
https://doi.org/10.1007/s00145-017-9271-y
J Cryptol (2018) 31:798–844

Fast Garbling of Circuits Under Standard Assumptions∗

Shay Gueron†

University of Haifa and AWS, Haifa, Israel
shay@math.haifa.ac.il

Yehuda Lindell‡ · Ariel Nof‡ · Benny Pinkas‡

Bar-Ilan University, Ramat-Gan, Israel
lindell@biu.ac.il; nofdinar@gmail.com; benny@pinkas.net

Communicated by Jonathan Katz.

Received 5 September 2015 / Revised 2 July 2017
Online publication 11 December 2017

Abstract. Protocols for secure computation enable mutually distrustful parties to
jointly compute on their private inputs without revealing anything, but the result. Over
recent years, secure computation has become practical and considerable effort has been
made to make it more and more efficient. A highly important tool in the design of two-
party protocols is Yao’s garbled circuit construction (Yao 1986), and multiple optimiza-
tions on this primitive have led to performance improvements in orders of magnitude
over the last years. However, many of these improvements come at the price of making
very strong assumptions on the underlying cryptographic primitives being used (e.g.,
that AES is secure for related keys, that it is circular-secure, and even that it behaves
like a random permutation when keyed with a public fixed key). The justification behind
making these strong assumptions has been that otherwise it is not possible to achieve
fast garbling and thus fast secure computation. In this paper, we take a step back and
examine whether it is really the case that such strong assumptions are needed. We pro-
vide new methods for garbling that are secure solely under the assumption that the
primitive used (e.g., AES) is a pseudorandom function. Our results show that in many
cases, the penalty incurred is not significant, and so a more conservative approach to
the assumptions being used can be adopted.
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1. Introduction

1.1. Background

In the setting of secure computation, a set of parties with private inputs wish to compute
a joint function of their inputs, without revealing anything, but the output. Protocols
for secure computation guarantee privacy (meaning that the protocol reveals nothing
but the output), correctness (meaning that the correct function is computed), and inde-
pendence of inputs (meaning that parties are not able to make their inputs depend on
the other parties’ inputs). These security guarantees are to be provided in the presence
of adversarial behavior. There are two classic adversary models that are typically con-
sidered: semi-honest (where the adversary follows the protocol specification, but may
try to learn more than is allowed from the protocol transcript) and malicious (where
the adversary can run any arbitrary polynomial time strategy in its attempt to breach
security).

Garbled Circuits One of the central tools in the construction of secure two-party pro-
tocols is Yao’s garbled circuit [18,22]. The basic idea behind Yao’s protocol is to provide
a method of computing a circuit so that values obtained on all wires other than circuit
output wires are never revealed. For every wire in the circuit, two random or garbled
values are specified such that one value represents 0 and the other represents 1. For
example, let i be the label of some wire. Then, two values k0i and k1i are chosen, where
kbi represents the bit b. An important observation here is that even if one of the parties
knows the value kbi obtained by the wire i , this does not help it to determine whether
b = 0 or b = 1 (because both k0i and k1i are identically distributed). Of course, the dif-
ficulty with such an idea is that it seems to make computation of the circuit impossible.
That is, let g be a gate with incoming wires i and j and output wire �. Then, given two
random values kbi and kcj , it does not seem possible to compute the gate because b and
c are unknown. We therefore need a method of computing the value of the output wire
of a gate (also a random value k0� or k1� ) given the value of the two input wires to that
gate.
In short, this method involves providing “garbled computation tables” that map the

random input values to random output values. However, this mapping should have the
property that given two input values, it is only possible to learn the output value that
corresponds to the output of the gate (the other output value must be kept secret). This
is accomplished by viewing the four possible inputs to the gate, k0i , k

1
i , k

0
j , and k1j , as

encryption keys. Then, the output values k0� and k1� , which are also keys, are encrypted
under the appropriate keys from the incoming wires. For example, let g be an OR gate.
Then, the key k1� is encrypted under the pairs of keys associated with the input values
(1, 1), (1, 0), and (0, 1). In contrast, the key k0� is encrypted under the pair of keys
associated with (0, 0).

Fast Garbling and Assumptions Today, secure computation is fast enough to solve
numerous problems in practice. This has been achieved due to multiple significant effi-
ciency improvements that have been made on the protocol level, and also due to garbled
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circuits themselves. Many of the optimizations to garbled circuits—described below—
come at the price of assuming strong assumptions on the security of the cryptographic
primitives being used. For example, the free-XOR technique requires assuming circular
security as well as a type of correlation robustness [7], the use of fixed-key AES requires
assuming that AES with a fixed key behaves like a public random permutation [5],
reductions in the number of encryption operations from 2 to 1 per entry in the garbled
gate requires correlation robustness (when a hash function is used), and a related-key
assumption (when AES is used).
Typically, the use of less standard cryptographic assumptions is accepted where nec-

essary, especially in areas like secure computation where the costs are in general very
high. However, in practice, solid cryptographic engineering practices dictate amore con-
servative approach to assumptions. New types of elliptic curve groups are not adopted
quickly, people shy away from nonstandard use of block ciphers, and more. This is
based on sound principles, and on the understanding that deployed solutions are very
hard to change if vulnerabilities are discovered. In the field of secure computation, the
willingness to take any assumption that enables a faster implementation stands in stark
contrast to standard cryptographic practice. In this paper, we propose to pause, take a
step back, and ask the question how much do nonstandard assumptions really cost us
and are they justified. We remark, for just one example, that practitioners have warned
against assuming that AES is an ideal cipher, due to related-key weaknesses that have
been found; see e.g., [4,6]. Furthermore, the security of AES with a known key was
studied in [13], and the results show that the security margin for using AES in this way
is arguably not as high as we would like. In particular, [13] present an algorithm that
distinguishes 7-round AES with a fixed key from a public random permutation, in time
256 and little memory. As in most situations, if the benefit is huge, then more flexibility
with respect to the assumptions is justified, whereas if the gains are smaller, then a more
cautious approach is taken.
The focus of this paper is to study howmuch is really gained by relying on nonstandard

assumptions and to provide optimizations that require assuming nothing more than that
AES behaves like a pseudorandom function.

1.2. Known Garbled Circuit Optimizations

Before proceeding to describe our work, we present an overview of the most important
efficiency improvements to garbled circuits:

• Point and permute [20]: In order to prevent the garbled circuit evaluator from
knowing what it is evaluating, the original construction randomly permuted the
ciphertexts in each garbled gate. Then, when computing the garbled circuit, the
evaluator tries each ciphertext in the gate until one correctly decrypts (this requires
an additionalmechanism to ensure that only one ciphertext decrypts to a valid value).
On average, this means that 2.5 entries need to be decrypted per gate (where each
costs 2 decryptions). The point-and-permutemethod assigns a randompermutation
or signal bit to each wire that determines the order of the garbled gate. Then, the
encryption of a garbled value includes the bit needed to enable direct access to
the appropriate entry in the garbled table (given two garbled values and the two
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associated bits). This reduces the number of entries to decrypt to 1 (and thus 2
actual decryptions).

• Free-XOR [15]: The garbled circuit construction involves carrying out encryptions
at every gate in the circuit and storing 4 ciphertexts. The free-XORmethod enables
the computation of XOR gates for free (the computation requires only computing
1–2 XORs, and no ciphertexts need be stored). This is achieved by choosing a fixed
random mask � and making the garbled values on every wire have fixed difference
� (i.e., for every i , the garbled values are k0i and k

1
i = k0i ⊕�, where k0i is random).

In many circuits, the number of XOR gates is very large, and so this significantly
reduces the cost (e.g., in the AES circuit there are approximately 7000 AND gates
and 25,000 XOR gates; in a 32 × 32 bit multiplier circuit there are approximately
6000 AND gates and 1000 XOR gates [1]).
We remark that the free-XOR method is patented, and as such, its use is restricted
[16].

• Reductions in garbled circuit size [14,20,21,23]: Historically, themost expensive
part of any secure protocol was the cryptographic operations. However, significant
algorithmic improvements to secure protocols together withmuch faster implemen-
tations of cryptographic primitives (e.g., due to better hardware) have considerably
changed the equation. In many cases, communication can be the bottleneck, and
thus, reducing the size of the garbled circuit is of great importance. In [20], amethod
for reducing the number of garbled entries in a table from 4 to 3 was introduced; this
is referred to as 4-to-3 garbled row reduction (or 4–3 GRR). This improvement is
achieved by “forcing” the first ciphertext to be 0 (by setting the appropriate garbled
value on the output wire so that the ciphertext becomes 0). In [21], polynomial
interpolation was used to further reduce the number of ciphertexts to just 2; this is
referred to as 4-to-2 garbled row reduction (or 4–2 GRR).
Importantly, 4–3 GRR is compatible with free-XOR since only one output garbled
value needs to taken as a function of the input values (and the other garbled value
can be set according to the fixed �). In contrast, 4–2 GRR is not compatible with
free-XOR. In a work called FlexOR [14], it was shown that in some cases, it is
possible to use a combination of 4–2 GRR and 4–3 GRR together with free-XOR,
and obtain an overall cost that is less than 4–3 GRR alone.
The state-of-the-art today is a newmethod calledhalf-gates [23],which reduces the
number of ciphertexts in AND gates from 4 to 2, while maintaining compatibility
with free-XOR (in fact, half-gates only work with free XOR).

• Number of encryptions [19]: Classically, each entry in a garbled gate contains
the encryption of one of the output garbled values under two input garbled values
and thus requires two encryptions. In [19], it was proposed to use a hash function
as a type of key derivation function and to encrypt by hashing both input garbled
values together and XORing the result with the output garbled value. This is secure
in the random oracle model, or under a “correlation robustness” assumption [12].
This reduces the number of operations from 2 to 1. (Note, however, that two AES
operations are typically much faster than a single hash operation, especially when
utilizing the AES-NI instruction.)
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• Fixed-key AES and use of AES-NI [5]: AES-NI is a set of CPU instructions that
are now part of the Intel architecture. They allow AES computations to be carried
out at incredibly fast rates, especially in modes of operation that can be highly
pipelined. AES-NI offers instructions for encryption/decryption and for the AES
key expansion.
However, since typical AES usages encrypt multiple blocks with a single key, the
key expansion instructions do not highly optimize this part of the processing, and
the key schedule generation routine is relatively expensive (compared to encryp-
tion/decryption). More importantly, pipelining cannot be carried out between dif-
ferent keys. When computing garbled circuits, 4 different keys are used in every
gate, requiring many key schedules to be computed and preventing the use of
pipelining.
In light of this, Bellare et al. [5] proposed a method of using AES that is secure
in the public random permutation model. The method uses a fixed key for AES,
applies AES on a combination of the input garbled values, and XORs the result with
appropriate output garbled value. This reduces the number of AES computation to
4 per gate. Furthermore, since a fixed key is used, only one key schedule needs
to be computed for the entire circuit, and the encryptions within a gate can be
fully pipelined. This led to an extraordinary speedup in the computation of garbled
circuits, as demonstrated in the JustGarble implementation [5].

We stress that there have been a very large number of works that have provided highly
significant efficiency improvements to protocols that use garbled circuits. However, our
focus here is on improvements to garbled circuits themselves.

1.3. Our Results

We construct fast garbling methods solely under the assumption that AES behaves like
a pseudorandom function. In particular, we do not use fixed-key AES, and we require
two AES encryptions for generating each ciphertext in the garbled gates (since known
techniques using just one encryption require some sort of related-key security assump-
tion). In addition, we do not use free-XOR (since this requires circularity). However,
this does enable us to use 4-to-2 row reduction. In brief, we construct the following:

• Fast AES-NI without fixing the key: We show that, in addition to pipelining
encryptions, it is also possible to pipeline the key schedule of AES-NI, in order to
achieve very fast garbling times without using fixed-key AES or any other nonstan-
dard AES variant. Namely, the key schedule processing of different keys can be
pipelined together, so that the amortized effect of key scheduling on Yao garbling
is greatly reduced. Our experiments (described below) show that this and other
optimizations of AES operations have become so fast that the benefits of using
fixed-key AES are almost insignificant. Thus, in contrast to current popular belief,
in most cases fixed-key AES is not necessary for achieving extremely fast garbling.

• Low-communication XOR gates:Over the past years, it has become apparent that
in secure protocols, communication is far more problematic than computation. The
free-XOR technique is so attractive exactly because it requires no computation, but
also no communication for XOR gates.We provide a new garblingmethod for XOR
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Table 1. Summary of garbled circuit’s size optimizations compared to our scheme.

Method Number of rows in the garbled table Assumption

XOR AND

Naive 4 4 Standard
4–3 GRR [20] 3 3 Standard
4–2 GRR [21] 2 2 Standard
This work 1 2 Standard
This work 0–2 2 Related-key
fleXOR [14] 0–2 2–3 Circularity/related-key
free-XOR [15] 0 3 Circularity
Half-gates [23] 0 2 Circularity

gates that requires storing only a single ciphertext per XOR gate; our technique is
inspired by the work of Kolesnikov et al. [14]. The computational cost is 3 AES
computations for garbling the gate and 1–2 AES computations for evaluating it.
(This overhead is for an optimized garbling method that we show. We first present
a basic scheme requiring 4 AES computations for garbling and 2 computations for
evaluation.)

• Fast 4–2 row reduction: As we have mentioned, once we no longer use the free-
XOR technique, we are able to use 4–2 GRR on the non-XOR gates. However, the
method of Pinkas et al. [21] that uses polynomial interpolation is rather complex
to implement (requiring finite field operations and precomputation of special con-
stants to make it fast). In addition, even working in GF(2n) Galois fields and using
the PCLMULQDQ Intel instruction, the cost is still approximately half an AES
computation. We present a new method for 4–2 row reduction that uses a few XOR
operations only and is trivial to implement.

Table 1 shows the communication cost which our technique incurs, compared to the
other optimizations mentioned before, with an emphasis on the security assumption
each technique is based upon.
We implemented these optimizations and compared them to JustGarble [5]. There is

no doubt that the cost of garbling and evaluation is higher using our method, since we
have to run AES key schedules, and we pay for computing XOR gates. However, we
show that within protocol executions, the difference is insignificant. We demonstrate
this running Yao’s protocol for semi-honest adversaries which consists of oblivious
transfer (for which we use the fast OT extensions of [2]), garbled circuit evaluation and
computation, and communication.1

1We do not count the base OTs of the OT extension since these would outweigh everything else, and
can anyway be precomputed. Our aim here is to see the effect of the change in the garbled circuits and our
tests are under optimal conditions for JustGarble-type constructions [5]. For the same reason, we do not look
at the effect inside protocols for malicious adversaries since all of the other work will clearly outweigh any
additional costs in garbling. We remark that the OT extension of [2] requires assuming a correlation-robust
hash function. This is arguably a less problematic assumption than related-key security for block ciphers and
also is an orthogonal issue to the assumptions needed for garbling.
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Experimental Results We ran Yao’s protocol for semi-honest adversaries inside Ama-
zon EC2. The details of the results can be found in Sect. 6. The results show removing
the public random permutation assumption does not noticeably affect the performance of
the protocol. Furthermore, in many scenarios, such as small circuits, large inputs, or rel-
atively slow communication channels, garbling under the most conservative assumption
(the existence of PRFs) performs on par with the most efficient garbling methods.

Patent-Free Garbled Circuits Another considerable advantage of using our method
for computing XOR gates with low communication is that it does not rely on the free-
XOR technique and thus is not patented. Since patents in cryptography are typically an
obstacle to adoption, we believe that the search for efficient garbling techniques that are
not patented is of great importance.

Garbling Under Weaker Yet Nonstandard Assumption Our work focuses on the com-
parison between garbling under a variety of strong assumptions (i.e., circularity, public
random permutation) and garbling under a standard pseudorandom function assumption
only. However, there are also garbling schemes that have been proven secure under a
related-key assumption, but without circularity [14]. In order to provide a more com-
plete picture regarding the trade-off between efficiency and security, we continue the
directions introduced by Kolesnikov et al. [14] in Section 5. We present two new heuris-
tics for solving the algorithmic problem presented in [14] and show that a related-key
assumption-based garbling scheme (using any of the suggested heuristics) improves gar-
bling and computation time, but fails to significantly reduce the communication overhead
of the protocol.

2. Fixed-Key AES Versus Regular AES

2.1. Background

Pipelined Garbling The standard way of garbling a gate uses double encryption.
Specifically, given 4 keys k0i , k

1
i , k

0
j , k

1
j for the input wires and 2 keys k0� , k

1
� for the

output wire, four computations of the type Ekai
(Ekbj

(kc�)) are made, for varying values of

a, b, c ∈ {0, 1}. Observe that since Ekbj
(kc�)must be known before encrypting again with

kai , this means that the encryptions must be computed sequentially and not in parallel.
This makes a huge difference when using the AES-NI chip, since the cost of 8 pipelined
encryptions is only slightly more than the cost of a single non-pipelined encryption.2 We
therefore garble an AND gate in a way that enables pipelining. This is easily achieved
by using the method of Lindell et al. [19] to apply a pseudorandom function F (which
will be instantiated as AES) to the gate index and appropriate signal/permutation bits.
This ensures independence between all values. For example, an AND gate where both
signal bits are 0 can be garbled as follows:

2Concretely, on aHaswell processor, 8 pipelinedAES computations cost approximately 77 cycles, whereas
one non-pipelined AES computation costs approximately 70 cycles.
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Fk0i
(g‖00) ⊕ Fk0j

(g‖00) ⊕ k0� Fk0i
(g‖01) ⊕ Fk1j

(g‖01) ⊕ k0�

Fk1i
(g‖10) ⊕ Fk0j

(g‖10) ⊕ k0� Fk1i
(g‖11) ⊕ Fk1j

(g‖11) ⊕ k1�

(One way of looking at this is simply double encryption in “counter mode”; intuitively,
this is therefore secure.) Needless to say, 4-to-3 GRR can also be carried out by setting
k0� = Fk0i

(g‖00)⊕ Fk0j
(g‖00), meaning that the first ciphertext equals 0 and so need not

be stored. Observe here that there are 8 encryptions. However, all inputs are known in
advance, and therefore, it is possible to pipeline these computations.
Note that it is essential to take both signal bits as part of the input of F . Otherwise,

the scheme is not secure. To understand this, assume that the gate was garbled as in
the example above, but without using signal bits (e.g., the value Fk1i

(g) is used instead

of Fk1i
(g‖10)), and assume that the evaluator holds the keys k0i , k

0
j . The evaluator will

compute k0� , but then it will also be able to compute Fk1i
(g) and Fk1j

(g) using the second

and the third garbled entries (without learning the values of k1j or k
1
i ). Now, the evaluator

would be able to compute k1� as well, using the fourth garbled entry. Taking both signal
bits as part of F’s input prevents this from happening, as the evaluator cannot learn
Fk1i

(g‖11) and Fk1j
(g‖11).

The fixed-key AES approach.Although the approach described above enables pipelining
the encryption, it still requires running four key schedules for garbling a gate and two
key schedules for evaluating a gate. This is very expensive, and so Bellare et al. [5]
introduced the use of fixed-keyAES in garbling schemes and implemented the JustGarble
library. This significantly speeds up garbling since the AES key schedule (which is
quite expensive) need not be computed at every gate. In addition, JustGarble utilizes
the AES-NI instruction set and pipelining, significantly reducing the cost of the AES
computations.
Despite its elegance, the use of fixed-key AES requires the assumption that AES

with a fixed and known key behaves like a random permutation. This is a very strong
assumption and one that has been brought into question regardingAES specifically by the
block cipher research community; see, for example, [4,6,13]. Clearly, the acceptance of
this assumption in the context of secure computation and garbling is due to the perceived
very high cost of garbling in any other way. However, the comparisons carried out in
[5] to prior work are to Kreuter et al. [17] who use AES-256 using AES-NI without
pipelining, and to Huang et al. [11] who use a hash function only. Thus, it is unclear
how much of the impressive speedup achieved by Bellare et al. [5] is due to the savings
obtained by using fixed-key AES, and how much is due to the other elements that they
included (pipelining of the AES computations in each gate, optimizations to the circuit
representation, and more).

2.2. Pipelining Key Schedule and Encryption

In this section, we show that it is possible to achieve fast garblingwithout using fixed-key
AES and thus without resorting to the assumption that AES with a fixed key behaves
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like a public random permutation. We stress that some penalty will of course be incurred
since the AES key schedule is expensive. Nevertheless, we show that when properly
implemented, in many cases the penalty is not significant and it suffices to use regular
AES. The goal is to make the performance depend on the throughput (which is excellent
when pipelining is used) and not on the latency of a single computation. This goal can
be achieved rather easily for the AES encryption alone, but we also achieve the more
challenging task of pipelining the key schedule as well as the encryption.
The computations that are needed for garbling and evaluating garbled circuits are as

follows:

– KS4_ENC8: This consists of the computation of 4 AES key schedules from 4
different keys. The resulting keys are then used to encrypt 8 blocks (each key is
used for encrypting 2 blocks). This is used for garbling AND (and other non-XOR)
gates.

– KS2_ENC2: This consists of the computation of 2 AES key schedules from 2
different keys. The resulting keys are then used to encrypt 2 blocks (each key is
used for encrypting 1 block). This is used for evaluating all gates.

– KS4_ENC4: This consists of the computation of 4 AES key schedules from 4
different keys. The resulting keys are then used to encrypt 4 blocks (each key is
used for encrypting 1 block). This is used for garbling XOR gates according to our
new XOR gate garbling scheme described in Sect. 3.2.

A naïve software implementation approach for these computations would use the appro-
priate sequence of calls to a “key expansion” function and to a “block encryption” func-
tion. To estimate the performance of that approach, we use, as a comparison baseline,
the OpenSSL (1.0.2) library, running on the Haswell architecture.3

Software running on this processor can use the AES hardware support, known as
AES-NI (see [8,9] for details). On this platform, a call (using the OpenSSL library)
to an AES key expansion consumes 149 CPU cycles. A call to an (ECB) encryption
function to encrypt 2/4/8 blocks consumes approximately 70+ cycles (explanation is
provided below). However, OpenSSL’s API does not support ECB encryption with mul-
tiple key schedules. For example, this implies that KS4_ENC4 would required 4 calls
to the key expansion function, followed by 4 calls to an ECB encryption, each one
applied to a single (16B) block. The resulting performance of KS4_ENC4, KS4_ENC8,
KS2_ENC2 obtained by calling OpenSSL’s functions (namely “aesni_set_encrypt_key”
and “aesni_ecb_encrypt”) is summarized in middle column of Table 2 at the end of this
section.
Our goal is to optimize the computations of KS4_ENC4, KS4_ENC8, KS2_ENC2

and alleviate the overhead imposed by the frequent key replacements. We achieve our
optimization by: (a) interleaving the encryption of independent blocks; (b) optimizing
the key expansion; (c) aggressive interleaving of the operations; (d) building an API that
allows for encrypting with multiple key schedules. The details are as follows.

3Haswell (resp., Broadwell) is an Intel Architecture Codename of a recently announced 4th (resp., 5th)
Generation Intel® CoreTM Processor. For short, we refer to them simply as Haswell (resp., Broadwell).
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Interleaved Encryption AES encryption on a modern processor is accelerated by using
the AES-NI instructions (see [8,9]). Assuming that the cipher key is expanded to a key
schedule of 11 round keys, RK[ j], j = 0, . . . , 10, AES encryption of a 16 bytes block
X is achieved by the code sequence

XMM = X XOR RK [0]
for j = 1, 2, ..., 9

XMM = AESENC XMM, RK [j]
end
XMM = AESENCLAST XMM, RK [10]
output XMM

If the latency of the AESENC/AESENCLAST instructions is L cycles, then the
above flow can be completed in 1 + 10L cycles. However, if the throughput of AES-
ENC/AESENCLAST is 1 (i.e., pipelining can be used and the processor can dispatch
AESENC/AESENCLAST every cycle, if the data is available), and the computations
encrypt more than one block, the software can interleave the AESENC/AESENCLAST
invocations. This achieves a higher computational throughput, compared to the sin-
gle block encryption. Furthermore, the AESENC/AESENCLAST instructions can be
applied to any round key, even those generated by different key schedules. For example,
2 blocks X and Y can be encrypted, with 2 different key schedules K S1 and K S2, by
the following code sequence:

XMM1 = X XOR RK1 [0]
XMM2 = Y XOR RK2 [0]
for j = 1, 2, ..., 9

XMM1 = AESENC XMM1, RK1 [j]
XMM2 = AESENC XMM2, RK2 [j]

end
XMM1 = AESENCLAST XMM1, RK1 [10]
XMM2 = AESENCLAST XMM2, RK2 [10]
output XMM1, XMM2

These computations can be completed within 10L + 1 cycles (the 2 XOR’s of the
whitening step can be executed in one cycle). Similarly, encrypting 4/8 blocks with
an interleaved software flow could (theoretically) terminate after (2 + 10L + 3) /(4 +
10L + 7) cycles. (This idealized estimation assumes that the round keys are fetched
from the processor’s cache, and ignores the cost of loading/storing the input/output
blocks. We point out that the code sequence indeed closely approaches the theoretical
performance, under these assumptions.) These computations are dominated only by
the throughput of AESENC/AESENCLAST. We note that L = 7 on Haswell, and the
AESENC/AESENCLAST throughput is 1.

Optimized Key Expansion We were able to optimize the computation of AES key
expansion so that it computes (and stores) an AES128 key schedule in 96 cycles on
Haswell, which is 1.55 times faster than the code used byOpenSSLon the same platform.
The details of this optimization are quite low level, and we provide here only some high-
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level details. Then, a full set of key expansion code options was contributed to the NSS
open source library and can be found in [10].
The AES-NI instruction set includes instructions that facilitate key expansion. For

the encryption key schedule, the relevant instruction is AESKEYGENASSIST. How-
ever, this instruction does not provide a throughput of 1 and is significantly slower than
the AESENC and AESENCLAST operations (the reason being that key schedules are
typically run only once, and so, the cost involved in optimizing this instruction was not
justified). We observe that the key schedule consists of S-box substitutions together with
rotation and XOR operations. Likewise, the last round of AES costs of S-box substi-
tutions together with shift rows (and key mixing, which can be effectively canceled by
using a round key of all zeros, since XORing with zero has no effect on the result).
Thus, the use of AESKEYGENASSIST can be replaced by a combination of a shuffle
followed by an AESENCLAST invocation, to isolate the S-box transformation.4 The
shuffle is carried out efficiently using the PSHUFB instruction which also has a through-
put of 1. We therefore obtain that the key schedule can be “simulated” using much faster
instructions. Additional optimizations can be obtained by judicious usage of the avail-
able instructions to generate efficient sequences. We give one example. Consider the
following portion of the AES key schedule flow (where RCON = Rcon[i/4]):

w[i] = w[i-4] xor Sbox(RotWord(w[i-1])) xor RCON
w[i+1] = w[i-3] xor w[i-4] xor Sbox(RotWord(w[i-1]))

xor RCON
w[i+2] = w[i-2] xor w[i-3] xor w[i-4] xor

Sbox(RotWord(w[i-1])) xor RCON
w[i+3] = w[i-1] xor w[i-2] xor w[i-3] xor w[i-4]

xor Sbox(RotWord(w[i-1])) xor RCON

As explained above, the S-box substitution can be isolated by a shuffle followed by
AESENCLAST, and if we place (duplicated) RCON in the second operand of AESEN-
CLAST, the addition of RCON is also done by AESENCLAST. The arrangement and
XOR-ing of the “words” can be implemented by the following straightforward flow:

vpslldq $4, \reg, %xmm3
vpxor %xmm3, \reg, \reg
vpslldq $4, %xmm3, %xmm3
vpxor %xmm3, \reg, \reg
vpslldq $4, %xmm3, %xmm3
vpxor %xmm3, \reg, \reg

However, the same functionality can be achieved by a shorter, 4 instructions, flow, as
follows:

vpsllq $32, \reg, %xmm3
vpxor %xmm3, \reg, \reg
vpshufb (con3), \reg, %xmm3
vpxor %xmm3, \reg, \reg

4AESENCLAST is used since the last round of AES does not include the MixColumns operation, which
is a part of all other rounds and therefore run in the AESENC instruction, but not in AESENCLAST.
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Table 2. Performance (in cycles) of KS4_ENC4, KS4_ENC8 and KS2_ENC2, measured on the Haswell
architecture.

Computation Naïve implementation (cycles) Optimized imp. (cycles)

KS4_ENC4 703 240 (asm - 220)
KS4_ENC8 729 256 (asm - 248)
KS2_ENC2 338 182 (asm - 180)

The naïve implementation is the result of calling the OpenSSL (1.0.2) functions for AES key expansion and
for ECB encryption. The performance of the optimized implementations is of C code (compiled using gcc)
and of handwritten assembly implementations (marked with “asm”)

Table 3. Garbling and evaluation times for the AES circuit 1000 times (in milliseconds).

Algorithm Garbling time Evaluation time

Fixed-key AES (JustGarble) 399 191
Regular AES, pipelined encryption 1578 732
Regular AES, pipelined enc.+key schedule 743 389

(with the value con3 = -1,-1,-1,-1,-1,-1,-1,
-1,4,5,6,7,4,5,6,7)

In this way, the 3 shuffles and 3 xors of the straightforward flow can be replaced by
shorter and faster 1 shift, 1 shuffle, and 2 flows. With our optimizations, we were able
to write a key expansion code that computes and stores an AES128 key schedule in 96
cycles on Haswell (i.e., 1.55 times faster than OpenSSL).
Multiple aggressive interleaving. A higher degree of optimization can be achieved by
interleaving the computations of multiple key expansions. This helps in partially alle-
viating the key expansion’s dependency on the latency of AESENC. For example, our
code for expanding 2 key schedules consumes 124 cycles (on Haswell), which is signif-
icantly less than two independent (without interleaving) key schedules, that are 2 × 96
cycles. We applied this technique to obtain an optimized KS4_ENC4 and KS4_ENC8
implementation. For KS2_ENC2, optimization is achieved by “mixed interleaving” of
the key expansion and the encryptions.
The performance of the optimized KS4_ENC4, KS4_ENC8, and KS2_ENC2 is sum-

marized in the right column of Table 2.

2.3. Experimental Results

The results in Table 3 show the garbling and evaluation time of 1000 AES circuits, using
the free-XOR technique and4-to-3 row reduction (as used by JustGarble, in order tomake
a fair comparison). All methods use pipelining of the encryptions (the last two entries
do not use a fixed key and therefore use the encryption pipelining method described in
Sect. 2.1). The last entry is based on using also the key scheduling pipelining method
described in Sect. 2.2. The table shows the results for garbling and evaluating the circuit
(with the garble time first, followed by the evaluation time). We stress that the times in
Table 3 are for 1000 computations; thus, a single garbling of the AES circuit using our
pipelined key schedule takes 0.74ms only.
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The results were achieved on the Amazon EC2 c4.large Linux instance (with a
2.59GHz Intel Xeon E5-2666 v3 Haswell processor, a single thread, and 3.75GiB of
RAM).
The results show that pipelining the key schedule as well as the encryptions (3rd row)

reduces time by more than 50% over pipelining the encryptions only (2nd row). Fixed-
key AES (1st row) does provide a significant improvement and the best performance.
However, the gain in using fixed-key AES is not overwhelming, since, as we will show
later on, in many settings the main cost of secure computation is no longer the garbling
itself. Namely, although AES takes 86% more time without a fixed key, the objective
difference is just 0.344ms. Thus, when run in a protocol that includes communication,
this additional time makes almost no difference. We demonstrate this in our experiments
described in Sect. 6.

3. Garbling Under a Pseudorandom Function Assumption Only

3.1. Background

The free-XOR technique [15] is one of the most significant optimizations of garbling.
When using this technique, the garbling and evaluation of XOR gates are essentially
for free, requiring only two XOR operations for garbling and one for evaluating.
In addition, no garbled table is used, thereby significantly reducing communication.
However, the free-XOR technique also requires nonstandard assumptions. Specifically,
when using this method, there is a global offset �, and on every wire a single ran-
dom k0i is chosen and the other key is always set to k1i = k0i ⊕ �. This is secure
in the random oracle model [15] or under a circular-secure correlation robustness or
circular-secure related-key assumption [7] (correlation robustness is formalized for
hash functions, whereas related-key security is for encryption or pseudorandom func-
tions). The need for this assumption is due to the fact that when a global offset is
used, multiple encryptions are made under related keys ka, ka ⊕ �, kb, kb ⊕ �, and
so on. In addition, since these keys are used to encrypt the values kc and kc ⊕ �, the
ciphertext is related to the secret key which is exactly circular security. We remark
that at some additional cost, the circularity assumption can be removed using the
FleXOR technique [14]. However, the correlation robustness/related-key assumption
remains.5

We next show that it is possible to efficiently garble a circuit using a pseudorandom
function only. We first show a basic version of our garbling scheme, where the garbled
table for a XOR gate contains a single ciphertext and requires 4 pseudorandom func-
tion operations for garbling (instead of 8 for an AND gate) and 2 for evaluation. We
then show an optimized version that reduces the number of PRF invocations to 3 calls
for garbling and 1–2 calls for evaluation. The overhead of these schemes is definitely
beyond that of the free-XOR technique. However, as we will show, the techniques are
a considerable improvement over the naive method of computing XOR like an AND

5We note that garbling with hash functions is much slower than with AES, especially when an AES-NI
supporting architecture is utilized. Thus, related-key security for AES is required, which is a less than ideal
assumption.
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gate, they enable the usage of 4–2 garbled row reduction (4–2 GRR), and within pro-
tocols (where communication and other factors become the bottleneck) they perform
well.

3.2. Garbled XOR With a Single Ciphertext

In order to prove security solely under the assumption that the primitive used is a pseu-
dorandom function, all the garbled values on all wires should be independently chosen.
Thus, for all pairs of wires i and j , the keys k0i , k

1
i , k

0
j , k

1
j should be independent and

either uniformly distributed or pseudorandom. It will be useful to equivalently write the
keys as k0i and k1i = k0i ⊕ �i , and k0j and k1j = k0j ⊕ � j where �i ,� j are random
independent strings.
We use the point-and-permute method, described briefly in the introduction. In order

to avoid confusion, we will call the bit used to determine the order of the ciphertexts in
the garbling phase the permutation bit (since it determines the random order), and we
call the bit that is viewed by the evaluator when it evaluates the circuit the signal bit
(since it signals which ciphertext is to be decrypted). We denote the permutation bit on
wire i by πi , and we denote the signal bit on wire i by λi . Observe that if the evaluator
has bit vi on wire i (for which it does not know the value), then it holds that λi = πi ⊕vi .
Thus, if πi = 0, then the evaluator will see λi = vi , and if πi = 1, then the evaluation
will see λi = vi (its complement). Since πi is random, this reveals nothing about vi
whatsoever.
We nowdescribe the basicXORgate garblingmethod that uses just a single ciphertext.

The method requires 4 calls to a pseudorandom function for garbling, but as we have
seen, this is inexpensive using AES-NI. (We remark that AND gates are garbled in the
standard way, independently of this method.) Denote the input wires to the gate by i, j
and denote the output wire from the gate by �. We therefore have input keys k0i , k

0
i ⊕�i

and k0j , k
0
j ⊕ � j . According to the above, we denote by πi , π j the permutation bits on

wires i and j , respectively. As wewill see, the keys on the output wire will be determined
as a result of the garbling method. The method for garbling a XOR gate with index g is
as follows:

– Step 1—translate input keys on wire i : We first translate the input keys on wire i
into new keys k̃0i , k̃

1
i by applying a pseudorandom function to the gate index. That

is, we compute k̃0i = Fk0i
(g) and k̃1i = Fk1i

(g), where g is the gate index.
– Step 2—set offset of wire �: The offset of wire � (the output wire) is set to be the
offset of the translated values on wire i , namely �� = k̃0i ⊕ k̃1i . (Observe that if the
same wires are input to multiple gates, independent values will be obtained since
the pseudorandom function is applied to the gate index.)

– Step 3—translate input keys on wire j : Next, we translate the input keys on wire
j so that they too have the offset�� (this will enable the output key to be computed
by XORing the translated input keys, as in the free-XOR technique). Thus, we set

k̃
π j
j = F

k
π j
j

(g) and k̃
π̄ j
j = k̃

π j
j ⊕ ��, where π j is the random permutation bit that

is associated with the bit 0 on wire j .
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– Step 4—compute output keys on wire �: Since k̃0i ⊕ k̃1i = k̃0j ⊕ k̃1j = ��, we can

now use the free-XOR technique and can define k0� = k̃0i ⊕ k̃0j and k1� = k0� ⊕ ��.

(Observe that k̃1i ⊕ k̃1j = k0� as required, since k̃0i ⊕ k̃1i = k̃0j ⊕ k̃1j implies that

k̃0i ⊕ k̃0j = k̃1i ⊕ k̃1j . In addition, k̃
0
i ⊕ k̃1j = k̃1i ⊕ k̃0j = k1� as required, since in both

cases the result of the XOR is k̃0i ⊕ k̃0j ⊕ �� = k0� ⊕ �� = k1� .)
– Step 5—set the ciphertext: Given kai for any a ∈ {0, 1}, the evaluator can easily
compute k̃ai . In addition, if it has k

π j
j (as we show, this can be implicitly determined

from the signal bit λi ), then it can compute k̃
π j
j . The only problem is that it cannot

compute k̃
π̄ j
j since it does not know �� (and furthermore �� cannot be revealed).

Thus, the ciphertext for the gate is set to T = F
k
π̄ j
j

(g) ⊕ k̃
π̄ j
j . Now, given k

π̄ j
j it is

possible to compute k̃
π̄ j
j as well (but without k

π̄ j
j the value remains hidden since it

is masked by a pseudorandom function keyed by k
π̄ j
j ).

In order to evaluate a XOR gate g with ciphertext T , given a key ki on wire i and a key
k j on wire j , the evaluator simply needs to compute k̃i = Fki (g) and either k̃ j = Fk j (g)

if it has signal bit 0, or k̃ j = Fk j (g)⊕T if it has signal bit 1. Then, the key on the output

wire is obtained by finally computing k� = k̃i ⊕ k̃ j .
The computational cost of garbling the gate is 4 pseudorandom function computa-

tions, and the computational cost of evaluating the gate is 2 pseudorandom function
computations. Most significantly, the gate table includes only a single ciphertext.
Reducing the Number of PRF Calls to 3 Observe that the pseudorandom function is
used to ensure independence of the � values between different gates. If we were to just
take �� = k0i ⊕ k1i , then the output � from two different gates with the same input wire
i would be the same, and once again correlation robustness or a related-key assumption
would be needed. Thus, it is necessary to compute k̃0i = Fk0i

(g) and k̃1i = Fk1i
(g). In

contrast, k̃
π j
j can be taken to simply be k

π j
j and the pseudorandom function computation

is not needed. This is because �� is fixed independently of wire j . Using this method,
we can reduce the computational cost of garbling the XOR gate from 4 pseudorandom
function computations to 3 pseudorandom function computations (and the computational
cost of evaluating the gate is decreased from 2 to either 1 or 2 PRF computations). The
proof of security with this optimization is somewhat more involved, and we therefore
prove it separately from the basic scheme.6

6It may be tempting to propose that one of k0i , k1i will also remain the same; i.e., set k̃
πi
i = k

πi
i and

k̃
π̄i
i = F

k
π̄i
i

(g). However, in this case, if the evaluator happens to have k
π̄i
i and k

π̄ j
j , then it can compute

T ⊕ F
k
π̄i
i

(g) ⊕ F
k
π̄ j
j

(g). Note that T = F
k
π̄ j
j

(g) ⊕ k̃
π̄ j
j = F

k
π̄ j
j

(g) ⊕ k̃
π j
j ⊕ �� = F

k
π̄ j
j

(g) ⊕ k̃
π j
j ⊕ k

πi
i ⊕

F
k
π̄i
i

(g) and so the result obtained by the evaluator is k̃
π j
j ⊕ k

πi
i = k̃

π j
j ⊕ k̃

πi
i . If these keys are used in other

gates, then an attacker sees the XOR of two keys and encryptions computed with each key separately. This is
once again a related-key type assumption.
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Garbling NOT Gates When using free-XOR, it is possible to efficiently garble NOT
gates by simply defining them to be XOR with a fixed wire that is always given value 1.
Since the XOR gates are free, this is highly efficient. However, since we are not using
free-XOR, a different method needs to be found. Fortunately, NOT gates can still be
computed for free and with no additional assumption. In order to see this, let g be a NOT
gate with input wire i and output wire j , and let k0i , k

1
i be the garbled values on wire i .

Then, we simply define k0j := k1i and k1j := k0i . During the garbling of the circuit, any
gates receiving wire j as input will used these “reversed” values. Furthermore, when
evaluating the circuit, if the value k0i is given on wire i , then the result of the NOT gate
is k1j which equals k0i . Thus, nothing needs to be done. This trivially preserves security
since no additional information is provided in the garbled circuit.

3.3. Garbling Scheme Definitions

We use the notation of Bellare et al. [3] in which a garbling scheme consists of 4
algorithms:

– Garble(1n, c) → (C, e, d) is an algorithm that takes as input a security parameter
1n and a description of a boolean circuit c and returns a triple (C, e, d), where C
represents a garbled circuit, e represents input encoding information (i.e., all the
keys on the input wires), and d represents output decoding information (i.e., all the
keys on the output wires).

– Encode(e, x) → X is a function that takes as input encoding information e and
input x and returns garbled input (i.e., the keys on the input wires that are associated
with the concrete input x).

– Eval(C, X) → Y is a function that takes as input a garbled circuit C and garbled
input X and returns garbled output Y (i.e., the keys on the output wires that are
associated with the concrete output y = c(x)).

– Decode(Y, d) → y is a function that takes as input decoding information d and
garbled output Y and returns either the real output y of the circuit or ⊥.

A secure garbling scheme should satisfy three security requirements:

– Privacy The triple (C, X, d) should not reveal any information about x that cannot
be learned directly from c(x).More formally, there exists a simulatorS that receives
input (1n, c, c(x)) and outputs a simulated garbled circuit with garbled input and
decoding information that is indistinguishable from (C, X, d) generated using the
real garbling functionsGarble(1n, c) andEncode(e, x). Observe that S knows the
output c(x) and does not know the input x .

– Obliviousness (C, X) should not reveal any information about x . More formally,
there exists a simulator S that receives input (1n, c) and outputs a simulated garbled
circuit with garbled input that is indistinguishable from (C, X) generated using the
real garbling functions Garble(1n, c) and Encode(e, x). Observe that S here is
not even given the output.

– AuthenticityGiven (C, X) as input, no adversary should be able to produce garbled
output Ỹ thatwhendecodedprovides a value that does not equal c(x)or abort, except
with negligible probability.
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For each security definition, we define an experiment that formalizes the adversary’s
task. In the following, G denotes a garbling scheme that consists of the 4 algorithms
stated above, and S denotes a simulator.

The privacy experiment ExptprivG,A,S (n):
1. Invoke adversaryA: compute (c, x) ← A(1n)

2. Choose a random β ∈ {0, 1}
3. If β = 0: compute (C, e, d) ← Garble(1n , c) and X ← Encode(e, x)
Else: compute (C, X, d) ← S(1n , c, c(x))

4. GiveA the challenge (C, X, d) and obtain its guess: β ′ ← A(C, X, d)

5. Output 1 if and only if β ′ = β

The obliviousness experiment ExptoblvG,S,A(n):
1. Invoke adversary: (c, x) ← A(1n)

2. Choose a random β ∈ {0, 1}
3. If β = 0: compute (C, e, d) ← Garble(1n , c) and X ← Encode(e, x)
Else: compute (C, X) ← S(1n , c)

4. GiveA the challenge (C, X) and obtain its guess: β ′ ← A(C, X)

5. Output 1 if and only if β ′ = β

The authenticity experiment ExptauthG,A(n):
1. Invoke adversary: (c, x) ← A(1n)

2. Compute (C, e, d) ← Garble(1n , c) and X ← Encode(e, x)
3. GiveA the challenge (C, X) and obtain its output: Ỹ ← A(C, X)

4. Output 1 if and only if Decode(Ỹ , d) /∈ {⊥, c(x)}

The basic non-triviality requirement for a garbling scheme, called correctness, is that
for every circuit c and input x ∈ {0, 1}poly(n), it holds that Decode(Eval(C,Encode
(e, x)), d) = c(x) except with negligible probability, where (C, e, d) ← Garble(1n, c).

Definition 3.1. (Garbled Circuit Security) A garbling scheme is secure if it is correct,
and achieves privacy, obliviousness, and authenticity as follows:

1. A garbling scheme G achieves privacy if for every probabilistic polynomial time
adversary A there exists a probabilistic polynomial time simulator S and a negli-
gible function μ such that for every n ∈ N:

Pr
[
ExptprivG,A,S(n) = 1

]
≤ 1

2
+ μ(n).

2. A garbling schemeG achieves obliviousness if for every probabilistic polynomial
time adversary A there exists a probabilistic polynomial time simulator S and a
negligible function μ such that for every n ∈ N:

Pr
[
ExptoblvG,A,S(n) = 1

]
≤ 1

2
+ μ(n).
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Procedure GbXOR(k0
i , k1

i , k0
j , k

1
j , πi, πj):

1. Set the output wire permutation bit for the bit ‘0’: π := πi ⊕ πj

2. Compute translated keys for wire i: k̃0
i := Fk0

i
(g πi)[1..n] and k̃1

i := Fk1
i
(g πi)[1..n]

3. Compute new offset for the output wire: Δ := k̃0
i ⊕ k̃1

i

4. Compute translated keys for wire j and the ciphertext for this gate:

(a) If πj = 0, set k̃0
j := Fk0

j
(g 0)[1..n], k̃1

j := k̃0
j ⊕ Δ and T := Fk1

j
(g 1)[1..n] ⊕ k̃1

j

(b) If πj = 1, set k̃1
j := Fk1

j
(g 0)[1..n], k̃0

j := k̃1
j ⊕ Δ and T := Fk0

j
(g 1)[1..n] ⊕ k̃0

j

5. Compute the keys for the output wire : k0 := k̃0
i ⊕ k̃0

j and k1 := k0 ⊕ Δ

6. Return (k0, k1, π , T )

Fig. 1. Garbling XOR gates.

3. A garbling scheme G achieves authenticity if for every probabilistic polynomial
time adversary A there exists a negligible function μ such that for every n ∈ N:

Pr
[
ExptauthG,A(n) = 1

]
< μ(n)

3.4. Our Garbling Scheme in Detail

In this section, we provide a full specification of our garbling scheme. In this description,
we use the standard 4–3 row reduction technique. In later sections, we will incorporate
our new 4–2 row reduction scheme. Our garbling scheme uses a pseudorandom function
that takes an n-bit key, and has input and output of length n + 1. That is, F : {0, 1}n ×
{0, 1}n+1 → {0, 1}n+1 (formally, we consider a family of functions, where for every
n ∈ N the function is of this type). We denote by Fk(x)[1..n] the first n bits of the output
of Fk(x), and we denote by x‖y the concatenation of x with y. We begin by defining
the method for garbling XOR and AND gates in Figs. 1 and 2 (for simplicity we only
consider XOR, AND, and NOT gates; the AND gate method can be extended to any
gate type) and then proceed to the high-level garbling algorithm in Fig. 3. Finally, we
describe the encoding, evaluation, and decoding algorithms.
We now proceed to describe the encoding, evaluation, and decoding algorithms. The

encoding and decoding algorithms are straightforward and consist merely of mapping
the plaintext bit to the garbled value and vice versa. Observe that in the evaluation
algorithm we refer to the signal bit λi on wire i . The difference between λi here and
πi used in the garbling is that λi is the “public” signal bit that the evaluator sees. The
invariant over this value is that λi always equals the XOR of πi and the actual value on
the wire (associated with the encoding X ) (Figs. 4, 5, 6).

Correctness We begin by demonstrating correctness. This is immediate for AND
and NOT gates; we therefore show that it also holds for XOR gates. Observe that
the ciphertext in a XOR gate with input wires i, j and output wire � equals C[g] =
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Procedure GbAND(k0
i , k1

i , k0
j , k1

j , πi, πj):

1. Compute K0 = Fk
πi
i

(g 00) ⊕ F
k

πj
j

(g 00)

2. Set the output wire keys and permutation bits:

(a) If πi = πj = 1, then choose a random k0 π ← {0, 1}n+1 and set k1 := K0[1..n]

(b) Else, set k0 π := K0 and choose a random k1 ← {0, 1}n

Denote K0 = k0 π and K1 = k1 π̄ .

3. Compute the gate ciphertexts: Let g(·, ·) denote the gate function. Then,

T1 = Fk
πi
i

(g 01) ⊕ F
k

π̄j
j

(g 01) ⊕ K
g(πi,π̄j)

T2 = Fk
π̄i
i

(g 10) ⊕ F
k

πj
j

(g 10) ⊕ K
g(π̄i,πj)

T3 = Fk
π̄i
i

(g 11) ⊕ F
k

π̄j
j

(g 11) ⊕ K
g(π̄i,π̄j)

4. Return (k0, k1, π , T1, T2, T3)

Fig. 2. Garbling AND gates.

The garbling algorithm Garble(1n, c):

1. For each input wire j in c:

(a) Choose two random keys: k0
j , k1

j ← {0, 1}n

(b) Choose a permutation bit for the bit ‘0’: πj ← {0, 1}
(c) Prepare the encoding information: e[j, 0] := k0

j πj and e[j, 1] := k1
j πj

2. In topological order, for each gate g in circuit c:

(a) If g is a XOR gate with input wires i, j and output wire :

i. (k0, k1, π , T ) ← GbXOR(k0
i , k1

i , k0
j , k

1
j , πi, πj)

ii. Set the keys on the output wire to be k0, k1 and the permutation bit to be π

iii. Set the garbled table for the gate: C[g] := T

(b) If g is an AND gate with input wires i, j and output wire :

i. (k0, k1, π , T1, T2, T3) ← GbAND(k0
i , k1

i , k0
j , k1

j , πi, πj)
ii. Set the keys on the output wire to be k0, k1 and the permutation bit to be π

iii. Set the garbled table for the gate: C[g] := (T1, T2, T3)

(c) If g is a NOT gate with input wire i and output wire :

i. Set k0 = k1
i and k1 = k0

i and set π = πi

ii. There is no garbled gate

3. For each circuit-output wire j in c, prepare the decoding information: d[j, 0] := F
k

πj
j

(out πj) and
d[j, 1] := F

k
πj
j

(out πj)

4. Return (C, e, d)

Fig. 3. Full garbling algorithm.

F
k
π j
j

(g‖1)[1..n] ⊕ k̃
π j
j . However, k̃

π j
j = k̃

π j
j ⊕ �� = F

k
π j
j

(g‖0)[1..n] ⊕ �� and

�� = k̃πi
i ⊕ k̃π i

i = Fkπi
i

(g‖0)[1..n] ⊕ F
k
π i
i

(g‖1)[1..n]. Thus,

C[g] = Fkπi
i

(g‖0)[1..n] ⊕ F
k
π i
i

(g‖1)[1..n] ⊕ F
k
π j
j

(g‖0)[1..n] ⊕ F
k
π j
j

(g‖1)[1..n]
(1)
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Procedure Encode(e, x):

1. For i=1 to |x|: X [i] := e[i, xi]

2. Return X

Fig. 4. Encoding algorithm.

Procedure Eval(C, X):

1. For every input wire j in c, set kj λj := X [j]

2. For each gate g in c, in topological order:

(a) If g is a XOR gate with input wires i, j and output wire :

i. Compute the output wire key: k := Fki(g λi)[1..n] ⊕ Fkj (g λj)[1..n] ⊕ λj · C[g]
ii. Compute the output wire signal bit: λ := λi ⊕ λj

(b) If g is an AND gate with input wires i, j and output wire :

i. Compute the output wire key and signal bit: k λ := T ⊕Fki(g λiλj)⊕Fki(g λiλj), where
T is the entry T2λi+λj in C[g] (note that if λi = λj = 0 then implicitly we define T = 0).

(c) If g is a NOT gate with input wire i and output wire , then set k := ki and λ = λi

3. For each output wire j in c, set Y [j] := Fkj (out λj)

4. Return Y

Fig. 5. Evaluation algorithm.

Procedure Decode(Y, d):

1. For i=1 to |Y |:
(a) If Y [i] = d[i, 0], then y[i] := 0

(b) Else, if Y [i] = d[i, 1], then y[i] := 1

(c) Else, return ⊥
2. Return y

Fig. 6. Decoding algorithm.

where πi , π j are the permutation bits that are associated with the bit 0 on wires i, j ,
respectively. Now, assume that the evaluator holds the keys kvi

i and k
v j
j that are asso-

ciated with the (plain) bits vi , v j . Then, according to procedure Eval, it computes:
Fkvi

i
(g‖λi )[1..n] ⊕ F

k
v j
j

(g‖λ j )[1..n] ⊕ λ jC[g]. Thus, if λ j = 0, then it computes

Fkvi
i

(g‖λi )[1..n] ⊕ F
k
v j
j

(g‖0)[1..n] (2)

and if λ j = 1, then it computes

Fkvi
i

(g‖λi )[1..n] ⊕ F
k
v j
j

(g‖1)[1..n] ⊕ Fkπi
i

(g‖0)[1..n] ⊕ F
k
π i
i

(g‖1)[1..n]
⊕F

k
π j
j

(g‖0)[1..n] ⊕ F
k
π j
j

(g‖1)[1..n]. (3)
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Recall that λ j = v j ⊕ π j . Thus, if λ j = 1, then v j = π j ⊕ 1 = π̄ j , and if λ j = 0, then
v j = π j , likewise for λi , vi , and πi .
We first consider the case that λ j = 0. Note that in wire i , we have that k̃vi

i =
Fkvi

i
(g‖πi ⊕ vi )[1..n] (see Step 2 in Procedure GbXOR). Thus, by the above relation

between λi , vi and πi , it follows that k̃
vi
i = Fkvi

i
(g‖λi )[1..n]. Furthermore, by Step 4 in

ProcedureGbXOR, we have that k̃
π j
j = F

k
π j
j

(g‖0). In this case of λ j = 0, we have that

v j = π j , and thus, k̃
v j
j = F

k
v j
j

(g‖0). Combining this with (2), we conclude that when

λ j = 0, the evaluator computes

Fkvi
i

(g‖λi )[1..n] ⊕ F
k
v j
j

(g‖0)[1..n] = k̃vi
i ⊕ k̃

v j
j .

Now consider λ j = 1. Observe that Fkvi
i

(g‖λi )[1..n] ∈
{
Fkπi

i
(g‖0)[1..n], F

k
π i
i

(g‖1)
[1..n]

}
and that if λi = 0 ,then vi = πi , and otherwise, vi = π̄i . Thus, Fkvi

i
(g‖λi )[1..n]

cancels out and

Fkvi
i

(g‖λi )[1..n] ⊕ Fkπi
i

(g‖0)[1..n] ⊕ F
k
π i
i

(g‖1)[1..n] = F
k
v̄i
i

(g‖λ̄i )[1..n].

If vi = 0 then λi = πi and we have F
k
v̄i
i

(g‖λ̄i )[1..n] = Fk1i
(g‖π̄i )[1..n], which is

exactly k̃1i according to Step 2 of Procedure GbXOR. If vi = 1 then λi = π i and we
have F

k
v̄i
i

(g‖λ̄i )[1..n] = Fk0i
(g‖πi )[1..n], which is exactly k̃0i . In both cases, we receive

k̃vi
i . Likewise F

k
v j
j

(g‖1)[1..n] = F
k
π j
j

(g‖1)[1..n] because λ j = 1 and so v j = π j .

Thus, this element cancels out and

F
k
v j
j

(g‖1)[1..n] ⊕ F
k
π j
j

(g‖0)[1..n] ⊕ F
k
π j
j

(g‖1)[1..n] = F
k
π j
j

(g‖0)[1..n]= k̃
π j
j = k̃

v j
j .

where the second last equality is from Step 4 in Procedure GbXOR. We conclude that

when λ j = 1, the evaluator receives k̃vi
i ⊕ k̃

v j
j .

Since k̃0i ⊕ k̃1i = k̃0j ⊕ k̃1j , we conclude that the output equals k̃
vi
i ⊕ k̃

v j
j for both values

of λ j . The fact that this yields the correct output is immediate from the way the output
wire values are chosen for the gate.

Intuition for Security As just explained, the ciphertext in a XOR gate is the result of
XORing the four outputs of the pseudorandom function:

C[g] = Fkπi
i

(g‖0)[1..n] ⊕ F
k
π i
i

(g‖1)[1..n] ⊕ F
k
π j
j

(g‖0)[1..n] ⊕ F
k
π j
j

(g‖1)[1..n]

Each one of these four computations uses a different key, from which only two keys are
known to the evaluator. Since we use the gate index as an input to the function, we are
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guaranteed that when a wire enters multiple gates, the pseudorandom values we compute
will be different in each of the gates. Thus, the ciphertext looks like a random string to
the evaluator. In addition, the output wire key values are determined by the result of the
pseudorandom function computation as well. Thus, they are new keys that do not appear
elsewhere in the circuit. We stress that the four values in the equation above are not the
four new translated keys. If that was the case, then XORing them would yield 0, because
the same offset is used in both wires after the translation. Instead, the first three values
are the translated keys, but the last value is just a pseudorandom string that is used to
mask them in a “one-time pad”-like encryption.
A similar argument applies for AND gates. Since the evaluator can compute only two

of the eight PRF computations using the two keys it holds, and since the values that
are used in computing the garbled table are unique and do not appear elsewhere in the
circuit (again, this is ensured by using the gate index and the permutation bits as input to
each pseudorandom function computation), the gate ciphertexts that are not associated
with the keys known to the evaluator, look random to the evaluator.

3.5. Proof of Security

3.5.1. Preliminaries

We begin by defining an experiment based on pseudorandom functions that will be
convenient for proving security of the garbling scheme. As we have mentioned, we
consider a family of functions F = {Fn}n∈N where for every n it holds that Fn :
{0, 1}n × {0, 1}n+1 → {0, 1}n+1. For clarity, we drop the subscript and write Fk(x)
where k ∈ {0, 1}n instead of Fn(k, x).
We now define the experiment, call 2PRF . In this experiment, the distinguisher/

adversary is given access to four oracles, divided into two pairs. The second and fourth
oracles are always pseudorandom functions Fk1 and Fk2 , respectively. In contrast, the first
and third oracles are either the same pseudorandom functions Fk1 and Fk2 , respectively,
or independent truly random functions f 1 and f 3. Clearly, ifA canmake the same query
to thefirst and secondoracle, or to the third and fourth oracle, then it can easily distinguish
the cases. The security requirement is that as long as it does not make such queries, it
cannot distinguish the cases. We prove that this property holds for any pseudorandom
function. The experiment is formally defined in Fig. 7, and 2PRF security is formalized
in Definition 3.2.

Definition 3.2. Let F = {Fn}n∈N be an efficient family of functions where for every
n, Fn : {0, 1}n × {0, 1}n+1 → {0, 1}n+1. Family F is a 2PRF if for every probabilistic
polynomial time adversaryA there exists a negligible function μ such that for every n,

∣∣∣Pr[Expt2PRF
F ,A (n, 1) = 1] − Pr[Expt2PRF

A (n, 0)] = 1
∣∣∣ < μ(n)

The following lemma shows that pseudorandomness of Fk is sufficient for it to be
2PRF as well.

Lemma 3.3. If F is a family of pseudorandom functions, then it is a 2PRF.
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Experiment Expt2PRF
F ,A (n, σ) :

1. Choose random keys k1, k2 ← {0, 1}n for the pseudorandom function, and choose two truly
random functions f1, f2. If σ = 0, set (O(1),O(2),O(3),O(4)) = (Fk1 , Fk1 , Fk2 , Fk2); else, set
(O(1),O(2),O(3),O(4)) = (f1, Fk1 , f

2, Fk2)

2. The adversary A is invoked upon input 1n

3. When A makes a query (j, x) to its oracles with j ∈ {1, 2, 3, 4} and x ∈ {0, 1}n+1, answer as
follows:

• if j ∈ {1, 2} and x was already queried to {1, 2} \ {j}, return ⊥
• if j ∈ {3, 4} and x was already queried to {3, 4} \ {j}, return ⊥
• Otherwise, return O(j)(x)

4. A outputs a bit σ , and this is the output of the experiment

Fig. 7. 2PRF experiment.

Proof. Assume that F is a PRF.Denote byExptg1,g2,g3,g4A (n) the experimentwhereA is
given oracle access to functions g1, g2, g3, g4 (under the input limitations outlined in the

experiment). Using this notation, we have thatExpt2PRF
F ,A (n, 0) = Expt

Fk1 ,Fk1 ,Fk2 ,Fk2
A (n)

and Expt2PRF
F ,A (n, 1) = Expt

f 1,Fk1 , f 2,Fk2
A (n).

First, a straightforward reduction to the security of the pseudorandom function (with
a hybrid for two pseudorandom functions) yields that for every probabilistic polynomial
time adversary A there exists a negligible function μ such that for every n,

∣∣∣Pr
[
Expt

Fk1 ,Fk1 ,Fk2 ,Fk2
A (n) = 1

]
− Pr

[
Expt f

1, f 1, f 2, f 2

A (n) = 1
]∣∣∣ ≤ μ(n).

Note that oracle access to the same random function twice or to two different random
functions is identical when there is a constraint that the same input cannot be supplied
to both oracles. Thus, for every adversary A and for every n,

Pr
[
Expt f

1, f 1, f 2, f 2

A (n) = 1
]

= Pr
[
Expt f

1, f 3, f 2, f 4

A (n) = 1
]
.

Next, we claim that for every probabilistic polynomial time adversary A there exists a
negligible function μ such that for every n,

∣∣∣∣Pr
[
Expt f

1, f 3, f 2, f 4

A (n) = 1
]

− Pr

[
Expt

f 1,Fk1 , f 2, f 4

A (n) = 1

]∣∣∣∣ ≤ μ(n).

This follows from a direct reduction to the pseudorandomness of F (the reduction simu-
lates f 1, f 3, f 4 itself and uses its oracle to either have f 2 or Fk1 ). Likewise, a direction
reduction yields that for every probabilistic polynomial time adversary A there exists a
negligible function μ such that for every n,

∣∣∣∣Pr
[
Expt

f 1,Fk1 , f 2, f 4

A (n) = 1

]
− Pr

[
Expt

f 1,Fk1 , f 2,Fk2
A (n) = 1

]∣∣∣∣ ≤ μ(n).
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Here the reduction simulates f 1, Fk1 , f 2 itself. Combining all of the above, we conclude
that for every adversary A there exists a negligible function μ such that for every n,

∣∣∣Pr
[
Expt2PRF

F ,A (n, 0) = 1
]

− Pr
[
Expt2PRF

F ,A (n, 1) = 1
]∣∣∣

=
∣∣∣∣Pr

[
Expt

Fk1 ,Fk1 ,Fk2 ,Fk2
A (n) = 1

]
− Pr

[
Expt

f 1,Fk1 , f 2,Fk2
A (n) = 1

]∣∣∣∣ ≤ μ(n).

�

3.5.2. The Proof of Security of Our Garbling Scheme

We begin by proving that our garbling scheme achieves privacy. Let G denote our
garbling scheme. Our proof follows the high-level structure of Lindell and Pinkas [18],
with modifications as needed for our garbling scheme.

Theorem 3.4. If F is a family of pseudorandom functions, then the garbling scheme
G achieves privacy.

Proof. We begin by describing a simulator S for the Exptpriv privacy experiment. S is
invoked with input (1n, c, c(x)) and works as follows. As we will show, S will define an
active key on every wire. This key will be the one that is “obtained” in the evaluation
procedure. The other key is not active and is actually never explicitly defined. Rather,
all the ciphertexts in the gates that are not “decrypted” in the evaluation are chosen at
random.

1. For each input wire j in circuit c:

(a) Choose an active key: k j ← {0, 1}n
(b) Choose an active signal bit λ j ← {0, 1}
(c) Prepare the garbled input data: X [ j] = k j‖λ j

2. In topological order, for each gate g in c:

(a) If g is a XOR gate with input wires i, j and output wire �:

(i) Compute the active output wire signal bit: λ� := λi ⊕ λ j

(ii) Compute a translated new key for wire i : k̃i := Fki (g‖λi )[1..n]
(iii) Compute a translated new key for wire j , and the ciphertext for this gate:

A. If λ j = 0, set k̃ j := Fk j (g‖0)[1..n] and C[g] ← {0, 1}n (in this case,
the translated key is obtained by computing F and so is correctly
computed, but the ciphertext is not used and so is random)

B. If λ j = 1, set k̃ j ← {0, 1}n and C[g] := Fk j (g‖1)[1..n] ⊕ k̃ j (in
this case, the translated key is obtained via the ciphertext, and so the
ciphertext is correctly computed, but using a random key)

(iv) Compute the output wire active key: k� := k̃i ⊕ k̃ j

(b) If g is an AND gate with input wires i, j and output wire �:

(i) Set the output wire active key and signal bit:
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A. If λi = λ j = 0, set k�‖λ� := Fki (g‖00) ⊕ Fk j (g‖00) (in this case,
the output key is computed via F and so must be set in this way)

B. Else, set k�‖λ� ← {0, 1}n+1 (in this case, the output key is computed
from the ciphertexts and is chosen at random)

(ii) Compute the gate’s ciphertexts (they are random except for the one that
is opened according to the active signal bits):

A. If 2λi +λ j �= 0, then T2λi+λ j := Fki (g‖λiλ j )⊕Fk j (g‖λiλ j )⊕k�‖λ�

B. For α ∈ {1, 2, 3} \ {2λi + λ j } : Tα ← {0, 1}n+1

C. C[g] ← T1, T2, T3

(iii) If g is a NOT gate with input wire i and output wire �: set k�‖λ� = ki‖λi
3. For each output wire j in c:

(a) Prepare the decoding information: d[ j, c(x) j ] := Fk j (out‖λ j ) and d[ j, c(x) j ]
← {0, 1}n

4. Return (C, X, d)

Note that the garbled tables in the simulator-generated garbled circuit consists of
random strings, except for the ciphertexts used in the evaluation itself. Specifically, in an
AND gate all ciphertexts are random in the case that λi = λ j = 0 since none are used
in evaluation; in all other cases, the single ciphertext which is decrypted is constructed
“correctly,” whereas all other are random. Likewise, in a XOR gate where λ j = 0 the
ciphertext is random since in this case the ciphertext is not used in evaluation.
We now show that the simulated garbled circuit is indistinguishable from a real garbled

circuit by reduction to the 2PRF experiment, which by Lemma 3.3 follows merely from
the fact that F is a pseudorandom function. Let A be a probabilistic polynomial time
adversary for Exptpriv, and let m denote the number of gates in the circuit. We define
a hybrid distribution Hi (c, x) with 0 ≤ i ≤ m as the triple (C, X, d) generated in the
following way (note that the procedure for generating Hi (c, x) is given the circuit c and
the real input x):

• Garblingof gatesThegarbled circuitC is generatedbygarbling thefirst i gates in the
topological order using the simulator garbling procedure, while gates i + 1, . . . ,m
are garbled using the real garbling scheme. Observe that the simulator generates

only a single key per wire; specifically, it generates the active key k
λ j
j . The first

step in the hybrid is therefore to choose an additional key k
1−λ j
j for every wire that

enters or exits a gate that is garbled according to the real scheme.
• Encoding information X For each circuit input wire j that enters a gate g, if g is
garbled using the real scheme (i.e., the gate’s index > i), then X [ j] is the garbled
value that was chosen to represent the j th bit of the input (recall that in experiment
Exptpriv, the adversary knows the input string x and so can choose the correct
encoding for x). Else, if g is garbled using the simulator procedure (i.e., the gate’s
index ≤ i), then X [ j] is the garbled value that was chosen for the active key of that
wire.

• Decoding information d For each output wire j that exits from a gate g, if g was
garbled using the real scheme then there are two garbled values on wire j , and
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d[ j, ·] is generated exactly as in the Garble procedure. Else, if g is garbled using
the simulator instructions, then there is only one garbled value on j and d[ j, ·] is
generated exactly as in the simulator procedure.

Note that the hybrid H0(x) is a real garbled circuit (and is distributed as (C, X, d)

in ExptprivG,A,S in the case that β = 0), while Hm(x) is the output of the simulator

S (and is distributed as (C, X, d) in ExptprivG,A,S in the case that β = 1). Next, for
each 0 ≤ i ≤ m, we define Ai to be a probabilistic polynomial time adversary for
Expt2PRF

F ,Ai
(n, σ ) experiment. Ai is given access to four oracles:

(O(1)(·),O(2)(·),O(3)(·),O(4)(·)) = ( f 1(·) or Fk1(·), Fk1(·), f 2(·) or Fk2(·), Fk2(·)).

Adversary Ai runs Exptpriv with adversary A. First, it invokes A and receives (c, x).
Then, as we will see, it constructs a garbled circuit which will either be distributed
according to Hi−1 or Hi , depending on the oracles it received. Thus, as we will show, if
A can succeed in Exptpriv with probability that is non-negligibly greater than 1/2, then
Ai will distinguish in the 2PRF experiment with non-negligible probability.
Formally, adversaryAi constructs a garbled circuit by generating the first i − 1 gates

in topological order using the simulator procedure, and generating the gates indexed by
i+1, . . . ,m using the realGarble instructions (with subroutinesGbXOR andGbAND).
However, for the i th gate,Ai will use its oracles to generate a garbled table that is garbled
as in the real scheme or as in the simulator code, depending whether it received an oracle
access to pseudorandom or to random functions. Assume the input wires of the i th gate
are a, b and the output wire is c. In addition, assume that the active keys on the input
wires are associated with the bits va, vb (recall that Ai knows the input to the circuit
and thus va, vb are known to it). Knowing kva

a and kvb
b , adversary Ai will (implicitly)

use the secrets k1, k2 that were chosen for the pseudorandom function in Expt2PRF as
kva
a and kvb

b , respectively. Thus, whenever Ai needs to compute Fkva
a

(x) or F
k
vb
b

(x) for

some x , it will send x to its oraclesO(1) orO(3), respectively (recall that these are either
also Fk1 , Fk2 or are random functions f 1, f 2). We remark that O(2) and O(4) are used
to garble gates � > i that use wires a, b as well; this will be described after we present
the method for garbling the i th gate. We separately consider the case that the i th gate is
a XOR gate and the case that it is AND gate.

Case 1—the ith gate is a XOR gate: the keys on the input wires to this gate were
generated using the simulator procedure. Thus, Ai holds one key on each input wire a
and b, denoted ka and kb, respectively.Ai sets these keys to be k

va
a and kvb

b , respectively.
In addition,Ai has signal bits λa, λb that were determined on these wires.A constructs
the gate as follows:

1. Ai computes the permutation bit for the output wire c: πc := πa ⊕ πb = (λa ⊕
va) ⊕ (λb ⊕ vb)

2. Ai computes new translated keys for wire a: k̃va
a := Fkva

a
(g‖λa)[1..n] and k̃va

a :=
O(1)(g‖λa)[1..n] (observe that if O(1) is pseudorandom then this is a “real” key
value, whereas if it is a random function then this is an independent random key)

3. Ai computes the offset of the output wire: �c := k̃va
a ⊕ k̃va

a
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4. Ai computes new translated keys for wire b and the ciphertext:

(a) If the signal bit of kvb
b is 0 (i.e., if λb = 0), set k̃vb

b := Fkvb
b

(g‖0)[1..n] and
k̃vb
b := k̃vb

b ⊕ �c, and define C[g] := O(3)(g‖1)[1..n] ⊕ k̃vb
b

(b) Else, if the signal bit of kvb
b is 1 (i.e., if λb = 1), set k̃vb

b := O(3)(g‖0)[1..n]
and k̃vb

b := k̃vb
b ⊕ �c, and define C[g] := Fkvb

b
(g‖1)[1..n] ⊕ k̃vb

b

5. Ai computes the output wire keys: k0c := k̃0a ⊕ k̃0b and k1c := k0c ⊕ �c

It easy to see that when σ = 0 (and the oracle answers are pseudorandom strings), the
code is identical to the real garbling scheme. In contrast, when σ = 1 (and the oracle
the answers are random strings), then the result is exactly according to the simulator
instructions. In order to see this, observe that if λb = 0 then C[g] is random, exactly as
in Step 2(a)iiiA of the simulator. This is because O(3) is random and so the XOR with
k̃vb
b makes no difference. Likewise, if λb = 1 then the active key k̃vb

b is random since it
is the XOR of the output of O(3) with another value, and C[g] is the XOR of this key
with the appropriate output from Fkvb

b
. Thus, this is also exactly as in Step 2(a)iiiB of

the simulator.
Case 2—the ith gate is an AND gate: As before, for wires a and b, Ai has two keys
kva
a , kvb

b , two signal bits λa, λb and the bits va, vb that are on the wires. Then, it does the
following:

1. Compute the values K0, . . . , K3:

K2λa+λb := Fkva
a

(g‖λaλb) ⊕ Fkvb
b

(g‖λaλb)K2λa+λb

:= Fkva
a

(g‖λaλb) ⊕ O(3)(g‖λaλb)
K2λa+λb

:= O(1)(g‖λaλb) ⊕ Fkvb
b

(g‖λaλb)K2λa+λb

:= O(1)(g‖λaλb) ⊕ O(3)(g‖λaλb)

2. Set the output wire keys and permutation bits:

(a) Compute: πa = va ⊕ λa and πb = vb ⊕ λb
(b) If πa = πb = 1, set k0c‖πc ← {0, 1}n+1 and k1c := K0[1..n]
(b) Else, set k0c‖πc := K0 and k1c ← {0, 1}n
Denote K 0

c := k0c‖πc and K 1
c := k1c‖πc

3. Compute the ciphertexts: For α ∈ {1, 2, 3},
(a) If α = 2πa + πb, then Tα := Kα ⊕ K 1

c
(b) Else: Tα := Kα ⊕ K 0

c

Set C[g] ← {T1, T2, T3}
As in the previous case, when σ = 0, the code is identical to real garbling scheme.

When σ = 1, the answers of the oracles are random strings, and therefore all the rows
in the garbled table are random as well, except for the row that is pointed to by the
signal bits of the active keys (the row T2λa+λb where the adversary computes the value
of K2λa+λb directly using the keys it holds). Thus, the gate is garbled as in the simulation.
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We conclude that when σ = 0, the i th gate is garbled as in the real garbling scheme,
while when σ = 1 the i th gate is garbled as in the simulator procedure. However, to
complete the construction of the garbled circuit, Ai needs to construct all the gates
� > i . For a gate � > i with input wires that are output from the i th gate and greater,
Ai has both keys on the wires and so can compute the gate just like in the real garbling
procedure. If a gate � > i has an input wire that is output from a gate j < i that does
not equal a or b, thenAi simply chooses the (inactive) key at random, like in the hybrid
definition. Finally, for a gate that has an input wire a or b, the gate is constructed used
oraclesO(2) andO(4) and the same code for gate i (except with these oracles instead of
O(1) and O(3)). Since these oracles always use the pseudorandom functions, it follows
that the computation of the gate is always according to the real garbling method. (Note
that when garbling the �th gate, each of the queries to these oracles includes the gate’s
number. Thus we are guaranteed that these queries were not sent toO(1) andO(3) when
Ai garbled the i th gate, as required in Expt2PRF

F ,A (n, σ ) experiment.)
Concluding the proof, when σ = 0, Ai constructs the hybrid Hi−1(x), while when

σ = 1,Ai constructs the hybrid Hi (x). We therefore construct a single adversaryA′ for
2PRF who chooses a random i and then runsAi with adversaryA. By a standard hybrid
argument, ifA succeedswith non-negligible probability inExptpriv thenA′ distinguishes
between Expt2PRF

F ,A (n, 0) and Expt2PRF
F ,A (n, 1), with non-negligible probability. This

contradicts the assumption that F is a family of pseudorandom functions. �

Achieving Obliviousness and Authenticity In order to satisfy the obliviousness require-
ment, we need to construct a simulator that outputs (C, X) given only c as an input.
Note that the simulator S constructed above for the privacy requirement outputs the
triple (C, X, d). However, S uses c only for generating (C, X), and in particular the
output c(x) is used only for generating d. Thus, we can simply remove the genera-
tion of the decoding information from S’s instruction, and we obtain a simulator that
generates only (C, X) as required. Proving that this simulator’s output is indistinguish-
able from (C, X) generated by the real scheme is the same as in the proof of pri-
vacy.7

Regarding authenticity,weneed to show that a probabilistic polynomial time adversary
A that is given (C, X) as input can output Ỹ such that Decode(Ỹ , d) /∈ {c(x),⊥} with
at most negligible probability. Note that if we give A the pair (C, X) generated by our
simulator, it can succeed only with probability at most 2−n . This is due to the fact that in
the simulated garbled circuit, for each output wire j corresponding to the j th output bit,
d[ j, c(x) j ] is a random string. Now, if given the real (C, X), the adversary can output

such a Ỹ with non-negligible probability, then it could be used by an adversary given
(C, X, d), to break the privacy property, in contradiction to Theorem 3.4. Observe that
since the adversary in the privacy experiment is given all of the decoding information
d, it can efficiently verify if A output a Ỹ with the property that Decode(Ỹ , d) /∈
{c(x),⊥}.

7Recall that in the reduction the adversaryAi knows the input x . However, in the experiment in the proof
of obliviousness, A also outputs x and so it is known. Thus, the same reduction works.
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3.6. XOR Gates with Only Three PRF Computations

Our garbling method requires four calls to the pseudorandom function for garbling XOR
gates, where each call uses a different key. In this section we show that it is possible to
remove one of these calls by leaving one of the input keys unchanged. Recall that our
ciphertext for a XOR gate g with input wires i, j and output wire � is:

C[g] = Fkπi
i

(g‖0)[1..n]⊕F
k
π i
i

(g‖1)[1..n]⊕F
k
π j
j

(g‖0)[1..n]⊕F
k
π j
j

(g‖1)[1..n] (4)

Assume the evaluator has the keys kvi
i , k

v j
j and the signal bits λi , λ j when comput-

ing the gate. Then, using the ciphertext C[g] it computes C[g] ⊕ Fkvi
i

(g‖λi )[1..n] ⊕
F
k
v j
j

(g‖λ j )[1..n] and obtains F
k
vi
i

(g‖λi )[1..n] ⊕ F
k
v j
j

(g‖λ j ), which is the XOR of

two pseudorandom values. If we leave, for example, the value of k
v j
j unchanged—

i.e., use it in Eq. (4) instead of F
k
v j
j

(g‖λ j )—the evaluator will be able to compute

F
k
vi
i

(g‖λi )[1..n] ⊕ k
v j
j . Observe that the evaluator still cannot learn anything since one

of the two values is a new pseudorandom value that does not appear anywhere else in the
circuit (taking the gate index g as an input to F ensures that if a wire i or j enters multi-
ple gates, then we compute a different value for each gate). Therefore, the ciphertext is
pseudorandom as required. In addition, since the two keys on wire i are still translated
to new keys, the output wire keys, generated in the same way as before, are guaranteed
to obtain new fresh values. (See Footnote 6 as to why we cannot use the same method
to remove one of the pseudorandom function calls on wire i as well.)

The Modified Garbling Scheme Denote the modified scheme where only three pseu-
dorandom function calls are made by G ′. Figure 8 presents the modifications in G ′
compared to our base scheme; only the items in GbXOR and Eval that were changed
appear, and the actual changes appear in bold. The procedure GbXOR is changed by
not changing the key on wire j that represents the bit v j when v j ⊕ π j = 0; i.e., k̃0j is

set to k0j instead of Fk0j
(g‖0)[1..n]. Consequently, in the Eval procedure, the evaluator

uses the signal bit it holds to decide whether to translate the key on wire j into a new
key or not.

Security Proof We now prove security of the modified scheme.

Theorem 3.5. If F is a family of pseudorandom functions, then the garbling scheme
G ′ achieves privacy.

Proof Sketch. The proof is very similar to the proof of Theorem 3.4 forG.We describe
the main changes that are needed in order to make the proof valid for our modified
scheme G ′. First, let S ′ be a simulator that is identical to the simulator S from the proof
of Theorem 3.4, except that when simulating XOR gates in step 2.(a).iii, when λ j = 0,
it sets k̃ j = k j (instead of as Fk j (g‖0)[1..n]). In order to prove that the output of S ′ is
indistinguishable (C, X, d) generated by the garbling schemeG ′, we reduce the security
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Procedure GbXOR(k0
i , k1

i , k0
j , k

1
j , πi, πj):

4. Compute translated new keys for wire j and the garbled value for this gate:

(a) If πj = 0, set k̃0
j := k0

j , k̃1
j := k̃0

j ⊕ Δ , and T := Fk1
j
(g 1)[1..n] ⊕ k̃1

j

(b) If πj = 1, set k̃1
j := k1

j , k̃0
j := k̃1

j ⊕ Δ , and T := Fk0
j
(g 1)[1..n] ⊕ k̃0

j

Procedure Eval(C, X):

2. For each gate g in c, in topological order:

(a) If g is a XOR gate with input wires i, j and output wire :

i. Compute the output wire key:
A. If λj = 0, set k := Fki(g λi)[1..n] ⊕ kj ⊕ λjC[g]
B. Else, set k := Fki(g λi)[1..n] ⊕ Fkj (g 1)[1..n] ⊕ λjC[g]

ii. Compute the output wire signal bit: λ := λi ⊕ λj

Fig. 8. Improved garbling scheme G′.

to Expt2PRF , as in Theorem 3.4. Specifically, the same hybrid distribution Hi (x) that
was defined in the proof of Theorem 3.4 is used here. Then, we define a probabilistic
polynomial time adversary Ai for Expt2PRF .
Ai garbles the first i − 1 gates using the instructions of simulator S ′. WhenAi needs

to construct the i th gate with input wires a, b and output wire c, Ai holds two active
keys kva

a , kvb
b , two signal bits λa, λb and the actual bits that are on the wire va, vb. If g

is an AND gate, thenAi proceeds exactly as in the proof of Theorem 3.4. If g is a XOR
gate, then Ai proceeds differently, depending on the value of λb. If λb = 0 (i.e, the key
that Ai holds on wire b has the signal bit ‘0’), then in order to generate the ciphertext
C[g], the adversary Ai needs to use its oracle (see Step 3.5.2 of Ai in the case that the
i th gate is a XOR gate). In this case, it sets k̃vb

b := kvb
b and sets the other key k̃vb

b and
the ciphertext C[g] exactly as in the proof of Theorem 3.4. However, if λ j = 1, thenAi

does not use the oracle anymore in order to generate k̃vb
b (see Step 4b of Ai in the case

that the i th gate is a XOR gate) since this value is not translated. Thus, Ai just chooses
kvb
b randomly and uses this instead of the call to O(3). This is the only difference to Ai

(note that when constructing gates for � > i where b is an input wire, Ai does not use
O(3) or O(4), but rather uses k̃vb

b as chosen above).
The remainder of the proof is the same. �

4. Simple and Fast 4–2 GRR for Non-XOR gates

4.1. Overview

Abstractly, gate garbling typically works by generating four pseudorandom masks
K0, K1, K2, K3, corresponding to the four possible input combinations (in some per-
muted order). In the notation, we have used so far—see Procedure GbAND—we have
that K0 = Fkπi

i
(g‖00) ⊕ F

k
π j
j

(g‖00), K1 = Fkπi
i

(g‖01) ⊕ F
k
π̄ j
j

(g‖01), and so on (note
that K1 equals the value used to mask the output key k

g(πi ,π̄ j )

� in T1). The evaluator of
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the circuit is able to compute one of these four masks, and can also use the signal bits
to identify the index of that mask. Namely, it computes a pair (i, Ki ) (but is unable to
identify the real input combination corresponding to the value that it computed).
In our base scheme described in the previous section, we garbled non-XOR gates

with three ciphertexts for each garbled gate. One of the ciphertexts was “removed” by
setting one of the keys on the output wire to actually be K0 rather than using K0 to
mask the key (this is called garbled row reduction, or GRR for short). In this section,
we improve on this by applying a 4–2 row reduction technique on these gates in order
to remove an additional ciphertext. There are two known such techniques: The 4-to-2
reduction technique method of Pinkas et al. [21] and the new “half-gates” approach of
Zahur et al. [23]. The “half-gates” techniquewas designed to be compatiblewith the free-
XOR technique and actually requires free-XOR; as such, it is based on the circularity
assumption and so is not suitable for this paper. In contrast, the 4–2 GRR technique of
Pinkas et al. [21] does not require free-XOR; it has been proved relying on a standard
assumption only and can be incorporated into our scheme. However, in this technique,
the generation of the garbled table by the circuit garbler, as well as the computation of
the output wire key given two ciphertexts of the gate table and the K value, is carried
out by interpolating a degree 2 polynomial. We describe here a different 4-to-2 garbling
method where the garbling and evaluation of the gate use only simple XOR operations.
This is preferable for two major reasons:

• Efficiency Polynomial interpolation uses three finite field multiplications and two
additions (after the Lagrange coefficients are precomputed). The overhead of com-
puting the multiplications is rather high, even when implemented in GF(2128). For
example, our implementation of this task, which used the PCLMULQDQ Intel
instruction, needed about half as many cycles as AES encryption.

• Simpler coding Efficient implementation of polynomial interpolation, especially
overGF(2128), and usingmachine instructions rather than calling a software library,
requires some expertise and is significantly harder to code than a few XOR opera-
tions.

Gate Evaluation We first describe the process of evaluating a gate. We will then
describe the garbling procedure which enables this gate evaluation procedure. Although
this is somewhat reversed (as onewould expect a description of howgarbling is computed
first), we present it this way as we find it clearer.
The gate evaluator receives as input a gate table with two entries [T1, T2], an index

i ∈ {0, 1, 2, 3}, and a value Ki computed from the two garbled values of the input wires
(note, T1, T2, Ki are all 128 bit strings). It computes the garbled output wire key kout in
the following way:

• If i = 0 then kout = K0
• If i = 1 then kout = K1 ⊕ T1
• If i = 2 then kout = K2 ⊕ T2
• If i = 3 then kout = K3 ⊕ T1 ⊕ T2

Garbling We now show how to garble AND gates so that the evaluation described
above provides correct evaluation. Due to the random permutation applied to the rows
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Table 4. Garbling the gate table.

s Truth table T1 T2 k0out k1out

3 0001 K0 ⊕ K1 K0 ⊕ K2 K0 K1 ⊕ K2 ⊕ K3
2 0010 K0 ⊕ K1 K1 ⊕ K3 K0 K1 ⊕ K2 ⊕ K3
1 0100 K2 ⊕ K3 K0 ⊕ K2 K0 K1 ⊕ K2 ⊕ K3
0 1000 K2 ⊕ K3 K1 ⊕ K3 K1 ⊕ K2 ⊕ K3 K0

(via the permutation bit), the single output bit “1” of these gates might correspond to
any of the masks K0, K1, K2, K3. Denote the index of that mask as s ∈ {0, 1, 2, 3}, and
denote by k0out, k

1
out the output wire keys. We need to design a method for computing the

garbled output key from the garbled table of this gate and the Ki values, such that

• The method applied to Ks outputs k1out, and when applied to any other K value it
outputs k0out.• Given Ks and the gate table, the value k0out is pseudorandom. Similarly, given any
other K value and the gate table, k1out value is pseudorandom.

Our starting point is the basic garbled gate procedure without row reduction, and so
with a gate table of four entries [T0, T1, T2, T3].We denote the output garbled value asso-
ciated with the i th entry of the table by k[Ti ], meaning that if Ti is the one “decrypted,”
then the key obtained is k[Ti ]. It holds that one k[Ti ] value is equal to k1out, and the other
three k[Ti ] values are equal to k0out. The table contains the four entries Ti = Ki ⊕ k[Ti ].

In the 4-to-3 row reductionmethod, the garbled gate entry T0 is always 0, and therefore,
(1) there is no need to store and communicate that entry, and (2) it always holds that
k[T0] = K0. If k[T0] = k0out, then k

1
out can be defined arbitrarily, whereas if k[T0] = k1out

then k0out can be defined arbitrarily.
In our new garbling method, we use the freedom in choosing the second output wire

key to always set it to K1 ⊕ K2 ⊕ K3. As a result, and as will be explained below, the
garbled table will have the property that entry T3 of the table satisfies T3 = T1 ⊕ T2.
Therefore, T3 can be computed in run time by the evaluator and need not be stored or
sent. In summary, garbling is carried out as follows:

• If k[T0] = k0out then k0out = K0 and k1out = K1 ⊕ K2 ⊕ K3
• Else, k1out = K0 and k0out = K1 ⊕ K2 ⊕ K3

This fully defines the garbled table, as follows:

• If k[T1] = k0out = K0, then T1 = K0 ⊕ K1 (since K0 = kout = K1 ⊕ T1). Else, we
have k[T1] = K1 ⊕ K2 ⊕ K3, implying that T1 = K2 ⊕ K3.

• If k[T2] = k0out = K0, then T2 = K0 ⊕ K2 (since K0 = kout = K2 ⊕ T2). Else, we
have k[T2] = K1 ⊕ K2 ⊕ K3, implying that T2 = K1 ⊕ K3.

See Table 4 for the full definition of the garbled table [T1, T2] and the definition of
the output wires, depending on the permutation (recall that s is the index such that
Ks = k1out). It is easy to verify correctness by tracing the computation in each case
according to the table.
An alternative way to verify that the new scheme is correct is to observe that the output

wire key computed for K3 is always
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k[T3] = K3 ⊕ T1 ⊕ T2
= K3 ⊕ (k[T1] ⊕ K1) ⊕ (k[T2] ⊕ K2)

= K1 ⊕ K2 ⊕ K3 ⊕ k[T1] ⊕ k[T2]
If k[T1] �= k[T2] then k[T1] ⊕ k[T2] = K0 ⊕ (K1 ⊕ K2 ⊕ K3). In this case, k[T3]

should equal K0 (since one of k[T1], k[T2] equals k1out and thus k3out = k0out ), and this
indeed follows from the equation.
If k[T1] = k[T2], then by the equation we have that k[T3] = K1 ⊕ K2 ⊕ K3. If

k[T3] = k1out then this is correct since k0out = K0. Furthermore, if k[T3] = k0out then
since k[T1] = k[T2] they both also equal k0out. This implies that k[T0] = k1out = K0 and
so k[T3] = K1 ⊕ K2 ⊕ K3, as required. Intuitively, the first case (where k[T3] = k1out)
corresponds to the case that the 0-key is K0 and the 1-key is K1 ⊕ K2 ⊕ K3, whereas the
second case (where k[T3] = k0out) corresponds to the case that the 0-key is K1 ⊕k2 ⊕K3
and the 1-key is K0.

Encoding the Permutation Bits The permutation bits can be encoded in a similar way
to that suggested in [21]. Two changes are applied to the basic garbling scheme:

• The garbled values are only n bits long, whereas the values Ki are still n + 1 bits
long (concretely here, we use n = 127). Therefore, the function used for generating
the Ki inputs has n-bit inputs and an n+1-bit output.We denote the least significant
bit of Ki by mi . Only n bits of Ki are used for computing the garbled key of the
output wire, using the procedure described above. Consequently, the values T1, T2
of the garbled table are also only n bits long.

• Weadd 4 bits to the table. The i th of these bits is theXORofmi with the permutation
bit of the corresponding output value.

The total length of a gate table is now 2n + 4 = 2n + 4 bits (concretely 258 bits). The
evaluation of a gate is performed by computing Ki ; using its most significant n bits for
computing the corresponding garbled output value; and using its least significant bit mi

for computing the corresponding signal bit.
As for security, note that the mi bits are pseudorandom, and are used only for the

encryption of the permutation/signal values.

Intuition for Security Recall that the 4-to-3 garbled row reduction scheme enables an
arbitrary choice of the output wire key that is not k[T0]. The new 4-to-2 garbled row
reduction scheme that we present is a special case, where we define that output wire
key to be equal to K1 ⊕ K2 ⊕ K3. Note that the evaluator can compute one of the Ki

values using the two keys it holds, and can obtain two of the other three using T1, T2.
However, in order to learn the other output wire key it needs the one Ki value that it
cannot compute. Thus, from the point of view of the evaluator, the other output wire key,
is a random string as required.

4.2. The Garbling Scheme

The changes need to be made at theGarble and Eval procedures in order to incorporate
our 4–2 GRR technique are presented in Fig. 9. We denote the improved scheme by G ′′.
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Garble(1n, c):

Procedure GbAND(k0
i , k

1
i , k

0
j , k

1
j , πi, πj):

1. Compute: K0||m0 := Fk
πi
i

(g||00) ⊕ F
k

πj
j

(g||00) K2||m2 := F
k

πi
i

(g||10) ⊕ F
k

πj
j

(g||01)

K1||m1 := Fk
πi
i

(g||01) ⊕ F
k

πj
j

(g||01) K3||m3 := F
k

πi
i

(g||11) ⊕ F
k

πj
j

(g||11)

2. Compute the location of ‘1’ in the truth table: s := 2πi + πj

3. Set the output wire keys and permutation bits:

(a) Choose the permutation bit for the wire: π ← {0, 1}
(b) If s = 0, set k0 := K0 and k1 := K1 ⊕ K2 ⊕ K3

(c) Else, (if s = 0), set k0 := K1 ⊕ K2 ⊕ K3 and k1 := K0

4. Compute T1, T2:

(a) If s = 3, set T1 := K0 ⊕ K1 and T2 := K0 ⊕ K2

(b) If s = 2, set T1 := K0 ⊕ K1 and T2 := K1 ⊕ K3

(c) If s = 1, set T1 := K2 ⊕ K3 and T2 := K0 ⊕ K2

(d) If s = 0, set T1 := K2 ⊕ K3 and T2 := K1 ⊕ K3

5. Compute the additional 4 bits: set ts := ms ⊕ π , and for α ∈ {0, 1, 2, 3} \ {s} set tα := mα ⊕ π

6. Return (k0, k1, π , T1, T2, t0, t1, t2, t3)

Note that GbAND returns 2 ciphertexts and 4 bits (instead of 3 ciphertexts as in G).

Procedure Eval(C,X):

2. (b) If g is an AND gate with inputs wires i, j and output wire (and table T1, T2, t0, t1, t2, t3):

i. Compute: K||m := Fki(g||λiλj) ⊕ Fkj (g||λiλj)
ii. Compute the output wire key:

A. If 2λi + λj = 0, set k := K

B. If 2λi + λj = 1, set k := K ⊕ T1

C. If 2λi + λj = 2, set k := K ⊕ T2

D. If 2λi + λj = 3, set k := K ⊕ T1 ⊕ T2

iii. Compute the output wire signal bit: λ := m ⊕ t2λi+λj

Fig. 9. Improved garbling scheme G′′.

4.3. Proof of Security

Next, we prove that G ′′ satisfies the privacy requirement. As before, we present the
modifications needed to the proof of Theorem 3.4.

Theorem 4.1. If F is a family of pseudorandom functions, then the garbling scheme
G ′′ achieves privacy.

Proof Sketch. Let S ′′ be a simulator that is identical to the simulator S from the proof
of Theorem 3.4 (or to S ′ from Theorem 3.5 if the XOR gates are computed as in G ′),
except that when S ′′ needs to simulate the garbling of an AND gate, holding the active
keys ki , k j and signal bits λi , λ j , it does the following:

1. S ′′ computes K ||m := Fki (g||λiλ j ) ⊕ Fk j (g||λiλ j )
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2. S ′′ sets the output wire active key and signal bit:

(a) λ� ← {0, 1}
(b) If 2λi + λ j = 0, then set k� := K
(c) Else, set k� ∈ {0, 1}n

3. Set T1, T2:

(a) If 2λi + λ j = 0, set T1, T2 ← {0, 1}n
(b) If 2λi + λ j = 1, set T1 := K ⊕ k� and T2 ← {0, 1}n
(c) If 2λi + λ j = 2, set T1 ← {0, 1}n and T2 := K ⊕ k�

(d) If 2λi + λ j = 3, set T1 ← {0, 1}n and T2 := K ⊕ k� ⊕ T1

4. Compute the additional 4 bits: set t2λi+λ j := m ⊕ λ�, and for α ∈ {0, 1, 2, 3} \
(2λi + λ j ) set tα ← {0, 1}

5. Set C[g] ← T1, T2, t0, t1, t2, t3

Note that in the AND gates generated by S ′′ code, the ciphertexts are computed so that
the result ofEvalwill always be k�. (For example, according toEval, if 2λi+λ j = 1 then
k� is computed as K ⊕T1. In such a case, S ′′ sets T1 := K ⊕k� and thus indeed K ⊕T1 =
k�.) Beyond this constraint, the values are uniformly random. In particular, if 2λi+λ j = 0
then both ciphertexts are random, and otherwise, the single ciphertext not used in Eval
is random. In addition, the 4 bits that mask the output wire permutation bits are chosen
randomly except for the bit that is pointed to by the input wire’s active signal bits.
We now define a hybrid Hi as in the proof of Theorem 3.4 and construct an adversary

Ai for the experimentExpt2PRF . AdversaryAi garbles the first i−1 gates in topological
order using the instructions ofS ′′.WhenAi reaches the i th gate with input wires a, b and
output wire c, it holds two active keys kva

a , kvb
b , two signal bits λa, λb and the actual bits

that are on the wire va, vb. Now, if g is a XOR gate, theAi garbled the gate exactly as in
the proof of Theorem3.4 (or Theorem3.5). If g is anANDgate, thenAi works as follows:

1. Ai computes:

K2λa+λb ||m2λa+λb := Fkva
a

(g||λaλb) ⊕ Fkvb
b

(g||λaλb)
K2λa+λb

||m2λa+λb
:= Fkva

a
(g||λaλb) ⊕ O(3)(g||λaλb)

K2λa+λb
||m2λa+λb

:= O(1)(g||λaλb) ⊕ Fkvb
b

(g||λaλb)
K2λa+λb

||m2λa+λb
:= O(1)(g||λaλb) ⊕ O(3)(g||λaλb)

2. Ai computes the location of ‘1’ in the truth table: s := 2πa +πb = 2(va ⊕ λa)+
(va ⊕ λa)

3. Ai runs steps (3)–(5) from procedure GbAND in G ′′
4. Ai outputs the garbled table C[g] ← T1, T2, t0, t1, t2, t3

It clear that when σ = 0 in Expt2PRF , the result is identical to the real scheme G ′′. In
contrast, when σ = 1, the answers of the oracles are random strings, and we have that all
of the K values are independent random strings except for the value of K2λa+λb which
Ai computes by itself using the keys it holds. (Observe that in each of the K values
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except for K2λa+λb , oracles O(3) and O(1) are invoked on different inputs, resulting in
independent random outputs.)
The output from the garbling of the gate byS ′′ is kc, λc (the active key used in garbling

gates with wire c along with its signal) and the garbled table T1, T2, t0, t1, t2, t3. In con-
trast, the output ofAi is k0c , k

1
c , πc along with T1, T2, t0, t1, t2, t3. Since the actual value

vc on the output wire is given, we can compute the actual signal bit λc (which equals
πc ⊕ vc) and the active wire kvc

c . Thus, we need to show that the joint distribution over
(kc, λc, T1, T2, t0, t1, t2, t3) generated by S ′′ in this case of σ = 1 is identical to the joint
distribution over (kvc

c , λc, T1, T2, t0, t1, t2, t3) generated by Ai . In order to understand
the following, we remark that given 2λa + λb (the row pointed to by the signal bits) and
s (the row in which the ‘1’-key is “encrypted”), the active key on the output wire can be
determined. This is because if s = 2λa + λb then the active key on the output wire is
k1c (since the signal bits point to the 1-key), and otherwise, it is k0c (since the signal bits
point to the 0-key).
We consider four cases:

1. Case 1—2λa + λb = 0: In this case, Ai computes K0 using keys kva
a , kvb

b ,
whereas K1, K2, K3 are independent random strings. Now, in this case, S ′′ sets
kc := K where K is computed exactly like K0 by Ai . In addition, S ′′ chooses
T1, T2 ← {0, 1}n at random. Since K1, K2, K3 are independent and random, it
follows that all four ways of setting T1, T2 depending on s that are described in
Step 4 of GbAND of G ′′ yield two independent keys. Thus, K0, T1, T2 generated
by Ai are distributed identically to K0, T1, T2 generated by S ′′. Now, if s �= 0,
then Ai sets k0c = K0 while if s = 0 then Ai sets k1c = K0. Since 2λa + λb = 0
it follows that if s �= 0 then the active key is k0c and if s = 0 then the active key is
k1c . Thus, in both cases the active output key is K0, exactly like S ′′.

2. Case 2—2λa +λb = 1: In this case,Ai computes K1 using keys k
va
a , kvb

b , whereas
K0, K2, K3 are independent random strings. When s ∈ {2, 3}, the active key k0c on
the outputwire is set byAi in Step 3 to be equal to K0, and T1 = K0⊕K1.When s ∈
{0, 1} the active key on the output wire equals K1⊕K2⊕K3 (because when s = 0,
the active key is k0c := K1⊕K2⊕K3 whilewhen s = 1, the active key is k1c := K1⊕
K2⊕K3), and T1 = K2⊕K3. In both cases, we have that K1⊕T1 equals the active
keyon theoutputwire. In addition, in all casesT2 is computedbyAi byXORing two
strings, of which at least one of them is random and independent of T1 and K1. (To
be exact, T2 is actually the XOR of one of the output wire keys with K2. However,
since K2 is random, and since there is at least one randomstring that appears in T1 or
T2, but not in both, we have that T2 is completely independent of all other values.) In
summary, kc, T1, T2 are all random strings under the constraint that kc = T1 ⊕ K1.
In contrast, S ′′ sets kc to be random, sets T1 = K ⊕ kc and T2 to be random. Thus,
K ⊕ T1 equals the active key on the output wire, and we have that kc, T1, T2 are
also all random under the constraint that kc = T1 ⊕ K . Thus, the distributions are
identical.

3. Case 3—2λa +λb = 2: In this case,Ai computes K2 using keys k
va
a , kvb

b , whereas
K0, K1, K3 are independent random strings. Using the same analysis as the pre-
vious case, we obtain that when s ∈ {0, 2} the active key on the output wire is
set by Ai to be K1 ⊕ K2 ⊕ K3 (because when s = 2, the active key is k1c , while
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when s = 0 the active key is k0c ; in both cases it equals K1 ⊕ K2 ⊕ K3), and
T2 = K1 ⊕ K3. In contrast, when s ∈ {1, 3}, the active key k0c on the output wire
is set to be K0, and T2 = K0 ⊕ K2. Denoting the active key by kc in all cases, we
have that kc and T2 are random under the constraint that kc⊕T2 = K2. In all cases,
as in the previous case with T2, ciphertext T1 is random and independent of kc, T2
since it involves an independent random value each time (K0, K1 or K3). Thus,
kc, T1, T2 are independent random strings, under the constraint that kc ⊕T2 = K2.
Regarding S ′′, it chooses kc and T1 uniformly at random and sets T2 = K ⊕ kc.
Thus, kc, T1, T2 have exactly the same distribution as that generated by Ai .

4. Case 4—2λa +λb = 3: In this case,Ai computes K3 using keys k
va
a , kvb

b , whereas
K0, K1, K2 are independent random strings. In this case, if s ∈ {0, 3} then the
active key kc on the output wire is set by Ai to be K1 ⊕ K2 ⊕ K3 (since if s = 0
the active key is k0c , whereas if s = 3 the active key is k1c ), and T1 ⊕T2 = K1 ⊕ K2
(see Step 4 in GbAND). Furthermore, if s ∈ {1, 2} then the active key kc on the
output wire is K0 and T1 ⊕ T2 = K0 ⊕ K3. In both cases, kc ⊕ T1 ⊕ T2 = K3.
Apart from this constraint, the values are random. Thus, we have that kc, T1, T2
are random under the constraint that kc ⊕ T1 ⊕ T2 = K3.
Regarding S ′′, in this case it chooses kc and T1 independently at random and sets
T2 = K ⊕ kc ⊕ T1. Thus, as above, kc, T1, T2 are random under the constraint that
kc ⊕ T1 ⊕ T2 = K3.

We conclude that kc, T1, T2 is identically distributed when generated by the adversary
Ai in the case of σ = 1 and when generated by the simulator S ′′ (note that K2λa+λb

is always the exact same value since it is fixed by the incoming keys). In addition, in
Ai ’s code all of the m values, except for the value of m2λa+λb are random. Thus, the bits
t1, t2, t3, t4 are random except for t2λa+λb , and the distribution over their values is the
same as when they are generated by S ′′. We conclude that when σ = 1, adversary Ai

constructs gate i exactly according to S ′′.
The remaining gates j > i are garbled using the real garbling scheme G ′′, with

Ai using its oracles O(2), O(4) to garble the other gates which wires a and b enters.
We conclude that when σ = 0, adversary Ai constructs the Hi−1 hybrid, while when
σ = 1 it constructs the Hi hybrid. The rest of the proof is the same as the proof of
Theorem 3.4. �

5. Garbling With Related-Key Security

5.1. Background

When using the free-XOR technique, a constant difference is used between the garbled
values on everywire (i.e., there exists a random� such that for everywire i , k0i ⊕k1i = �).
As a result, the keys used for encryption in non-XORgates are correlatedwith each other,
and also with the plaintext that they encrypt (observe that� appears in the garbled values
on both the input and output wires). Thus, a strong circularity related-key assumption is
needed for proving that the technique is secure. As we have seen, if we want to rely on a
pseudorandom function assumption only, then the keys on thewires have to be uniformly
and independently chosen. In this section, we consider garbling schemes that rely on
related keys, but do not require the stronger circularity assumption. In order to achieve
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this, keys on the input wires of each gate are allowed to be related, but no relation is
allowed between input wire keys and the output wire keys they encrypt. This relaxation
allows us to garble some of the XOR gates for free, and yields results that are better than
when garbling under a pseudorandom function assumption only, but worse than garbling
all the XOR gates for free which requires circularity. The work in this section builds
strongly on the fleXOR technique ofKolesnikov et al. [14], and provides amore complete
picture regarding the trade-off between efficiency and the security assumptions used in
circuit garbling. (Specifically, we consider the cost of garbling under the hierarchy of
assumptions, from public random permutation to circular related-key security to related-
key security to a pseudorandom function assumption).
In the work of Kolesnikov et al. [14], they showed that in order to avoid circularity it

suffices to apply amonotone rule on thewire ordering of the circuit. This monotone rule
states that when a certain difference value � is used on the input wires to a non-XOR
gate, then the � on the output wire must be different (actually, it has to be a � that
has not appeared previously in the garbling of gates that are in the path to the current
gate). Denote L different difference values by �1, . . . ,�L . Then, a wire ordering is
defined to be a function φ that takes a wire as its input and returns an element of the
set {1, .., L} (with the interpretation that on wire i , the difference between the garbled
values is �φ(i)). We formally define a monotone ordering as follows.

Definition 5.1. Let C be a garbled circuit, and let I be the set of circuit wires. A wire
ordering function φ : I → {1, .., L} is called monotone if:

1. For every non-XOR gate with input wires i, j and output wire �: φ(�) >

max(φ(i), φ( j))
2. For everyXORgatewith inputwires i, j andoutputwire�:φ(�) ≥ max(φ(i), φ( j))

Now, assume that a wire ordering was fixed, and consider a XOR gate g. If φ(�) =
φ(i) = φ( j) then the gate is garbled and computed using the free-XOR technique.
However, if φ(�) �= φ(i) (or likewise if φ(�) �= φ( j)) then wire i’s keys are translated
into new keys k̃0i , k̃

1
i such that k̃0i = Fk0i

(g) and k̃1i = k̃0i ⊕ �φ(�), yielding a garbled

gate entry Fk1i
(g) ⊕ k̃1i (to be more exact, the way of computing k̃0i , k̃

1
i can be reversed,

depending on the permutation bit). Once the input and output wires all have difference
�φ(�), the free-XOR technique can once again be used. It follows that a translation from
�input wire to�output wire can be carried out with one ciphertext and two encryptions. Thus
XOR gates can be garbled using 0, 1 or 2 ciphertexts and using 0, 2 or 4 encryptions
(for the cases where no translation is needed, where one translation is needed and where
two translations are needed, in, respectively), depending on the wire ordering that was
chosen for the circuit. This is a “flexible approach” since many different wire orderings
can be chosen, and hence its name “fleXOR.”8 Since the specific ordering determines the

8This is the real difference between the fleXOR approach and our standard assumption-based scheme:
our scheme is not flexible; all XOR gates are garbled in the same way such that for each wire there will be
an independent new offset that is set pseudorandomly when garbling each gate, and not in advance as in the
fleXOR approach. As a result, our scheme requires 4 (or 3) encryptions even though only one ciphertext is
required.



836 S. Gueron et al.

cost, this introduces a new algorithmic goal which is to find a monotone wire ordering
that is optimal; i.e., that minimizes the size of the circuit while satisfying the monotone
property.
Unfortunately, it is NP-hard to find an optimal monotone wire ordering [14]. Thus,

Kolesnikov et al. [14] described heuristic techniques for finding a good monotone order-
ing. Briefly, their heuristic is based on the observation that only non-XOR gates increase
the wire ordering number. They therefore define the non-XOR-depth of a wire i to be
the maximum number of non-XOR gates on all directed paths from i to an output wire.
Then, they set the wire ordering so that φ(i) + non − XOR − depth(i) is constant for
all wires. Algorithmically, they set the wire ordering value of each XOR gate’s output
wire to be equal to the maximal ordering value of its input wires, and they make the wire
ordering value of each AND gate’s output to equal a value that maintains the constant.
For more details, see [14].

5.2. Safe and Monotone Wire Orderings

The goal of constructing a goodmonotone wire ordering is to assign, whenever possible,
the same wire ordering number to input wires and output wires of XOR gates, so that the
communication and computation cost at XOR gates will be minimized. However, such a
strategy is not compatible with 4–2 row reduction techniques (the technique in this paper
and in [21] require that both output values be arbitrary unlike here, and the half-gates
method of Zahur et al. [23] works only under a circularity assumption which is exactly
what we are trying to avoid here). Thus, an optimizedmonotonewire orderingmay result
in most AND gates being garbled with 3 ciphertexts (4–2 row reduction could be used in
ANDgates where the difference on the output wire is “new”). In circuits withmanyXOR
gates relative to AND gates, such a strategy may be worthwhile. However, in circuits
where there are more AND gates than XOR gates (like the SHA256 circuit), the result
may be a larger circuit than that obtained by using our scheme based on pseudorandom
functions alone that costs 2 ciphertexts per AND gate and 1 ciphertext per XOR gate.
This motivates the search for wire orderings that enable 4–2 row reduction in AND

gates. Such a wire ordering is called safe and was defined by Kolesnikov et al. [14] for
this purpose; intuitively, a wire ordering is safe if the values on the output wires of AND
gates can be determined arbitrarily. Formally, we require that the � in the output of a
non-XOR gate different to all previous gates, implying that it is not yet determined:

Definition 5.2. Let C be a garbled circuit, and let I be the set of circuit wires. A wire
ordering function φ : I → {1, .., L} is called safe if for every non-XOR gate g with
output wire �, it holds that for every wire i that precedes it in the topological order of
the circuit φ(i) < φ(�).

Note that a wire ordering that is safe does not necessarily avoid circularity; thus
free-XOR together with half-gates will always be preferable (note that the notion of
a safe ordering was introduced before the half-gates construction was discovered, and
this made it redundant). Nevertheless, in order to both avoid circularity and potentially
reduce the number of ciphertexts in AND gates, we are interested in wire orderings that
are simultaneously safe and monotone. Such wire orderings were not considered in the



Fast Garbling of Circuits Under Standard Assumptions 837

Initialization algorithm:
1. Initialize AND index := 0

2. For every input wire i, set: φmin
i = φmax

i := 0

3. For every gate g in topological order (with input wires i, j and output wire ):

(a) If g is an AND gate:

i. Set AND index := AND index + 1
ii. Set φmin = φmax := AND index

(b) If g is a XOR gate:

i. Set φmin := max{φmin
i , φmin

j }
ii. Set φmax := AND index

Fig. 10. Initialization algorithm for the safe and monotone wire ordering heuristic.

work of Kolesnikov et al. [14], and we will dedicate the rest of this section to introducing
two simple heuristics that satisfy these two properties.9

Safe and Monotone Heuristics Our goal is to find a “good” safe and monotone wire
ordering heuristic that will allow us to garble AND gates using our 4–2 row reduction
technique, and to garble XOR gates using the fleXOR approach. When we say a “good”
heuristic, we mean that it minimizes the average number of ciphertexts per XOR gate.
Recall that in the fleXOR approach, XOR gates are garbled using 0,1 or 2 ciphertexts.
Thus, a wire ordering will only be reasonable if the average number of ciphertexts per
XOR gate is lower than 1; otherwise, it is better to use the scheme presented earlier that
garbles XOR gates with 1 ciphertext and under a pseudorandom function assumption
only.
Observe that in a safe and monotone wire ordering, if there are L non-XOR gates

in the circuit then there are L + 1 different delta values {�0,�1, ..,�L }, where �0 is
a random value that is set at the beginning of the garbling process and is assigned to
the input wires of the circuit, and the rest of the � values are assigned to each non-
XOR gate in topological order as determined by the garbling row reduction method in
the associated gate. We define two variables φmin

i , φmax
i for every wire i in the circuit,

where φmin
i (resp., φmax

i ) is the minimal (resp., maximal) value that φ(i) can have in
any safe and monotone wire ordering in the circuit. In Fig. 10, we present an algorithm
that computes the exact value of φmin

i and φmax
i for each wire.

To understand why the algorithm computes φmin
i and φmax

i correctly, recall that for
eachANDgate thewire ordering number is fixed in a safewire ordering, and is equal to its
index in the order ofANDgates in the circuit. Thus,φmin

� = φmax
� := AND_index as set

in step 3(a). For XOR gates, note that in our algorithm, setting the value of φmin
� for each

XOR gate’s output wire to be themaximum φ of its inputs, means that it is increased only
by AND gates that are in a path from a circuit input wire to the gate. Therefore, if there
exists a wire ordering that assigns φmin

� a smaller value than our algorithm, it will assign

9We remark that the proof of Kolesnikov et al. [14] that the problem of finding an optimal monotone
ordering is NP-hard does not go through for monotone and safe. We do not know if the problem of finding an
optimal safe and monotone ordering is NP-hard.
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it a wire ordering number that is smaller than a wire ordering number of an AND gate’s
output wire that is in a path that leads to it, thereby breaking monotonicity (as in Defini-
tion 5.1). In addition, since we cannot assign a wire with a � whose value will be deter-
mined at a later stage (due to the safe condition), the highest possible wire ordering value
that a XOR gate’s output wire � can have equals the number of AND gates that appears
before it in the topological order of the circuit. This maximum value is exactly the value
of the variable AND_index in the algorithm, which is assigned to φmax

� in step 3(b).
Next, observe that a heuristic that assigns each wire the value φmin

i , as well as a
heuristic that assigns each wire the value φmax

i , both yield valid safe and monotone wire
orderings. Moreover, taking φmin

i at every gate ensures that each XOR gate will have at
most one ciphertext (because the output wire value equals at least one of the input wire
values). Thus, this heuristic—that we call the pure min-heuristic—guarantees that the
average number of ciphertexts per XOR gate is less than or equal to 1.10 This means
that, not surprisingly, heuristics that yield a more efficient garbling scheme than our
scheme based only on a pseudorandom function assumption do exist. However, our aim
is to do better than the pure min-heuristic, and we suggest two heuristics that use φmin

i
and φmax

i as initialization values for the wire ordering values, and then improve upon
them by traversing the circuit gate by gate from the output to the input, and setting the
value of each gate output wire based on the existing values given so far.
The idea behind both heuristics is that, starting with the output wires and going

backwards, we try to group as many wires as possible to have the same wire ordering
number. We do this by trying to assign a wire i the same value as one of the output wires
of a gate that it enter (specifically, we try give it the minimal value among all the values
on the output wires that it enter; taking the minimal ensures monotonicity). When this
fails—measured by the fact this yields a value not between φmin

i and φmax
i —we set its

wire ordering number to be the maximum between the initialization values of its input
wires.
In the first heuristic, called SafeMon1, each wire i is given the initial ordering value

φ(i) = φmin
i . Then, starting with the circuit’s output wires and going backwards in

reverse topological order, we compute for every wire i that is not a circuit output wire:

φi := min {φ(k) | ∃ gate g with input wire i and output wire k}

This value is in fact the maximal value φ(i) can have without breaking monotonicity
since the input wire i to a gate cannot have a higher value than its output wire �. Then,
we set φ(i) = φi if φi ≤ φmax

i , and set φ(i) = φmin
i if φi > φmax

i (this ensures that we
don’t break the safe property).
The second heuristic, called SafeMon2, works in the same way except that the wires

are initialized with φmax
i instead of φmin

i . (Observe that in the initialization, φmin
� =

max(φmin
i , φmin

j and thus in SafeMon1 setting φ� = φmin
� is the same as setting it to

be max{φmin
i , φmin

j } as in SafeMon2.) The full description of the heuristic appears in
Fig. 11.

10Note that taking φmax
i at every gate does not guarantee at most 1 ciphertext per XOR gate.
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1. Run the initialization heuristic to obtain for each wire i the values φmin
i , φmax

i

2. For every circuit output wire i set: φ(i) :=
φmin

i for SafeMon1
φmax

i for SafeMon2

3. For every wire g in reverse topological order (with input wires i, j and output wire ):
If is not a circuit output wire, then:
(a) Compute φ := min φ(k) | ∃ gate g with input wire and output wire k

(b) If φ ≤ φmax then, set: φ( ) := φ

Else, set: φ( ) :=
φmin for SafeMon1
max φmax

i , φmax
j for SafeMon2

Fig. 11. Heuristics for finding safe and monotone wire orderings.

5.3. Choosing the Best Heuristic

We have described three heuristics for generating wire orderings that yield garbled
circuits that are secure based on a related-key assumption and without circularity (the
monotone heuristic from [14] and twonewheuristicSafeMon1 andSafeMon2).We ran
these heuristics on three different circuits, and compared the results with our garbling
scheme based only on pseudorandom functions and with the monotone heuristic of
Kolesnikov et al. [14]. The circuits we tested the heuristics on are AES, SHA-256 and
Min-Cut 250,000. The circuits have 6800, 90,825 and 999,960 AND gates, respectively,
and 25,124, 42,029 and 2,524,920 XOR gates, respectively [1]. The performance of each
heuristic was measured by the size of the circuit it yields. Table 5 shows the results of
the comparison. It can be seen that the monotone heuristic of Kolesnikov et al. [14] gives
the best result for the AES circuit, while the SafeMon2 heuristic yields the smallest
garbled circuit for the SHA-256 and Min-Cut circuits. Observe that in the SHA-256
circuit, which has a high percentage of AND gates, all the heuristics fail to significantly
reduce the size of the garbled circuit, relative to the size of the circuit constructed under
the pseudorandom function assumption only. This is due to the fact that in such circuits
the high amount of AND gates impose many constraints on the wire ordering, and so
we are forced to have many different deltas that are “spread” between a small amount of
XOR gates. In such cases, not much is gained by using a related-key assumption, versus
pseudorandom functions only.
As we described above, safe and monotone heuristics are expected to beat the pure

monotone heuristic of Kolesnikov et al. [14] only when there are more AND gates than
XOR gates. Indeed, if we measure only the effect on XOR gates (see the numbers in
the parentheses in Table 5), then the monotone-only heuristic always results in less
ciphertexts on average for the XOR gates. This is because it imposes less constraints on
the wire ordering and focuses only on the XOR gates. In the AES circuit, where there
are only 6800 AND gates and 25124 XOR gates, the average number of ciphertexts per
XOR gates is only 0.15 (which is very impressive). Thus, even though the AND gates
require 3 ciphertexts each, the overall result is the best. The safe andmonotone heuristics
that we present here also take into consideration the cost of AND gates (at the expense
of XOR gates), and so achieve better results when there is a higher percentage of AND
gates.
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Table 5. Comparison of the size of the garbled circuit that each heuristic generated (including a base com-
parison to the cost under a pseudorandom function assumption only).

AES SHA-256 Min-Cut

PRF only 1.21 (1) 1.68 (1) 1.28 (1)
Monotone [14] 0.76 (0.15) 2.26 (0.76) 1.13 (0.4)
SafeMon1 0.93 (0.64) 1.64 (0.97) 1.19 (0.87)
SafeMon2 1.19 (0.97) 1.53 (0.86) 1.07 (0.7)

Themain number in each cell shows the average number of ciphertexts per gate. The number in the parentheses
shows the average ciphertexts per XOR gate only. The best result for each circuit is bolded

Table 6. Comparison of the average number of calls to the pseudorandom function per XOR gate, for each
heuristic .

AES SHA-256 Min-Cut

PRF only 3 3 3
Monotone [14] 0.31 1.55 0.79
SafeMon1 1.29 1.95 1.75
SafeMon2 1.96 1.73 1.41

In Table 6, we show the computation cost of garbling XOR gates (number of pseu-
dorandom function computations) when using the wire orderings that each heuristic
generated. We only consider XOR gates in this computation, since all the methods used
for garbling AND gates require the same computational work. Recall that in the fleXOR
method, garbling XOR gates may need 0, 2 or 4 calls to the pseudorandom function.
Thus, the computation cost is measured by the average number of calls to the encryption
function per XOR gate. Observe that for this measure, all heuristics are considerably
better than the scheme relying only on a pseudorandom function assumption. This is
because in the fleXORapproach, only two calls to the pseudorandom function are needed
when garbling a XOR gate with one ciphertext, in contrast to three in the scheme based
only on pseudorandom functions. However, we remark that when using AES-NI and
pipelining, this actually makes little difference to the overall time. Also, observe that the
monotone heuristic is better than the other heuristics when comparing computational
cost. As explained before, this is because the monotone heuristic focuses solely on min-
imizing the cost at XOR gates, rather than minimizing the cost for the entire circuit, thus
achieving better results when measuring the effect on XOR gates only.
We conclude that in circuits with many XOR gates relative to AND gates, the use of

a related-key assumption yields an improvement over the scheme relying on pseudoran-
dom functions only. For example, in the AES circuit the smallest result is 24% smaller,
and in the min-cut circuit the size of the circuit is approximately 16% smaller.

Optimal Algorithms We stress that we did not prove anything regarding the optimality
of the heuristics we described. Indeed, adding the requirement that the ordering be safe
is just a way to force the heuristic to take AND gates into account. However, it is possible
that a better result can be achieved with an ordering that is not safe. However, as we
have mentioned, finding an optimal monotone ordering is NP-hard. Thus, finding better
heuristics or optimization algorithms is left for future work.
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Table 7. Summary of experimental results (times are for a full semi-honest execution in milliseconds).

Assumption Scheme AES SHA-256 Min-Cut

VA–VA VA–IRE VA–VA VA–IRE VA–VA

PRF 1 Pipe-garbl; XOR-3; AND-3 (naïve) 20 203 68 303 1947
2 Pipe-garbl+KS; XOR-1; AND-3 16 200 54 236 1195
3 Pipe-garbl+KS; XOR-1; AND-2 16 200 50 229 1047

Circularity 4 Pipe-garbl; free-XOR; AND-3 16 198 45 222 753
5 Pipe-garbl+KS; free-XOR; AND-3 16 198 36 221 701
6 Pipe-garbl+KS; free-XOR; half-gates 16 196 27 206 546

Public random
permutation

7 Fixed key; free-XOR; AND-3 16 196 27 214 596

8 Fixed key; free-XOR; half-gates 16 195 20 199 460

The first row is for naïve garbling. Rows 2, 3, 5 and 6 are based on our improvements. The rows marked in
boldface highlight the best schemes under each set of assumptions

6. Experimental Results and Discussion

In the previous sections, we presented four tools that can optimize the performance of
garbled circuits without relying on any additional cryptographic assumption beyond the
existence of pseudorandom functions: (1) pipelined garbling; (2) pipelined key schedul-
ing; (3) XOR gates with one ciphertext and three encryptions; and (4) improved 4–2
GRR for AND gates. In this section, we present the results of an experimental evaluation
of these methods—together and separately – and compare their performance to that of
other garbling methods.
Table 7 shows the time it takes to run the full Yao semi-honest protocol [18,22] on three

different circuits of interest: AES, SHA-256 and Min-Cut 250,000. The circuits have
6800, 90,825 and 999,960 AND gates, respectively, and 25,124, 42,029 and 2,524,920
XOR gates, respectively. The number of input bits for which OTs are performed are 128,
256 and 250,000, respectively [1].We remark that our implementation of the semi-honest
protocol of Yao utilizes the highly optimized OT extension protocol of [2].

We examined eight different schemes, described using the following notation: [pipe-
garble] for the pipelined garbling method; [pipe-garble+KS] for pipelined garbling
and pipelined key scheduling; [fixed key] where all PRF evaluations were performed
using the fixed-key technique described in [5]; [XOR-3]where XOR gates were garbled
using a simple 4–3 GRR method; [XOR-1] where XOR gates were garbled using our
method of garbling with one ciphertext; [free-XOR]where the free-XOR technique was
used; [AND-3]where AND gates were garbled using simple 4–3 GRR; [AND-2]where
our 4–2 GRR method was used to garble AND gates; and finally, [AND-half-gates]
where the “half-gates” technique of Zahur et al. [23] was used to garble AND gates.
Note that the half-gates method is only used in conjunction with free-XOR since this is
a requirement.
The first scheme in Table 7 is the most “naïve,” where a simple 4–3 GRRwas used for

both AND and XOR gates and the garbling was pipelined, but not the key scheduling. In
contrast, the last scheme is the most efficient as it uses fast fixed-key encryption and the
half-gates approach to achieve two ciphertexts per AND gates and none for XOR gates.
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Table 8. Summary of garbled circuit size in Megabytes, according to scheme.

Assumption Scheme AES SHA-256 Min-Cut

PRF 1 Pipe-garbl; XOR-3; AND-3 (naïve) 1.46 6.08 161.36
2 Pipe-garbl+KS; XOR-1; AND-3 0.69 4.80 84.30
3 Pipe-garbl+KS; XOR-1; AND-2 0.59 3.41 69.04

Related key 4 Monotone 0.37 4.58 60.78
5 SafeMon1 0.45 3.32 64.03
6 SafeMon2 0.58 3.10 57.55

Circularity 7 Pipe-garbl; free-XOR; AND-3 0.31 4.16 45.77
8 Pipe-garbl+KS; free-XOR; AND-3 0.31 4.16 45.77
9 Pipe-garbl+KS; free-XOR; half-gates 0.21 2.77 30.5

Public random permutation 10 Fixed key; free-XOR; AND-3 0.31 4.16 45.77
11 Fixed key; free-XOR; half-gates 0.21 2.77 30.5

The schemes are as in Table 7, with the addition of the results of the heuristics in Sect. 5. (Note that for the
related-key schemes, there is no single method that is always best.)

However, this scheme is based on the strongest assumption, that fixed-key AES behaves
like a public randompermutation. The third scheme in the table uses all our optimizations
together, and thus it is the most efficient scheme that is based on a standard PRF assump-
tion. The sixth scheme in the table shows the best that can be achieved while assuming
circularity and related-key security, butwithout resorting to a public randompermutation.
Table 8 shows the size of the garbled circuit under all our different schemes, as in Table 7.

The experiments were performed on Amazon’s c4.8xlarge compute-optimized
machines (with Intel Xeon E5-2666 v3 Haswell processors) running Windows. The
measurements include the time it takes to garble the circuit, send it to the evaluator, and
compute the output. Since communication is also involved, this measures improvements
both in the encryption technique and in the size of circuit. Each scheme was tested on
the three circuits in two different settings: the Virginia–Virginia (VA–VA) setting where
the two parties running the protocol are located at the same data center, and the Virginia–
Ireland (VA–IRE) setting where the physical distance between the parties is large. (We
omitted the results of running the large min-cut circuit in the VA–IRE setting as they
were not consistent and had a high variability.) Each number in the table is an average
of 20 executions of the indicated specific scenario.
The table rows marked in boldface highlight the best schemes under each set of

assumptions. Looking at the results, we derive the following observations:

• Best efficiency As predicted, the fixed key + half-gates implementation (8) is the
fastest and most efficient in all scenarios. (This seems trivial, but when using fixed-
key AES, the Eval procedure at AND gates requires one more encryption than in a
simple 4–3 GRR. Thus, this confirms the hypothesis that the communication saved
is far more significant than an additional encryption, that is anyway pipelined.)

• Small circuits In small circuits (e.g.,AES), the running time is almost identical in all
schemes and in both communication settings. In particular, using our optimizations
(3) yields the same performance result as that of the most efficient scheme (8),
in both the VA–VA and VA–IRE settings. This is due to the fact that in small
circuits, running the OT protocol is the bottleneck of the protocol (even if, as in our
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experiments, optimize OT extension [2] is used). This means that for small circuits
there is no reason to rely on a nonstandard cryptographic assumption.

• Medium circuits In the larger SHA-256 circuit, where the majority of the gates are
AND gates, there was a difference between the results in the two communication
settings. In the VA–VA setting the best scheme based on PRF alone (3) has per-
formance that is closer to that of the naïve scheme (1) than to that of the schemes
based on the circularity or the public random permutation assumptions (schemes 6
and 8). In contrast, in the VA–IRE setting the PRF based scheme performs close to
schemes 6 and 8. This is explained by observing that when the parties are closely
located, communication is less dominant and garbling becomes a bigger factor.
Thus, garbling XOR gates for free improves the performance of the protocol. In
contrast, when the parties are far from each other, communication becomes the bot-
tleneck, thus the PRF based scheme (3) yields a significant improvement compared
to the naïve case (1) and its performance is not much worse than that of the best
fixed-key-based scheme (and since there are fewer XOR gates, the overhead of an
additional ciphertext per gate is reasonable).

• Large circuits In the large Min-Cut circuit, the run time of our best PRF based
scheme (3) is closer to the best result (8) than to the naïve result (1). This is explained
by the fact that the circuit is very large and so bandwidth is very significant. This is
especially true since the majority of gates are XOR gates, and so the reduction from
3 ciphertexts to 1 ciphertext per XOR gate has a big influence. (Observe that the size
of the garbled circuit sent in (8) is 30.5MB, the size of the garbled circuit sent in (3)
is 69MB, while the size of the garbled circuit sent in (1) is 161.4MB.) Observe that
schemes (6) and (8) have the same bandwidth; the difference in cost is therefore due
to the additional cost of the AES key schedules and encryptions. Note, however,
that despite the fact that there are 1,000,000 AND gates, the difference between the
running times is 15%, which is not negligible, but also not overwhelming.

• Removing the public random permutation assumption Comparing scheme (8),
which is themost efficient, to scheme (6)which is themost efficient scheme that does
not dependon thepublic randompermutation assumption, shows that in all scenarios
removing the fixed-key technique causes only a minor increase in running time.

We conclude that strengthening security by removing the public random permutation
assumption does not noticeably affect the performance of the protocol. Thus, in many
cases, two-party secure computation protocols do not need to use the fixed-key method.
Further security strengthening by not depending on a circularity assumption (i.e., “pay-
ing” for XOR gates) does come with a cost. Yet, in scenarios where garbling time is not
the bottleneck (e.g., small circuits, large inputs, communication constraints), one should
consider using a more conservative approach as suggested in this work. In any case, we
believe that our ideas should encourage future research on achieving faster and more
efficient secure two-party computation based on standard cryptographic assumptions.
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