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Abstract. An oracle chooses a function f from the set of n bits strings to itself,
which is either a randomly chosen permutation or a randomly chosen function. When
queried by an n-bit string w, the oracle computes f (w), truncates the m last bits, and
returns only the first n −m bits of f (w). How many queries does a querying adversary
need to submit in order to distinguish the truncated permutation from the (truncated)
function? In Hall et al. (Building PRFs from PRPs, Springer, Berlin, 1998) showed an
algorithm for determining (with high probability) whether or not f is a permutation,

using O(2
m+n
2 ) queries. They also showed that ifm < n/7, a smaller number of queries

will not suffice. For m > n/7, their method gives a weaker bound. In this note, we first
show how a modification of the approximation method used by Hall et al. can solve the

problem completely. It extends the result to practically any m, showing that Ω(2
m+n
2 )

queries are needed to get a non-negligible distinguishing advantage. However, more
surprisingly, a better bound for the distinguishing advantage, which we can write, in a

simplified form, as O

(
min

{
q2

2n ,
q

2
n+m
2

, 1

})
, can be obtained from a result of Stam

published, in a different context, already in 1978. We also show that, at least in some
cases, this bound is tight.
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1. Introduction

Distinguishing a randomly chosen permutation from a random function is a combina-
torial problem which is fundamental in cryptology. A few examples where this prob-
lem plays an important role are the security analysis of block ciphers, hash, and MAC
schemes.
One formulation of this problem is the following. An oracle chooses a function F :

{0, 1}n → {0, 1}n , which is either a randomly (uniformly) chosen permutation of {0, 1}n
or a randomly (uniformly) chosen function from {0, 1}n to {0, 1}n . An adversary selects
a “querying and guessing” algorithm. He first uses it to submit q (adaptive) queries to the
oracle, and the oracle responds with F(w) to the query w ∈ {0, 1}n . After collecting the
q responses, the adversary uses his algorithm to guess whether or not F is a permutation.
The quality of such an algorithm (in the cryptographic context) is the ability to distinguish
between the two cases (rather than successfully guessing which one it is). It is measured
by the difference between the probability that the algorithm outputs a certain answer,
given that the oracle chose a permutation, and the probability that the algorithm outputs
the same answer, given that the oracle chose a function. This difference is called the
“advantage” of the algorithm.We are interested in estimating Adv, which is the maximal
advantage of the adversary, over all possible algorithms, as a function of a budget of q
queries.
The well-known (folklore) answer to this problem is based on the simple “collision

test” and the Birthday Problem:

Adv = 1 −
(
1 − 1

2n

) (
1 − 2

2n

)
. . .

(
1 − q − 1

2n

)
.

Since for every 1 ≤ k ≤ q − 1

1 − q

2n
≤

(
1 − k

2n

)(
1 − q − k

2n

)
≤

(
1 − q

2n+1

)2
,

we get, for q ≤ 2n , that

1 − e− q(q−1)
2n+1 ≤ 1 −

(
1 − q

2n+1

)q−1 ≤ Adv ≤ 1 −
(
1 − q

2n

) q−1
2 ≤ q(q − 1)

2n+1 . (1)

This result implies that the number of queries required to distinguish a random permu-
tation from a random function, with success probability significantly larger than, say, 12 ,

is Θ(2
n
2 ). We now consider the following generalization of this problem:

Problem 1. (Distinguishing a truncated permutation) Let 0 ≤ m < n be integers. An
oracle chooses c ∈ {0, 1}. If c = 1, it picks a permutation p of {0, 1}n uniformly at
random, and if c = 0, it picks a function f : {0, 1}n → {0, 1}n uniformly at random. An
adversary is allowed to submit queries w ∈ {0, 1}n to the oracle. The oracle computes
α = p(w) (if c = 1) or α = f (w) (if c = 0), truncates (with no loss of generality)
the last m bits from α, and replies with the remaining (n −m) bits. The adversary has a
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budget of q (adaptive) queries, and after exhausting this budget, is expected to guess c.
How many queries does the adversary need in order to gain non-negligible advantage?
Specifically, we seek q 1

2
(n,m) = min{q | Advn,m(q) ≥ 1

2 } as a function of m and n.

2. So, How Many Queries are Really Needed?

The Birthday bound (folklore) We start with remarking that the classical “Birthday”
bound q 1

2
(n,m) = Ω(2n/2) is obviously valid as a bound for the adversary’s advantage

in Problem 1. In fact, any algorithm that the adversary can use with the truncated replies
of (n−m) bits from f (w) can also be used by the adversary who sees the full f (w) (he
can ignore m bits and apply the same algorithm).

Of course, we are looking for a better upper bound that would reflect the fact that
the adversary receives less information when f (w) is truncated. We have the following
bounds for Problem 1.

Hall et al. [5] Problem 1 was studied by Hall et al. [5]. The authors showed an algorithm
that gives a non-negligible distinguishing advantage using q = O(2(n+m)/2) queries (for
any m). They also proved the following upper bound:

Advn,m(q) ≤ 5

(
q

2
n+m
2

) 2
3 + 1

2

(
q

2
n+m
2

)3 1

2
n−7m

2

. (2)

Form ≤ n/7 the bound in (2) implies that q 1
2
(n,m) = Ω(2

m+n
2 ). However, for larger

values of m, the bound on q 1
2
(n,m) that is offered by (2) deteriorates, and becomes

(already for m > n/4)worse than the trivial “Birthday” bound q 1
2
(n,m) = Ω(2n/2).

Hall et al. [5] conjectured that Ω(2
m+n
2 ) queries are needed in order to get a non-

negligible advantage, in the general case.

Bellare and Impagliazzo [1] Theorem 4.2 in [1] states that

Advn,m(q) = O(n)
q

2
n+m
2

(3)

whenever 2n−m < q < 2
n+m
2 .

This implies that q 1
2
(n,m) = Ω( 1n 2

m+n
2 ) for m > 1

3n + 2
3 log2 n + Ω(1). We point

out that it is hard to extract an upper bound for Advn,m from [1], in a form that can be
directly compared to the other approximations that are discussed here.

GilboaandGueron [4]Themethodused to show (2) canbepushed toprove the conjecture
in [5] for (almost) every m. In particular, it can be shown that if m ≤ n/3 then

Advn,m(q) ≤ 2 3
√
2

(
q

2
n+m
2

) 2
3 + 2

√
2√
3

(
q

2
n+m
2

) 3
2 +

(
q

2
n+m
2

)2

, (4)
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and if n
3 < m ≤ n − 4 − log2 n then

Advn,m(q) ≤ 3

(
q

2
n+m
2

) 2
3 + 2

(
q

2
n+m
2

)
+ 5

(
q

2
n+m
2

)2

+ 1

2

(
2q

2
n+m
2

) n
n−m

. (5)

This implies that q 1
2
(n,m) = Ω(2

m+n
2 ) for any 0 ≤ m ≤ n − 4 − log2(n).

Stam [9] Surprisingly, it turns out that Problem 1 was solved 20 years before Hall et al.
[5], in a different context. The bound

Advn,m(q) ≤ 1

2

√
(2n−m − 1)q(q − 1)

(2n − 1)(2n − (q − 1)
≤ 1

2
√
1 − q−1

2n

· q

2
n+m
2

, (6)

which is valid for all 0 ≤ m < n, follows directly from a result of Stam [9, Theorem
2.3]. Note that if q ≤ 3

42
n then (6) can be simplified to the very handy form

Advn,m(q) ≤ q

2
m+n
2

. (7)

This implies that q 1
2
(n,m) = Ω(2

m+n
2 ) for any 0 ≤ m < n, confirming the conjecture

of [5] in all generality (20 years before the conjecture was raised).

Remark 1. The bound (6) is tighter than all the bounds mentioned above, with one
exception: the elementary upper bound (1) is better than (6) for q ≤ 2

n−m
2 .

3. Different Methods Give Different Bounds

It is interesting to see how different approaches yield different bounds for Problem 1.
To this end, we first define some notations.
For fixed m < n and q ≤ 2n denote Ωq := ({0, 1}n−m

)q . We view Ωq as the set of
all possible sequences of replies that can be given by the oracle (to the adversary’s q
queries).
For any j ≥ 2 , ω ∈ Ω let

col j (ω) = #{1 ≤ i1 < i2 < . . . < i j ≤ q | ωi1 = ωi2 = . . . = ωi j }

For ω = (w1, w2, . . . , wq) ∈ Ω and 1 ≤ r ≤ q, let

Vr (ω) := {(x1, x2, . . . , xq) ∈ Ω | ∀1 ≤ i ≤ r : xi = wi }

be the set of sequences of replies that are the same as ω up to the r -th query.
Forω ∈ Ω let Prperm(ω) andPrfunc(ω) be the probabilities thatω is the actual sequence

of replies that the oracle gives to the adversary’s q queries, in the case the oracle chose
a random permutation or a random function, respectively.
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For 1 ≤ r ≤ q, let

Q(r)
perm(ω) = Prperm(Vr (ω))

Prperm(Vr−1(ω))
, Q(r)

func(ω) = Prfunc(Vr (ω))

Prfunc(Vr−1(ω))
.

Note that

Prperm(ω) =
q∏

r=1

Q(r)
perm(ω), Prfunc(ω) =

q∏
r=1

Q(r)
func(ω).

3.1. The Proof Method of Hall et al

The proof of (2) uses the general bound

Advn,m(q) ≤ max
ω∈S

∣∣∣∣Prperm({ω})
Prfunc({ω}) − 1

∣∣∣∣ + max
{
Prfunc(S),Prperm(S)

} ≤

≤ 2max
ω∈S

∣∣∣∣Prperm({ω})
Prfunc({ω}) − 1

∣∣∣∣ + Prfunc(S). (8)

that holds for any S ⊆ Ω . It is applied to the set

S :=
{
ω ∈ Ω :

∣∣∣∣col2(ω) −
(
q

2

)
1

2n−m

∣∣∣∣ ≤ c1
q

2
n−m
2

, col3(ω) = 0

}
.

The expression maxω∈S
∣∣∣Prperm({ω})
Prfunc({ω}) − 1

∣∣∣ is bounded by direct computations. The

expression Prfunc(S) is bounded by combining the Union Bound and the Chebyshev
inequality. Finally, c1 is chosen to minimize the resulting bounds.

3.2. The Proof Method of Gilboa and Gueron

To get (4) (for m ≤ n/3), we can apply the slightly better (than (8)) bound

Advn,m(q) ≤ 1

2
max
ω∈S

∣∣∣∣Prperm({ω})
Prfunc({ω}) − 1

∣∣∣∣ + 1

2

(
Prfunc(S) + Prperm(S)

) ≤

≤ max
ω∈S

∣∣∣∣Prperm({ω})
Prfunc({ω}) − 1

∣∣∣∣ + min
{
Prfunc(S),Prperm(S)

}
(9)

to the set

S :=
{
ω ∈ Ω :

∣∣∣∣col2(ω) −
(
q

2

)
1

2n−m

∣∣∣∣ ≤ c2
q2/322m/3

2n/3 , col3(ω) ≤ c3
q3/2

2n

}

Here, c2, c3 are chosen to minimize the bound. Again, maxω∈S
∣∣∣Prperm({ω})
Prfunc({ω}) − 1

∣∣∣ is

bounded by direct (elaborate) computation, and Prfunc(S) is bounded by combining
(via the Union Bound) the Chebyshev inequality and the Markov inequality.
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The bound (5) (for n/3 < m ≤ n − 4 − log2 n) follows similarly by examining the
set

S :=
{
ω ∈ Ω :

∣∣∣∣col j+1(ω) −
(

q

j + 1

)
1

2 j (n−m)

∣∣∣∣ ≤ α j ∀1 ≤ j ≤ t − 1 , colt+1(ω) ≤ β

}

for t :=
⌈
n+m
n−m

⌉
and α1, . . . , αt−1, β which are chosen to optimize the bound.

3.3. The Proof Method of Bellare and Impagliazzo

Bellare and Impagliazzo also used (9), for the set S of all ω ∈ Ω satisfying (for suitable
δ and λ):

1. For any 1 ≤ r ≤ q,

∣∣∣∣∣log
Q(r)

perm(ω)

Q(r)
funcω)

∣∣∣∣∣ ≤ 3δ

2

2. For any 1 ≤ r ≤ q,

∣∣∣∣∣∣
∑

x∈Vr−1(ω)

Prfunc(x)

Prfunc(Vr−1(ω))
log

Q(r)
perm(x)

Q(r)
func(x)

∣∣∣∣∣∣ ≤ δ2

2
,

3.

∣∣∣∣∣∣log
Prperm(ω)

Prfuncω)
−

q∑
r=1

∑
x∈Vr−1(ω)

Prfunc(x)

Prfunc(Vr−1(ω))
log

Q(r)
perm(x)

Q(r)
func(x)

∣∣∣∣∣∣ ≤ δ(δ + 3)λ
√
q

2
.

The expression Prfunc(S) is bounded by combining the Azuma inequality and the
observation that for any 1 ≤ r ≤ q,

0 ≥
∑
ω∈Ω

Q(r)
func(ω) log

Q(r)
perm(ω)

Q(r)
func(ω)

≥ −1

2

(
max
ω∈S

∣∣∣∣∣
Q(r)

perm(ω)

Q(r)
func(ω)

− 1

∣∣∣∣∣
)2

,

3.4. The Proof Method of Stam

Stam’s approach observes that by Pinsker’s inequality [8] 1 we have

1The inequality as used in (10)was established independently byCsiszár [3],Kemperman [6], andKullback
[7]. Pinsker proved the inequality with a worse constant.
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Advn,m(q) ≤ 1

2

∑
ω∈Ω

∣∣Prperm(ω) − Prfunc(ω)
∣∣ ≤

≤
√
1

2

∑
ω∈Ω

Prperm(ω) log
Prperm(ω)

Prfunc(ω)
. (10)

He then uses the decomposition

∑
ω∈Ω

Prperm(ω) log
Prperm(ω)

Prfunc(ω)
=

q∑
r=1

∑
ω∈Ω

Prperm(Vr−1(ω))Q(r)
perm(ω) log

Q(r)
perm(ω)

Q(r)
f unc(ω)

,

direct (exact) computations, and the concavity of the log function.

4. Stam’s Bound is Sometimes Sharp

In the case m = n − 1 (i.e., the oracle returns only 1 bit), (6) gives

Advn,n−1(q) ≤ 1

2

√
q(q − 1)

(2n − 1)(2n − (q − 1)
≤ 1√

2 − q−1
2n−1

· q

2n
.

In this section, we show that this bound is essentially sharp.
With no loss of generality, we may assume q is even and q ≤ 1

22
n . We define the

following adversarial algorithm.

Algorithm 1. Collect the answers (which are, in this case, just bits) of q arbitrary
queries.
Compute the difference 	 between the number of 0’s and 1’s.
If 	 ≤ √

q/2, guess that the oracle was using a truncated random permutation. Other-
wise, guess that the oracle was using a random function.

The advantage of Algorithm 1 is

∑
|k−(q−k)|<√

q/2

(
q

k

) (∏k
i=1(2

n−1 − (i − 1)) · ∏q−k
i=1 (2n−1 − (i − 1))∏q

i=1(2
n − (i − 1))

− 1

2q

)
=

=
∑

|k−(q−k)|<√
q/2

(
q

k

)
1

2q

(∏k
i=1(2

n − 2(i − 1)) · ∏q−k
i=1 (2n − 2(i − 1))∏q

i=1(2
n − (i − 1))

− 1

)

We show that

(
q

k

)
1

2q
≥ 1

2
√
q

, (11)



How Many Queries are Needed to Distinguish a Truncated. . . 169

pk :=
∏k

i=1(2
n − 2(i − 1)) · ∏q−k

i=1 (2n − 2(i − 1))∏q
i=1(2

n − (i − 1))
> 1 + q/2

2n
(12)

for any k such that |k − (q − k)| <
√
q/2. From this, we can conclude that

Advn,n−1(q) >
√
q

1

2
√
q

q/2

2n
= q/4

2n
.

First, note that for k = q/2.

(
q

q/2

)
1

2q
= 1

2

q/2∏
i=2

2i − 1

2i
≥ 1

2

q/2∏
i=2

√
i − 1√
i

= 1√
2q

, (13)

pq/2 =
q/2∏
i=1

(
1 + 1

2n − (2i − 1)

)
≥

(
1 + 1

1
22

n

)q/2

≥ 1 + q

2n
. (14)

Since for any 0 ≤ j < q/2

(q
j

)
( q
j+1

) = 1 − q − 2 j − 1

q − j
> 1 − 2(q − 2 j − 1)

q
,

p j

p j+1
= 1 − 2(q − 2 j − 1)

2n − 2 j
≥ 1 − 4(q − 2 j − 1)

2n
,

we get that for any q
2 −

√
q
4 ≤ k <

q
2

(q
k

)
( q
q/2

) =
q
2 −1∏
i=k

(q
j

)
( q
j+1

) ≥
q
2 −1∏
j=k

(
1 − 2(q − 2 j − 1)

q

)

≥ 1 − 2
∑ q

2 −1
j=k (q − 2 j − 1)

q
=

= 1 − (q − 2k)2

2q
≥ 7

8
,

pk
pq/2

=
q
2 −1∏
i=k

p j

p j+1
≥

q
2 −1∏
j=k

(
1 − 4(q − 2 j − 1)

2n

)

≥ 1 − 4
∑ q

2 −1
j=k (q − 2 j − 1)

2n
=

= 1 − (q − 2k)2

2n
≥ 1 − q/4

2n
.
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Now, using (13) and (14) we get

(
q

k

)
1

2q
=

(q
k

)
( q
q/2

)
(

q

q/2

)
1

2q
≥ 7

8
· 1√

2q
>

1

2
√
q

,

pk = pk
pq/2

pq/2 ≥
(
1 − q/4

2n

)(
1 + q

2n

)
> 1 + q/2

2n
.

The proof of (11) and (12) for q
2 < k ≤ q

2 +
√
q
4 is similar.

5. An Open Problem

By combining (1), (6), and the trivial bound 1, we can conclude that the best known
bound for Problem 1 is

Advn,m(q) ≤

⎧⎪⎪⎨
⎪⎪⎩

q(q−1)
2n+1 q < (1 + o(1)) 2

n−m
2

1
2

√
(2n−m−1)q(q−1)
(2n−1)(2n−(q−1) (1 + o(1)) 2

n−m
2 ≤ q ≤ (2 + o(1)) 2

n+m
2

1 (2 + o(1)) 2
n+m
2 < q,

(15)

and in a simpler form:

Advn,m(q) = O

(
min

{
q2

2n
,

q

2
n+m
2

, 1

})
. (16)

Figure1 shows the graphs of the base 2 logarithm of q2

2n and q

2
n+m
2

as a function of q, for

different ranges of q, illustrating the crossover point at q = 2
n−m
2 .

By the lower bound in (1), we know that the bound in (16) is essentially sharp for
m = 0. By our proof in Sect. 4, we know that the bound in (16) is essentially sharp

Fig. 1. Base 2 logarithm of q2

2n (red line) and q

2
n+m
2

(blue lines), which appear in the upper bound 16. Here,

n = 128, m = n/2 = 64, and the functions are plotted for low (left) and high (right) ranges of q (the scale of
the horizontal axis is logarithmic). The value at q = 232) is the crossover point, were the “linear” term (blue
line) provides the better upper bound than the “quadratic” term (red line). Note that the latter term becomes
worse than the trivial bound (log2(1) = 0) at q = 264 (Color figure online).
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m = n−1. The natural question that remains open iswhether the bound (16) is essentially
sharp for all 0 ≤ m < n.

Added in proof Since the paper was submitted, the two first authors managed to solve
the above question, and to prove that the bound (16) is essentially tight. See Ref. [2].
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