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Abstract. MISTY1 is a block cipher designed by Matsui in 1997. It was well eval-
uated and standardized by projects, such as CRYPTREC, ISO/IEC, and NESSIE. In
this paper, we propose a key recovery attack on the full MISTY, i.e., we show that
8-round MISTY 1 with 5 FL layers does not have 128-bit security. Many attacks against
MISTY1 have been proposed, but there is no attack against the full MISTY 1. There-
fore, our attack is the first cryptanalysis against the full MISTY 1. We construct a new
integral characteristic by using the propagation characteristic of the division property,
which was proposed in EUROCRYPT 2015. We first improve the division property by
optimizing the division property for a public S-box and then construct a 6-round inte-
gral characteristic on MISTY 1. Finally, we recover the secret key of the full MISTY 1
with 203-58 chosen plaintexts and 2121 ime complexity. Moreover, if we use 203.994
chosen plaintexts, the time complexity for our attack is reduced to 2108.3 Note that our
cryptanalysis is a theoretical attack. Therefore, the practical use of MISTY 1 will not be
affected by our attack.

Keywords. MISTY1, Integral attack, Division property.

1. Introduction

MISTY [18] is a block cipher designed by Matsui in 1997 and is based on the theory
of provable security [20,21] against the differential attack [4] and the linear attack [16].
MISTY has a recursive structure, and the component function has a unique structure, the
so-called MISTY structure[17]. There are two types of MISTY, MISTY 1 and MISTY?2.
MISTY1 adopts the Feistel structure whose F-function is designed by the recursive
MISTY structure. MISTY?2 does not adopt the Feistel structure and uses only the MISTY

* This paper is an extended version of [26], presented at CRYPTO 2015.
© International Association for Cryptologic Research 2016
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Table 1. Summary of single secret key attacks against MISTY 1.

Rounds #FL layers Attack algorithm Data Time Reference
5 0 Higher-order differential 11 x 27 cp 217 [25]

5 3 Integral 234 cp 248 [14]

5 4 Higher-order differential 222 cp 228 [11]

5 4 Impossible differential 238 cp 246.45 [9]

6 4 Higher-order differential 2537 cp 253.7 [28]

6 4 Impossible differential 251 cp 21234 [9]

7 0 Impossible differential 2502 xp 21141 [9]

7 4 Higher-order differential 2541 cp 21207 [28]

7 4 Higher-order differential 250.1 cp 21004 3]

7 5 Higher-order differential 2514 cp 2121 [3]

8 5 Integral by division property 263.58 cp 2121 This paper
8 5 Integral by division property 263.994 cp 21083 This paper

structure. Both ciphers achieve provable security against differential and linear attacks.
MISTY1 is designed for practical use, and MISTY? is designed for experimental use.

MISTY' is a 64-bit block cipher with 128-bit key, and it has a Feistel structure with
FL layers. MISTY1 is in the candidate recommended ciphers list of CRYPTREC[7],
and it is standardized by ISO/IEC 18033-3 [12]. Moreover, it is a NESSIE-recommended
cipher[19] and is described in RFC 2994 [22]. There are many existing attacks against
reduced MISTY 1, and we summarize these attacks in Table 1. A higher-order differential
attack is the most powerful attack against MISTY 1 [3]. However, there is no attack against
the full MISTY 1, i.e., 8-round MISTY 1 with 5 FL layers.

1.1. Integral Attack

The integral attack [14] was first proposed by Daemen et al. to evaluate the security of
SQUARE [8] and was then formalized by Knudsen and Wagner. There are two major
techniques to construct an integral characteristic: One uses the propagation character-
istic of integral properties [14] and the other estimates the algebraic degree [13,15]. We
often call the second technique a “higher-order differential attack.” A new technique
to construct integral characteristics was proposed in EUROCRYPT 2015 [27], and it
introduced a new property, the so-called division property, by generalizing the inte-
gral property [14]. It showed the propagation characteristic of the division property for
any function restricted by an algebraic degree. As a result, several improved results
were reported on the structural evaluation of the Feistel network and the Substitution-
Permutation network. Moreover, the division property was applied to the generalized
Feistel network [29].

1.2. Our Contribution

In [27], S-boxes are randomly chosen depending on round keys, but the algebraic degree
is restricted. However, many realistic block ciphers use more efficient structures, e.g.,
a public S-box and a key addition. In this paper, we show that the division property
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becomes more useful if an S-box is a public function. Then, we apply our technique
to the cryptanalysis of MISTY 1. We first evaluate the propagation characteristic of
the division property for public S-boxes 7 and S9 and show that S7 has a vulnerable
property. We next evaluate the propagation characteristic of the division property for
the FI function and then evaluate it for the F O function. Moreover, we evaluate the
propagation characteristic for the FL layer. Finally, we devise an algorithm to search
for integral characteristics on MISTY 1 by assembling these propagation characteristics.
As a result, we can construct a new 6-round integral characteristic, where the left 7-
bit value of the output is balanced. We recover the round key by using the partial-sum
technique[10]. As a result, the secret key of the full MISTY1 can be recovered with
26358 chosen plaintexts and 2'?! time complexity. Moreover, if we can use 263994
chosen plaintexts, the time complexity is reduced to 21983, Unfortunately, we have to
use almost all chosen plaintexts, and recovering the secret key by using fewer chosen
plaintexts is left as an open problem.

2. MISTY1

MISTY1 is a Feistel cipher whose F-function has the MISTY structure, and the recom-
mended parameter is 8 rounds with 5 FL layers. Figure 1 shows the structure of MISTY 1.
Let X ZL (resp. X ZR ) be the left half (resp. the right half) of an i-round input. Moreover,
XE[j1 (resp. XR[j1) denotes the jth bit of X% (resp. XX) from the left. MISTY1 is a
64-bit block cipher with 128-bit key, and it has a Feistel structure with FL layers, where
the F'O function is used in the F-function of the Feistel structure. The component func-
tion F O; is constructed by using the 3-round MISTY structure, where F'I; 1, F'1; 2, and
FI; 3 are used as the F-function of the MISTY structure, and the four 16-bit round keys
K O0;1,K O3, KO;3,and K O; 4 are used. Moreover, the function F'/; ; is constructed
by using the 3-round MISTY structure, where a 9-bit S-box S9 and a 7-bit S-box §7 are
used in the F-function, and a 16-bit round key K I; ; is used. Here, S and S7 are defined
in “Appendix 1.” The component function F L; uses two 16-bit round keys, K L; | and
K L; >, where N and U denote a bitwise AND and OR, respectively. These round keys

are calculated from the secret key (K1, K», ..., Kg) as follows.

Symbol KOiy] KO,',2 KO,'V3 KO,',4 Kl;y Klip Kl KL;; KL;i>

Key K; Kiva K7 Kiya K5 K[ K3 K% (odd i) K§+1+6(oddi)
T

K/L+2 (even i) K%+4 (even i)
2

Here, K; and K l’ are identified with K;_g and Kl.’_g, respectively, when i exceeds 8.
Moreover, K/ is defined as the output of FI; ; where the input is K; and the key is K 1.
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Fig. 1. Specification of MISTY 1.

3. Integral Characteristic by Division Property

3.1. Notations

We make the distinction between the addition over [} and the addition over Z, and
we use @ and + as the addition over [} and the addition over Z, respectively. For any
a € T, the ith element is expressed as a[i], and the Hamming weight w(a) is calculated
as w(a) = Z?:l ali]. Moreover, aliy, iz, ...,i;] denotes a j-bit substring of a as
aliy, iz, ..., i1 =ali1]llaliz]ll - - - lali;]. Let 1" € I, be a value whose all elements are
1. Moreover, let 0" € ]Fg be a value whose all elements are 0. For any set K, let | K| be the
number of elements. Moreover, let ¢ be an empty set. Forany a € (F' x[F3% x - - - x[F3™),
the vectorial Hamming weight is defined as W (a) = [w(a}), w(a2), ..., w(ay)] € Z™,
where a; denotes the ith element of a. Moreover, for any k € Z™ and k' € Z™", we
define k > k" if k; > k[ forall i (1 <i < m). Otherwise, k K.
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3.1.1. Boolean Function

A Boolean function is a function from I} to IF>. Let deg(f) be the algebraic degree of
a Boolean function f. Algebraic normal form (ANF) is often used as representation of
the Boolean function. Let f be any Boolean function from Iﬁ‘g to [F». Then, it can be
represented as

fo =Pal (Hx[i]“[”),
i=1

n
uelfy

where auf € Iy is a constant value depending on f and u. If deg(f) is at most d, all

a,{ satisfying d < w(u) are 0. An n-bit S-box can be regarded as the collection of n
Boolean functions. If the algebraic degrees of its n Boolean functions are at most d, we

say the algebraic degree of the S-box is at most d.

3.2. Integral Attack

An integral attack [14] is one of the most powerful cryptanalyses against block ciphers.
Attackers prepare N chosen plaintexts and get the corresponding ciphertexts. If the XOR
of all corresponding ciphertexts is O for all secret keys, we say that the block cipher has
an integral characteristic with N chosen plaintexts. In an integral attack, attackers first
create an integral characteristic against a reduced-round block cipher. Then, they guess
the round keys that are used in the last several rounds and calculate the XOR of the
ciphertexts of the reduced-round block cipher. Finally, they evaluate whether or not
the XOR is 0. If the XOR is not 0, they can discard the guessed round keys from the
candidates of the correct key.

3.3. Division Property

A division property, which was proposed in [27], is used to search for integral character-
istics. We first consider a set of plaintexts and evaluate the division property of the set.
Then, we propagate the division property and evaluate the division property of the set
of texts encrypted over one round. By repeating the propagation, we show the division
property of the set of texts encrypted over some rounds. Finally, we can easily determine
the existence of the integral characteristic from the propagated division property.

3.3.1. Bit Product Function

We first define two bit product functions m, and 7,, which are used to evaluate the
division property of a multiset.! Let 7, F3 — T, be a function for any u € 5. Let
x € I} be the input, and 7, (x) be the AND of x[i] satisfying u[i] = 1, i.e., it is defined
as

LA multiset allows multiple instances of the elements unlike a set.
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7, (x) i= Hx[i]“m.

i=1

Letm,: (F5' xF3? x---xF5") — [, be afunction forany u € (F5' xF3? x - - - x Fy").
Letx € (F5' x F}? x - -+ x F,") be the input, and 7, (x) be defined as

Ty (X) = Hnu,- (xi).

i=1

3.3.2. Definition of Division Property

The division property is given against a multiset, and it is calculated by using the bit
product function. Let X be an input multiset whose elements take a value of (F3' x
F3? x - -+ x F3™). In the division property, we first evaluate a value of @ x 74 (x) for
allu € (F3' x F3? x - -+ x F3"). Then, we divide the set of u into a subset whose sum
is 0 and a subset whose sum becomes unknown.? In [27], the focus was on using the
Hamming weight of u to divide the set.

Definition 1. (Division Property) Let X be a multiset whose elements take a value of
(Fy' x F3? x -« x F5™). Let K be a set whose elements take an m-dimensional vector
whose ith element takes a value between 0 and n;. When the multiset X has the division

N1,12, . i

property Dy , it fulfills the following conditions:

unknown if there exist k € K s.t. W(u) > k,
P rux) =

0 otherwise.
xeX

If there are k € K and k' € K satisfying k > k’, k can be removed from K because it is
redundant. Assume that the multiset X has the division property Dﬁg M2eenftm Tf there is
no unit vector e; in K, where e; is a vector whose jth element is 1 and the others are 0,
D, cx xj is 0. See [27] to better understand the concept in detail.

Example 1. Let X be a multiset whose elements take a value of Fg. As an example, we
prepare the input multiset X as

X :={0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, OxE}.

A following table calculates the summation of m, (x).

21f we know all accurate values in a multiset, we can divide the set of u into subsets whose evaluated
value is 0 or 1. However, in the application to cryptanalysis, we evaluate the multiset whose elements are
texts encrypted for several rounds. Such elements change depending on the subkeys and the constant bit of
plaintexts. Therefore, we consider subsets whose sum is O for all subkeys, and otherwise, we consider the sum
as unknown.



926 Y. Todo

0x0 0x3 0x3 0x3 0x5 0x6 0x8 0xB 0xD 0xXE D 7y (x)
0000 0011 0011 0011 0101 0110 1000 1011 1101 1110

u=0000 1 1 1 1 1 1 1 1 1 1 0
u=0001 O 1 1 1 1 0 0 1 1 0 0
u=0010 O 1 1 1 0 1 0 1 0 1 0
u=0011 0 1 1 1 0 0 0 1 0 0 0
u=0100 0 0 0 0 1 1 0 0 1 1 0
u=0101 0 0 0 0 1 0 0 0 1 0 0
u=0110 0 0 0 0 0 1 0 0 0 1 0
u=0111 0 0 0 0 0 0 0 0 0 0 0
u=1000 O 0 0 0 0 0 1 1 1 1 0
u=1001 0 0 0 0 0 0 0 1 1 0 0
u=1010 0 0 0 0 0 0 0 1 0 1 0
u=1011 0 0 0 0 0 0 0 1 0 0 1
u=1100 0 0 0 0 0 0 0 0 1 1 0
u=1101 0 0 0 0 0 0 0 0 1 0 1
u=1110 0 0 0 0 0 0 0 0 0 1 1
u=1111 0 0 0 0 0 0 0 0 0 0 0

For all u satisfying w(u) < 3, @XGX 7, (x) is 0. Therefore, the multiset has the
division property Dg.

Example 2. Let X be a multiset whose elements take a value of (IFg X IF%). Assume
. L. 8.8 . .
that the r.nultlset X has the division pr(.)perFy D{[I,S],[3,3],[4,5],[5,l],[6,0]}‘ In this case, if
[u1, uz] is chosen from the gray part in Fig.2, EB[xl,xQ]eX Tluy.uz] (X1, x2]) becomes
unknown. For example, when u# = [0x3F, 0xXFC] is used, we cannot determine
@[XI’XZ]EX Tox3F,0xrc] ([x1, x2]) because W (u) = [6, 6]. On the other hand, if (u1, 1)
is chosen from the white part in Fig. 2, @[Xl’xz]ex Tluy,up]([X1, X2]) s 0. Note that the
L. 8,8 . 8,8

division property D{[l15],[3’.3]’[5,1]1[6’0]} is the same as D{[l,5],[3,3],[4,5],[5,1],[6,0]} because
the unknown space 1s invariant.

w(uz)

w(u)

. - 3.8
Fig. 2. Division property D{[LS]’[3’3]’[5.1]’[6’0]}A
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A similar example is shown in [24] and may help to further understand the division
property.

3.3.3. Propagation Rules of Division Property

Some propagation rules for the division property are proven in [27]. We summarize them
as follows, and the proof is shown in “Appendix 2.”

Rule 1 (Substitution): Let F be a function that consists of m S-boxes, where the bit
length and the algebraic degree of the ith S-box is n; bits and d;, respectively. The
input and the output take a value of (F}' x F5? x --- x F3"), and X and Y denote
the input multiset and the output multiset, respectively. Assuming that the multiset

71,712,...,

X has the division property Dy "m the multiset Y has the division property
D]'Ig,’"z’”"”’", where K’ is calculated as follows: First, K’ is initialized to ¢. Then,

forall k € K,
wowol[[8] [k] [
dl 9 d2 90 dm 9

is calculated. Here, when the ith S-box is bijective and k; = n;, the ith element of
the propagated property becomes n; not [n;/d;].

Rule2 (Copy): Let F be a copy function, where the input x takes a value of I and
the output is calculated as [y1, y2] = [x, x]. Let X and Y be the input multiset
and the output multiset, respectively. Assuming that the multiset X has the division
property D}, the multiset Y has the division property D?K/" , where K/ is calculated
as follows: First, K’ is initialized to ¢. Then, foralli (0 <i < k),

K =K Uk —1i,i],

is calculated.

Rule 3 (Compression by XOR): Let F be a function compressed by an XOR, where the
input [x1, x2] takes a value of (I} x [}) and the output is calculated as y = x1 @ x».
Let X and Y be the input multiset and the output multiset, respectively. Assuming
that the multiset X has the division property Dﬁg", the division property of the
multiset Y is Dy, as

K'= min (ki + k).
[k1,k2]eK

Here, if the minimum value of k’ is larger than n, the propagation characteristic of
the division property is aborted. Namely, a value of @,cym,(y) is 0 for all v € 5.
Rule 4 (Split): Let F be a split function, where the input x takes a value of I} and the
output is calculated as yi||y> = x, where [y1, y»] takes a value of (F5' x F;~"").
Let X and Y be the input multiset and the output multiset, respectively. Assuming
that the multiset X has the division property D}, the multiset Y has the division

property D" ™", where K’ is calculated as follows: First, K’ is initialized to ¢.
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Then, foralli (0 <i <k),
K =K UI[k—1i,i],

is calculated. Here, (k — i) is less than or equal to n1, and i is less than or equal to
n—ni.

Rule 5 (Concatenation): Let F be a concatenation function, where the input [x1, x3]
takes a value of (F5' x F5?) and the output is calculated as y = xi||x2. Let X and
Y be the input multiset and the output multiset, respectively. Assuming that the
multiset X has the division property Dﬁg "2 the division property of the multiset Y

is D} 2 s

K'= min {k; + ko).
[k1,k2]eK

4. Division Property for Public Function

In an assumption of [27], attackers do not know the specification of an S-box and only
know the algebraic degree of the S-box. However, many specific block ciphers usually
use a public S-box and an addition of secret subkeys, where an XOR is typically used
for the addition. In this paper, we show that the propagation characteristic of the division
property can be improved if an S-box is a public function. The difference between [27]
and this paper is shown in Fig. 3.

We consider the propagation characteristic of the division property for the function
shown in the right figure in Fig. 3. The key XORing is first applied, but it does not affect
the division property because it is a linear function. Therefore, when we evaluate the
propagation characteristic of the division property, we can remove the key XORing.
Next, a public S-box is applied, and we can determine the ANF of the S-box. Assuming
that an S-box is a function from »n bits to m bits, the ANF is represented as

1] = fitx[1], x[2], ..., x[nD),
y[2] = fo(x[1], x[2], ..., x[n]),

ylm] = fu(x[1], x[2], ..., x[n]),

]f k
|

Fig. 3. Difference between [27] and this paper. The left figure is an assumption used in [27]. The right one is
a new assumption used in this paper.
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where x[i] (1 <i <n)isaninput, y[j] (1 < j < m)isanoutput,and f; (1 < j < m)is
a Boolean function. The division property evaluates the input multiset and the output one
by using the bit product function 7, and we then divide the set of u into a subset whose
evaluated value is 0 and a subset whose evaluated value becomes unknown. Namely, we
evaluate the equation

Fu(x(11, %21, ..., x[n]) = [ | £ie[1, x(21, .. x[n])y )

i=1

and divide the set of u. In[27], a fundamental property of the product of some functions
isused, i.e., the algebraic degree of F), is at most w(u) x d if the algebraic degree of func-
tions f; is at most d. However, since we now know the ANF of functions f1, f2, ..., fu,
we can calculate the accurate algebraic degree of F, for all u € 5. In this case, if the
algebraic degree of F, is less than w(u) x d for all u for which w(u) is constant, we can
improve the propagation characteristic.

4.1. Application to MISTY S-boxes
4.1.1. Evaluation of S7

The S7 of MISTY is a 7-bit S-box with degree 3. We show the ANF of 7 in “Appendix
1.” We evaluate the property of (, o S7) to get the propagation characteristic of the
division property. The algebraic degree of (7, o §7) increases in accordance with the
Hamming weight of v, and it is summarized as follows.

w(v) 0 1 2 3 4 5 6 7
Degree 0 3 5 5 6 6 6 7

One can easily choose amodified S-box S’ with algebraic degree 3, such that the algebraic
degree of (1, o §)) is at least 6 with w(v) > 2. However, for the $7, the increment of
the algebraic degree is bounded by 5 when w(v) = 2 or w(v) = 3 holds.? Then,
D, cxx(wy 0 §7)(x) is 0 for w(v) < 3if X has Dg. It means that the necessary condition
that @x ex (y 0 §7)(x) becomes unknown is w(v) > 4 and DZ is propagated from Dg.
Thus, the propagation characteristic is represented as the following.

D] for input set X D} D] D] D] D] D] D] D]
D] for output set Y D} D] D] D] D) D) D] D7

Note that all propagations except for 'Dg — DZ are calculated by following Rule 1. If
the modified S-box is applied, the division property DZ is propagated from the division

3This observation was also provided by Theorem 3.1 in [5].
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property Dg because of Rule 1. Therefore, the deterioration of the division property for
the §7 is smaller than expected for a randomly chosen 7-bit S-box with algebraic degree
3.

4.1.2. Evaluation of So

The So of MISTY is a 9-bit S-box with degree 2. We show the ANF of Sg in “Appendix
1.” We evaluate the property of (;r, o S9) to get the propagation characteristic of the
division property. The algebraic degree of (;r, o Sy) increases in accordance with the
Hamming weight of v, and it is summarized as follows.

w(v) 0 1 2 3 4 5 6 7 8 9
Degree 0 2 4 6 8 8 8 8 8 9

Thus, the propagation characteristic is represented as

9 ; 9 9 9 9 9 9 9 9 9 9
Dy, for input set X Dy Di D5 D3 Dy Dg Dg Dy Dg D,

D] foroutputsetY D} D} D] Dy Dy D] Dy D D D]

Unlike the propagation characteristic of the division property for S7, the one for Sy is
essentially optimal among 9-bit S-boxes with algebraic degree 2.

5. New Integral Characteristic

This section shows how to create integral characteristics for MISTY1 by using the
propagation characteristic of the division property. We first evaluate the propagation
characteristic for the component functions of MISTY 1, i.e., the FI function, the F O
function, and the FL layer. Finally, by assembling these characteristics, we devise an
algorithm to search for integral characteristics on MISTY 1.

5.1. Division Property for F1 Function

We evaluate the propagation characteristic of the division property for the F/ function
by using those for MISTY S-boxes shown in Sect.4.1. Since there are a zero-extended
XOR and a truncated XOR in the FI function, we use a new representation, in which
the internal state is expressed as two 7-bit values and one 2-bit value. Figure4 shows
the structure of the F'/ function with our representation, where we remove the XOR of
subkeys because it does not affect the division property.

Let X; be the input multiset of the FI function. We define every multiset
X5, X3, ..., Xy in Fig.4. Here, elements of the multiset X, X5, X4, and X take
a value of (IFZ X IF% X IB‘;). Elements of the multiset X,, X3, Xg, and Xg take a value of
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Fig. 4. Structure of F [ function.

(]Fg X ]FZ). Elements of the multiset X4, X7, and X;¢ take a value of (IE‘% X ]FZ X ]FZ).
Since elements of X; and X take a value of (IF% X IF% X IF%), the propagation for the F' 1

function is calculated on D]%’”. Here, the propagation is calculated with the following
steps.

From X to X;: A 9-bit value is created by concatenating the first 7-bit value with
the second 2-bit value. The propagation characteristic can be evaluated by using
Rule 5.

From X, to X3: The 9-bit S-box Sy is applied to the first 9-bit value. The propagation
characteristic can be evaluated by using the table shown in Sect.4.1.

From X3 to X4: The 9-bit output value is split into a 2-bit value and a 7-bit value. The
propagation characteristic can be evaluated by using Rule4.

From X4 to X5: The second 7-bit value is XORed with the last 7-bit value, and then, the
order is rotated. The propagation characteristic can be evaluated by using Rule2
and Rule 3.

From X5 to Xg: The 7-bit S-box §7 is applied to the first 7-bit value. The propagation
characteristic can be evaluated by using the table shown in Sect.4.1.

From X¢ to X7: The first 7-bit value is XORed with the last 7-bit value, and then, the
order is rotated. The propagation characteristic can be evaluated by using Rule2
and Rule 3.

From X7 to Xg: A 9-bit value is created by concatenating the first 2-bit value with
the second 7-bit value. The propagation characteristic can be evaluated by using
Rule5.

From Xg to X11: The propagation characteristic is the same as that from X, to Xs.

As an example, we show the propagation characteristic when X has the division property
D{7[’i 27 61} in “Appendix 3.” Algorithm 1 creates the propagation characteristic table for
the F I function. It calls SizeReduce(K), where redundant vectors are eliminated, i.e.,
it eliminates k| € K if there exists ky € K satisfying k| > k. Algorithm 1 only creates
the propagation characteristic table for which the input property is represented by Dzl’jj.
If any input multiset is evaluated, we need to know the propagation characteristic from
DI%’” with |K| > 2. However, we do not evaluate such propagation in advance because
it can be easily evaluated by the table for which the input property is reg)resented b

DZI}%J‘ For example, we consider the propagation characteristic from D{7k ,]} to Dgg, .

We first get K and K from the propagation characteristic tables for Dzl’jj and D{7]‘€,2}’7,
respectively. Then, K is calculated as K = K; U K.
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Algorithm 1 Propagation for F'I function

procedure FIEval(ky, ko, k3)

1:

2 K <« s9Eval(k) > X1 — X5
3: K « s7Eval(K) > X5 — X7
4: K’ < s9Eval(K') > X7 — X1
5 return K"

6: end procedure

1: procedure S9Eval(K) 21: procedure S7Eval(K)

2 K e¢ 2 K ¢

3 for all k € K do 23: for all k € K do

4: [£, c,r] < [ky, ko, k3] 24 [£,c,r] < [k, ko, k3]

5: k<=tl+c 25: k<t

6: if k¥ < 9 then 26: if kK = 6 then

7 k < [k/2] 27: k<=4

8: end if 28: else if k < 6 then

9: for ¢/ <= 0 to min(2, k) do 29: k < [k/3]

10: for x < 0tor do 30: end if

11: U <r—x 31: for x < 0tor do

12: rek—c +x 32: U <=c

13: if / < 7 then 33: d<=r—x

14: K <K U, d,r 34: r'<=k+x

15: end if 35: if r’ < 7 then

16: end for 36: K <K U, r

17: end for 37: end if

18: end for 38: end for

19:  return SizeReduce(K’) 39:  end for

20: end procedure 40:  return SizeReduce(K')

41: end procedure

We show all propagation characteristic tables in “Appendix 6.” Here, the propagation
table from k to K is generated, and the number of entries of this table is 8 - 3 - 8 =
192. Moreover, we experimentally evaluated the propagation characteristic for the F'[
function. In our experimental search, for any D{7[’,€21 ”7,{2’ K]y We created 100 random input
multisets and then evaluated the propagation characteristic. As a result, we confirmed
that the experimental propagation characteristics are the same as the theoretical ones
shown in “Appendix 6.”

5.2. Division Property for F O Function

We next evaluate the propagation characteristic of the division property for the F O
function by using the propagation characteristic table of the FI function. Here, we
remove the XOR of subkeys because it does not affect the division property. The input
and output of the FO function take the value of (F; x F3 x F] x F} x F3 x F}).

Therefore, the propagation for the F O function is calculated on Dgg,z,7,7,2,7.
Similar to the one created for the FI function, we create the propagation charac-
teristic table for the F O function (see Algorithm2). We create only a table for which

the input property is represented by Dzk?’ 727 and the output property is represented
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Algorithm 2 Propagation for F' O function

1: procedure FOEval(ky, kp, k3, ka, k5, k¢)
2 K <= FORound(k)

3 K’ < FORound(K)

4: K" < FORound(K)

5 return K”

6: end procedure

1: procedure FORound(K)

2: K «o¢

3 for all k € K do

4 Y < FIEval(ky, ko, k3)

5: forall y € Y do

6: for all x s.t. (x| <kq) A (x2 <ks) A (x3 < kg) do

7 k' < [ky — x1, ks — x2, k6 — x3, y1 + X1, y2 + X2, ¥3 + x3]
8 if (k) <T)A K <2) A (ké <7) then

9: K <K Uk
10: end if

11: end for

12: end for

13: end for

14:  return SizeReduce(K’)
15: end procedure

by D]’{g’z’7’7’2’7. Here, the propagation table from k to K is generated, and the number
of entries of this table is 8 - 3-8 - 8§ - 3 - 8§ = 36864. As an example, the propagation

characteristic table from DZ[’E’Z 27 3217 s)) is shown in Table 2.

5.3. Division Property for FL Layer

MISTY1 has the FL layer, which consists of two F L functions and is applied once
every two rounds. In the F'L function, the right half of the input is XORed with the
AND between the left half and a subkey K L; . Then, the left half of the input is XORed
with the OR between the right half and a subkey K L; ».

Since the input and the output of the F L function take the value of (F} x F3 x F} x
IF; X IF% X IF;), the propagation for the F'L function is calculated on DE{Z’7’7’2’7. FLEval
in Algorithm 3 calculates the propagation characteristic table for the F'L function. Here,
the propagation table from k to K is generated, and the number of entries of this table
is8-3-8-8-3-8 = 36864. Moreover, the FL layer consists of two F L functions.
Therefore, we have to consider the propagation characteristic of the division property
DZI’{?7’7’2’7’7’2’7’7’2’7, where each F L function is applied to the left half and the right one.
FLLayerEval in Algorithm 3 calculates the propagation characteristic of the division
property for the FL layer.

5.4. New Path Search for Integral Characteristics on MISTY 1

We created the propagation characteristic table for the I and F O functions in Sects. 5.1
and 5.2, respectively. Moreover, we showed the propagation characteristic for the FL
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Table 2. Division property of input is D{7[12 1727 32 17 s
k OfD{7”§'7’7’2’7 Kof,D7,2,7,7,2,7
[112315] [000004][000013][000022][000103][000112][000121]

[000202][000211][000220]1[000301][000310][000500]
[001003][001012][001021][001102][001111][001120]
[001201][001210][001300][002002][002011]J[002020]
[002101][002110][002200][003001][003010][003100]
[005000][010003][010012][010021][010102][010111]
[010120][010201][010210][010300][011002]J[011011]
[011020][011101][011110][011200][012001]J[012010]
[012100][014000][020002][020011][020020][020101]
[020110][020200][021001][021010][021100][023000]
[100003][100012][100021][100102][100111][100120]
[100201][100210][100400][101002][101011][101020]
[101101](101110][(101200][102001][102010][102100]
[104000][110002][110011][110020][110101]J[110110]
[110200][111001][111010][111100][113000][120001]
[120010][120100][122000][200002][200011][200020]
[200101][200110][200300][201001][201010]1[201100]
[203000][210001][210010][210100][212000][221000]
[300001][300010][300200][302000][311000][320000]
[400100][401000][410000][600000]

layer in Sect.5.3. By assembling these propagation characteristics, we devise an algo-
rithm to search for integral characteristics on MISTY 1. Since the input and the output
are represented as eight 7-bit values and four 2-bit values, the propagation is calculated

DK27727727727

The FL layer is first applied to plaintexts, and it deteriorates the propagation of the
division property. Therefore, we first remove only the first FL layer and search for integral
characteristics on MISTY1 without the first FL layer. The method for passing through
the first FL layer is shown in the next section. Algorithm4 shows the search algorithm
for integral characteristics on MISTY | without the first FL layer.

As a result, we find 6-round integral characteristics without the first and the last
F L layers by using Algorithm4. Each characteristic uses 2% chosen plaintexts, where
any one bit of the first seven bits is constant and the others take all values. Then,
such input has the division property D7[627777227777227 7772277] Therefore, we use k =
[6,2,7,7,2,7,7,2,7,7,2,7] as the input of Algorithm4.

We perfectly execute SizeReduce every round, and Table 3 shows the propagation
of K, where min,, (K) and max,,(K) are calculated as

12

min,, (K) = mln [Zk ] , maxy, (K) = max [Zk ]

i=1

After the 6th round function, we have 131 vectors, which are shown in “Appendix 5.”
Since these vectors do not contain (1, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0), it means that the first
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Algorithm 3 Propagation for FL layer

1: procedure FLLayerEval(K)
2: K «o¢

3: for all k € K do

4. L < FlEval(ky,kp, ..., ke)

5: R < FlEval(ky, kg, ..., k12)

6: for all £ € L do

7 for all r € Rdo

8: K <K Uy, ¥, 03,4, l5,86,11,72,13,74,715,76]
9: end for

10: end for

11: end for

12:  return K/
13: end procedure

1: procedure FLEval(ky, kp, ..., ke)

2: K «o¢

3 [€,c,r] <= [ky + kg, ko + ks, k3 + k¢l

4 for k| < 0 to min(7, £) do

5: for k), < 0 to min(2, ¢) do

6: for kj < 0 tomin(7,r) do

7 (ky, k5, kg) <= (€ =k, ¢ —ky, r —Kk5)
8 if (K, <) A (KL <2)A Gkl <7) then

9: K <K' U[K], Ky, k5, kj, kG, k]
10: end if

11: end for

12: end for

13: end for

14:  return SizeReduce(K’)
15: end procedure

7 bits are balanced. Our algorithm is written by C++, and the execution time is about 1
day with Core 17-4770 Processor (4 cores) in 16 GB RAM. Figure 5 shows the 6-round
integral characteristic, where the bit strings labeled B, i.e., the first 7 bits and last 32
bits, are balanced. Note that the 6-round characteristic becomes a 7-round characteristic
if the FL layer after the 6th round function is removed. Compared with the previous
4-round characteristic [11,28], our characteristic is improved by two rounds.

As shown in Sect. 4, the S7 of MISTY 1 has the vulnerable property that DZ is provided
from Dg. Interestingly, assuming that S7 does not have this property (changing lines 26—
30 in S7Eval), our algorithm cannot construct the 6-round characteristic.

It was already shown in [25] that reduced MISTY 1 has a 14th order differential char-
acteristic, and the principle was also discussed in [1,6]. We also revisit the known
characteristic for MISTY1 in “Appendix 4.”

5.4.1. Optimized Algorithm

If we execute SizeReduce perfectly, it requires O(|K|?) time complexity, and the
execution time of Algorithm4 is increased. Therefore, we use a more reasonable method.

Let Dk be any division property, where K contains redundant vectors. Moreover, by
executing SizeReduce, we get K’ from K. Then, as shown in Sect. 3.3, the unknown
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Algorithm 4 Path search for r-round characteristics without first FL layer

1: procedure MistylEval(ky,ka, ..., k12,7)

2 K < RoundFuncEval(k) > 1st round
3 fori = 1tordo

4 if 7 is even then

5: K < FlLayerEval(K) > FL Layer
6 end if

7 K < RoundFuncEval(K) > (i+1)th round
8 end for

9 return K

10: end procedure

1: procedure RoundFuncEval(K)

2: K «o¢

3 for all k € K do

4 forallxs.t.xj§kjf0ra11j:1,2,...,6do
5: [r1,r2, r3] <= [ky — x1, ko — x2, k3 — x3]

6 [r4.rs5,16] <= [ka — x4, k5 — x5, ke — x6]

7 Y < FOEval(xy, X3, X3, X4, X5, Xg)

8: forall y € Y do

9: (€1, €2, €3] <= [k7 + y1, kg + y2, ko + y3]

10: [€4, €5, Lo] < [k10 + ya, k11 + y5. k12 + vl

11: iflj/ < 7f0rj/ e {l,3,4,6} andéj/ < 2for j' € {2, 5} then
12: K <K U [€1,€2,€3,84,85,L6,71,72,13,74,T5,16]

13: end if

14: end for

15: end for

16: end for

17:  return SizeReduce(K')
18: end procedure

Table 3. Propagation from D{7[6_2 772772777271

#rounds 0 (plaintexts) 1 2 FL 3 4 FL 5 6

K] 1 1 9 16 2596 2617429 12268480 58962 131
max,, (K) 63 63 63 63 62 55 47 27 8
miny, (K) 63 63 61 61 43 19 19 4 1

set indicated by Dk is the same as that by Dk. Namely, the result of Algorithm4 does
not change even if we do not perform SizeReduce perfectly. Therefore, we execute a
partial SizeReduce which performs faster. The rough SizeReduce first sorts every
vector in K by using lexicographic order and obtains the following |K| vectors,

KD k@ UKD,

Then, there is no (K, k) satisfying k) = k) such that i < j. We initialize two
indices, i = 1 and j = 2, and evaluate whether or not kD > kD1t kW) > k(i),
we remove k¢ ), and increment j. If k) i k(i), increment j. Moreover, if we cannot
remove k) “th” times consecutively, increment i and set j = i + 1. We can choose
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Di6,2,7,7,2,7,7,2,7,7,2,7]

(B—— ———) (BBB BBB)

Fig. 5. New 6-round integral characteristic.

th freely. If th = |K], the above algorithm executes SizeReduce perfectly. From our
experiments, th = 10 or th = 100 are reasonable parameters. We also implemented
this efficient algorithm by C++, and the execution time is 12.8 min with Core 17-4770
Processor (4 cores) in 16 GB RAM.

6. Key Recovery Using New Integral Characteristic

This section shows the key recovery step of our cryptanalysis, which uses the 6-round
integral characteristic shown in Sect. 5. In the characteristic, the left 7-bit value of X7L
is balanced. Since the integral characteristic does not cover the first FL layer, we first
show how to pass through the first FL layer. Then, we calculate two FL layers and one
F O function by guessing round keys from ciphertexts, and we evaluate the balanced
seven bits.
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6.1. Passage of First FL Layer

Our new characteristic removes the first FL layer. Therefore, we have to create a set
of chosen plaintexts to construct integral characteristics by using guessed round keys
KLy and KL 2. Here, we have to carefully choose the set of chosen plaintexts to
avoid the use of the full code book (see Figs. 6, 7, 8). In every figure, A; denotes for
which we prepare an input set that i bits are active. As an example, we consider an
integral characteristic for which the first one bit is constant and the remaining 63 bits
are active. Since all bits of the right half are active, we focus only on the left half. We
first guess that KL 2[1] = 1, and we then prepare the set of plaintexts as in Fig.6.
We next guess that (K Ly 1[1], KLi2[1]) = (0,0), and we then prepare the set of
plaintexts as in Fig. 7. Moreover, we guess that (KL 1[1], KL 2[1]) = (1, 0), and we
then prepare the set of plaintexts as in Fig. 8. These chosen plaintexts construct 6-round
integral characteristics if the guessed key bits are correct. Note that we do not use 262
chosen plaintexts of the form (1A15 1A1s A1 Ais), i.e., we do not use chosen plaintexts
satisfying PL[1] = PL[16] = 1. Thus, our integral characteristics use 204 _962 », 963.58
chosen plaintexts.

KL]J KLLl[l]:*
AL KL o[1]=1
—A (0415 0As5)
KLLQ (0A15 1A15)

L
(1A15 Au)

KLy, KL 1[1]=0
AL KL 5[1]=0
— (01415 11415)
KLLZ (1‘415 OAU))
L
(1A15 Am)

Fig.7. KL11=0,KL1, =0.

KLy, KL;1[1]=1
AL KL1,[1]=0
— (OALG 0A15)
KLLQ (1A15 OA‘5)
z
> (0A15 Aug)

Fig.8. KL11=1,KL; 5 =0.
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Fig. 9. Key recovery step.

6.2. Subkey Recovery Using Partial-Sum Technique

Figure 9 shows the structure of our key recovery step. We guess K L1 1[i] (= K1[i]) and
K L1 >[i] (= K;[i]) and then prepare a set of chosen plaintexts to construct an integral
characteristic. In the characteristic, seven bits X 7L [1,...,7] are balanced. Therefore, we
evaluate whether or not X 7L [j]is balanced for j € {1, 2, ..., 7} by using the partial-sum
technique [10].

In the first step, we store the frequency of 34 bits (CL, CR[j, 16 + j]) into a voting
table for j € {1, 2, ..., 7}. Then, we partially guess round keys, reduce the size of the
voting table, and calculate the XOR of X7L [j]. Table4 summarizes the procedure of the
key recovery step, where every value is defined in Fig.9.

Step I: Prepare the memory that stores how many times each 34-bit value (CL, CR[j, 16+
j1) appears, and pick the values that appear an odd number of times.

Step 2: Guess 32-bit (K1, Ké), and calculate X§ from CE. Delete the parity of the
number of occurrences of CL from the memory, and store that of X;? into the
memory. Namely, the memory contains a 23*-bit array that stores the parity of
the number of occurrences of the 34-bit string (X R CR[ J» 16 + j]). The time
complexity of Step2 is 234 x 232 = 266,

Step 3: Additionally guess 32-bit (Kg, K;), and calculate D; from Xg. Delete the
parity of the number of occurrences of Xg [1,...,16] from the memory, and
store that of D; into the memory. Namely, the memory contains a 234-bit
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array that stores the parity of the number of occurrences of the 34-bit string
(D1, X&[17,...,32], CR[}, 16+ j1). The time complexity of Step 3 is 23* x 264 =
298

Step 4: Additionally guess 1-bit Kj3[j], get K7 from (K, K3g), which is already
guessed in Step2 and Step3, and calculate D;[j] from D;. Delete the par-
ity of the number of occurrences of D; without Di[j] from the memory, and
store that of D;[j] into the memory. Namely, the memory contains a 220 pjt
array that stores the parity of the number of occurrences of the 20-bit string
(D11j1, Dalj], X§[17, ...,32], CR[j, 16 + j]). The time complexity of Step4
is 234 x 265 = 2%,

Step 5: Additionally guess 32-bit K», get K{[j]from (K, K2), whichis already guessed
in Step 2 and Step 5, and calculate D3[j] from (X§[I7, ..., 32], D1[j]. Delete the
parity of the number of occurrences of (X, 5 [17,...,32], D1[j]) from the memory,
and store that of D3[j] into the memory. Namely, the memory contains a 24.
bit array that stores the parity of the number of occurrences of the 4-bit string
(D1[j1, D3[j1, CR[j, 16+ j1). The time complexity of Step 5 is 220 x 281 = 2101,

Step 6: Additionally guess 2-bit (K5[j], Ké[j]), get Ké[j], which is already guessed in
Step4, and calculate X%[j] from (D[], D3[j1, CR[j, 16 + j1). The time com-
plexity of Step 6 is 2% x 283 = 287,

The total time complexity is
206 4 298 | 999 | 5101 | 587 1 51015

We repeat the above six steps for j € {1, 2,...,7}. Therefore, the time complexity of
the key recovery step is 7 x 21015 = 21043,
The key recovery step has to guess the 124-bit key

K, K>, Ks5[1,...,7], K7, Kg,
Ki[l,...,7], Ké[l,...,7], Ké[l,...,7], Ké, Ké.

Here, K§ and Ki[l, ..., 7] are uniquely determined by guessing K7, Kg and K, K>,
respectively. Thus, the guessed key material is reduced to

Ky, K>, Ks[1,...,7], K7, Kg,
K1, 7)., K400, ... 7). KL,

and its size becomes 101 bits. Moreover, since we already guessed 2 bits, i.e., K[i]
and K7[i], to construct integral characteristics, the guessed key bit size is reduced to 99
bits. For wrong keys, the probability that X%[l, ..., 7] is balanced is 277, Therefore,
the number of the candidates of round keys is reduced to 2°2. Finally, we guess the 27
bits:

Ks[8, ..., 16], K5[8, ..., 16], K;3[8, ..., 16].
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Note that K3, K4, and K¢ are uniquely determined from (K, K3), (K3, K3), and
(Ks, K%), respectively. Therefore, the total time complexity is 292427 = 2119 ‘We guess
the correct key from 2''® candidates by using two plaintext—ciphertext pairs, and the
time complexity is 2'19 4 2119764 ~ 2119 We have to execute the above procedure
against (K1[i], Ké[i]) = (0,0), (0, 1), (1,0), (1, 1), and the time complexity becomes
4 x 2119 — 2121'

6.3. Trade-off Between Time and Data Complexity

In Sect. 6.2, we use only one set of chosen plaintexts, where (264 —262) chosen plaintexts
are required. Since the probability that wrong keys are not discarded is 277, a brute-
force search is required with a time complexity of 2!28=7 = 2121 "and it is larger than
the time complexity of the partial-sum technique. Therefore, if we have a higher number
of characteristics, the total time complexity can be reduced.

To exploit several characteristics, we choose some constant bits from seven bits (i €
{1,2,...,7}). If we use a characteristic with i = 1, we use chosen plaintexts for which
plaintext P’ takes the following values

(00A14 00A14), (00A14 O1A4), (01A14 00A14), (01A14 O1A ),
(00A14 10A14), (00A14 11A14), (01A14 10A14), (01A14 11A14),
(10A14 00A14), (10A14 01Ay4), (11A14 00A14), (11A14 01A14),

where A4 denotes that all values appear the same number independently of other bits,
e.g., (00A14 00A14) uses 290 chosen plaintexts because PR also takes all values. More-
over, if we use a characteristic with i = 2, we use chosen plaintexts for which PL takes
the following values

(00A14 00A14), (00A14 10A14), (10A14 00A14), (10A14 10A14),
(00A14 01A14), (00A14 11A14), (10A14 01A14), (10A14 11A14),
(01A14 00A14), (01A14 10A14), (11A14 00A14), (11A14 10A14).

When both characteristics are used, they do not require choosing plaintexts for which
PL takes (11414 11A14). Therefore, (294 — 20) chosen plaintexts are required, and
the probability that wrong keys are not discarded becomes 2~ !4, Similarly, when three
characteristics, which require (24 — 2°%) chosen plaintexts, are used, the probability
that wrong keys are not discarded becomes 272!

Table 5 summarizes the trade-off between time and data complexity. For the use of each
characteristic, we have to execute four key recoveries with the partial-sum technique,
ie., for (KL 1[1], KL12[1]) € {(0, 1), (1, 1), (0,0), (1, 0)}. It shows that the use of
four characteristics is optimized from the perspective of time complexity. Namely, when
(264 — 296) & 263-994 chosen plaintexts are required, the time complexity to recover the
secret key is 21083
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Table 5. Trade-off between time and data complexity.

#characteristics Complexity for partial-sum Complexity for brute-force Total
1 1x4x 2104.3 2121 212]
2 2 x4 x 2104.3 21 14 2114
3 3 x4 x 21043 2107 108.5
4 4 x4 x 2104.3 2100 2108.3
5 5 x4 x 2104.3 293 2108.6

6.4. Follow-Up Results and Open Problem

After a preliminary version [26] was published, Achiya Bar-On improved the key recov-
ery step [2] by using the same integral characteristic shown in this paper. The improved
key recovery technique uses the meet-in-the-middle technique [23] under the chosen
ciphertext setting. It dramatically reduces the time complexity where the secret key is
recovered, and the time complexity is 2%, On the other hand, it requires the full code
book. When we consider the data complexity optimization, our attack, which requires
2121 time complexity and 2938 chosen plaintexts, is still the best attack. We need to con-
struct a more efficient integral characteristic if we want to improve the data complexity,
and it is left as an open problem.

7. Conclusions

In this paper, we showed a cryptanalysis of the full MISTY 1. MISTY1 was well evalu-
ated and standardized by several projects, such as CRYPTREC, ISO/IEC, and NESSIE.
We constructed a new integral characteristic by using the propagation characteristic of
the division property. Here, we improved the division property by optimizing the divi-
sion property for a public S-box. As a result, a new 6-round integral characteristic is
constructed, and we can recover the secret key of the full MISTY 1 with 20338 chosen
plaintexts and 2'2! time complexity. If we can use 2039°% chosen plaintexts, our attack
can recover the secret key with a time complexity of 21983,

Appendix 1: MISTY S-boxes

The ANF of §7 is represented as

y[0] = x[0] @ x[1]x[3] & x[0]x[3]x[4] & x[1]x[5] & x[0]x[2]x[5] & x[4]x[5]
@ x[0]x[1]x[6] ® x[2]x[6] ® x[0]x[5]x[6] & x[3]x[S]x[6] & 1,

y[1] = x[0]x[2] @ x[0]x[4] @ x[3]x[4] ® x[1]x[5] ® x[2]x[4]x[5] ® x[6] & x[0]x[6]
@ x[3]x[6] ® x[2]x[3]x[6] & x[1]x[4]x[6] & x[0]x[5]x[6] D 1,

y[2] = x[1]x[2] ® x[0]x[2]x[3] & x[4] & x[1]x[4] & x[0]x[1]x[4] & x[0]x[5] & x[0]x[4]x[5]
® x[3]x[4]x[5] ® x[1]x[6] ® x[3]x[6] & x[0]x[3]x[6] D x[4]x[6] & x[2]x[4]x[6],

y[3] = x[0] ® x[1] & x[0]x[1]x[2] & x[0]x[3] & x[2]x[4] & x[1]x[4]x[5] & x[2]x[6]
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@ x[1]x[3]x[6] & x[0]x[4]x[6] ® x[5]x[6] B 1,
y[4] = x[2]x[3] © x[0]x[4] & x[1]x[3]x[4] ® x[5] ® x[2]x[5] @ x[1]x[2]x[5] & x[0]x[3]x[5]
@D x[1]x[6] @& x[1]x[5]x[6] & x[4]x[5]x[6] & 1,
y[5] = x[0] ® x[1] & x[2] ® x[0]x[1]x[2] & x[0]x[3] & x[1]x[2]x[3] D x[1]x[4]
@ x[0]x[2]x[4] & x[0]x[5] @ x[0]x[1]x[5] @ x[3]x[5] ® x[0]x[6] @ x[2]x[5]x[6],
y[6] = x[0lx[1] & x[3] & x[0]x[3] & x[2]x[3]x[4] & x[0]x[5] & x[2]x[5] & x[3]x[5]
@ x[1]x[3]x[5] ® x[1]x[6] & x[1]x[2]x[6] ® x[0]x[3]x[6] ® x[4]x[6] ® x[2]x[5]x[6].

Moreover, the ANF of Sy is represented as

y[0] = x[0]x[4] & x[0]x[5] @ x[1]x[5] b x[1]x[6] & x[2]x[6] & x[2]x[7] & x[3]x[7] & x[3]x[8]
@ x[4Ix[8] & 1,

y[11 = x[01x[2] ® x[3] @ x[11x[3] ® x[2]x[3] ® x[3]x[4] ® x[4]x[5] ® x[0]x[6] & x[2]x[6]
@ x[7] @ x[0]x[8] ® x[3]x[8] ® x[5]x[8] B 1,

y[2] = x[0]x[1] & x[1]x[3] & x[4] & x[0]x[4] @ x[2]x[4] @ x[3]x[4] ® x[4]x[5] & x[0]x[6]
& x[5]x[6] & x[1]x[7] @ x[3]x[7] @ x[8],

y[3] = x[0] © x[1]x[2] @ x[2]x[4] @® x[5] ® x[1]1x[5] & x[3]x[5] & x[4]x[5] @ x[5]x[6]
@ x[1]x[7] @ x[6]x[7] & x[2]x[8] ® x[4]x[8],

y[4] = x[1] & x[0]x[3] @ x[2]x[3] @ x[0]x[5] @ x[3]x[5] ® x[6] & x[2]x[6] ® x[4]x[6]
@ x[5]x[6] & x[6]x[7] ® x[2]x[8] & x[7]x[8],

y[5] = x[2] @ x[0]x[3] ® x[1]x[4] & x[3]x[4] & x[1]x[6] B x[4]x[6] ® x[7] B x[3]x[7]
@ x[5]x[7] ® x[6]x[7] ® x[0]x[8] & x[7]x[8],

y[6] = x[0]x[1] @ x[3] @ x[1]x[4] ® x[2]x[5] ® x[4]1x[5] ® x[2]x[7] ® x[5]x[7] ® x[8]
@ x[0]x[8] & x[4]x[8] @ x[6]x[8] ® x[7]x[8] ® 1,

y[7] = x[1]1 & x[0]x[1] & x[1]x[2] & x[2]x[3] & x[0]x[4] & x[5] ® x[1]x[6] & x[3]x[6]
@ x[0]x[7] & x[4]x[7] ® x[6]x[7] ® x[1]x[8] & 1,

y[8] = x[0] & x[0]x[1] @ x[1]x[2] ® x[4] ® x[0]x[S5] & x[2]x[5] & x[3]x[6] & x[5]x[6]
@ x[0]x[7] ® x[0]x[8] ® x[3]x[8] ® x[6]x[8] & 1.

Appendix 2: Proof of Propagation Rules

Proof of Rule 1 (Substitution)

Let F be a function that consists of m S-boxes, where F; denotes the ith S-box and
the bit length and the algebraic degree is n; bits and d;, respectively. The input and the
output take a value of (F3' x F3? x --- x F3"), and X and Y denote the input multiset
and the output multiset, respectively.

First, we only apply the first S-box and evaluate the division property of the multiset
whose elements are represented by [Fj(x1), x2, ..., X;]. Assuming that the multiset
X has the division property Dp!"* """ the parity @, cxx 7o ((F1(x1), X2, ..., Xp]) is
evaluated as follows:
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P i), x2, . xn) = @((nm o F1)(x1) % an,-(xi))

xeX xeX i=2
(o oF) i
Ty, O]
([ @ e X(Hn,,,.m))
xeX ur ely! i=2
( F) m
Tty ol
_ g (@( nu]m)xnnv,.(x,-)))
urel,! \reX i=2
(7ry, oF1)
_ g ( Bt mm)
ule]F;' XEX

Therefore, forany v € (F5' xF52 x- - -xF5™), the parity @, . 7o ([F1(x1), X2, - . ., X )
is 0 if

(ﬂv oFy)
: @”ul 12,03, 0] (X)
xeX

is O for all u; € ]Fgl. Since the algebraic degree of (7, o Fy) is at most w(vy) x dj,

(o oF1) = 0 when w(u1) > w(vy) x dj. Therefore, the parity becomes unknown only

ui
if we cannot determine the value of @, cxx T[u;,v2,v3....,vm] (x) when w(up) < w(vy) xdy.
Now, since the multiset X has the division property D" """,

P rux) =

xeX

unknown if there exist k € Ks.t. W(u) > k,
otherwise.

Therefore, the necessary condition that @, cxx 7(u;,vy,v3....,v,,] (¥) becomes unknown is
expressed as follows:

W([Mlv U27 U39 cee vm]) z kv
= [w(vl) X dlv w(UZ)a LR} w(vm)] : k’

k
= [w1), wv), ..., wm)] = Hj—‘ ko, ks, k,,,]

Namely, @XEX wy([F(x1), x2, ..., X;]) isunknown only if there exists k € K satisfying

k
Wi, v2,03,...,0p) = [[d—l—‘ ,kz,k3,---,km]~
1
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Therefore, the division property of the output multiset is D!">"", where K has the
following vectors

k
Hr—l—‘,kz,...,km] for all k € K.
d

Next, assume that F7 is bijective and k1 = n. Then, the algebraic degree of (7, o F1) is
less than nn| for w(vy) < ny and becomes n| for only w(vy) = n. Therefore, the neces-
sary condition that @xex Tuy,v2,03,...,u,,] (X) becomes unknown is w(vy) = n1. Namely,
if ki = ny, [n1, ka2, k3, ..., k;,] is inserted into K’ instead of [[k;/d1], k2, ..., kn].
Finally, Rule 1 is proven by repeating the same procedure for other S-boxes.

Proof of Rule 2 (Copy)

Let F be a copy function, where the input x takes a value of [} and the output is
calculated as [y, y2] = [x, x]. Let X and Y be the input multiset and the output multiset,
respectively.

Assuming that the multiset X has the division property Dy, the parity yey To(y) is
evaluated as follows:

B 7 () = B 701 (x. XD = @D (10, (6) x 70, (1)) = EP (0190, () -

yeY xeX xeX xeX

Since the multiset X has the division property D},

unknown w(u) >k,
P ) =
ceX {O w(u) < k.

When w(vy) + w(va) < k, the parity 69er 7y (y) is 0 because w(vy V v2) < w(vy) +
w(v2) < k. Moreover, the necessary condition that the parity becomes unknown is
w(vy) + w(vy) > k. Therefore, the division property of Y is D]?{/n , where K’ has the
following vectors

[k —1i,i] forO<i <k.

Thus, Rule?2 is proven.

Proof of Rule 3 (Compression by XOR)

Let F be a compression function by an XOR, where the input [x], x7] takes a value of
(IF; x IF5) and the output is calculated as y = x1 @ x2. Let X and Y be the input multiset
and the output multiset, respectively.



Integral Cryptanalysis on Full MISTY 1 947

Assuming that the multiset X has the division property Dy:", the parity EBy ey T ()
is evaluated as follows:

Drm= P nwmeoen= P (H(xl[i]@xz[i])v[i])

yeY [x1,x2]eX [x1,x2]eX

[x1, xz]EX we{l 24 =

D (H o)

[x1,x2]eX

@ <
@ ( @ (751 (v,) (K1) X 550,y (X2)) |
we{l,

[x1,x2]€X
where

8]’(1}, w)[l] = [l U[l] =1 and w; = j7

0 otherwise.

. . . n,n
Since the multiset X has the division property Dy,

unknown if there exist [k, k2] € K s.t. [w(u1), w(uz)] > [k1, ko],
@ﬂ[ul us] (x)

otherwise.
xeX

When w(v) = w(é (v, w)) + w2 (v, w)) < mingcx {k + k3}, the parity @er Ty (y)
is 0 because there is not [k, k2] € K satisfying [w (51 (v, w)), w(62(v, w))] > [k1, k2].
Moreover, the necessary condition that the parity becomes unknown is w(v) >
mingex {k1 +k2}. Therefore, the division property of Y is D}},, where k" = mingex {k1 +
k»}. Note that the parity is O for all v if k' is greater than n. Thus, Rule 3 is proven.

Proof of Rule4 (Split)

Let F be a split function, where the input x takes a value of 5 and the output is calculated
as yi|ly2 = x, where [y, y»] takes a value of (F5' x F3,™""). Let X and Y be the input
multiset and the output multiset, respectively.

Assuming that the multiset X has the division property Dy, the parity yey To(y) is
evaluated as follows:

EB?T;;(,V) = @ﬂ[ulnm(ﬂ-

yeY xeX
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Since the multiset X has the division property D},

unknown w(u) >k,
P rmux) =
reX {O wu) < k.

When w(vy) + w(v2) < k, the parity @er 7y (y) is 0 because w(vi||v2) = w(vy) +
w(vy) < k. Moreover, the necessary condition that the parity becomes unknown is
ni,n—nj

w(v1) +w(v2) > k. Therefore, the division property of Y is Dy, , where K’ has the
following vectors

[k —1i,i] forO<i <k.

Note that we cannot choose more than n1 and n — n1 bits from y; and y», respectively.
Thus, Rule4 is proven.

Proof of Rule 5 (Concatenation)

Let F be a concatenation function, where the input [x1, x] takes a value of (F;' X IF;Q)
and the output is calculated as y = x1||x2. Let X and Y be the input multiset and the
output multiset, respectively.

Assuming that the multiset X has the division property D]’Ig "2 the parity € yey Tv(y)
is evaluated as follows:

@Nu(y)z @ Ty |luy (X1 ]|X2) = @ vy, vp1([x1, X2]),

yeY [x1,x2]eX [x1,x2]eX

where v = v1||v2, and the bit length of v; and that of vy is n1 and n», respectively. Since
the multiset X has the division property Dp'""2,

unknown if there exist [kq, k2] € K s.t. [w(uy), w(uz)] > [k1, k2],
@”[ul,uz](x) =

0 otherwise.
xeX

When w(v) = w(vy) + w(vz) < mingcg{k1 + k2}, the parity @yey 1, (y) is O because
there is not [k, k»] € K satisfying [w(vy), w(v2)] > [k, k2]. Moreover, the necessary
condition that the parity becomes unknown is w(v) > mingck {k1 + k2}. Therefore, the
division property of Y is D?,, where k" = mingcg {k1 + k2}. Thus, Rule 5 is proven.

Appendix 3: Example—Propagation from D{7[’i 27 61} for FI Function

We consider the propagation characteristic of the division 2property for the FI function

(see Fig.4). Assume that X has the division property D{7[’4y’27 6l)-

From X to X;: Since the first 7-bit value and the second 2-bit value are concatenated,
Rule5 is applied. Thus, the multiset X, has the division property D{9[’67, 6l
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From X3 to X3: The 9-bit S-box Sy is applied. Thus, the multiset X3 has the division
property D{g[’;’ BIE

From X3 to X4: Since the first 9-bit value is split to 2-bit and 7-bit values, Rule4 is
applied. Thus, the multiset X4 has the division property D{z[’g,g,s],[l,z,ﬁ],[z,l, o)

From X4 to X5: Since the second 7-bit value is XORed with the last 7-bit value, Rule 2
and Rule3 are applied. In this case, the propagation of the division property is
calculated as

[0,3, 6] = [0, 3,6],10,4, 5], 0,5, 4], [0, 6, 3], 0,7, 2],
[1,2,6] =[1,2,6],11,3,5].[1,4,4],[1,5,3],[1,6,2],[1,7, 1],
[2,1,6] = [2,1,6],12,2,5],12,3,4].[2,4,3],[2,5,2],[2,6, 11,[2, 7, 0].

The position is rotated, and then, the division property of X5 has D%ZJ’ where K
has 18 vectors as

[6,0,3],[5,0,4],[4,0,5],[3,0,6],[2,0, 7],
[6,1,2],[5,1,3],[4,1,4],[3,1,5],[2, 1, 6], [1, 1, 7],
[6,2,11,15,2,2],[4, 2,31, [3,2,4],[2,2,5], [1, 2, 6], [0, 2, 7].

From X5 to Xg: The 7-bit S-box §7 is applied. Here, we exploit the vulnerable property
of §7. Thus, the following 18 vectors

[41 07 3]7 [29 07 4]1 [27 O! 5]9 [17 09 6]7 [17 09 7]7
(4,1,2],12,1,3],12,1,4], (1, 1, 5], [1, 1, 6], [1, 1, 7],
[4’ 2’ 1]’ [2’ 2’ 2]? [2’ 2? 3]7 []" 2? 4]7 []" 27 5]7 []" 2’ 6]7 [0’ 27 7]’

are calculated. For example, the vector [2, 0, 5] is removed because [2, 0, 5] >
[2, 0, 4]. Similarly, after removing redundant vectors, and the division property of
Xg has DE{”, where K has 10 vectors as

[0,2,7],[1,0,6],[1,1,5],[1, 2,4], 2,0, 4],
[2,1,3],12,2,2],[4,0,3], [4, 1,2], [4,2, 1].

From Xg to X7: Since the first 7-bit value is XORed with the last 7-bit value, Rule 2
and Rule3 are applied. In this case, the propagation of the division property is
calculated as

[0,2,71=10,2,7], 1, 2,6],12,2,5], [3, 2,4],[4, 2, 3]. [5, 2, 2], [6, 2, 1], [7, 2, O],
[1,0,6] = [1,0,6],[2,0,5],[3,0,4],1[4,0,3],[5,0, 2], [6, 0, 1], [7, 0, O],
[1,1,5]=[1,1,5],(2,1,4],[3,1,3],[4,1,2],[5, 1, 1], [6, 1, O],

[1,2,4] = [1,2,4],(2,2,3],13,2,2],[4,2,1],[5,2,0],

[2,0,4] = [2,0,4],[3,0,3],[4,0, 2], 5,0, 1], [6, 0, O],
2,1,3]=1[2,1,3],[3,1,2],[4, 1, 1], [5, 1, O],
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[2,2,2] = 1[2,2,2],(3,2,1],[4,2,0],

[4,0,3] = [4,0,3],[5,0,2],[6,0, 1], [7,0,0],
[4,1,2] = [4,1,2],[5, 1, 1], [6, 1, 0],

[4,2,1]1 = [4,2,1],[5, 2,01

After removing redundant vectors, the position is rotated and then the division
property of X7 has D]%<’7’7, where K has 16 vectors as

[0, 0, 6], [0, 1, 5], [0, 2, 4], [0, 3, 3], [0, 4, 2], [0, 6, 1], [1, O, 5], [1, 1, 4],
[1,2,3],11,3,2],[1,5,1],[2,0,4],[2, 1, 3], [2, 2, 2], [2, 4, 1], [2, 7, O].

From X7 to Xg: Since the first 2-bit value and the second 7-bit value are concatenated,
Rule 5 is applied. Then, the following 16 vectors

[0, 6], [1, 5], (2, 4], [3, 3], [4, 2], [6, 1], [1, 5], [2, 4],
(3,31, [4,2],[6, 1], [2, 4], [3, 3], [4, 2], [6, 1], [9, O],

are calculated. After removing redundant vectors, the division property of Xg has
Dﬁg, where K has 7 vectors as

[0, 6], [1, 5], 2, 4], [3, 3], [4, 2], [6, 11, [9, O].
From X3 to Xo: The 9-bit S-box Sg is applied. Then, the following 7 vectors
[0, 61, [1, 5], [1,4], 2, 3], [2, 2], [3, 11, [9, O],

are calculated. After removing redundant vectors, the division property of Xo has
DE{, where K has 5 vectors as

[0, 6],[1,4],12,2], 3, 11, [9, 0].

From Xy to Xjo: Since the first 9-bit value is split to 2-bit and 7-bit values, Rule4 is
applied. Thus, the multiset X;o has the division property D]%’”, where K has 10
vectors as

[0, 6] = [0, 0, 6],

[1,4] =[0,1,4],[1,0,4],
[2,2]=10,2,2],[1,1,2],[2,0,2],
[3,11=10,3, 1], [1,2,1],[2, 1, 1],
[9,0] = [2,7.0].

From Xjo to Xi;: Since the second 7-bit value is XORed with the last 7-bit value,
Rule2 and Rule 3 are applied. In this case, the propagation of the division property
is calculated as
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[0, 0, 6] = [0,0,6],[0, 1, 5], [0, 2, 4], [0, 3, 3], [0, 4, 2], [0, 5, 1], [0, 6, O],
[0,1,4] = [0, 1,4],10,2,3],[0,3,2], [0, 4, 1], [0, 5, 0],

[1,0,4] =[1,0,4],[1, 1,3],[1,2,2],[1, 3, 1], [1, 4, 0],

[0,2,2] = [0,2,2],]0, 3, 1], [0, 4, 0],

[1,1,2]1=11,1,2],[1,2,1],[1, 3, 0],

[2,0,2] = [2,0,2],[2,1,1],[2,2,0],

[0,3,1] = [0, 3, 1], [0, 4, 0],

[1,2,1]=1[1,2,1],[1,3,0],

2,1,1]1=1[2,1,1],[2,2,0],

(2,7,0] = [2,7,0]

After removing redundant vectors, the position is rotated, and then the division
property of X1 has D]%’N, where K has 12 vectors as

[0,0,4],[0,1,3],[0,2,2],[1,0,3],[1, 1, 2], [1, 2, 1],
[2,0,2],[2,1,1],[2,2,0], [4,0, 1], [4, 1, 0], [6, O, O].

Algorithm I can automatically search for the propagation characteristic of the division

7,2,7 . . .
property from any D{k . We create the propagation characteristic tables, which are
shown in “Appendix 6, by implementing Algorithm 1.

Appendix 4: Revisiting Known Characteristic for MISTY1

It was already shown in[25] that reduced MISTY1 has a 14th order differential char-
acteristic, and the principle was also discussed in [1,6]. In the 14th order differential
characteristic, 14 bits PR[10, ..., 16, 26, ..., 32] are active and the others are constant.
Then, the first seven bits of X § are balanced. We evaluate the principle of the char-
acteristic by using the propagation characteristic of the division property. We search
for the integral characteristics by using Algorithm4 with perfect SizeReduce. We
use k =1[0,0,0,0,0,0,0,0,7,0,0, 7] as the input of Algorithm4, and Table 6 shows
the !)r07pa%ation of K. The output of the 4th round function has the division property
pL>1.7.2, ’7’2’7’7’2’7, where K has 12 vectors as follows:

Table 6. Propagation from D?[(? 20 ;) 70 20 7070 2770 70277]}

#rounds 0 (plaintexts) 1 2 FL 3 4 FL
K] 1 1 460 400 125 12 12
maxy, (K) 14 14 14 14 4 2 1

miny, (K) 14 14 4 4 1 1 1
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[1,0,0,0,0,0,0,0,0,0,0,0] [0,1,0,0,0,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0,0,0,0, 0]
[0,0,0,1,0,0,0,0,0,0,0,0] [0,0,0,0,1,0,0,0,0,0,0,0] [0,0,0,0,0,1,0,0,0,0,0,0]
[0,0,0,0,0,0,2,0,0,0,0,0] [0,0,0,0,0,0,0,1,0,0,0,0] [0,0,0,0,0,0,0,0,1,0,0,0]
[0,0,0,0,0,0,0,0,0,1,0,0] [0,0,0,0,0,0,0,0,0,0,1,0] [0,0,0,0,0,0,0,0,0,0,0, 1]

This result implies the existence of a 14th order differential characteristic, where the left
seven bits of X 5 are balanced.

The 14th order differential characteristic is extended to a 46th order differential char-
acteristic, where 14 bits PL[10, ..., 16,26, ...,32] and 32 bits P® are active and the
others are constant. Then, the first seven bits of X 5L are balanced. We also revisit the 46th
order differential characteristic. Namely, we evaluate the propagation characteristic of the

division property, where the input set has the division property D

7,2,7,7,2,7,7,2,1,1,2,7
{{0.0,7,0,0,7,7,2.7,7,2, 71}

As aresult, we can get an integral characteristic that the first 16 bits of X 5L are balanced.
In the simple extension shown in[11] and [28], only the first 7 bits are balanced. Thus,
our method proves that the number of balanced bits is extended from 7 bits to 16 bits.

Appendix 5: Propagation from D

When the input set has the division property D

7,2,7,7,2,1,1,2,1,1,2,7
{16,2,7,7,2,7,7,2,7,7,2,71)

the division prop-

erty of the set of texts encrﬂ)ted 6 rounds without the first and the last FL layers is

represented as

[0,0,0,0,0,0,0,0,0,0,0,4]
[0,0,0,0,0,0,0,0,0,1,1,2]
[0,0,0,0,0,0,0,0,0,2,2,0]
[0,0,0,0,0,0,0,0,1,0,0,3]
[0,0,0,0,0,0,0,0,1,1, 1, 1]
[0,0,0,0,0,0,0,0,1,3,0,0]
[0,0,0,0,0,0,0,0,2,1,0,1]
[0,0,0,0,0,0,0,0,3,0,1,0]
[0,0,0,0,0,0,0,1,0,0,1,2]
[0,0,0,0,0,0,0,1,0,1,2,0]
[0,0,0,0,0,0,0,1,1,0,0,2]
[0,0,0,0,0,0,0,1,1,1,1,0]
[0,0,0,0,0,0,0,1,2,1,0,0]
[0,0,0,0,0,0,0,2,0,0,2,0]
[0,0,0,0,0,0,0,2,1,0,0,1]
[0,0,0,0,0,0,1,0,0,0,0,3]
[0,0,0,0,0,0,1,0,0,1,1,1]
[0,0,0,0,0,0,1,0,0,3,0,0]
[0,0,0,0,0,0,1,0,1,1,0,1]
[0,0,0,0,0,0,1,0,2,0,1,0]
[0,0,0,0,0,0,1,1,0,0, 1, 1]
[0,0,0,0,0,0,1,1,0,2,0,0]

7,2,7,7,2,7,7,2,7,7,2,7
DK

[0,0,0,0,0,0,0,0,0,0,1, 3]
[0,0,0,0,0,0,0,0,0,1,2,1]
[0,0,0,0,0,0,0,0,0,3,0,1]
[0,0,0,0,0,0,0,0,1,0,1,2]
[0,0,0,0,0,0,0,0,1,1,2,0]
[0,0,0,0,0,0,0,0,2,0,0,2]
[0,0,0,0,0,0,0,0,2,1,1,0]
[0,0,0,0,0,0,0,0,4,1,0,0]
[0,0,0,0,0,0,0,1,0,0,2,1]
[0,0,0,0,0,0,0,1,0,2,0,1]
[0,0,0,0,0,0,0,1,1,0, 1, 1]
[0,0,0,0,0,0,0,1,1,2,0,0]
[0,0,0,0,0,0,0,1,5,0,0,0]
[0,0,0,0,0,0,0,2,0,1,0,1]
[0,0,0,0,0,0,0,2,1,0,1,0]
[0,0,0,0,0,0,1,0,0,0, 1, 2]
[0,0,0,0,0,0,1,0,0,1,2,0]
[0,0,0,0,0,0,1,0,1,0,0,2]
[0,0,0,0,0,0,1,0,1,1,1,0]
[0,0,0,0,0,0,1,0,2,1,0,0]
[0,0,0,0,0,0,1,1,0,0,2,0]
[0,0,0,0,0,0,1,1,1,0,0,1]

[0,0,0,0,0,0,0,0,0,0,2,2]
[0,0,0,0,0,0,0,0,0,2,0,2]
[0,0,0,0,0,0,0,0,0,3,1,0]
[0,0,0,0,0,0,0,0,1,0,2,1]
[0,0,0,0,0,0,0,0,1,2,0,1]
[0,0,0,0,0,0,0,0,2,0,1,1]
[0,0,0,0,0,0,0,0,2,2,0,0]
[0,0,0,0,0,0,0,0,7,0,0,0]
[0,0,0,0,0,0,0,1,0,1,0,2]
[0,0,0,0,0,0,0,1,0,2,1,0]
[0,0,0,0,0,0,0,1,1,0,2,0]
[0,0,0,0,0,0,0,1,2,0,0,1]
[0,0,0,0,0,0,0,2,0,0,0,2]
[0,0,0,0,0,0,0,2,0,1,1,0]
[0,0,0,0,0,0,0,2,1,1,0,0]
[0,0,0,0,0,0,1,0,0,0,2,1]
[0,0,0,0,0,0,1,0,0,2,0,1]
[0,0,0,0,0,0,1,0,1,0,1, 1]
[0,0,0,0,0,0,1,0,1,2,0,0]
[0,0,0,0,0,0,1,0,5,0,0,0]
[0,0,0,0,0,0,1,1,0,1,0,1]
[0,0,0,0,0,0,1,1,1,0,1,0]

. Here, K has 131 vectors as follows:

[0,0,0,0,0,0,0,0,0,1,0,3]
[0,0,0,0,0,0,0,0,0,2,1, 1]
[0,0,0,0,0,0,0,0,0,4,0,0]
[0,0,0,0,0,0,0,0,1,1,0,2]
[0,0,0,0,0,0,0,0,1,2,1,0]
[0,0,0,0,0,0,0,0,2,0,2,0]
[0,0,0,0,0,0,0,0,3,0,0,1]
[0,0,0,0,0,0,0,1,0,0,0,3]
[0,0,0,0,0,0,0,1,0,1,1,1]
[0,0,0,0,0,0,0,1,0,3,0,0]
[0,0,0,0,0,0,0,1,1,1,0,1]
[0,0,0,0,0,0,0,1,2,0,1,0]
[0,0,0,0,0,0,0,2,0,0,1, 1]
[0,0,0,0,0,0,0,2,0,2,0,0]
[0,0,0,0,0,0,0,2,4,0,0,0]
[0,0,0,0,0,0,1,0,0,1,0,2]
[0,0,0,0,0,0,1,0,0,2,1,0]
[0,0,0,0,0,0,1,0,1,0,2,0]
[0,0,0,0,0,0,1,0,2,0,0, 1]
[0,0,0,0,0,0,1,1,0,0,0,2]
[0,0,0,0,0,0,1,1,0,1, 1,0]
[0,0,0,0,0,0,1,1,1,1,0,0]
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[0,0,0,0,0,0,1,1,4,0,0,0]
[0,0,0,0,0,0,1,2,3,0,0,0]
[0,0,0,0,0,0,2,0,0,1,0,1]
[0,0,0,0,0,0,2,0,1,0,1,0]
[0,0,0,0,0,0,2,1,0,0,1,0]
[0,0,0,0,0,0,3,0,0,0,0,1]
[0,0,0,0,0,0,3,2,1,0,0,0]
[0,0,0,0,0,0,5,2,0,0,0,0]
[0,0,0,0,1,0,0,0,0,0,0,0]
[1,0,0,0,0,0,0,0,0,0,0,1]
[1,0,0,0,0,0,0,1,0,0,0,0]

Assume that X has the division property DEQ’N

[0,0,0,0,0,0,1,2,0,0,0,1]
[0,0,0,0,0,0,2,0,0,0,0,2]
[0,0,0,0,0,0,2,0,0,1,1,0]
[0,0,0,0,0,0,2,0,1,1,0,0]
[0,0,0,0,0,0,2,1,0,1,0,0]
[0,0,0,0,0,0,3,0,0,0, 1,0]
[0,0,0,0,0,0,4,0,0,1,0,0]
[0,0,0,0,0,0,7,0,1,0,0,0]
[0,0,0,1,0,0,0,0,0,0,0,0]
[1,0,0,0,0,0,0,0,0,0,1,0]
[1,0,0,0,0,0,1,0,0,0,0,0]

[0,0,0,0,0,0,1,2,0,0,1,0]
[0,0,0,0,0,0,2,0,0,0, 1, 1]
[0,0,0,0,0,0,2,0,0,2,0,0]
[0,0,0,0,0,0,2,0,4,0,0,0]
[0,0,0,0,0,0,2,1,3,0,0,0]
[0,0,0,0,0,0,3,0,3,0,0,0]
[0,0,0,0,0,0,5,0,2,0,0,0]
[0,0,0,0,0,0,7,1,0,0,0,0]
[0,0,1,0,0,0,0,0,0,0,0,0]
[1,0,0,0,0,0,0,0,0,1,0,0]
[2,0,0,0,0,0,0,0,0,0,0,0]

\1.2,71,7,2,71,1,2,7

953

[0,0,0,0,0,0,1,2,0,1,0,0]
[0,0,0,0,0,0,2,0,0,0,2,0]
[0,0,0,0,0,0,2,0,1,0,0,1]
[0,0,0,0,0,0,2,1,0,0,0, 1]
[0,0,0,0,0,0,2,2,2,0,0,0]
[0,0,0,0,0,0,3,1,2,0,0,0]
[0,0,0,0,0,0,5,1,1,0,0,0]
[0,0,0,0,0,1,0,0,0,0,0,0]
[0,1,0,0,0,0,0,0,0,0,0,0]
[1,0,0,0,0,0,0,0,1,0,0,0]

.Lete; € Z'2 be a unit

vector whose ith element is one and the others are zero. When there do not exist ¢; in
K, @xeX x; = 0. Since the vector [1, 0,0, 0,0, 0, 0,0, 0,0, 0, 0] is not included in 131
vectors, we are certain that the first 7 bits are balanced.

Appendix 6: Propagation Characteristic Table for 7'/ Function

See Tables 7, 8,9, 10, 11, 12, 13 and 14.

Table 7. Propagation from D{7[g>z A o D;(’ZJ.
k K
[000] [000]
[001] [001][010][100]
[002] [001][010][100]
[003] [001][020][100]
[004] [002][011][020][101][110][200]
[005] [002][0O11][101][110][200]
[006] [003][012][021][102][111][120][201][210][300]
[007] [003][012][021][102][111][120][201][210][400]
[010] [001][010][100]
[011] [001][010][200]
[012] [002][011][020][101][110][200]
[013] [002][011][020][101][110][200]
[014] [002][011][101][110][300]
[015] [003][012][021][102][111][120][201][210][300]
[016] [003][012][021][102][111][120][201][210][400]
[017] [004][013][022][103][112][121][202][211][220][301][310][500]
[020] [001][010][100]
[021] [001][010]1[200]
[022] [002][011][020][101][110][200]
[023] [002][011][020][101][110][200]
[02 4] [002][011][1O1][110][300]
[025] [003][012][021][102][111][120][201][210][300]
[026] [003][012][021][102][111][120][201][210][400]

[027]

[004][013][022][103][112][121][202][211][220][301][310][500]




[223]
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Table 8. Propagation from ’D{7[12 Z Ay to D]%'zj.

k K

[100] [001][010][100]

[101] [001][010][200]

[102] [002][011][020][101][110][200]

[103] [002][011][020][101][110][200]

[104] [002][011][1O1][110][300]

[105] [003][012][021][102][111][120][201][210][300]

[106] [003][012][021][102][111][120][201][210][400]

[107] [004][013][022][103][112][121][202][211][220][301][310][500]

[110] [001][010][100]

[111] [001][010][200]

[112] [002][011][020][101][110][200]

[113] [002][011][020][101][110][200]

[114] [002][011][1O1][110][300]

[115] [003][012][021][102][111][120][201][210][300]

[116] [003][012][021][102][111][120][201][210][400]

[117] [004][013][022][103][112][121][202][211][220][301][310][500]

[120] [001][010][200]

[121] [002][011][020][101][110][300]

[122] [002][011][020][101][110][300]

[123] [002][011][1O1][110][300]

[124] [003][012][021][102][111][120][201][210][400]

[125] [003][012][021][102][111][120][201][210][400]

[126] [004][013][022][103][112][121][202][211][220]1[301]1[310]1[500]

[127] [004][013][022][103][112][121][202][211][220][401][410][600]
Table 9. Propagation from D{7[22 Z Ay to Dkzﬂ.

k K

[200] [001][010][100]

[201] [001][010][200]

[202] [002][0111[020][101][110][200]

[203] [002][011][020][101][110][200]

[204] [002][011][101][110][300]

[205] [003][012][021][102][111][120][201][210][300]

[206] [003][012][021][102][111][120][201][210][400]

[207] [004][013][022][103][112][121][202][211][220][301][310][500]

[210] [001][010]1[200]

[211] [002][011][020][101][110][300]

[212] [002][011][020][101][110][300]

[213] [002][011][1O1][110][300]

[214] [003][012][021][102][111][120][201][210][400]

[215] [003][012][021][102][111][120][201][210][400]

[216] [004][013][022][103][112][121][202][211]1[2201[301]1[310]1[500]

[217] [004][013][022][103][112][121][202][211][220][401][410][600]

[220] [0011[010]1[200]

[221] [002][011][020][101][110][300]

[222] [002][011][020][101][110][300]

[002][011][101][110][300]
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Table 9. continued.

k K

[224] [003][012][021][102][111][120][201][210][400]

[225] [003][012][021][102][111][120][201][210][400]

[226] [004][013][022][103][112][121][202][211][220][301][310][500]

[227] [004][013][022][103][112][121][202][211][220][401][410][600]
Table 10. Propagation from D{7[§ Z ) to DE{ZJ.

k K

[300] [001][010][200]

[301] [002][011][020][101][110][300]

[302] [002][011][020][101][110][300]

[303] [002][011][1O1][110][300]

[304] [003][012][021][102][111][120][201][210][400]

[305] [003][012][021][102][111][120][201][210][400]

[306] [004][013][022][103][112][121][202][211][220]1[301][310][500]

[307] [004][013][022][103][112][121][202][211][220][401][410][600]

[310] [001][010][200]

[311] [002][011][020]1[101][110][300]

[312] [002][011][020][101][110][300]

[313] [002][011][1O1][110][300]

[314] [003][012][021][102][111][120][201][210][400]

[315] [003][012][021][102][111][120][201][210][400]

[316] [004][013][022][103][112][121][202][211][220]1[301][310][500]

[317] [004][013][022][103][112][121][202][211][220][401][410][600]

[320] [002][011][020][101][110][300]

[321] [002][011][020][201][210][400]

[322] [003][012][021][102][111][120][201][210][400]

[323] [003][012][021][102][111][120][201][210][400]

[324] [003][012][021][102][111][120][301]1[310][500]

[325] [004][013][022][103][112][121][202][211][220][301][310][500]

[326] [004][013][022][103][112][121][202][211][220][401][410][600]

[327] [005]1[014][023][104][113][122][203][212][221][302][311][320]

[501]1[510][700]

Table 11. Propagation from DZ[Z ’Z!*” to DE{ZJ.

k K

[400] [0011[010][200]

[401] [002][011][020][101][110][300]

[402] [002][0111[020][101][110][300]

[403] [002][011][101][110][300]

[404] [003][012][021][102][111][120][201][210][400]

[405] [003][012][021][102][111][120][201][210][400]

[406] [004]1[013][022][103][112][121][202][211][220][301][310][500]
[407] [004]1[013][022][103][112][121][202][211][220][401][410][600]

[410] [002][011][020][101][110][300]
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Table 11. continued.

k K

[411] [002][011][020][201][210][400]

[412] [003][012][021][102][111][120][201][210][400]

[413] [003][012][021][102][111][120][201][210][400]

[414] [003][012][021][102][111][120][301][310][500]

[415] [004][013][022][103][112][121][202][211][220][301][310][500]

[416] [004][013][022][103][112][121][202][211][220][401][410][600]

[417] [005][014][023][104][113][122][203][212][221][302][311][320]
[5011[510]1[700]

[420] [002][011][020][101][110][300]

[421] [002][011][020][201][210][400]

[422] [003][012][021][102][111][120][201][210][400]

[423] [003][012][021][102][111][120][201][210][400]

[424] [003][012][021][102][111][120][301][310][500]

[425] [004][013][022][103][112][121][202][211][220][301][310][500]

[426] [004][013][022][103][112][121][202][211][220][401][410][600]

[427] [005]1[014][023][104][113][122][203][212][221][302][311]([320]
[SO1][510][700]

Table 12. Propagation from ’D{7[5ZZ W DE{ZJ.

k K

[500] [002][011][020][101][110][300]

[501] [002][011][020][201][210][400]

[502] [003][012][021][102][111][120][201][210][400]

[503] [003][012][021][102][111][120][201][210][400]

[504] [003][012][021][102][111][120][301][310][500]

[505] [004][013][022][103][112][121][202][211]1[220]1[301]1[310]1[500]

[506] [004][013][022][103][112][121][202][211][220][401][410][600]

[507] [005][014][023][104][113][122][203][212][221]1[302][311][320]
[501][510][700]

[510] [002][011][020][101][110][300]

[511] [002][011][020][201][210][400]

[512] [003][012][021][102][111][120][201][210][400]

[513] [003][012][021][102][111][120][201][210][400]

[514] [003][012][021]1[102][111][120][301]1[310][500]

[515] [004][013][022][103][112][121][202][211][220]1[301][310][500]

[516] [004][013][022][103][112][121][202][211][220][401][410][600]

[517] [005][014][023][104][113][122][203][212][221][302][311][320]
[501][510][700]

[520] [002][011][020][201][210][400]

[521] [003][012][021]1[102][111][120][301]1[310][500]

[522] [003][012][021][102][111][120][301][310][500]

[523] [003][012][021]1[102][111][120][301]1[310][500]

[524] [004][013][022][103][112][121][202][211][220][401][410][600]

[525] [004][013][022][103][112][121][202][211][220][401][410][600]

[526] [005][014][023][104][113][122][203][212][221][302][311][320]
[5011[510][700]

[527] [005][014][023][104][113][122][203][212][221][402][411][420]

[601][610]




Integral Cryptanalysis on Full MISTY 1 957

Table 13. Propagation from D{7[62 Z A to ’Dgézj.

k K

[600] [002][011][020][101][110][300]

[601] [002][011][020][201][210][400]

[602] [003][012][021][102][111][120][201][210][400]

[603] [003][012][021][102][111][120][201][210][400]

[604] [003][012][021][102][111][120][301][310][500]

[605] [004][013][022][103][112][121][202][211][220][301][310][500]

[606] [004][013][022][103][112][121][202][211][220][401][410][600]

[607] [005][014][023][104][113][122][203][212][221][302][311][320]
[SO1][510][700]

[610] [002][011][020][201][210][400]

[611] [003][012][021][102][111][120][301][310][500]

[612] [003][012][021][102][111][120][301][310][500]

[613] [003][012][021][102][111][120][301]1[310][500]

[614] [004][013][022][103][112][121][202][211][220][401][410][600]

[615] [004][013][022][103][112][121][202][211][220][401][410][600]

[616] [005]1[014][023][104][113][122][203][212][221][302][311]([320]
[SO1][510][700]

[617] [005][014][023][104][113][122][203][212][221][402][411][420]
[601][610]

[620] [002][011][020][201][210][400]

[621] [003][012][021][102][111][120][301]1[310]1[500]

[622] [003][012][021][102][111][120][301][310][500]

[623] [003][012][021][102][111][120][301]1[310]1[500]

[624] [004][013][022][103][112][121][202][211][220][401][410][600]

[625] [004][013][022][103][112][121][202][211][220][401][410][600]

[626] [005]1[014][023][104][113][122][203][212][221][302][311][320]
[SO11[510]1[700]

[627] [005][014][023][104][113][122][203][212][221][402][411][420]

[601][610]

Table 14. Propagation from DZWZ Z A DE{ZJ.

k K

[700] [002][011][020][201][210][400]

[701] [003][012][021][102][111][120][301]1[310][500]

[702] [003][012][021][102][111][120][301][310][500]

[703] [003][012][021][102][111][120][301]1[310][500]

[704] [004][013][022][103][112][121][202][211][220][401][410][600]

[705] [004][013][022][103][112][121][202][211][220][401][410][600]

[706] [005][014][023][104][113][122][203][212][221][302][311][320]
[501][510][700]

[707] [005][014][023][104][113][122][203][212][221][402][411][420]
[601][610]

[710] [002][011][020][201][210][400]

[711] [003][012][021][102][111][120][301]1[310][500]

[712] [003][012][021][102][111][120][301][310][500]

[713] [003]1[012][021][102][111][120][301][310][500]
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Table 14. continued.

K

[714] [004][013][022][103][112][121][202][211][220][401][410][600]
[715] [004][013][022][103][112][121][202][211][220][401][410][600]
[716] [005][014][023][104][113][122][203][212][221][302][311][320]

[501]1[510][700]

[717] [005][014][023][104][113][122][203][212][221][402][411]([420]

[601][610]

[720] [005][014][023][104][113][122][303][312][321][502][511]([520]

[701]1[710]

[721] [006][015][024][105][114][123][204][213][222][403][412][421]

[602][611][620]
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[725] [007][016][025][106][115][124][205][214][223][304][313]([322]

[SO3][512][521][702][711][720]

[726] [027]1[117]1[126][207][216][225][306]([315][324][405][414]([423]

[504][513][522][703][712][721]

[727] [727]

(1]
(2]

[3]
[4]

[5]

[6]

(7]
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