
DOI: 10.1007/s00145-016-9241-9
J Cryptol (2017) 30:989–1066

The Hunting of the SNARK∗

Nir Bitansky†

MIT, Cambridge, MA, USA
nirbitan@tau.ac.il

Ran Canetti
Boston University, Boston, MA, USA
Tel Aviv University, Tel Aviv, Israel

canetti@tau.ac.il

Alessandro Chiesa
University of California, Berkeley, CA, USA

alexch@berkeley.edu

Shafi Goldwasser
MIT, Cambridge, MA, USA

shafi@csail.mit.edu

Huijia Lin
University of California, Santa Barbara, CA, USA

achel.lin@cs.ucsb.edu

Aviad Rubinstein
University of California, Berkeley, CA, USA

aviad@eecs.berkeley.edu

Eran Tromer
Tel Aviv University, Tel Aviv, Israel

tromer@tau.ac.il

Communicated by Omer Reingold.

Received 5 August 2014 / Revised 18 April 2016
Online publication 3 October 2016

∗ This researchwas supported by theCheckPoint Institute for InformationSecurity, by the Israeli Centers of
ResearchExcellence (I-CORE)Program (CenterNo. 4/11), by theEuropeanCommunity’s SeventhFramework
Programme (FP7/2007-2013) Grant 240258, by a European Union Marie Curie grant, by the Israeli Science
Foundation, and by the Israeli Ministry of Science and Technology.

This paper is a merge of [11] and [71]. A preliminary version including part of the results appeared in
ITCS 2012.

† Research done while at Tel Aviv University.

© International Association for Cryptologic Research 2016

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-016-9241-9&domain=pdf


990 N. Bitansky et al.

Abstract. The existence of succinct non-interactive arguments for NP (i.e., non-
interactive computationally sound proofs where the verifier’s work is essentially inde-
pendent of the complexity of the NP non-deterministic verifier) has been an intriguing
question for the past two decades. Other than CS proofs in the random oracle model
(Micali in SIAM J Comput 30(4):1253–1298, 2000), prior to our work the only ex-
isting candidate construction is based on an elaborate assumption that is tailored to a
specific protocol (Di Crescenzo and Lipmaa in Proceedings of the 4th conference on
computability in Europe, 2008). We formulate a general and relatively natural notion
of an extractable collision-resistant hash function (ECRH) and show that, if ECRHs
exist, then a modified version of Di Crescenzo and Lipmaa’s protocol is a succinct non-
interactive argument for NP. Furthermore, the modified protocol is actually a succinct
non-interactive adaptive argument of knowledge (SNARK). We then propose several
candidate constructions for ECRHs and relaxations thereof. We demonstrate the ap-
plicability of SNARKs to various forms of delegation of computation, to succinct non-
interactive zero-knowledge arguments, and to succinct two-party secure computation.
Finally, we show that SNARKs essentially imply the existence of ECRHs, thus demon-
strating the necessity of the assumption. Going beyond ECRHs, we formulate the notion
of extractable one-way functions (EOWFs). Assuming the existence of a natural variant
of EOWFs, we construct a two-message selective-opening-attack-secure commitment
scheme and a three-round zero-knowledge argument of knowledge. Furthermore, if the
EOWFs are concurrently extractable, the three-round zero-knowledge protocol is also
concurrent zero knowledge. Our constructions circumvent previous black-box impos-
sibility results regarding these protocols by relying on EOWFs as the non-black-box
component in the security reductions.

1. Introduction

For the Snark’s a peculiar creature, that won’t
Be caught in a commonplace way.
Do all that you know, and try all that you don’t:
Not a chance must be wasted to-day!
The Hunting of the Snark,
Lewis Carroll

The notion of interactive proof systems [73] is central to both modern cryptography
and complexity theory. One extensively studied aspect of interactive proof systems is
their expressiveness; this study culminatedwith the celebrated result that IP = PSPACE
[122]. Another aspect of such systems, which is the focus of this work, is that proofs
for rather complex NP statements can potentially be verified much faster than by direct
checking of an NP witness.
We know that if statistical soundness is required, then any non-trivial savings would

cause unlikely complexity-theoretic collapses (see, e.g., [25,67,83,125]). However, if
we settle for proof systemswith only computational soundness (also known as interactive
arguments [10]), then significant savings can be made. Indeed, using collision-resistant
hash functions (CRHs), Kilian [89] shows a four-message interactive argument for NP:
The prover first uses a Merkle hash tree [103] to bind itself to a polynomial-size PCP
(probabilistically checkable proof) [6,7] string for the statement and then answers the
PCP verifier’s queries while demonstrating consistency with the Merkle tree. This way,
membership of an instance y in anNP language L can be verified in time that is bounded
by p(k, |y|, log t), where t is the time to evaluate the NP verification relation for L on



The Hunting of the SNARK 991

input y, p is a fixed polynomial independent of L , and k is a security parameter that deter-
mines the soundness error. Following tradition, we call such argument systems succinct.
Can we have succinct argument systems that are non-interactive? Having posed and

motivated this question, Micali [104] provides a one-message succinct non-interactive
argument for NP, in the random oracle model, by applying the Fiat–Shamir paradigm
[62] to Kilian’s protocol. In the standard model, such “totally non-interactive” succinct
arguments (against non-uniformprovers) donot exist except for “quasi-trivial” languages
(i.e., languages in BPtime(npolylogn)), because the impossibility results for statistical
soundness can be directly extended to this case. Nonetheless, it may still be possible to
obtain a slightly weaker notion of non-interactivity:

Definition 1.1. A succinctnon − interactiveargument (SN ARG) is a succinct ar-
gument where the verifier (or a trusted entity) generates ahead of time a succinct verifier-
generated reference string (VGRS) and sends it to the prover. The prover can then use
the VGRS to generate a succinct non-interactive proof π for a statement y of his choice.
(The VGRS is thus independent of the statements to be proven later, and the definition
requires “adaptive soundness,” since y is chosen by the prover, potentially based on the
VGRS.)

In this paper, we consider the following questions:

Can SNARGs for NP exist in the standard model?
And if so, under what assumptions can we prove their existence?

Attempted Solutions To answer the above question, Aiello et al. [1] propose to avoid
Kilian’s hash-then-open paradigm, and instead use a computational polylogarithmic
PIR (private information retrieval) scheme [43,90] to access the PCP oracle as a long
database. The verifier’s first message consists of the queries of the underlying PCP
verifier, encrypted using the PIR encryption algorithm. The prover applies the PIR sender
algorithm to the PCP oracle, and the verifier then runs the underlying PCP verifier
on the values obtained from the PIR protocol. However, Dwork et al. [56] point out
that this “PCP+PIR approach” is inherently problematic, because a cheating prover
could “zigzag” and answer different queries according to different databases.1 (Natural
extensions that try to force consistency by using multiple PIR instances run into trouble
due to potential PIR malleability.)
Di Crescenzo and Lipmaa [49] propose to address this problem by further requiring

the prover to bind itself (in the clear) to a specific database using a Merkle tree (MT) as
in Kilian’s protocol. Intuitively, the prover should now be forced to answer according
to a single PCP string. In a sense, this “PCP+MT+PIR approach” squashes Kilian’s
four-message protocol down to two messages “under the PIR.” However, while initially
appealing, it is not a priori clear how this intuition can be turned into a proof of security
under some well-defined properties of the Merkle tree hash. Indeed, to prove soundness
of their protocol Di Crescenzo and Lipmaa use an assumption that is nonstandard in

1The problem becomes evident when implementing the PIR using fully homomorphic encryption; indeed,
since any efficient adversarial strategy can be executed “under the encryption,” such a solution would be as
insecure as sending the PCP queries in the clear.



992 N. Bitansky et al.

two main ways: First, it is a “knowledge assumption,” in the sense that any adversary
that generates a value of a certain form is assumed to “know” a corresponding preimage
(see more discussion on such assumptions below). Furthermore, their assumption is
very specific and intimately tied to the actual hash, PIR, and PCP schemes in use, as
well as the language under consideration. Two other non-interactive arguments for NP,
based on more concise knowledge assumptions, are due to Mie [105] and Groth [81].
However, neither of these protocols is succinct: In both protocols, the verifier’s runtime
is polynomially related to the time needed to directly verify the NP witness.
Recently, Gentry and Wichs [84] showed that some of the difficulty is indeed in-

herent by proving that no SNARG construction can be proved secure via a black-box
reduction to an efficiently falsifiable assumption [107]. For example, the assertion that
one-way functions exist or that fully homomorphic encryption exists are both falsifiable
assumptions; in general, an assumption is efficiently falsifiable if it can be modeled
as a game between an adversary and a challenger, where the challenger can efficiently
decide whether the adversary has won the game. The impossibility result of Gentry and
Wichs holds even for designated-verifier protocols, where the verifiermay use secret ran-
domness to verify. This suggests that nonstandard assumptions, such as the knowledge
(extractability) assumptions described next, may be inherent.
Knowledge (extractability) Assumptions Knowledge (or extractability) assumptions

capture our belief that certain computational tasks can be achieved efficiently only by
(essentially) going through specific intermediate stages and thereby obtaining, along
the way, some specific intermediate values. Such an assumption asserts that, for any
efficient algorithm that achieves the task, there exists a knowledge extractor algorithm
that efficiently recovers the said intermediate values.
A number of different extractability assumptions exist in the literature, most of which

are specific number theoretic assumptions (such as several variants of the knowledge of
exponent assumption [48]). It is hard to gain assurance regarding their relative strengths.
Abstracting from such specific assumptions, one can formulate general notions of ex-
tractability for one-way functions and other basic primitives (see [37,47]). That is, say
that a function family F is extractable if, given a random f ← F , it is infeasible to
produce y ∈ Image( f ) without actually “knowing” x such that f (x) = y. This is
expressed by saying that for any efficient adversary A there is an efficient extractor
EA such that, if A( f ) = f (x) for some x , then EA( f ) almost always outputs x ′ such
that f (x ′) = f (x). Typically, for such a family to be interesting, F should also have
some sort of hardness property, e.g., one-wayness. The assumption that a given function
family is extractable is not efficiently falsifiable. In particular, the impossibility result
of Gentry and Wichs [84] does not apply to such assumptions.

1.1. Summary of Our Results

• We formulate a general and relatively natural notion of extractable collision-
resistant hash functions (ECRHs). We then show that if ECRHs exist then so do
SNARGs for NP. Concretely, we revisit the PCP+MT+PIR approach of [49] and
show that it can be modified in a way that allows us to prove (adaptive) soundness
when using an ECRH to construct the Merkle tree.



The Hunting of the SNARK 993

Furthermore, we show that the construction is a proof of knowledge. We are thus
able to obtain a SNARG of knowledge (SNARK) for NP.

• We propose a candidate ECRH construction, based on a Knowledge of Exponent
assumption (that is a variant of the one found in [81]) and the hardness of taking
discrete logs. We also define proximity ECRHs, a weaker variant of ECRHs that are
still sufficient for the construction of SNARKs; we propose two candidate PECRH
constructions, based on knapsack (subset sum) problems related to hard problems
on lattices. Finally, we show how proximity ECRHs can be further weakened to
obtain a (still sufficient) primitive for which it seems plausible to conjecture that
“unstructured” hash functions such as (randomized) SHA-2 satisfy it.

• Weshow that existence of SNARKs forNP implies existence of (theweaker variants
of) ECRHs, as well as extractable variants of some other cryptographic primitives;
in other words (proximity), ECRHs are not only sufficient but also necessary for
the existence of SNARKs.

• Wedescribe some applications of SNARKs: (a) to delegation of computations (even
with longdelegator input andwithworker input), (b) to constructing zero-knowledge
SNARKs, and (c) for constructing succinct non-interactive secure computation (in
the common reference string model). See more below.

• We consider the related notion of extractable one-way functions (EOWFs). We for-
mulate two natural variants of EOWFs and show that as ECRHs they help circum-
vent previous black-box impossibility results. Namely, we construct a two-message
selective-opening-attack-secure commitment scheme and a three-round public-coin
concurrent zero-knowledge (ZK) argument of knowledge, which in turn implies a
three-round simultaneously resettable ZK protocol (all assuming additionally the
existence of enhanced trapdoor permutations). Previous works have shown that
these protocols cannot be proven secure from standard assumptions using black-
box reductions or simulation [41,111].

The rest of the introduction describes these results in more detail. Before proceeding,
though, we wish to highlight a prominent application of SNARGs that further motivates
the need for proofs of knowledge.
Delegation of Computation and Adaptive Arguments of Knowledge In the problem

of delegation of computation, which has become ever more relevant with the advent
of cloud computing, a client has some computational task (typically in P) and wishes
to delegate the task to an untrusted worker, who responds with a claimed result along
with a proof that the result is correct. Prior to our work, delegation schemes, such as
[42,65,69,93,94], required either more than two messages of interaction between the
client and the untrustedworker, ormuchwork to be done by the verifier in a preprocessing
stage.
A SNARG for NP could improve on these by minimizing both interaction and the

verifier’s computational effort. (Note that adaptive soundness of the SNARG seems
crucial for this application since a cheating worker might choose a bogus result of the
computation based on the delegator’s first message.)2

2More precisely, this seems to be the case for delegation of non-deterministic computations where
the worker contributes an input (witness) to the computation. In contrast, when delegating deterministic



994 N. Bitansky et al.

However, the application to delegation schemes brings with it additional security
concerns. For example, the untrusted worker may store for the delegator a long database
z whose short Merkle hash h = MT(z) is kept by the delegator; the delegator may then
ask the worker to compute F(z) for some function F . However, from the delegator’s
perspective, merely being convinced that “there exists z̃ such that h = MT(z̃) and
F(z̃) = f ” is not enough. The delegator should also be convinced that the worker
knows such a z̃, which implies due to collision resistance of MTthat indeed z̃ = z.
Thus, the delegator may not only be interested in establishing that a witness for

a claimed theorem exists, but also want that such a witness can be extracted from a
convincing prover. That is, we require proof of knowledge (or rather, an argument of
knowledge) and thus SNARKs (rather than merely SNARGs) are needed. The ability to
efficiently extract a witness for an adaptively chosen theorem seems almost essential for
making use of a delegation schemewhen the untrustedworker is expected to contribute its
own input (such as a database, as in the above example, or a signature) to a computation.
Another application where adaptive proofs of knowledge are crucial is recursive proof

composition, a technique that has already been shown to enable desirable cryptographic
tasks, such as targeted non-malleability and proof-carrying data [13,32,39,45,124].

1.2. ECRHs, SNARKs, and Applications

(ii) Extractable collision-resistant hash functions.Westart by defining a natural strength-
ening of collision-resistant hash functions (CRHs): A function ensembleH = {Hk}k is
an extractable CRH (ECRH) if (a) it is collision-resistant in the standard sense and (b) it
is extractable in the sense that for any efficient adversary that is able to produce a valid
evaluation of the function there is an extractor that is able to produce a corresponding
preimage. More precisely, extractability is defined as follows:

Definition 1. A function ensemble H = {Hk}k mapping {0, 1}�(k) to {0, 1}k is ex-
tractable if for any polynomial-size adversary A and polynomial m there exists a
polynomial-size extractor EA such that for any security parameter k ∈ N and any aux-
iliary input z ∈ {0, 1}m(k):

Pr
h←Hk

[
y ← A(h, z)

∃ x : h(x) = y
∧ x ′ ← EA(h, z)

h(x ′) �= y

]
≤ negl(k) .

We do not require that there is an efficient way to tell whether a given string in {0, 1}k
is in the image of a given h ∈ Hk . We note that:

• For extractability and collision resistance (or one-wayness) to coexist, it should
be hard to “obliviously sample images”; in particular, this implies that the image
of almost any h ∈ Hk should be sparse in {0, 1}k , i.e., with cardinality at most

Footnote 2 continued
computations, the delegator can use a SNARG with non-adaptive soundness by requesting a proof for each
bit of the claimed output. Indeed, the statement that the i th output bit of a computation is “10” (respectively,
“1”) is a fixed statement, independent of the reference string. (The latter does not work for non-deterministic
computations as there is no guarantee that the prover uses the same witness for each one of the output bits.)



The Hunting of the SNARK 995

2k−ω(log k). (This remark is a bit oversimplified and not entirely accurate; see dis-
cussion in Sect. 6.1.)

• For simplicity of exposition, the above definition accounts for the most general case
of arbitrary polynomial-size auxiliary input; this is, in fact, too strong and cannot
be achieved assuming indistinguishability obfuscation [16,28]. However, for our
main result, we can actually settle for a relaxed definition that only considers a
specific distribution over auxiliary inputs of a priori bounded size (PIR encryptions
of random strings). See further discussion in Sect. 6.1.

(ii) From ECRHs to adaptive succinct arguments of knowledge, and back again. We
modify the “PCP+MT+PIR”constructionof [49] and show that themodified construction
can be proven to be a SNARK based solely on the existence of ECRHs and PIR schemes
with polylogarithmic complexity.3

Theorem 1. (Informal) If there exist ECRHs and (appropriate) PIRs, then there exist
SNARKs (for NP).

A single VGRS in our construction suffices for only logarithmically many proofs; how-
ever, since the VGRS can be succinctly generated, the cost of occasionally resending a
new one is limited.
We complement Theorem 1 by showing that ECRHs are in fact essential for SNARKs.

More accurately, we show that SNARKs and CRHs imply a slightly relaxed notion of
ECRHs that we call proximity ECRHs, and which is still sufficient for our construction
of SNARKs.

Theorem 2. (Informal) If there exist SNARKs and (standard) CRHs, then there exist
proximity ECRHs.

We defer the discussion of the details of this relaxation to Sect. 1.3.
We also show that SNARKs can be used to construct extractable variants of other

cryptographic primitives. A naïve strategy to obtain this may be to “add a succinct
proof of knowledge of a preimage to the output.” While this strategy does not work
as such because the proof may leak secret information, we show that in many cases
this difficulty can be overcome by combining SNARKs with (non-extractable) leakage-
resilient primitives [2]. For example, since CRHs and subexponentially hard defs are
leakage-resilient, we obtain:

Theorem 3. (Informal) Assume SNARKs and (standard) CRHs exist. Then there ex-
ist extractable one-way functions and extractable computationally hiding and binding
commitments. Alternatively, if there exist SNARKs and (standard) subexponentially hard
one-way functions, then there exist extractable one-way functions. Furthermore, if these
functions are one-to-one, thenwe can construct perfectly binding computationally hiding
extractable commitments.

3More precisely, we shall require PIR schemes with polylogarithmic complexity where a fixed polynomial
bound for the database size is not required by the query algorithm. See Sect. 1.4 for more details.



996 N. Bitansky et al.

We believe that the approach of constructing extractable primitives based on SNARKs
merits further investigation. One question, for example, is whether extractable pseudo-
random generators and extractable pseudo-random functions can be constructed from
generic extractable primitives (as was asked and left open in [37]). Plausibly, our
SNARK-based approach can be used to obtain theweaker variants of extractable pseudo-
entropy generators [86] and pseudo-entropy functions [24], by relying on previous results
regarding leakage resilience of PRGs [55,84,121] and leakage-resilient pseudo-entropy
functions [24]. We leave the investigation of these possibilities and their applicability
for future work.
(iii) Applications of SNARKs. As discussed earlier, SNARKs directly enable non-

interactive delegation of computation, including settings where the delegator has a very
long input or where the worker supplies his own input to the computation. An important
property of SNARK-based delegation is that it does not require expensive preprocessing
and (as a result) soundness can be maintained even when the prover learns the verifier’s
responses between successive delegation sessions because a fresh VGRS can simply be
resent for each time.
In addition, SNARKs can be used to obtain zkSNARKs, that is, zero-knowledge suc-

cinct non-interactive arguments of knowledge in the common reference string (CRS)
model. We provide two constructions to do so, depending on whether the succinct argu-
ment is “on top or below” a non-interactive zero-knowledge proof (NIZK) [19].
In an additional step, it is possible to obtain non-interactive two-party secure compu-

tation (against malicious adversaries) between a powerful sender and a weak receiver.
To do so, start with a non-interactive two-party computation protocol that is secure
against “almost” honest-but-curious adversaries, who are allowed to choose arbitrary
randomness; such protocols are known to exist, e.g., based on fully homomorphic en-
cryption [63]. Then, tomake the protocol resilient tomalicious adversaries, let the sender
attach to his message a zkSNARK that his computation was performed honestly. The
succinct receiver can use a standard NIZK to prove knowledge of his inputs. As for the
sender, if his input is short he can also prove knowledge using a standard NIZK (as also
done in [52]); otherwise, he must rely on the zkSNARK proof of knowledge. In partic-
ular, in the latter case, we only get non-concurrent security (rather than UC security) as
the simulation relies on the non-black-box SNARK extractor.
In summary, SNARKs can be used for a number of applications:

Corollary 1.2. (Informal) If there exist SNARKs, then:

1. There exist non-interactive delegation schemes where the verifier’s response need not
remain secret.
(Furthermore, there are such schemes that allow the worker to contribute its own
input, as well as ones allowing to delegate memory and data streams [40,46].)

2. In the CRS model, there exist zero-knowledge SNARKs.
3. In the CRS model, there exist succinct non-interactive secure computation schemes

(with UC security for short sender input and non-concurrent security for long sender
input).

For more details on the aforementioned applications, see the respective Sects. 9, 10.1,
and 10.2.



The Hunting of the SNARK 997

(iii) Applications of EOWFs. As demonstrated by the construction of SNARK from
ECRHs, extractable functions can be used to circumvent impossibilities of constructing
certain primitives using black-box security reductions. We explore this direction and
show that new feasibility results can be shown using EOWFs. Specifically, we first
formalize a stronger variant of EOWFs—called strong EOWFs (sEOWF)—where every
function in the ensemble is one-to-one and every sequence of functions is one-way.
Using sEOWFs, we construct a two-message selective-opening-attack-secure (SOA-
secure) commitment scheme. Itwas shownbyPass [111] that such a commitment scheme
cannot be proven secure via black-box security reductions from any assumptions that
can be formulated as a game between a challenger and an adversary (a.k.a. falsifiable
assumptions [107]) of bounded rounds. In contrast, our scheme is proven secure using a
non-black-box security reduction from a non-falsifiable assumption, that is, the existence
of sEOWFs.
Furthermore, sEOWFs can be used to construct a three-round zero-knowledge argu-

ment of knowledge (ZKAOK) forNP, and if the sEOWFs are “concurrently extractable,”
then the protocol is also concurrent ZK. Additionally, the three-round protocol is public-
coin; thus by applying standard transformations [21,54], it yields a three-round simulta-
neously resettable ZK protocol. It is known that these protocols do not admit black-box
simulation [41,68]; our constructions indeed have non-black-box simulation utilizing
the extractability of EOWFs.
For more details on the definitions and applications of (variants of) EOWFs, see

Sect. 11.

1.3. ECRH Candidate Constructions and Sufficient Relaxations

We propose a natural candidate ECRH based on a generalization of the Knowledge of
Exponent assumption in large algebraic groups [48]. The assumption, which we call
t-Knowledge of Exponent assumption (or t-KEA for short), proceeds as follows. For
any polynomial-size adversary, there exists a polynomial-size extractor such that, on
input g1, . . . , gt , gα

1 , . . . , gα
t where each gi is a random generator (of an appropriate

group) and α is a random exponent: If the adversary outputs ( f, f α), then the extractor
finds a vector of “coefficients” (x1, . . . , xt ) such that f = ∏

i∈[t] g
xi
i . This assumption

can be viewed as a simplified version of the assumption used by Groth in [81] (the
formal relation between the assumptions is discussed in Sect. 8.1). Similarly to Groth’s
assumption, t-KEA holds in the generic group model.

Theorem 4. (Informal) If t-KEA holds in a group where taking discrete logs is hard,
then there exists an ECRH that compresses inputs by a factor proportional to t .

The construction is straightforward: The function family is parameterized by (g1, . . . ,
gt , gα

1 , . . . , gα
t ). Given input (x1, . . . , xt ), the function outputs the two group elements

(
∏

i∈[t] g
xi
i ,

∏
i∈[t] g

αxi
i ). Extractability directly follows from t-KEA, while collision

resistance is ensured by the hardness of taking discrete logs. See Sect. 8.1 for more
details.
Next we proceed to propose ECRH candidates that are based on the subset sum

problem in finite groups. Here, however, we are only able to construct candidates for



998 N. Bitansky et al.

somewhat weaker variants of ECRHs that are still sufficient for constructing SNARKs.
While these variants are not as elegantly and concisely stated as the “vanilla” ECRH
notion, they are still natural. Furthermore, we can show that these variants are necessary
for SNARKs. We next proceed to formulate these weaker variants.

1.3.1. Proximity ECRH

We say that H defined on domain D is a proximity ECRH (PECRH) if (for any h ∈ H)

there exist a reflexive “proximity” relation
h≈ on values in the range and an extension

of the hash to a larger domain Dh ⊇ D fulfilling the following: (a) proximity collision

resistance: Given h ← H, it is hard to find x, x ′ ∈ Dh such that h(x)
h≈ h(x ′) and (b)

proximity extraction: For any poly-time adversary A there exists an extractor E such

that, whenever A outputs y ∈ h(D), E outputs x ∈ Dh such that h(x)
h≈ y. (See

Definition 6.2 for further details.)
Harder to Find Collisions, Easier to Extract The notions of proximity extraction and

proximity collision resistance are the same as standard extraction and collision resistance

in the “strict” case, where x
h≈ y is the equality relation and the domain is not extended

(Dh = {0, 1}�(k), h̄ = h).
However, in general, proximity collision resistance is stronger than (standard) collision

resistance, because even “near collisions” (i.e., x �= y such that h̄(x)
h≈ h̄(y))must not be

efficiently discoverable, not even over the extended domain Dh . Conversely, proximity
extraction is weaker than (standard) extraction, since it suffices that the extractor finds

a point mapping merely close the adversary’s output (i.e., finds x ′ such that h̄(x ′)
h≈ y);

moreover, it suffices that the point is in the extended domain Dh . Thus, the notion of
PECRH captures another, somewhat more flexible trade-off between the requirements
of extractability and collision resistance.

We show that any point on this trade-off (i.e., any choice of
h≈, Dh and h̄ fulfilling the

conditions) suffices for the construction of SNARKs:

Theorem 5. (Informal) If there exist PECRHs and (appropriate) PIRs, then there exist
SNARKs for NP.

Candidate PECRHs Based on Knapsack (subset sum) ProblemsA necessary property
ofECRHs is that the image should be sparse; knapsack-basedCRHs can often be tweaked
to obtain this essential property. For example, in the t-KEA-based ECRH that we already
discussed, we start from a standard knapsack hash f = ∏

i∈[t] g
xi
i and extend it to a

“sparsified” knapsack hash ( f, f α) for a secret α. While for t-KEA this step is enough
for plausibly assuming precise extractability (leading to a full-fledged ECRH), for other
knapsack-based CRHs this is not the case.
For example, let us consider the taskof sparsifyingmodular subset sum [117].Here, the

hash function is given by random coefficients l1, . . . , lt ∈ ZN and the hash of x ∈ {0, 1}t
is simply the corresponding modular subset sum

∑
i :xi=1 li mod N . A standard way to

sparsify the function is, instead of drawing random coefficients, drawing them from
a distribution of noisy multiples of some secret integer. However, by doing so, we
lose the “algebraic structure” of the problem. Hence, now we also have to deal with



The Hunting of the SNARK 999

new “oblivious image-sampling attacks” that exploit the noisy structure. For example,
slightly perturbing an honestly computed subset sum is likely to “hit” another image of
the function. This is where the relaxed notion of proximity extraction comes into play:
It allows the extractor to output the preimage of the nearby (honest) image and, more
generally, to thwart “perturbation attacks.”
Sparsification of modular subset sum in fact introduces additional problems. For

instance, an attacker may take “small-norm” combinations of the coefficients that are
not 0/1 and still obtain an element in the image (e.g., if there are two even coefficients);
to account for this, we need to further relax the notion of extraction by allowing the
extractor to output a preimage in an extended domain, while ensuring that (proximity)
collision resistance still holds for the extended domain too. Additionally, in some cases
a direct naïve sparsification is not sufficient and we also need to introduce a notion of
amplified knapsacks.
The relaxations of extractability discussed above have to be matched by a correspond-

ing strengthening of collision resistance following the definition of PECRH. Fortunately,
this can still be done under standard hardness assumptions.
A similar approach can be taken in order to sparsify the modular matrix subset sum

CRH [5,64], resulting in a noisy inner-product knapsack hash based on the LWE as-
sumption [119]. Overall, we propose three candidates for PECRHs:

Theorem 6. (Informal) There exist PECRHs under any of the following assumptions:

1. A Knowledge of Knapsack of Exponent assumption (which in fact follows from
t-KEA) and hardness of discrete logs.

2. A Knowledge of Knapsack of Noisy Multiples assumption and lattice assumptions.
3. A Knowledge of Knapsack of Noisy Inner Products assumption and learning with

errors.

1.3.2. Weak PECRHs4

Our secondweakening is essentially orthogonal to thefirst one and relates to the condition
that determines when the extractor has to “work.” The ECRH and PECRH definitions
required extraction whenever the adversary outputs a valid image; here the sparseness
of the image appears to be key. In particular, unstructured CRHs where one can sample
elements in the image obliviously of their preimage have no hope to be either ECRH
or PECRH. However, for our purposes it seems sufficient to only require the extractor
to “work” when the adversary outputs an image y together with extra encoding of
a preimage that can be verified given proper trapdoor information; oblivious image-
sampling, on its own, is no longer sufficient for “breaking” the extractor.
More formally, a family H of functions is weakly extractable if for any efficient

adversaryA there exists an efficient extractor EHA such that for any auxiliary input z and
efficient decoder Y , the probability of the event that A outputs, given z and a random
function h from the family, values y and e such that: (a) EHA , given z and h, does not
find a preimage of y, but (b) Y , given e, does find a preimage of y, is negligible. See
Definition 6.3 for further details.

4This further weakening was inspired by private communication with Ivan Damgård.



1000 N. Bitansky et al.

We stress that the decoder circuit Y is allowed to arbitrarily depend on the auxiliary
input z. This is Y’s advantage over the extractor EHA (that must be efficient in z); in
particular, the extractability condition is not trivially true. Another interpretation of the
above definition is the following: The definition requires that there exists a single extrac-
tor EHA that does as well as any other efficient extractor (that may depend on z); namely,
any given decoder circuit Y can be thought of as a candidate extractor and the extractor
EH
A has to succeed whenever Y does despite being efficient in the auxiliary input. In

particular, whenever extraction is possible when given trapdoor information related to
the auxiliary input, it should also be possible without such trapdoor information. Indeed,
the ability of the extractor to forgo the trapdoor is the key to a successful use of the above
definition in our construction of SNARKs:

Theorem 7. (Informal) If there exist weak PECRHs and (appropriate) PIRs, then
there exist SNARKs for NP.

Unlike ECRHs and PECRHs, weak ECRHs may in principle not require sparsity of
the image or algebraic structure. For example, it may be plausible to assume that (a
properly keyed) SHA-2 is a weak ECRHs.
We remark that the notion of weak ECRH is somewhat reminiscent of the notion

of preimage awareness considered by Dodis et al. [59]. Their notion, however, is set
in an idealized model where the hash function can only be accessed as a black-box.
When ported to such an ideal model, our definition can be viewed as a strengthening
of the [59] definition to account for auxiliary input. Similarly to the [59] definition, the
idealized version of our definition also holds in the random oracle model. (We do not
know whether an idealized ECRH or PECRH can be constructed unconditionally in
the random oracle model; however, assuming the existence of standard CRHs, so that
a concise description for a CRH is available, it is possible to construct PECRHs in the
random oracle model using CS proofs of knowledge.)

1.4. High-Level Proof Strategy for Theorem 1

In this section, we provide some high-level intuition for the proof of our main technical
result, showing that the existence of ECRHs and (appropriate) PIR schemes imply the
existence of SNARKs. At a very high level, our construction follows the “PCP+MT+PIR
approach” of [49], which in turn is built upon Kilian’s four-message succinct interactive
argument system [89]. So let us start by reviewing them.
Kilian’s Construction In [89], Kilian presents a succinct zero-knowledge argument

for NP, (P,V), where the prover P uses a Merkle tree in order to provide to V “virtual
access” to a PCP proof. More precisely, to prove a statement x ∈ L , the verifier V starts
by sending the prover a CRHF H . The prover on private input a witness w constructs a
PCP proof π . In order to yield efficient verifiability, P cannot send V the witness w nor
π . Rather,P builds a Merkle tree with the proof π as the leaf values (using the collision-
free hash function H from the verifier) producing a root value rv. It then “commits”
itself to π by sending rv to the verifier V . The verifier V tosses a fixed polynomial
number of random coins r and sends them to the prover. Both the prover P and the
verifier V compute the PCP queries by internally running the PCP verifier on input x



The Hunting of the SNARK 1001

and r . The proverP sends back answers to those queries, together with “proofs”—called
authentication paths—that each answer is consistent with the root of the Merkle tree.
Finally, the verifier accepts if all the answers are consistent with the root value rv, and
convinces the PCP verifier.
Killan’s protocol is succinct, because the verifier, invoking the PCP verifier, makes

only a fixed polynomial number of queries and each query is answered with an authenti-
cation path of some fixed polynomial length, all independent of the length of the witness.
At a very high level, the soundness follows from the fact that the Merkle tree provides
the verifier “virtual access” to the PCP proof, in the sense that given the root value of
the Merkle tree, for every query q, it is infeasible for a cheating prover to answer q dif-
ferently depending on the queries. Therefore, interacting with the prover is “equivalent”
to having access to a PCP proof oracle. Then it follows from the soundness of the PCP
system that Kilian’s protocol is sound.
The “PCP+MT+PIR approach” The work of [49] proposed the “PCP+MT+PIR ap-

proach” to “squash” Kilian’s four-message protocol into a two-message protocol as
follows. In Kilian’s protocol, the verifier obtains from the prover a Merkle hash to a PCP
oracle and only then asks the prover to locally open the queries requested by the PCP
verifier. In [49]’s protocol, the verifier sends also in the first message, a PIR-encrypted
version of the PCP queries (the first message of a PIR scheme can be viewed as an
encryption of the queries); the prover then prepares the required PCP oracle, computes
and sends a Merkle hash of it, and answers the verifier’s queries by replying to the PIR
queries according to a database that contains the answer (as well as the authentication
path with respect to the Merkle hash) to every possible verifier’s query. [49] proved the
soundness of the above scheme based on the assumption that any convincing prover
P∗ must essentially behave as an honest prover: Namely, if a proof is accepting, then
the prover must have in mind a full PCP oracle π , which maps under the Merkle hash
procedure to the claimed root, and such a proof π can be obtained by an efficient ex-
tractor EP∗ .5 [49] then showed that, if this is the case, the extracted string π must be
consistent with the answers the prover provides to the PCP queries, for otherwise the
extractor can be used to obtain collisions of the hash function underlying the Merkle
tree. Therefore, the extracted string π also passes the PCP test, where the queries are
encrypted under PIR. Then, it follows from the privacy of the PIR scheme that the string
π is “computationally independent” of the query. Hence from the soundness of PCP,
they conclude that the statement must be true.

1.4.1. The Main Challenges and Our Solutions

Our goal is to obtain the stronger notion of SNARKs, based on the more restricted
assumption that ECRHs exist. At a very high-level, our construction follows the
“PCP+MT+PIR approach” but replacing the CRH underlying the Merkle tree in their
construction with an ECRH. Unlike [49] which directly assumed the “global extraction”

5 Note that, as originally formulated, the assumption of [49] seems to be false; indeed, a malicious prover
can always start from a good PCP oracle π for a true statement and compute an “almost full” Merkle hash on
π , skipping very few branches—so one should at least formulate an analogous but more plausible assumption
by only requiring “sufficient consistency” with the claimed root.



1002 N. Bitansky et al.

guarantees from a Merkle tree, we show that we can lift the “local extraction” guarantee
provided by the ECRH, to the “global extraction” guarantee on the entire Merkle tree.
More precisely, by relying on the (local) ECRH extraction guarantee, we show that for
every convincing prover, there is an extractor that can efficiently extract a PCP proof
π̃ that is “sufficiently satisfying” (i.e., a PCP verifier given π̃ accepts with high proba-
bility). Furthermore, to obtain the argument of knowledge property, we instantiate the
underlying PCP system with PCPs of knowledge, which allows for extracting a witness
from any sufficiently satisfying proof oracle. (See details for the requisite PCP system
in Sect. 3.7.) We next describe the high-level ideas for achieving global extraction guar-
antees from the local extraction of ECRHs. Full details are contained in Sect. 5, and the
construction is summarized in Table 1.

From Local to Global Extraction The main technical challenge lies in establishing a
“global” knowledge feature (i.e., informally, extraction of a sufficiently satisfying proof
π̃ from a convincing prover given that it outputs the root of a Merkle tree) from a very
“local” one (namely, extraction of a preimage from a machine that outputs a valid hash
value of the ECRH h). A natural attempt is to start from the root of the Merkle tree and
extract the values of the intermediate nodes of the Merkle tree layer by layer toward
the leaves; that is, to extract a candidate proof π̃ by recursively applying the ECRH
extractor to extract the entire Merkle tree M̃T, where the leaves should correspond to
π̃ .
However, recursively composing ECRH extractors encounters a difficulty: Each time

applying the ECRH extraction incurs a polynomial blowup in extraction time. Therefore
(without making a very strong assumption on the amount of “blowup” incurred by the
extractor), we can only apply the ECRH extraction recursively a constant number of
times; as a result, we can only extract fromMerkle trees of a constant depth. We address
this problem by opting to use a “squashed” Merkle tree, where the fan-in of each inter-
mediate node is polynomial rather than binary as in the traditional case. Consequently,
for every NP statement, since its PCP proof is of polynomial length, the depth � of the
Merkle tree built over the PCP proof is a constant. Then, we can apply the ECRH ex-
traction procedure recursively to extract the whole Merkle tree, while overall incurring
polynomial overhead in the size of the extractor.
A technical problem that arises when applying the above recursive extraction pro-

cedure is that we might not be able to extract out a full Merkle tree (where all paths
have the same length). More precisely, after applying the ECRH extraction recursively
� times, we obtain the values for the intermediate nodes up to level � (thinking about the
root as level zero). However, at each intermediate node, when applying the ECRH ex-
tractor, extraction could have failed to extract a preimage if the given intermediate node
is not a valid hash image under the ECRH. Hence, the extracted tree might be at some
points “disconnected.”6 Nevertheless, we show (relying solely on ECRH extraction) that
the leaves in the extracted (perhaps partial) tree connected to the root are sufficiently
satisfying for witness extraction.
Proof at High Level Given the foregoing discussion, we show the correctness of the

extraction procedure in two steps:

6This captures for example the behavior of the prover violating the [49] assumption described above.



The Hunting of the SNARK 1003

• Step 1: “local consistency.”We first show that whenever the verifier is convinced,
the recursively extracted string π̃ contains valid answers to the verifier’s PCPqueries
specified in its PIR queries. Otherwise, it is possible to find collisions within the
ECRH h as follows. A collision finder could simulate the PIR encryption on its
own, invoke both the prover and the corresponding extractor for the ECRH h, and
obtain two paths that map to the same root but must differ somewhere (as one is
satisfying and the other is not) and therefore obtain a collision.

• Step 2: “from local to global consistency.” Next, using the privacy guarantees
of the PIR scheme, we show that, whenever we extract a set of leaves that are
satisfying with respect to the PIR-encrypted queries, the same set of leaves must
also be satisfying for almost all other possible PCP queries and is thus sufficient for
witness extraction. Indeed, if this was not the case, then we would be able to use
the polynomial-size extraction circuit to break the semantic security of the PIR.

For further details of the proof, we refer the reader to Sect. 5.2.
Our construction ensures that the communication complexity and the verifier’s time

complexity are bounded by a polynomial in the security parameter, the size of the
instance, and the logarithm of the time it takes to verify a valid witness for the in-
stance; furthermore, this polynomial is independent of the specific NP language at
hand.
On Adaptive Soundness The soundness requirement of SNARK prevents a cheating

prover from proving any false statement even if it is allowed to choose the statement after
seeing the verifier’s first message (or, rather, the verifier-generated reference string). In
the above construction, the verifier sends in the first message the PIR-encrypted PCP
queries. However, in general, the PCP queries may depend on the statement to be proven,
and hence limit the construction to be only statically sound. To resolve this problem, we
modify the above protocol as follows: In the first message, the verifier PIR-encrypts the
PCP verifier’s random coins rather than its actual queries (as the former are independent
of the statement), and require the prover to prepare an appropriate database (containing
all the possible answers for each setting of the coins, rather than a proof oracle). A
subtle problem with this approach is that in general, the number of random coins tossed
by the PIR verifier may depend on the size of the database, which is not known to the
verifier a priori. This is solved in the body by enumerating over possible bounds 2ρ on
the database size for all values ρ upto some superlogarithmic function of the security
parameter.
On Universal Soundness:As for soundness, our main construction is not universal, in

the sense that the verifier needs to know a constant c such that the verification time of an
instance y does not exceed |y|c. Fortunately, this very weak dependence on the specific
NP language at hand (weak because it does not even depend on the Turing machine
verifyingwitnesses) does not affect the application to delegation of computation, because
the delegator, having inmind a specific poly-time task to delegate, knows c. Furthermore,
we also show how, by assuming the existence of exponentially hard one-way functions,
ourmain construction can be extended to be a universal SNARK, that is, a single protocol
that can simultaneously work with all NP languages.



1004 N. Bitansky et al.

1.5. Discussion

Weconclude the introductionwith an attempt to brieflymotivate the premise of thiswork.
Our main contribution can be seen as providing additional understanding of the security
of a construction that has frustrated researchers. Toward this goal, we prove strong
security properties of the scheme based on a new cryptographic primitive, ECRHs, that,
while not fitting into the mold of “standard cryptographic primitives or assumptions,”
can be defined concisely and investigated separately.
Furthermore, we investigate a number of relaxations of ECRHs as well as a number of

candidate constructions that have quite different underlying properties. Looking beyond
the context of our particular protocol, this work can be seen as another step toward
understanding the nature of extractability assumptions and their power in cryptography.

1.6. Subsequent Work

Subsequent to our paper, many works have contributed a greater understanding of
SNARKs and delegation schemes. At present, there are many SNARK constructions
in the literature, with different properties in efficiency and supported languages. In pre-
processingSNARKs, the complexity of the setupof public parameters growswith the size
of the computation being proved [8,14,15,18,38,51,61,66,81,92,97–99,112,126,127];
in fully succinct SNARKs, which are the ones that we study in this work, that complexity
is independent of computation size [9,11,12,17,49,52,71,104,105,124]; in particular,
some later works also achieve public verifiability, which we do not achieve in this work.
Another line of research focused on delegation schemes for P computations (rather than
NP as in the case of SNARKs), see [91,95,96,113] and references therein; all of these
works do not rely on knowledge assumptions but, instead, rely on (often subexponential)
reductions to falsifiable assumptions.
Finally, [16] construct extractable one-way functions against adversaries with any

polynomial running time but whose auxiliary input is bounded by a fixed polynomial
(and, on the negative side, they show that indistinguishability obfuscation rules out
extractable one-way functions for the case where the auxiliary input is not bounded by
a fixed polynomial).

1.7. Organization

In Sect. 2, we discuss more related work. In Sect. 3, we give basic definitions for the
cryptographic primitives that we use (along with any nonstandard properties that we
may need). In Sect. 4, we give the definitions for SNARKs. In Sect. 5, we give our
main construction showing that ECRHs, along with appropriate PIRs, imply SNARKs.
In Sect. 6, we discuss two relaxations of ECRHs, namely PECRHs and weak PECRHs,
that still suffice for SNARKs. In Sect. 7, we explain how SNARKs imply proximity
PECRHs, thus showing an almost tight relation between the existence of SNARKs and
PECRHs. In Sect. 8, we propose candidate constructions for ECRHs and PECRHs.
In Sect. 9, we show how to obtain zero-knowledge SNARKs. In Sect. 10, we provide
further discussion for how SNARKs can be used in the setting of delegation of compu-
tation and secure computation. Finally, in Sect. 11 we define two notions of extractable



The Hunting of the SNARK 1005

one-way functions and show how to use them to construct, respectively, non-interactive
(two-message) selective-opening-attack secure commitments and three-round concur-
rent zero-knowledge protocols.

2. Other Related Work

Knowledge Assumptions A popular class of knowledge assumptions, which have been
successfully used to solve a number of (at times notoriously open) cryptographic prob-
lems, is that of Knowledge of Exponent assumptions. These have the following flavor:
If an efficient circuit, given the description of a finite group along with some other
public information, computes a list of group elements that satisfies a certain algebraic
relation, then there exists a knowledge extractor that outputs some related values that
“explain” how the public information was put together to satisfy the relation. Most such
assumptions have been proven secure against generic algorithms (see Nechaev [108],
Shoup [123], and Dent [50]), thus offering some evidence for their truth. In the follow-
ing, we briefly survey prior works which, like ours, relied on Knowledge of Exponent
assumptions.
Damgård [48] first introduced a Knowledge of Exponent assumption to construct a

CCA-secure encryption scheme. Later, Hada and Tanaka [87] showed how to use two
Knowledge of Exponent assumptions to construct the first three-round zero-knowledge
argument. Bellare and Palacio [27] then showed that one of the assumptions of [87] was
likely to be false, and proposed a modified assumption, which they used to construct a
three-round zero-knowledge argument.
More recently, Abe and Fehr [3] extended the assumption of [27] to construct the

first perfect NIZK for NP with “full” adaptive soundness. Prabhakaran and Xue [116]
constructed statistically hiding sets for trapdoor DDHgroups [53] using a new Knowl-
edge of Exponent assumption. Gennaro et al. [70] used another Knowledge of Exponent
assumption (with an interactive flavor) to prove that a modified version of the Okamoto–
Tanaka key agreement protocol [110] satisfies perfect forward secrecy against fully
active attackers.
In a different direction, Canetti and Dakdouk [36,37,47] study extractable functions.

Roughly, a function f is extractable if finding a value x in the image of f implies
knowledge of a preimage of x . The motivation of Canetti and Dakdouk for introducing
extractable functions is to capture the abstract essence of prior knowledge assumptions
and to formalize the “knowledge of query” property that is sometimes used in proofs in
the Random Oracle Model. They also study which security reductions are “knowledge
preserving” (e.g., whether it possible to obtain extractable commitment schemes from
extractable one-way functions).
[16,28] show that, assuming indistinguishability obfuscation [22], extractable one-

way functions (and thus also ECRHs) cannot be constructed against adversaries with
arbitrary polynomial-size auxiliary input if the (efficient) extractor is universally fixed
before the adversary’s auxiliary input. On the other hand, they show that, under standard
assumptions, extractable one-way functions are achievable against adversaries with a
priori bounded auxiliary input. (It is still not known whether such ECRHs can also be
constructed under standard assumptions.)



1006 N. Bitansky et al.

Prior (somewhat) succinct arguments from Knowledge of Exponent assumptions.
Knowledge of exponent assumptions have been used to obtain somewhat succinct argu-
ments, in the sense the non-interactive proof is short, but the verifier’s running time is
long.
Groth [81] introduced a family of knowledge of exponent assumptions, generalizing

those of [3], and used them to construct extractable length-reducing commitments, as
a building block for short non-interactive perfect zero-knowledge arguments system
for circuit satisfiability. These arguments have very succinct proofs (independent of the
circuit size), though the public key is large: quadratic in the size of the circuit. Groth’s
assumption holds in the generic group model. For a comparison between our t-KEA
assumption and Groth’s assumptions, see Sect. 8.1.

Mie [105] observes that the PCP+MT+PIR approach works as long as the PIR scheme
is database aware—essentially, a prover that is able to provide valid answers to PIR
queries must “know” their decrypted values, or, equivalently, must “know” a database
consistent with those answers (by arbitrarily setting the rest of the database). Mie then
shows how to make the PIR scheme of Gentry and Ramzan [80] PIR aware, based on
Damgård’s Knowledge of Exponent assumption [48]. Unfortunately, while the commu-
nication complexity is very low, the receiver in [80] and thus also the verifier in [105]
are inefficient relative to the database size.
Delegation of Computation An important application of succinct arguments is del-

egation of computation schemes, where one usually also cares about privacy, and not
only soundness, guarantees. Specifically, a succinct argument can be usually combined
in a trivial way with fully homomorphic encryption [63] (in order to ensure privacy)
to obtain a delegation scheme where the delegator runs in time polylogarithmic in the
running time of the computation (see Sect. 10.1).
Within the setting of delegation, however, where the same weak delegator may be

asking a powerful untrusted worker to evaluate an expensive function on many different
inputs, a weaker preprocessing approach may still be meaningful. In such a setting,
the delegator performs a one-time function-specific expensive setup phase, followed by
inexpensive input-specific delegations to amortize the initial expensive phase. Indeed, in
the preprocessing setting a number of prior works have already achieved constructions
where the online stage is only twomessages [4,42,65]. These constructions do not allow
for an untrusted worker to contribute his own input to the computation, namely they are
“P-delegation schemes” rather than “NP-delegation schemes.” Note that all of these
works do not rely on any knowledge assumption; indeed, the impossibility results of
[84] only apply for NP and not for P.
However, even given that the preprocessing model is very strong, all of the mentioned

works maintain soundness over many delegations only as long as the verifier’s answers
remain secret. (A notable exception is the work of Benabbas et al. [23], though their
constructions are not generic and are only for specific functionalities such as polynomial
functions.)
Goldwasser et al. [69] construct interactive proofs for log-space uniformNCwhere the

verifier running time is quasi-linear.When combining [69] with the PIR-based squashing
technique of Kalai and Raz [93], one can obtain a two-message delegation scheme for
log-space uniform NC. Canetti et al. [44] introduce an alternative way of squashing
[69], in the preprocessing setting; their scheme is of the public coin type and hence the



The Hunting of the SNARK 1007

verifier’s answers need not remain secret (another bonus is that the preprocessing state
is publicly verifiable and can thus be used by anyone).

3. Preliminaries

In this section, we give basic definitions for the cryptographic primitives that we use
(along with any nonstandard properties that we may need).

3.1. Conventions

The cryptographic definitions in the paper follow the convention of modeling security
against non-uniform adversaries. An efficient adversary A is modeled as a sequence of
circuits A = {Ak}k∈N, such that each circuit Ak is of polynomial size kO(1) with kO(1)

input and output bits. We often omit the subscript k when it is clear from the context.
When we refer to a randomized algorithmA, we typically do not explicitly denote its

random coins, and use the notation s ← A or s ← A(x) ifA has an extra input x . When
we want to be explicit regarding the coins, we shall denote s ← A(r), or s ← A(x; r),
respectively.
Whenever we refer to a circuit class C = {Ck}, we mean that each set Ck consists of

Boolean circuits of size at most poly(k) for some polynomial poly(·), defined on the
domain {0, 1}n(k). When referring to inputs x ∈ {0, 1}n(k), we often omit k from the
notation.
Throughout, negl(k) is any negligible function in k.

3.2. Collision-Resistant Hashes

A collision-resistant hash (CRH) is a function ensemble for which it is hard to find two
inputs that map to the same output. Formally:

Definition 3.1. A function ensemble H is a CRH if it is collision-resistant in the fol-
lowing sense: For every polynomial-size adversary A and any k ∈ N,

Pr
h←Hk

[
x �= y

h(x) = h(y)
: (x, y) ← A(h)

]
≤ negl(k) .

We say that a function ensembleH is (�(k), k)-compressing if each h ∈ Hk maps strings
of length �(k) to strings of length k < �(k).

3.3. Merkle Trees

Merkle tree (MT) hashing [103] enables a party to use a CRHto compute a succinct
commitment to a long string π and later to locally open any bit of π (again in a succinct
manner). Specifically, given a function h : {0, 1}�(k) → {0, 1}k randomly drawn from a
CRHensemble, the committer divides π into |π |/�(k) parts (padding with 0’s if needed)
and evaluates h on each of these; the same operation is applied to the resulting string,



1008 N. Bitansky et al.

and so on, until one reaches the single k-bit root. For |π | = (�/k)d+1, this results in a
tree of depth d, whose nodes are all the intermediate k-bit hash images. An opening to
a leaf in π (or any bit within it) includes all the nodes and their siblings along the path
from the root to the leaf and is of size �d. Typically, �(k) = 2k, resulting in a binary tree
of depth logπ . In this work, we shall also be interested in “wide trees” with polynomial
fan-in (relying on CRHs with polynomial compression), see Sect. 5.1.

3.4. Private Information Retrieval

A (single-server) computational polylogarithmic private information retrieval (PIR)
scheme [43,90] consists of a triple of algorithms (PEnc,PEval,PDec) where:

• PEncR(1k, i) outputs an encryption C of query i ∈ {0, 1}n to a database DB with
N = 2n entries using randomness R,

• PEval(DB,C) outputs a string e “containing” the answer DB[i], and
• PDecR(e) decrypts the string e to an answer DB[i].

Formally:

Definition 3.2. A triple of algorithms (PEnc,PEval,PDec) is a PIR if it has the
following properties:

1. Correctness For any database DB with N = 2n entries in {0, 1}�, any query
i ∈ {0, 1}n , and security parameter k ∈ N,

Pr
R

[
PDecR(e) = DB[i] : C ← PEncR(1k, i)

e ← PEval(DB,C)

]
= 1 ,

where PEval(DB,C) runs in poly(k, N , �) time.
2. Succinctness The running time of both PEncR(1k, i) and PDecR(e) is bounded

by
poly(k, n, �) ,

for some fixed polynomial poly, independent of DB. In particular, the sizes of the
two messages C and e are also so bounded.

3. Semantic security The query encryption is semantically secure for multiple
queries, i.e., for any polynomial-sizeA, any security parameter k ∈ N and any two
tuples of queries i = (i1 · · · iq), i′ = (i ′1 · · · i ′q) ∈ {0, 1}poly(k),

Pr
[
A(PEncR(1k, i)) = 1

]
− Pr

[
A(PEncR(1k, i′)) = 1

]
≤ negl(k) ,

where PEncR(1k, i) = (PEncR1(1
k, i1), · · · ,PEncRq (1

k, iq)) is the coordinate-
wise encryption the tuple i, using independent randomblocks of R = (R1, . . . , Rq).

PIR schemes with the above properties have been constructed under various hardness
assumptions such as �HA [43] or LWE [33].



The Hunting of the SNARK 1009

3.5. The Complexity Class NP and Witness Relation

We recall the class NP, i.e., the class of languages for which there exists a proof of
membership that can be verified in polynomial time.

Definition 3.3. (Complexity ClassNP) A language L is inNP if there exists a Boolean
relation RL ⊆ {0, 1}∗ × {0, 1}∗ and a polynomial p(·) such that RL is recognizable in
polynomial time, and x ∈ L if and only if there exists a string y ∈ {0, 1}∗ such that
|y| ≤ p(|x |) and (x, y) ∈ RL . The relation RL is called a NP relation and is a witness
relation for L .

We say that y is awitness for themembership x ∈ L if (x, y) ∈ RL .Wewill also let RL(x)
denote the set of witnesses for the membership x ∈ L , i.e., RL(x) = {y : (x, y) ∈ L}.

3.6. The Universal Relation

The universal relation [20] is defined to be the setRU of instance–witness pairs (y, w),
where y = (M, x, t), |w| ≤ t , and M is a Turing machine, such that M accepts (x, w)

after at most t steps. While the witness w for each instance y = (M, x, t) is of size at
most t , there is no a priori polynomial bound on t in terms of |x |.
Also, for any c ∈ N, we denote by Rc the subset of RU consisting of those pairs

(y, w) = (
(M, x, t), w

)
for which t ≤ |x |c. This is a “generalized” NP relation,

where we do not insist on the same Turing machine accepting different instances, but
only insist on a fixed polynomial bounding the running time in terms of the instance
size.

3.7. Probabilistically Checkable Proofs of Knowledge

A (verifier-efficient) probabilistically checkable proof (PCP) of knowledge for the uni-
versal relationRU is a triple of algorithms (Ppcp, Vpcp, Epcp), where Ppcp is the prover,
Vpcp is the (randomized) verifier, and Epcp is the knowledge extractor.
Given (y, w) ∈ RU , Ppcp(y, w) generates a proofπ of length poly(t) and runs in time

poly(|y|, t). The verifier V π
pcp(y, r) runs in time poly(|y|) = poly(|M | + |x | + log t),

while accessing polylog(t) locations in the proof π and using ρ = O(log t) random
bits. We require:

1. Completeness For every (y, w) = (
(M, x, t), w

) ∈ RU , π ← Ppcp(y, w):

Pr
r←{0,1}ρ(t)

[
V π
pcp(y, r) = 1

]
= 1 .

2. Proof of knowledge (PoK). There is a constant ε < 1 such that for any y =
(M, x, t) if

Pr
r←{0,1}ρ(t)

[
V π
pcp(y, r) = 1

]
≥ 1 − ε ,



1010 N. Bitansky et al.

then Epcp(y, π) outputs a witness w such that (y, w) ∈ RU , and runs in time
poly(|y|, t).

(Note that proof of knowledge in particular implies that the soundness error is at most ε.)

PCPs of knowledge as defined above can be based on the efficient verifier PCPs of
[30,31]. (See [124] for a simple example of how a PCP of proximity can yield a PCP
with a proof of knowledge.) Moreover, the latter PCPs’ proof length is quasi-linear in t ;
for simplicity, we shall settle for a bound of t2.
We shall typically invoke the verifier Vpcp for q(k) times to reduce the proof-of-

knowledge threshold to (1 − ε)q(k), where k is the security parameter and q(k) =
ω(log k). Namely, extraction should succeedwhenever Prr

[
V π
pcp(y, r) = 1

]
≥ (1−ε)q ,

where r = (ri )i∈[q] and V π
pcp(y, r) = ∧

i∈[q] V π
pcp(y, ri ).

3.8. Indistinguishability

The following definition of (computational) indistinguishability originates in the seminal
paper of Goldwasser and Micali [72].

Definition 3.4. (Indistinguishability) Let X be a countable set. Two ensembles
{Ax }x∈X and {Bx }x∈X are said to be computationally indistinguishable over X , if for
every probabilistic “distinguishing” algorithm D whose running time is polynomial in
its first input, there exists a negligible function ν(·) so that for every x ∈ X :

|Pr[a ← Ax : D(x, a) = 1] − Pr[b ← Bx : D(x, b) = 1]| < ν(|x |)

{Ax }x∈X and {Bx }x∈X are said to be statistically close over X if the above condition
holds for all (possibly unbounded) algorithms D.

3.9. Interactive Proofs, Zero Knowledge and Witness Indistinguishability

We use the standard definitions of interactive proofs (and interactive Turing ma-
chines) [73] and arguments (also known as computationally sound proofs) [10]. Given a
pair of interactive Turing machines, P and V , we denote by 〈P(w), V 〉(x) the random
variable representing the final (local) output of V , on common input x , when interact-
ing with machine P with private input w, when the random tape to each machine is
uniformly and independently chosen.

Definition 3.5. (Interactive Proof System) A pair (P, V ) of interactive machines is
called an interactive proof system for a language L with respect to a witness relation RL

if the following two conditions hold :

• Completeness: For every x ∈ L and w ∈ RL(x), Pr[〈P(w), V 〉(x) = 1] = 1.
• Soundness: For every interactive machine B, there is a negligible function ν(·),
such that, for every x ∈ {0, 1}n \ L , Pr[〈B, V 〉(x) = 1] ≤ ν(n).

In the case that the soundness condition is required to hold only with respect to a
polynomial-size prover, the pair 〈P, V 〉 is called an interactive argument system.



The Hunting of the SNARK 1011

Zero Knowledge An interactive proof is said to be zero knowledge (ZK) if a (ma-
licious) verifier V ∗ learns nothing beyond the validity of the assertion being proved.
Because “feasible computation” is typically captured through the notion of probabilistic
polynomial time, the ZK property is formalized by requiring that the output of every
(possibly malicious) verifier interacting with the honest prover P can be simulated by a
probabilistic (expected) polynomial-time machine S, known as the simulator. The idea
behind this definition is that the anyone can learn by himself, by running the simulator
S, whatever V ∗ learns by interacting with P .
The notion of ZK was introduced and formalized by Goldwasser, Micali, and Rackoff

in [73]. We present their definition below.

Definition 3.6. (ZK) Let L be a language inNP, RL awitness relation for L , (P, V ) an
interactive proof (argument) system for L . We say that (P, V ) is (computational) ZK, if
for every probabilistic polynomial-time interactivemachine V there exists a probabilistic
algorithm S whose expected running time is polynomial in the length of its first input,
such that, for every ensemble {(xn, yn, zn)}n∈N, where xn ∈ {0, 1}n ∩L , y ∈ RL(x), and
z ∈ {0, 1}poly(n), the following two ensembles are computationally indistinguishable.

•
{
ViewV [〈P(yn), V (zn)〉(xn)]

}
n∈N

•
{
S(xn, zn)

}
n∈N

where ViewV [〈P(yn), V (zn)〉(xn)] denote the random variable describing the view of
V in interaction with P on common input xn (the statement) and private inputs yn (the
witness) to P and zn (the auxiliary input) to V respectively.

Witness indistinguishable proofs An interactive proof is said to be witness indistin-
guishable (W I ) if the verifier’s output is “computationally independent” of the witness
used by the prover for proving the statement. In this context, we focus on languages
L ∈ N P with a corresponding witness relation RL . Namely, we consider interactions
in which, on common input x , the prover is given a witness in RL(x). By saying that
the output is computationally independent of the witness, we mean that for any two
possible NP witnesses that could be used by the prover to prove the statement x ∈ L ,
the corresponding outputs are computationally indistinguishable.

Definition 3.7. (Witness indistinguishability) Let (P, V )be an interactive proof system
for a language L ∈ N P . We say that (P, V ) is witness indistinguishable for RL , if for
every probabilistic polynomial-time interactive machine V ∗ and for every ensemble
{(xn, w1

n, w
2
n, zn)}n∈N, such that, for every n ∈ N, xn ∈ {0, 1}n ∩ L , w1

n, w
2
n ∈ RL(x),

and zn ∈ {0, 1}poly(n), the following ensembles are computationally indistinguishable
over n ∈ N.

• {ViewV [〈P(w1
n), V

∗(zn)〉(xn)]}n∈N
• {ViewV [〈P(w2

n), V
∗(zn)〉(xn)]}n∈N

3.10. Proofs and arguments of knowledge

Given a language L ∈ NP and an instance x , a proof or argument of knowledge (POK or
AOK) not only convinces the verifier that x ∈ L , but also demonstrates that the prover



1012 N. Bitansky et al.

possesses anNPwitness for x . This is formalized by the existence of an extractor: Given
black-box access to a machine that can successfully complete the proof or argument of
knowledge on input x , the extractor can compute a witness for x .

Definition 3.8. (Proofs and arguments of knowledge)An interactive proof
 = (P, V )

is a proof of knowledge (resp. An interactive argument 
 = (P, V ) is an argument of
knowledge) ofNP language L with respect to witness relation RL if there exist a positive
constant c, a negligible function ν, and a polynomial-time oracle machine E , such that
for every interactive machine P∗ (respectively, for every polynomial-time machine P∗),
every x ∈ L and every auxiliary input z ∈ {0, 1}poly(|x |), the following holds: On input
x and oracle access to P∗(x, z), machine E outputs a string from RL(x) with probabil-
ity at least (Pr[〈P∗(z), V 〉(x) = 1])c − ν(|x |). The machine E is called the knowledge
extractor.

3.11. Commitments

Roughly speaking, a commitment scheme enables a party, called the committer, to com-
mit itself to a value to another party, the receiver. At first the value is hidden from the
receiver; this property is called hiding. At a later stage when the commitment is opened,
it can only reveal a single value as determined in the committing phase; this property is
called binding. First we define the structure of a commitment scheme.

Definition 3.9. (Commitment schemes) A commitment scheme is an interactive proto-
col (C, R) with the following properties:

1. Both the committer C and the receiver R are polynomial-time machines.
2. The commitment scheme has two stages: a commit stage and a reveal stage. In both

stages, C and R receive a security parameter 1n as common input. C additionally
receives a private input v ∈ {0, 1}n that is the string to be committed.

3. The commit stage results in a joint output c, called the commitment and a private
output d for C , called the decommitment string. Without loss of generality, c can
be the full transcript of the interaction between C and R.

4. In the reveal stage, the committer C sends the pair (v, d) to the receiver R, who
decides to accept or reject the decommitment (c, v, d) deterministically.

If C and R do not deviate from the protocol, then R should accept (with probability 1)
during the reveal stage.

Next we define the binding and hiding property of a commitment scheme.

Definition 3.10. (Binding) A commitment scheme (C, R) is statistically (respectively,
computationally) binding if for every interactive machine (respectively, non-uniform
polynomial-size interactive machine) C∗ (a malicious committer), there exists a negli-
gible function ν such that C∗ succeeds in the following game with probability at most
ν(n):

On security parameter 1n , C∗ first interacts with R in the commit stage to
produce commitment c. ThenC∗ outputs two decommitments (c, v0, d0) and
(c, v1, d1), and succeeds if v1 ∈ {0, 1}n , v2 ∈ {0, 1}n , v1 �= v2 and R accepts
both decommitments.



The Hunting of the SNARK 1013

The commitment scheme is perfectly binding if no machine C∗ can ever succeed at the
above game.

Definition 3.11. (Hiding) A commitment scheme (C, R) is computationally (respec-
tively, statistically) hiding if for every non-uniform polynomial-size machine (respec-
tively, every interactive machine) R∗ (a malicious receiver), every ensemble {(vn,0, vn,1,

zn)}n∈N where vn,0 ∈ {0, 1}n , vn,1 ∈ {0, 1}n , and zn ∈ {0, 1}poly(n), the following en-
sembles are computationally indistinguishable (resp. statistically close) over n ∈ N:

{〈C(vn,0), R
∗(zn)

〉
(1n)}n∈N ≈ {〈C(vn,1), R

∗(zn)
〉
(1n)}n∈N .

4. SNARKs

In this section, we formally introduce the main cryptographic primitive studied in this
paper—the SNARK.

4.1. Succinct Non-Interactive Arguments

A succinct non-interactive argument (SNARG) is a triple of algorithms (P,GV ,V).
For a security parameter k, the verifier runs GV (1k) to generate (vgrs,priv), where
vgrs is a (public) verifier-generated reference string and priv are corresponding private
verification coins; the honest proverP(y, w, vgrs) produces a proof
 for the statement
y = (M, x, t) given a witness w; then V(priv, y,
) verifies the validity of 
. The
SNARG is adaptively sound if the prover may choose the statement after seeing the
vgrs, otherwise, it is non-adaptively sound.

Definition 4.1. A triple of algorithms (P,GV ,V) is a SNARG for the relationR ⊆ RU
if the following conditions are satisfied:

1. Completeness For any (y, w) ∈ R,

Pr

[
V(priv, y,
) = 1 : (vgrs,priv) ← GV (1k)


 ← P(y, w, vgrs)

]
= 1 .

In addition, P(y, w, vgrs) runs in time poly(k, |y|, t).
2. Succinctness The length of the proof 
 that P(y, w, vgrs) outputs, as well as the

running time of V(priv, y,
), is bounded by

p(k + |y|) = p(k + |M | + |x | + log t) ,

where p is a universal polynomial that does not depend onR. In addition, GV (1k)
runs in time p(k); in particular, (vgrs,priv) are of length p(k).

Remark 4.2. (The size of the proof)Although this is not required in applications such as
delegation, one may further require that the size of the proof
 is a universal polynomial
in k also independent of |y|. Our constructions satisfy this property.



1014 N. Bitansky et al.

3. Soundness Depending on the notion of adaptivity:

• Non-adaptive soundness For all polynomial-size provers P∗ and polynomials
m, any k ∈ N, and y ∈ {0, 1}m(k) \ LR,

Pr

[
V(priv, y,
) = 1 : (vgrs,priv) ← GV (1k)


 ← P∗(y, vgrs)

]
≤ negl(k) .

• Adaptive soundness For all polynomial-size provers P∗ and any k ∈ N,

Pr

[V(priv, y,
) = 1
y /∈ LR

: (vgrs,priv) ← GV (1k)
(y,
) ← P∗(vgrs)

]
≤ negl(k) .

A SNARG of knowledge, or SNARK for short, is a SNARG where soundness is
strengthened as follows:

Definition 4.3. A triple of algorithms (P,GV ,V) is a SNARK if it is a SNARG where
adaptive soundness is replaced by the following stronger requirement:

• AdaptiveProof ofKnowledge7 For anypolynomial-size proverP∗ andpolynomial
m, there exists a polynomial-size extractor EP∗ such that for any k ∈ N and all
auxiliary inputs z ∈ {0, 1}m(k),

Pr

⎡
⎣V(priv, y,
) = 1

w /∈ R(y)
:

(vgrs,priv) ← GV (1k)
(y,
) ← P∗(z, vgrs)
(y, w) ← EP∗(z, vgrs)

⎤
⎦ ≤ negl(k) .

Universal Arguments Versus Weaker Notions A SNARG for the relation R = RU is
called a universal argument.8 A weaker notion that we will also consider is a SNARG
for the relation R = Rc for a constant c ∈ N. In this case, soundness is only required
to hold with respect toRc; in particular, the verifier algorithm may depend on c. Never-
theless, we require (and achieve) universal succinctness, where a universal polynomial
p, independent of c, upper bounds the length of every proof and the verification time.
Designated Verifiers Versus Public Verification In a publicly verifiable SNARG, the

verifier does not require a private state priv. In this work, however, we concentrate on
designated-verifier SNARGs, where priv must remain secret for soundness to hold.

The Verifier-Generated Reference String A very desirable property is the ability to
generate the verifier-generated reference string vgrs once and for all and then reuse it
in polynomially many proofs (potentially by different provers). In publicly verifiable
SNARGs, this multi-theorem soundness is automatically guaranteed; in designated-
verifier SNARGs, however, multi-theorem soundness needs to be required explicitly as
an additional property. Usually, this is achieved by ensuring that the verifier’s response

7One can also formulate weaker proof-of-knowledge notions; in this work, we focus on the above strong
notion.

8Barak andGoldreich [20] define universal arguments forRwith a black-box “weak proof-of-knowledge”
property; in contrast, our proof of knowledge property is not restricted to black-box extractors and does not
require the extractor to be an implicit representation of a witness.



The Hunting of the SNARK 1015

“leaks” only a negligible amount of information about priv. (Note that O(log k)-theorem
soundness always holds; the “non-trivial” case is obtaining ω(log k)-theorem sound-
ness. Weaker solutions to support more theorems include assuming that the verifier’s
responses remain secret, or regenerating vgrs every logarithmically many rejections,
e.g., as in [42,65,69,93,94,105].)
The SNARK Extractor E and Auxiliary InputAbove, we require that any polynomial-

size family of circuits P∗ has a specific polynomial-size family of extractors EP∗ ; in
particular, we allow the extractor to be of arbitrary polynomial size and to be “more
non-uniform” than P∗. In addition, we require that for any prover auxiliary input
z ∈ {0, 1}poly(k), the polynomial-size extractor manages to perform its witness extraction
task given the same auxiliary input z. As shown in [16,28], this aspect of the definition
is too strong assuming indistinguishability obfuscation [22]. The definition can be nat-
urally relaxed to consider only specific distributions of auxiliary inputs according to the
required application. (In our setting, the restrictions on the auxiliary input handled by
the knowledge extractor will be related to the auxiliary input that the underlying ECRH
extractor can handle. See further discussion in Sect. 6.1.)

5. From ECRHs to SNARKs

In this section, we describe and analyze our construction of adaptive SNARKs for NP
based on ECRHs. (Recall that an ECRH is a CRH as in Definition 3.1 that is extractable
as in Definition 1.)

In Sect. 5.3, we discuss the universal features of our constructions and the difficulties
in extending it to a full-fledged universal argument; we propose a solution that can
overcome the difficulties based on exponentially hard one-way functions.
OurModified ApproachWemodify the PCP+MT+PIR approach of [49] and show that

the knowledge assumption of [49] (which involves the entire PIR+MT structure) can be
replaced by the simpler generic assumption that ECRHs exist. Furthermore, our modifi-
cation enables us to improve the result from a two-message succinct argument with non-
adaptive soundness to an adaptive SNARG of knowledge (SNARK)—this improvement
is crucial in cryptographic applications. Specifically, we perform two modifications:

1. We instantiate the Merkle tree hash using an ECRH and, unlike the traditional
construction where a (2k, k)-CRH is used, we use a polynomially compressing
(k2, k)-ECRH; in particular, for kd+1-long strings the resulting tree will be of
depth d (rather than d log k).9 As we shall see later, doing so allows us to avoid
superpolynomial blowup of the final knowledge extractor that will be built via
composition of ECRH extractors. The initial construction we present will be spe-
cialized for “generalized” NP relations Rc; after presenting and analyzing it, we
propose an extension to the universal relationRU by further assuming the existence
of exponentially hard one-way functions.

2. In order to ensure that the first message of the verifier does not depend on the
theorem being proved, the database that we use does not consist of bits of π ;

9We note that any (kε, kε′
)-compressing ECRH would have sufficed (for any constants ε > ε′); for the

sake of simplicity, we stick with (k2, k)-compression.



1016 N. Bitansky et al.

rather, the r th entry of the database corresponds to the answers to the queries of
V π
pcp(y, r) with their corresponding authentication paths in the Merkle tree. Here

y is chosen by the prover and the authentication is relative to a single string π

(to avoid cheating provers claiming one value for a particular location of π in one
entry of the database, and another value for the same location of π in another entry
of the database). Also, a priori the verifier does not know the exact size of this
database (the number of coins that will be needed by the PCP verifier), since this
will depend on the prover choice of statement y. However, we do know that the
number of coins is bounded by any superlogarithmic function. Thus, the verifier
can send PIR encryptions with respect to each of the polylogarithmically many
possibilities.

5.1. Construction Details

We start by providing a short description of our MT and then present the detailed con-
struction of the protocol in Table 1.
The Shallow Merkle Tree By padding when required, we assume without loss of

generality that the compressed string π is of size kd+1 (where d is typically unknown to
the verifier). A node in the MT of distance j from the root can be represented by a string
i = i1 · · · i j ∈ [k] j containing the path traversal indices (and the root is represented by
the empty string). We then label the nodes with k-bit strings according to π and the hash
h : {0, 1}k2 → {0, 1}k as follows:

• The leaf associated with i = i1 · · · id ∈ [k]d ∼= [kd ] is labeled by the ith k-bit block
of π , denoted by �i (here i is interpreted as a number in [kd ]).

• An internal node associated with i = i1 · · · i j ∈ [k] j is labeled by h(�i1�i2 · · · �ik),
denoted by �i.

• Thus, the label of the root is h(�1�2 . . . �k), which we denote by �ε .

The MT commitment is the pair (d, �ε). An opening dcomi to a leaf i consists of all
the labels of all the nodes and their siblings along the corresponding path. To verify
the opening information, evaluate the hash h from the leaves upwards. Specifically, for
each node i′ = i j along the opening path labeled by �i′ = �i j and his siblings’ labels
�i1, �i2, . . . , �i( j−1), �i( j+1), . . . , �ik , verify that h(�i1, . . . , �ik) = �i.

We shall prove the following theorem:

Theorem 5.1. For any NP relation Rc, the construction in Table 1 yields a SNARK
that is secure against adaptive provers. Moreover, the construction is universally suc-
cinct: The proof’s length and verifier’s running time are bounded by the same universal
polynomials for allRc ⊆ RU .

The completeness of the construction follows directly from the completeness of the
PCP and PIR. In Sect. 5.2, we give a security reduction establishing the PoK property
(against adaptive provers). In Sect. 5.3, we discuss universal succinctness and possible
extensions of our construction to a full-fledged universal argument.



The Hunting of the SNARK 1017

Table 1. A SNARK for the relationRc .

Ingredients:
•A universal efficient verifier PCPof knowledge (Ppcp, Vpcp, Epcp) for RU ; for
((M, x, t), w) ∈ RU , where any proof π is s.t. |π | ≤ t2 and the non-repeated verifier uses
ρ(t) = O(log t) coins and O(1) queries.

•A succinct PIR (PEnc,PEval,PDec).
•A (k2, k)-ECRHH = {Hk }k∈N.

Setup GV (1k ):
•Generate private verification state:

– Sample coins for q = ω(log k) repetitions of Vpcp: r = (r1, . . . , rq )
U← {0, 1}(log2 k)×q .

– Sample coins for encrypting q × log2 k PIR-queries: R
U← {0, 1}poly(k).

–Sample an ECRH: h ← Hk .
– Set priv := (h, r, R).

•Generate corresponding verifier-generated reference string:

– For j ∈ [log2 k], let r( j) = (r ( j)
1 , . . . , r ( j)

q ) where r ( j)
i is the j-bit prefix of ri .

– Let r∗ = (r( j) : j ∈ [log2 k])
– Compute Cr∗ = (Cr( j) : j ∈ [log2 k]), where Cr( j) ← PEncR(1k , r( j)).
– Set vgrs := (h,Cr∗ ).

Proof generation by P :
•Input: 1k , vgrs, (y, w) ∈ Rc where y = (M, x, t), and t ≤ |x |c is such that ρ(t) ≤ log2 k.
•Proof generation:
– Compute a PCP proof π ← Ppcp(y, w) of size |π | = kd+1 ≤ t2.
– Compute an MT commitment for π : �ε = MTh(π) of depth d.
– Compute a database DB with 2ρ entries; in each en-
try r (ρ) ∈ {0, 1}ρ store the openings dcomr (ρ) for all

locations of π queried by Vπ
pcp(y, r (ρ)).

–Compute Cdcomr(ρ)
← PEval(DB,Cr(ρ) ).

–The proof is set to be 
 := (d, �ε ,Cdcomr(ρ)
).

Proof verification by V :
•Input: 1k ,priv, y,
, where y = (M, x, t), 
 = (d, �ε ,Cdcomr(ρ)

).

•Proof verification:
– Verify that kd+1 ≤ t2 ≤ |x |2c .
– Decrypt PIR answers dcomr(ρ) = PDecR(Cdcomr(ρ)

), and verify opened paths (against h and �ε ).

– Let π |r(ρ) be the opened values in the locations corresponding to r(ρ). Check if V
π |r(ρ)

pcp (y, r(ρ)) accepts.
– In case any of the above fail, reject.

a Vpcp’s queries might be adaptive; such behavior can be simulated by the prover.
b This is the single place where the verification algorithm depends on c. See further discussion in Sect. 5.3

5.2. Proof of Security

A high-level overview of the proof and main technical challenges are presented in
Sect. 1.4. We now turn to the detailed proof, which concentrates on establishing and
proving the validity of the knowledge extractor.

Proposition 5.2. (Adaptive proof of knowledge)For any polynomial-sizeP∗ and poly-
nomial m there exists a polynomial-size extractor EP∗ , such that for any k ∈ N and any



1018 N. Bitansky et al.

auxiliary input z ∈ {0, 1}m(k):

Pr
h,r,R

[
(y,
)←P∗(z, h,PEncR(r∗))

V((1k, h, R, r), y,
)=1
∧ (y, w)←EP∗(z, h,PEncR(r∗))

w /∈Rc(y)

]
≤negl(k) ,

where V is the verifier described in Table 1, h is an ECRH, r are the PCP coins,
r∗ = (r( j) : j ∈ [log2 k]), and R are the PIR coins.

We start by describing how the extraction circuit is constructed and then prove that it
satisfies Proposition 5.2. In order to simplify notation, we will address provers P∗ that
get as input only (h,Cr∗), where Cr∗ = PEncR(r∗); the analysis can be extended to the
case that P∗ also gets additional auxiliary input z ∈ {0, 1}m(k) for any polynomial m.
The Extraction Procedure As discussed in Sect. 1.4, extraction is done in two phases:

First, we recursively extract along all the paths of the Merkle tree (MT); doing so results
in a string (of leaf labels) π̃ ; then, we apply to π̃ the PCP witness extractor Epcp. As
we shall see, π̃ will exceed the knowledge threshold ε of the PCP and hence Epcp will
produce a valid witness.
We now describe the recursive extraction procedure of the of the ECRH-based MT.

Given a polynomial-size proverP∗, let c∗ be such that |P∗| ≤ kc
∗
.We derive 2cc∗ circuit

families of extractors, one for each potential level of the MT. Define E1 := EHP∗ to be
the ECRH extractor for P∗; like P∗, E1 also expects input (h,Cr∗) ∈ {0, 1}poly(k) and
returns a string (�̃1, . . . , �̃k) ∈ {0, 1}k×k (which will be a preimage in case P∗ produces
a valid image). We can interpret the string output by E1 as k elements in the range of
the hash. Since the ECRH extraction guarantee only considers a single image, we define
an augmented family of circuits E ′

1 that expects input (h,Cr∗ , i1), where i1 ∈ [k], and
returns �̃i1 , which is the i1th k-bit block of E1(h,Cr∗).
Next, we define E2 := EHE ′

1
to be the extractor for E ′

1. In general, we define E j+1 := EHE ′
j

to be the extractor for E ′
j , and E ′

j expects an input (h,Cr∗ , i), where i ∈ [k] j . For each
i ∈ [k] j , E j+1(h,Cr∗ , i) is meant to extract the labels �̃i1, . . . , �̃ik .
Recall, however, that the ECRHextractor E j+1 is only guaranteed to output a preimage

whenever the corresponding circuit E ′
j outputs a true image. For simplicity, we assume

that in case E ′
j does not output a true image, E j+1 still outputs some string of length k2

(without any guarantee on this string).
Overall, the witness extractor EP∗ operates as follows. Given input (1k, h,Cr∗), (a)

first invoke P∗(h,Cr∗) and obtain (y,
); (b) obtain the depth d from 
, and abort
if d > 2cc∗; (c) otherwise, for each i ∈ [k]d−1, extract the labels (�̃i1, . . . , �̃ik) ←
Ed(h,Cr∗ , i); (d) letting π̃ be the extracted PCP-proof given by the leaves, apply the
PCP witness extractor w̃ ← Epcp(y, π̃) and output w̃.

We now turn to prove that (except with negligible probability), whenever the verifier
is convinced, the extractor EP∗ outputs a valid witness. The proof is divided into two
main claims as outlined in Sect. 1.4.

A Reminder and Some Notation Recall that prior to the prover’s message, the ran-
domness for the PCP verifier is of the form r = (ri )i∈[q] ∈ {0, 1}(log2 k)×q (and
q = ω(log k) is some fixed function). Once the verifier receives (y,
), where
y = (M, x, t) and 
 = (d, �ε,Cdcom), he computes the amount of coins required



The Hunting of the SNARK 1019

ρ = O(log t) < log2 k and uses r (ρ)
j ∈ {0, 1}ρ , the ρ-bit prefix of r j . The cor-

responding PCP proof π (or the extracted π̃ ) is of size kd+1. We shall denote by
π̃ = Ed(h,PEncR(r∗)) = ∪i∈[k]d−1Ed(h,PEncR(r∗), i) the extraction of the full set of
leaves.
Using collision resistance and ECRH extraction, we show that (almost) whenever the

verifier is convinced, we extract a proof π̃ that locally satisfies the queries induced by
the encrypted PEncR(r∗).

Claim 5.3. (Local consistency) Let P∗ be a polynomial-size prover strategy, where
|P| ≤ kc

∗
, and let (E1, . . . , E2cc∗) be its ECRH extractors as defined above. Then for

any k ∈ N,

Pr
(h,R,r)←GV (1k )

⎡
⎣ (y,
) ← P∗(h,PEncR(r∗))
y = (M, x, t),
 = (d, �ε,Cdcom)

V(1k, (h, R, r), y,
) = 1
∧ π̃ ← Ed(h,PEncR(r∗))

V π̃
pcp(y, r

(ρ)) = 0

⎤
⎦

≤ negl(k) ,

where r = (ri : i ∈ [q]), r( j) = (r ( j)
i : i ∈ [q]), and r∗ = (r( j) : j ∈ [log2 k]), and ρ

is the amount of coins required to verify the statement y.

Proof. Let us say that a tuple (h, R, r) is “bad” if it leads to the above event. Assume
toward contradiction that for infinitely many k ∈ N, there is a noticeable fraction ε(k)
of bad tuples (h, R, r). We show how to find collisions in H.
Given h ← H, sample coins R for the PIR encryption and coins r for the PCP verifier

to simulate PEncR(r∗). Given that the resulting (h, R, r) is bad, let us show how to
produce a collision in h.
First, invoke P∗(h,PEncR(r∗)) to obtain (y,
), where y = (M, x, t) and 
 =

(d, �ε,Cdcom). Next, decrypt Cdcom (using R) and obtain a set S of O(q) opened paths
(each r (ρ)

j in r(ρ) = (r (ρ)
j : j ∈ [q]) induces a constant amount of queries). Each path

corresponds to some leaf i ∈ [k]d and contains d k2-bit strings li1, . . . , l
i
d ∈ {0, 1}k2×d ;

each string lij contains the label of the j th node along the path and the labels of all its
siblings.
Next, note that d ≤ 2cc∗. Indeed, if the verifier accepts then: kd ≤ |x |2c, and in our

case |x | ≤ |P∗| ≤ kc
∗
. Accordingly, we can use our extractors as follows: for each

opened path in i ∈ S, where i = i1 · · · id ∈ [k]d , invoke:

E1(h,PEncR(r∗))
E2(h,PEncR(r∗), i1)

...

Ed(h,PEncR(r∗), i1 · · · id−1)

and obtain l̃i1, . . . , l̃
i
d ∈ {0, 1}k2×d .



1020 N. Bitansky et al.

Let π |S = (
lid

)
i∈S be the leaves P∗ opened and let π̃ |S =

(
l̃id

)
i∈S be the extracted

leaves. Since (h, R, r) are bad, it holds that V π |S
pcp (x, r(ρ)) = 1 while V π̃ |S

pcp(x, r(ρ)) = 0;

in particular, there exist some i ∈ S such that lid �= l̃id . We focus from hereon on this
specific i. Let j ∈ [d] be the smallest index such that lij �= l̃ij (we just established

that such an index exists); then it holds that lij−1 = l̃ij−1. Furthermore, since (h, R, r)

are bad, V accepts; this in turn implies that h compresses lij to the i j−1th block of

lij−1 = l̃ij−1, which we will denote by �∗. However, the latter is also the output of

E ′
j−1(h,PEncR(r∗), i1 · · · i j−1),10 which in turn implies that E j (h,PEncR(r∗), i1 · · ·

i j−1) = l̃ij is also compressed by h to the same �∗ (except when extraction fails, which

occurs with negligible probability). It follows that lij �= l̃ij is a collision in h.

The second step in the proof of Proposition 5.2 is to show that if the aforementioned
extractor outputs a proof π̃ that convinces the PCP verifier with respect to the encrypted
randomness, then the same proof π̃ must be globally satisfying (at least for witness
extraction); otherwise, the polynomial-size extractor can be used to break the semantic
security of the PIR.

Claim 5.4. (From local satisfaction to extraction) Let P∗ be a polynomial-size prover
and let EP∗ be its polynomial-size extractor.11. Then for any k ∈ N,

Pr
(h,R,r)←GV (1k )

⎡
⎣ t≤|x |c

V π̃
pcp(y, r

(ρ))=1
Epcp(y, π̃) /∈Rc(y)

:
(y,
) ← P∗(h,PEncR(r∗))

y=(M, x, t),
=(d, �ε,Cdcom)

π̃ ←EP∗(h,PEncR(r∗))

⎤
⎦≤negl(k) ,

where r = (ri : i ∈ [q]), r( j) = (r ( j)
i : i ∈ [q]), and r∗ = (r( j) : j ∈ [log2 k]), and ρ

is the amount of coins required to verify the statement y.

Proof. Assume toward contradiction that for infinitely many k ∈ N the above
event occurs with noticeable probability δ = δ(k); we show how to break the se-
mantic security of PEnc. First note that whenever the event occurs, it holds that
Pr

r(ρ) U←{0,1}ρ×q
[V π̃

pcp(y, r
(ρ)) = 1] ≤ (1 − ε)q , where ε is the (constant) knowledge

threshold of the PCP (see Sect. 3.7), and q = ω(log k) is the number of repetitions.
To break semantic security, we consider the following CPA game, where a breaker

B hands its challenger two independent strings of PCP randomness, (r0, r1) ∈
{0, 1}(log2 k)×2, and gets back PEncR(rb) for a random b ∈ {0, 1}. Now, B samples
a random h, and runs P∗(h,PEncR(rb)) and EP∗(1k, h,PEncR(rb)) to obtain an in-
stance y = (M, x, t) from the prover and an extracted PCP proof π̃ from the extractor.

10Recall that E ′
j−1(h,PEncR(r∗), i1 · · · i j−1) returns the i j−1th block of the output of

E j−1(h,PEncR(r∗), i1 · · · i j−2), which is exactly lij−1 and that E j is the extractor for E ′
j−1.

11The claim actually holds for any circuit family E , but we’ll be interested in the extractor of P∗.



The Hunting of the SNARK 1021

Then, B computes the amount of coins required for Vpcp, ρ = ρ(t) and derives the

corresponding ρ-prefixes (r(ρ)
0 , r(ρ)

1 ) of (r0, r1).
The breaker now runs the PCP extractor Epcp on input (y, π̃) to obtain a string w̃ and

verifies whether it is a valid witness for y (which can be done in poly(|x |) = poly(k)
time). In case the witness w̃ is valid or V π̃

pcp(y, r
(ρ)
0 ) = V π̃

pcp(y, r
(ρ)
1 ), the breaker B

outputs a random guess for the bit b. Otherwise, the breaker outputs the single b′ such
that V π̃

pcp(y, r
(ρ)

b′ ) = 1.
We now analyze the success probability of B. We define two events F and E over

a random choice of (h, R, r(ρ)
0 , r(ρ)

1 , b); note that any choice of (h, R, r(ρ)
0 , r(ρ)

1 , b)
induces a choice of y = (M, x, t) and π̃ . Define F to be the event that t ≤ |x |c
and Epcp(y, π̃) fails to output a valid witness w̃; next, define E to be the event that

V π̃
pcp(y, r

(ρ)
0 ) �= V π̃

pcp(y, r
(ρ)
1 ).

First, since we have assumed by way of contradiction that the event in the statement
of the claim occurs with probability δ, we know that

Pr
[
V π̃
pcp(y, r

(ρ)
b ) = 1

∣∣ F ] = δ

Pr[F] .

Second, since Epcp cannot extract a valid witness from π̃ and r(ρ)
1−b are random coins

independent of (π̃, y), we also know that

Pr
r(ρ)
1−b

U←{0,1}ρ×q

[
V π̃
pcp(y, r

(ρ)
1−b) = 1

∣∣ F ] ≤ (1 − ε)q .

Combining these two facts, we deduce that

Pr
[
E

∣∣ F ]
≥ Pr

[
V π̃
pcp(y, r

(ρ)
b ) = 1 ∧ V π̃

pcp(y, r
(ρ)
1−b) = 0

∣∣ F ]
≥ Pr

[
V π̃
pcp(y, r

(ρ)
b ) = 1

∣∣ F ] − Pr
[
V π̃
pcp(y, r

(ρ)
1−b) = 1

∣∣ F ]
≥ Pr

[
V π̃
pcp(y, r

(ρ)
b ) = 1

∣∣ F ] − (1 − ε)q = δ

Pr[F] − negl(k) ,

so that, in particular, we can also deduce that

Pr
[
F ∧ E

] ≥ δ − negl(k) .

Therefore,

Pr
[B guesses b

∣∣ F ∧ E
]

≥ 1 − Pr
[
V π̃
pcp(y, r

(ρ)
1−b) = 1

∣∣ F ∧ E
]

= 1 − Pr
[
V π̃
pcp(y, r

(ρ)
1−b) = 1 ∧ E

∣∣ F ]
Pr

[
E

∣∣ F ]



1022 N. Bitansky et al.

≥ 1 − (1 − ε)q

δ/Pr
[
F

]
≥ 1 − negl(k) .

We now deduce that the breaker B guesses b with a noticeable advantage; indeed,

Pr
[B guesses b

] = Pr
[
F ∧ E

]
Pr

[B guesses b
∣∣ F ∧ E

] + (
1 − Pr

[
F ∧ E

])
Pr

[B guesses b
∣∣ F̄ ∨ Ē

]
= Pr

[
F ∧ E

]
Pr

[B guesses b
∣∣ F ∧ E

] + (
1 − Pr

[
F ∧ E

]) · 1
2

= 1

2
+ Pr

[
F ∧ E

] (
Pr

[B guesses b
∣∣ F ∧ E

] − 1

2

)

≥ 1

2
+ (δ − negl(k))

(
1

2
− negl(k)

)

≥ 1

2
+ δ − negl(k)

2
,

thus completing the proof of the claim.

Putting it All Together By Claim 5.3, we conclude that whenever the verifier accepts,
EP∗ almost always extracts a proof π̃ which locally satisfies the PCP verifier on the
encrypted randomness. By Claim 5.4, we deduce that whenever this occurs, π̃ must
satisfy sufficiently many queries for PCP witness extraction. This completes the proof
of Proposition 5.2 and thus of Theorem 5.1.

Efficiency: “Universal Succinctness” For input y = (M, x, t) (where t < klog k for
a security parameter k), the proof 
 = (d, �ε,Cdcomr(ρ)

) is essentially dominated by
the PIR answers Cdcomr(ρ)

; this includes q = polylog(k) PIR answers for entries of

size Õ(k2).12 In the PIR scheme of [33], the size of each PIR answer is bounded by
E · k · polylog(k) + log D, where E is the size of an entry and D is the number of
entries in DB. Hence, the overall length of the proof is bounded by a fixed polynomial
Õ(k2), independently of |x |, |w|or c. Theverifier’s andprover’s running time is bounded,
respectively, by fixed universal polynomials poly(|y|, k), poly(k, t), again independently
of c.Moreover, the size of the proof itself is a universal polynomial in k, also independent
of |y|.

Parameter Scaling In Kilian’s original protocol, succinctness of the proof could be
improved bymaking stronger hardness assumptions. For example, for security parameter
k, if one is willing to assume collision-resistant hash functions with a polylog(k)-long
output, the proof length would be polylog(k), rather than poly(k). Unfortunately, in
our construction we use a Merkle tree with poly(k) fan-in; therefore, we cannot afford
the same scaling. Specifically, even if we assume that our hash and PIR scheme have
polylogarithmic-size output, each node in the Merkle tree still has poly(k) siblings.13

12Recall that d = logk t < log k.
13We thank Kai-Min Chung and the anonymous referees of ITCS for pointing out the scaling problem.



The Hunting of the SNARK 1023

Nonetheless, scaling can be performed if we make a stronger extractability assumption,
such as the interactive one of [52], because in such a case there is no need to consider
Merkle trees with polynomial fan-in as binary Merkle trees suffice for the security
reduction.

5.3. Extension to Universal Arguments

We now discuss the possibility of extending our construction to a full-fledged universal
argument, namely an argument for the universal relationRU as defined in Sect. 3.6.

Indeed, Theorem 5.1 tells us that for every c ∈ N we obtain a specific protocol that is
sound with respect to Rc. The dependence on c, however, only appears in the first step
of V , where it is checked that kd+1 ≤ |x |2c. In particular, as we already discussed, the
running time of both the prover and verifier, as well as the proof length, are universal
and do not depend on c.
Toward a Full-Fledged Universal Argument To obtain a full-fledged universal argu-

mentwemight try to omit the above c-dependent size check.However, nowwe encounter
the following difficulty: For the proof of knowledge to go through, we must ensure that
the number of recursive extractions is a priori fixed to some constant d (that may depend
on the prover). In particular, we need to prevent the prover P∗ from convincing the
verifier of statements y = (M, x, t)with t > kd . The natural candidate for d is typically
related to the polynomial-size bound on the size of P∗. Indeed, any prover that actually
“writes down” a proof of size t should be of size at least t ; intuitively, one could hope
that being able to convince the verifier should essentially amount to writing down the
proof and computing a Merkle hash of it. However, we have not been able to prove this.
Instead, we propose the following modification to the protocol to make it a universal
argument.
Proofs of Work For the relation Rc, the above problem of P∗ claiming an artificially

large t can be avoided by ensuring that the size of a convincing proof t can only be as
large as |x |c, where |x | is a lower bound on the prover’s size. More generally, to obtain
a universal argument, we can omit the verifier’s check (thus collapsing the family of
protocols to a single protocol) and enhance the protocol of Table 1 with a proof of work
attesting that the prover has size at least tε for some constant ε > 0. Concretely, if we
are willing to make an additional (though admittedly quite strong) assumption, we can
obtain such proofs of work:

Theorem 5.5. If there exist 2εn-hard one-way functions (where n is the input size),
then, under the same assumptions as Theorem 5.1, we can modify the protocol in Table 1
to obtain a universal argument.

Proof sketch. Let f : {0, 1}∗ → {0, 1}∗ a 2εn-hard one-way function. Modify GV (1k)
to also output z1, . . . , z�, with � := log2 k and zi := f (si ), where each si is drawn at
random from {0, 1}i . Then, when claiming a proof 
 for an instance y = (M, x, t), the
prover must also present s′

i such that f (s′
i ) = zi where i > log t .14 The verifier V can

14 Note that in any case the verifier will reject any claim for t above the superpolynomial universal bound

2log
2 k ; hence, � = log2 k challenges are sufficient for any polynomial-size prover.



1024 N. Bitansky et al.

easily check that this is the case by evaluating f . (Note also that the honest prover will
have to pay at most an additive factor of Õ(t) in its running time when further requested
to present this challenge.) Then, by the hardness of f , we know that if the prover has
size kd , then it must be that kd > 2εi > tε, so that we conclude that kd/ε > t . Therefore,
in the proof of security, we know that the claimed depth of the prover is a constant
depending only on d and ε, and thus the same proof of security as that of Theorem 5.1
applies.

Admittedly, assuming exponentially hard one-way functions is unsatisfying, and we
hope to remove the assumption with further analysis; in the meantime, we would like to
emphasize that this assumption has already been made, e.g., in natural proofs [120] or
in works that improve PRG constructions [85].

6. ECRHs: a Closer Look

In this section, we take a closer look at the notion of ECRH and propose relaxations
of this notion that still suffice for constructing SNARKs. These relaxations are crucial
to expand our set of candidate constructions; for more details on the constructions, see
Sect. 8.

6.1. ECRHs

We begin by discussing several technical aspects regarding the definition of ECRH.
Recall that an ECRH is a collision-resistant function ensemble H that is extractable in
the sense of Definition 1, which we reproduce:

Definition 6.1. An efficiently samplable function ensembleH = {Hk}k is an (�(k), k)-
compressing ECRH if it is (�(k), k)-compressing, collision-resistant, and moreover
extractable: For any polynomial-size adversary A and polynomial m, there exists
a polynomial-size extractor EHA , such that for any k ∈ N and any auxiliary input
z ∈ {0, 1}m(k):

Pr
h←Hk

[
y ← A(h, z)

∃ x : h(x) = y
∧ x ′ ← EHA (h, z)

h(x ′) �= y

]
≤ negl(k) . (1)

In other words, the only way an adversaryA can sample elements in the image of the
hash is by knowing a corresponding preimage (which an extractor EHA could in principle
find).
Image Verification In known applications of extractable primitives (e.g., three-round

zero knowledge [27,37,87]), an extra image-verifiability feature is required. Namely,
given y ∈ {0, 1}k and h, one should be able to efficiently test whether y ∈ Image(h).
Here, there are two flavors to consider: (a) public verifiability, where to verify an im-
age all that is required is the (public) seed h; and (b) private verifiability; that is, the
seed h is generated together with private verification parameters priv, so that any-
one in hold of priv may perform image verification. We emphasize that our main



The Hunting of the SNARK 1025

ECRH-based construction (presented in Sect. 5.1) does not require any verifiability
features.
Necessity of Sparseness For the compressing family H to be collision-resistant, it

must also be one-way [77]; namely, the image distribution

Ih =
{
h(x) : x U← {0, 1}�(k)

}

should be hard to invert (except with negligible probability over h). In particular, Ih
must be very far from the uniform distribution over {0, 1}k (for almost all h).

Indeed, suppose that the statistical distance between Ih and uniform is 1− 1/poly(k)
and consider an adversary A that simply outputs range elements y ∈ {0, 1}k uniformly
at random, and any EAH . In this case, there is no “knowledge” to extract from A, so
EAH has to invert uniformly random elements of the range {0, 1}k . Thus, the success
probability of EAH will differ by at most 1 − 1/poly(k) from its success probability had
the distribution been Ih , which is negligible (by one-wayness); hence EAH will still fail
with probability 1 − 1/poly(k), thereby violating Equation (1).

A simple way to ensure that the image distribution Ih is indeed far from uniform
is to make the support of Ih sparse. We will take this approach when constructing
candidates, making sure that all h(x) fall into a superpolynomially sparse subset of
{0, 1}k : Image(h) < 2k−ω(log k) (except with negligible probability over h ← Hk).

Of course, this merely satisfies one necessary condition and is a long way off from
implying extractability. Still, this rules out one of the few generic attacks about which we
can reason without venturing into the poorly charted territory of non-black-box extrac-
tion. Moreover, the sparseness (or more generally, statistical distance) requirement rules
out many natural constructions; for example, traditional cryptographic CRH ensembles,
and heuristic constructions such as the SHA family have an image distribution Ih that
is close to uniform (by design) and are thus not extractable.
On Auxiliary Input The ECRH definition requires that for any adversary auxiliary

input z ∈ {0, 1}poly(k), the polynomial-size extractor manages to perform its extraction
task given the same auxiliary input z. As observed by Hada and Tanaka [87], and by
Goldreich [79], this requirement is rather strong considering the fact that z could po-
tentially encode arbitrary circuits. Indeed, [16,28] show that such a definition cannot be
satisfied, assuming indistinguishability obfuscation [22]. The mentioned impossibility
results strongly rely on the fact that the auxiliary input can be of arbitrary polynomial
size, and can be taken from an arbitrary distribution.
While for presentational purposes the above definition may be simple and convenient,

for our main application (i.e., SNARKs) we can actually settle for a definition that
is weaker in both aspects—it can be restricted to a specific “benign distribution” on
auxiliary inputs, which is also of a priori bounded polynomial size, a setting in which
no negative results are known. (Naturally, when relying on ECRHs with respect to such
restricted auxiliary input distributions, the resulting SNARK will account for the same
auxiliary input distributions.)
Specifically, in our setting the extractor is required to handle an auxiliary input (C, I )

consisting of (honestly generated) PIR encryptions C of random strings, whose length
is a priori bounded by a fixed polynomial poly(k) in the security parameter k, and a



1026 N. Bitansky et al.

short path index I of length O(log k). The logarithmically short auxiliary input I can
be shown not to give any additional power to the adversary. Specifically, an ECRH for
auxiliary input distribution C is also an ECRH for auxiliary input (C, I ) as long as
|I | = O(log k). (Roughly, the extractor of an adversary A for auxiliary input (C, I )
can be constructed from a polynomial number of extractors, obtained by considering the
extractor of AI (C) := A(C, I ) for every possible value of I ; for the formal argument,
one has to adapt this intuition to circuit families.)
As for the “main” part C of the auxiliary input, we note that by using a PIR scheme

where honestly generated ciphers are pseudo-random,we can actually restrict the “main”
part C of the auxiliary input to be a random string (e.g., the LWE-based PIR scheme of
[33] has this property), as long as the ECRH has efficient (even private) image verifi-
cation. Indeed, an extractor that does noticeably better for random auxiliary input than
for pseudo-random auxiliary input can be used to distinguish the two cases. For this,
we should be able to efficiently check when that adversary produces an actual image
(whereas the extractor fails to produce a corresponding preimage), which is why efficient
image verification is needed.

6.2. PECRHs

As discussed in Sect. 1.3.1, our first weakening of ECRH, namely proximity ECRH,
captures amoreflexible trade-off between the requirements of extractability and collision
resistance. Formally:

Definition 6.2. An efficiently samplable function ensembleH = {Hk}k is an (�(k), k)-
compressing PECRH if it is (�(k), k)-compressing and, for every h in the support ofHk ,

there exist a reflexive “proximity relation”
h≈ over pairs in {0, 1}k ×{0, 1}k , an “extended

domain”Dh ⊇ {0, 1}�(k), and an extension h̄ : Dh → {0, 1}k consistent with h (i.e.,
∀x ∈ {0, 1}�(k) it holds that h(x) = h̄(x)), such that:

1. H is proximity extractable in the following weakened sense: For any polynomial-
size adversary A and polynomial m, there exists a polynomial-size extractor EHA
such that for any security parameter k ∈ N and any auxiliary input z ∈ {0, 1}m(k):

Pr
h←Hk

⎡
⎣ y ← A(h, z)

∃ x ∈ {0, 1}�(k) : y = h(x)
∧

x ′ ← EHA (h, z)

¬
(
x ′ ∈ Dh ∧ h̄(x ′)

h≈ y

)
⎤
⎦ ≤ negl(k) .

2. H is proximity-collision-resistant in the following strengthened sense: For any
polynomial-size adversary A,

Pr
h←Hk

[
(x, x ′) ← A(h) ∧ x, x ′ ∈ Dh ∧ x �= x ′ ∧ h̄(x)

h≈ h̄(x ′)
]

≤ negl(k) .

We now discuss why any point on the trade-off (i.e., any choice of
h≈, Dh and h̄ fulfilling

the conditions) suffices for the construction of SNARKs as claimed in Theorem 5 in
Sect. 1.3.1.



The Hunting of the SNARK 1027

Proof sketch for Theorem 5. We argue that the same construction the we use in the
proof of Theorem 1 to construct SNARKs from ECRHs still suffices even when the
underlying hash function is only a PECRH.
First, observe that moving from ECRHs to PECRHs only affects the “local consis-

tency” step of our proof (as described in our high-level description in Sect. 1.4 and then
formally as Claim 5.3). Indeed, in the proof based on ECRHs, the local consistency
step is where we employ collision resistance to claim that the Merkle tree output by the
extractor locally agrees with the opened paths (except with negligible probability).
The same argument holds. By the proximity extraction guarantee, it must be that the

hash image of every node label that appears in an opened path is “close” to the image of
the corresponding node label in the extracted tree. By the proximity collision resistance,
however, these two node labels must in fact be the same; for if they were not, then we
could utilize the prover and extractor for finding “proximity collisions.” The rest of the
proof of Theorem 1 remains unchanged.

We emphasize that the proximity relation
h≈ need not be efficiently computable for

the above to hold.

6.3. Weak PECRHs

As discussed in Sect. 1.3.2, our second weakening of ECRH, namely weak PECRH,
relaxes the condition that determines when the extractor has to work. Formally:

Definition 6.3. An efficiently samplable function ensembleH = {Hk}k is a (�(k), k)-
compressing weak PECRH if it satisfies Definition 6.2 with the following modified first
condition:

1. H is weak proximity extractable in the following sense: For any polynomial-size
adversary A and polynomial m, there exists a polynomial-size extractor EHA such
that for any security parameter k ∈ N and any auxiliary input z ∈ {0, 1}m(k) and
polynomial-size decoder circuit Y:

Pr
h←Hk

⎡
⎣ (y, e) ← A(h, z)

h(Y(e)) = y
∧

x ′ ← EHA (h, z)

¬
(
x ′ ∈ Dh ∧ h̄(x ′)

h≈ y

)
⎤
⎦ < negl(k) .

We show that even weak PECRHs are enough for the construction of SNARKs as
claimed in Theorem 7.

Proof sketch of Theorem 7. We argue that the same construction that we use in the
proof of Theorem 1 to construct SNARKs from ECRHs also obtains SNARKs even
when the underlying hash function is only a weak PECRH. As was the case when
moving from ECRHs to PECRHs, moving from PECRHs to weak PECRHs only af-
fects the “local consistency” step of our proof (as described in our high-level descrip-
tion in Sect. 1.4 and then formally as Claim 5.3); specifically, we must still be able
to guarantee local consistency even when the condition under which the extractor is
guaranteed to work is weakened to the case where the adversary outputs an encod-



1028 N. Bitansky et al.

ing of a preimage (as opposed to when the adversary merely outputs a value in the
image).
In the construction, this is always the case, because preimages along the opened path

are provided as encrypted authentication paths, which can be “decoded” by a decoder
that knows the secret key (i.e., the PIR private coins). Therefore, we are still able to show
local consistency.

Unlike PECRHs, weak PECRHs may in principle not require sparsity of the image
or special algebraic structure. While an attacker trying to fool a PECRH extractor only
has to obliviously sample an image of the function, now, to fool a weak PECRH ex-
tractor, it needs to simultaneously obliviously sample an image of the function and an
encoding of a corresponding preimage. This raises the following natural question: “is
any CRH also a weak PECRH?” We believe this to be unlikely; indeed, the following
example shows that (assuming the existence of one-way permutations) there exists a
CRH that is not a weak PECRH when the proximity relation is forced to be equality.
(To extend this to an actual counter-example, one would have to rule out all proximity
relations.)
LetH = {Hk} be any CRH mapping {0, 1}2k to {0, 1}k and P any one-way permuta-

tion mapping {0, 1}k to itself, for every k ∈ N . Consider the (contrived) new CRH H′,
mapping {0, 1}2k to {0, 1}k+1, that is defined as follows. A seed h′ ∈ H′

k corresponds to
a seed h ∈ Hk ; each (x1||0k) ∈ {0, 1}k × {

0k
}
is mapped by h′ to (0||P(x1)) and each

(x1||x2) ∈ {0, 1}k × ({0, 1}k \ {
0k

}
) is mapped by h′ to (1||h(x1||x2)).

Since P is one-to-one and the intersection of the image set h′({0, 1}k × {
0k

}
) with

the image set h′({0, 1}k × ({0, 1}k) \ {
0k

}
) is empty, any collision in h′ implies a corre-

sponding collision in h and, therefore,H′ is also a CRH (i.e., a proximity CRH relative
to the equality proximity relation). However,H′ is not weakly proximity extractable rel-
ative to the equality proximity relation; indeed, consider the auxiliary input distribution
z = P(x1) for a random x1 ← {0, 1}k , with a corresponding (correlated) decoder Y that
always outputs x1||0k . In addition, consider a dummy adversary that given z, h simply
outputs (0||z) = (0||P(x1)) = h(x1||0k). Note that since the decoder always outputs a
valid preimage, any extractorwould have to do the same.However, any efficient extractor
that manages to do so has to invert the one-way permutation P .

7. From SNARKs to PECRHs (and More)

In this section, we provide more details about Theorems 2 and 3, which were only
informally stated in the introductory discussion of Sect. 1.2. That is, we show that
(proximity) extractable collision-resistant hash functions (PECRHs) are in fact not only
sufficient (together with appropriate polylog PIRs) but also necessary for SNARKs
(assuming standard CRHs). We then describe a general method for obtaining additional
(non-interactive) extractable primitives.
Extractability and Proximity Extractability We say that a function ensemble F =

{Fk}k is extractable if, given a random f ← Fk , it is infeasible to produce y ∈ Image( f )
without actually “knowing” x ∈ Domain( f ) such that f (x) = y. This is formalized
by the requirement that for any polynomial-size adversary A there is a polynomial-size



The Hunting of the SNARK 1029

extractor EA such that for any auxiliary input z and randomly chosen f : If A(z, f )
outputs a proper image, EA(z, f ) outputs a corresponding preimage. Typically, for such
a family to be interesting, it is required thatF also has some hardness property, e.g., one-
wayness; in particular, for the two features (of hardness and extractability) to coexist,
Image( f ) must be sparse in the (recognizable) range of the function.
As explained (for ECRHs) in Sect. 1.3.1 and later in Sect. 6.1, the above notion

of extraction can be relaxed to consider proximity extraction, according to which it is
infeasible to produce y ∈ Image( f ) without knowing an x such that f (x) is proximate
to y relative to some given reflexive proximity relation (e.g., relative hamming distance at
most 1/2). For such a notion of extraction to be useful, the corresponding hardness of f
should be upgraded accordingly. For example, a proximity extractable one-way function
( f,≈), where ≈ is some proximity relation, is such that, given f (x) for a random x , it
is infeasible to find an x ′ for which f (x ′) ≈ f (x) (and it is proximity extractable in the
sense that we just described).
In Sect. 6, we discussed even further relaxations: In one, the extractor also had the

freedom to output elements x from an extended domain D f ⊇ Domain( f ); in another,
the extractor only had to work when the adversary manages to output not only an image
but also an encoding of a corresponding preimage. In this section, however, we do not
consider these further relaxations.
Note that, naturally, known cryptographic schemes (e.g., three-round zero knowledge)

have relied on standard extraction rather than proximity extraction; however, to the best of
our knowledgewe can safely replace standard extraction in these schemeswith proximity
extraction (as we did for the purpose of constructing SNARKs).
Verification and Proximity Verification Another extraction-related issue is image ver-

ification; here, there are two notions that can be considered:

• Public verification: Given f and y ∈ Range( f ), one can efficiently test whether
y ∈ Image( f ).

• Private verification: Together with the function f , Fk also generates a private
verification state priv f . Given f,priv f and y ∈ Range( f ), one can efficiently test
whether y ∈ Image( f ).

In addition, when considering proximity extractability, we can consider a corresponding
notion of proximity verifiability, where the verifier should only check whether y ∈≈
Image( f ), namely there is some element y′ ∈ Image( f ) for which y ≈ y′. Again
we note that for the known applications of (verifiable) extractable primitives, proximity
verification is sufficient.
Also note that the weaker notion of extractability with no efficient verification might

also be meaningful in certain scenarios. Indeed, for our main ECRH-based construc-
tion of SNARKs (presented in Sect. 5.1), this weak notion of extractability with no
efficient verification suffices and in fact ultimately allows us to deduce, through the
SNARK construction, many extractable primitives with efficient private (proximity)
verification.

7.1. From SNARKs to PECRHs

We now present the implications of SNARKs to the existence of extractable primitives,
starting with the necessity of PECRHs:



1030 N. Bitansky et al.

Proposition 7.1. If there exist SNARKs and (standard)CRHs, then there exist proximity
verifiable PECRHs.

Proof sketch. We show that designated-verifier SNARKs imply PECRHs with private
proximity verification. The proof can be easily extended to the case of public verifiability
(where publicly verifiable SNARKs imply PECRHs with public proximity verification).
Let H be a (tk, k)-compressing CRH, where t = t (k) > 1 is a compression para-
meter. Let (P,GV ,V) be an (adaptive) SNARK such that, given security parameter k̂,
the length of any proof is bounded by k̂c.15 We define a (tk, 2k)-compressing ECRH,
H̃ = {H̃k}k . A function h̃ and private verification state privh̃ are sampled by H̃k as
follows:

1. Draw a function h ← Hk ,
2. Draw public and private parameters (vgrs,priv) ← GV (k1/c), and
3. Set h̃ = (h, vgrs),privh̃ = priv.

Then, for an input x and defining y = h(x), we define h̃(x) = (y,
) where 
 =
P(vgrs, thm, x) is a proof of knowledge for the NP statement thm = “there exists an
x ∈ {0, 1}tk such that h(x) = y.”
We now show that the above is a PECRH with respect to the relation ≈, where

(y,
) ≈ (y′,
′) if and only if y = y′.
The proximity collision resistance of H̃ follows directly from the collision resistance

of H, because any proximity-colliding pair (x, x ′) for H̃ is a colliding pair for H. The
proximity extractability property of H̃ follows from the (adaptive) proof of knowledge
of the SNARK (P,GV ,V); that is, for any image-computing polynomial-size adversary
A, the ECRH extractor is set to be the SNARK witness extractor EA. In addition, an
image can be proximity-verified (with respect to ≈) by invoking the SNARK verifier V
with the private verification state priv, the proof
, and the corresponding statement. We
note that, for the proposition to go through, it is crucial for the SNARK to hold against
adaptive provers; indeed, the adversary gets to choose on which inputs to compute the
hash function, and these may very well depend on the public parameters.

Why PECRH and not ECRH? At first glance, it is not clear why the above does not
imply an (“exact”) ECRH rather than a PECRH. The reason lies in the fact that the
extractor is only guaranteed to output one of many possible witnesses (preimages). In
particular, given an honest image (h(x),
x ) (corresponding to some preimage x), the
extractor may output x ′ such that h(x ′) = h(x) but applying the honest prover to x ′ (or,
more precisely, theNP statement proving knowledge of x ′) results in a proof
x ′ �= 
x .
We now can immediately deduce that SNARKs also imply proximity extractable one-

way functions (PEOWFs) and proximity extractable computationally binding and hiding
commitments (PECOMs). These are one-way functions and commitments (respectively)
in the standard sense with an additional extraction property: extraction of a (proximate)
preimage in the one-way function case and (proximity) extraction of a plain text in the
commitment case.

15More precisely, the length of any proof is bounded by (k̂ + log t)c , where t is the computation time;
however, we only address statements where the computation is poly-time and in particular log t < k̂.



The Hunting of the SNARK 1031

Corollary 7.2. If there exist SNARKs and (standard) CRHs, then there exist PEOWFs
andPECOMs.Moreover, the verifiability features of the SNARK carry over to the implied
primitives.

Proof Sketch. First, note that any (�(k), k)-compressing PECRH is also a (keyed)
PEOWF (with respect to the same image proximity relation). Indeed, it is a proximity
def since it is a proximity CRH and independently of that it is also proximity extractable
(and verifiable).
Second, to get an extractable bit-commitment scheme, one can use the classic CRH

plus hardcore bit construction of Blum [26]. Specifically, the commitment scheme is
keyed by a seed h for the PECRH and a commitment to a bit b is obtained by sampling

r, s
U← {0, 1}�(k) and computing

EvalCom(b; h; r, s) := (h(r), s, b ⊕ 〈r, s〉) .

The fact that this is a computationally binding and hiding commitment holds for any
CRH (note that any proximity CRH is in particular a CRH).Moreover, any adversary that
computes a valid commitment c = (y, s, b) (under the random seed h) also computes a
valid image y under h; hence,we can use the PECRHextractor to extract the commitment
randomness r̂ , such that y ≈ ŷ = h(r̂). We can accordingly define the proximity relation
on commitments: (y, s, b) ≈ (ŷ, ŝ, b̂) if and only if y ≈ ŷ, s = ŝ, and b = b̂.

In addition, verifying a proximity commitment is done by verifying that y is proximate
to an image under h.

7.2. From Leakage-Resilient Primitives and SNARKs to Extractable Primitives

Given the results in the previous section, naïvely, it seems that non-interactive adaptive
arguments of knowledge offer a generic approach toward constructing extractable prim-
itives: “simply add a non-interactive proof of preimage knowledge” (which might seem
to be applicable even without succinctness when compression is not needed). However,
this approach may actually compromise privacy because the attached proofs may leak
too much information about the preimage.
Onemay try to overcome this problemby using non-interactive zero-knowledge proofs

of knowledge. However, this can only be done in the common reference string model
and will accordingly lead to extractable functions in the common reference stringmodel.
However, when adding a common reference string, some of the applications of ex-
tractable functions (for instance, three-message zero knowledge presented in Sect. 11.2)
become trivial.
In this section, we consider a different approach toward overcoming the problem

of proof-induced preimage leakage: We suggest to consider stronger (non-extractable)
primitives that are resilient to bounded amounts of leakage on the preimage. Then,
we can leverage the succinctness of SNARKs to claim that proving knowledge of a
preimage does not leak too much and hence does not compromise the security of the
primitive. Indeed, CRHs are in a sense optimally leakage-resilient defs; hence, the first
part of Corollary 7.2 can be viewed as an application of this paradigm. Moreover, in this



1032 N. Bitansky et al.

approach, there is no need to assume a trusted third party to set up a common reference
string (as would be the case if we were to use zero-knowledge techniques).
We exemplify how to apply this paradigm to subexponentially hard defs.

Proposition 7.3. Given any 2|x |ε -hard def f : {0, 1}∗ → {0, 1}∗ and SNARKs, there
exist PEOWFs (against polynomial-size adversaries).Moreover, the verifiability features
of the SNARK carry over to the implied PEOWF.

The proposition follows directly from the following two claims.

Claim 7.4. (Leakage resilience)Let f : {0, 1}∗ → {0, 1}∗ bea2|x |ε -harddef. Then f is
|x |0.99ε-leakage-resilient in the sense that for any function �(·) such that |�(x)| ≤ |x |0.99ε
no polynomial-size adversary given ( f (x), �(x)) for a random x, can find a preimage
of f .

Claim 7.5. (From leakage resilience and SNARK to Extractable OWFs) Assume the
existence of SNARKs and a OWF f : {0, 1}∗ → {0, 1}∗ that is |x |δ-leakage-resilient for
some constant δ. Then there is a PEOWF. The verifiability features of the SNARK carry
over to the implied PEOWF.

Proof Sketch. The first claim follows directly from the fact that f is 2|x |ε -hard. Any
polynomial-size adversary that inverts f (x), given �(x), can be transformed to a 2|x |ε -
size adversary that inverts f by simply enumerating all possible values �(x).

We now prove the second claim. As in Proposition 5.2, we define an extractable func-
tion F = {Fk}k . Let c be the constant such that any SNARK proof is bounded by k̂c for
security parameter k̂. The functions generated byFk are defined on the domain {0, 1}kc/δ
and are indexed by a vgrs ← GV (1k). For x ∈ {0, 1}kc/δ , fvgrs(x) = ( f (x),
), where


 is a SNARK for the statement that “there exists an x ∈ {0, 1}kc/δ such that f (x) = y.”
As for PECRHs, we define the proximity relation to be (y,
) ≈ (y′,
′) if and only if
y = y′. As in the proof of Proposition 7.1, proximity extraction and verifiability follow
directly from the extraction and verifiability of the SNARK.We claim thatF is one-way
with respect to ≈; namely, given the image (y,
) of a random x in the domain, it is
infeasible to come up with an x ′ such that f (x ′) = y. This follows directly from the fact
that f can withstand leakage of size (kc/δ)δ = kc and the fact that |
| ≤ kc.

Note that, given SNARKwith proof size polylog(k), one can start from f that is only hard
against quasi-polynomial-size adversaries. (As noted in Sect. 5.3 our SNARK security
proof does not scale in this way, but given stronger extractability assumptions it would.)
We also note that the above reduction essentially preserves the structure of the original
def f ; in particular, if f is one-to-one so is F . Moreover, in such a case in the NP
language corresponding to f , any theorem, claiming that y = f (x) is a proper image,
has a single witness x . In this case, we would get (exact) EOWF rather than PEOWF.
We thus get:



The Hunting of the SNARK 1033

Corollary 7.6. Given any 2|x |ε -hard one-to-one def and SNARKs, there exist (exactly)
extractable commitments that are perfectly binding and computationally hiding (against
polynomial-size adversaries).

Proof sketch. Indeed, the EOWFs given by Proposition 7.3 would now be one-to-one,
which in turn imply perfectly binding ECOMs, using the hardcore bit construction as in
Corollary 7.2 instantiated with a one-to-one EOWF. (The fact that one-to-one EOWFs
imply perfectly binding ECOMs was already noted in [37].)

More Extractable Primitives Based on SNARKs and Leakage ResilienceWe believe
there is room to further investigate the above approach toward obtaining more powerful
extractable primitives. In this context, one question that was raised by [37] is whether
extractable pseudo-random generators and pseudo-random functions can be constructed
from generic extractable primitives, e.g., EOWFs. (They show that the generic construc-
tions of [86] are not knowledge preserving.)
Our SNARK-based approach can plausibly be used to obtain two weaker variants,

namely extractable pseudo-entropy generators and pseudo-entropy functions. Specifi-
cally, the results of [55,84,121] imply that any strong enough PRG is inherently also
leakage-resilient, in the sense that, even given leakage on the seed, the PRG’s output
still has high pseudo-entropy (specifically, HILL entropy). The results of Braverman et
al. [24] show how to obtain the more general notion of leakage-resilient pseudo-entropy
functions. We leave the investigation of these possibilities for future work.
Non-Verifiable Extractable Primitives Perfectly binding ECOMs (as given by Corol-

lary 7.6) provide a generic way of obtaining limited extractable primitives that do not
admit efficient image verification (and if compression is needed SNARKs can be used
on top). Specifically, one can transform a function F to an extractable F̃ as follows.
The seed f̃( f,g) generated by F̃k includes f ← Fk and a seed for the perfectly binding
ECOM g ← GenCom(1k). To apply the sampled function on x , sample extra random-
ness r for the commitment, and define f̃( f,g)(x; r) = ( f (x),EvalCom(g; x; r)). That
is, add to f (x) a perfectly binding commitment to a preimage. The hiding property of
the commitment clearly prevents the problem of leakage on x . The fact that the commit-
ment is perfectly binding and extractable implies that F̃ is also extractable. Indeed, any
adversary that produces a valid image, also produces a valid perfectly binding commit-
ment to a valid preimage; hence, using the extractor for the commitment, we obtain a
valid preimage. A major caveat of this approach is that the resulting F̃ does not support
efficient image verification; indeed, the commitment is never opened, and the seed gen-
erator does not have any trapdoor on it. At this time, we are not aware of applications for
non-verifiable extractable primitives other than our non-verifiable ECRH-based SNARK
construction. We leave an investigation of other possible applications of non-verifiable
extractable primitives for future work.

8. Candidate ECRH and PECRH Constructions

In this section, we discuss:

• a candidate construction for an ECRH, based on a Knowledge of Exponent assump-
tion and the hardness of discrete logs; and



1034 N. Bitansky et al.

• a generic technique for obtaining candidate constructions for PECRHs, which we
instantiate in three different ways.

As already discussed, the relaxation of ECRHs to PECRHs is crucial for (a) obtaining
more candidate constructions and (b) arguing the necessity of PECRHs to the construc-
tion of SNARKs.

8.1. ECRHs from t-Knowledge of Exponent

Recall that ECRHs are formally discussed in Definition 6.1. TheKnowledge of Exponent
assumption (KEA) [48] states that any adversary that, given a generator g and a random
group element gα , manages to produce gx , gαx , must “know” the exponent x . The
assumption was later extended in [27,87], by requiring that given gr1, gr1α, gr2 , gr2α it
is infeasible to produce f, f α without “knowing” x1, x2 such that f = gx1r1gx2r2 =
gx1r1+x2r2 . The t-KEA assumption is a natural extension to t = poly(k) pairs gri , gαri .

Assumption 8.1. (t-KEA) There exists an efficiently samplable ensemble G = {Gk}
where each (G, g) ∈ Gk consists of a group of prime order p ∈ (2k−1, 2k) and a
generator g ∈ G, such that the following holds. For any polynomial-size adversary A
and polynomial m, there exists a polynomial-size extractor EA such that for any k ∈ N

and any auxiliary input z ∈ {0, 1}m(k),

Pr
(G,g)←Gk

(α,r)
U←Zp×Zt

p

[
( f, f ′) ← A(gr, gαr, z)

f ′ = f α ∧ x ← EA(gr, gαr, z)
g〈x,r〉 �= f

]
≤ negl(k) ,

where |G| = p, r = (r1, . . . , rt ), gr = (gr1, . . . , grt ), x = (x1, . . . , xt ), and 〈·, ·〉
denotes inner product.

A related assumption was made by Groth [81]; there, instead of random r1, . . . , rt , the
exponents are powers of the same random element, i.e., ri = r i . (As formalized in
[81], the assumption does not account for auxiliary inputs, but it could naturally be
strengthened to do so.)
Our assumption can be viewed as a simplified version of Groth’s assumption; in par-

ticular, we could use Groth’s assumption directly to get ECRHs. Furthermore, Groth’s
assumption is formally stated in bilinear groups, while in our setting bilinearity is not
necessary. When considered in (non-bilinear) groups where t-DDH is assumed to hold,
the two assumptions are actually equivalent.16 Therefore, as Groth shows that his as-
sumption holds in the generic groupmodel [123] (independently of the bilinear structure)
and as t-DDH is also known to hold in this model, our assumption holds in the generic
group model as well.

16t-DDH asserts that, over suitable groups, tuples of the form gx , gx
2
, . . . , gx

t
are indistinguishable from

random tuples.



The Hunting of the SNARK 1035

A Candidate ECRH from t-KEA. Let �(k) = poly(k) be the size of group elements
for any G ∈ Gk . A (�(k) · t (k), 2�(k))-compressing ECRH H can now be constructed
in the natural way:

• To sample from Hk : sample (G, g) ← Gk and (α, r)
U← Zp × Z

t
p, and output

h := (G, gr, gαr).
• To compute h(x1, . . . , xt ): output the pair (g〈r,x〉, g〈αr,x〉) = ( ∏

i∈[t] gri xi ,
∏

i∈[t]
gαri xi

)
.

The extractability of H easily follows from the t-KEA assumption. We show that H is
collision-resistant based on the hardness of computing discrete logarithms in G.

Claim 8.2. Given an oracle A that finds a collision within H with probability ε, we
can compute discrete logarithms in polynomial time with probability ε/t .

Proof Sketch. Given gr , where r
U← Zp, choose a random i ∈ [t] and sample α, r1, . . .

ri−1, ri+1, . . . , rt . Denote ri = r and r = (r1, . . . , rt ). Feed A with gr, gαr. By our
initial assumption and the independent choice of i ,A outputs x, x′ such that xi �= x ′

i and

g〈x,r〉 = g〈x′,r〉 w.p. at least ε/t . It follows that ri = (xi − x ′
i )

−1 ∑
j∈[k]\{i}

(x j − x ′
j )r j . �

8.2. PECRHs from Knowledge of Knapsack

In Sect. 8.1, we presented a candidate ECRHbased on a generalization of theKnowledge
of Exponent assumption in large algebraic groups.We are now going to introduce a class
of knowledge assumptions with a “lattice flavor,” whichwe callKnowledge of Knapsack,
to construct candidates for the weaker notion of a proximity ECRH (PECRH). Recall
that PECRHs are formally discussed in Definition 6.2.
Indeed, we are not able to achieve the strict notion of ECRH from “lattice-flavor”

Knowledge of Knapsack assumptions; instead, we only obtain the “noisy” notion of
ECRH that we have formalized as a PECRH (which yet is still sufficient and essen-
tially necessary, for constructing SNARKs, as discussed in Sect. 6.2). This might not
be surprising, given that problems about lattices tend to involve statements about noise
distributions, rather than about exact algebraic relations as in the case of t-KEA.

At high level, we define a candidate PECRH family based on knowledge assumptions
of the following form: Given a set of elements l1, . . . , lt in some group, the only way
to compute a subset sum is (essentially) to pick a subset S ⊆ [t] and output the subset
sum

∑
i∈S li . As before, this is expressed by saying that for any adversary there exists

an extractor such that whenever the adversary outputs a value y which happens to be a
subset sum, the extractor “explains” this y by outputting a corresponding subset.
For convenience of exposition, we first define a very general “Knowledge of Knap-

sack” template, where the set size t , the group, and the distribution of li are left as
parameters, along with an amplification factor λ (saying how many such subset sum
instances are to be solved simultaneously).
Hashes From Knapsacks A knapsack is a tuple K = (H, l1, . . . , lt ), such that H is

(the description of) an additive finite group and l1 . . . , lt ∈ H.



1036 N. Bitansky et al.

We construct hash function ensembles out of knapsack ensembles in a natural way.
Given a size parameter t = t (k), amplification parameter λ = λ(k), and an ensemble of

knapsacks K = {Kk}k , we define the hash function ensemble Ht,λ,K =
{
Ht,λ,K

k

}
k

as follows. For K = (H, l1, . . . , lt ) ← Kk , let ht,K : {0, 1}t → H be given
by ht,K (s) := ∑

i :si=1 li represented in {0, 1}�log |H|�, where the summation is over

H. Then to sample Ht,λ,K
k , draw K 1, . . . , K λ ← Kk and output the hash function

h(x) := (ht,K
1
(x), . . . , ht,K

λ
(x)). (That is, h is the λ-wise repetition of ht,K .)

Knowledge of Knapsack. The Knowledge of Knapsack assumption with respect to

(t, λ,K,
h≈, Dh) asserts that the function ensembleHt,λ,K is proximity extractable with

respect to some proximity relation
h≈, some extended domain Dh ⊆ Z

t , and extended
function h̄ : Dh → H defined by taking a linear combinations with coefficients in Dh

(rather than just subset sums). Explicitly:

Definition 8.3. (Knowledge of Knapsack) Let t = t (k) ∈ N (size parameter) and let
λ = λ(k) ∈ N (amplification parameter). Let K = {Kk}k be an efficiently samplable

ensemble of knapsacks. For each h in the support ofKk , let
h≈ be a relation on the image

of h and let Dh be an extended domain Dh ⊆ Z
t where Dh ⊇ {0, 1}.

The Knowledge of Knapsack assumption with respect to (t, λ,K,
h≈, Dh) states the

following: For any polynomial-size adversary A and polynomial m, there exists a
polynomial-size extractor EA which outputs subsets of [t] such that for any k ∈ N

and any auxiliary input z ∈ {0, 1}m(k),

Pr
(H j ,l j1 ,...,l jt )λj=1←Kk[

(y1, . . . , yλ) ← A(K 1, . . . , Kλ, z)

∃ x ∈ {0, 1}t ∀ j : y j = ∑
i xi l

j
i

∧
x′ ←EA(K 1, . . . , Kλ, z)

¬
(
x′ ∈ Dh ∧ ∀ j : y j h≈ ∑

i∈[t] x ′
i l
j
i

)
]

≤negl(k)

where j ranges over {1, . . . , λ}, the summations are in the group H, and the multiplica-
tions mean adding an (integer number of) elements of H.

Compression If the groups in all the knapsacks in K are of size s = s(k), then the
function ensemble Ht,λ,K compresses t-bit strings to (λ log s)-bit strings.

Discussion: Sparseness and AmplificationAs discussed in Sect. 6.1, we wish the can-
didate PECRH (just like a candidate ECRH) to be superpolynomially sparse. Sparseness
grows exponentially with the amplification parameter λ: If each knapsack K ← Kk is
ρ-sparse (i.e., |Image(ht,K )|/|H| < ρ), then with amplification λ we obtain the candi-
date PECRHHt,λ,K that is ρλ-sparse. Thus, for example, as long as ρ is upper-bounded
by some non-trivial constant, λ > ω(log k) suffices to get superpolynomial sparseness.
We will indeed use this below, in candidates where the basic knapsacks K must be just
polynomially sparse for the proof of (proximity) collision resistance to go through.
We now proceed to propose instantiations of the Knowledge of Knapsack approach.



The Hunting of the SNARK 1037

8.2.1. Knowledge of Knapsack of Exponents

We first point out that the Knowledge of Knapsack template can be used to express also
the Knowledge of Exponent assumptions, by considering subset sums on pairs of the
form ( f, f α). The result is similar to the t-KEA assumption (see Sect. 8.1), albeit with
inferior parameters:

Assumption 8.4. (t-KKE) For t = t (k) ∈ N, the t-KKE (Knowledge of Knapsack of
Exponents) states that there exists an efficiently samplable ensemble G = {Gk} where
each (G, g) ∈ Gk consists of a multiplicative group of prime order p in (2k−1, 2k) and
a generator g ∈ G, such that the Knowledge of Knapsack assumption with respect to
(t, 1,KE,≡H, {0, 1}t ) holds for the ensemble KE = {KE

k

}
k defined as follows (where

≡H is equivalence in the group H given below):
To sample from KE

k , draw (G, g) ← Gk , let H = G × G considered as an additive
group, draw α ← Zp and r ← Z

t
p, let li = (gri , gαri ) ∈ H, and output (H, l1, . . . , lt ).

The hash function ensembleHt,1,KE
is readily verified to be (t (k), 2k)-compressing,

and collision-resistant assuming the hardness of taking discrete logs.Note that its range is
indeed sparse, as prescribed in Sect. 6.1: for h ← Ht,1,KE

, |Image(h)|/|H| = |G|/|G×
G| ≈ 1/2k . Alas, we lost a factor of k in the compression compared to directly using
t-KEA, since we hash t bits as opposed to t group elements as in t-KEA.

8.2.2. Knowledge of Knapsack of Noisy Multiples

Next, we propose a new knowledge assumption based on the following goal: Given
noisy integer multiples L = (li , . . . , lt ) in ZN of a secret real number α (of magnitude
about

√
N ), find a subset sum of these multiples.17 The knowledge assumption says

(roughly) that whenever an efficient adversary produces such a subset sum, it knows the
corresponding subset. This, however, requires care, since, taken literally, the assumption
is clearly false. To motivate our definition, we describe several attempted attacks, and
how the definition avoids them.

• Perturbation Attack Any small integer is close to a multiple of α (i.e., 0), and is
thus likely to be a sum of some subset of L (when L is long enough, as it is in
our setting). Thus, the adversary A could simply output a random small integer
and thereby challenge the extractor E to find a corresponding subset. We let the
extractor avoid this difficult task by using the notion of PECRHs defined above,

with the proximity relation
h≈ chosen so that the extractor only needs to output a

subset that sums to approximately the adversary’s output (in the above example,
the extractor can output the empty set).

• Integer Coefficients Attack An adversaryA could pick an integer combination of L
with coefficients that are small but not all 0 and 1. Even though this is not a valid

17Our construction is inspired by a cryptosystem of Regev [117,118], where the public key is sampled
from a similar distribution, and indeed our analysis of collision resistance and sparsity invokes Regev’s. This
is elaborated below.



1038 N. Bitansky et al.

computation of a sum over a subset of L , the result y is still close to a multiple of
the secret real number and thus, as above, is likely to be a subset sum of for some
subset, so the extractor E must “explain” y. We aid E by enlarging the extended
domain Dh to allow small integer coefficients, so that the (non-blackbox) extractor
may output the coefficients used by the adversary.

• Fractional Coefficients Attack An adversaryA could pick a fractional combination
of elements of L . For example, l1/2 will be close to a multiple of α whenever l1
happens to be close to an even multiple of α (i.e., with probability half). However,
we amplify our knapsack to consider λ instances concurrently (each consisting of
noisy multiples L of some different α), so the extractor is challenged only in the
exponentially unlikely event that all λ instances have l1 that is close to an even
multiple.

Comparison to t-KKE. The above complications arise due to the addition of noise to
li in the generation of the knapsack instances (otherwise α would be found computing
the greatest common divisor on L , easily leading to collisions). Thus the collection of
resulting subset sums constitutes a train of “hills” (each clustered around a multiple of
α), which an adversary can traverse by the aforementioned attacks. Conversely, in t-KKE
from Sect. 8.2.1, the underlying discrete log problem does not require injection of noise,
hence the subset sums constitute a set of distinct “well-spaced” points inG×G, and so
(one may hope) the adversary can navigate the structure of the image only by algebraic
operations that the extractor can unravel.

Definition 8.5. Let N ∈ Z, α ∈ R and σ̄ ∈ (0, 1). We define the distributionNMα,σ̄ ,N

of noisy multiples of α in the range [0, . . . , N − 1), with relative noise of standard

deviation σ̄ , as follows. Draw an integer x
U← {0, . . . , �N/α�} and a noise fraction y ←

N0,σ̄ 2 (the normal distributionwithmean 0 and variance σ̄ 2). Output �α(x+y) mod N�.

Assumption 8.6. ((t, σ )-KKNM) For t = t (k) > k ∈ N and noise parameter σ =
σ(k) ∈ (0, 1), the (t, σ )-KKNM (Knowledge of Knapsack of Noisy Multiples) states

that the Knowledge of Knapsack assumption with respect to (t,KNM,t,σ ,
h≈, Dh) holds

for the following distribution of knapsack elements.

To sample from KNM,t,σ
k do the following: Let N = 28k

2
, draw h

U←
{
h ∈ [ √

N ,

2
√
N ) : |h−�h�| < 1

16t

}
and draw σ̄ such that σ̄ 2 U← [ σ 2, 2σ 2 ). Let α = N/h. Draw

t values l1, . . . , lt ← NMα,σ̄ ,N . Output (ZN , l1, . . . , lt ).

For h ← KNM,t,σ
k , let Dh = {

x ∈ Z
t : ||x||2 < t log2 t

}
, and let

h≈ be s.t. for y, y′ ∈
ZN , y

h≈ y′ if their distance in ZN is at most
√
N/9.

Relation to Regev’s cryptosystem [117,118]. The above distributions are essentially
the same as in Regev’s cryptosystem, with minor changes for clarity in the present
context. Explicitly, the mapping is as follows. The distribution Qβ = (N0,β/2π mod 1)
from [118, Section 2.1] is replaced by N0,σ̄ 2 , for β = 2πσ̄ 2 (the statistical difference
between the two is negligible because σ̄ will be polynomially small). The distribution
NMα,σ̄ ,N is a scaling up by N of Th,β as defined in [118, above Definition 4.3], for



The Hunting of the SNARK 1039

h = N/d (except for the above deviation, and a deviation due to the event x + y > h
which is also negligible in our setting). Thus, the distribution (l1, . . . , lt ) sampled by
KNM is negligibly close to that of public keys in [118, Section 5] on parameters n = k,
m = t , γ (n) = √

2/π / σ(k).
Collision ResistanceWe show that the hash function ensembleHKKNM = Ht,λ,KNM,t,σ

is proximity-collision-resistant for any t = O(k2) and suitable λ and σ , assuming on
the hardness of the unique shortest vector problem (uSVP) in lattices. Recall that f (μ)-
uSVPis the computational problem of finding a shortest vector in a lattice of dimensionμ

given that the shortest vector is at least f (μ) times shorter than any other (non-parallel)
lattice vector (see [100,118]).

Claim 8.7. The samples l1, . . . , lt drawn by KNM,t,σ are pseudo-random (i.e., indis-
tinguishable from t random integers in the interval {0, . . . , N − 1}), assuming hardness
of (

√
2/πμ/σ(μ))-uSVP.

Proof Sketch. It suffices to show pseudo-randomness for the distribution obtained by

modifying KNM,t,σ to sample h
U← [ √

N , 2
√
N ) (for the same reason as in [118,

Lemma 5.4]). This pseudo-randomness follows from [118, Theorem 4.5] with g(n) =√
2μ/π/σ(μ).

Claim 8.8. The function ensemble HKKNM is proximity-collision-resistant, with
h≈

, Dh, h̄ defined as in Assumption 8.6, for t = O(k2), assuming hardness of
Õ

(
max

(
μ3/2,√

μ/σ(μ)
))
-uSVP.

Proof Sketch. In the following, adapting the notation of [118], for x ∈ R, we denote by
frc (x) = |x − �x�| the fractional part of x . By Claim 8.7, the hash functions drawn by
HKKNM are indistinguishable from the ensemble U of uniformly randommodular subset
sums (as defined in [118, Section 6]), assuming Õ(

√
μ/σ(μ))-uSVP. It thus suffices

to show that U is proximity-collision-resistant, since this implies finding collisions in
HKKNM would distinguish it from U . The ensemble U is collision-resistant assuming

Õ(μ3/2)-uSVP, by [118, Theorem6.5].Moreover, the proximity relation
h≈ is accommo-

dated by noting that the theorem still holds if in its statement,
∑m

i=1 biai ≡ 0 (modN )

is generalized to frc
(
(
∑m

i=1 biai )/N
)

< 1/9
√
N ; inside that theorem’s proof, this im-

plies frc
(
(
∑m

i=1 bi zi )/N
)

< 1/8
√
N and thus, in the penultimate displayed equation,

h · frc (
(
∑m

i=1 bi zi )/N
)

< h/9
√
N < 1/9 so the last displayed equation still holds and

the proof follows. The extended domain Dh and induced h̄ are accommodated by noting
that Regev’s bound ||b|| ≤ √

m (in his notation) generalizes to ||b|| ≤ Õ(
√
m).

Sparseness andParameterChoiceTomake the extractability assumption plausible,we
want the function’s image to be superpolynomially sparse within its range, as discussed
in Sect. 6.1. Consider first the distributionHKKNM = Ht,1,KNM,t,σ

(i.e., λ = 1, meaning
no amplification). The image of h drawn fromHKKNM becomes “wavy” (hence sparse)
when the noise (of magnitude σα) added to each multiple of α is sufficiently small,



1040 N. Bitansky et al.

resulting in distinct peaks, so that any subset sum of t noisy multiples is still a noisy
multiple:

Claim 8.9. For σ(k) = 1/16t log2 k, the ensemble KNM,t,σ is 1
2 -sparse:

Pr
h←Ht,1,KNM,t,σ

k

[|Image(h)|/N > 1/2
]

< negl(k)

Proof sketch. In terms of the corresponding Regev public key, this means decryption
failure becomes impossible with all except negligible probability over the keys. For this,
it clearly suffices that each of the t noisy multiples is at most α/16t away from amultiple
of α, so that any sum of them will have accumulated noise at most α/16 (plus another
α/16 term due to modular reductions, as in Regev’s decryption lemma [118, Lemma
5.2]). This indeed holds for σ(k) = 1/16t log2 k, by a tail bound on the noise terms
αN0,σ followed by a union bound over the t samples.

Thus, the image becomes somewhat sparse when σ = õ(1/t). However, superpoly-
nomial sparseness would require making σ superpolynomially small (and likewise a
tighter distribution over h), in which case Claim 8.8 would require assuming hardness
of μω(1)-uSVP; this assumption is unmerited in light of the excellent heuristic perfor-
mance of LLL-type lattice reduction algorithms on lattices with large gaps (e.g., [75]
conjecture, from experimental evidence, that 1.02μ-uSVPis easy). Instead, we can set
σ = �̃(1/k2) so that Claim 8.8 needs to assume merely hardness of Õ(μ3/2)-uSVP,
and then amplify via repetition, by choosing sufficiently large λ. In particular, by setting
σ(k) = õ(1/t), λ = ω(log(k)) and t = O(k2), we indeed obtain superpolynomial
sparseness.
Regarding the aforementioned integer-coefficient attack, note that the extended do-

main Dh allows E to explain y via any vector using a linear combination whose coeffi-
cients have �2 norm at most t log2 t , since beyond this norm, the linear combination is
unlikely to be in the image of h.

Lastly, note that k = n2 (or, indeed, any k = n1+ε) suffices for the SNARK construc-
tion.
Relation to Other Lattice Hardness Assumptions The collision resistance is shown as-

suming hardness of the uSVP lattice problem. This can be generically translated to other
(more common) lattice hardness assumptions, such as GAPSVP and BDD (bounded
distance decoding), following Lyubashevsky and Micciancio [100].

8.2.3. Knowledge of Knapsack of Noisy Inner Products

Further PECRH candidates can be obtained from Knowledge of Knapsack problems
on other lattice-based problems. In particular, the Learning with Errors problem [119]
problem leads to a natural knapsack ensemble, sampled by drawing a random vector
s ∈ Z

n
p and then outputting a knapsack K = (Zn+1

p , l1, ..., lt ) where each li consists of

a random vector x
U← Z

n
p along with the inner product s ·x+ ε where ε is independently

drawn noise of small magnitude in Zp. For suitable parameters this ensemble is sparse,
and proximity-collision-resistant following an approach similar to KKNM above: First



The Hunting of the SNARK 1041

showpseudo-randomness assuming hardness of LWE [119] and then rely on the collision
resistance of the uniform case (e.g., [5,64,106]).
In this case, amplification can be done more directly, by reusing the same x with

multiple si instead of using the generic amplification of Definition 8.3.

9. Zero-Knowledge SNARKs

In this section, we consider the problem of constructing zero-knowledge SNARKs
(zkSNARKs); that is, we want to ensure that the succinct proof does not leak infor-
mation about the witness used to generate it.
Recall that SNARKs do not require any setup assumptions (i.e., are in the plainmodel).

However, now thatwe seek the additional property of zero knowledge,we cannot proceed
in the plain model because otherwise we would obtain a two-message zero-knowledge
protocol in the plain model, which is impossible [76]. We thus work in the standard
common reference string (CRS) model.
There are two natural candidate zkSNARK constructions that one could consider, both

starting with a NIZK system in the CRS model (see [78]) and making it succinct:

• “SNARK on top of NIZK.” At high level, the prover first produces a (non-succinct)
NIZK argument πZK for the statement y (given a valid witnessw) and then produces
a non-interactive succinct argumentπ for the statement y′ that the ZKverifierwould
have accepted the proof πZK for y.

• “NIZK on top of SNARK.”At high level, the prover first produces a non-interactive
succinct argumentπ for the statement y (given a valid witnessw) and then produces
a NIZK argument πZK for the statement y′′ that the verifier would have accepted
the (succinct) proof π for y.

In both constructions, one needs the NIZK system to be adaptively sound. We now
describe in further detail each of the above approaches.

9.1. Zero-Knowledge SNARKs

We define zero-knowledge SNARGs in the CRS model.

Definition 9.1. A triple of algorithms (Setup,P,GV ,V) is a zero-knowledge SNARG
for the relation R ⊆ RU if the following conditions are satisfied:

1. Completeness For any (y, w) ∈ R,

Pr

⎡
⎣V(crsZK,priv, y,
) = 1 :

(crsZK, trap) ← Setup(1k)
(vgrs,priv) ← GV (1k)


 ← P(y, w, vgrs, crsZK)

⎤
⎦ = 1 .

In addition, P(y, w, vgrs, crsZK) runs in time poly(k, |y|, t).
2. Succinctness The length of the proof 
 that P(y, w, vgrs, crsZK) outputs, as well

as the running time of V(crsZK,priv, y,
), is bounded by



1042 N. Bitansky et al.

p(k + |y|) = p(k + |M | + |x | + log t) ,

where p is a universal polynomial that does not depend onR. In addition, GV (1k)
runs in time p(k); in particular, (vgrs,priv) are of length p(k).

3. Adaptive soundness For all polynomial-size provers P∗ and any k ∈ N,

Pr

⎡
⎣V(crsZK,priv, y,
) = 1

y /∈ LR
c :

(crsZK, trap) ← Setup(1k)
(vgrs,priv) ← GV (1k)

(y,
) ← P∗(crsZK, vgrs)

⎤
⎦ ≤ negl(k) .

4. Zero knowledge There is an (expected) polynomial-time simulator S such that for
all polynomial-size verifiersV∗ and any k ∈ N, for every (y, w) ∈ R, the following
probabilities are negligibly close

Pr

⎡
⎣V∗(crsZK,priv, y,
) = 1 :

(crsZK, trap) ← Setup(1k)
(vgrs,priv) ← V∗(1k)


 ← P(y, w, vgrs, crsZK)

⎤
⎦

and

Pr

⎡
⎣V∗(crsZK,priv, y,
) = 1 :

(crsZK, trap) ← Setup(1k)
(vgrs,priv) ← V∗(1k)


 ← S(y, vgrs, crsZK, trap)

⎤
⎦ .

A zero-knowledge zkSNARG of knowledge, or zkSNARK for short, is a zkSNARG
where soundness is strengthened to proof of knowledge, similarly to a SNARK.

9.2. SNARK on top of NIZK

Theorem 9.2. If there exist adaptively sound NIZK arguments and SNARKs, then there
exist zkSNARGs. If furthermore the NIZK argument is a proof of knowledge, then we
obtain zkSNARKs.

Proof Sketch. The setup phase consists of generating a common reference string crsZK
and publishing it. A verifier then generates (vgrs,priv) and sends vgrs to the prover,
and keeps the private verification state priv for later use. In order to prove membership
for an instance y with valid witness w, the prover performs the following steps:

1. Generate, using crsZK, a (non-succinct) NIZK argument of knowledge πZK for the
instance y using the valid witness w.

2. Generate, using vgrs, a (succinct) SNARK proof π for the NP statement “there
exists a proof πZK that makes the NIZK verifier accept it as a valid proof for the
instance y, relative to crsZK.”

3. Send (y, π) to the verifier.

The verifier can now use (vgrs,priv) and crsZK to verify (y, π) by running the SNARK
verifier on the above NP statement.



The Hunting of the SNARK 1043

By using the SNARK extractor, we can obtain (efficiently) a valid NIZK proof πZK for
the claimed theorem y. Invoking the (computational) soundness of the NIZK argument,
it must be that y is a true theorem (with all except negligible probability). If the NIZK
argument also guarantees an extractor, we could use it to also extract a witness for y.

As for the zero-knowledge property, it follows from the zero knowledge property
of the NIZK argument: the proof πZK is “already” zero knowledge, and thus using it
as a witness in the SNARK implies that the resulting succinct proof will also be zero
knowledge. More formally, we can first run the simulator of the NIZK system to obtain
a simulated proof π ′

ZK for y, and then honestly generate the proof π using π ′
ZK as the

witness to the NP statement. (We note that as long as the simulator for the NIZK is
black-box, so will be the simulator of the zkSNARK.)

We note that:

• If the NIZK argument extractor requires a trapdoor for the common reference string
crsZK, so will the extractor for the resulting zkSNARK.

• The common reference string crsZK of the NIZK argument needs to be of size
polynomial in the security parameter (and must not depend on the theorem being
proved).

• Even if zkSNARKs “live” in the common reference string model, proofs are still
only privately verifiable (if indeed the SNARK that we start with requires a desig-
nated verifier): The verifier generates (vgrs,priv) and sends vgrs to the prover; the
prover uses both the vgrs and the common reference string crsZK to produce a proof
π for a theorem of his choice; the verifier then uses both (vgrs,priv) and crsZK to
verify the proof. In other words, the crsZK can be used by multiple verifiers, each
one of which will generate a (vgrs,priv) pair “on the fly” whenever they want to
contact a prover. (Moreover, if the vgrs of the underlying SNARK can be reused,
so can the vgrs of the resulting zkSNARK.)

For example, to obtain zkSNARKs, one may combine any SNARKs with the NIZK
arguments of knowledge of Abe and Fehr [3] (which are based on an extended Knowl-
edge of Exponent assumption, and happen to have an extractor that does not require a
trapdoor).
Proof ofKnowledge StrikesAgainWeemphasize that, in the “SNARKon top ofNIZK”

approach, the proof of knowledge of the SNARKwas crucial for obtaining Theorem 9.2,
even when only aiming for (only-sound) zkSNARGs. (Other instances where proof of
knowledge played a crucial role were the results of Sect. 7, and thus in particular the
“converse” of our main technical theorem, as well as some applications discussed in
Sect. 10.)

9.3. NIZK on top of SNARK

Theorem 9.3. If there exist adaptively sound NIZK arguments of knowledge, SNARGs,
and function-hiding FHE, then there exist zkSNARGs. If furthermore there exist SNARKs,
then we obtain zkSNARKs.



1044 N. Bitansky et al.

Proof sketch. The setup phase again consists of generating a common reference string
crsZK and publishing it. A verifier then generates (sk,pk) for the FHE and (vgrs,priv)
for a SNARG; then, it sends vgrs and e := Encpk(priv) to the prover and keeps e and
sk for later use. In order to prove membership for an instance y with valid witness w,
the prover performs the following steps:

1. Generate, using vgrs, a (succinct) SNARG proof π for y,
2. Sample randomness R for the (function hiding) homomorphic evaluation and com-

pute ê = EvalR(e,Cy,π ), where Cy,π is a circuit that given input priv computes
V(priv, y, π), where V is the SNARG verifier.

3. Generate using crsZK, a NIZK argument of knowledge πZK for the NP statement
“there exist R, π such that ê = EvalR(e,Cy,π ).” Note that the size of the corre-
sponding NP computation depends only on |y| (and the security parameter).

4. Send (y, πZK, ê) to the verifier.

The verifier can now use y, e, ê and crsZK to verify the proof, by running the NIZK
verifier and then verifying that ê decrypts to 1.
Byusing theNIZKextractor,we can obtain (efficiently) a valid SNARGproofπ for the

claimed theorem y. Invoking the semantic security of the FHE and the (computational)
soundness of the SNARG, it must be that y is a true theorem (with all except negligible
probability). If the SNARG also guarantees an extractor (i.e., it is a SNARK), we could
use it to also extract a witness for y.

The proof (πZK, ê) is zero knowledge, because we can simulate ê (from the evaluation
result “1”) by the function hiding of the FHE and then simulate πZK by running the NIZK
simulator. (We note that as long as the simulator for the NIZK is black-box, so will be
the simulator of the zkSNARK.)

Unlike in the “SNARK on top of NIZK” approach, in the “NIZK on top of SNARG”
approach the knowledge property of the SNARG was not needed, but we had to addi-
tionally assume the existence of function-hiding FHE. Had the SNARG been publicly
verifiable this assumption would not have been needed.

10. Applications of SNARKs and zkSNARKs

In this section, we discuss applications of SNARKs and zkSNARKs to delegation of
computation (Sect. 10.1) and secure computation (Sect. 10.2).

10.1. Delegation of Computation

Recall that, in a two-message delegation scheme (in the plain model): To delegate a
T -time function F on input x , the delegator sends a message σ to the worker; the worker
computes an answer (z, π) to send back to the delegator; the delegator outputs z if π

is a convincing proof of the statement “z = F(x).” The delegator and worker time
complexity are respectively bounded by p(|F | + |x | + |F(x)| + log T ) and p(|F | +
|x | + |F(x)| + T ), where p is a universal polynomial (not depending on the specific
function being delegated).



The Hunting of the SNARK 1045

(Throughout this section, we ignore the requirement for input privacy because it
can always be achieved by using a semantically secure fully homomorphic encryption
scheme.)

10.1.1. Folklore Delegation from Succinct Arguments

There is a natural method to obtain a two-message delegation scheme from a designated-
verifier non-interactive succinct argument for NP with adaptive soundness: The dele-
gator sends the desired input x and function F to the worker (along with the verifier-
generated reference string vgrs, which is independent of the statement being proved),
and asks him to prove that he evaluated the claimed output z for the computation F(x)
correctly.
In the above paragraph, “forNP” indicates that it is enough for there to exist a protocol

specialized for each NP relation (as the delegator, at delegation time, does know which
NP relation is relevant for the function being delegated), but the succinctness requirement
is still required to be universal, as captured by our Definition 9.1.

We note that, as long as one uses FHE in order to obtain input privacy, designated-
verifier SNARGs, as opposed to publicly verifiable SNARGs, suffice, since public ver-
ification is lost anyhow upon using FHE. In fact, there is also no need to insist that the
verifier-generated reference string is reusable (beyond the logarithmically many theo-
rems that it can always support anyway), as a fresh string can be very quickly generated
and “sent out” along with the function and input being delegated. Thus, starting with
designated-verifier non-interactive succinct arguments, is usually “enough” for delega-
tion of computation.
Furthermore, the use of succinct arguments, in a sense, provides the “best” properties

that one could hope for in a delegation scheme:

• There is no need for preprocessing and no need to assume that the verifier’s answers
remain secret.All existingworkproviding two-messagegeneric delegation schemes
are in the preprocessing setting and assume that the verifier’s answers remain secret
[42,65,69,93,94,105]. (Notable exceptions are the works of Benabbas et al. [23]
and Papamanthou et al. [115], which, however, only deal with delegation of specific
functionalities, such as polynomial functions or set operations.)

• The delegation scheme can also support inputs of the worker: One can delegate
functions F(x, x ′) where x is supplied in the first message by the delegator, and
x ′ is supplied by the worker. (Indeed, x ′ acts as a “witness.”) This extension is
delegation with worker input.

We note that when delegating deterministic computations, the delegator can use a
SNARG with non-adaptive soundness by requesting a proof for each bit of the claimed
output. Indeed, the statement that the i th output bit of a computation is “0” (respectively,
“1”) is a fixed statement, independent of the reference string. However, to support worker
input, adaptive soundness seems to be needed. Indeed, the previous solution does not
work for non-deterministic computations as there is no guarantee that the prover uses
the same witness for each one of the output bits.



1046 N. Bitansky et al.

10.1.2. Our Instantiation

Our main technical result, Theorem 1, provides an instantiation, based on a simple and
generic knowledge assumption (instantiated by several quite different candidates), of the
designated-verifier non-interactive succinct argument for NP with adaptive soundness
required for constructing a two-message delegation scheme.

Corollary 10.1. Assume that there exists (weak proximity) extractable collision-
resistant hash functions. Then there exists a two-message delegation scheme.

We note that previous two-message arguments for NP [49,105] did not provide
strong enough notions of succinctness or soundness to suffice for constructing dele-
gation schemes.
Our specific instantiation also has additional “bonuses”:

• Not only is the delegation sound, but also has a proof of knowledge. Therefore,
F(x, x ′) could involve cryptographic computations, which would still be meaningful
because the delegator would know that a “good” input x ′ can be found in efficient
time.
For example, the delegated function F(x, x ′) could first verify whether the hash of a
long x ′ is x and, if so, proceed to conduct an expensive computation; if the delegation
were merely sound, the delegator would not be able to delegate such a computation,
for such an x ′ may always exist!
We discuss more consequences of this point in the paragraph below.

• Even if the construction fromour Theorem1 formally requires the argument to depend
on a constant c ∈ N bounding the time to verify the theorem, the only real dependence
is a simple verification by the verifier (i.e., checking that t ≤ |x |c), and thus in
the setting of delegation of computation, we obtain a single protocol because the
delegator gets to choose c. Of course, despite the dependence on c, our construction
still delivers the “universal succinctness” (as already remarked in Sect. 5.2, satisfying
our Definition 9.1) required at the beginning of this section.
(Indeed, note that if the polynomial bounding the verifier time complexity is allowed
to depend on the function being delegated, then a trivial solution is to just let the
verifier compute the function himself, as the function is assumed to be poly-time
computable!)

• When our construction is instantiated with the quasi-linear-time PCPs of Ben-Sasson
et al. [29], we get essentially optimal efficiency (up to polylogarithmic factors):

• the delegator’s first message requires time complexity poly(k, log T )Õ(|F |+|x |);
• theworker’s computation requires time complexity poly(k)Õ(|F |+|x |+|F(x)|+
T ); and

• the delegator’s verification time requires time complexity poly(k, log T )Õ(|F | +
|x | + |F(x)|).

Delegating Memory, Streams, and Authenticated Data We would like to point out
that the SNARK’s adaptive proof of knowledge enables the delegator to handle “large
inputs.”



The Hunting of the SNARK 1047

Indeed, if we are interested in evaluating many functions on a large input x , we could
first in an offline stage compute a Merkle hash cx for x and then communicate x to the
worker; later, in order to be convinced of z = F(x), we simply ask the worker to prove
to us that there is some x̃ such that the Merkle hash of x̃ is cx and, moreover, z = F(x̃).
By the collision resistance of the Merkle hash, the delegator is convinced that indeed
z = F(x)—the proof of knowledge is crucial to invoke collision resistance!
Note that x , which now “lies in the worker’s untrusted memory,” can be updated

by letting the worker compute the updated x and prove that the new Merkle hash is a
“good” one. In this way, we are able to give simple two-message constructions for the
task of memory delegation [40]—again getting the “best” that we can hope for here.
The resulting schemes, based on SNARKs, are simpler than previously proposed (but
of course, to instantiate the SNARKs, one may have to invoke stronger assumptions).
Another task is that of streaming delegation [40,46,114], where new pieces of x

stream by the verifier, and the verifier needs to update the hash cx on the fly, without
help from the prover. This can be done if the verifier maintains, in addition to cx , a
logarithmic number of other hashes, representing the roots of other subtrees; in essence,
this relies on applying known Merkle tree traversal techniques (see, e.g., [102, Ch. 5] or
[60, Ch. 3]).
Of course, special cases of delegating “large datasets” such as [23] and [115] are also

implied by our instantiation. (Though, in the case of [115], we only get a variant where
proofs are for a designated verifier rather than being publicly verifiable.) While our con-
struction is definitely not as practically efficient, it provides the only other construction
with two messages (i.e., is “non-interactive”).
As yet another example of an application, consider the following scenario. A third

party publishes on a public database a large amount of authenticated data (e.g., statistics
of public interest) along with his own public key, denoted by x ′ and pk respectively.
A worker comes along and wants to compute a function F over this data, but, because
the data is so large, is only interested in learning the result z of the computation but
not seeing the data itself. Relying on the proof of knowledge property (and making the
inconsequential simplifying assumption that the third party only ever published a single
authenticated database), the worker could ask the database to prove that there is some
(x ′′, σ ) such that z = F(x ′′) and each entry of x ′′ is accompanied by a corresponding
signature inσ relative topk. In other settings, onemay prefer to think of the authenticated
database as private, and thus a zero-knowledge property would be needed; this can be
guaranteed by either Theorems 9.2 or 9.3 in the CRS model.
In all of the above examples, the delegator is only “paying” polylogarithmically in

the size of the data upon verification time.

10.2. Succinct Non-Interactive Secure Computation

Non-interactive secure computation (NISC) [88] allows a receiver R to publish a string
containing an encryption of his secret input x , so that a sender S, holding a possibly
very long input y, can reveal f (x, y) to R by sending him a single message. This should
be done while simultaneously protecting the secrecy of y against a malicious R and
preventing S from any malicious influence on the output of R (in particular, computing
the function f incorrectly). In succinct NISC (SNISC), we also require that the amount



1048 N. Bitansky et al.

of work performed by R (and thus the communication complexity) is polynomial in
the security parameter k and the input/output length of f . In particular, it is essentially
independent of the complexity of f (more precisely, polylogarithmic in the running time
of f ).
When the parties are semi-honest, there are known solutions for the problem (e.g.,

based on fully homomorphic encryption with function privacy [63]). Naor and Nis-
sim [109] observe that using the succinct zero-knowledge arguments of Kilian [89] one
can enhance the GMW semi-honest-to-malicious compiler [74] to be communication
preserving. However, the resulting protocol is not round preserving and hence cannot be
used to achieve SNISC.
We observe that, relying on zkSNARKs, we can obtain SNISC against malicious

parties in the CRS model. (Though the string published by the receiver R can only be
used logarithmically many times; if the receiver wishes to receive more messages, he
should publish a new string.) Here we only sketch the protocol and analysis behind this
observation. For the full definitions of SNISC, we refer the reader to [88].
The protocol To jointly compute a function f :

1. The receiver R sends the verifier-generated reference string vgrs, an encryption
c of its input x under a fully homomorphic encryption, and π R

ZK, a NIZK proof
of knowledge of input x (and randomness for the encryption) attesting that c is a
valid encryption of x .

2. The sender S verifies that π R
ZK is valid and aborts if not. The sender S then ho-

momorphically evaluates f (·, y) on the cipher c (the evaluation is randomized to
keep y private) and sends the resulting evaluated cipher ĉ, together with π S

ZK, a
zkSNARK proving knowledge of y (and randomness for the evaluation algorithm)
attesting that ĉ is a valid (homomorphic) evaluation of f (·, y) on c.

3. The receiver R verifies that π S
ZK is a valid zkSNARK and, if so, outputs the decryp-

tion of ĉ or else ⊥.

We stress that the amount of work done by R (including his NIZK π R
ZK) is independent

of f ’s complexity. We next briefly describe how each party is simulated in order to
establish non-concurrent security.

Proposition 10.2. In the CRS model, assuming zkSNARKs and fully homomorphic
encryption, there above protocol is a SNISC against static malicious corruptions. That
is, either a malicious receiver or sender can be simulated given only access to a trusted
party computing f (·, ·).

Proof Sketch. We explain how each party is simulated.
Simulating a malicious R∗. To simulate R∗, we proceed as follows. First, generate

the CRS for the NIZK of knowledge (together with a trapdoor if needed) and then
provide R∗ with the CRS to obtain (vgrs, c, π R

ZK). In case the NIZK π R
ZK does not verify,

abort; otherwise, use the trapdoor to extract the input x , hand it to the trusted party,
and receive f (x, y). To simulate the message sent by S, simulate an FHE evaluation ĉ
with underlying plaintext f (x, y); this can be done by the function privacy guarantee.
Next, invoke the simulator for the zkSNARK with respect to the statement given by
the simulated evaluation ciphertext ĉ. The validity of the simulation follows from the



The Hunting of the SNARK 1049

function privacy guarantee of the FHE and the validity zkSNARK simulator, as well as
from the fact that the NIZK in use is a proof of knowledge.
Simulating a malicious S∗. To simulate S∗, we proceed as follows. Generate the CRS

togetherwith a trapdoor for theNIZKof knowledge. Simulate R’smessage by encrypting
an arbitrary string (of the proper length) to create a simulated encryption c and running
the NIZK simulator with respect to the statement given by c. Also, simulate the vgrs by
employing the generator of the zkSNARK. Feed S∗ with the generatedmessage to obtain
a proof π R

ZK. Check the validity of π R
ZK using the CRS and the private verification state

generated with vgrs. If the proof is invalid abort; otherwise, use the zkSNARK extractor
to obtain the input y and hand it to the trusted party. (Note that here the simulation makes
non-black-box use of the adversary S∗, because the extractor for S∗ guaranteed by the
knowledge property of the zkSNARK depends on the code of S∗.) The validity of the
simulation follows from the semantic security of the encryption and the validity of the
NIZK simulator, as well as from the fact that the zkSNARK is a proof of knowledge.

More Generally We note that the FHE-based protocol above can be naturally gen-
eralized to yield a simple compiler that transforms any SNISC protocol in a slightly
strengthened semi-honest model to a (still non-interactive) protocol that is secure against
malicious parties in the CRS model. The strengthening of the semi-honest model is to
require security with respect to parties that may choose arbitrary randomness.18

Non-concurrent Versus UC and the Length of the Sender’s Input The above protocol
achieves the standard “stand-alone” security guarantee. We note, however, that in the
case where the input of the sender S is short, we can, in fact, obtain the stronger notion
of universal composability (UC) [35]. Concretely, the gap is that, in order to achieve
UC security the simulator for either party has to be straight-line (non-rewinding) and
black-box in the code of malicious parties. In the above analysis this is violated when
simulating a malicious sender S∗. Indeed, extraction of its input relies on the non-black-
box zkSNARK extraction. When the sender’s input is short (still the computation can
be long), we can combine a standard NIZK of knowledge and a zkSNARG to avoid this.
More accurately, we can devise a solution where the complexity of the receiver grows
with the size of the sender’s input, but not its computation.
Concretely, in the augmented protocol S∗ acts as follows: He gives a NIZK of knowl-

edge π ′ attesting that he knows his own input y and then uses a zkSNARG to prove that
“there exists y (as well as randomness for the evaluation algorithm and randomness for
the NIZK) for which ĉ is a valid evaluation of f (·, y) on c, and y is the witness for
the NIZK π ′.” Now the simulation of a malicious S∗ can be performed in a black-box
manner, by simply invoking the black-box extractor of the NIZK proof of knowledge;
a non-black-box use of S∗ is only made within the proof when the (computational)
soundness of the zkSNARG is invoked.

11. Extractable One-Way Functions and Their Applications

In this section,we consider a notion that is closely related toECRHs: extractable one-way
functions (EOWFs). Specifically, we formalize two strong variants of EOWFs and show

18In the interactive setting, this assumption is not needed—the GMW compiler [74] deals with this issue
using “coin tossing into the well,” which cannot be done in the non-interactive setting.



1050 N. Bitansky et al.

that, assuming the existence of EOWFs and enhanced trapdoor permutations, there exist a
non-interactive (two-message) selective-opening-attack-secure (SOA-secure) commit-
ment scheme and a three-round concurrent zero-knowledge (ZK) argument for any lan-
guage in NP. Previous works showed that it is impossible to construct the former prim-
itive from standard assumptions using black-box security reductions [111] (provided
one-to-one one-way functions exist) and that it is impossible to have sublogarithmic-
round concurrent zero-knowledge protocols with black-box simulation [41]. Our con-
structions circumvent previous impossibility results by relying on the (non-black-box)
extractability property of EOWFs.
The rest of this section is organized as follows. In Sect. 11.1, we formalize two vari-

ants of EOWFs: strong extractable defs (sEOWFs) and strong concurrently extractable
defs (scEOWFs). Next, in Sect. 11.4, we use sEOWFs to construct a non-interactive
SOA-secure commitment scheme; the technical core of our construction is obtaining a
new three-round zero-knowledge argument of knowledge (ZKAOK) for NP having the
special property that only the last message of the protocol depends on the statement to
be proved; we believe this construction is of independent interest, and we present it first
separately in Sect. 11.2. Next, in Sect. 11.3, we show that when the sEOWF used in our
three-round ZKAOK protocol is replaced with a scEOWF, the protocol is also concur-
rent ZK, yielding a three-round concurrent ZK protocol. Finally, in Sect. 11.5 we give
candidate constructions of sEOWFs and scEOWFs, based on the (original) Knowledge
of Exponent assumption (KEA) of [48].

11.1. Definitions of sEOWFs and scEOWFs

A strong extractable def (sEOWF) is an ensemble of extractable functions that are one-
to-one and everywhere one-way (namely, for every sufficiently large security parameter,
every function in the family is hard to invert); furthermore, given a function, it is possible
to efficiently verify whether the function belongs to the ensemble or not.

Definition 11.1. Let F = {Fk}k be a function ensemble where for every k ∈ N, every
function f ∈ Fk is described as a binary string of polynomial length m(k) and maps
{0, 1}k to {0, 1}�(k).F is an sEOWF if it is extractable (see Definition 1) and additionally
satisfies the following properties:

1. One-to-one: every function in F is one-to-one (so that �(k) ≥ k).
2. Verifiability: there is a polynomial-time algorithm that, given k ∈ N and f , decides

whether f is in Fk .
3. Everywhere one-wayness: For every polynomial-size adversary A and polyno-

mial m, every sufficiently large security parameter k ∈ N, every function f ∈ Fk ,
and every auxiliary input z ∈ {0, 1}m(k), the following holds:

Pr
x←{0,1}k

[
f (x ′) = f (x)

∣∣∣ y ← f (x)
x ′ ← A(1k, z, y)

]
≤ negl(k) .

Remark 11.2. (sEOWFvs. EPOW) Our notion of sEOWF is similar to the notion of
extractable perfectly one-way (EPOW) functions defined by Canetti and Dakdouk [37].



The Hunting of the SNARK 1051

While both notions seek to formalize the notion of extractability for a one-way function,
the two notions differ in their concrete hardness requirements: A EPOW requires every
function in the ensemble to be a perfectly one-way function [34] (which is a probabilistic
functionwhose images hides all partial information of the preimage) whereas an sEOWF
ensemble only requires every function in the ensemble to be hard to invert.

We now prove a useful lemma that says that if a function ensemble F is extractable,
then it is also parallel extractable, in the sense that if the adversary outputs, in par-
allel, many values for different functions, then, for every value that is in the image
of the corresponding function, the extractor succeeds in extracting a corresponding
preimage.

Lemma 11.3. If a function ensemble F = {Fk}k is extractable then it is also parallel
extractable in the following sense:For any polynomial-size adversaryAandpolynomials
m, t , there exists a polynomial-size extractor E such that for any k ∈ N, and any auxiliary
input z ∈ {0, 1}m(k):

Pr
f←(Fk )

t (k)

[ ∃ i ∈ [t (k)] s.t.
yi ∈ Image( fi ) and yi �= fi (x ′

i )

∣∣∣ y ← A(f, z)
x′ ← E(f, z)

]
≤ negl(k) .

Proof. Consider the adversary Ã that, on input fi , z′i = (z, i, f1, · · · , fi−1, fi+1, · · · ,

ft (k)), runs A(f, z), except that it only outputs the i th value xi that A outputs. Let Ẽ be
the extractor corresponding to Ã. Then the parallel extractor E for A simply internally
runs Ẽ in parallel with inputs fi , z′i for every i and outputs the values extracted by the
parallel executions of Ẽ . By definition of Ẽ , except with negligible probability the i th
invocation of Ẽ returns a valid preimage for the i th value the adversaryA outputs. Thus,
overall, E is a valid parallel extractor.

Next, a strong concurrently extractable def (scEOWF) is an sEOWF where the ex-
tractability property is strengthened to concurrent extractability:

Definition 11.4. AnscEOWF is an sEOWF that is concurrently extractable (see below).

We now describe the notion of concurrent extractability. The adversary and extractor
participate in an interactive game, in which the adversary adaptively outputs multiple
values while receiving the preimages the extractor obtains for each output value. Concur-
rent extractability requires that for every adversary there is an extractor such that, in the
interactive game, the extractor succeeds (with overwhelming probability) in extracting
the correct preimage for every value the adversary outputs.

Definition 11.5. (Concurrent extractability)A function ensembleF = {Fk}k mapping
{0, 1}k to {0, 1}�(k) is concurrently extractable if for any polynomial-size oracle machine
A and polynomials m, t there exists a polynomial-size extractor E such that for every
security parameter k ∈ N, and any auxiliary input z ∈ {0, 1}m(k), the advantage of A
against E in the experiment EXPF

A,E (1k) (described below) is negl(k).

The definition of EXPF
A,E (1k) is as follows:



1052 N. Bitansky et al.

EXPF
A,E (1k) ≡

1. f1 · · · ft (k) ← (Fk)
t (k);

2. st0 ← ( f1, · · · , ft (k), z);
3. run AO(st0) until it halts, replying to the i th oracle query ( f ji , yi ) from A to

O as follows:

(a) (xi , sti ) ← E( f ji , yi , sti−1);
(b) if f ji ∈ { f1, · · · , ft (k)}, yi ∈ Image( f ji ), and yi �= f ji (xi ), abort and

output fail;
(c) return xi to A;

4. output 1.

The advantage of A against E in the above game, denoted as ADVF
A,E (1k), is the prob-

ability that the game’s output is fail; that is,

ADVF
A,E (1k) := Pr

[
EXPF

A,E (1k) = fail
]

.

Remark 11.6. Concurrent extractability is very similar to the notion of extractability
required of extractable hash functions in Definition 2.8 of [52], except that, in their secu-
rity game, the adversary attacks only a single randomly chosen hash function, whereas
in the above definition, the adversary is allowed to choose to attack any of an arbitrary
polynomial number of functions adaptively.

Remark 11.7. (Auxiliary input) As noted after Definition 6.1, EOWF (and surely
sEOWF or scEOWF) cannot be achieved with respect to arbitrary auxiliary input distrib-
utions of a priori unobunded polynomial size, assuming indistinguishability obfuscation.
In the applications that follow, we use EOWFswithin a larger protocol and cannot neces-
sarily restrict the distribution on the auxiliary input. (For example, in a zero-knowledge
protocol, the instance itself can been seen as auxiliary input that is adversarially chosen
in a worst-case manner. Yet, using similar techniques to those used in [16], we can make
sure that any auxiliary input is a priori bounded by a fixed polynomial, a setting in which
no impossibility results for EOWFs are known. Thus, all of our results can be scaled
down to consider only verifiers with bounded auxiliary information.

In Sect. 11.5, we discuss candidate constructions of sEOWFs and scEOWFs.

11.2. A Special Three-Round ZKAOK Protocol

In this section, we construct a three-round ZKAOK protocol for NP that has the special
property that only the last message of the protocol depends on the statement to be proved,
whereas the first two messages only depend on the size of the statement. Therefore, the
statement only needs to be specified before the generation of the last message. Our
construction relies on three building blocks:



The Hunting of the SNARK 1053

1. An sEOWF family ensemble F .
2. A ZAP protocol (PZ , VZ ) for NP, that is, a two-round public-coin witness indis-

tinguishable (WI) proof. Such protocols exist assuming the existence of trapdoor
permutations [57].

3. A three-round WIAOK protocol (PW , VW ) forNP that has two special properties.
First, it satisfies that only the last message in the protocol depends on the statement
to be proved (and the first twomessages depends only on the size of the statement).
Second, it has a strong argument of knowledge property. Namely, given two ac-
cepting transcripts (m1,m1

2,m
1
3) and (m1,m2

2,m
2
3) for two different statements x1

and x2 that have the same first message but different second messages m1
2 �= m2

2,
a witness of either x1 or x2 can be deterministically computed—we refer to this
property as the special soundness property. It has been shown in [101] that such a
protocol can be constructed from one-to-one one-way functions.

Given these building blocks, the three-round ZKAOK protocol (P, V ) proceeds as fol-
lows: To prove a NP statement x , the prover P and the verifier V on common input 1k

and private input a witness w of x to P exchange the following three messages.

First message: The prover sends the following:

• A randomly sampled function f ← Fk ,
• the first message α of a (PZ , VZ ) proof where the prover acts as the receiver,
and

• the first message m1 of a (PW , VW ) proof where the prover acts as the prover.

Second message: The verifier sends the following:

• The images y1, y2 of two randomly sampled k-bit strings r1, r2 through the
function f ,

• the second message β of (PZ , VZ ) in response to α, proving that y1 or y2 is in
the range of f (the honest verifier uses the preimage of yb chosen at random as
the witness), and

• the second message m2 of (PW , VW ) in response to m1.

Third Message: The committer sends the following:

• The third message m3 of (PW , VW ) in response to m1,m2, proving that either
x is true, or either y1 or y2 is in the range of f . (The honest prover uses the
witness w of x as the witness.)

By construction, it is easy to see that the first two messages of the protocol do not
depend on the statement to be proved. Next we first show in Lemma 11.8 that indeed
this protocol is a ZKAOK for NP. Then we observe in Lemma 11.9 that by slightly
extending the proof of Lemma11.8,we can in fact show that (P, V ) satisfies two stronger
properties, namely, parallel ZK and adaptive soundness, where the latter guarantees that
no efficient prover can prove a false statement with non-negligible probability, even if it
can adaptively choose the false statement to prove adaptively depending on the verifier’s
message (before the generation of the last message).



1054 N. Bitansky et al.

Lemma 11.8. The protocol (P, V ) is a ZKAOK for NP.

Proof. Wefirst show that (P, V ) is ZK. Fix amalicious verifierV ∗, a security parameter
k and an auxiliary input z to V ∗. We construct the simulator S for V ∗. S internally runs
V ∗ with input (1k, z) and a uniformly sampled random string r , and emulates the prover’s
messages as follows:

• S emulates the first message ( f, α,m1) to V ∗ honestly;
• Upon receiving the second message (y1, y2, β,m2) from V ∗, it tries to extract a
preimage of y1 or y2 by relying on the extractability property of sEOWF. More
precisely, consider a wrapper machine A that on input f and auxiliary input
z′ = (1k, z, r, α,m1) runs V ∗ internally with input (1k, z), random tape r and
first message ( f, α,m1), and outputs the two images y1, y2 output by V ∗. It follows
from the (parallel) extractability of the sEOWF F that there is an extractor E that
on the same input f, z′ outputs x1, x2 such that xi is a valid preimage of yi as long
as yi is in the range of y with overwhelming probability. The simulator internally
incorporates E and runs it with input f, z′ to obtain x1 and x2. If neither x1 nor x2 is a
valid preimage, it aborts and outputs fail. Otherwise, it records a valid preimage xi .

• S simulates the third message m3 by proving that one of y1, y2 is in the range of f
using xi as the witness.

We show that S emulates the view of V ∗ correctly. First, it follows from the soundness
of the ZAP protocol (PZ , VZ ) that at least one of the images y1 and y2 output by V ∗ is in
the range of f . Then by the extractability ofF , E succeeds in extracting at least one valid
preimage with overwhelming probability, and thus S outputs fail with only negligible
probability.Whenever E succeeds in extracting a valid preimage, S uses it as a “trapdoor”
to cheat in the last message. It then follows from thewitness indistinguishability property
of the protocol (PW , VW ) that the simulated view is indistinguishable from the real view.
Next we show that (P, V ) is an AOK forNP. Consider an efficient prover P∗ (w.l.o.g.

deterministic) that for infinitely many k ∈ N and auxiliary input z, proves a statement
x with probability 1/p(k). We show that there is an efficient extractor E , that on input
(1k, x, z) andwith black-box access to P∗ extracts a validwitnessw of x with probability
at least 1/q(k) = 1/p(k)2−negl(k). The extractor E simply emulates two executions of
P∗ with an honest verifier V , obtaining two transcripts T1, T2, which share the same first
message ( f, α,m1), and have different second and third messages (y11 , y

1
2 , β

1,m1
2),m

1
3

and (y21 , y
2
2 , β

2,m2
2),m

2
3; if both T1 and T2 are accepting, then it extracts a witness w

from the two transcripts (m1,m1
2,m

1
3) and (m1,m2

2,m
2
3) of (PW , VW ); it outputs w if it

is indeed a valid witness of x ; otherwise, it outputs fail.
We argue that E extracts a valid witness with probability at least 1/q(k) = 1/p(k)2 −

negl(k). To see this, first note that since E emulates two executions between P∗ and the
honest verifier V honestly, it happens with probability 1/p(k)2 that the two transcripts
T1 and T2 collected are both accepting proofs for statement x . We show below that
conditioned on this happening, except with negligible probability, the value w extracted
from the two proofs of (PW , VW ) must be a valid witness of x . If so, the probability that
E extracts a valid witness successfully is at least 1/p(k)2 − negl(k).

Assume for contradiction that conditioned on that T1 and T2 are both accepting proofs
of x , the value w extracted from (m1,m1

2,m
1
3) and (m1,m2

2,m
2
3) in T1 and T2 is not



The Hunting of the SNARK 1055

a valid witness of x with non-negligible probability 1/p′(k). Then we can construct a
machine B that violates the everywhere one-wayness of F . The machine B on input
(1k, x, z) internally proceeds as E does, except that, when emulating the two executions
between P∗ and V , it first forwards the function f from P∗ externally; then upon
receiving a challenge y which is the image of a random value y = f (r), it assigns y
to one of y11 , y

1
2 , y

2
1 , y

2
2 at random—let it be ydb—and generates the other three values

honestly; furthermore, in the d th execution, it emulates the second message of ZAP by
proving that yd1−b is in the range of f . Finally, after extracting the value w, it checks
if w is a preimage of y; if so, it outputs w; otherwise, it outputs fail. Since B emulates
the view of P∗ perfectly and extracts w as E does, by our hypothesis, it occurs with
probability 1/p′(k) that T1, T2 are accepting but the extracted value w is not a valid
witness of x . Then it follows from the special soundness of 〈PW , VW 〉 that except with
negligible probability w must be a valid witness of either the statement of (m1,m1

2,m
1
3)

or that of (m1,m2
2,m

2
3); in other words, w must be a preimage of one of y11 , y

1
2 , y

2
1 , y

2
2 .

Furthermore, it follows from the fact that the distribution of the verifier’s message is
statistically close in the two executions and the WI property of ZAP that which of
the four values y is assigned to is computationally hidden. Therefore, with probability
1/4− negl(k), w is a preimage of y. Therefore B violates the everywhere one-wayness
of F with probability at least 1/5p′(n), which gives a contradiction.

Lemma 11.9. The protocol (P, V ) is parallel ZK and has adaptive soundness.

Proof Sketch. The proof of the parallel ZK property can be easily extended from that
of the ZK property. Given a malicious verifier V ∗, to simulate many parallel proofs of
(P, V ) to it, simply consider a simulator that simulates the prover’s message in each
parallel proof as how the simulator in the proof of Lemma 11.8 simulates a single proof,
except that it extracts the “trapdoors” in all parallel proofs by relying on the parallel
extractability property of the sEOWF as shown in Lemma 11.3.
Next we show that (P, V ) has adaptive soundness. Assume for contradiction that there

is a malicious prover P∗, w.l.o.g. deterministic, such that for infinitely many k ∈ N and
auxiliary input z, it can prove a false statement of its choice with a non-negligible
probability 1/p(k). Then we show that we can construct a machine B ′ that can violate
the everywhere one-wayness of F . The machine B ′ proceeds identically to the machine
B constructed in the proof of the AOK property of Lemma 11.8. As argued in the proof
of Lemma 11.8, by our hypothesis, with probability 1/p(k)2, B ′ obtains two accepting
transcripts T1 and T2 for two (potentially different) false statements x1 and x2. Then
by the special soundness of (PW , VW ), B ′ must extract a preimage w of one of the
four values y11 , y

1
2 , y

2
1 , y

2
2 with probability 1/q(k) = 1/p(k)2 − negl(k). Then by the

same argument as in the proof of Lemma 11.8, w must be a preimage of the value y
that B ′ receives externally with probability at least 1/5q(k). Therefore B ′ violates the
everywhere one-wayness of F and this gives a contradiction.

Remark 11.10. Bitansky, Canetti, Paneth, and Rosen [16] show that when consider-
ing a restricted class of adversaries with bounded polynomial advice and unbounded
polynomial running time, a weaker variant of extractable one-way functions can be con-
structed from standard assumptions (e.g., subexponential security of Decision Diffie–



1056 N. Bitansky et al.

Hellman or Quadratic Residuosity). They then show how to use this weaker variant
of extractable one-way functions to construct two-message zero-knowledge arguments
and three-message zero-knowledge arguments of knowledge against adversaries of the
same class. Their protocols follow the same structure as our construction above, with
modifications tailored to their weaker extractable one-way functions.

11.3. A Three-Round Concurrent ZK Protocol

In this section, we first recall the definition of concurrent ZK and then show that as-
suming that the underlying strong extractable def’s are concurrently extractable, that is,
an scEOWF, then the three-round ZKAOK protocol (P, V ) described in Sect. 11.2 is a
concurrent ZK protocol for NP.
Definition of Concurrent Zero-Knowledge Protocols Let (P, V ) be an interactive

argument for a language L . Consider a concurrent adversarial verifierV ∗ that on common
input 1k , x and auxiliary input z, interacts with any polynomial number of independent
copies of P concurrently, without any restrictions over the scheduling of the messages
in the different interactions with P . Let ViewP

V ∗(1k, x, z) denote the random variable
describing the view of the adversary V ∗ in an interaction with P .

Definition 11.11. Let (P, V ) be an interactive argument system for a language L . We
say that (P, V ) is concurrent ZK if for every PPT concurrent adversary V ∗, there exists
a PPT simulator S, such that, it holds that the ensembles {ViewP

V ∗(1k, x)}k∈N,x∈{0,1}k∩L

and {S(1k, x)}k∈N,x∈{0,1}k∩L are computationally indistinguishable over k ∈ N.

It was shown in [41] that it is impossible to construct a slightly sublogarithmic-round
concurrent ZK protocol with black-box simulation, where the simulator S only uses
black-box access to the malicious verifier V ∗. Next, by relying on the existence of a
scEOWF and enhanced trapdoor permutations, we show that there is a three-round con-
current ZK protocol, which circumvents the impossibility result by using non-black-box
simulation. We note that in a recent work [82], Gupta and Sahai formulated a new
knowledge assumption and showed that it implies constant-round concurrent ZK argu-
ments. Although their knowledge assumption is formulated in a “stand-alone” fashion,
it essentially implies concurrent extractability; moreover, their protocol has five rounds.
The Three-Round Protocol (P, V ) is Concurrent ZKWe show that assuming that the

underlying family ensemble F used in the protocol (P, V ) in Sect. 11.2 is an scEOWF,
then the protocol (P, V ) is concurrent ZK.

Theorem 11.12. Let F be an scEOWF. Then (P, V ) is concurrent ZK.

Proof. Fix a PPT concurrent adversary V ∗, a security parameter k ∈ N, a statement x ,
and an auxiliary input z. We first construct a simulator S ′ that, with access to an oracle
O that inverts the one-way functions in F , simulates the view of V ∗. More precisely,
let O be an oracle satisfying that, if it is fed with a pair ( f, y) with f ∈ F and y in the
range of f , it returns a valid preimage through f ; (otherwise, it can return any value).
The machine S ′ on auxiliary input z′ = (1k, x, z) and a vector of randomly cho-

sen functions f ← F , internally simulates a concurrent execution with V ∗(1k, x, z) as



The Hunting of the SNARK 1057

follows: It emulates the first messages for V ∗ honestly by forwarding fi as the ran-
domly chosen function the i th interaction; it simulates the third messages using a “fake”
witness—a preimage of one of the two values y1 or y2 from V ∗ sent in the second
message—and cheating in the WI proof that either y1 or y2 is in the range of f (instead
of proving that x is true). For every interaction of (P, V ), S ′ obtains a “fake” witness
by querying the oracle on the two values y1 and y2 from V ∗, obtaining x1 and x2; if
neither x1 nor x2 is a valid preimage of y1 or y2, S ′ aborts and outputs fail; otherwise,
S ′ records a valid preimage and later simulates the ZAP proof of this interaction using
it as a “fake” witness. Finally, S ′ outputs the simulated view of V ∗. By the soundness
of ZAP proof from the malicious verifier, except with negligible probability, for every
interaction of (P, V ), one of the two values y1 and y2 has a valid preimage; then, the
oracle must return one valid preimage, and thus the probability that S ′ outputs fail is
negligible. In this case, it follows directly from the witness indistinguishability of (PW ,

VW ) that the simulated view of V ∗ by S ′ is indistinguishable from the real view of V ∗
when interacting with an honest prover.
Next, we construct the actual simulator S that emulates the oracleO for S ′ by relying

on the concurrent extractability of F . More precisely, by the concurrent extractability
of F , there is an extractor E such that when replacing the oracle answers to S ′ with the
preimages extracted by E(f, z′), the probability that E fails to extract a valid preimage for
a value output by S ′ that has a preimage is negligible. Furthermore, it follows from the
one-to-one property of F that except with negligible probability, E emulates the oracle
O perfectly. Therefore, the output view of S is indistinguishable from the real view of
V ∗, and we conclude the theorem.

Beyond Concurrent ZK By applying the transformation of [21] to our protocol, we
obtain a three-round resettably sound concurrent ZK protocol. By additionally applying
the transformation of [54] to the resulting resettably sound concurrent ZK protocol, we
obtain a three-round simultaneously resettable ZK protocol.

Theorem 11.13. Assuming the existence of an scEOWF and enhanced trapdoor per-
mutations, there is a three-round simultaneously resettable ZK protocol.

11.4. Two-Message Selective-Opening-Attack Secure Commitments

In this section, we first provide a formal definition of a SOA-secure commitment scheme
and then provide a non-interactive construction of it using the three-round adaptively
sound parallel ZK protocol constructed in Sect. 11.2.
Definition of SOA-Secure Commitments A commitment scheme secure against selec-

tive opening attack has a strong hiding property that holds even if the adversary gets
to selectively ask for the decommitment of some of the commitments it receives. We
consider a strong notion of SOA security, which is essentially the same as the simula-
tion based definition of a SOA-secure commitment scheme in [58], but strengthens it to
require indistinguishability of the simulation rather than a relation-based security guar-
antee. Formally, let (C, R) be a commitment scheme. We compare between a real and
an ideal execution. In the real experiment, the adversary gets to interact with the honest
committerC in the commit stages of t = t (k) commitments to values v1, . . . , vt sampled



1058 N. Bitansky et al.

from some distribution D and may adaptively ask for decommitments of any commit-
ment ci , where i is a part of a “legal” subset I ⊆ {1, · · · t (k)}. In the ideal experiment,
the adversary simply gets to ask for the values vi in the legal subset i ∈ I . Let real((C,

R), D, I,A, 1k) denote the view of an adversary A in the following experiment:

• Sample (x, z) from D, and for each i ∈ |x|, engage with the adversary A(z) in the
commit stage of (C, R) committing to value xi , where x is a vector of length t (k)
and xi is the i th component of x.

• A chooses a subset J ⊆ I . For every j ∈ J , decommit the j th commitment to
value x j by sending the corresponding decommitment string d j .

Let ideal(D, I,S, 1k) denote the output of the machine S in the following experiment:

• Sample (x, z) from D. Feed (1k, z) to S.
• S chooses a subset J ⊆ I . For every j ∈ J , feed x j to S.

Definition 11.14. (Hiding under selective decommitment) Let (C, R) be a commit-
ment scheme.We say that (C, R) is secure under selective decommitment w.r.t. the legal
set I = {Ik}k∈N, where Ik ∈ [t (k)] and the ensemble of distributions D = {Dk}k∈N,
where Dk is a distribution over ({0, 1}poly(k))t (k)+1; if for every non-uniform PPT ad-
versaryA, there exists a non-uniform PPT S such that the following two ensembles are
indistinguishable.

• {
real((C, R), Dk, Ik,A, 1k)

}
k∈N

• {
ideal(Dk, Ik,S, 1k)

}
k∈N

It is implied by the impossibility result in [111] that assuming the existence of one-
to-one one-way functions, then there exist legal set I and distribution D, such that
it is impossible to construct a non-interactive SOA-secure commitment scheme w.r.t.
I and D based on any bounded-round assumptions19 via a black-box security reduc-
tion.
In contrast to the impossibility result, next we show that assuming the existence

of an sEOWF and enhanced trapdoor permutations, we can construct a non-interactive
SOA-secure commitment scheme. Our construction circumvents the impossibility result
of [111] at two aspects: First, the assumption of the existence of sEOWF is not a bounded-
round assumption, and second, our security reduction is non-black-box.
A non-interactive SOA-secure commitment scheme (C̃, R̃). The construction makes

use of the above three-round adaptively sound parallel ZK protocol (P, V ) and a basic
one-message statistically binding commitment scheme Com, which exists assuming
one-to-one one-way functions. To commit to a value v, the committer C̃ and the receiver
R̃ on common input a security parameter 1k proceeds as follows:

First message: The committer sends a commitment c to v usingCom, together with
the first message m1 of (P, V ).
Second message: The receiver replies with the second message m2 of (P, V ).

19A bounded-round assumption is an intractability assumption formalized using a bounded-round interac-
tive game between an adversary and a challenger. It is similar to the notion of falsifiable assumption proposed
by [107] but does not require the challenger to be efficient [111].



The Hunting of the SNARK 1059

Decommitment message: The committer sends v and the third message m3 of (P,

V ) proving that v is indeed the value committed to in c. The receiver accepts if the
proof (m1,m2,m3) is accepting.

Theorem 11.15. (C̃, R̃) is computationally binding and computationally hiding under
selective decommitment w.r.t. any distribution ensemble D and legal set ensemble I.

Proof Sketch. It follows from the adaptive soundness of (P, V ) and the statistically
binding property of Com that the commitment scheme (C̃, R̃) is computationally bind-
ing. To show that it is also hiding under selective decommitment, consider a distribution
ensemble D = {Dk}k , a legal set ensemble I = {Ik}k and an adversary A, and fix
a security parameter k ∈ N. We construct a simulator S that in an ideal experiment
ideal(Dk, Ik,S, 1k) proceeds as follows:

• Upon receiving 1k, z, S internally runs A(1k, z), and sends the first messages of
t = t (k) commitments of 0n to A.

• Upon receiving the request fromA for the decommitment of commitments in subset
J ⊆ Ik , S forwards J externally and obtains values x j for every j ∈ J .

• S sendsA x j ’s and simulates the decommitmentmessages to x j ’s, which are simply
the third messages of (P, V ), by relying on the parallel ZK property of (P, V ).

It follows from the parallel ZK property of (P, V ) and the hiding property of Com that
the simulation is indistinguishable.

11.5. Candidate Constructions of sEOWF and scEOWF

A candidate construction of sEOWF.We show that the construction of ECRH in Sect. 8.1
when instantiated with the 1-KEA assumption (Assumption 8.1 in Sect. 8.1) is essen-
tially already a sEOWF (up to a slight modification). For completeness, we provide the
construction below.
Let G = {Gk} be an efficiently samplable ensemble for which the 1-KEA assumption

holds. That is, each Gk consists of a group G of prime order p ∈ (2k−1, 2k) and a
generator g ∈ G, and it holds that for any polynomial-size adversary A there exists
a polynomial-size extractor E , such that, whenever A, given (gr , gαr , z) for r and α

chosen randomly from Zp, outputs a valid tuple (c, c′) such that c′ = cα , the extractor
E(gr , gαr , z) finds a discrete logarithm x such that gxr = c. Now an sEOWF can be
constructed from the KEA assumption as follows:

• To sample fromFk : set (G, g) ← Gk and sample (r, α)
U← Z

∗
p×Z

∗
p where p = |G|,

and output f := (G, gr , gαr ). (Note that, different from the construction of ECRH
in Sect. 8.1, α and r are sampled from Z

∗
p instead of Zp.)

• To compute f (x): output the pair (gxr , gxαr ).

Assuming the 1-KEA assumption and that the hardness of computing discrete loga-
rithms in G, the above construction is a sEOWF. First, it follows directly from the
1-KEA assumption and almost the same argument for the construction of ECRH from
t-KEA in Sect. 8.1 that the above construction is extractable. Furthermore, by con-
struction, gxr for every r ∈ Z

∗
p uniquely determines x and thus every function in



1060 N. Bitansky et al.

the ensemble is one-to-one. Finally, it follows from the hardness of discrete logs that
for sufficiently large security parameter k, every function in the family Fk is hard to
invert.

A candidate construction of scEOWF. To obtain a scEOWF, we use the same con-
struction as above, but assuming a stronger concurrent 1-KEA assumption, which simply
extends the 1-KEA assumption to allow concurrent extraction in a similar way as in the
definition of concurrent extractability property (Definition 11.5).

Assumption 11.16. (Concurrent 1-KEA) There exists a family G = {Gk} where each
Gk consists of a group G of prime order p ∈ (2k−1, 2k) and a generator g ∈ G, such
that the following holds. For any polynomial-size adversary A and polynomials m, p
there exists a polynomial-size extractor E such that for any k ∈ N, any polynomial m,
and any auxiliary input z ∈ {0, 1}m(k), the advantage of the adversary in the following
experiment is bounded by negl(k).

EXPG
A,E (1k):

• Let (G, g) ← Gk . Sample α1 · · · αt (k)
U← Zp and r1 · · · rt (k) U← Zp, where

p = |G|. Set St0 = (gr1, · · · , grt (k) , gα1r1 , · · · , gαt (k)rt (k) , z).
• RunAO(St0) until it halts, replying to the i th oracle query ( ji , ci , c′

i ) as follows:

(xi , Sti ) = E( ji , ci , c′
i , Sti−1)

If ji ∈ [t (k)], c′
i = c

α ji
i , and ci �= gr ji xi , abort and output fail.

Return xi to A.

• Output 1.

The advantage of the adversary in the above game, denoted as ADVG
A,E (1k), is the

probability that the game outputs fail, that is,

ADVG
A,E (1k) = Pr[EXPG

A,E (1k) = fail]

It is easy to see that assuming the concurrent 1-KEA assumption and that the discrete
logs problem is hard in G, the above mentioned construction for sEOWF is in fact an
scEOWF.

Acknowledgements

Nir and Ran wish to thank Ben Riva and Omer Paneth for enlightening discussions in the
early stages of this research. Eranwishes to thank Shai Halevi for early discussions about
using extractable collision resistance as a solution approach andDanieleMicciancio for a
discussion of lattice-basedKnowledge ofKnapsacks assumptions.Huijiawishes to thank
Rafael Pass, as well as Kai-Min Chung, for enlightening discussions about extractability
assumptions and their applications in general.



The Hunting of the SNARK 1061

References

[1] W. Aiello, S N. Bhatt, R. Ostrovsky, S. Rajagopalan, Fast verification of any remote procedure call:
Short witness-indistinguishable one-round proofs for NP, in Proceedings of the 27th International
Colloquium on Automata, Languages and Programming, 2000, pp. 463–474.

[2] J. Alwen, Y. Dodis, D. Wichs. Survey: Leakage resilience and the bounded retrieval model, in Informa-
tion Theoretic Security, 4th International Conference, ICITS 2009, Shizuoka, Japan, December 3–6,
2009. Revised Selected Papers, 2009, pp. 1–18.

[3] M.Abe, S. Fehr. PerfectNIZKwith adaptive soundness, inProceedings of the 4th theory of cryptography
conference, 2007, pp. 118–136.

[4] B. Applebaum, Y. Ishai, E. Kushilevitz. From secrecy to soundness: efficient verification via secure
computation, in Proceedings of the 37th international colloquium on automata, languages, and pro-
gramming, 2010, pp. 152–163.

[5] M. Ajtai. Generating hard instances of lattice problems, in Proceedings of the 28th annual ACM
symposium on the theory of computing, 1996, pp. 99–108.

[6] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and the hardness of approx-
imation problems, J. ACM, 45(3), (1998) pp. 501–555.

[7] S. Arora, S. Safra, Probabilistic checking of proofs: a new characterization of NP. J. ACM, 45(1), (1998)
pp. 70–122

[8] M. Backes, M. Barbosa, D. Fiore, R.M. Reischuk. ADSNARK: nearly practical and privacy-preserving
proofs on authenticated data, in Proceedings of the 36th IEEE Symposium on Security and Privacy,
S&P ’15, 2015, pp. 271–286.

[9] N. Bitansky, A. Chiesa. Succinct arguments from multi-prover interactive proofs and their efficiency
benefits, in Proceedings of the 32nd annual international cryptology conference, CRYPTO ’12, 2012,
pp. 255–272.

[10] GillesBrassard,DavidChaum, andClaudeCrépeau.Minimumdisclosure proofs of knowledge. Journal
of Computer and System Sciences, 37(2):156–189, 1988.

[11] N. Bitansky, R. Canetti, A. Chiesa, E. Tromer, From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again. Cryptology ePrint Archive, Report 2011/443,
2011. http://eprint.iacr.org/.

[12] N. Bitansky, R. Canetti, A. Chiesa, E. Tromer. From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again, inProceedings of the 3rd innovations in theoretical
computer science conference, ITCS ’12, 2012, pp. 326–349.

[13] N. Bitansky, R. Canetti, A. Chiesa, E. Tromer, Recursive composition and bootstrapping for SNARKs
and proof-carrying data, in Proceedings of the 45th ACM symposium on the theory of computing,
STOC ’13, 2013, pp. 111–120.

[14] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, M. Virza. SNARKs for C: verifying program exe-
cutions succinctly and in zero knowledge, in Proceedings of the 33rd annual international cryptology
conference, CRYPTO ’13, 2013, pp. 90–108.

[15] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, O. Paneth, Succinct non-interactive arguments via linear
interactive proofs, in Proceedings of the 10th theory of cryptography conference, TCC ’13, 2013, pp.
315–333.

[16] N. Bitansky, R. Canetti, O. Paneth, A. Rosen, On the existence of extractable one-way functions, in
STOC, 2014.

[17] E. Ben-Sasson, A. Chiesa, E. Tromer, M. Virza. Scalable zero knowledge via cycles of elliptic curves,
in Proceedings of the 34th annual international cryptology conference, CRYPTO ’14, pp. 276–294,
2014. Extended version at http://eprint.iacr.org/2014/595.

[18] E. Ben-Sasson, A. Chiesa, E. Tromer, M. Virza, Succinct non-interactive zero knowledge for a von
Neumann architecture, in Proceedings of the 23rd USENIX security symposium, security ’14, pp. 781–
796, 2014. Extended version at http://eprint.iacr.org/2013/879.

[19] M. Blum, P. Feldman, S. Micali, Non-interactive zero-knowledge and its applications (extended ab-
stract), in Proceedings of the 20th annual ACM symposium on theory of computing, May 2–4, 1988,
Chicago, IL, USA, 1988, pp. 103–112.

http://eprint.iacr.org/
http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879


1062 N. Bitansky et al.

[20] B. Barak, O. Goldreich. Universal arguments and their applications. SIAM J. Comput.38(5), pp. 1661–
1694, 2008. Preliminary version appeared in CCC ’02.

[21] B. Barak, O. Goldreich, S. Goldwasser, Y. Lindell. Resettably-sound zero-knowledge and its applica-
tions, in FOCS, 2001, pp. 116–125.

[22] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.P. Vadhan, K. Yang. On the
(im)possibility of obfuscating programs, SIAM J. Comput., 59(2), 2012.

[23] S. Benabbas, R. Gennaro, Y. Vahlis. Verifiable delegation of computation over large datasets, in Pro-
ceedings of the 31st annual international cryptology conference, 2011, pp. 111–131.

[24] M. Braverman, A. Hassidim, Y.T. Kalai. Leaky pseudo-entropy functions. In Proceedings of the 2nd
symposium on innovations in computer science, 2011, pp. 353–366.

[25] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short interactive proofs? Infor-
mation Processing Letters, 25(2):127–132, 1987.

[26] M. Blum. Coin flipping by telephone, in Proceedings of the 18th annual international cryptology
conference, 1981, pp. 11–15.

[27] M. Bellare, A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge proto-
cols, in Proceedings of the 24th annual international cryptology conference, 2004, pp. 273–289.

[28] E. Boyle, R. Pass, Limits of extractability assumptions with distributional auxiliary input. Cryptology
ePrint Archive, Report 2013/703, 2013. http://eprint.iacr.org/.

[29] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer. On the concrete efficiency of probabilistically-
checkable proofs, in Proceedings of the 45th ACM symposium on the theory of computing, STOC ’13,
2013.

[30] E. Ben-Sasson, O. Goldreich, P. Harsha,M. Sudan, S. Vadhan, Short PCPs verifiable in polylogarithmic
time, in Proceedings of the 20th annual IEEE conference on computational complexity, 2005, pp. 120–
134.

[31] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM Journal on
Computing, 38(2):551–607, 2008.

[32] D. Boneh, G. Segev, B. Waters. Targeted malleability: Homomorphic encryption for restricted compu-
tations. Cryptology ePrint Archive, Report 2011/311, 2011.

[33] Z. Brakerski, V. Vaikuntanathan, Efficient fully homomorphic encryption from (standard) LWE, in
Proceedings of the 51th annual IEEE symposium on foundations of computer science, 2011.

[34] R. Canetti, Towards realizing random oracles: hash functions that hide all partial information, in Pro-
ceedings of the 17th annual international cryptology conference, 1997, pp. 455–469.

[35] R. Canetti, Universally composable security: a new paradigm for cryptographic protocols, in Proceed-
ings of the 42nd annual IEEE symposium on foundations of computer science, 2001, pp. 136–145.

[36] R. Canetti, R.R. Dakdouk, Extractable perfectly one-way functions, in Proceedings of the 35th inter-
national colloquium on automata, languages and programming, 2008, pp. 449–460.

[37] R. Canetti, R.R. Dakdouk, Towards a theory of extractable functions, in Proceedings of the 6th theory
of cryptography conference, 2009, pp. 595–613.

[38] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,M. Naehrig, B. Parno, S. Zahur. Geppetto:
versatile verifiable computation, in Proceedings of the 36th IEEE symposium on security and privacy,
S&P ’15, 2015, pp. 253–270.

[39] M. Chase, M. Kohlweiss, A. Lysyanskaya, S. Meiklejohn, Succinct malleable nizks and an application
to compact shuffles, in TCC, 2013, pp. 100–119.

[40] K.-M. Chung, Y. Kalai, F.-H. Liu, R. Raz. Memory delegation, in Proceeding of the 31st annual
cryptology conference, 2011, pp. 151–168.

[41] R. Canetti, J. Kilian, E. Petrank, A. Rosen, Black-box concurrent zero-knowledge requires ω̃(log n)

rounds, in STOC ’01, 2001, pp. 570–579.
[42] K.-M. Chung, Y. Kalai, S. Vadhan, Improved delegation of computation using fully homomorphic

encryption, in Proceedings of the 30th annual international cryptology conference, 2010, pp. 483–501.
[43] C. Cachin, S. Micali, M. Stadler, Computationally private information retrieval with polylogarithmic

communication, in Proceedings of the international conference on the theory and application of cryp-
tographic techniques, 1999, pp. 402–414.

[44] R. Canetti, B. Riva, G.N. Rothblum, Two 1-round protocols for delegation of computation. Cryptology
ePrint Archive, Report 2011/518, 2011.

http://eprint.iacr.org/


The Hunting of the SNARK 1063

[45] A. Chiesa, E. Tromer, Proof-carrying data and hearsay arguments from signature cards, in Proceedings
of the 1st symposium on innovations in computer science, 2010, pp. 310–331.

[46] G. Cormode, J. Thaler, K. Yi, Verifying computations with streaming interactive proofs. Technical
report, 2010. ECCC TR10-159.

[47] R.R.Dakdouk,Theory and application of extractable functions. Ph.D. thesis,YaleUniversity, Computer
Science Department, December 2009.

[48] I. Damgård, Towards practical public key systems secure against chosen ciphertext attacks, in Proceed-
ings of the 11th annual international cryptology conference, 1992, pp. 445–456.

[49] G. Di Crescenzo, H. Lipmaa, Succinct NP proofs from an extractability assumption, in Proceedings of
the 4th conference on computability in Europe, 2008, pp. 175–185.

[50] A.W. Dent, The hardness of the DHK problem in the generic group model. Cryptology ePrint Archive,
Report 2006/156, 2006.

[51] G. Danezis, C. Fournet, J. Groth, M. Kohlweiss, Square span programs with applications to succinct
NIZK arguments, in Proceedings of the 20th international conference on the theory and application of
cryptology and information security, ASIACRYPT ’14, 2014, pp. 532–550.

[52] I. Damgård, S. Faust, C. Hazay, Secure two-party computation with low communication. Cryptology
ePrint Archive, Report 2011/508, 2011.

[53] A. Dent, S. Galbraith, Hidden pairings and trapdoor DDH groups, in F. Hess, S. Pauli, M. Pohst, editors,
Algorithmic number theory, vol. 4076 of lecture notes in computer science, 2006, pp. 436–451.

[54] Y. Deng, V. Goyal, A. Sahai, Resolving the simultaneous resettability conjecture and a new non-black-
box simulation strategy, in FOCS, 2009, pp. 251–260.

[55] S. Dziembowski, P. Krzysztof, Leakage-resilient cryptography, in Proceedings of the 49th annual IEEE
symposium on foundations of computer science, 2008, pp. 293–302.

[56] C. Dwork,M. Langberg,M. Naor, K. Nissim, O. Reingold. Succinct NP proofs and spooky interactions,
December 2004. Available at www.openu.ac.il/home/mikel/papers/spooky.ps.

[57] C. Dwork, M. Naor, Zaps and their applications, in FOCS, 2000, pp. 283–293
[58] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions. J. ACM,

50(6):852–921, 2003.
[59] Y. Dodis, T. Ristenpart, T. Shrimpton, Salvaging merkle-damgård for practical applications, in Pro-

ceedings of the 28th annual international conference on the theory and applications of cryptographic
techniques, 2009, pp. 371–388.

[60] B. Ederov, Merkle tree traversal techniques. Ph.D. thesis, Darmstadt University of Technology, De-
partment of Computer Science, April 2007

[61] P. Fauzi, H. Lipmaa, B. Zhang, Efficient modular NIZK arguments from shift and product, in Proceed-
ings of the 12th international conference on cryptology and network security, CANS ’13, 2013, pp.
92–121.

[62] A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification and signature problems,
in Proceedings of the 6th annual international cryptology conference, 1987, pp. 186–194

[63] C. Gentry, Fully homomorphic encryption using ideal lattices, in Proceedings of the 41st annual ACM
symposium on theory of computing, 2009, pp. 169–178

[64] O. Goldreich, S. Goldwasser, S. Halevi, Collision-free hashing from lattice problems. Technical report,
1996. ECCC TR95-042

[65] R. Gennaro, C. Gentry, B. Parno. Non-interactive verifiable computing: outsourcing computation to
untrusted workers, in Proceedings of the 30th annual international cryptology conference, 2010, pp.
465–482.

[66] R. Gennaro, C. Gentry, B. Parno, M. Raykova, Quadratic span programs and succinct NIZKs with-
out PCPs, in Proceedings of the 32nd annual international conference on theory and application of
cryptographic techniques, EUROCRYPT ’13, 2013, pp. 626–645

[67] Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded communica-
tion. Information Processing Letters, 67(4):205–214, 1998.

[68] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM
Journal on Computing, 25(1):169–192, 1996.

[69] S. Goldwasser, Y.T. Kalai, G.N. Rothblum, Delegating computation: interactive proofs for Muggles,
in Proceedings of the 40th annual ACM symposium on theory of computing, 2008, pp. 113–122.

www.openu.ac.il/home/mikel/papers/spooky.ps


1064 N. Bitansky et al.

[70] R. Gennaro, H. Krawczyk, T. Rabin, Okamoto–Tanaka revisited: fully authenticated Diffie–Hellman
with minimal overhead, in Proceedings of the 8th international conference on applied cryptography
and network security, 2010, pp. 309–328

[71] S. Goldwasser, H. Lin, A. Rubinstein, Delegation of computation without rejection problem from
designated verifier CS-proofs. Cryptology ePrint Archive, Report 2011/456, 2011.

[72] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[73] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems. SIAM
J. Comput., 18(1), pp. 186–208, 1989. Preliminary version appeared in STOC ’85

[74] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity for all
languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[75] N. Gama, P.Q. Nguyen. Predicting lattice reduction, in Proceedings of the 27th annual international
conference on the theory and applications of cryptographic techniques, 2008, pp. 31–51

[76] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Journal
of Cryptology, 7(1):1–32, December 1994.

[77] O. Goldreich, The foundations of cryptography—volume 1, basic techniques. Cambridge University
Press, 2001

[78] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University Press,
New York, NY, USA, 2001.

[79] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge University
Press, New York, NY, USA, 2004.

[80] C. Gentry, Z. Ramzan. Single-database private information retrieval with constant communication rate,
in Proceedings of the 32nd international colloquium on automata, languages and programming, 2005,
pp. 803–815

[81] J. Groth. Short pairing-based non-interactive zero-knowledge arguments, in Proceedings of the 16th
international conference on the theory and application of cryptology and information security, 2010,
pp. 321–340

[82] D. Gupta, A. Sahai, On constant-round concurrent zero-knowledge from a knowledge assumption.
Cryptology ePrint Archive, Report 2012/572, 2012. http://eprint.iacr.org/

[83] Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs with a laconic prover. Com-
putational Complexity, 11(1/2):1–53, 2002.

[84] C. Gentry, D. Wichs, Separating succinct non-interactive arguments from all falsifiable assumptions,
in Proceedings of the 43rd annual ACM symposium on theory of computing, 2011, pp. 99–108.

[85] I.Haitner,D.Harnik,O.Reingold. Efficient pseudorandomgenerators fromexponentially hard one-way
functions, in Proceedings of the 33rd international colloquium on automata, languages and program-
ming, 2006, pp. 228–239

[86] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[87] S. Hada, T. Tanaka, On the existence of 3-round zero-knowledge protocols, in Proceedings of the 18th
annual international cryptology conference, 1998, pp. 408–423

[88] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, A. Sahai, Efficient non-interactive secure
computation, inProceedings of the 30th annual international conference on the theory and applications
of cryptographic techniques, 2011, pp. 406–425

[89] J. Kilian. A note on efficient zero-knowledge proofs and arguments, in Proceedings of the 24th annual
ACM symposium on theory of computing, 1992, pp. 723–732

[90] E. Kushilevitz, R. Ostrovsky. Replication is NOT needed: SINGLE database, computationally-private
information retrieval, in 38th annual symposium on foundations of computer science, FOCS ’97, Miami
Beach, Florida, USA, October 19–22, 1997, 1997, pp. 364–373

[91] Y.T. Kalai, O. Paneth. Delegating RAM computations. Cryptology ePrint Archive, Report 2015/957,
2015

[92] A.E. Kosba, D. Papadopoulos, C. Papamanthou, M.F. Sayed, E. Shi, N. Triandopoulos, TRUESET:
Faster verifiable set computations, in Proceedings of the 23rd USENIX security symposium, USENIX
Security ’14, 2014, pp 765–780

http://eprint.iacr.org/


The Hunting of the SNARK 1065

[93] Y.T. Kalai, R. Raz, Succinct non-interactive zero-knowledge proofs with preprocessing for LOGSNP,
in Proceedings of the 47th annual IEEE symposium on foundations of computer science, 2006, pp.
355–366

[94] Y.T. Kalai, R. Raz, Probabilistically checkable arguments, in Proceedings of the 29th annual interna-
tional cryptology conference, 2009, pp. 143–159

[95] Y. Kalai, R. Raz, R. Rothblum, Delegation for bounded space, in Proceedings of the 45th ACM sym-
posium on the theory of computing, STOC ’13, 2013, pp. 565–574

[96] Y.T. Kalai, R. Raz, R.D. Rothblum, How to delegate computations: the power of no-signaling proofs, in
Proceedings of the 46th annual ACM symposium on theory of computing, STOC ’14, 2014, pp. 485–494

[97] H. Lipmaa, Progression-free sets and sublinear pairing-based non-interactive zero-knowledge argu-
ments, inProceedings of the 9th theory of cryptography conference on theory of cryptography, TCC ’12,
2012, pp. 169–189

[98] H. Lipmaa, Succinct non-interactive zero knowledge arguments from span programs and linear error-
correcting codes, in Proceedings of the 19th international conference on the theory and application of
cryptology and information security, ASIACRYPT ’13, 2013, pp. 41–60

[99] H. Lipmaa, Efficient NIZK arguments via parallel verification of Beneš networks, in Proceedings of the
9th international conference on security and cryptography for networks, SCN ’14, 2014, pp. 416–434

[100] V. Lyubashevsky, D. Micciancio, On bounded distance decoding, unique shortest vectors, and the
minimum distance problem, in Proceedings of the 29th annual international cryptology conference,
2009, pp. 577–594

[101] D. Lapidot, A. Shamir, Publicly verifiable non-interactive zero-knowledge proofs, in CRYPTO, 1990,
pp. 353–365

[102] R. Merkle, Secrecy, authentication and public key systems. Ph.D. thesis, Stanford University, Depart-
ment of Electrical Engineering, 1979

[103] R.C. Merkle, A certified digital signature, in Proceedings of the 9th annual international cryptology
conference, 1989, pp. 218–238

[104] S. Micali, Computationally sound proofs. SIAM J. Comput., 30(4), pp. 1253–1298, 2000. Preliminary
version appeared in FOCS ’94.

[105] Thilo Mie. Polylogarithmic two-round argument systems. Journal of Mathematical Cryptology,
2(4):343–363, 2008.

[106] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian mea-
sures. SIAM Journal on Computing, 37:267–302, April 2007.

[107] M.Naor,On cryptographic assumptions and challenges, inProceedings of the 23rd annual international
cryptology conference, 2003, pp. 96–109

[108] V.I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes,
55, (1994), pp. 165–172

[109] M. Naor, K. Nissim, Communication preserving protocols for secure function evaluation, in Proceed-
ings of the 33rd annual ACM symposium on theory of computing, 2001, pp. 590–599

[110] Eiji Okamoto and Kazue Tanaka. Key distribution system based on identification information. Selected
Areas in Communications, IEEE Journal on, 7(4):481–485, May 1989.

[111] R. Pass, Limits of provable security from standard assumptions, in STOC, 2011, pp. 109–118
[112] B. Parno, C. Gentry, J. Howell, M. Raykova, Pinocchio: nearly practical verifiable computation, in

Proceedings of the 34th IEEE symposium on security and privacy, Oakland ’13, 2013, pp. 238–252
[113] O. Paneth, G.N. Rothblum. Publicly verifiable non-interactive arguments for delegating computation.

Cryptology ePrint Archive, Report 2014/981, 2014
[114] C. Papamanthou, E. Shi, R. Tamassia, K. Yi, Streaming authenticated data structures, in Proceedings

of the international conference on the theory and application of cryptographic techniques, 2013, pp.
353–370

[115] C. Papamanthou, R. Tamassia, N. Triandopoulos, Optimal verification of operations on dynamic sets,
in Proceeding of the 31st annual cryptology conference, 2011, pp. 91–110

[116] M. Prabhakaran, R. Xue. Statistically hiding sets, in Proceedings of the cryptographers’ track at the
RSA conference 2009, 2009, pp. 100–116

[117] O. Regev, New lattice based cryptographic constructions, in Proceedings of the 35th annual ACM
symposium on theory of computing, 2003, pp. 407–416

[118] OdedRegev.New lattice-based cryptographic constructions. Journal of the ACM, 51(6):899–942, 2004.



1066 N. Bitansky et al.

[119] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in Proceedings of
the 37th annual ACM symposium on theory of computing, 2005, pp. 84–93

[120] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and System Sciences,
55:204–213, 1994.

[121] O.Reingold, L. Trevisan,M.Tulsiani, S.P.Vadhan,Dense subsets of pseudorandom sets, inProceedings
of the 49th annual IEEE symposium on foundations of computer science, 2008, pp. 76–85

[122] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.
[123] V. Shoup, Lower bounds for discrete logarithms and related problems, in Proceedings of the interna-

tional conference on the theory and application of cryptographic techniques, 1997, pp. 256–266
[124] P. Valiant, Incrementally verifiable computation or proofs of knowledge imply time/space efficiency,

in Proceedings of the 5th theory of cryptography conference, 2008, pp. 1–18
[125] H. Wee, On round-efficient argument systems, in Proceedings of the 32nd international colloquium on

automata, languages and programming, 2005, pp. 140–152
[126] R.S. Wahby, S. Setty, Z. Ren, A.J. Blumberg, M. Walfish, Efficient RAM and control flow in veri-

fiable outsourced computation, in Proceedings of the 22nd network and distributed system security
symposium, NDSS ’15, 2015

[127] Y. Zhang, C. Papamanthou, J. Katz, Alitheia: towards practical verifiable graph processing, in Pro-
ceedings of the 21st ACM conference on computer and communications security, CCS ’14, 2014, pp.
856–867


	The Hunting of the SNARK
	1. Introduction
	1.1. Summary of Our Results
	1.2. ECRHs, SNARKs, and Applications
	1.3. ECRH Candidate Constructions and Sufficient Relaxations
	1.3.1. Proximity ECRH
	1.3.2. Weak PECRHsThis further weakening was inspired by private communication with Ivan Damgård.

	1.4. High-Level Proof Strategy for Theorem 1
	1.4.1. The Main Challenges and Our Solutions

	1.5. Discussion
	1.6. Subsequent Work
	1.7. Organization

	2. Other Related Work
	3. Preliminaries
	3.1. Conventions
	3.2. Collision-Resistant Hashes
	3.3. Merkle Trees
	3.4. Private Information Retrieval
	3.5. The Complexity Class NP and Witness Relation
	3.6. The Universal Relation
	3.7. Probabilistically Checkable Proofs of Knowledge
	3.8. Indistinguishability
	3.9. Interactive Proofs, Zero Knowledge and Witness Indistinguishability
	3.10. Proofs and arguments of knowledge
	3.11. Commitments

	4. SNARKs
	4.1. Succinct Non-Interactive Arguments

	5. From ECRHs to SNARKs
	5.1. Construction Details
	5.2. Proof of Security
	5.3. Extension to Universal Arguments

	6. ECRHs: a Closer Look
	6.1. ECRHs
	6.2. PECRHs
	6.3. Weak PECRHs

	7. From SNARKs to PECRHs (and More)
	7.1. From SNARKs to PECRHs
	7.2. From Leakage-Resilient Primitives and SNARKs to Extractable Primitives

	8. Candidate ECRH and PECRH Constructions
	8.1. ECRHs from t-Knowledge of Exponent
	8.2. PECRHs from Knowledge of Knapsack
	8.2.1. Knowledge of Knapsack of Exponents
	8.2.2. Knowledge of Knapsack of Noisy Multiples
	8.2.3. Knowledge of Knapsack of Noisy Inner Products


	9. Zero-Knowledge SNARKs
	9.1. Zero-Knowledge SNARKs
	9.2. SNARK on top of NIZK
	9.3. NIZK on top of SNARK

	10. Applications of SNARKs and zkSNARKs
	10.1. Delegation of Computation
	10.1.1. Folklore Delegation from Succinct Arguments
	10.1.2. Our Instantiation

	10.2. Succinct Non-Interactive Secure Computation

	11. Extractable One-Way Functions and Their Applications
	11.1. Definitions of sEOWFs and scEOWFs
	11.2. A Special Three-Round ZKAOK Protocol
	11.3. A Three-Round Concurrent ZK Protocol
	11.4. Two-Message Selective-Opening-Attack Secure Commitments
	11.5. Candidate Constructions of sEOWF and scEOWF

	Acknowledgements
	References




