > e, Integers a, b € [0, n),c €

[0, 2n).
Ensure: ¢ = ab.
r=|n/el.
Rale —1,...,0] < Mua[n—1,...,re].

Rple—1,...,0] < Mg[ln—re—1,...,0].

ACC « 0.
fori =0ton —re—1do

for j =0toi do
ACC <« ACC + Raljl* Rpli — jl.

end for

Mclre +i] < ACCy.

(ACC1, ACCy) < (ACC,y, ACCY).
ACCy < 0.

end for
fori =0ton —re—2do

for j=i+1ton—re—1do

ACC <« ACC + Ryljl* Rpln—re—j+il.

end for

Mcn +i] < ACCy.
(ACC1,ACCy) < (ACC,y, ACCY).
ACCy < 0.

end for
Mc[2n —re — 1] < ACCy.
ACCy < 0.

forp=r—1to0do
Rale—1,...,0] < Ma[(p+1De—1,...
Rple—1,...,0] < Mgle—1,...,0].
fori =0toe —1do
for j =0toi do
ACC <« ACC + Rylj]l * Rpli — j].
end for
Mc[pe +i] < ACCy.
(ACCy, ACCy) < (ACC,, ACCY).
ACCy < 0.
end for

, pel.

}

binis

Row Loop:

Part 1

1180

fori =0ton—(p+1)e—1do

Rgle—1,...,0] < Mpgle+1i], Rgle—2,...,1].

for j =0toe—1do

ACC <« ACC + Ruljl* Rple—1—j].
end for

ACC < ACCH Mc[(p+ De+1].
Mcl(p + De +i] < ACCy.

(ACC1, ACCy) < (ACCy, ACCY).
ACCy < 0.
end for
fori =0ton — (p+ l)e—1do

Rale —1,...,0] <~ Mug[(p+ e +i], Rale — 2, ...

for j =0toe—1do

ACC < ACC + Raljl* Rgle —1—j].
end for

ACC < ACC + Mc[(n +1].

Mc[n +i] < ACCy.

(ACC|,ACCy) < (ACCy, ACCY).
ACC2 <~ 0.
end for
fori =0toe —2do
forj=i+1toe—1do

ACC < ACC + Ralj]l* Rple — j +i].
end for

Mc[2n — (p + De +i] < ACCy.
(ACC1, ACCy) < (ACCy, ACCYH).

ACCy < 0.
end for
Mc[2n — 1 — pe] < ACCy.
ACC() <~ 0.
end for
Return c.

(1]
[2]

[3]

[4]

References

M. Hutter, E. Wenger

Part 2

Part 3

Part 4

Atmel Corporation. 8-bit AVR microcontroller with 128K bytes in-system programmable flash (2007).

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

Atmel Corporation. 8-bit AVR instruction set (2008). http://www.atmel.com/dyn/resources/prod_

documents/doc0856.pdf

M. Aydos, T. Yanik, C. K. Kog, An high-speed ECC-based wireless authentication protocol on an ARM
microprocessor, in 16th Annual Computer Security Applications Conference (ACSAC 2000), 11-15

December 2000, New Orleans, LA, USA (IEEE, 2000), pp. 401-410

Certicom Research. Standards for efficient cryptography, SEC 2: recommended elliptic curve domain

parameters, version 2.0 (2010). http://www.secg.org/

[5] P. Comba, Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 29(4), 526-538 (1990)

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.secg.org/

Fast Multi-precision Multiplication for Public-Key Cryptography 1181

[6]

[7

—

[8

—_

[9]
(10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

[18]
[19]

[20]
[21]

[22]

[23]

[24]

[25]

J. GroBschédl, E. Oswald, D. Page, M. Tunstall, Side channel analysis of cryptographic software via early-
terminating multiplications, in Information, Security and Cryptology ? ICISC 2009, 12th International
Conference, Seoul, Korea, December 2—4, 2009, Proceedings, vol. 5984 of Lecture Notes in Computer
Science, Seoul, Korea (Springer-Verlag, 2010), pp. 176-192

J. GroBschidl E. Savas, Instruction set extensions for fast arithmetic in finite fields GF(p) and GF(2™),
in CHES 2004, 6th International Workshop, Cambridge, MA, USA, August 11-13, 2004, vol. 3156 of
LNCS (Springer, 2004), pp. 133-147

N. Gura, A. Patel, A. Wander, H. Eberle, S.C. Shantz, Comparing elliptic curve cryptography and RSA
on 8-bit CPUs, in CHES 2004, 6th International Workshop, Cambridge, USA, August 11-13, 2004
(Springer, 2004), pp. 119-132

IAR Systems, IAR embedded workbench (2012). http://www.iar.com/

A. Kargl, S. Pyka, H. Seuschek, Fast arithmetic on ATmegal28 for elliptic curve cryptography. Cryp-
tology ePrint Archive http://eprint.iacr.org/, Report 2008/442, (2008)

C. K. Kog, High speed RSA implementation. Technical report, RSA Laboratories, RSA Data Security,
Inc. 100 Marine Parkway, Suite 500 Redwood City (1994)

C. Lederer, R. Mader, M. Koschuch, J. GroBschidl, A. Szekely, S. Tillich, Energy-efficient implementa-
tion of ECDH key exchange for wireless sensor networks, in 3rd International Workshop in Information
Security Theory and Practices—WISTP 2009, Brussels, Belgium, September 1-4, 2009, vol. 5746 of
LNCS (Springer, 2009), pp. 112-127

A. Lenstra, E. Verheul, Selecting cryptographic key sizes. J. Cryptol. 14(4), 255-293 (2001)

A. Liu, P. Ning, TinyECC: a configurable library for elliptic curve cryptography in wireless sensor
networks, in International Conference on Information Processing in Sensor Networks—IPSN 2008,
April 22-24, 2008, St. Louis, MO, USA, St. Louis, MO (2008), pp. 245-256

Z. Liu, J. GroBschidl, 1. Kizhvatov, Efficient and side-channel resistant RSA implementation for 8-
bit AVR microcontrollers, in Workshop on the Security of the Internet of Things—SOCIOT 2010, 1st
International Workshop, November 29, 2010, Tokyo, Japan (IEEE Computer Society, 2010)

M. Medwed, E. Oswald, Template attacks on ECDSA, in K.-I. Chung, M. Yung, K. Sohn, editors,
9th International Workshop on Information Security Applications (WISA 2008), Jeju Island, Korea,
September 23-25, 2008, Pre-Proceedings (2008), pp. 14-27

National Institute of Standards and Technology (NIST), SP800-57 Part 1: DRAFT recommendation for
key management: part 1: general (2011). http://csrc.nist.gov/publications/drafts/800-57/Draft_SP800-
57-Partl-Rev3_May2011.pdf

nongnu.org. AVR Libc Home Page (2012). http://www.nongnu.org/avr-libc/

J. Pelzl, T. Wollinger, J. Guajardo, C. Paar, Hyperelliptic curve cryptosystems: closing the performance
gap to elliptic curves, in C.D. Walter, C.K. Kog, C. Paar, editors, Cryptographic Hardware and Em-
bedded Systems—CHES 2003, 5th International Workshop, Cologne, Germany, September 8—10, 2003,
Proceedings, vol. 2779 of Lecture Notes in Computer Science (2003), pp. 351-365

Rowley. Crossworks for AVR (2012). http://www.rowley.co.uk/avr/

M. Scott, P. Szczechowiak, Optimizing multiprecision multiplication for public key cryptography. Cryp-
tology ePrint Archive http://eprint.iacr.org/, Report 2007/299 (2007)

P. Szczechowiak, L.B. Oliveira, M. Scott, M. Collier, R. Dahab, NanoECC: testing the limits of elliptic
curve cryptography in sensor networks, in R. Verdone, editor, Wireless Sensor Networks 5th European
Conference, EWSN 2008, Bologna, Italy, January 30-February 1, 2008, vol. 4913 of LNCS (Springer,
2008), pp. 305-320

0. Ugus, A. Hessler, D. Westhoff, Performance of additive homomorphic EC-ElGamal encryption for
TinyPEDS, in GI/ITG KuVS Fachgespr?ch ?Drahtlose Sensornetze?, RWTH Aachen, 2007 UbiSec
(2007)

L. Uhsadel, A. Poschmann, C. Paar, Enabling full-size public-key algorithms on 8-bit sensor nodes, in
Security and Privacy in Ad-hoc and Sensor Networks 4th European Workshop, ESAS 2007, Cambridge,
UK, July 2-3, 2007 (2007)

H. Wang, Q. Li, Efficient implementation of public key cryptosystems on mote sensors, in Information
and Communications Security 8th International Conference, ICICS 2006, Raleigh, NC, USA, December
4-7, 2006, vol. 4307 of LNCS (Springer, 2006), pp. 519-528

http://www.iar.com/
http://eprint.iacr.org/
http://csrc.nist.gov/publications/drafts/800-57/Draft_SP800-57-Part1-Rev3_May2011.pdf
http://csrc.nist.gov/publications/drafts/800-57/Draft_SP800-57-Part1-Rev3_May2011.pdf
http://www.nongnu.org/avr-libc/
http://www.rowley.co.uk/avr/
http://eprint.iacr.org/

1182 M. Hutter, E. Wenger

[26] S.-B.Xu, L. Batina, Efficient implementation of elliptic curve cryptosystems on an ARM7 with hardware
accelerator. In G.I. Davida, Y. Frankel, editors, Information Security 4th International Conference, ISC
2001 Malaga, Spain, October 1-3, 2001 Proceedings, vol. 2200 of Lecture Notes in Computer Science
(Springer, 2001), pp. 266-279

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Fast Multi-precision Multiplication for Public-Key Cryptography on Embedded Microprocessors
	1. Introduction
	2. Related Work
	3. Multi-precision Multiplication Techniques
	3.1. Operand-Scanning Method
	3.2. Product-Scanning Method
	3.3. Hybrid Method
	3.4. Operand-Caching Method

	4. Results
	4.1. Performance Results for the 8-bit ATmega128
	4.2. Performance Results for the 32-bit ARM7TDMI

	5. Conclusions
	Acknowledgements
	References

