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Abstract. Wepresent a round-efficient black-box construction of a generalmulti-party
computation (MPC) protocol that satisfies composability in the plainmodel. The security
of our protocol is proven in the angel-based UC framework [Prabhakaran and Sahai,
STOC’04] under the minimal assumption of the existence of semi-honest oblivious
transfer protocols. The round complexity of our protocol is max(˜O(log2 n), O(ROT))

when the round complexity of the underlying oblivious transfer protocol is ROT. Since
constant-round semi-honest oblivious transfer protocols can be constructed under stan-
dard assumptions (such as the existence of enhanced trapdoor permutations), our
result gives a ˜O(log2 n)-round protocol under these assumptions. Previously, only an
O(max(nε , ROT))-round protocol was shown, where ε > 0 is an arbitrary constant. We
obtain our MPC protocol by constructing a ˜O(log2 n)-round CCA-secure commitment
scheme in a black-box way under the assumption of the existence of one-way functions.

Keywords. Multi-party computation,Composability,Angel-basedUCsecurity,Black-
box construction, CCA-secure commitment.

1. Introduction

Secure multi-party computation (MPC) protocols enable mutually distrustful parties to
compute a functionality without compromising the correctness of the outputs and the
privacy of their inputs. In the seminal work of Goldreich et al. [16], it was shown that
general MPC protocols—MPC protocols that can be used to securely compute any
functionality—can be constructed even in the model with malicious adversaries and a
dishonest majority.1

1 In the following, we consider only such a model.
∗This article is based on an earlier article: Round-Efficient Black-Box Construction of Composable Multi-

party Computation, in Proceedings of CRYPTO 2014, ©IACR 2014, https://doi.org/10.1007/978-3-662-
44381-1_20.
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In this paper, we consider a black-box construction of a general MPC protocol that
guarantees composable security. Before stating our result, we explain black-box con-
structions and composable security.

Black-Box Constructions

A construction of a cryptographic protocol is black-box if it uses the underlying crypto-
graphic primitives only in a black-box way (i.e., only through their input/output inter-
faces). If a construction uses the codes of the underlying primitives, it is non-black-box.
As argued by Ishai et al. [21], constructing black-box constructions is important for

both theoretical and practical reasons. Theoretically, it is important because understand-
ing whether non-black-box use of cryptographic primitives is necessary for a crypto-
graphic task is of great interest. Practically, it is important because black-box construc-
tions are typically more efficient than non-black-box ones in terms of both commu-
nication and computational complexity. (In fact, most non-black-box constructions of
general MPC protocols are highly inefficient and hard to implement because they use
general NP reductions when executing zero-knowledge proofs.)
Recently, a number of works have studied black-box constructions of general MPC

protocols. Ishai et al. [21] showed the first construction of a general MPC protocol that
uses the underlying low-level primitives (such as enhanced trapdoor permutations or
homomorphic public-key encryption schemes) in a black-box way. Combined with the
subsequent work by Haitner [18], who showed a black-box construction of a (mali-
ciously secure) oblivious transfer protocol based on a semi-honest oblivious transfer
protocol, their work gave a black-box construction of a general MPC protocol based
on a semi-honest oblivious transfer protocol [19]. Subsequently, Wee [36] reduced the
round complexity to O(log∗ n), and Goyal [17] further reduced the round complexity to
O(1).
The security of these black-box protocols are proven in the stand-alone setting. Hence,

these protocols are secure when a single instance of the protocol is executed at a time.

Composable Security

A setting that is more general and realistic than the stand-alone setting is the concurrent
setting, inwhichmany instances ofmany different protocols are concurrently executed in
an arbitrary schedule.Anotable difference from the stand-alone setting is that adversaries
can now perform a coordinated attack by choosing their messages in an instance based
on the executions of the other instances.
As a strong and realistic security notion in the concurrent setting, Canetti [2] proposed

universally composable (UC) security. The main advantage of UC security is compos-
ability, which guarantees that UC-secure protocols can be composed in such a way that
the security of the resultant protocol can be deduced from the security of its components
(in other words, UC security enables modular constructions of secure protocols). Com-
posability also guarantees that a protocol remains secure even when it is concurrently
executed with any other protocols in any schedule (that is, UC security implies secu-
rity in the concurrent setting). A UC-secure general MPC protocol was constructed by
Canetti et al. [8] in the common reference string (CRS) model (i.e., in a model in which
all parties are given a common public string that is chosen by a trusted third party). A
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black-box construction of a UC-secure general MPC protocol was constructed by Ishai
et al. [22] in the FOT-hybrid model (i.e., in model with the ideal oblivious transfer func-
tionality) and by Choi et al. [4] in the FCOM-hybrid model (i.e., in the model with the
ideal commitment functionality).
UC security, however, turned out to be too strong to achieve in the plain model. That

is, it was shown that even with non-black-box use of cryptographic primitives, we cannot
construct UC-secure general MPC protocols in the model with no trusted setup [6,7].

To achieve composable security in the plain model, Prabhakaran and Sahai [32] pro-
posed a variant of UC security called angel-based UC security. Roughly speaking,
angel-based UC security is the same as UC security except that the adversary and the
simulator have access to an additional entity—an angel—that allows some judicious
use of super-polynomial-time resources. Angel-based UC security is weaker than UC
security but guarantees meaningful security in many settings. (For example, angel-based
UC security implies super-polynomial-time simulation (SPS) security [1,13,29,30], in
which the simulator is allowed to run in super-polynomial time. Hence, angel-based
UC security guarantees that whatever an adversary can do in the real world can also
be done in the ideal world in super-polynomial time.) Furthermore, it was proven that,
like UC security, angel-based UC security guarantees composability. (In contrast, SPS
security does not guarantee composability.), Prabhakaran and Sahai [32] presented a
general MPC protocol that satisfies angel-based UC security in the plain model under
new assumptions. Subsequently, Malkin et al. [26] constructed another general MPC
protocol that satisfies angel-based UC security in the plain model under a new number-
theoretic assumption.
Several works have constructed general MPC protocols with angel-based UC secu-

rity under standard assumptions. Canetti et al. [9,10] constructed a polynomial-round
general MPC protocol in angel-based UC security assuming the existence of enhanced
trapdoor permutations. Subsequently, Goyal et al. [15] reduced the round complexity to
˜O(log n) under the same assumption. They also showed that by using enhanced trap-
door permutations that are secure against quasi-polynomial-time adversaries, the round
complexity of their protocols can be reduced to O(1).

The constructions of these MPC protocols are non-black-box, so they use underlying
primitives in a non-black-box way.

Black-Box Constructions of Composable Protocols

Recently, Lin and Pass [24] showed the first black-box construction of a general MPC
protocol that guarantees composable security in the plain model. The security of their
protocol is proven under angel-based UC security and based on the minimal assumption
of the existence of semi-honest oblivious transfer (OT) protocols. The round complexity
of their protocol is O(max(nε, ROT)), where ε > 0 is an arbitrary constant and ROT is
the round complexity of the underlying semi-honest OT protocols. Thus, with enhanced
trapdoor permutations (from which we can construct constant-round semi-honest OT
protocols), their result gives an O(nε)-round protocol. Subsequently, a constant-round
protocol was constructed by Kiyoshima et al. [23] from constant-round semi-honest
OT protocols that are secure against quasi-polynomial-time adversaries and one-way
functions that are secure against subexponential-time adversaries.
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Summarizing the state of the art, for composable protocols in the plain model, we
have

• ˜O(log n)-round non-black-box constructions under a standard polynomial-time
hardness assumption [15],

• a O(nε)-round black-box construction under a standard polynomial-time hardness
assumption [24], and

• O(1)-round black-box or non-black-box constructions under standard super-
polynomial-time hardness assumptions [15,23].

Thus, for composable protocols based on standard polynomial-time hardness assump-
tions, there exists a gap between the round complexity of the non-black-box protocols
(˜O(log n) rounds [15]) and that of the black-box protocols (O(nε) rounds [24]). The
following is therefore an interesting open question.

Does there exists a round-efficient black-box construction of a generalMPC
protocol that guarantees composability in the plain model under polynomial-
time hardness assumptions?

1.1. Our Result

In this paper, we narrow the gap between the round complexity of black-box composable
general MPC protocols and that of non-black-box ones.

Main Theorem. Assume the existence of ROT-round semi-honest oblivious transfer
protocols. Then, there exists a max(˜O(log2 n), O(ROT))-round black-box construction
of a general MPC protocol that satisfies angel-based UC security in the plain model.

Recall that, assuming the existence of enhanced trapdoor permutations, we have a
constant-round semi-honest OT protocol. Thus, under this assumption, our main the-
orem gives a ˜O(log2 n)-round protocol.
CCA-secure commitment scheme. To prove our main theorem, we construct a
˜O(log2 n)-round black-box construction of a CCA-secure commitment scheme [9,10,
15,23,24] from one-way functions.

Theorem. Assume the existence of one-way functions. Then, there exists a ˜O(log2 n)-
round black-box construction of a CCA-secure commitment scheme.

Roughly speaking, a CCA-secure commitment scheme is a tag-based commitment
scheme (i.e., a commitment scheme that takes an n-bit string, a tag, as an additional
input) such that the hiding property holds even against adversaries that interact with the
committed-value oracle during the interaction with the challenger. The committed-value
oracle interacts with the adversary as an honest receiver in many concurrent sessions of
the commit phase. At the end of each session, if the commitment of this session is invalid
or has multiple committed values, the oracle returns ⊥ to the adversary. Otherwise, the
oracle returns the unique committed value to the adversary.
Lin and Pass [24] showed that in angel-based UC security, an O(max(RCCA, ROT))-

round general MPC protocol can be obtained in a black-box way from a RCCA-round
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CCA-secure commitment scheme and a ROT-round semi-honest OT protocol. Thus, we
can prove our main theorem by combining the above theorem with the result of Lin and
Pass [24].

1.2. Outline

In Sect. 2, we give an overview of our CCA-secure commitment scheme. In Sect. 3,
we give definitions that are used throughout the paper. In Sect. 4, we show the building
blocks that are used in our CCA-secure commitment scheme. In Sect. 5, we show our
CCA-secure commitment scheme and prove its security. In Sect. 6, we show our main
theorem.

2. Overview of Our CCA-Secure Commitment Scheme

In the previouswork onCCA-secure commitment schemes [9,10,15,23,24], extractabil-
ity and non-malleability play fundamental roles in the proof of CCA security. Roughly
speaking, the CCA security of the existing CCA-secure commitment schemes is proven
by reducing it to the hiding property [9,10,24] or by showing that the proof of the hiding
property goes though even in the presence of the committed-value oracle [15,23]. During
the security proofs, extractability is used to show that the committed-value oracle can
be emulated in polynomial time by extracting the committed values from the adversary,
and non-malleability is used to show that the emulation of the oracle can be performed
without “disturbing” the hiding property [9,10,24] or each step of the proof of the hiding
property [15,23].
In this work, we use stronger notions of extractability and non-malleability called

strong extractability and one-one CCA security. In the following, we explain how we
construct commitment schemes that satisfy these two notions and how we construct our
CCA-secure commitment scheme by using them as building blocks.

2.1. Building Block 1: Strongly Extractable Commitment Scheme

A commitment scheme is strongly extractable if a rewinding extractor can extract the
committed value of a commitment in such a way that the extractor outputs ⊥ when the
commitment is invalid.2 Strong extractability differs from basic extractability in that it
requires the extractor to output ⊥ when the commitment is invalid; basic extractability,
in contrast, allows the extractor to output an arbitrary value when the commitment
is invalid. (This is called over-extraction.) A constant-round extractable commitment
scheme ExtCom can be constructed in a black-box way from one-way functions [34];
however, no black-box construction of a strong extractable commitment scheme has
been constructed.
To construct a strongly extractable commitment scheme, we start from the following

scheme, inwhich the cut-and-choose technique is used in the sameway as in the previous
work on black-box protocols [3–5,23,24,36].

2A commitment is valid if there exists a valid decommitment of this commitment; otherwise, it is invalid.
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1. Let v be the value to be committed. Then, the committer computes an (n+ 1)-out-
of-10n Shamir’s secret sharing s = (s1, . . . , s10n) of value v and commits to each
s j in parallel by using ExtCom.

2. The receiver sends a random subset � ⊂ [10n] of size n.
3. For every j ∈ �, the committer decommits the j th ExtCom commitment to s j .
4. The receiver accepts the commitment if and only if the decommitments ofExtCom

are valid for every j ∈ �.

For j ∈ [10n], let us call the j th ExtCom commitment the j th column. In this scheme,
the ExtCom commitments are valid in most columns when the receiver accepts the
commitment in Step 4; this is becausewhen theExtCom commitments are invalid in, say,
n columns, at least one of them is chosen by �, and the receiver rejects the commitment
in Step 4 except with exponentially small probability. Since the committed value of a
ExtCom commitment can be extracted when it is valid, this implies that the committed
shares can be extracted in most columns when the receiver accepts the commitment in
Step 4; therefore, when the commitment is valid, the committed value v can be recovered
by extracting the committed shares from the ExtCom commitments and then using the
error-correcting property of Shamir’s secret sharing scheme.3 Furthermore, by carefully
designing the decommit phase as in [3–5,23,24,36], we can make sure that the extractor
outputs ⊥ when the commitment is invalid.

The problem of this scheme is that we do not know how to prove its hiding property. In
particular, since the receiver requests the committer to open adaptively chosen ExtCom
commitments, it can perform selective opening attacks [12], and therefore the hiding
property of this scheme cannot be reduced to the hiding property of ExtCom easily.

We therefore modify the scheme and let the receiver commit to � at the beginning
by using a statistically binding commitment scheme Com. Now, since the receiver no
longer chooses the subset � adaptively, we can prove the hiding property by using a
standard technique. Furthermore, at first sight, the hiding property of Com seems to
guarantee that the scheme remains strongly extractable.
In the modified scheme, however, we cannot prove the strong extractability. This is

because we can no longer show that most of the ExtCom commitments are valid in an
accepting commitment. Consider, for example, that there exists a cheating committer
C∗ such that after receiving a Com commitment to � at the beginning, C∗ somehow
generates an invalid ExtCom commitment in the j th column for every j �∈ � and
commits to 0n in the j th column for every j ∈ �. Intuitively, it seems that C∗ breaks
the hiding property of Com. However, we do not know how to use C∗ to break the
hiding property of Com. To see this, observe the following. Recall that since ExtCom
is extractable with over-extraction, the extractor of ExtCom may output an arbitrary
value when the ExtCom commitment is invalid. Hence, when we extract the committed
values of the ExtCom commitments from C∗, the extracted value may be 0n in every
column. Therefore, although C∗ behaves differently in ExtCom based on the value of
�, we do not know how to detect it.

To overcome this problem, we use the commitment scheme wExtCom that was
introduced by Goyal et al. [14]. Roughly speaking, wExtCom is a scheme that is

3 Recall that Shamir’s secret sharing is also a codeword of Reed-Solomon code.
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extractable only in aweak sense—extractionsmay fail with probability at most 1/2—but
is extractable without over-extraction. That is, the extractor may output⊥with probabil-
ity 1/2, butwhen the extractor outputs v �= ⊥, the commitment is valid and its committed
value is v. Concretely, the commit phase of wExtCom consists of three stages.

1. commit stage. The committer commits to random a0, a1 ∈ {0, 1}n such that
a0 ⊕ a1 = v.

2. challenge stage. The receiver sends a random bit ch ∈ {0, 1}.
3. reply stage. The committer reveals ach and decommits the corresponding

commitment.

It is easy to see that wExtCom satisfies the following property: For a fixed transcript
of the commit stage, if a cheating committer returns a valid reply with probability
1/poly(n) for both ch = 0 and ch = 1, then the committed value can be extracted with
probability 1 in expected polynomial time by rewinding the cheating committer.
Using wExtCom, we modify our scheme as follows. After committing to s =

(s1, . . . , s10n) with ExtCom, the committer commits to (s j , d j ) for each j ∈ [10n] in
parallel by usingwExtCom, where (s j , d j ) is a decommitment of the ExtCom commit-
ment in the j th column. We then show that most columns are consistent in an accepted
commitment except with negligible probability, meaning that in most columns on an
accepted commitment, the wExtCom commitment is valid and its committed value is a
valid decommitment of the corresponding ExtCom commitment except with negligible
probability. Toward this end, we observe the following.

• If a cheating committer generates an accepting commitment with non-negligible
probability, in wExtCom of more than 9n columns the cheating committer returns
a valid reply with non-negligible probability for both ch = 0 and ch = 1. This is
because if the cheating committer returns a valid reply with non-negligible proba-
bility for both ch = 0 and ch = 1 in wExtCom of at most 9n columns, there are n
columns in which the wExtCom commitment is accepted with probability at most
1/2 + negl(n), so the probability that all wExtCom commitments are accepted is
negligible.4

• Then, from the property of wExtCom, we can extract the committed values of the
wExtCom commitments without over-extraction in more than 9n columns.

• Then, from the property of the cut-and-choose technique, we can show that in
most columns of an accepting commitment, the wExtCom commitment is valid
and its committed value is a valid decommitment of the corresponding ExtCom
commitment. Note that since the committed values of wExtCom commitments
can be extracted without over-extraction, we can show that the cheating committer
cannot give invalid wExtCom commitments in many columns.

Then, since the ExtCom commitments are valid in consistent rows, we have that most
of the ExtCom commitments are valid whenever the commitment is accepted. We can
thus extract the committed value of the scheme without over-extraction as before, i.e.,
by extracting the committed values of ExtCom commitments and then using the error-
correcting property of Shamir’s secret sharing scheme.

4 The formal proof is more complicated because the wExtCom commitments are executed in parallel and
thus the columns are not independent of each other.
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2.2. Building Block 2: One-One CCA-Secure Commitment Scheme

A one-one CCA-secure commitment scheme, which is closely related to a non-malleable
commitment scheme, is one that is CCA secure w.r.t. a restricted class of adversaries that
execute only a single session with the committed-value oracle and obtain its committed
value from the oracle at the end of the session.5

We construct a black-box O(log n)-round one-one CCA-secure commitment scheme
by simplifying theCCA-secure commitment scheme of Lin and Pass [24] and then apply-
ing the “DDN log n trick” [11,25] on it, where the DDN log n trick is a transformation
by Dolev, Dwork, and Naor (DDN) [11] and has been used to transform a concur-
rent non-malleable commitment scheme for tags of length O(log n) to a non-malleable
commitment scheme for tags of length O(n) without increasing the round complexity.
Roughly speaking, the scheme of [24] consists of polynomially many rows—each row
is a parallel execution of (a part of) the trapdoor commitment scheme of [34]—and a
cut-and-choose phase, which forces the committer to give valid and consistent trapdoor
commitments in every row. Our idea is to reduce the number of rows from poly(n) to
�(n) in the scheme of [24], where �(n) is the length of the tags. The resultant scheme is
no longer CCA secure, but can be shown to be parallel CCA secure, i.e., CCA secure
w.r.t. a restricted class of adversaries that give only a single parallel queries to the oracle.
Then, we set �(n) := O(log n) and apply the DDN log n trick to the above parallel
CCA-secure commitment scheme. It is not hard to show that the resultant scheme is
one-one CCA secure.

2.3. CCA-Secure Commitment Scheme from the Building Blocks

Now, we explain howwe obtain our CCA-secure commitment scheme,CCACom, using
a constant-round strongly extractable commitment scheme sExtCom and a O(log n)-
round one-one CCA-secure commitment scheme CCACom1:1 as building blocks.

In addition to sExtCom and CCACom1:1, we use the concurrently extractable com-
mitment scheme of Micciancio et al. [27] in our CCA-secure commitment scheme.
Roughly speaking, concurrent extractability guarantees that a rewinding extractor can
extract committed values even from polynomially many commitments that are concur-
rently generated by an adversarial committer. The concurrently extractable commitment
scheme of Micciancio et al. [27], which we denote by CECom, is an abstraction of the
preamble stage of the concurrent zero-knowledge protocol of Prabhakaran et al. [31]
and is constructed in a black-box way from one-way functions. CECom satisfies even a
stronger notion of concurrent extractability called robust concurrent extractability [15],
which roughly guarantees that the extractor works even against adversarial commit-
ters that additionally participate in an arbitrary external protocol, and furthermore, even
though the extractor rewinds the adversarial committers, the external protocol is not
rewound during the extraction. CECom satisfies robust concurrent extractability for a
k-round external protocol if a parameter � ofCECom (often called “the number of slots”
in CECom) satisfies � = ω(k log n). The round complexity of CECom is O(�).

5 In contrast, a non-malleable commitment scheme is one that is CCA secure w.r.t. a restricted class of
adversaries that execute a single session with the oracle and obtain its committed value after completing the
session with the oracle and the session with the challenger.
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Using sExtCom, CCACom1:1, and CECom as building blocks, we construct
CCACom roughly as follows. Let v be the value to be committed to and tag be the
tag.

1. The receiver commits to a random subset � ⊂ [10n] of size n by using
CCACom1:1, where the tag of CCACom1:1 is tag.

2. The committer computes an (n + 1)-out-of-10n Shamir’s secret sharing s =
(s1, . . . , s10n) of value v and commits to each s j in parallel by using a two-round
statistically binding commitment scheme Com. Let φ1, . . . , φ10n be the commit-
ments and d1, . . . , d10n be their decommitments.

3. The committer commits to s j by using CECom for every j ∈ [10n] in parallel.
Let ψ1, . . . , ψ10n be the commitments and e1, . . . , e10n be their decommitments.
The parameter � of CECom is set as � := O(log2 n log log n) so that we have
� = ω(log2 n).

4. The committer commits to u j
def= (s j , d j , e j ) by using sExtCom for every j ∈

[10n] in parallel.
5. The receiver decommits the CCACom1:1 commitment in the first step to �.
6. For every j ∈ �, the committer decommits the j th sExtCom commitment to

u j = (s j , d j , e j ). The receiver verifies whether (s j , d j ) and (s j , e j ) are valid
decommitments of φ j and ψη, j for every j ∈ �.

The committed value of a CCACom commitment is defined by the shares that are
committed to in the Com commitments (i.e., the committed value is the value that can
be reconstructed from these shares).
Weprove theCCAsecurity using a hybrid argument. Recall thatCCAsecurity requires

that the hiding property holds even against adversaries that interact with the committed-
value oracle. Toward proving the CCA security of CCACom, we design a series of
hybrid experiments in which the CCACom commitment that the adversary receives
in the left session (the session between the adversary and the challenger) is gradually
changed as follows.

• In Hybrid H0, the CCA-security experiment is executed honestly.
• In Hybrid H1, the values that are committed to by sExtCom are switched from u j

to 0|u j | for every j �∈ �, where � is the subset that is committed to by the adversary
in the first step.

• In Hybrid H2, the values that are committed to by CECom are switched from s j
to 0|s j | for every j �∈ �.

• In Hybrid H3, the values that are committed to by Com are switched from s j to
0|s j | for every j �∈ �.

From the security of Shamir’s secret sharing, the adversary receives no information
about v in H3. Hence, from a hybrid argument, we can prove CCA security by showing
indistinguishability between neighboring hybrid experiments.
Since neighboring hybrids differ only in the values that are committed to in the row

of sExtCom, CECom, or Com (i.e., the parallel commitments of sExtCom, CECom,
or Com), our overall strategy for proving the indistinguishability is to use the hiding
property of sExtCom,CECom, andCom. A problem is that the adversary interacts with
the committed-value oracle, which extracts the committed values of the right sessions
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(the sessions between the adversary and the committed-value oracle) in super-polynomial
time; because of the super-polynomial power of the oracle, the indistinguishability does
not follow directly from the hiding property of sExtCom, CECom, and Com. We
overcome this problem by showing that the committed-value oracle can be emulated in
polynomial time. Specifically, we show that the oracle can be emulated by extracting
the committed shares from the rows of CECom using its concurrent extractability and
then computing the committed value of each right session from the extracted shares.
Roughly speaking, this emulation works because in an accepting right session, the shares
committed to in the row of CECom must be “close” to the shares that are committed
to in the row of Com (recall that the committed value of a CCACom commitment is
defined based on the shares that are committed to in the row of Com); in fact, if they
disagree in many locations, the session will be rejected in the last step of the scheme.
In more detail, we prove the indistinguishability between, say, the first and second

hybrids in two steps.

Step 1 Prove the indistinguishability assuming that the adversary does not “cheat” in
each right session, where, roughly speaking, we say that the adversary cheats
in a right session if the adversary commits to u j = (s j , d j , e j ) in the row of
sExtCom as specified by the scheme in at most 9n locations in an accepting
session.

Step 2 Prove that the adversary does not cheat in the right sessions except with negli-
gible probability.

Each step is explained in more detail below.

Step 1: Proving the indistinguishability assuming that the adversary does not cheat.
Recall that H0 and H1 differ only in the values that are committed to in the row of
sExtCom in the left session. For proving indistinguishability between them,we consider
new hybrid experiments, G0 and G1, such that Gh (h ∈ {0, 1}) is the same as Hh except
that the committed-value oracle computes the committed value of each right session from
the shares that are extracted from the row ofCECom (rather than from the row ofCom),
and those shares are extracted using the robust concurrent extractability of CECom so
that the row of sExtCom in the left session is not rewound during the extraction. We
then prove the indistinguishability between H0 and H1 in two steps.

1. First, we show the indistinguishability between Hh and Gh . Since we assume that
the adversary does not cheat in the right sessions, the shares that are committed
to in the row of Com and those that are committed to in the row of CECom are
0.9-close. Combined with an error-correcting property of Shamir’s secret sharing,
their closeness guarantees that the correct committed values of the right seasons
are computable even from the shares that are committed to in the row of CECom;
hence, the committed-value oracle computes the same value in Hh and Gh , so
these two hybrids are indistinguishable.

2. Second, we show the indistinguishability between G0 and G1 by using the hiding
property of sExtCom. Since these two hybrids run in polynomial time while
the adversary is receiving the row of sExtCom in the left session, and the row
of sExtCom in the left session is not rewound thanks to the robust concurrent
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extractability of CECom, we can easily design a (non-uniform) reduction from
the indistinguishability between G0 and G1 to the hiding property of sExtCom.

Combining these two, we obtain the indistinguishability between H0 and H1 under the
assumption that the adversary does not cheat in the right sessions.

Step 2: Proving that the adversary cannot cheat. Intuitively, the adversary cannot
cheat in a right session because the subset that is committed to in the CCACom1:1
commitment of that right session is hidden from the adversary. In fact, if the subsets
are hidden from the adversary, we can argue that a right session will be rejected in the
last step of the scheme when the adversary tries to cheat in that session. However, to
formalize this intuition, we need to overcome two obstacles.

Obstacle 1 The adversary interacts with the committed-value oracle, which runs in
super-polynomial time. We overcome this obstacle by, again, considering
a hybrid in which the oracle is emulated in polynomial time.

Obstacle 2 The challenger cheats in the left session in H1, H2, H3 (recall that in these
hybrids, the challenger commits to 0|u j | rather than u j for every j �∈ � in the
rowof sExtCom), and thus, the adversarymaybe able to cheat in a right ses-
sion by using the messages in the left session. We overcome this obstacle
by using the simulation-soundness of the cut-and-choose phase. Specifi-
cally, since the cheating challenger can be emulated in polynomial time
by making a single query to the committed-value oracle of CCACom1:1
(that is, the left session can be emulated in polynomial time if the subset
that is committed in to CCACom1:1 is given), the one-one CCA security
of CCACom1:1 guarantees that the subset in each right session is hidden
even though the challenger cheats in the left session.

More formally, the proof proceeds as follows. Assume for contradiction that the adver-
sary cheats in a right session with non-negligible probability in, say, H1. Then, there
exists a right session such that the adversary cheats with non-negligible probability in
this right session but does not cheat except with negligible probability in any right ses-
sion that completed before this right session; we call this right session the target right
session. Then, we consider a hybrid experiment that is the same as H1 except for the
following.

• The execution of H1 is terminated just before the committed-value oracle returns
the committed value in the target right session.

• The oracle computes the committed value of each right session from the shares
that are extracted from the row of CECom, and those shares are extracted using
the robust concurrent extractability of CECom so that the row of CCACom1:1 in
the left session, the row of CCACom1:1 in the target right session, and the row of
sExtCom in the target right session are not rewound during the extraction. (Such
robust concurrent extraction is possible since the total round complexity of these
rows is O(log n) and the parameter � of CECom satisfies � = ω(log2 n).)

Since the oracle returns the committed values only in the right session that terminates
before the target right session, and it is assumed that the adversary does not cheat in
such right sessions, we can show, as before, that the oracle is correctly emulated in
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this hybrid. Thus, the adversary cheats in the target right session with non-negligible
probability even in this hybrid. Now, since this hybrid runs in polynomial time except
when extracting the subset from theCCACom1:1 commitment in the left session, we can
break the one-one CCA security ofCCACom1:1 in the target right session by extracting
the shares committed to in the row of sExtCom in the target right session and checking
the locations where the adversary does not commit to u j = (s j , d j , e j ) in the row
of sExtCom as specified by the scheme, while simulating the left session using the
committed-value oracle of CCACom1:1. Hence, we conclude that the adversary does
not cheat in the right sessions except with negligible probability.

Remark 1. In the above explanation, we assume that sExtCom has a robust extractabil-
ity property such that the extraction from the row of sExtCom is possible even while the
CCACom1:1 commitment in the left session is forwarded to the committed-value oracle
of CCACom1:1. In the actual proof, we remove the necessity of robust extractability by
increasing the number of rows of sExtCom to RCCA1:1 + 1, where RCCA1:1 is the round
complexity of CCACom1:1. With RCCA1:1 + 1 rows of sExtCom, we can argue that
one of the rows of sExtCom in the target right session does not “interleave” with the
CCACom1:1 commitment of the left session, so we extract the values that are committed
to in this row of sExtCom. �

Remark 2. We note that in the above argument, CCACom1:1 need to be one-one CCA
secure (rather than just non-malleable) since we need to obtain the committed subset
from the oracle immediately after completing the query to the oracle (and possibly before
completing the challenge commitment). We also note that sExtCom must be strongly
extractable since otherwise the adversary may give invalid commitments in more than n
locations without being detected in the cut-and-choose phase. (As explained in Sect. 2.1,
the existence of such an adversary does not contradict the one-one CCA security of
CCACom1:1 if over-extraction can occur.) �

Combining Steps 1 and 2, we conclude that H0 and H1 are indistinguishable. The indis-
tinguishability between other neighboring hybrids can be shown similarly.

3. Preliminaries

Throughout the paper, we use n to denote the security parameter, N to denote the set of
all natural numbers, and ppt as an abbreviation of “probabilistic polynomial time.” For
any k ∈ N, we use [k] to denote the set {1, 2, . . . , k}. For any two ensembles of random

variables, {Xn}n∈N and {Yn}n∈N, we use {Xn}n∈N
c≈ {Yn}n∈N to denote that {Xn}n∈N and

{Yn}n∈N are computationally indistinguishable and {Xn}n∈N
s≈ {Yn}n∈N to denote that

{Xn}n∈N and {Yn}n∈N are statistically indistinguishable. We assume familiarity with
the notion of cryptographic protocols, which are formalized as interactions between
interactive Turing machines (ITMs). We remind the reader that the view of a party in the
execution of a cryptographic protocol consists of the input of the party, randomness of
the party, and all the messages received by the party.
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Fig. 1. Function Value�(·).

3.1. Shamir’s Secret Sharing

Wefirst recall Shamir’s secret sharing scheme. (In this paper, we use only the (n+1)-out-
of-10n version of it.) To compute a (n+1)-out-of-10n secret sharing s = (s1, . . . , s10n)

of a value v ∈ GF(2n), we choose random a1, . . . , an ∈ GF(2n), let p(z)
def= v+a1z+

· · ·+anzn , and set si := p(i) for each i ∈ [10n]. Given s, we can recover v by obtaining
polynomial p(·) thorough interpolation and then computing p(0). We use Decode(·)
to denote a function that recovers v from s as above.

For anypositive real number x ≤ 1and any s = (s1, . . . , s10n) and s′ = (s′
1, . . . , s

′
10n),

we say that s and s′ are x-close if |{i ∈ [10n] s.t. si = s′
i }| ≥ x · 10n. If s and s′ are

not x-close, we say that they are (1− x)-far. Since the shares generated by (n + 1)-out-
of-10n Shamir’s secret sharing scheme are actually a codeword of the Reed-Solomon
code with minimum relative distance 0.9, if a (possibly incorrectly generated) sharing s
is 0.55-close to a valid codeword w, we can recover w from s efficiently by using, for
example, the Berlekamp–Welch algorithm.
The following technical lemma will be used in the analyses of our commitment

schemes in Sects. 4.1 and 5.

Lemma 1. Let x = (x1, . . . , x10n)and y = (y1, . . . , y10n)beany (possibly incorrectly
generated) shares of (n+ 1)-out-of-10n Shamir’s secret sharing scheme, where some of
these shares may be equal to a special error symbol ⊥. For any set � ⊂ [10n] of size n,
let Value�(·) be the function that is defined in Fig. 1.

Then, we have Value�(x) = Value�( y) if the following three conditions hold.

1. For every i ∈ [10n], if xi �= ⊥, it holds xi = yi .
2. |{i ∈ [10n] s.t. xi = ⊥}| < n

∧ {i ∈ [10n] s.t. xi = ⊥} ∩ � = ∅.
3. x is either 0.9-close to a valid codewordw = (w1, . . . , w10n) that satisfieswi = xi

for every i ∈ � or 0.2-far from any such valid codeword.

Proof. We consider two cases.

Case 1 x is 0.9-close to a valid codewordw = (w1, . . . , w10n) that satisfieswi = xi
for every i ∈ �: First, we observe that y is also 0.9-close to w. Since w is a
valid codeword, we have wi �= ⊥ for every i ∈ [10n]; thus, we have xi �= ⊥
for every i such that xi = wi . Also, from the first assumed condition, we have
xi = yi for every i such that xi �= ⊥. Therefore, we have yi = wi for every i
such that xi = wi . Then, since x is 0.9-close to w from the assumption of this
case, we have that y is 0.9-close to w.
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Next, we observe that w satisfies wi = yi for every i ∈ �. From the second
assumed condition, we have xi �= ⊥ for every i ∈ �. Also, from the first
assumed condition, we have xi = yi for every i such that xi �= ⊥. Thus, we
have xi = yi for every i ∈ �. Then, since we have wi = xi for every i ∈ �

from the assumption of this case, we have wi = yi for every i ∈ �.
Now, since y is 0.9-close tow, andw satisfieswi = yi for every i ∈ �, we have
Value�(x) = Value�( y) = Decode(w) from the definition of Value�(·).

Case 2 x is 0.2-far from any valid codeword w = (w1, . . . , w10n) that satisfies
wi = xi for every i ∈ �: For any valid codeword w′ = (w′

1, . . . , w
′
10n) that

satisfies w′
i = yi for every i ∈ �, we observe that y is 0.1-far from w′. Since

we have xi �= ⊥ for every i ∈ � (the second assumed condition) and xi = yi
for every i such that xi �= ⊥ (the first assumed condition), we have xi = yi for
every i ∈ �. Then, since we have w′

i = yi for every i ∈ �, we have w′
i = xi

for every i ∈ �. Thus, x is 0.2-far from w′ from the assumption of this case.
Now, since x and y are 0.9-close from the first and second assumed conditions,
it follows that y is 0.1-far from w′.
Now, from the definition of Value�(·), we conclude that Value�(x) =
Value�( y) = ⊥.

Notice that from the third assumed condition, either Case 1 or 2 is true. This concludes
the proof of Lemma 1. �

3.2. Commitment Schemes

We next recall the definition of commitment schemes. Commitment schemes, often
described as a digital equivalent of sealed envelopes, are two-party protocols between a
committer and a receiver. Commitment schemes have two phases: the commit phase and
the decommit phase. In the commit phase, the committer commits to a secret input v ∈
{0, 1}n by interacting with the receiver; the transcript of the commit phase is called the
commitment. In the decommit phase, the committer decommits the commitment to v by
sending the receiver a message called the decommitment; the receiver then outputs either
1 (accept) or 0 (reject). It is required that the receiver accepts the decommitment with
probability 1 when both the committer and the receiver behave honestly. Additionally, it
is required that the committer cannot decommit a commitment to two different values and
that the committed value is hidden from the receiver in the commit phase; the former is
called the binding property and the latter is called the hiding property. Formal definitions
of the (statistically) binding and (computationally) hiding properties are given below.

Definition 1. (Statistical binding property) For a commitment scheme 〈C, R〉 and any
(not necessarily ppt) adversarial committer C∗, consider the following probabilistic
experiment Expbind(〈C, R〉,C∗, n, z) for any n ∈ N and z ∈ {0, 1}∗.

On input 1n and auxiliary input z, the adversary C∗ interacts with an honest
receiver in the commit phase of 〈C, R〉 and then outputs two decommitments,
(v0, d0) and (v1, d1). Then, C∗ is said to win the experiment if v0 �= v1 but
the receiver accepts both (v0, d0) and (v1, d1) in the decommit phase.

Then, 〈C, R〉 is statistically binding if for any sequence of auxiliary inputs {zn}n∈N,
the probability that C∗ wins the experiment Expbind(〈C, R〉,C∗, n, zn) is negligible. �



192 S. Kiyoshima

Definition 2. (Computational hiding property) For a commitment scheme 〈C, R〉
and any ppt adversarial receiver R∗, consider the following probabilistic experiment
Exphideb (〈C, R〉, R∗, n, z) for any b ∈ {0, 1}, n ∈ N, and z ∈ {0, 1}∗.

On input 1n and auxiliary input z, the adversary R∗ chooses a pair of challenge
values v0, v1 ∈ {0, 1}n and then interacts with an honest committer in the
commit phase of 〈C, R〉, where the committer commits to vb. The output of
the experiment is the view of R∗

LetExphideb (〈C, R〉, R∗, n, z)denote theoutput of experimentExphideb (〈C, R〉, R∗, n, z).
Then, 〈C, R〉 is computationally hiding if the following are computationally indistin-
guishable.

•
{

Exphide0 (〈C, R〉, R∗, n, z)
}

n∈N,z∈{0,1}∗
•
{

Exphide1 (〈C, R〉, R∗, n, z)
}

n∈N,z∈{0,1}∗ �

Unless stated otherwise, all the commitment schemes in this paper are statistically bind-
ing and computationally hiding. We say that a commitment is accepting if the receiver
does not abort in the commit phase, and valid if there exists a value to which the commit-
ment can be decommitted (i.e., if there exists a decommitment that the verifier accepts
in the decommit phase). The committed value of a commitment is the value to which the
commitment can be decommitted; we define the committed value of an invalid commit-
ment as ⊥.
There exists a two-round statistically binding commitment scheme Com based on

one-way functions [20,28], and it uses the underlying one-way function in a black-box
way.

Strong Computational Binding Property. We say that a commitment scheme 〈C, R〉
satisfies strong computational binding property if any ppt committer C∗ can generate a
commitment that hasmore thanone committed valuewith atmost negligible probability.6

A formal definition of the strong computational binding property is given below.

Definition 3. (Strong computational binding property) For a commitment scheme
〈C, R〉 and any ppt adversarial committerC∗, consider the following probabilistic exper-
iment Expbind2(〈C, R〉,C∗, n, z) for any n ∈ N and z ∈ {0, 1}∗.

On input 1n and auxiliary input z, the adversary C∗ interacts with an honest
receiver in the commit phase of 〈C, R〉. Then,C∗ is said towin the experiment
if there exists two decommitments, (v0, d0) and (v1, d1), such that v0 �= v1,
but the receiver accepts both (v0, d0) and (v1, d1) in the decommit phase.

Then, 〈C, R〉 is strongly computationally binding if for any sequence of auxiliary
inputs {zn}n∈N, the probability that C∗ wins the experiment Expbind2(〈C, R〉,C∗, n, zn)
is negligible. �

6 The standard computational binding property guarantees that for any ppt committerC∗, the commitment
that C∗ generates cannot be decommitted to more than one value in polynomial time. Thus, the commitment
that C∗ generates is allowed to have more than one committed value.
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Fig. 2. Extractable commitment scheme ExtCom[34].

3.3. Extractable Commitment Schemes

We next recall the definition of extractable commitment schemes from [34]. Roughly
speaking, a commitment scheme is extractable if there exists an expected polynomial-
time oracle machine, called extractor E , such that for any adversarial committer C∗ that
gives a commitment to honest receiver, EC∗

extracts the committed value of the commit-
ment from C∗ as long as the commitment is valid. We note that when the commitment
is invalid, E can output an arbitrary garbage value; this is called over-extraction.

Formally, extractable commitment schemes are defined as follows. A commitment
scheme 〈C, R〉 is extractable if there exists an expected polynomial-time extractor E
such that for any ppt committer C∗, the extractor EC∗

outputs a pair (τ, σ ) that satisfies
the following properties.

• τ is identically distributed with the view ofC∗ that interacts with an honest receiver
R in the commit phase of 〈C, R〉. Let cτ be the commitment that C∗ gives in τ .

• If cτ is accepting, then σ �= ⊥ except with negligible probability.
• If σ �= ⊥, then it is statistically impossible to decommit cτ to any value other than

σ .

There exists a four-round extractable commitment scheme ExtCom based on one-
way functions [34], and it uses the underlying one-way function in a black-box way.
Furthermore, ExtCom satisfies extractability in a stronger sense: It is extractable even
against adversarial committers that give polynomially many ExtCom commitments in
parallel. (The extractor outputs (τ, σ1, σ2, . . .) for such committers.) ExtCom is shown
in Fig. 2.

Strongly Extractable Commitment Schemes. We also use a stronger notion of
extractability called strong extractability. Roughly speaking, an extractable commit-
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Fig. 3. Weakly extractable commitment scheme wExtCom [14].

ment scheme is strongly extractable if no over-extraction occurs during the extraction.
Formally, a statistically binding commitment scheme 〈C, R〉 is strongly extractable if
there exists an expected polynomial-time extractor E such that for any ppt committer
C∗, the extractor EC∗

outputs a pair (τ, σ ) that satisfies the following properties.

• τ is identically distributed with the view ofC∗ that interacts with an honest receiver
R in the commit phase of 〈C, R〉. Let cτ be the commitment that C∗ gives in τ .

• If cτ is invalid, then σ = ⊥ except with negligible probability.
• If cτ is valid, then it is statistically impossible to decommit cτ to any value other
that σ .

Weakly Extractable Commitment Schemes. We also use a weaker notion of
extractability called weak extractability. A commitment scheme 〈C, R〉 is weakly
extractable if there exists an expected polynomial-time extractor E such that for any
ppt committer C∗, the extractor EC∗

outputs a pair (τ, σ ) that satisfies the following
properties.

• τ is identically distributed with the view ofC∗ that interacts with an honest receiver
R in the commit phase of 〈C, R〉. Let cτ be the commitment that C∗ gives in τ .

• The probability that cτ is accepting and σ = ⊥ is at most 1/2.
• If σ �= ⊥, then cτ is valid and it is statistically impossible to decommit cτ to any
value other than σ .

There exists a four-roundweakly extractable commitment schemewExtCom based on
one-way functions [14], and it uses the underlying one-way function in a black-box way.
wExtCom is shown in Fig. 3. We note that given two accepted transcripts of wExtCom
such that commit stage is identical but challenge stage is different, we can
extract the committed value.
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Fig. 4. Concurrently extractable commitment CECom [27].

3.4. Concurrently Extractable Commitment Schemes

We next recall the notion of concurrently extractable commitment schemes. Roughly
speaking, a commitment scheme is concurrently extractable if there exists a polynomial-
time extractor such that for any adversarial committer that commits to polynomially
many values concurrently, the extractor can extract the committed values of all the valid
commitments from the committer.
There exists a ˜O(log n)-round concurrently extractable commitment CECom based

on one-way functions [27], and it uses the underlying one-way function in a black-box
way. CECom is an abstraction of the preamble stage of the concurrent zero-knowledge
protocol of Prabhakaran et al. [31], and the extractor ofCECom performs the extraction
by rewinding the adversarial committer according to the carefully designed rewinding
strategy of [31,33]. CECom is described in Fig. 4. We remark that CECom has a
parameter �, which is the number of ExtCom commitments that are generated in a
CECom commitment. (In [27], � = ω(log n).)

3.4.1. Robust Concurrent Extraction Lemma [15]

On the concurrently extractable commitment schemeCECom of Micciancio et al. [27],
we will use the robust concurrent extraction lemma, which is a useful lemma shown
by Goyal et al. [15]. Roughly speaking, the robust concurrent extraction lemma states
that when the adversarial committer additionally participates in an external protocol,
the values that are committed to by the adversarial committer can be extracted without
rewinding the external protocol. More precisely, consider any ppt adversarial committer
A that commits to multiple values in concurrent sessions of CECom—these sessions
are denoted as the right sessions—and simultaneously participates in an execution of
an arbitrary protocol � := 〈B, A〉 with an honest B—this session is denoted as the left
session. The robust concurrent extraction lemma states that for every A, there exists an
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extractor E that extracts the committed values fromA in every valid right sessionwithout
rewinding the external party B in the left session. The extractor E fails with probability
that is exponentially small in �− O(k log n), where � is the parameter ofCECom and k
is the round complexity of �. Hence, E fails only with negligible probability if we set
� := ω(k log n).
A formal description of the robust concurrent extraction lemma is given below. (Large

parts of the text below are taken from [15].)

The external protocol �. Let � := 〈B, A〉 be an arbitrary two-party protocol. Let
domB(n)denote the domain of the input for B and k := k(n)denote the round complexity
of �.

The robust-concurrent attack. Let x ∈ domB(n). In the robust-concurrent attack, the
adversaryA interacts with a special (possibly super-polynomial-time) party E called the
online extractor. The online extractor E simultaneously participates in one execution of
� and several executions of CECom, where E interacts with A as an honest B(1n, x)
in the execution of � and interacts with A as an honest receiver in each execution of
CECom. The scheduling of all messages in all sessions—� as well as CECom—is
controlled by A. When A successfully completes a CECom commitment s, the online
extractor E sends a value αs to A.

For n ∈ N, x ∈ domB(n), z ∈ {0, 1}∗, let RealAE,�
(n, x, z) denote the follow-

ing probabilistic experiment: On inputs 1n , x , z, the experiment starts an execution of
A(1n, z), which launches the robust-concurrent attack by interacting with E(1n, x, z);
the output of the experiment is the view of A and the output of B (who was emulated
by E). Let RealAE,�(n, x, z) denote the output of RealAE,�

(n, x, z).

The robust concurrent extraction lemma. Roughly speaking, the lemma states that
there exists an interactive Turing machine, called the robust simulator, that statistically
simulatesRealAE,�(n, x, z) even if the value that the online extractor E returns toA at the
end of each successfulCECom commitment is the committed value of this commitment.
Furthermore, the robust simulator does not “rewind” B and runs in time polynomial in
the number of the sessions opened by A. A formal statement of the lemma is given
below.

Lemma 2. (Robust Concurrent Extraction Lemma [15]) There exists an interactive
Turing machine S called a robust simulator such that for every adversary A and every
two-party protocol � := 〈B, A〉, there exists a party E called an online extractor such
that for every n ∈ N, x ∈ domB(n), and z ∈ {0, 1}∗, the following conditions hold:

1. Validity constraint. For every view ρ of A in RealAE,�(n, x, z) and for every
CECom commitment s appearing in ρ, if there exists a unique value v ∈ {0, 1}n
to which the commitment s can be decommitted, then

αs = v,

where αs is the value that E sends to A at the end of s.
2. Statistical simulation. Let k = k(n) be the round complexity of�. Then the statis-

tical distance between RealAE,�(n, x, z) and outputB,S
[

B(1n, x) ↔ SA(1n, z)
]

is given by
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�(n) ≤ 2−�(�−k·log T (n)),

where outputB,S
[

B(1n, x) ↔ SA(1n, z)
]

denotes the joint outputs of B(1n, x)
and S(1n, z) after an interaction between them, � := �(n) is the parameter of
CECom, and T (n) is the number of the CECom commitments betweenA and E .
Furthermore, the running time of S is poly(n) · T (n)2.

3.5. Trapdoor Commitment Schemes

We next recall trapdoor commitment schemes [34]. Roughly speaking, trapdoor com-
mitment schemes are commitment schemes such that there exists a simulator that can
generate a simulated commitment and can later decommit it to any value. Pass and Wee
[34] showed that the black-box scheme TrapCom in Fig. 5 is a trapdoor bit commitment.
TrapCom is not statistically binding, but it satisfies the strong computational binding
property. (The strong computational binding property holds since if an adversarial com-
mitter C∗ generates a TrapCom commitment that can be decommitted to both 0 and 1,
we can break the hiding property of Com using C∗ by extracting the committed values
of the ExtCom commitments from C∗ and then computing the committed value e of
Com from them.) Pass and Wee also showed that by running TrapCom in parallel,
we can obtain a black-box trapdoor commitment scheme PTrapCom for multiple bits.
PTrapCom also satisfies the strong computational binding property.

Fig. 5. Black-box trapdoor bit commitment scheme TrapCom.
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3.6. CCA-Secure Commitment Schemes

We next recall the definitions of CCA-secure commitment schemes and their κ-
robustness [9,10,24].

CCA Security (w.r.t. the Committed-Value Oracle)

Roughly speaking, a tag-based commitment scheme (i.e., a commitment scheme that
takes an n-bit string, a tag, as an additional input) 〈C, R〉 is CCA-secure if its hiding
property holds even against any adversary A that interacts with the committed-value
oracle during the interactionwith the committer. The committed-value oracleO interacts
withA as an honest receiver in many concurrent sessions of the commit phase of 〈C, R〉
using tags chosen adaptively by A. At the end of each session, if the commitment of
this session is invalid or has multiple committed values, O returns ⊥ to A. Otherwise,
O returns the unique committed value to A.
More precisely, let us consider the following probabilistic experiment INDb(〈C, R〉,

A, n, z) for each b ∈ {0, 1}. On input 1n and auxiliary input z, the adversary AO
adaptively chooses a pair of challenge values v0, v1 ∈ {0, 1}n and an n-bit tag tag ∈
{0, 1}n . Then, AO receives a commitment to vb with tag tag from the challenger. Let
y be the output of A. The output of the experiment is ⊥ if during the experiment, A
sends O any commitment using tag tag. Otherwise, the output of the experiment is y.
Let INDb(〈C, R〉,A, n, z) denote the output of experiment INDb(〈C, R〉,A, n, z).

Definition 4. Let 〈C, R〉 be a tag-based commitment scheme andO be the committed-
value oracle of 〈C, R〉. Then, 〈C, R〉 isCCA-secure (w.r.t the committed-value oracle)
if for any ppt adversary A, the following are computationally indistinguishable:

• {IND0(〈C, R〉,A, n, z)}n∈N,z∈{0,1}∗
• {IND1(〈C, R〉,A, n, z)}n∈N,z∈{0,1}∗

The left session is the session between the challenger andA, and right sessions are the
sessions between A and O. �

We say a commitment scheme is one-one CCA-secure if it is CCA secure w.r.t. a
restricted class of adversaries that start only a single right session.

κ-Robustness (w.r.t. the Committed-Value Oracle)

Roughly speaking, a tag-based commitment scheme is κ-robust if for any adversary A
and any ITM B, a ppt simulator can simulate the joint output of a κ-round interaction
betweenAO and B. Thus, the κ-robustness guarantees that the committed-value oracle
is useless for attacking any κ-round protocol.

Definition 5. Let 〈C, R〉 be a tag-based commitment scheme andO be the committed-
value oracle of 〈C, R〉. For any constant κ ∈ N, we say that 〈C, R〉 is κ-robust (w.r.t. the
committed-value oracle) if for any ppt adversaryA, there exists a pptmachineS called
a simulator such that for any κ-round ppt ITM B, the following are computationally
indistinguishable:
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• {outputB,AO
[

B(1n, y) ↔ AO(1n, z)
]}

n∈N,y,z∈{0,1}n
• {outputB,S

[

B(1n, y) ↔ S(1n, z)
]}

n∈N,y,z∈{0,1}n

Here, for any ITMs A and B, we use outputA,B

[

A(1n, y) ↔ B(1n, z)
]

to denote the
joint output of A and B in an interaction between them on inputs (1n, y) to A and (1n, z)
to B, respectively. If 〈C, R〉 is κ-robust for any constant κ , we say that 〈C, R〉 is robust.

�

4. Building Blocks

In this section, we construct a constant-round strongly extractable commitment scheme
and a O(log n)-round one-one CCA-secure commitment scheme. Both schemes are used
in our ˜O(log2 n)-round CCA-secure commitment scheme in Sect. 5.

4.1. Strongly Extractable Commitment Scheme

Using one-way functions in a black-box way, we construct a constant-round strongly
extractable commitment schemesExtCom. Recall that a commitment scheme is strongly
extractable if a rewinding extractor outputs a correct committed value when the com-
mitment is valid and outputs ⊥ when the commitment is invalid.

Lemma 3. Assume the existence of one-way functions. Then, there exists a constant-
round strongly extractable commitment scheme sExtCom that uses the underlying one-
way function only in a black-box way.

Proof. The scheme sExtCom is shown in Fig. 6, in which we use the following tools
(all of which can be constructed from one-way functions in a black-box way).

• A two-round statistically binding commitment scheme Com. (See Sect. 3.2.)
• A constant-round extractable commitment scheme ExtCom. (See Sect. 3.3.)
• The constant-round weakly extractable commitment scheme wExtCom of Goyal
et al. [14]. (See Sect. 3.3.)

We prove the binding property and the hiding property in Sect. 4.1.1 and the strong
extractability in Sect. 4.1.2.

4.1.1. Proofs of Binding and Hiding

First, we show that sExtCom is statistically binding and computationally hiding. The
binding property follows directly from that of ExtCom. To show the hiding property,
we consider the following hybrid experiments for any ppt cheating receiver R∗ and each
b ∈ {0, 1}.

Hybrid Hb
0 (n, z) is an experiment in which R∗ takes input 1n and auxiliary input

z and receives a sExtCom commitment to σb from an honest committer, where
(σ0, σ1) is the challenge values that R∗ chooses at the beginning. The output of
Hb
0 (n, z) is that of R∗.
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Fig. 6. Strongly extractable commitment scheme sExtCom.

Hybrid Hb
1 (n, z) is the same as Hb

0 (n, z) except that the sExtCom commitment
from the committer is modified as follows.

• In Step 1, the committed value � is extracted by brute force.
• In Step 2, the committer commits to 0|s j | instead of s j for every j �∈ �.
• In Step 3, the committer commits to (0|s j |, 0|d j |) instead of (s j , d j ) for every

j �∈ �.

Let Hb
i (n, z) be the random variable representing the output of Hb

i (n, z) for i ∈ {0, 1}
and b ∈ {0, 1}. From the construction, R∗ receives no information about b in Hb

1 (n, z)
for each b ∈ {0, 1}, so the distributions of H0

1(n, z) and H1
1(n, z) are identical. Hence,

from a hybrid argument, we can show the hiding property by showing that Hb
0(n, z)

and Hb
1(n, z) are indistinguishable for each b ∈ {0, 1}. Assume for contradiction that

there exists b ∈ {0, 1} such that for infinitely many n, there exists z ∈ {0, 1}∗ such that
Hb
0(n, z) and Hb

1(n, z) are distinguishable with advantage 1/poly(n). Fix any such b, n,
and z. From an average argument, there exists a transcript ρ of Step 1 such that under
the condition that the transcript of Step 1 is ρ, Hb

0(n, z) andHb
1(n, z) are distinguishable

with advantage 1/poly(n). Let � be the subset that is committed to in ρ. Since we
can execute Hb

1 (n, z) from ρ in polynomial time given ρ and �, by using a standard
technique, we can break the hiding property of either ExtCom or wExtCom by using
ρ and � as auxiliary input. Thus, we reach a contradiction.
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4.1.2. Proof of Strong Extractability

Next, we show that sExtCom is strongly extractable. That is, we show that an extractor
extracts a correct committed value from a valid sExtCom commitment and extracts ⊥
from an invalid one except with negligible probability.
We first remark that from the construction of the decommit phase of sExtCom, the

committed value of sExtCom is defined as follows.

Definition 6. (Committed value of sExtCom) If the shares s = (s1, . . . , s10n) that
are committed to in Step 2 are 0.9-close to a valid codeword w = (w1, . . . , w10n) that
satisfies w j = s j for every j ∈ �, the committed value of a sExtCom commitment is
Decode(w). Otherwise, the committed value is ⊥ (i.e., the commitment is invalid). �

We notice that the functionValue�(·) in Fig. 1 (Sect. 3.1) computes the committed value
of a sExtCom commitment as above on input the shares s that are committed to in Step
2.
Our extractor E extracts the committed value of asExtCom commitment by extracting

the committed values of the ExtCom commitments in Step 2. Formally, for any ppt
cheating committer C∗, the extractor E does the following.

• E internally invokes C∗ and interacts with C∗ as a receiver honestly except that E
extracts the committed values of theExtCom commitments in Step 2 by using their
extractability. Let τ be the view of internal C∗. If the sExtCom commitment in τ

is rejecting or E fails to extract the committed values of the ExtCom commitments
in Step 2, E sets σ̃ := ⊥. Otherwise, E sets σ̃ := Value�(s̃), where s̃ is the
shares that are extracted from the ExtCom commitments and � is the subset that
is committed to in Step 1. E then outputs (τ, σ̃ ).

From the extractability of ExtCom, the simulated view τ is identically distributed with
the real view. Hence, it remains to show that σ̃ is a committed value of τ except with
negligible probability.
Fix any ppt cheating committer C∗. Without loss of generality, we assume that C∗ is

deterministic.
First, we show that the extracted value σ̃ is indeed equal to a committed value of the

simulated view τ as long as the ExtCom commitments in Step 2 in τ are “good.”

Definition 7. (GoodExtCom commitments in Step 2) In a sExtCom commitment, we
say that the ExtCom commitments in Step 2 are good if all of the following conditions
hold.

• Their committed values s = (s1, . . . , s10n) are uniquely determined.
(That is, none of them has more than one committed value.)

• ∣∣{ j ∈ [10n] s.t. s j = ⊥}∣∣ < 0.5n.
(That is, less than 0.5n of them are invalid.)

• s is either 0.9-close to a valid codewordw = (w1, . . . , w10n) that satisfiesw j = s j
for every j ∈ � or 0.2-far from any such valid codeword. �

Claim 1. Assume that in the interaction between C∗ and an honest receiver, the proba-
bility that the sExtCom commitment fromC∗ is accepting but theExtCom commitments
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in Step 2 are not good is negligible. Then, in the execution of E, the extracted value σ̃

is a correct committed value of the sExtCom commitment in τ except with negligible
probability.

Proof. When the sExtCom commitment in τ is rejecting, E sets σ̃ := ⊥, which is
a correct committed value of this sExtCom commitment. Hence, it remains to show
that the probability that the sExtCom commitment in τ is accepting but σ̃ is not its
committed value is negligible.
Let BAD be the event that in the execution of E , the sExtCom commitment in the

simulated view τ is accepting but the extracted value σ̃ = Value�(s̃) is not a committed
value of it. Our goal is to show that BAD occurs only with negligible probability. Since
the simulated view τ is identically distributed with the real view ofC∗, from our assump-
tion the probability that the sExtCom commitment in τ is accepting but the ExtCom
commitments in Step 2 of it are not good is negligible. Hence, it suffices to show that
under the condition that those ExtCom commitments are good, BAD occurs only with
negligible probability. Furthermore, since the extraction from ExtCom succeeds except
with negligible probability, and the values extracted from valid ExtCom commitments
are the correct committed values except with negligible probability, it suffices to show
that under the conditions that in the sExtCom commitment in τ ,

• the ExtCom commitments in Step 2 are good, and
• the (unique) committed value of each valid ExtCom commitment is correctly
extracted,

BAD occurs only with negligible probability. Then, we notice that under the above con-
ditions, we have the following when the sExtCom commitment in τ is accepting.

1. For every j ∈ [10n], if s j �= ⊥, it holds s j = s̃ j .
(This is because of the assumption that the correct committed value is extracted
from every valid ExtCom commitment.)

2.
∣

∣

{

j s.t. s j = ⊥}∣∣ < 0.5n
∧{

j s.t. s j = ⊥} ∩ � = ∅.
(This is because the sExtCom commitment would be rejected in Step 5 if
{ j s.t. s j = ⊥} ∩ � �= ∅.)

3. s is either 0.9-close to a valid codewordw = (w1, . . . , w10n) that satisfiesw j = s j
for every j ∈ � or 0.2-far from any such valid codeword.

Hence, using Lemma 1 in Sect. 3.1, we conclude that under the above conditions, we
have Value�(s̃) = Value�(s) (i.e., Value�(s̃) is equal to the committed value) when
the sExtCom commitment in τ is accepting. Thus, BAD never occurs under the above
conditions. This completes the proof of Claim 1. �

It remains to show that in the interaction between C∗ and an honest receiver, the
probability that the sExtCom commitment from C∗ is accepting but the ExtCom com-
mitments in Step 2 are not good is negligible. Recall that the ExtCom commitments are
good if their committed values s = (s1, . . . , s10n) are uniquely determined, at least 9.5n
of them are valid, and s is either 0.9-close to a valid codeword w that satisfies w j = s j
for every j ∈ � or 0.2-far from any such codewords. We show the following two claims.
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Claim 2. In the interaction between C∗ and an honest receiver, the probability that the
sExtCom commitment from C∗ is accepting but at least 0.5n ExtCom commitments
in Step 2 are invalid is negligible.

Claim 3. In the interaction with C∗ and an honest receiver, the probability that the
sExtCom commitment from C∗ is accepting but either of the following conditions does
not hold is negligible.

• The committed values s = (s1, . . . , s10n)of theExtCom commitments are uniquely
determined.

• s is either 0.9-close to a valid codeword w that satisfies w j = s j holds for every
j ∈ � or 0.2-far from any such codewords.

Proof of Claim 2

In this proof, we use the following notations. For j ∈ [10n], the j-th column is the
pair of the j th ExtCom commitment in Step 2 and the j th wExtCom commitment
in Step 3. A column is consistent if the committed value of the wExtCom commitment
is a valid decommitment of the ExtCom commitment in that column; otherwise, the
column is inconsistent.C∗ cheats if all of the following conditions hold: everywExtCom
commitment is accepting, the j th column is consistent for every j ∈ �, and at least 0.5n
columns are inconsistent.
In the following, we show thatC∗ cheats onlywith negligible probability. This suffices

to prove the claim because from the definition of the cheating, C∗ cheats whenever the
sExtCom commitment from C∗ is accepting but at least 0.5n ExtCom commitments
in Step 2 are invalid.
Assume for contradiction that there exists a constant c such that C∗ cheats with

probability at least 1/nc for infinitely many n. Fix any such c and n.
We derive a contradiction by constructing an adversary B that breaks the hiding

property of Com. For random subsets �0, �1 ⊂ [10n] of size n, B tries to distinguish a
Com commitment to�0 from aCom commitment to�1 as follows.B internally invokes
C∗ and interacts with it as a receiver of sExtCom honestly except for the following.

• InStep 1,B receives aCom commitment from the external committer (who commits
to either �0 or �1) and forwards the commitment to C∗ as the commitment in Step
1.

• If Step 3 is accepting (i.e., all of the wExtCom commitments are accepting), B
does the following repeatedly: B rewinds C∗ to the point just before B sends the
challenge bits of the wExtCom commitments to C∗; then, B sends new random
challenge bits toC∗ and receives the replies fromC∗.B repeats this rewinding until
it obtains other nc+3 accepted transcripts of Step 3. If the number of the rewinding
exceeds n3c+4, B terminates and outputs fail. Otherwise, B outputs 1 if and only if
all of the following conditions hold.

1. From thenc+3+1 accepted transcripts of Step 3 (thefirst one and the subsequent
nc+3 ones),B can extract the committed values of thewExtCom commitments
in at least 9.9n columns.
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2. In at least 0.4n columns of these 9.9n columns, the extracted values are not
valid decommitments of the ExtCom commitments.

3. For every j ∈ �1, either the extraction from the j th column fails or the value
extracted from the j th column is a valid decommitment of the ExtCom com-
mitment of the j th column.

In the following, the first transcript that B generates in Step 3 is called the main
thread and the other nc+3 accepted transcripts are called the look-ahead threads.

First, we analyze the adversary B′ that is the same as B except that B′ does not
terminate even after rewinding C∗ more than n3c+4 times. When B′ receives a commit-
ment to �0, the internal C∗ receives no information about �1, so the probability that
the extracted values are not valid decommitments of the ExtCom commitments in at
least 0.4n columns but are valid decommitments in all the columns selected by �1 is
exponentially small. Hence, when B′ receives a commitment to �0, B′ outputs 1 only
with exponentially small probability. In the following, we show that when B′ receives a
commitment to �1, B′ outputs 1 with probability 1/poly(n). Let CHEAT be the event that
C∗ cheats on the main thread, and EXTRACT be the event that B′ succeeds in extracting
the committed values of the wExtCom commitments from at least 9.9n columns. Since
over-extraction never occurs in the extraction from wExtCom, B′ outputs 1 whenever
CHEAT and EXTRACT occur. Hence, to show that B′ outputs 1 with probability at least
1/poly(n), it suffices to show that we have

Pr [CHEAT ∧ EXTRACT] ≥ 1

poly(n)
. (1)

For any prefixρ of the transcript betweenC∗ and an honest receiver up until the challenge
bits of wExtCom (exclusive), let PREFIXρ be the event that ρ is a prefix of the main
thread. Since C∗ cheats with probability at least 1/nc, from an average argument we
have Pr

[

CHEAT | PREFIXρ

] ≥ 1/2nc with probability at least 1/2nc over the choice of
ρ (i.e., over the distribution of ρ in the interaction between C∗ and an honest receiver).
Let � be the set of prefixes with which Pr

[

CHEAT | PREFIXρ

] ≥ 1/2nc holds. As noted
above, we have

∑

ρ∈� Pr
[

PREFIXρ

] ≥ 1/2nc. Hence, we have

Pr [CHEAT ∧ EXTRACT] ≥
∑

ρ∈�

Pr
[

CHEAT ∧ EXTRACT | PREFIXρ

] · Pr [PREFIXρ

]

≥ min
ρ∈�

(

Pr
[

CHEAT ∧ EXTRACT | PREFIXρ

]) ·
∑

ρ∈�

Pr
[

PREFIXρ

]

≥ 1

2nc
min
ρ∈�

(

Pr
[

CHEAT ∧ EXTRACT | PREFIXρ

])

. (2)

Thus, to show Eq. (1), it suffices to show that for any ρ ∈ �, we have

Pr
[

CHEAT ∧ EXTRACT | PREFIXρ

] ≥ 1

poly(n)
. (3)
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Fix any ρ∗ ∈ �. From the definition of �, we have

Pr
[

CHEAT | PREFIXρ∗
] ≥ 1

2nc
. (4)

Thus, we have

Pr
[

CHEAT ∧ EXTRACT | PREFIXρ∗
] = Pr

[

CHEAT | PREFIXρ∗
]

· Pr [EXTRACT | PREFIXρ∗ ∧ CHEAT
]

≥ 1

2nc
Pr
[

EXTRACT | PREFIXρ∗ ∧ CHEAT
]

(5)

Thus, to show Eq. (3), it suffices to show that

Pr
[

EXTRACT | PREFIXρ∗ ∧ CHEAT
] ≥ 1

poly(n)
. (6)

Recall that EXTRACT is the event that B′ succeeds in extracting the committed values
of the wExtCom commitments from at least 9.9n columns. From the construction of
wExtCom,EXTRACT occurs if in at least 9.9n columns, the challengebit of thewExtCom
commitment on a look-ahead thread is different from the challenge bit on themain thread.
Hence, to show Eq. (6), it suffices to show that in at least 9.9n columns, the probability
that the challenge bit of wExtCom is b is “high” for both b = 0 and b = 1 on each
look-ahead thread. Furthermore, since each look-ahead thread is generated by repeatedly
executing the main thread from ρ∗ until a new accepting transcript of Step 3 is obtained,
it suffices to show that under the condition that PREFIXρ∗ occurs and Step 3 is accepted,
the probability that the challenge bit of the wExtCom commitment is b is “high” for
both b = 0 and b = 1 in at least 9.9n columns. Based on these observations, we show
the following subclaim.

Subclaim 1. Let ch j be the random variable representing the challenge bit of
wExtCom in the j th column on the main thread, and let ACCEPT be the event that
every wExtCom commitment is accepting on the main thread. Then, there exists a sub-
set Jgood ⊂ [10n] such that:

• |Jgood| ≥ 9.9n
• For every j ∈ Jgood and b ∈ {0, 1},

Pr
[

ch j = b | PREFIXρ∗ ∧ ACCEPT
] ≥ 1

40nc+1 .

Proof. For any j ∈ [10n] and b ∈ {0, 1}, we have

Pr
[

ch j = b | PREFIXρ∗ ∧ ACCEPT
] = Pr

[

ACCEPT ∧ ch j = b
∣

∣ PREFIXρ∗
]

Pr
[

ACCEPT
∣

∣ PREFIXρ∗
]

≥ Pr
[

ACCEPT ∧ ch j = b
∣

∣ PREFIXρ∗
]

. (7)
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Hence, we show that in at least 9.9n columns, for any b ∈ {0, 1} we have

Pr
[

ACCEPT ∧ ch j = b
∣

∣ PREFIXρ∗
] ≥ 1

40nc+1 . (8)

Let

Jbad
def=
{

j ∈ [10n]
∣

∣

∣ ∃b∗
j ∈ {0, 1} s.t. Pr

[

ACCEPT ∧ ch j = b∗
j

∣

∣ PREFIXρ∗
]

<
1

40nc+1

}

.

We have

Pr
[

ACCEPT
∣

∣

∣ PREFIXρ∗
]

≤ Pr

⎡

⎣

∧

j∈Jbad

ch j = 1 − b∗
j

⎤

⎦

+ Pr

⎡

⎣ACCEPT
∧

⎛

⎝

∨

j∈Jbad

ch j = b∗
j

⎞

⎠

∣

∣

∣

∣

PREFIXρ∗

⎤

⎦

≤ 2−|Jbad| +
∑

j∈Jbad

Pr
[

ACCEPT ∧ ch j = b∗
j | PREFIXρ∗

]

< 2−|Jbad| + 10n · 1

40nc+1

= 2−|Jbad| + 1

4nc
. (9)

On the other hand, since ACCEPT occurs whenever CHEAT occurs, from Eq. (4) we
have

Pr
[

ACCEPT
∣

∣

∣ PREFIXρ∗
]

≥ Pr
[

CHEAT
∣

∣

∣ PREFIXρ∗
]

≥ 1

2nc
. (10)

From Eqs. (9) and (10), we have |Jbad| = O(log n) and therefore |Jbad| < 0.1n. Thus,
in at least 9.9n columns, we have Eq. (8) for any b ∈ {0, 1}.

Define Jgood
def= [10n] \Jbad. Since |Jbad| < 0.1n, we have |Jgood| ≥ 9.9n. Further-

more, from Eqs. (7) and (8), for any j ∈ Jgood and b ∈ {0, 1} we have

Pr
[

ch j = b | PREFIXρ∗ ∧ ACCEPT
] ≥ 1

40nc+1 .

This concludes the proof of Subclaim 1. �

As mentioned above, we can obtain Eq. (1) by using Subclaim 1. First, since the dis-
tribution of each look-ahead thread is the same as that of the main thread, Subclaim 1
implies that under the condition that PREFIXρ∗ and CHEAT occur, B′ requires 40nc+1

accepted transcripts of Step 3 on average to extract the committed value of wExtCom
in the j th columns for any j ∈ Jgood. Since B′ collects nc+3 accepted transcripts, it
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follows from Markov’s inequality that for any j ∈ Jgood, B′ extracts the committed
value of wExtCom in the j th column except with probability 40nc+1/nc+3 = 40/n2

under the condition that PREFIXρ∗ and CHEAT occur. Thus, from the union bound, B′
extracts the committed value ofwExtCom in the j th column for every j ∈ Jgood except
with probability 9.9n · 40/n2 = 396/n. We therefore have

Pr
[

EXTRACT | PREFIXρ∗ ∧ CHEAT
] ≥ 1 − 396

n
. (11)

Then, from Eqs. (5) and (11), we have

Pr
[

CHEAT ∧ EXTRACT | PREFIXρ∗
] ≥ 1

2nc
·
(

1 − 396

n

)

≥ 1

4nc
. (12)

Since ρ∗ is any prefix in �, from Eqs. (2) and (12) we have

Pr [CHEAT ∧ EXTRACT] ≥ 1

2nc
· 1

4nc
= 1

8n2c
.

Thus, we have Eq. (1). We therefore conclude that B′ outputs 1 with probability at least
1/8n2c when B′ receives a commitment to �1. Hence, B′ distinguishes a commitment
to �1 from a commitment to �0 with advantage 1/8n2c − negl(n).
Now,we are ready to show thatB breaks the hiding property ofCom. The running time

ofB is clearly at most poly(n). Hence, to show thatB distinguishes aCom commitment,
it suffices to show that the output of B is the same as that of B′ except with probability
1/n2c+1. (This is becauseB′ distinguishes aCom commitment with advantage 1/8n2c−
negl(n).) Recall that the output of B differs from that of B′ if and only if B′ rewinds
C∗ more than n3c+4 times. Let T (n) be a random variable for the number of rewinding
in B′. For any prefix ρ of the transcript between C∗ and an honest receiver up until the
challenge bits of wExtCom (exclusive), we have

E
[

T (n) | PREFIXρ

] ≤ Pr
[

ACCEPT | PREFIXρ

] · nc+3

Pr
[

ACCEPT | PREFIXρ

] = nc+3.

Thus, we have

E [T (n)] =
∑

ρ

Pr
[

PREFIXρ

]

E
[

T (n) | PREFIXρ

]

≤ nc+3
∑

ρ

Pr
[

PREFIXρ

] ≤ nc+3.

From Markov’s inequality, B′ rewinds C∗ more than n3c+4 times with probability at
most nc+3/n3c+4 = 1/n2c+1. Thus, the output of B is the same as that of B′ except
with probability 1/n2c+1, and therefore B distinguishes a commitment to �1 from a
commitment to �0 with advantage at least 1/8n2c − negl(n) − 1/n2c+1 ≥ 1/16n2c.

�
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Proof of Claim 3

From the binding property of ExtCom, the committed values s = (s1, . . . , s10n) of
the ExtCom commitments in Step 2 are uniquely determined except with negligible
probability. Hence, to prove the claim, it suffices to show that the following holds in an
accepting sExtCom commitment only with negligible probability.

• The committed values s = (s1, . . . , s10n)of theExtCom commitments are uniquely
determined, but

• s is 0.8-close to a valid codeword w = (w1, . . . , w10n) that satisfies s j = w j for
every j ∈ �, but s is 0.1-far from w.

Assume for contradiction that for infinitely many n, the above hold in an accepting
sExtCom commitment with probability at least 1/p(n) for a polynomial p(·). Then,
from Claim 2, the following holds in an accepting sExtCom commitment with proba-
bility at least 1/2p(n) for infinitely many n.

• At least 9.5n of the ExtCom commitments are valid, and
• the committed values s = (s1, . . . , s10n) of theExtCom commitments are uniquely
determined, but

• s is 0.8-close to a valid codeword w = (w1, . . . , w10n) that satisfies s j = w j for
every j ∈ �, but s is 0.1-far from w.

Fix any such n. We derive a contradiction by constructing an adversary B that breaks
the hiding property of Com. For random subsets �0, �1 ⊂ [10n] of size n, B tries to
distinguish a Com commitment to �0 from a Com commitment to �1 as follows. B
internally invokes C∗ and interacts with it as a receiver of sExtCom honestly except for
the following.

• InStep 1,B receives aCom commitment from the external committer (who commits
to either �0 or �1) and forwards the commitment to C∗ as the commitment in Step
1.

• In Step 2, the committed values are extracted by using the extractor of ExtCom.
If the extractor runs more than 6p(n) · T (n) steps, B terminates immediately with
output fail, where T (n) = poly(n) is an expected running time of the extractor of
ExtCom. Otherwise, let s̃ = (̃s1, . . . , s̃10n) be the extracted values.

• After Step 2 ends, B outputs 1 if there exists a valid codewordw = (w1, . . . , w10n)

such that s̃ is 0.8-close to but 0.05-far from w and that s̃ j = w j holds for every
j ∈ �1. Otherwise, B outputs 0.

First, we analyze an adversary B′ that is the same as B except that B′ does not
terminate even after the extractor of ExtCom runs more than 6p(n) · T (n) steps. When
B′ receives a commitment to �0, the internal C∗ receives no information about �1,
so the probability that s̃ is 0.05-far from w but s̃ j = w j holds for every j ∈ �1 is
exponentially small; thus, B′ outputs 1 with exponentially small probability. We next
compute the probability thatB′ outputs 1 when it receives a commitment to�1. From our
assumption, with probability 1/2p(n) it holds that 9.5n of theExtCom commitments are
valid and the unique committed values s = (s1, . . . , s10n) of the ExtCom commitments
are 0.8-close to but 0.1-far from a valid codeword w that satisfies s j = w j for every
j ∈ �1. Since the extractability of ExtCom guarantees that s̃ j = s j holds except with
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negligible probability when the j th ExtCom commitment is valid (and in particular
when s j = w j �= ⊥), with probability at least 1/3p(n), s̃ is 0.8-close to but 0.05-far
from a valid codeword w that satisfies s̃ j = w j for every j ∈ �1. Hence, when B′
receives a commitment to �1, B′ outputs 1 with probability at least 1/3p(n). Therefore,
B′ distinguishes a Com commitment with advantage 1/3p(n) − negl(n).
Now, we are ready to argue that B breaks the hiding property of Com. The output

of B differs from that of B′ if and only if the extraction from ExtCom takes more
than 6p(n) · T (n) steps. From Markov’s inequality, the extraction from ExtCom takes
more than 6p(n) · T (n) steps only with probability 1/6p(n). Hence, B distinguishes a
Com commitment with advantage 1/3p(n)−negl(n)−1/6p(n) ≥ 1/6p(n). Since the
running time of B can be bounded by poly(n), B breaks the hiding property of Com. �

Conclusion of Proof of Lemma 3

From Claims 2 and 3 , the probability that the ExtCom commitments are not good in
an accepting sExtCom commitment is negligible. Hence, from Claim 1, the extractor
E outputs a correct committed value except with negligible probability. This completes
the proof of Lemma 3. �

4.2. One-One CCA-Secure Commitment Scheme

Using one-way functions in a black-box way, we construct a O(log n)-round one-one
CCA-secure commitment scheme CCACom1:1. Recall that a commitment scheme is
one-one CCA secure if it is CCA secure w.r.t. a restricted class of adversaries that start
only a single right session. Our scheme does not satisfy the statistically binding property
but does satisfy the strong computational binding property.

Lemma 4. Assume the existence of one-way functions. Then, there exists a O(log n)-
round one-one CCA-secure commitment scheme CCACom1:1 that satisfies the strong
computational binding property and the computational hiding property. Furthermore,
CCACom1:1 uses the underlying one-way function only in a black-box way.

Proof. We construct CCACom1:1 by slightly modifying the black-box O(nε)-round
CCA-secure commitment scheme of Lin and Pass [24] and then applying the “DDN log n
trick” [11,25] on it, where the DDN log n trick is a transformation by Dolev, Dwork, and
Naor (DDN) [11] and has been used to transform concurrent non-malleable commitment
schemes for tags of length O(log n) to non-malleable commitment schemes for tags of
length O(n) without increasing round complexity.
First, we recall the CCA-secure commitment scheme of [24] (see Figs. 7, 8). Roughly

speaking, the commitment scheme of [24] consists of 4�(n)η(n) rows—each row is a
parallel execution of a part of the trapdoor commitment scheme PTrapCom of [34] (see
Sect. 3.5)—followed by a cut-and-choose phase, where �(n) is the length of the tag and

η(n)
def= nε for ε > 0. In the analysis of [24], which is based on that of [9,10], it is

shown that in any transcript of one left session and many right sessions of the scheme,
each right session has�(η(n)) safe-points, fromwhich we can rewind the right session
and extract its committed value without breaking the hiding property of the left session.
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Fig. 7. Black-box CCA-secure commitment scheme of [24].

Fig. 8. Description of the schedules used in Stage 2 of the protocol of [24]. (α1, β1, γ1) and (α2, β2, γ2) are
the transcripts of a pair of rows in Stage 2.

Then, since each right session has �(η(n)) safe-points, we can extract the committed
value of each right session even in the concurrent setting by using the rewinding strategy
of Richardson and Kilian [35] to deal with the problem of recursive rewinding. Thus,
by extracting the committed value of a row in each right session, we can emulate the
committed-value oracle in polynomial time without breaking the hiding property of
the left session. Thus, the CCA security follows from the hiding property of the left
session.
Next, we observe that by setting η(n) := 1 in the scheme of [24], we obtain a

black-box O(�(n))-round parallel CCA-secure commitment scheme for tags of length
�(n), where a commitment scheme is parallel CCA secure if it is CCA secure w.r.t.
a restricted class of adversaries that start only a single parallel right session. This is
because when an adversary starts only a single parallel right session, the problem of
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recursive rewinding does not occur, so each right session need to have only a single
safe-point as in the concurrent non-malleable commitment scheme of [25] (on which
the CCA-secure commitment schemes of [9,10,24] are based). Therefore, by setting
η(n) := 1 and �(n) := O(log n), we obtain a black-box O(log n)-round commitment
scheme that is parallel CCA secure for tags of length O(log n).
We then observe that the DDN log n trick [11,25] transforms any black-box parallel

CCA-secure commitment scheme for tags of length O(log n) to a black-box one-one
CCA-secure commitment scheme for tags of length O(n). This can be proven in essen-
tially the same way as the proof of the fact that the DDN log n trick transforms a concur-
rent non-malleable commitment scheme for tags of length O(log n) to a non-malleable
commitment scheme for tags of length O(n). For details, see Appendix A.
Combining the above, we obtain a black-box O(log n)-round one-one CCA-secure

commitment schemeCCACom1:1.CCACom1:1 satisfies the strong computational bind-
ing property and the computational hiding property because the CCA-secure commit-
ment scheme of [24] satisfies both properties and the DDN log n trick preserves both
properties. (The strong computational binding property of [24] follows from that of the
trapdoor commitment scheme of [34].) �

5. CCA-Secure Commitment Scheme

In this section, we construct a ˜O(log2 n)-round robust CCA-secure commitment scheme
by using one-way functions in a black-box way.

Theorem 1. Assume the existence of one-way functions. Then, there exists a ˜O(log2 n)-
round robust CCA-secure commitment schemeCCACom. Furthermore,CCACom uses
the underlying one-way function only in a black-box way.

Proof. CCACom is shown in Fig. 9, in which we use the following tools (all of which
can be constructed from one-way functions in a black-box way).

• A two-round statistically binding commitment scheme Com. (See Sect. 3.2.)
• The concurrently extractable commitment scheme CECom of Micciancio et al.
[27]. (See Sect. 3.4.) The parameter � in CECom is set as � := O(log2 n log log n)

so that � = ω(log2 n).
• A constant-round strongly extractable commitment scheme sExtCom. (See
Lemma 3 in Sect. 4.1.)

• A O(log n)-round one-one CCA-secure commitment scheme CCACom1:1 that
satisfies strong computational binding property. (See Lemma 4 in Sect. 4.2.)

The round complexity of CCACom is clearly ˜O(log2 n). The statistical binding prop-
erty of CCACom follows directly from that of Com. Hence, it remains to show that
CCACom is robust CCA secure. (The hiding property follows from CCA security.) In
what follows, we prove CCA security in Sect. 5.1 and robustness in Section 5.2.
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Fig. 9. CCA commitment scheme CCACom.

5.1. Proof of CCA Security

Lemma 5. CCACom is CCA secure.

Proof. We first remark that from the construction of the decommit phase ofCCACom,
the committed value of a CCACom commitment is defined as follows.
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Definition 8. (Committed value ofCCACom) If the shares s = (s1, . . . , s10n) that are
committed to in Stage 2 are 0.9-close to a valid codeword w = (w1, . . . , w10n) that
satisfies w j = s j for every j ∈ �, the committed value of a CCACom commitment is
Decode(w). Otherwise, the committed value is ⊥ (i.e., the commitment is invalid). �

We notice that the functionValue�(·) in Fig. 1 (Sect. 3.1) computes the committed value
of aCCACom commitment as above on input the shares s that are committed to in Stage
2.
To prove the CCA security of CCACom, we show the following indistinguishability

for any ppt adversary Acca (see Definition 4).

{IND0(CCACom,Acca, n, z)}n∈N,z∈{0,1}∗
c≈ {IND1(CCACom,Acca, n, z)}n∈N,z∈{0,1}∗ .

(13)

Fix any ppt adversary Acca. We prove Indistinguishability (13) by a hybrid argument.
Since the experiments IND0(CCACom,Acca, n, z) and IND1(CCACom,Acca, n, z)
differ only in the value that is committed to in the left session, we consider a series of
hybrid experiments in which the left session is gradually modified so that in the last
hybrid the adversary receives no information about the value that is committed to in the
left session. Formally, for each b ∈ {0, 1}, we consider the following hybrid experiments.

Hybrid Hb
0 (n, z): Hybrid Hb

0 (n, z) is the same as INDb(CCACom,Acca, n, z).
Hybrid Hb

1 (n, z) to Hybrid Hb
η′(n, z): For k ∈ [η′], Hybrid Hb

k (n, z) is the same

as Hb
0 (n, z) except for the following.

• In Stage 1 of the left session, the committed value � is extracted by brute force
from the CCACom1:1 commitment. If the commitment is invalid, � is set to
be a random subset. If the commitment has more than one committed value,
Hb
k (n, z) outputs fail and terminates.

• In Stage 4 of the left session, the left committer commits to 0|u j | instead of u j

for every j �∈ � in the i th row for i ∈ [k].
Hybrid Hb

η′+1(n, z): Hybrid Hb
η′+1(n, z) is the same as Hb

η′(n, z) except that in

Stage 3 of the left session, the left committer commits to 0|s j | instead of s j for
every j �∈ �.
Hybrid Hb

η′+2(n, z): Hybrid Hb
η′+2(n, z) is the same as Hb

η′+1(n, z) except that in

Stage 2 of the left session, the left committer commits to 0|s j | instead of s j for every
j �∈ �.

For k ∈ {0, . . . , η′ + 2}, let Hb
k(n, z) be the random variable for the output of Hb

k (n, z).
Since Acca receives no information about b in Hb

η′+2(n, z), we have

{

H0
η′+2(n, z)

}

n∈N,z∈{0,1}∗ =
{

H1
η′+2(n, z)

}

n∈N,z∈{0,1}∗ . (14)

Hence, from a hybrid argument, we can show Indistinguishability (13) by showing the
following three claims.
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Claim 4. For every b ∈ {0, 1} and k ∈ [η′], we have the following indistinguishability.
{

Hb
k−1(n, z)

}

n∈N,z∈{0,1}∗
c≈
{

Hb
k(n, z)

}

n∈N,z∈{0,1}∗ .

Claim 5. For every b ∈ {0, 1}, we have the following indistinguishability.

{

Hb
η′(n, z)

}

n∈N,z∈{0,1}∗
c≈
{

Hb
η′+1(n, z)

}

n∈N,z∈{0,1}∗ .

Claim 6. For every b ∈ {0, 1}, we have the following indistinguishability.

{

Hb
η′+1(n, z)

}

n∈N,z∈{0,1}∗
c≈
{

Hb
η′+2(n, z)

}

n∈N,z∈{0,1}∗ .

We prove Claim 4 in Sect. 5.1.1 and prove Claims 5 and 6 in Sect. 5.1.4.

5.1.1. Proof of Claim 4

Below, we prove Claim 4 using the following subclaim.

Subclaim 2. For every b ∈ {0, 1} and k ∈ {0, . . . , η′ + 2}, Hb
k (n, z) outputs fail with

at most negligible probability.

The proof of Subclaim 2 is given in Sect. 5.1.3.

Proof of Claim 4. Since Hb
k−1(n, z) and Hb

k (n, z) differ only in the values that are
committed to in a row of sExtCom in the left session, we use the hiding property of
sExtCom to prove the indistinguishability. A problem is that Acca interacts with the
committed-value oracle O, which runs in super-polynomial time; because of the super-
polynomial-time power ofO, the indistinguishability between the two hybrids does not
follow directly from the computational hiding property of sExtCom. To overcome this
problem, we show that the oracleO can be emulated in polynomial time. Specifically, we
show that the oracleO can be emulated by extracting the shares that are committed to in
the rows ofCECom and then computing the committed values of the right sessions from
the extracted shares. When extracting the committed shares from the row of CECom,
we use the robust concurrent extraction lemma (Lemma 2) so that we can use the hiding
property of the kth row of sExtCom even in the presence of the extraction fromCECom.
Formally, we consider the following hybrids Gb

h:1(n, z), . . . ,Gb
h:3(n, z) for each h ∈

{k − 1, k}.
Hybrid Gb

h:1(n, z): Hybrid Gb
h:1(n, z) is the same as Hb

h (n, z) except that at the
end of each right session, the oracle O returns Value�(sCEC) to Acca rather than
Value�(s) as the committed value of this session, where s = (s1, . . . , s10n) is the
shares that are committed to in the row of Com in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n)

is the shares that are committed to in the row of CECom in Stage 3, and � is the
subset that is committed to in the CCACom1:1 commitment in Stage 1.
Hybrid Gb

h:2(n, z): Hybrid Gb
h:2(n, z) is the same as Gb

h:1(n, z) except for syntacti-
cal differences: Roughly speaking, Gb

h:2(n, z) is an experiment in which Gb
h:1(n, z)
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is executed in such a way that we can use the robust concurrent extraction lemma
later. Formally, Gb

h:2(n, z) is defined as follows. Recall that in the setting of the
robust concurrent extraction lemma (Lemma 2), an adversary, Arobust, launches
the robust-concurrent attack by interacting with the online extractor E ; specifically
Arobust interacts with E as a party A of an arbitrary two-party protocol � = 〈B, A〉
while interacting with E as the committers of CECom concurrently and obtaining
a value from E at the end of each session of CECom (where the values that are
returned from E are supposed to be the committed values of theCECom sessions).
Then, consider the following � and Arobust (see also Fig. 10).

� = 〈B, A〉: First, party A gives aCCACom1:1 commitment to party B, where
the tag in the CCACom1:1 commitment is chosen by A. Then, B extracts the
committed value � of this CCACom1:1 commitment by brute force and sends
it back to A. (If theCCACom1:1 commitment is invalid, � is set to be a random
subset, and if theCCACom1:1 commitment hasmore than one committed value,
B outputs fail and terminates.)
Next, A sends a sequence of strings (m1, . . . ,m9n) to B. Then, when h = k−1,
B commits to each m j ( j ∈ [9n]) in parallel using sExtCom, and when h = k,
B commits to each 0|m j | ( j ∈ [9n]) in parallel using sExtCom.
Arobust: Arobust takes non-uniform advice z and internally executes Gb

h:1(n, z)
with the following changes. (Recall that the execution of Gb

h:1(n, z) involves an
interaction with the CCA-security adversary Acca.)

• In Stage 1 of the left session, Arobust forwards the CCACom1:1 commit-
ment from Acca to the online extractor E (who internally emulates party
B of �). Then, instead of extracting the committed subset � from this
CCACom1:1 commitment by brute force, Arobust obtains � from E .

• In the kth row of sExtCom of the left session, Arobust sends {u j } j �∈� to E
(who internally emulates party B of �), receives sExtCom commitments
from E , and forwards them to Acca. (At the same time, Arobust correctly
commits to {u j } j∈� for Acca by using sExtCom.)

• In Stage 3 of each right session,Arobust receives a row ofCECom commit-
ments fromAcca and forwards it to E (who internally emulates the receivers
of CECom). Let α = (α1, . . . , α10n) denote the responses from E at the
end of the row of the CECom commitments.

• At the end of each right session, Arobust sends Value�(α) to Acca as the
committed value of this right session.

The output of Arobust is that of the internally executed Gb
h:1(n, z).

From the robust concurrent extraction lemma, there exists a robust simulator S
such that for the above Arobust, there exists an online extractor E that satisfies the
following.

• For any row of CECom that Arobust sends to E , let sCEC = (sCEC
1 , . . . , sCEC

10n) be
the shares that are committed to in this row ofCECom and α = (α1, . . . , α10n)

be the responses from E at the end of this row. Then, for every j ∈ [10n], if
the j th CECom commitment in this row is valid and its committed value is
uniquely determined, α = (α1, . . . , α10n) satisfies α j = sCEC

j .
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Fig. 10. Adversary Arobust in Hybrid Gb
h:2(n, z). For simplicity, the right sessions are illustrated as if they

are executed sequentially.

Fig. 11. Simulator S in Hybrid Gb
h:3(n, z).

• S can simulate the robust-concurrent attack between Arobust and E .
Hybrid Gb

h:2(n, z) is the experiment RealArobust
E,�

(n,⊥, z) of the robust concurrent

extraction lemma. The output ofGb
h:2(n, z) is that ofArobust inReal

Arobust
E,�

(n,⊥, z).

Hybrid Gb
h:3(n, z): Hybrid Gb

h:3(n, z) differs from Gb
h:2(n, z) in that the execution

of RealArobust
E,�

(n,⊥, z) (i.e., the robust-concurrent attack betweenArobust and E) is
replaced with an interaction between party B of � and the robust simulator S of
the robust concurrent extraction lemma (see Fig. 11). The output of Gb

h:3(n, z) is
that of Arobust that is simulated by S.

For � ∈ {1, 2, 3}, let Gb
h:�(n, z) be the random variable for the output of Gb

h:�(n, z).
We now prove the following four claims.

Claim 7. For every b ∈ {0, 1} and h ∈ {k − 1, k}, we have the following indistin-
guishability.

{

Hb
h(n, z)

}

n∈N,z∈{0,1}∗
s≈
{

Gb
h:1(n, z)

}

n∈N,z∈{0,1}∗ .
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Claim 8. For every b ∈ {0, 1} and h ∈ {k − 1, k}, we have the following indistin-
guishability.

{

Gb
h:1(n, z)

}

n∈N,z∈{0,1}∗
s≈
{

Gb
h:2(n, z)

}

n∈N,z∈{0,1}∗ .

Claim 9. For every b ∈ {0, 1} and h ∈ {k − 1, k}, we have the following indistin-
guishability.

{

Gb
h:2(n, z)

}

n∈N,z∈{0,1}∗
s≈
{

Gb
h:3(n, z)

}

n∈N,z∈{0,1}∗ .

Claim 10. For every b ∈ {0, 1}, we have the following indistinguishability.

{

Gb
k−1:3(n, z)

}

n∈N,z∈{0,1}∗
c≈
{

Gb
k:3(n, z)

}

n∈N,z∈{0,1}∗ .

Claim 4 follows from these four claims.

Proof of Claim 7. Recall that Gb
h:1(n, z) differs from Hb

h (n, z) in that the committed
value of a right session is computed by Value�(sCEC) rather than by Value�(s), where
s = (s1, . . . , s10n) is the shares that are committed to in the row of Com in Stage 2,
sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are committed to in the row ofCECom in Stage

3, and � is the subset that is committed to in the CCACom1:1 commitment in Stage 1.
Roughly speaking, we prove this claim in two steps.

Step 1. Showing that Value�(sCEC) = Value�(s) holds in any right session if Acca
does not “cheat” in that right session.

Step 2. Showing that Acca “cheats” in a right session with at most negligible proba-
bility.

Here, we say that Acca cheats in a right session if, roughly speaking, in every row
of sExtCom in that session Acca does not commit to u j = (s j , d j , e j ) correctly in
many columns. Hence, if Acca does not cheat, there exists a row of sExtCom in which
Acca commits to u j = (s j , d j , e j ) as specified by the protocol in most columns, which
guarantees that in most columns the share that is committed to by CECom is equal to
the share that is committed to by Com, which in turn guarantees that the committed
value of the session can be recovered from the shares that are committed to in the row
of CECom instead of from those that are committed to in the row of Com. Details are
given below.

First, we define the cheating behavior of Acca.

Definition 9. (Cheating by Acca) In each right session, let us say that a row of
sExtCom in Stage 4 is bad if the values {u′

j = (s′
j , d

′
j , e

′
j )} j∈[10n] that are committed

to in it satisfy the following condition.
Badness Condition. Let ssExt = (ssExt1 , . . . , ssExt10n) be the shares that are defined as fol-

lows. Let ssExtj
def= s′

j if (s′
j , d

′
j ) is a valid decommitment of the j thCom commitment
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in Stage 2 and (s′
j , e

′
j ) is a valid decommitment of the j th CECom commitment in

Stage 3. Let ssExtj
def= ⊥ otherwise. Then, the badness condition is defined as follows.

1.
∣

∣

∣

{

j ∈ [10n] s.t. ssExtj = ⊥
}∣

∣

∣ ≥ n
∧

{

j ∈ [10n] s.t. ssExtj = ⊥
}

∩ � = ∅, or
2. ssExt is 0.8-close to a valid codeword w = (w1, . . . , w10n) that satisfies w j =

ssExtj for every j ∈ �, but ssExt is 0.1-far from w.

Let us say that a row of sExtCom is good if it is not bad. Then, we say that Acca
cheats in a right session if every row of sExtCom in that right session is bad. �

We then prove the following two subclaims.

Subclaim 3. If the probability thatAcca cheats in a right session in Hb
h (n, z) is negli-

gible, we have the following indistinguishability.

{

Hb
h(n, z)

}

n∈N,z∈{0,1}∗
s≈
{

Gb
h:1(n, z)

}

n∈N,z∈{0,1}∗ .

Subclaim 4. The probability that Acca cheats in a right session in Hb
h (n, z) is negli-

gible.

The proof of Subclaim 3 is given below. The proof of Subclaim 4 is given in Sect. 5.1.2.

Proof of Subclaim 3. Wefirst show thatValue�(s) = Value�(sCEC) holds in an accept-
ing right session if Acca does not cheat in that right session, where, as defined in the
description ofHybridGb

h:1(n, z), s = (s1, . . . , s10n) is the shares that are committed to in
the row of Com in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares that are committed to in

the rowofCECom in Stage 3, and� is the subset that is committed to in theCCACom1:1
commitment in Stage 1. Fix any right session, and assume that that right session is accept-
ing and A does not cheat in it. Then, from the definition of cheating (Definition 9), that
right session has a good row of sExtCom. Let {u′

j = (s′
j , d

′
j , e

′
j )} j∈[10n] be the values

that are committed to in that good row of sExtCom. Let ssExt = (ssExt1 , . . . , ssExt10n) be the
shares that are derived from u′ = (u′

1, . . . , u
′
10n) as in the definition of cheating. Then,

from the definitions of cheating and ssExt, we have the following.

1. For every j ∈ [10n], if ssExtj �= ⊥, it holds ssExtj = s j = sCEC
j .

(This follows from the definition of ssExt.)

2.
∣

∣

∣

{

j s.t. ssExtj = ⊥
}∣

∣

∣ < n
∧

{

j s.t. ssExtj = ⊥
}

∩ � = ∅.
(This is because the session would be rejected in Stage 6 if { j s.t. ssExtj = ⊥}∩� �=
∅.)

3. ssExt is either 0.9-close to a valid codeword w = (w1, . . . , w10n) that satisfies
w j = ssExtj for every j ∈ � or 0.2-far from any such valid codeword.

Hence, fromLemma 1 in Sect. 3.1, we haveValue�(s) = Value�(sCEC) = Value�(ssExt)
in that session. Therefore, for any accepting right session, we have Value�(s) =
Value�(sCEC) if Acca does not cheat in that session.
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Since Gb
h:1(n, z) differs from Hb

h (n, z) only in that O returns Value�(sCEC) to Acca

rather than Value�(s) in each right session, we conclude that Hb
h(n, z) and Gb

h:1(n, z)
are statistically indistinguishable ifAcca cheats in a right session with at most negligible
probability. �

Now, Claim 7 follows immediately from Subclaims 3 and 4. This concludes the proof
of Claim 7. �

Proof of Claim 8. From the construction of Gb
h:2(n, z), the execution of Gb

h:1(n, z) is
perfectly emulated in Gh:2(n, z) as long as we have Value�(α) = Value�(sCEC) in each
accepting right session.
First, we observe that if Acca does not cheat in an accepting right session, we have

Value�(α) = Value�(sCEC) in that right session except with negligible probability.
Fix any right session, and assume that that right session is accepting and A does not
cheat in it. Then, from the definition of cheating, that right session has a good row of
sExtCom. Let {u′

j = (s′
j , d

′
j , e

′
j )} j∈[10n] be the values that are committed to in that

good row of sExtCom. Let ssExt = (ssExt1 , . . . , ssExt10n) be the shares that are derived from
u′ = (u′

1, . . . , u
′
10n) as in the definition of the cheating. From the definition of cheating

and the robust concurrent extraction lemma, we have the following in that session except
with negligible probability.

1. For every j ∈ [10n], if ssExtj �= ⊥, it holds ssExtj = sCEC
j = α j .

(When ssExtj �= ⊥, the j thCECom commitment in the row ofCECom is valid and
has a unique committed value except with negligible probability; therefore, from
the robust concurrent extraction lemma, α j = sCEC

j holds except with negligible
probability.)

2.
∣

∣

∣

{

j s.t. ssExtj = ⊥
}∣

∣

∣ < n
∧

{

j s.t. ssExtj = ⊥
}

∩ � = ∅.
3. ssExt is either 0.9-close to a valid codeword w = (w1, . . . , w10n) that satisfies

w j = ssExtj for every j ∈ � or 0.2-far from any such valid codeword.

Hence, fromLemma1 in Sect. 3.1,we haveValue�(sCEC) = Value�(α) = Value�(ssExt)
except with negligible probability. Therefore, ifAcca does not cheat in an accepting right
session, we have Value�(α) = Value�(sCEC) in that right session except with negligible
probability.
Next, we observe that inGb

h:1(n, z),Acca cheats in a right session with at most negligi-
ble probability. This follows immediately from Subclaim 4 (which says thatAcca cheats
in a right session with negligible probability in Hb

h (n, z)) and Claim 7 (which says that
the view of Acca in Gb

h:1(n, z) is statistically indistinguishable from that in Hb
h (n, z)).

From what are observed in the above two paragraphs, it follows that we have
Value�(α) = Value�(sCEC) in each accepting right session except with negligible prob-
ability. �

Proof of Claim 9. Recall thatGb
h:3(n, z) differs fromGb

h:2(n, z) in that the execution of

RealArobust
E,�

(n,⊥, z) (i.e., the robust-concurrent attack betweenArobust and E) is replaced
with an interaction between party B of � and the robust simulator S of the robust
concurrent extraction lemma. Hence, this claim follows immediately from the robust
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concurrent extraction lemma. (Notice that the round complexity of�, denoted by R�, is
O(RCCA1:1) = O(log n) and thus the parameter � of CECom satisfies � = ω(R� log n).)

�

Proof of Claim 10. We prove this claim by using the hiding property of sExtCom.
Roughly speaking, since Gb

k−1:3(n, z) and Gb
k:3(n, z) differ only in the shares that are

committed to in the row of sExtCom that S receives in �, and Gb
k−1:3(n, z) and

Gb
k:3(n, z) run in polynomial time while S is receiving the row of sExtCom, the indis-

tinguishability follows directly from the hiding property of sExtCom.
Formally, assume for contradiction that for infinitely many n, there exists z ∈ {0, 1}∗

such that Gb
k−1:3(n, z) and Gb

k:3(n, z) are distinguishable with advantage 1/poly(n).
Since Gb

k−1:3(n, z) and Gb
k:3(n, z) proceed identically until B starts sending the row of

sExtCom to S, there exists a prefix ρ of a transcript of Gb
k−1:3(n, z) up until the row of

sExtCom (exclusive) such that under the condition that ρ is a prefix of the transcript,
Gb

k−1:3(n, z) and Gb
k:3(n, z) are distinguishable with advantage 1/poly(n). Note that ρ

contains the entire transcript of the CCACom1:1 commitment that S sends to B, and
thus ρ uniquely determines the committed value� of thisCCACom1:1 commitment.We
then consider the following ppt adversary B against the hiding property of sExtCom.

• Takingρ and� as auxiliary inputs,B internally invokesS and emulatesGb
k−1:3(n, z)

from ρ by receiving either commitments to {u j } j �∈� or commitments to {0|u j |} j �∈�

from the external committer and then forwarding them to S. Finally, B outputs
whatever S outputs.

Since B perfectly emulates either Gb
k−1:3(n, z) or Gb

k:3(n, z) depending on the commit-
ments it receives, our assumption implies that B distinguishes commitments to {u j } j �∈�

and commitments to {0|u j |} j �∈� with advantage 1/poly(n). Thus, we reach a contradic-
tion. �

As noted before, Claim 4 follows immediately from Claims 7– 10. This concludes the
proof of Claim 4. �

5.1.2. Proof of Subclaim 4

We now prove Subclaim 4, which says that Acca cheats in a right session in Hb
h (n, z)

with at most negligible probability.

Proof of Subclaim 4. First, we introduce notations. For any q ∈ N, we say that a right
session has end-index q if this session is the qth right session that Acca completes.
Similarly, we say that a right session has start-index q if this session is the qth right
session thatAcca starts. Note that the end-index of a session is undefined until the session
completes, whereas the start-index is defined when the session starts. Jumping ahead,
in the proof, we assume for contradiction that there exists an end-index qend such that
Acca cheats in the session having end-index qend. Then, since we do not know which
session has the end-index qend until the session completes, we guess a start-index qstart
such that the session having the start-index qstart has the end-index qend.
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We argue that Acca cannot cheat in any right session because of the hiding property
of CCACom1:1.
However, there are two problems.

• Since Acca interacts with the committed-value oracle O, which runs in super-
polynomial-time, we cannot directly use the computational hiding property of
CCACom1:1. We overcome this problem by considering a hybrid experiment in
which O is emulated in polynomial time.

• Acca may cheat in a right session by using the messages that it receives in the left
session, in which the left committer cheats. We overcome this problem by using
one-one CCA security of CCACom1:1 instead of its hiding property. Since the left
session can be emulated in polynomial time given the committed value � of the
CCACom1:1 commitment in the left session, one-oneCCAsecurity ofCCACom1:1
guarantees that the CCACom1:1 commitment in each right session is hiding even
when the left committer cheats.

When simulatingO in polynomial time, we use the concurrent extractability ofCECom
for obtaining the shares that are committed to in the row of CECom. Since we want to
use the one-one CCA security of CCACom1:1, we use the robust concurrent extraction
lemma so that we can use the one-one CCA security ofCCACom1:1 even in the presence
of the concurrent extraction from CECom.
Formally, assume for contradiction that there exists a right session in which Acca

cheats with non-negligible probability. Then, there exists an end-index qend such that (i)
Acca cheats with at most negligible probability in any right session having an end-index
less than qend, but (ii) Acca cheats with non-negligible probability in the session having
end-index qend.
To reach a contradiction,weconsider the followinghybrid experiments Fb

h:1(n, z), . . . ,
Fb
h:4(n, z).

• Hybrid Fb
h:1(n, z) is the same as Hb

h (n, z) except that Fb
h:1(n, z) halts immediately

after Acca completes the session having end-index qend (and immediately before
O returns the committed value of this session to Acca). Note that in Fb

h:1(n, z), O
returns the committed values toAcca only in the right sessions having the end-index
less than qend, and Acca cheats in those sessions only with negligible probability.

• Hybrid Fb
h:2(n, z) is the same as Fb

h:1(n, z) except that at the end of each right
session, the oracle O returns Value�(sCEC) to Acca rather than Value�(s) as the
committed value of this session, where s = (s1, . . . , s10n) is the shares that are
committed to in the row of Com in Stage 2, sCEC = (sCEC

1 , . . . , sCEC
10n) is the shares

that are committed to in the row of CECom in Stage 3, and � is the subset that is
committed to in the CCACom1:1 commitment in Stage 1.

• Hybrid Fb
h:3(n, z) is the same as Fb

h:2(n, z) except for syntactical differences:
Roughly speaking, Fb

h:3(n, z) is an experiment in which Fb
h:2(n, z) is executed in

such a way that we can use the robust concurrent extraction lemma later. Formally,
Fb
h:3(n, z) is defined as follows. Recall that in the setting of the robust concurrent

extraction lemma (Lemma 2), an adversary,Arobust, launches the robust-concurrent
attack by interacting with the online extractor E ; specifically,Arobust interacts with
E as a party A of an arbitrary two-party protocol � = 〈B, A〉 while interacting



222 S. Kiyoshima

Fig. 12. Adversary Arobust in Hybrid Fb
h:3(n, z). For simplicity, the right sessions are illustrated as if they

are executed sequentially.

with E as the committers of CECom concurrently and obtaining a value from E at
the end of each session of CECom (where the values that are returned from E are
supposed to be the committed values of the CECom sessions). Then, consider the
following � and Arobust (see also Fig. 12).

� = 〈B, A〉: Parties A and B do the following two interactions concurrently. (The
schedule is controlled by A.)

Interaction 1. A gives aCCACom1:1 commitment to B, where the tag is chosen by
A. Then, B extracts the committed value of thisCCACom1:1 commitment, denoted
by �left, by brute force and sends it back to A. (If the CCACom1:1 commitment is
invalid, �left is set to be a random subset, and if the CCACom1:1 commitment has
more than one committed value, B outputs fail and terminates.)
Interaction 2. First, B commits to a random subset �right ⊂ [10n] of size n using
CCACom1:1, where the tag is chosen by A. Next, A sends a transcript T of Stages
2 and 3 of CCACom (i.e., a row of Com followed by a row of CECom), and then
gives η′ rows of sExtCom to B, where each row consists of 10n parallel sExtCom
commitments. (Recall that η′ is the number of the rows of sExtCom inCCACom.)
Finally, B decommits the CCACom1:1 commitment to �right.
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Arobust: Arobust takes non-uniform advice z and internally executes Fb
h:2(n, z) as

follows. (Recall that the execution of Fb
h:2(n, z) involves an interaction with the

CCA-security adversary Acca.)

– A start-index qstart is chosen at random at the beginning.
– In the left session,Arobust receives a CCACom1:1 commitment fromAcca in Stage
1 and forwards it to the online extractor E (who internally emulates party B of
�). Then, instead of extracting the committed subset �left from this CCACom1:1
commitment by brute force, Arobust obtains �left from E . Subsequently, Arobust
emulates the left session for Acca honesty by using �left.

– In the right session having start-index qstart, Arobust receives a CCACom1:1 com-
mitment from E (who internally emulates party B of �) and forwards it to Acca
in Stage 1. Then, Arobust emulates Stages 2 and 3 for Acca honestly and sends the
transcript T of these stages to E . Then, Arobust receives η′ rows of sExtCom from
Acca in Stage 4 and forwards them to E . Then, Arobust receives a decommitment
for the CCACom1:1 commitment from E and forwards it toAcca in Stage 5. Then,
Arobust emulates Stage 6 for Acca honestly.

– In every other right session, Arobust emulates Stages 1 – 6 honestly except for
forwarding the rowofCECom in Stage 3 toE (who internally emulates the receivers
of CECom). Let α = (α1, . . . , α10n) denote the responses from E at the end of the
row of CECom. Then, at the end of the right session, Arobust sends Value�(α) to
Acca as the committed value of this right session.

The output of Arobust is that of the internally executed Fb
h:2(n, z).

From the robust concurrent extraction lemma, there exists a robust simulator S
such that for the above Arobust, there exists an online extractor E that satisfies the
following.

– For any row of CECom that Arobust sends to E , let sCEC = (sCEC
1 , . . . , sCEC

10n) be the
shares that are committed to in this row of CECom and α = (α1, . . . , α10n) be
the responses from E at the end of this row. Then, for every j ∈ [10n], if the
j th CECom commitment in this row is valid and its committed value is uniquely
determined, α = (α1, . . . , α10n) satisfies α j = sCEC

j .
– S can simulate the robust-concurrent attack between Arobust and E .
Hybrid Fb

h:3(n, z) is the experiment RealArobust
E,�

(n,⊥, z) of the robust concurrent

extraction lemma. The output of Fb
h:3(n, z) is that ofArobust in Real

Arobust
E,�

(n,⊥, z).

In what follows, we say that Arobust cheats in Fb
h:3(n) if in the execution of

Fb
h:2(n, z) that is emulated by Arobust in Fb

h:3(n), Acca cheats in the right session
having start-index qstart. We remark that, since Arobust sends the transcript T of
Stages 2 and 3 to E in �, we can see whether Arobust cheats in Fb

h:3(n) or not by
examining the transcript of � betweenArobust and E (specifically, by extracting the
committed values from each row of sExtCom by brute force and then checking
whether those committed values satisfy the badness condition in Definition 9 w.r.t.
Stages 2 and 3 of CCACom that appear in T ).

• Hybrid Fb
h:4(n, z)differs from Fb

h:3(n, z) in that the executionofRealArobust
E,�

(n,⊥, z)
(i.e., the robust-concurrent attack betweenArobust and E) is replaced with an inter-
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Fig. 13. Simulator S in Hybrid Fb
h:4(n, z).

action between party B of � and the robust simulator S of the robust concurrent
extraction lemma (see Fig. 13). The output of Fb

h:4(n, z) is that of Arobust that is
simulated by S.
In what follows, we say that S cheats in Fb

h:4(n, z) ifArobust cheats in the view that
is simulated by S.
First, we notice that in Fb

h:1(n, z), Acca cheats with at most negligible probabil-
ity in any right session having an end-index less than qend, and Acca cheats with
non-negligible probability in the session having end-index qend. This is because
Fb
h:1(n, z) proceeds identically with Hb

h (n, z) until the end of the right session hav-
ing end-index qend.

Next, we observe that in Fb
h:2(n, z), Acca cheats with non-negligible probability

in the session having end-index qend. Recall that Fb
h:2(n, z) differs from Fb

h:1(n, z)
in that at the end of each right session having an end-index less than qend, the ora-
cle O computes the committed value of the session by Value�(sCEC) rather than
by Value�(s). Then, since in Fb

h:1(n, z) Acca cheats with at most negligible prob-
ability in any right session having an end-index less than qend, we can show that
Value�(sCEC) = Value�(s) holds in any such right session except with negligible
probability by using the same argument as in the proof of Subclaim 3. Hence, the
view of Acca in Fb

h:2(n, z) is statistically indistinguishable from that in Fb
h:1(n, z),

soAcca cheats with non-negligible probability in the session having end-index qend
in Fb

h:2(n, z).
Next, we observe thatArobust cheats in Fb

h:3(n, z)with non-negligible probability.
From the construction of Fb

h:3(n, z), an execution of Fb
h:2(n, z) is perfectly emulated

in Fb
h:3(n, z) as long as we have Value�(α) = Value�(sCEC) in each accepting right

session that has an end-index less than qend. Then, since in Fb
h:2(n, z) Acca cheats

with at most negligible probability in any right session having an end-index less than
qend, we can show that Value�(α) = Value�(sCEC) holds in any such right session
except with negligible probability by using the same argument as in the proof of
Claim 8. Hence, in the execution of Fb

h:2(n, z) that is emulated in Fb
h:3(n, z), Acca

cheats with non-negligible probability in the session having end-index qend. Now,
since the number of the right sessions is polynomially bounded, we conclude that
in the execution of Fb

h:2(n, z) that is emulated in Fb
h:3(n, z), Acca cheats with non-

negligible probability in the session having start-index qstart.
Next, we observe that S cheats in Fb

h:4(n, z)with non-negligible probability. This
follows from the robust concurrent extraction lemma,whichguarantees thatArobust’s
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Fig. 14. AdversaryM′ against the one-one CCA security of CCACom1:1.

view is statistically simulated in Fb
h:4(n, z). (Notice that the round complexity R�

of � is O(RCCA1:1) = O(log n) and thus the parameter � of CECom satisfies � =
ω(R� log n).)

We then derive a contradiction by showing that we can break the one-one CCA
security of CCACom1:1 using Fb

h:4(n, z).
For a warm up, we first consider the following super-polynomial-time adversary

M′ against the one-one CCA security of CCACom1:1 (see also Fig. 14).
• Externally, M′ sends random subsets �0, �1 ⊂ [10n] to a committer of
CCACom1:1 and receives aCCACom1:1 commitment from it (the committed value
is either�0 or�1). Concurrently,M′ also interacts with the committed-value oracle
of CCACom1:1 in a single session.
Internally, M′ invokes S and emulates Fb

h:4(n, z) for S honestly except for the
following.

– When sending a CCACom1:1 commitment to S as the commitment from B in
�, M′ obtains a CCACom1:1 commitment from the external committer and
forwards it to S.

– When S starts sending a CCACom1:1 commitment to B in �,M′ forwards it
to externalO, and then, instead of extracting its committed value �left by brute
force, M′ obtains �left from O.

– WhenS starts sending η′ rows of sExtCom to B in�,M′ extracts the commit-
ted values of an arbitrarily chosen row by brute force.M′ then stops emulating
Fb
h:4(n, z).

Let {u j = (s j , d j , e j )} j∈[10n] be the values that are extracted from the arbitrarily
chosen row of sExtCom, and T be the message that S sends to B in � as the
transcript of Stages 2 and 3 of CCACom. Let ssExt = (ssExt1 , . . . , ssExt10n) be the shares
that are derived from u = (u1, . . . , u10n) and T as in the definition of the cheating
(Definition 9). Then, M′ outputs 1 if and only if either of the following holds.

1.
∣

∣

∣

{

j ∈ [10n] s.t. ssExtj = ⊥
}∣

∣

∣ ≥ n
∧

{

j ∈ [10n] s.t. ssExtj = ⊥
}

∩ �1 = ∅.
2. ssExt is 0.8-close to a valid codeword w = (w1, . . . , w10n) that satisfies ssExtj = w j

for every j ∈ �1, but ssExt is 0.1-far from w.

WhenM′ receives a commitment to �0,M′ outputs 1 only with negligible proba-
bility; this is because whenM′ receives a commitment to�0, the internal S receives
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no information about �1, and thus, the probability that either of the following holds
is negligible.

1.
∣

∣

∣

{

j ∈ [10n] s.t. ssExtj = ⊥
}∣

∣

∣ ≥ n but
{

j ∈ [10n] s.t. ssExtj = ⊥
}

∩ �1 = ∅.
2. ssExt is 0.1-far from a valid codeword w = (w1, . . . , w10n) but we have ssExtj = w j

for every j ∈ �1.

On the other hand, whenM′ receives a commitment to �1, the internal S cheats in
the emulated execution of Fb

h:4(n, z)with non-negligible probability, so all the rows
ofsExtCom fromS are bad (w.r.t. Stages 2 and3ofCCACom that appear inT )with
non-negligible probability; hence, from the definition of cheating (Definition 9),M′
outputs 1 with non-negligible probability. Thus,M′ distinguishes a commitment to
�0 and a commitment to �1 with non-negligible advantage.
We then consider an adversary M that emulates M′ in polynomial time by

extracting the committed values of a row of sExtCom by using the extractability
of sExtCom. To formally define M, we first define the following machine ̂M.

• Externally, ̂M sends random subsets�0, �1 ⊂ [10n] to an external party, receives a
CCACom1:1 commitment from a committer of CCACom1:1 (the committed value
is either�0 or�1), sends a transcript T of Stages 2 and 3 ofCCACom to an external
party, and then gives a rowof sExtCom to a receiver of sExtCom. Concurrently, ̂M
also interacts with the committed-value oracle of CCACom1:1 in a single session.
Internally, ̂M invokes S and emulates Fb

h:4(n, z) for S honestly except for the
following.

– When sending a CCACom1:1 commitment to S as the commitment from B in
�, ̂M obtains a CCACom1:1 commitment from the external committer and
forwards it to S.

– When S starts sending a CCACom1:1 commitment to B in �, ̂M forwards it
to externalO, and then, instead of extracting its committed value �left by brute
force, ̂M obtains �left from O.

– After receiving a transcript T of Stages 2 and 3 of CCACom from S, ̂M
forwards it to the external party.

– When S starts sending η′ rows of sExtCom to B in �, ̂M forwards a ran-
domly chosen row among them to the external receiver of sExtCom. If the
randomly chosen row of sExtCom “interleaves” with any messages of the
CCACom1:1 commitment that are being forwarded toO (namely, if S tries to
send/receive a message of that CCACom1:1 commitment while sending that
row of sExtCom), ̂M stops emulating Fb

h:4(n, z) immediately and terminates.
In other cases, ̂M stops emulating Fb

h:4(n, z) and terminateswhen the randomly
chosen row of sExtCom completes.

We remark that once ̂M starts sending a sExtCom commitment to the external
receiver of sExtCom, ̂M no longer interacts with the oracle O. (Once ̂M starts
sending a sExtCom commitment, either ̂M terminates in the middle of sExtCom
(because the internal S tries to send/receive a message ofCCACom1:1) or ̂M com-
pletes the sExtCom commitment.) Furthermore, since η′ = RCCA1:1+1 (and thus the
number of rows of sExtCom is bigger than the number of rounds in CCACom1:1),



Round-Efficient Black-Box Construction of Composable Multi-Party Computation 227

a randomly chosen row of sExtCom does not interleave with any messages of
CCACom1:1 with non-negligible probability; thus, ̂M completes the sExtCom
commitment with non-negligible probability.
Using ̂M, we define M as follows.

• Externally,M sends randomsubsets�0, �1 ⊂ [10n] to a committer ofCCACom1:1
and receives a CCACom1:1 commitment from it (the committed value is either
�0 or �1). Concurrently, M also interacts with the committed-value oracle of
CCACom1:1 in a single session.
Internally, M invokes ̂M and lets it interact with the external committer of
CCACom1:1 and the oracle O. When ̂M starts sending a row of sExtCom, M
invokes the extractor of sExtCom against ̂M and obtains (τ, σ ), where τ is the
view of ̂M as a committer of sExtCom and σ is a possible value that ̂M committed
to in τ .
If the sExtCom commitment that ̂M gives in τ is not accepting or the extractor of
sExtCom fails (i.e., the commitment in τ is accepting but σ = ⊥ holds),M outputs
0. Otherwise, parse σ as {u j = (s j , d j , e j )} j∈[10n], and let T be the transcript that
M obtained from ̂M before the row of sExtCom. Let ssExt = (ssExt1 , . . . , ssExt10n) be
the shares that are derived from u = (u1, . . . , u10n) and T as in the definition of
the cheating (Definition 9). Then,M outputs 1 if and only if either of the following
holds.

1.
∣

∣

∣

{

j ∈ [10n] s.t. ssExtj = ⊥
}∣

∣

∣ ≥ n
∧

{

j ∈ [10n] s.t. ssExtj = ⊥
}

∩ �1 = ∅.
2. ssExt is 0.8-close to a valid codeword w = (w1, . . . , w10n) that satisfies ssExtj =

w j for every j ∈ �1, but ssExt is 0.1-far from w.

Recall that, as observed above, ̂M gives an accepting sExtCom commitment with
non-negligible probability. Furthermore, the extractor of sExtCom fails only with
negligible probability, and no over-extraction occur during the extraction. Hence,
from exactly the same argument as in the analysis ofM′ above,M distinguishes a
commitment to �0 and a commitment to �1 with non-negligible advantage. Since
M runs in polynomial time, this is a contradiction. �

5.1.3. Proof of Subclaim 2

We now prove Subclaim 2, which says that Hb
k (n, z) outputs failwith at most negligible

probability. Recall that Hb
k (n, z) outputs fail when the CCACom1:1 commitment in

Stage 1 of the left session has more than one committed value.

Proof of Subclaim 2. Since Hb
k (n, z) outputs fail only if the commitment in Stage 1

has more than one committed value in the left session, we prove this claim by using the
binding property of CCACom1:1. A problem is thatAcca interacts with the committed-
value oracleO, which runs in super-polynomial time; because of the super-polynomial-
time power of O, the claim does not follow directly from the strong computational
binding property of CCACom1:1. We overcome this problem by, again, emulatingO in
polynomial time using the robust concurrent extraction lemma on CECom. The proof
is similar to that of Claim 4.
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Formally, assume for contradiction that Hb
k (n, z) outputs fail with non-negligible

probability. Then, the CCACom1:1 commitment in Stage 1 of the left session has more
than one committed value with non-negligible probability.
We consider the following hybrid experiments.

Hybrid Eb
k:1(n, z): Hybrid Eb

k:1(n, z) is the same as Hb
k (n, z) except for the fol-

lowing.

• At the end of each right session, the oracleO returnsValue�(sCEC) toAcca rather
thanValue�(s) as the committed value of this session, where s = (s1, . . . , s10n)
is the shares that are committed to in the row of Com in Stage 2, sCEC =
(sCEC

1 , . . . , sCEC
10n) is the shares that are committed to in the row of CECom in

Stage 3, and� is the subset that is committed to in theCCACom1:1 commitment
in Stage 1.

• The experiment is terminated at the end of Stage 1 of the left session.

Hybrid Eb
k:2(n, z): Hybrid Eb

k:2(n, z) is the same as Eb
k:1(n, z) except for syntactical

differences: Roughly speaking, Eb
k:2(n, z) is an experiment in which Eb

k:1(n, z) is
executed in such a way that we can use the robust concurrent extraction lemma
later. Formally, Eb

k:2(n, z) is defined as follows. Recall that in the setting of the
robust concurrent extraction lemma (Lemma 2), an adversary, Arobust, launches
the robust-concurrent attack by interacting with the online extractor E ; specifically,
Arobust interacts with E as a party A of an arbitrary two-party protocol � = 〈B, A〉
while interacting with E as the committers of CECom concurrently and obtaining
a value from E at the end of each session of CECom (where the values that are
returned from E are supposed to be the committed values of theCECom sessions).
Then, consider the following � and Arobust.

� = 〈B, A〉: Party A gives a CCACom1:1 commitment to party B, where the
tag in the CCACom1:1 commitment is chosen by A.
Arobust: Arobust takes non-uniform advice z and internally executes Eb

k:1(n, z)
with the following changes. (Recall that the execution of Eb

k:1(n, z) involves an
interaction with the CCA-security adversary Acca.)

• In Stage 1 of the left session, Arobust forwards the CCACom1:1 commit-
ment fromAcca to the online extractor E (who internally emulates party B
of �).

• In Stage 3 of each right session,Arobust receives a row ofCECom commit-
ments fromAcca and forwards it to E (who internally emulates the receivers
of CECom). Let α = (α1, . . . , α10n) denote the responses from E at the
end of the row of the CECom commitments.

• At the end of each right session, Arobust sends Value�(α) to Acca as the
committed value of this right session.

From the robust concurrent extraction lemma, there exists a robust simulator S
such that for the above Arobust, there exists an online extractor E that satisfies the
following.

• For any row of CECom that Arobust sends to E , let sCEC = (sCEC
1 , . . . , sCEC

10n) be
the shares that are committed to in this row ofCECom and α = (α1, . . . , α10n)
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be the responses from E at the end of this row. Then, for every j ∈ [10n], if
the j th CECom commitment in this row is valid and its committed value is
uniquely determined, α = (α1, . . . , α10n) satisfies α j = sCEC

j .
• S can simulate the robust-concurrent attack between Arobust and E .

Hybrid Eb
k:2(n, z) is the experiment RealArobust

E,�
(n,⊥, z) of the robust concurrent

extraction lemma.
Hybrid Eb

k:3(n, z): Hybrid Eb
k:3(n, z) differs from Eb

k:2(n, z) in that the execution

of RealArobust
E,�

(n,⊥, z) (i.e., the robust-concurrent attack by Arobust against E) is
replaced with an interaction between party B of � and the robust simulator S of
the robust concurrent extraction lemma.

First, we notice that in Eb
k:1(n, z), the CCACom1:1 commitment in Stage 1 of the

left session has more than one committed value with non-negligible probability. This is
because from the same argument as in the proof of Claim 7, we can show that the view
of Acca in Eb

k:1(n, z) is statistically close to that in Hb
k (n, z).

Next, we notice that in Eb
k:2(n, z), the CCACom1:1 commitment from Arobust to E

has more than one committed value with non-negligible probability. This is because
from the same argument as in the proof of Claim 8, we can show that an execution of
Eb
k:1(n, z) is statistically simulated in Eb

k:2(n, z).
Next, we notice that in Eb

k:3(n, z), the CCACom1:1 commitment from S to B has
more than one committed value with non-negligible probability. This is because from
the robust concurrent extraction lemma, we can show that theCCACom1:1 commitment
between S and B in Eb

k:3(n, z) is statistically close to that between Arobust and E in
Eb
k:2(n, z).
Now, since Eb

k:3(n, z) runs in polynomial time and S interacts with an honest receiver
of CCACom1:1 in it, we reach a contradiction to the strong computational binding
property of CCACom1:1. This concludes the proof of Subclaim 2. �

5.1.4. Proofs of Claims 5 and 6

Claims 5 and 6 can be proven very similarly to Claim 4. For example, consider the
case of Claim 5, which says that the output of Hb

η′(n, z) and that of Hb
η′+1(n, z) are

computationally indistinguishable. Since Hb
η′(n, z) and Hb

η′+1(n, z) differ only in the
committed values of a row of CECom, we can prove Claim 5 by modifying the proof
of Claim 4 accordingly. (Recall that in the proof of Claim 4, our goal is to show the
indistinguishability between the outputs of two hybrids that differ only in the values
committed to in a row of sExtCom.) The only problem is that the round complexity of
CECom is O(�) = ˜O(log2 n) (whereas the round complexity of sExtCom is O(1)),
and thus we cannot use the robust concurrent extraction lemma in the same way as in
the proof of Claim 4. However, since aCECom commitment can be decomposed into n
ExtCom commitments, we can easily solve this problem by designing a sequence of sub-
hybrids such that each neighboring sub-hybrids differ in the values that are committed
to in a row of ExtCom, which has only O(1) rounds.
Below, we give more details about the proofs of Claims 5 and 6 , which can be skipped

with little loss of understanding.
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Proof sketch of Claim 5. We consider the following sub-hybrids Hb
η′:0(n, z), . . . ,

Hb
η′:k(n, z). Recall that a CECom commitment consists of n ExtCom commitments

(see Fig. 4).

Sub-hybrid Hb
η′:0(n, z): Sub-hybrid Hb

η′:0(n, z) is the same as Hb
η′(n, z).

Sub-hybrid Hb
η′:1(n, z) to Sub-hybrid Hb

η′:n(n, z): For k ∈ [n], Sub-hybrid Hb
η′:k(n, z)

is the same as Hb
η′:0(n, z) except that in Stage 3 of the left session, for every j �∈ �

the j th commitment in the row of CECom is computed as follows. Recall that a
CECom commitment consist of n ExtCom commitments. Then, the left committer
commits to 0|s j | instead of s j in the first k ExtCom commitments and commits to
s j in the other (n − k) ExtCom commitments.

Notice that Hb
η′:k(n, z) is identical with Hb

η′+1(n, z).

We can prove Claim 5 by showing that the output of Hb
η′:k−1(n, z) and that of

Hb
η′:k(n, z) are computationally indistinguishable for each k ∈ [n], and we can prove

this indistinguishability similarly to Claim 4. In more detail, we can prove this indistin-
guishability as follows.

1. Design hybrid experiments G ′b
h:1(n, z), . . . ,G ′b

h:3(n, z) for h ∈ {k − 1, k} in the
same way as we design Gb

h:1(n, z), . . . ,Gb
h:3(n, z) in the proof of Claim 4, where the

differences from Gb
h:1(n, z), . . . ,Gb

h:3(n, z) are the following.

• G ′b
h:1(n, z), . . . ,G ′b

h:3(n, z) are defined by modifying Hb
η′:h(n, z) rather than

Hb
h (n, z).

• In the definition of G ′b
h:2(n, z), party B in the two-party protocol � sends party

A a row of ExtCom commitments rather than a row of sExtCom, and Arobust
forwards the ExtCom commitments from E to the internally emulated Acca as
the kth ExtCom commitment of each CECom commitment in Stage 3 of the
left session (rather than forwarding the sExtCom commitments in a row of
sExtCom in the left session).

2. Prove, as in theproofs ofClaims7–10, that the outputs ofHb
η′ :h(n, z),G ′b

h:1(n, z), . . . ,

G ′b
h:3(n, z) are computationally indistinguishable for each h ∈ {k−1, k} and that the

outputs of G ′b
k−1:3(n, z) and G ′b

k:3(n, z) are computationally indistinguishable. The
only difference from the proofs of Claims 7 – 10 is that we use the hiding property
of ExtCom (rather than that of sExtCom) when proving the indistinguishability
between the outputs of G ′b

k−1:3(n, z) and G ′b
k:3(n, z).

(When proving these indistinguishabilities, it is required to prove that Acca does
not cheat in Hb

η′:h(n, z), and this can be proven in the same way as in the proof of
Subclaim 4.)

3. Use a hybrid argument to conclude that the output of Hb
η′:k−1(n, z) and that of

Hb
η′:k(n, z) are computationally indistinguishable. �

Proof sketch of Claim 6. We can prove the indistinguishability between the outputs of
Hb

η′+1(n, z) and Hb
η′+2(n, z) similarly to Claim 4. In more detail, we can prove this

indistinguishability as follows.
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1. Design hybrid experiments G ′′b
h:1(n, z), . . . ,G ′′b

h:3(n, z) for h ∈ {η′ + 1, η′ + 2} in
the same way as we design Gb

h:1(n, z), . . . ,Gb
h:3(n, z) in the proof of Claim 4, where

the difference from Gb
h:1(n, z), . . . ,Gb

h:3(n, z) is the following.

• In the definition of G ′′b
h:2(n, z), party B in the two-party protocol� sends party

A a row of Com commitments rather than a row of sExtCom, and Arobust
forwards the Com commitments from E to the internally emulated Acca as the
row ofCom in Stage 2 of the left session (rather than forwarding the sExtCom
commitments in a row of sExtCom in the left session).

2. Prove, as in the proofs of Claims 7 – 10, that the outputs of Hb
h (n, z),G ′′b

h:1(n, z), . . . ,

G ′′b
h:3(n, z) are computationally indistinguishable for each h ∈ {η′ + 1, η′ + 2} and

that the outputs of G ′′b
η′+1:3(n, z) and G ′′b

η′+2:3(n, z) are computationally indistin-
guishable. The only difference from the proofs of Claims 7 – 10 is that we use the
hiding property of Com (rather than that of sExtCom) when proving the indistin-
guishability between the outputs of G ′′b

η′+1:3(n, z) and G ′′b
η′+2:3(n, z).

3. Use a hybrid argument to conclude that the output of Hb
η′+1(n, z) and that of

Hb
η′+2(n, z) are computationally indistinguishable. �

Combining Claims 4, 5, and 6 and Eq. (14), we obtain Lemma 5. This concludes the
proof of Lemma 5. �

5.2. Proof of Robustness

Lemma 6. For any constant κ ∈ N, CCACom is κ-robust.

Like the robustness of previous CCA-secure commitments [9,10,24], the robustness of
our CCA-secure commitment can be shown by using the techniques in the proof of its
CCA security.

Proof of Lemma 6. We show that there exists a ppt simulator S such that for any ppt
adversary A and any κ-round ppt ITM B, the following indistinguishability holds.

{

outputB,AO
[

B(1n, y) ↔ AO(1n, z)
]}

n∈N,y,z∈{0,1}n
c≈ {outputB,S

[

B(1n, y) ↔ S(1n, z)
]}

n∈N,y,z∈{0,1}n (15)

First, we consider the following hybrid experiments.

Hybrid D0(n, y, z): Hybrid D0(n, y, z) is an experiment in which AO(1n, x, z)
interacts with party B(1n, y, z) as in the definition of robustness, i.e., A interacts
with B while interacting with the committed-value oracleO in concurrent sessions
of CCACom. The output of the experiment is the joint output of B and A.
Hybrid D1(n, y, z): Hybrid D1(n, y, z) is the same as D0(n, y, z) except that at the
end of each right session (i.e., each session betweenA andO), the oracleO returns
Value�(sCEC) to A rather than Value�(s) as the committed value of this session,
where s = (s1, . . . , s10n) is the shares that are committed to in the row of Com in
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Stage 2, sCEC = (sCEC
1 , . . . , sCEC

10n) is the shares that are committed to in the row of
CECom in Stage 3, and � is the subset that is committed to in the CCACom1:1
commitment in Stage 1.
Hybrid D2(n, y, z): Hybrid D2(n, y, z) is the same as D1(n, y, z) except for
syntactical differences: Roughly speaking, D2(n, y, z) is an experiment in which
D1(n, y, z) is executed in such away thatwecanuse the robust concurrent extraction
lemma later. Formally, D2(n, y, z) is defined as follows. Recall that in the setting of
the robust concurrent extraction lemma (Lemma 2), an adversary,Arobust, launches
the robust-concurrent attack by interacting with the online extractor E ; specifically,
Arobust interacts with E as a party A of an arbitrary two-party protocol � while
interacting with E as the committers ofCECom concurrently and obtaining a value
from E at the end of each session of CECom (where the values that are returned
from E are supposed to be the committed values of the CECom sessions). Then,
consider the following � and Arobust.

�: In �, the κ-round ppt ITM B (for which we are proving robustness of
CCACom) interacts with party A honestly.
Arobust:Arobust takes a non-uniform advice z and internally executes D1(n, y, z)
with the following changes. (Recall that the execution of D1(n, y, z) involves
an interaction with A.)

• In the session betweenA and B,Arobust forwards all the messages fromA
to E (who internally emulates B) and forwards back all the messages from
E to A.

• In Stage 3 of each right session,Arobust receives a row ofCECom commit-
ments from A and forwards it to E (who internally emulates the receivers
of CECom). Let α = (α1, . . . , α10n) denote the responses from E at the
end of the row of the CECom commitments.

• At the end of each right session, Arobust sends Value�(α) to A as the
committed value of this right session.

The output of Arobust is that of the internally emulated A.

From the robust concurrent extraction lemma, there exists a robust simulator Srobust
such that for the above Arobust, there exists an online extractor E that satisfies the
following.

• For any row of CECom that Arobust sends to E , let sCEC = (sCEC
1 , . . . , sCEC

10n) be
the shares that are committed to in this row ofCECom and α = (α1, . . . , α10n)

be the responses from E at the end of this row. Then, for every j ∈ [10n], if
the j th CECom commitment in this row is valid and its committed value is
uniquely determined, α = (α1, . . . , α10n) satisfies α j = sCEC

j .
• Srobust can simulate the robust-concurrent attack between Arobust and E .

Hybrid D2(n, y, z) is the experiment RealArobust
E,�

(n, y, z) of the robust concur-
rent extraction lemma. The output of D2(n, y, z) is that of the internally emulated
RealArobust

E,�
(n, y, z).

Hybrid D3(n, y, z): Hybrid D3(n, y, z) differs from D2(n, y, z) in that the execu-
tion of RealArobust

E,�
(n, y, z) (i.e., the robust-concurrent attack between Arobust and
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E) is replaced with an interaction between party B of � and the robust simulator
Srobust of the robust concurrent extraction lemma. The output of D3(n, y, z) is the
joint output of B and Srobust.

For k ∈ {0, . . . , 3}, let Dk(n, y, z) be the random variable for the output of Dk(n, y, z).
Our simulator S is the simulator Srobust in D3(n, y, z). Notice that from the construc-

tions of the hybrids, we have

D0(n, y, z) = outputB,AO
[

B(1n, y) ↔ AO(1n, z)
]

,

D3(n, y, z) = outputB,S
[

B(1n, y) ↔ S(1n, z)
]

.

First, we notice that we have {D0(n, y, z)}n∈N,y,z∈{0,1}n
s≈ {D1(n, y, z)}n∈N,y,z∈{0,1}n .

This is because from the same argument as in the proof of Claim 7, we can show that
the view of A in D1(n, y, z) is statistically close to that in D0(n, y, z).

Next, we notice that we have {D1(n, y, z)}n∈N,y,z∈{0,1}n
s≈ {D2(n, y, z)}n∈N,y,z∈{0,1}n .

This is because from the same argument as in the proof of Claim 8, we can show that an
execution of D1(n, y, z) is statistically simulated in D2(n, y, z).

Next, we notice that we have {D2(n, y, z)}n∈N,y,z∈{0,1}n
s≈ {D3(n, y, z)}n∈N,y,z∈{0,1}n .

This is because from the robust concurrent extraction lemma, we can show that the
interaction between Srobust and B in D3(n, y, z) is statistically close to that between
Arobust and E in D2(n, y, z).
Now, from the hybrid argument, we obtain Indistinguishability (15). �

Combining Lemmas 5 and 6 , we obtain Theorem 1. This concludes the proof of Theo-
rem 1. �

6. Black-Box Composable MPC Protocol

In this section, we show our black-box construction of a general MPC protocol. Our
protocol is secure in the angel-based UC framework [9,10,32]. Roughly speaking, this
framework (called theH-EUC framework) is the same as the UC framework [2] except
that both the adversary and the environment in the real and ideal worlds have access to
a super-polynomial-time functionality H called an angel (or a helper). For details, see
[9,10,32].
We use the results of Canetti et al. [9,10] and Lin and Pass [24]. Let 〈C, R〉 be any

RCCA-round robust CCA-secure commitment scheme, 〈S, R〉 be any ROT-round semi-
honest oblivious transfer protocol, and H be a helper that breaks 〈C, R〉 in essentially
the same way as the committed-value oracle of 〈C, R〉 does. Then, Lin and Pass [24]
showed that there exists a black-box O(max(ROT, RCCA))-round protocol that securely
realizes the ideal oblivious transfer functionality FOT in theH-EUC framework.

Theorem 2. ([24]) Assume the existence of an RCCA-round robust CCA-secure com-
mitment scheme 〈C, R〉 and the existence of an ROT-round semi-honest oblivious transfer
protocol 〈S, R〉. Then, there exists an O(max(RCCA, ROT))-round protocol thatH-EUC-
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realizes FOT . Furthermore, this protocol uses 〈C, R〉 and 〈S, R〉 only in a black-box
way.

In [9,10], Canetti et al. showed the following.

Theorem 3. ([9,10]) For every well-formed functionality F , there exists a constant-
round FOT -hybrid protocol that H-EUC-realizes F .

Then, we obtain the following theorem by combining Theorems 1, 2, and 3.

Theorem 4. Assume the existence of ROT-round semi-honest oblivious transfer proto-
cols. Then, there exists a super-polynomial-time helperH such that for everywell-formed
functionality F , there exists a max(˜O(log2 n), O(ROT)))-round protocol that H-EUC-
realizes F . Furthermore, this protocol uses the underlying oblivious transfer protocol
only in a black-box way.

Appendix A: One-One CCA Commitment for Long Tags from Parallel CCA
Commitment for Short Tags

Lemma 7. Let r(·) and t (·) be arbitrary functions such that t (n) = O(log n), and
let CCACom be an r(n)-round commitment scheme that satisfies strong computational
binding property and parallel CCA security for tags of length t (n). Then, there exists an
r(n)-round commitment schemeCCACom1:1 that satisfies strong computational binding
property and one-one CCA security for tags of length 2t (n)−1. Furthermore, ifCCACom
uses the underlying one-way function only in a black-box way, so does CCACom1:1.

Proof. CCACom1:1 is shown in Fig. 15. The strong computational binding property
follows from that of CCACom. Thus, it remains to show that CCACom1:1 is one-one
CCA secure.
We show that for any ppt adversary A that interacts with O only in a single session,

the following are computationally indistinguishable:

• {IND0(CCACom1:1,A, n, z)}n∈N,z∈{0,1}∗
• {IND1(CCACom1:1,A, n, z)}n∈N,z∈{0,1}∗

Fig. 15. One-one CCA-secure commitment scheme CCACom1:1.
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Without loss of generality, we can assume that the tag thatA uses in the right session is
always different from the tag that A uses in the left session. (This is because instead of
using the same tag in the left and right sessions, A can use different tags in the left and
right sessions and then output ⊥; recall that the output of the experiment is ⊥ whenever
A uses the same tag in the left and right sessions.)
Assume for contradiction that there exist a ppt distinguisher D and a polynomial

p(·) such that for infinitely many n, there exists z ∈ {0, 1}∗ such that D distinguishes
IND0(CCACom1:1,A, n, z) and IND1(CCACom1:1,A, n, z) with advantage at least
1/p(n). In the following, we fix any such n and z.
Let us consider the following ppt adversary B against CCA security of CCACom. B

internally invokes A and simulates the experiment IND0(CCACom1:1,A, n, z) for A
as follows. First, B chooses random j∗ ∈ [2t (n)−1], and for each j ∈ [2t (n)−1] \ { j∗},
B chooses random v j ∈ {0, 1}n . Then, in the left session, when A outputs challenge

values m0,m1 ∈ {0, 1}n and tag tag = (tag1, . . . , tag2t (n)−1), B sets v
(b)
j∗ := mb ⊕

⊕

j �= j∗ v j for each b ∈ {0, 1} and sends challenge v
(0)
j∗ , v

(1)
j∗ and tag ( j∗, tag j∗) ∈

{0, 1}t (n) to the external left committer. When B receives a CCACom commitment
from the left committer (the committed value is either v

(0)
j∗ or v

(1)
j∗ ), B forwards it to A.

At the same time, B generates CCACom commitments to (v j ) j �= j∗ and sends them to
A. In the right session, B forwards a CCACom1:1 commitment from A to O as 2t (n)−1

parallel commitments of CCACom with tags {( j, ˜tag j )} j∈[2t (n)−1]. Then, B receives

(v1, . . . , v2t (n)−1) from O, and if v j �= ⊥ for all j ∈ [2t (n)−1], B returns v := ⊕ j v j

to A; if v j = ⊥ for some j , B returns ⊥ to A. Let y be the output of the simulated
experiment IND0(CCACom1:1,A, n, z), and let β ← D(y). Then, if tag j∗ = ˜tag j∗ ,
B outputs fail, and otherwise, A outputs fail with probability (N − 1)/N and outputs
β with probability 1/N , where N = |{ j s.t. tag j �= ˜tag j }| is the Hamming distance
between tag and ˜tag.
We reach a contradiction by showing that B breaks the CCA security of CCACom;

in particular,

∣

∣Pr
[

IND0(CCACom,B, n, z) = 1
]− Pr

[

IND1(CCACom,B, n, z) = 1
]∣

∣

≥ 1

p(n) · poly(n)
.

For b ∈ {0, 1}, let βb be the random variable representing the value of β in
INDb(CCACom,B, n, z) andabortb be the event thatB outputs fail in INDb(CCACom,

B, n, z). SinceB internally simulates IND0(CCACom1:1,A, n, z)or IND1(CCACom1:1,
A, n, z) perfectly depending on the value that is committed to in the left session, we
have

Pr [βb = 1] = Pr
[

D(INDb(CCACom1:1,A, n, z)) = 1
]

.
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Hence, from our assumption, we have

|Pr [β0 = 1] − Pr [β1 = 1]| ≥ 1

p(n)
.

Also, since we assume that it always holds that tag �= ˜tag, for each b ∈ {0, 1} we have

Pr
[¬abortb

] = N

2t (n)−1
· 1

N
= 1

2t (n)−1
.

Note that when tag j∗ �= ˜tag j∗ , a tag ( j, ˜tag j ) in the right session is different from the
tag ( j∗, tag j∗) in the left session for each j ∈ [2t (n)−1]. Hence, when abortb does not
occur, the output of INDb(CCACom,B, n, z) is βb. Thus, we have

∣

∣Pr
[

IND0(CCACom,B, n, z) = 1
]− Pr

[

IND1(CCACom,B, n, z) = 1
]∣

∣

= ∣∣Pr [β0 = 1 ∧ ¬abort0
]− Pr

[

β1 = 1 ∧ ¬abort1
]∣

∣

= |Pr [β0 = 1] − Pr [β1 = 1]| · 1

2t (n)−1

≥ 1

p(n) · poly(n)
.

In the third line, we use Pr
[

βb = 1 ∧ ¬abortb
] = Pr [βb = 1] · Pr [¬abortb

]

(i.e.,
the independence between the event abortb and the event that βb = 1, which follows
from the fact that abortb always occurs with probability 1/2t (n)−1, independently of the
values of tag and ˜tag). This concludes the proof. �
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