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Abstract. MISTY1 is a block cipher designed by Matsui in 1997. It was well eval-
uated and standardized by projects, such as CRYPTREC, ISO/IEC, and NESSIE. In
this paper, we propose a key recovery attack on the full MISTY1, i.e., we show that
8-round MISTY1 with 5 FL layers does not have 128-bit security. Many attacks against
MISTY1 have been proposed, but there is no attack against the full MISTY1. There-
fore, our attack is the first cryptanalysis against the full MISTY1. We construct a new
integral characteristic by using the propagation characteristic of the division property,
which was proposed in EUROCRYPT 2015. We first improve the division property by
optimizing the division property for a public S-box and then construct a 6-round inte-
gral characteristic on MISTY1. Finally, we recover the secret key of the full MISTY1
with 263.58 chosen plaintexts and 2121 time complexity. Moreover, if we use 263.994

chosen plaintexts, the time complexity for our attack is reduced to 2108.3. Note that our
cryptanalysis is a theoretical attack. Therefore, the practical use of MISTY1 will not be
affected by our attack.

Keywords. MISTY1, Integral attack, Division property.

1. Introduction

MISTY[18] is a block cipher designed by Matsui in 1997 and is based on the theory
of provable security [20,21] against the differential attack [4] and the linear attack [16].
MISTY has a recursive structure, and the component function has a unique structure, the
so-called MISTY structure [17]. There are two types of MISTY, MISTY1 and MISTY2.
MISTY1 adopts the Feistel structure whose F-function is designed by the recursive
MISTY structure.MISTY2 does not adopt the Feistel structure and uses only theMISTY

∗ This paper is an extended version of [26], presented at CRYPTO 2015.
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Table 1. Summary of single secret key attacks against MISTY1.

Rounds #FL layers Attack algorithm Data Time Reference

5 0 Higher-order differential 11 × 27 CP 217 [25]
5 3 Integral 234 CP 248 [14]
5 4 Higher-order differential 222 CP 228 [11]
5 4 Impossible differential 238 CP 246.45 [9]
6 4 Higher-order differential 253.7 CP 253.7 [28]
6 4 Impossible differential 251 CP 2123.4 [9]
7 0 Impossible differential 250.2 KP 2114.1 [9]
7 4 Higher-order differential 254.1 CP 2120.7 [28]
7 4 Higher-order differential 250.1 CP 2100.4 [3]
7 5 Higher-order differential 251.4 CP 2121 [3]
8 5 Integral by division property 263.58 CP 2121 This paper
8 5 Integral by division property 263.994 CP 2108.3 This paper

structure. Both ciphers achieve provable security against differential and linear attacks.
MISTY1 is designed for practical use, and MISTY2 is designed for experimental use.
MISTY1 is a 64-bit block cipher with 128-bit key, and it has a Feistel structure with

FL layers. MISTY1 is in the candidate recommended ciphers list of CRYPTREC[7],
and it is standardized by ISO/IEC 18033-3 [12].Moreover, it is a NESSIE-recommended
cipher [19] and is described in RFC 2994 [22]. There are many existing attacks against
reducedMISTY1, andwe summarize these attacks in Table1. A higher-order differential
attack is themost powerful attack againstMISTY1[3].However, there is no attack against
the full MISTY1, i.e., 8-round MISTY1 with 5 FL layers.

1.1. Integral Attack

The integral attack [14] was first proposed by Daemen et al. to evaluate the security of
Square [8] and was then formalized by Knudsen and Wagner. There are two major
techniques to construct an integral characteristic: One uses the propagation character-
istic of integral properties [14] and the other estimates the algebraic degree [13,15]. We
often call the second technique a “higher-order differential attack.” A new technique
to construct integral characteristics was proposed in EUROCRYPT 2015 [27], and it
introduced a new property, the so-called division property, by generalizing the inte-
gral property [14]. It showed the propagation characteristic of the division property for
any function restricted by an algebraic degree. As a result, several improved results
were reported on the structural evaluation of the Feistel network and the Substitution-
Permutation network. Moreover, the division property was applied to the generalized
Feistel network [29].

1.2. Our Contribution

In [27], S-boxes are randomly chosen depending on round keys, but the algebraic degree
is restricted. However, many realistic block ciphers use more efficient structures, e.g.,
a public S-box and a key addition. In this paper, we show that the division property
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becomes more useful if an S-box is a public function. Then, we apply our technique
to the cryptanalysis of MISTY1. We first evaluate the propagation characteristic of
the division property for public S-boxes S7 and S9 and show that S7 has a vulnerable
property. We next evaluate the propagation characteristic of the division property for
the F I function and then evaluate it for the FO function. Moreover, we evaluate the
propagation characteristic for the FL layer. Finally, we devise an algorithm to search
for integral characteristics on MISTY1 by assembling these propagation characteristics.
As a result, we can construct a new 6-round integral characteristic, where the left 7-
bit value of the output is balanced. We recover the round key by using the partial-sum
technique [10]. As a result, the secret key of the full MISTY1 can be recovered with
263.58 chosen plaintexts and 2121 time complexity. Moreover, if we can use 263.994

chosen plaintexts, the time complexity is reduced to 2108.3. Unfortunately, we have to
use almost all chosen plaintexts, and recovering the secret key by using fewer chosen
plaintexts is left as an open problem.

2. MISTY1

MISTY1 is a Feistel cipher whose F-function has the MISTY structure, and the recom-
mended parameter is 8 rounds with 5 FL layers. Figure1 shows the structure ofMISTY1.
Let XL

i (resp. X R
i ) be the left half (resp. the right half) of an i-round input. Moreover,

XL
i [ j] (resp. X R

i [ j]) denotes the j th bit of XL
i (resp. X R

i ) from the left. MISTY1 is a
64-bit block cipher with 128-bit key, and it has a Feistel structure with FL layers, where
the FO function is used in the F-function of the Feistel structure. The component func-
tion FOi is constructed by using the 3-round MISTY structure, where F Ii,1, F Ii,2, and
F Ii,3 are used as the F-function of the MISTY structure, and the four 16-bit round keys
KOi,1, KOi,2, KOi,3, and KOi,4 are used. Moreover, the function F Ii, j is constructed
by using the 3-round MISTY structure, where a 9-bit S-box S9 and a 7-bit S-box S7 are
used in the F-function, and a 16-bit round key K Ii, j is used. Here, S9 and S7 are defined
in “Appendix 1.” The component function FLi uses two 16-bit round keys, K Li,1 and
K Li,2, where ∩ and ∪ denote a bitwise AND and OR, respectively. These round keys
are calculated from the secret key (K1, K2, . . . , K8) as follows.

Symbol KOi,1 KOi,2 KOi,3 KOi,4 K Ii,1 K Ii,2 K Ii,3 K Li,1 K Li,2
Key Ki Ki+2 Ki+7 Ki+4 K ′

i+5 K ′
i+1 K ′

i+3 K i+1
2

(odd i) K ′
i+1
2 +6

(odd i)

K ′
i
2+2

(even i) K i
2+4

(even i)

Here, Ki and K ′
i are identified with Ki−8 and K ′

i−8, respectively, when i exceeds 8.
Moreover, K ′

i is defined as the output of F Ii, j where the input is Ki and the key is Ki+1.
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Fig. 1. Specification of MISTY1.

3. Integral Characteristic by Division Property

3.1. Notations

We make the distinction between the addition over F
n
2 and the addition over Z, and

we use ⊕ and + as the addition over F
n
2 and the addition over Z, respectively. For any

a ∈ F
n
2, the i th element is expressed as a[i], and the Hamming weightw(a) is calculated

as w(a) = ∑n
i=1 a[i]. Moreover, a[i1, i2, . . . , i j ] denotes a j-bit substring of a as

a[i1, i2, . . . , i j ] = a[i1]‖a[i2]‖ · · · ‖a[i j ]. Let 1n ∈ F
n
2 be a valuewhose all elements are

1. Moreover, let 0n ∈ F
n
2 be a value whose all elements are 0. For any setK, let |K| be the

number of elements.Moreover, letφ be an empty set. For any a ∈ (F
n1
2 ×F

n2
2 ×· · ·×F

nm
2 ),

the vectorial Hamming weight is defined asW (a) = [w(a1), w(a2), . . . , w(am)] ∈ Z
m ,

where ai denotes the i th element of a. Moreover, for any k ∈ Z
m and k′ ∈ Z

m , we
define k 	 k′ if ki ≥ k′

i for all i (1 ≤ i ≤ m). Otherwise, k � k′.
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3.1.1. Boolean Function

A Boolean function is a function from F
n
2 to F2. Let deg( f ) be the algebraic degree of

a Boolean function f . Algebraic normal form (ANF) is often used as representation of
the Boolean function. Let f be any Boolean function from F

n
2 to F2. Then, it can be

represented as

f (x) =
⊕

u∈Fn
2

a f
u

(
n∏

i=1

x[i]u[i]
)

,

where a f
u ∈ F2 is a constant value depending on f and u. If deg( f ) is at most d, all

a f
u satisfying d < w(u) are 0. An n-bit S-box can be regarded as the collection of n
Boolean functions. If the algebraic degrees of its n Boolean functions are at most d, we
say the algebraic degree of the S-box is at most d.

3.2. Integral Attack

An integral attack [14] is one of the most powerful cryptanalyses against block ciphers.
Attackers prepare N chosen plaintexts and get the corresponding ciphertexts. If the XOR
of all corresponding ciphertexts is 0 for all secret keys, we say that the block cipher has
an integral characteristic with N chosen plaintexts. In an integral attack, attackers first
create an integral characteristic against a reduced-round block cipher. Then, they guess
the round keys that are used in the last several rounds and calculate the XOR of the
ciphertexts of the reduced-round block cipher. Finally, they evaluate whether or not
the XOR is 0. If the XOR is not 0, they can discard the guessed round keys from the
candidates of the correct key.

3.3. Division Property

A division property, which was proposed in [27], is used to search for integral character-
istics. We first consider a set of plaintexts and evaluate the division property of the set.
Then, we propagate the division property and evaluate the division property of the set
of texts encrypted over one round. By repeating the propagation, we show the division
property of the set of texts encrypted over some rounds. Finally, we can easily determine
the existence of the integral characteristic from the propagated division property.

3.3.1. Bit Product Function

We first define two bit product functions πu and πu, which are used to evaluate the
division property of a multiset.1 Let πu : F

n
2 → F2 be a function for any u ∈ F

n
2. Let

x ∈ F
n
2 be the input, and πu(x) be the AND of x[i] satisfying u[i] = 1, i.e., it is defined

as

1A multiset allows multiple instances of the elements unlike a set.
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πu(x) :=
n∏

i=1

x[i]u[i].

Let πu: (F
n1
2 ×F

n2
2 ×· · ·×F

nm
2 ) → F2 be a function for any u ∈ (F

n1
2 ×F

n2
2 ×· · ·×F

nm
2 ).

Let x ∈ (F
n1
2 × F

n2
2 × · · · × F

nm
2 ) be the input, and πu(x) be defined as

πu(x) :=
m∏

i=1

πui (xi ).

3.3.2. Definition of Division Property

The division property is given against a multiset, and it is calculated by using the bit
product function. Let X be an input multiset whose elements take a value of (F

n1
2 ×

F
n2
2 × · · · × F

nm
2 ). In the division property, we first evaluate a value of

⊕
x∈X πu(x) for

all u ∈ (F
n1
2 × F

n2
2 × · · · × F

nm
2 ). Then, we divide the set of u into a subset whose sum

is 0 and a subset whose sum becomes unknown.2 In [27], the focus was on using the
Hamming weight of u to divide the set.

Definition 1. (Division Property) Let X be a multiset whose elements take a value of
(F

n1
2 × F

n2
2 × · · · × F

nm
2 ). Let K be a set whose elements take an m-dimensional vector

whose i th element takes a value between 0 and ni . When the multiset X has the division
property Dn1,n2,...,nm

K
, it fulfills the following conditions:

⊕

x∈X
πu(x) =

{
unknown if there exist k ∈ K s.t. W (u) 	 k,

0 otherwise.

If there are k ∈ K and k′ ∈ K satisfying k 	 k′, k can be removed from K because it is
redundant. Assume that the multiset X has the division property Dn1,n2,...,nm

K
. If there is

no unit vector e j in K, where e j is a vector whose j th element is 1 and the others are 0,⊕
x∈X x j is 0. See [27] to better understand the concept in detail.

Example 1. Let X be a multiset whose elements take a value of F
4
2. As an example, we

prepare the input multiset X as

X := {0x0,0x3,0x3,0x3,0x5,0x6,0x8,0xB,0xD,0xE}.

A following table calculates the summation of πu(x).

2If we know all accurate values in a multiset, we can divide the set of u into subsets whose evaluated
value is 0 or 1. However, in the application to cryptanalysis, we evaluate the multiset whose elements are
texts encrypted for several rounds. Such elements change depending on the subkeys and the constant bit of
plaintexts. Therefore, we consider subsets whose sum is 0 for all subkeys, and otherwise, we consider the sum
as unknown.
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0x0 0x3 0x3 0x3 0x5 0x6 0x8 0xB 0xD 0xE
⊕

πu(x)
0000 0011 0011 0011 0101 0110 1000 1011 1101 1110

u = 0000 1 1 1 1 1 1 1 1 1 1 0
u = 0001 0 1 1 1 1 0 0 1 1 0 0
u = 0010 0 1 1 1 0 1 0 1 0 1 0
u = 0011 0 1 1 1 0 0 0 1 0 0 0
u = 0100 0 0 0 0 1 1 0 0 1 1 0
u = 0101 0 0 0 0 1 0 0 0 1 0 0
u = 0110 0 0 0 0 0 1 0 0 0 1 0
u = 0111 0 0 0 0 0 0 0 0 0 0 0
u = 1000 0 0 0 0 0 0 1 1 1 1 0
u = 1001 0 0 0 0 0 0 0 1 1 0 0
u = 1010 0 0 0 0 0 0 0 1 0 1 0
u = 1011 0 0 0 0 0 0 0 1 0 0 1
u = 1100 0 0 0 0 0 0 0 0 1 1 0
u = 1101 0 0 0 0 0 0 0 0 1 0 1
u = 1110 0 0 0 0 0 0 0 0 0 1 1
u = 1111 0 0 0 0 0 0 0 0 0 0 0

For all u satisfying w(u) < 3,
⊕

x∈X πu(x) is 0. Therefore, the multiset has the
division property D4

3.

Example 2. Let X be a multiset whose elements take a value of (F8
2 × F

8
2). Assume

that the multiset X has the division property D8,8
{[1,5],[3,3],[4,5],[5,1],[6,0]}. In this case, if

[u1, u2] is chosen from the gray part in Fig. 2,
⊕

[x1,x2]∈X π[u1,u2]([x1, x2]) becomes
unknown. For example, when u = [0x3F,0xFC] is used, we cannot determine⊕

[x1,x2]∈X π[0x3F,0xFC]([x1, x2]) becauseW (u) = [6, 6]. On the other hand, if (u1, u2)
is chosen from the white part in Fig. 2,

⊕
[x1,x2]∈X π[u1,u2]([x1, x2]) is 0. Note that the

division property D8,8
{[1,5],[3,3],[5,1],[6,0]} is the same as D8,8

{[1,5],[3,3],[4,5],[5,1],[6,0]} because
the unknown space is invariant.

Fig. 2. Division property D8,8
{[1,5],[3,3],[5,1],[6,0]}.
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A similar example is shown in [24] and may help to further understand the division
property.

3.3.3. Propagation Rules of Division Property

Some propagation rules for the division property are proven in [27].We summarize them
as follows, and the proof is shown in “Appendix 2.”

Rule 1 (Substitution): Let F be a function that consists of m S-boxes, where the bit
length and the algebraic degree of the i th S-box is ni bits and di , respectively. The
input and the output take a value of (F

n1
2 × F

n2
2 × · · · × F

nm
2 ), and X and Y denote

the input multiset and the output multiset, respectively. Assuming that the multiset
X has the division property Dn1,n2,...,nm

K
, the multiset Y has the division property

Dn1,n2,...,nm
K′ , where K

′ is calculated as follows: First, K
′ is initialized to φ. Then,

for all k ∈ K,

K
′ = K

′ ∪
[ ⌈

k1
d1

⌉

,

⌈
k2
d2

⌉

, . . . ,

⌈
km
dm

⌉ ]

,

is calculated. Here, when the i th S-box is bijective and ki = ni , the i th element of
the propagated property becomes ni not ni/di�.

Rule2 (Copy): Let F be a copy function, where the input x takes a value of F
n
2 and

the output is calculated as [y1, y2] = [x, x]. Let X and Y be the input multiset
and the output multiset, respectively. Assuming that the multiset X has the division
property Dn

k , the multiset Y has the division property Dn,n
K′ , where K

′ is calculated
as follows: First, K

′ is initialized to φ. Then, for all i (0 ≤ i ≤ k),

K
′ = K

′ ∪ [k − i, i],

is calculated.
Rule 3 (Compression by XOR): Let F be a function compressed by an XOR, where the

input [x1, x2] takes a value of (Fn
2 ×F

n
2) and the output is calculated as y = x1⊕x2.

Let X and Y be the input multiset and the output multiset, respectively. Assuming
that the multiset X has the division property Dn,n

K
, the division property of the

multiset Y is Dn
k′ as

k′ = min
[k1,k2]∈K

{k1 + k2}.

Here, if the minimum value of k′ is larger than n, the propagation characteristic of
the division property is aborted. Namely, a value of ⊕y∈Yπv(y) is 0 for all v ∈ F

n
2.

Rule 4 (Split): Let F be a split function, where the input x takes a value of F
n
2 and the

output is calculated as y1‖y2 = x , where [y1, y2] takes a value of (F
n1
2 × F

n−n1
2 ).

Let X and Y be the input multiset and the output multiset, respectively. Assuming
that the multiset X has the division property Dn

k , the multiset Y has the division
property Dn1,n−n1

K′ , where K
′ is calculated as follows: First, K

′ is initialized to φ.
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Then, for all i (0 ≤ i ≤ k),

K
′ = K

′ ∪ [k − i, i],

is calculated. Here, (k − i) is less than or equal to n1, and i is less than or equal to
n − n1.

Rule 5 (Concatenation): Let F be a concatenation function, where the input [x1, x2]
takes a value of (F

n1
2 × F

n2
2 ) and the output is calculated as y = x1‖x2. Let X and

Y be the input multiset and the output multiset, respectively. Assuming that the
multiset X has the division propertyDn1,n2

K
, the division property of the multiset Y

is Dn1+n2
k′ as

k′ = min
[k1,k2]∈K

{k1 + k2}.

4. Division Property for Public Function

In an assumption of [27], attackers do not know the specification of an S-box and only
know the algebraic degree of the S-box. However, many specific block ciphers usually
use a public S-box and an addition of secret subkeys, where an XOR is typically used
for the addition. In this paper, we show that the propagation characteristic of the division
property can be improved if an S-box is a public function. The difference between [27]
and this paper is shown in Fig. 3.

We consider the propagation characteristic of the division property for the function
shown in the right figure in Fig. 3. The key XORing is first applied, but it does not affect
the division property because it is a linear function. Therefore, when we evaluate the
propagation characteristic of the division property, we can remove the key XORing.
Next, a public S-box is applied, and we can determine the ANF of the S-box. Assuming
that an S-box is a function from n bits to m bits, the ANF is represented as

y[1] = f1(x[1], x[2], . . . , x[n]),
y[2] = f2(x[1], x[2], . . . , x[n]),

...

y[m] = fm(x[1], x[2], . . . , x[n]),

Fig. 3. Difference between [27] and this paper. The left figure is an assumption used in [27]. The right one is
a new assumption used in this paper.
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where x[i] (1 ≤ i ≤ n) is an input, y[ j] (1 ≤ j ≤ m) is an output, and f j (1 ≤ j ≤ m) is
a Boolean function. The division property evaluates the input multiset and the output one
by using the bit product function πu , and we then divide the set of u into a subset whose
evaluated value is 0 and a subset whose evaluated value becomes unknown. Namely, we
evaluate the equation

Fu(x[1], x[2], . . . , x[n]) =
m∏

i=1

fi (x[1], x[2], . . . , x[n])u[i]

and divide the set of u. In [27], a fundamental property of the product of some functions
is used, i.e., the algebraic degree of Fu is at mostw(u)×d if the algebraic degree of func-
tions fi is at most d. However, since we now know the ANF of functions f1, f2, . . . , fm ,
we can calculate the accurate algebraic degree of Fu for all u ∈ F

n
2. In this case, if the

algebraic degree of Fu is less than w(u)× d for all u for which w(u) is constant, we can
improve the propagation characteristic.

4.1. Application to MISTY S-boxes

4.1.1. Evaluation of S7

The S7 of MISTY is a 7-bit S-box with degree 3. We show the ANF of S7 in “Appendix
1.” We evaluate the property of (πv ◦ S7) to get the propagation characteristic of the
division property. The algebraic degree of (πv ◦ S7) increases in accordance with the
Hamming weight of v, and it is summarized as follows.

w(v) 0 1 2 3 4 5 6 7
Degree 0 3 5 5 6 6 6 7

One can easily choose amodifiedS-box S′
7 with algebraic degree 3, such that the algebraic

degree of (πv ◦ S′
7) is at least 6 with w(v) ≥ 2. However, for the S7, the increment of

the algebraic degree is bounded by 5 when w(v) = 2 or w(v) = 3 holds.3 Then,⊕
x∈X(πv ◦ S7)(x) is 0 for w(v) ≤ 3 if X has D7

6. It means that the necessary condition
that

⊕
x∈X(πv ◦ S7)(x) becomes unknown is w(v) ≥ 4 and D7

4 is propagated from D7
6.

Thus, the propagation characteristic is represented as the following.

D7
k for input set X D7

0 D7
1 D7

2 D7
3 D7

4 D7
5 D7

6 D7
7

D7
k for output set Y D7

0 D7
1 D7

1 D7
1 D7

2 D7
2 D7

4 D7
7

Note that all propagations except for D7
6 → D7

4 are calculated by following Rule1. If
the modified S-box is applied, the division property D7

2 is propagated from the division

3This observation was also provided by Theorem 3.1 in [5].
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property D7
6 because of Rule1. Therefore, the deterioration of the division property for

the S7 is smaller than expected for a randomly chosen 7-bit S-box with algebraic degree
3.

4.1.2. Evaluation of S9

The S9 of MISTY is a 9-bit S-box with degree 2. We show the ANF of S9 in “Appendix
1.” We evaluate the property of (πv ◦ S9) to get the propagation characteristic of the
division property. The algebraic degree of (πv ◦ S9) increases in accordance with the
Hamming weight of v, and it is summarized as follows.

w(v) 0 1 2 3 4 5 6 7 8 9
Degree 0 2 4 6 8 8 8 8 8 9

Thus, the propagation characteristic is represented as

D9
k for input set X D9

0 D9
1 D9

2 D9
3 D9

4 D9
5 D9

6 D9
7 D9

8 D9
9

D9
k for output set Y D9

0 D9
1 D9

1 D9
2 D9

2 D9
3 D9

3 D9
4 D9

4 D9
9

Unlike the propagation characteristic of the division property for S7, the one for S9 is
essentially optimal among 9-bit S-boxes with algebraic degree 2.

5. New Integral Characteristic

This section shows how to create integral characteristics for MISTY1 by using the
propagation characteristic of the division property. We first evaluate the propagation
characteristic for the component functions of MISTY1, i.e., the F I function, the FO
function, and the FL layer. Finally, by assembling these characteristics, we devise an
algorithm to search for integral characteristics on MISTY1.

5.1. Division Property for F I Function

We evaluate the propagation characteristic of the division property for the F I function
by using those for MISTY S-boxes shown in Sect. 4.1. Since there are a zero-extended
XOR and a truncated XOR in the F I function, we use a new representation, in which
the internal state is expressed as two 7-bit values and one 2-bit value. Figure4 shows
the structure of the F I function with our representation, where we remove the XOR of
subkeys because it does not affect the division property.
Let X1 be the input multiset of the F I function. We define every multiset

X2, X3, . . . , X11 in Fig. 4. Here, elements of the multiset X1, X5, X6, and X11 take
a value of (F7

2 × F
2
2 × F

7
2). Elements of the multiset X2, X3, X8, and X9 take a value of
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Fig. 4. Structure of F I function.

(F9
2 × F

7
2). Elements of the multiset X4, X7, and X10 take a value of (F2

2 × F
7
2 × F

7
2).

Since elements of X1 and X11 take a value of (F7
2×F

2
2×F

7
2), the propagation for the F I

function is calculated on D7,2,7
K

. Here, the propagation is calculated with the following
steps.

From X1 to X2: A 9-bit value is created by concatenating the first 7-bit value with
the second 2-bit value. The propagation characteristic can be evaluated by using
Rule5.

From X2 to X3: The 9-bit S-box S9 is applied to the first 9-bit value. The propagation
characteristic can be evaluated by using the table shown in Sect. 4.1.

From X3 to X4: The 9-bit output value is split into a 2-bit value and a 7-bit value. The
propagation characteristic can be evaluated by using Rule4.

From X4 to X5: The second 7-bit value is XORed with the last 7-bit value, and then, the
order is rotated. The propagation characteristic can be evaluated by using Rule2
and Rule3.

From X5 to X6: The 7-bit S-box S7 is applied to the first 7-bit value. The propagation
characteristic can be evaluated by using the table shown in Sect. 4.1.

From X6 to X7: The first 7-bit value is XORed with the last 7-bit value, and then, the
order is rotated. The propagation characteristic can be evaluated by using Rule2
and Rule3.

From X7 to X8: A 9-bit value is created by concatenating the first 2-bit value with
the second 7-bit value. The propagation characteristic can be evaluated by using
Rule5.

From X8 to X11: The propagation characteristic is the same as that from X2 to X5.

As an example,we show the propagation characteristicwhenX1 has the division property
D7,2,7

{[4,2,6]} in “Appendix 3.” Algorithm1 creates the propagation characteristic table for
the F I function. It callsSizeReduce(K), where redundant vectors are eliminated, i.e.,
it eliminates k1 ∈ K if there exists k2 ∈ K satisfying k1 	 k2. Algorithm1 only creates
the propagation characteristic table for which the input property is represented byD7,2,7

{k} .
If any input multiset is evaluated, we need to know the propagation characteristic from
D7,2,7
K

with |K| ≥ 2. However, we do not evaluate such propagation in advance because
it can be easily evaluated by the table for which the input property is represented by
D7,2,7

{k} . For example, we consider the propagation characteristic from D7,2,7
{k,k′} to D7,2,7

K
.

We first get K1 and K2 from the propagation characteristic tables for D7,2,7
{k} and D7,2,7

{k′} ,
respectively. Then, K is calculated as K = K1 ∪ K2.
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Algorithm 1 Propagation for F I function
1: procedure FIEval(k1, k2, k3)
2: K ⇐ S9Eval(k) � X1 → X5
3: K

′ ⇐ S7Eval(K) � X5 → X7
4: K

′′ ⇐ S9Eval(K′) � X7 → X11
5: return K

′′
6: end procedure

1: procedure S9Eval(K)
2: K

′ ⇐ φ

3: for all k ∈ K do
4: [�, c, r ] ⇐ [k1, k2, k3]
5: k ⇐ � + c
6: if k < 9 then
7: k ⇐ k/2�
8: end if
9: for c′ ⇐ 0 to min(2, k) do
10: for x ⇐ 0 to r do
11: �′ ⇐ r − x
12: r ′ ⇐ k − c′ + x
13: if r ′ ≤ 7 then
14: K

′ ⇐ K
′ ∪ [�′, c′, r ′]

15: end if
16: end for
17: end for
18: end for
19: return SizeReduce(K′)
20: end procedure

21: procedure S7Eval(K)
22: K

′ ⇐ φ

23: for all k ∈ K do
24: [�, c, r ] ⇐ [k1, k2, k3]
25: k ⇐ �

26: if k = 6 then
27: k ⇐ 4
28: else if k < 6 then
29: k ⇐ k/3�
30: end if
31: for x ⇐ 0 to r do
32: �′ ⇐ c
33: c′ ⇐ r − x
34: r ′ ⇐ k + x
35: if r ′ ≤ 7 then
36: K

′ ⇐ K
′ ∪ [�′, c′, r ′]

37: end if
38: end for
39: end for
40: return SizeReduce(K′)
41: end procedure

We show all propagation characteristic tables in “Appendix 6.” Here, the propagation
table from k to K is generated, and the number of entries of this table is 8 · 3 · 8 =
192. Moreover, we experimentally evaluated the propagation characteristic for the F I
function. In our experimental search, for any D7,2,7

{[k1,k2,k3]}, we created 100 random input
multisets and then evaluated the propagation characteristic. As a result, we confirmed
that the experimental propagation characteristics are the same as the theoretical ones
shown in “Appendix 6.”

5.2. Division Property for FO Function

We next evaluate the propagation characteristic of the division property for the FO
function by using the propagation characteristic table of the F I function. Here, we
remove the XOR of subkeys because it does not affect the division property. The input
and output of the FO function take the value of (F7

2 × F
2
2 × F

7
2 × F

7
2 × F

2
2 × F

7
2).

Therefore, the propagation for the FO function is calculated on D7,2,7,7,2,7
K

.
Similar to the one created for the F I function, we create the propagation charac-

teristic table for the FO function (see Algorithm2). We create only a table for which
the input property is represented by D7,2,7,7,2,7

{k} and the output property is represented
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Algorithm 2 Propagation for FO function
1: procedure FOEval(k1, k2, k3, k4, k5, k6)
2: K ⇐ FORound(k)
3: K

′ ⇐ FORound(K)

4: K
′′ ⇐ FORound(K′)

5: return K
′′

6: end procedure

1: procedure FORound(K)
2: K

′ ⇐ φ

3: for all k ∈ K do
4: Y ⇐ FIEval(k1, k2, k3)
5: for all y ∈ Y do
6: for all x s.t. (x1 ≤ k4) ∧ (x2 ≤ k5) ∧ (x3 ≤ k6) do
7: k′ ⇐ [k4 − x1, k5 − x2, k6 − x3, y1 + x1, y2 + x2, y3 + x3]
8: if (k′

4 ≤ 7) ∧ (k′
5 ≤ 2) ∧ (k′

6 ≤ 7) then
9: K

′ ⇐ K
′ ∪ k′

10: end if
11: end for
12: end for
13: end for
14: return SizeReduce(K′)
15: end procedure

by D7,2,7,7,2,7
K

. Here, the propagation table from k to K is generated, and the number
of entries of this table is 8 · 3 · 8 · 8 · 3 · 8 = 36864. As an example, the propagation
characteristic table from D7,2,7,7,2,7

{[1,1,2,3,1,5]} is shown in Table2.

5.3. Division Property for FL Layer

MISTY1 has the FL layer, which consists of two FL functions and is applied once
every two rounds. In the FL function, the right half of the input is XORed with the
AND between the left half and a subkey K Li,1. Then, the left half of the input is XORed
with the OR between the right half and a subkey K Li,2.
Since the input and the output of the FL function take the value of (F7

2 × F
2
2 × F

7
2 ×

F
7
2×F

2
2×F

7
2), the propagation for the FL function is calculated onD7,2,7,7,2,7

K
.FLEval

in Algorithm3 calculates the propagation characteristic table for the FL function. Here,
the propagation table from k to K is generated, and the number of entries of this table
is 8 · 3 · 8 · 8 · 3 · 8 = 36864. Moreover, the FL layer consists of two FL functions.
Therefore, we have to consider the propagation characteristic of the division property
D7,2,7,7,2,7,7,2,7,7,2,7

{k} , where each FL function is applied to the left half and the right one.
FLLayerEval in Algorithm3 calculates the propagation characteristic of the division
property for the FL layer.

5.4. New Path Search for Integral Characteristics on MISTY1

We created the propagation characteristic table for the F I and FO functions in Sects. 5.1
and 5.2, respectively. Moreover, we showed the propagation characteristic for the FL
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Table 2. Division property of input is D7,2,7,7,2,7
{[1,1,2,3,1,5]}.

k of D7,2,7,7,2,7
{k} K of D7,2,7,7,2,7

K

[1 1 2 3 1 5] [0 0 0 0 0 4] [0 0 0 0 1 3] [0 0 0 0 2 2] [0 0 0 1 0 3] [0 0 0 1 1 2] [0 0 0 1 2 1]
[0 0 0 2 0 2] [0 0 0 2 1 1] [0 0 0 2 2 0] [0 0 0 3 0 1] [0 0 0 3 1 0] [0 0 0 5 0 0]
[0 0 1 0 0 3] [0 0 1 0 1 2] [0 0 1 0 2 1] [0 0 1 1 0 2] [0 0 1 1 1 1] [0 0 1 1 2 0]
[0 0 1 2 0 1] [0 0 1 2 1 0] [0 0 1 3 0 0] [0 0 2 0 0 2] [0 0 2 0 1 1] [0 0 2 0 2 0]
[0 0 2 1 0 1] [0 0 2 1 1 0] [0 0 2 2 0 0] [0 0 3 0 0 1] [0 0 3 0 1 0] [0 0 3 1 0 0]
[0 0 5 0 0 0] [0 1 0 0 0 3] [0 1 0 0 1 2] [0 1 0 0 2 1] [0 1 0 1 0 2] [0 1 0 1 1 1]
[0 1 0 1 2 0] [0 1 0 2 0 1] [0 1 0 2 1 0] [0 1 0 3 0 0] [0 1 1 0 0 2] [0 1 1 0 1 1]
[0 1 1 0 2 0] [0 1 1 1 0 1] [0 1 1 1 1 0] [0 1 1 2 0 0] [0 1 2 0 0 1] [0 1 2 0 1 0]
[0 1 2 1 0 0] [0 1 4 0 0 0] [0 2 0 0 0 2] [0 2 0 0 1 1] [0 2 0 0 2 0] [0 2 0 1 0 1]
[0 2 0 1 1 0] [0 2 0 2 0 0] [0 2 1 0 0 1] [0 2 1 0 1 0] [0 2 1 1 0 0] [0 2 3 0 0 0]
[1 0 0 0 0 3] [1 0 0 0 1 2] [1 0 0 0 2 1] [1 0 0 1 0 2] [1 0 0 1 1 1] [1 0 0 1 2 0]
[1 0 0 2 0 1] [1 0 0 2 1 0] [1 0 0 4 0 0] [1 0 1 0 0 2] [1 0 1 0 1 1] [1 0 1 0 2 0]
[1 0 1 1 0 1] [1 0 1 1 1 0] [1 0 1 2 0 0] [1 0 2 0 0 1] [1 0 2 0 1 0] [1 0 2 1 0 0]
[1 0 4 0 0 0] [1 1 0 0 0 2] [1 1 0 0 1 1] [1 1 0 0 2 0] [1 1 0 1 0 1] [1 1 0 1 1 0]
[1 1 0 2 0 0] [1 1 1 0 0 1] [1 1 1 0 1 0] [1 1 1 1 0 0] [1 1 3 0 0 0] [1 2 0 0 0 1]
[1 2 0 0 1 0] [1 2 0 1 0 0] [1 2 2 0 0 0] [2 0 0 0 0 2] [2 0 0 0 1 1] [2 0 0 0 2 0]
[2 0 0 1 0 1] [2 0 0 1 1 0] [2 0 0 3 0 0] [2 0 1 0 0 1] [2 0 1 0 1 0] [2 0 1 1 0 0]
[2 0 3 0 0 0] [2 1 0 0 0 1] [2 1 0 0 1 0] [2 1 0 1 0 0] [2 1 2 0 0 0] [2 2 1 0 0 0]
[3 0 0 0 0 1] [3 0 0 0 1 0] [3 0 0 2 0 0] [3 0 2 0 0 0] [3 1 1 0 0 0] [3 2 0 0 0 0]
[4 0 0 1 0 0] [4 0 1 0 0 0] [4 1 0 0 0 0] [6 0 0 0 0 0]

layer in Sect. 5.3. By assembling these propagation characteristics, we devise an algo-
rithm to search for integral characteristics on MISTY1. Since the input and the output
are represented as eight 7-bit values and four 2-bit values, the propagation is calculated
on D7,2,7,7,2,7,7,2,7,7,2,7

K
.

The FL layer is first applied to plaintexts, and it deteriorates the propagation of the
division property. Therefore,wefirst remove only the first FL layer and search for integral
characteristics on MISTY1 without the first FL layer. The method for passing through
the first FL layer is shown in the next section. Algorithm4 shows the search algorithm
for integral characteristics on MISTY1 without the first FL layer.
As a result, we find 6-round integral characteristics without the first and the last

FL layers by using Algorithm4. Each characteristic uses 263 chosen plaintexts, where
any one bit of the first seven bits is constant and the others take all values. Then,
such input has the division property D7,2,7,7,2,7,7,2,7,7,2,7

{[6,2,7,7,2,7,7,2,7,7,2,7]}. Therefore, we use k =
[6, 2, 7, 7, 2, 7, 7, 2, 7, 7, 2, 7] as the input of Algorithm4.

We perfectly execute SizeReduce every round, and Table3 shows the propagation
of K, where minw(K) and maxw(K) are calculated as

minw(K) = min
k∈K

{
12∑

i=1

ki

}

, maxw(K) = max
k∈K

{
12∑

i=1

ki

}

.

After the 6th round function, we have 131 vectors, which are shown in “Appendix 5.”
Since these vectors do not contain (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), it means that the first
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Algorithm 3 Propagation for FL layer
1: procedure FLLayerEval(K)
2: K

′ ⇐ φ

3: for all k ∈ K do
4: L ⇐ FlEval(k1, k2, . . . , k6)
5: R ⇐ FlEval(k7, k8, . . . , k12)
6: for all � ∈ L do
7: for all r ∈ R do
8: K

′ ⇐ K
′ ∪ [�1, �2, �3, �4, �5, �6, r1, r2, r3, r4, r5, r6]

9: end for
10: end for
11: end for
12: return K′
13: end procedure

1: procedure FLEval(k1, k2, . . . , k6)
2: K

′ ⇐ φ

3: [�, c, r ] ⇐ [k1 + k4, k2 + k5, k3 + k6]
4: for k′

1 ⇐ 0 to min(7, �) do
5: for k′

2 ⇐ 0 to min(2, c) do
6: for k′

3 ⇐ 0 to min(7, r) do
7: (k′

4, k
′
5, k

′
6) ⇐ (� − k′

1, c − k′
2, r − k′

3)

8: if (k′
4 ≤ 7) ∧ (k′

5 ≤ 2) ∧ (k′
6 ≤ 7) then

9: K
′ ⇐ K

′ ∪ [k′
1, k

′
2, k

′
3, k

′
4, k

′
5, k

′
6]

10: end if
11: end for
12: end for
13: end for
14: return SizeReduce(K′)
15: end procedure

7 bits are balanced. Our algorithm is written by C++, and the execution time is about 1
day with Core i7-4770 Processor (4 cores) in 16 GB RAM. Figure5 shows the 6-round
integral characteristic, where the bit strings labeled B, i.e., the first 7 bits and last 32
bits, are balanced. Note that the 6-round characteristic becomes a 7-round characteristic
if the FL layer after the 6th round function is removed. Compared with the previous
4-round characteristic [11,28], our characteristic is improved by two rounds.
As shown in Sect. 4, the S7 ofMISTY1 has the vulnerable property thatD7

4 is provided
fromD7

6. Interestingly, assuming that S7 does not have this property (changing lines 26–
30 in S7Eval), our algorithm cannot construct the 6-round characteristic.

It was already shown in [25] that reduced MISTY1 has a 14th order differential char-
acteristic, and the principle was also discussed in [1,6]. We also revisit the known
characteristic for MISTY1 in “Appendix 4.”

5.4.1. Optimized Algorithm

If we execute SizeReduce perfectly, it requires O(|K|2) time complexity, and the
execution time ofAlgorithm4 is increased. Therefore, we use amore reasonablemethod.
Let DK be any division property, where K contains redundant vectors. Moreover, by

executing SizeReduce, we get K
′ from K. Then, as shown in Sect. 3.3, the unknown
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Algorithm 4 Path search for r -round characteristics without first FL layer
1: procedure Misty1Eval(k1, k2, . . . , k12, r )
2: K ⇐ RoundFuncEval(k) � 1st round
3: for i = 1 to r do
4: if i is even then
5: K ⇐ FlLayerEval(K) � FL Layer
6: end if
7: K ⇐ RoundFuncEval(K) � (i+1)th round
8: end for
9: return K

10: end procedure

1: procedure RoundFuncEval(K)
2: K

′ ⇐ φ

3: for all k ∈ K do
4: for all x s.t. x j ≤ k j for all j = 1, 2, . . . , 6 do
5: [r1, r2, r3] ⇐ [k1 − x1, k2 − x2, k3 − x3]
6: [r4, r5, r6] ⇐ [k4 − x4, k5 − x5, k6 − x6]
7: Y ⇐ FOEval(x1, x2, x3, x4, x5, x6)
8: for all y ∈ Y do
9: [�1, �2, �3] ⇐ [k7 + y1, k8 + y2, k9 + y3]
10: [�4, �5, �6] ⇐ [k10 + y4, k11 + y5, k12 + y6]
11: if � j ′ ≤ 7 for j ′ ∈ {1, 3, 4, 6} and � j ′ ≤ 2 for j ′ ∈ {2, 5} then
12: K

′ ⇐ K
′ ∪ [�1, �2, �3, �4, �5, �6, r1, r2, r3, r4, r5, r6]

13: end if
14: end for
15: end for
16: end for
17: return SizeReduce(K′)
18: end procedure

Table 3. Propagation from D7,2,7,7,2,7,7,2,7,7,2,7
{[6,2,7,7,2,7,7,2,7,7,2,7]}.

#rounds 0 (plaintexts) 1 2 FL 3 4 FL 5 6

|K| 1 1 9 16 2596 2617429 12268480 58962 131
maxw(K) 63 63 63 63 62 55 47 27 8
minw(K) 63 63 61 61 43 19 19 4 1

set indicated by DK is the same as that by DK′ . Namely, the result of Algorithm4 does
not change even if we do not perform SizeReduce perfectly. Therefore, we execute a
partial SizeReduce which performs faster. The rough SizeReduce first sorts every
vector in K by using lexicographic order and obtains the following |K| vectors,

k(1), k(2), . . . , k(|K|).

Then, there is no (k(i), k( j)) satisfying k(i) 	 k( j) such that i < j . We initialize two
indices, i = 1 and j = 2, and evaluate whether or not k( j) 	 k(i). If k( j) 	 k(i),
we remove k( j), and increment j . If k( j)

� k(i), increment j . Moreover, if we cannot
remove k( j) “th” times consecutively, increment i and set j = i + 1. We can choose
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Fig. 5. New 6-round integral characteristic.

th freely. If th = |K|, the above algorithm executes SizeReduce perfectly. From our
experiments, th = 10 or th = 100 are reasonable parameters. We also implemented
this efficient algorithm by C++, and the execution time is 12.8 min with Core i7-4770
Processor (4 cores) in 16 GB RAM.

6. Key Recovery Using New Integral Characteristic

This section shows the key recovery step of our cryptanalysis, which uses the 6-round
integral characteristic shown in Sect. 5. In the characteristic, the left 7-bit value of XL

7
is balanced. Since the integral characteristic does not cover the first FL layer, we first
show how to pass through the first FL layer. Then, we calculate two FL layers and one
FO function by guessing round keys from ciphertexts, and we evaluate the balanced
seven bits.
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6.1. Passage of First FL Layer

Our new characteristic removes the first FL layer. Therefore, we have to create a set
of chosen plaintexts to construct integral characteristics by using guessed round keys
K L1,1 and K L1,2. Here, we have to carefully choose the set of chosen plaintexts to
avoid the use of the full code book (see Figs. 6, 7, 8). In every figure, Ai denotes for
which we prepare an input set that i bits are active. As an example, we consider an
integral characteristic for which the first one bit is constant and the remaining 63 bits
are active. Since all bits of the right half are active, we focus only on the left half. We
first guess that K L1,2[1] = 1, and we then prepare the set of plaintexts as in Fig. 6.
We next guess that (K L1,1[1], K L1,2[1]) = (0, 0), and we then prepare the set of
plaintexts as in Fig. 7. Moreover, we guess that (K L1,1[1], K L1,2[1]) = (1, 0), and we
then prepare the set of plaintexts as in Fig. 8. These chosen plaintexts construct 6-round
integral characteristics if the guessed key bits are correct. Note that we do not use 262

chosen plaintexts of the form (1A15 1A15 A16 A16), i.e., we do not use chosen plaintexts
satisfying PL [1] = PL [16] = 1. Thus, our integral characteristics use 264−262 ≈ 263.58

chosen plaintexts.

Fig. 6. K L1,2 = 1.

Fig. 7. K L1,1 = 0, K L1,2 = 0.

Fig. 8. K L1,1 = 1, K L1,2 = 0.
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Fig. 9. Key recovery step.

6.2. Subkey Recovery Using Partial-Sum Technique

Figure9 shows the structure of our key recovery step. We guess K L1,1[i] (= K1[i]) and
K L1,2[i] (= K ′

7[i]) and then prepare a set of chosen plaintexts to construct an integral
characteristic. In the characteristic, seven bits XL

7 [1, . . . , 7] are balanced. Therefore, we
evaluate whether or not XL

7 [ j] is balanced for j ∈ {1, 2, . . . , 7} by using the partial-sum
technique [10].
In the first step, we store the frequency of 34 bits (CL ,CR[ j, 16 + j]) into a voting

table for j ∈ {1, 2, . . . , 7}. Then, we partially guess round keys, reduce the size of the
voting table, and calculate the XOR of XL

7 [ j]. Table4 summarizes the procedure of the
key recovery step, where every value is defined in Fig. 9.

Step1: Prepare thememory that stores howmany times each34-bit value (CL ,CR[ j, 16+
j]) appears, and pick the values that appear an odd number of times.

Step 2: Guess 32-bit (K1, K ′
7), and calculate X R

9 from CL . Delete the parity of the
number of occurrences of CL from the memory, and store that of X R

9 into the
memory. Namely, the memory contains a 234-bit array that stores the parity of
the number of occurrences of the 34-bit string (X R

9 ,CR[ j, 16 + j]). The time
complexity of Step2 is 234 × 232 = 266.

Step 3: Additionally guess 32-bit (K8, K ′
5), and calculate D1 from X R

9 . Delete the
parity of the number of occurrences of X R

9 [1, . . . , 16] from the memory, and
store that of D1 into the memory. Namely, the memory contains a 234-bit
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array that stores the parity of the number of occurrences of the 34-bit string
(D1, X R

9 [17, . . . , 32],CR[ j, 16+ j]). The time complexity of Step3 is 234×264 =
298.

Step 4: Additionally guess 1-bit K ′
3[ j], get K7 from (K ′

7, K8), which is already
guessed in Step2 and Step3, and calculate D2[ j] from D1. Delete the par-
ity of the number of occurrences of D1 without D1[ j] from the memory, and
store that of D2[ j] into the memory. Namely, the memory contains a 220-bit
array that stores the parity of the number of occurrences of the 20-bit string
(D1[ j], D2[ j], X R

9 [17, . . . , 32],CR[ j, 16 + j]). The time complexity of Step4
is 234 × 265 = 299.

Step 5: Additionally guess 32-bit K2, get K ′
1[ j] from (K1, K2), which is already guessed

in Step2 and Step5, and calculate D3[ j] from (X R
9 [17, . . . , 32], D1[ j]). Delete the

parity of the number of occurrences of (X R
9 [17, . . . , 32], D1[ j]) from the memory,

and store that of D3[ j] into the memory. Namely, the memory contains a 24-
bit array that stores the parity of the number of occurrences of the 4-bit string
(D2[ j], D3[ j],CR[ j, 16+ j]). The time complexity of Step5 is 220 ×281 = 2101.

Step 6: Additionally guess 2-bit (K5[ j], K ′
2[ j]), get K ′

3[ j], which is already guessed in
Step4, and calculate XL

7 [ j] from (D2[ j], D3[ j],CR[ j, 16 + j]). The time com-
plexity of Step6 is 24 × 283 = 287.

The total time complexity is

266 + 298 + 299 + 2101 + 287 ≈ 2101.5.

We repeat the above six steps for j ∈ {1, 2, . . . , 7}. Therefore, the time complexity of
the key recovery step is 7 × 2101.5 = 2104.3.
The key recovery step has to guess the 124-bit key

K1, K2, K5[1, . . . , 7], K7, K8,

K ′
1[1, . . . , 7], K ′

2[1, . . . , 7], K ′
3[1, . . . , 7], K ′

5, K
′
7.

Here, K ′
7 and K ′

1[1, . . . , 7] are uniquely determined by guessing K7, K8 and K1, K2,
respectively. Thus, the guessed key material is reduced to

K1, K2, K5[1, . . . , 7], K7, K8,

K ′
2[1, . . . , 7], K ′

3[1, . . . , 7], K ′
5,

and its size becomes 101 bits. Moreover, since we already guessed 2 bits, i.e., K1[i]
and K ′

7[i], to construct integral characteristics, the guessed key bit size is reduced to 99
bits. For wrong keys, the probability that XL

7 [1, . . . , 7] is balanced is 2−7. Therefore,
the number of the candidates of round keys is reduced to 292. Finally, we guess the 27
bits:

K5[8, . . . , 16], K ′
2[8, . . . , 16], K ′

3[8, . . . , 16].
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Note that K3, K4, and K6 are uniquely determined from (K2, K ′
2), (K3, K ′

3), and
(K5, K ′

5), respectively. Therefore, the total time complexity is 292+27 = 2119. We guess
the correct key from 2119 candidates by using two plaintext–ciphertext pairs, and the
time complexity is 2119 + 2119−64 ≈ 2119. We have to execute the above procedure
against (K1[i], K ′

7[i]) = (0, 0), (0, 1), (1, 0), (1, 1), and the time complexity becomes
4 × 2119 = 2121.

6.3. Trade-off Between Time and Data Complexity

In Sect. 6.2, we use only one set of chosen plaintexts, where (264−262) chosen plaintexts
are required. Since the probability that wrong keys are not discarded is 2−7, a brute-
force search is required with a time complexity of 2128−7 = 2121, and it is larger than
the time complexity of the partial-sum technique. Therefore, if we have a higher number
of characteristics, the total time complexity can be reduced.
To exploit several characteristics, we choose some constant bits from seven bits (i ∈

{1, 2, . . . , 7}). If we use a characteristic with i = 1, we use chosen plaintexts for which
plaintext PL takes the following values

(00A14 00A14), (00A14 01A14), (01A14 00A14), (01A14 01A14),

(00A14 10A14), (00A14 11A14), (01A14 10A14), (01A14 11A14),

(10A14 00A14), (10A14 01A14), (11A14 00A14), (11A14 01A14),

where A14 denotes that all values appear the same number independently of other bits,
e.g., (00A14 00A14) uses 260 chosen plaintexts because PR also takes all values. More-
over, if we use a characteristic with i = 2, we use chosen plaintexts for which PL takes
the following values

(00A14 00A14), (00A14 10A14), (10A14 00A14), (10A14 10A14),

(00A14 01A14), (00A14 11A14), (10A14 01A14), (10A14 11A14),

(01A14 00A14), (01A14 10A14), (11A14 00A14), (11A14 10A14).

When both characteristics are used, they do not require choosing plaintexts for which
PL takes (11A14 11A14). Therefore, (264 − 260) chosen plaintexts are required, and
the probability that wrong keys are not discarded becomes 2−14. Similarly, when three
characteristics, which require (264 − 258) chosen plaintexts, are used, the probability
that wrong keys are not discarded becomes 2−21.

Table5 summarizes the trade-off between time anddata complexity. For the use of each
characteristic, we have to execute four key recoveries with the partial-sum technique,
i.e., for (K L1,1[1], K L1,2[1]) ∈ {(0, 1), (1, 1), (0, 0), (1, 0)}. It shows that the use of
four characteristics is optimized from the perspective of time complexity. Namely, when
(264 − 256) ≈ 263.994 chosen plaintexts are required, the time complexity to recover the
secret key is 2108.3.
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Table 5. Trade-off between time and data complexity.

#characteristics Complexity for partial-sum Complexity for brute-force Total

1 1 × 4 × 2104.3 2121 2121

2 2 × 4 × 2104.3 2114 2114

3 3 × 4 × 2104.3 2107 2108.5

4 4 × 4 × 2104.3 2100 2108.3

5 5 × 4 × 2104.3 293 2108.6

6.4. Follow-Up Results and Open Problem

After a preliminary version [26] was published, Achiya Bar-On improved the key recov-
ery step [2] by using the same integral characteristic shown in this paper. The improved
key recovery technique uses the meet-in-the-middle technique [23] under the chosen
ciphertext setting. It dramatically reduces the time complexity where the secret key is
recovered, and the time complexity is 269.5. On the other hand, it requires the full code
book. When we consider the data complexity optimization, our attack, which requires
2121 time complexity and 263.58 chosen plaintexts, is still the best attack.We need to con-
struct a more efficient integral characteristic if we want to improve the data complexity,
and it is left as an open problem.

7. Conclusions

In this paper, we showed a cryptanalysis of the full MISTY1. MISTY1 was well evalu-
ated and standardized by several projects, such as CRYPTREC, ISO/IEC, and NESSIE.
We constructed a new integral characteristic by using the propagation characteristic of
the division property. Here, we improved the division property by optimizing the divi-
sion property for a public S-box. As a result, a new 6-round integral characteristic is
constructed, and we can recover the secret key of the full MISTY1 with 263.58 chosen
plaintexts and 2121 time complexity. If we can use 263.994 chosen plaintexts, our attack
can recover the secret key with a time complexity of 2108.3.

Appendix 1: MISTY S-boxes

The ANF of S7 is represented as

y[0] = x[0] ⊕ x[1]x[3] ⊕ x[0]x[3]x[4] ⊕ x[1]x[5] ⊕ x[0]x[2]x[5] ⊕ x[4]x[5]
⊕ x[0]x[1]x[6] ⊕ x[2]x[6] ⊕ x[0]x[5]x[6] ⊕ x[3]x[5]x[6] ⊕ 1,

y[1] = x[0]x[2] ⊕ x[0]x[4] ⊕ x[3]x[4] ⊕ x[1]x[5] ⊕ x[2]x[4]x[5] ⊕ x[6] ⊕ x[0]x[6]
⊕ x[3]x[6] ⊕ x[2]x[3]x[6] ⊕ x[1]x[4]x[6] ⊕ x[0]x[5]x[6] ⊕ 1,

y[2] = x[1]x[2] ⊕ x[0]x[2]x[3] ⊕ x[4] ⊕ x[1]x[4] ⊕ x[0]x[1]x[4] ⊕ x[0]x[5] ⊕ x[0]x[4]x[5]
⊕ x[3]x[4]x[5] ⊕ x[1]x[6] ⊕ x[3]x[6] ⊕ x[0]x[3]x[6] ⊕ x[4]x[6] ⊕ x[2]x[4]x[6],

y[3] = x[0] ⊕ x[1] ⊕ x[0]x[1]x[2] ⊕ x[0]x[3] ⊕ x[2]x[4] ⊕ x[1]x[4]x[5] ⊕ x[2]x[6]
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⊕ x[1]x[3]x[6] ⊕ x[0]x[4]x[6] ⊕ x[5]x[6] ⊕ 1,

y[4] = x[2]x[3] ⊕ x[0]x[4] ⊕ x[1]x[3]x[4] ⊕ x[5] ⊕ x[2]x[5] ⊕ x[1]x[2]x[5] ⊕ x[0]x[3]x[5]
⊕ x[1]x[6] ⊕ x[1]x[5]x[6] ⊕ x[4]x[5]x[6] ⊕ 1,

y[5] = x[0] ⊕ x[1] ⊕ x[2] ⊕ x[0]x[1]x[2] ⊕ x[0]x[3] ⊕ x[1]x[2]x[3] ⊕ x[1]x[4]
⊕ x[0]x[2]x[4] ⊕ x[0]x[5] ⊕ x[0]x[1]x[5] ⊕ x[3]x[5] ⊕ x[0]x[6] ⊕ x[2]x[5]x[6],

y[6] = x[0]x[1] ⊕ x[3] ⊕ x[0]x[3] ⊕ x[2]x[3]x[4] ⊕ x[0]x[5] ⊕ x[2]x[5] ⊕ x[3]x[5]
⊕ x[1]x[3]x[5] ⊕ x[1]x[6] ⊕ x[1]x[2]x[6] ⊕ x[0]x[3]x[6] ⊕ x[4]x[6] ⊕ x[2]x[5]x[6].

Moreover, the ANF of S9 is represented as

y[0] = x[0]x[4] ⊕ x[0]x[5] ⊕ x[1]x[5] ⊕ x[1]x[6] ⊕ x[2]x[6] ⊕ x[2]x[7] ⊕ x[3]x[7] ⊕ x[3]x[8]
⊕ x[4]x[8] ⊕ 1,

y[1] = x[0]x[2] ⊕ x[3] ⊕ x[1]x[3] ⊕ x[2]x[3] ⊕ x[3]x[4] ⊕ x[4]x[5] ⊕ x[0]x[6] ⊕ x[2]x[6]
⊕ x[7] ⊕ x[0]x[8] ⊕ x[3]x[8] ⊕ x[5]x[8] ⊕ 1,

y[2] = x[0]x[1] ⊕ x[1]x[3] ⊕ x[4] ⊕ x[0]x[4] ⊕ x[2]x[4] ⊕ x[3]x[4] ⊕ x[4]x[5] ⊕ x[0]x[6]
⊕ x[5]x[6] ⊕ x[1]x[7] ⊕ x[3]x[7] ⊕ x[8],

y[3] = x[0] ⊕ x[1]x[2] ⊕ x[2]x[4] ⊕ x[5] ⊕ x[1]x[5] ⊕ x[3]x[5] ⊕ x[4]x[5] ⊕ x[5]x[6]
⊕ x[1]x[7] ⊕ x[6]x[7] ⊕ x[2]x[8] ⊕ x[4]x[8],

y[4] = x[1] ⊕ x[0]x[3] ⊕ x[2]x[3] ⊕ x[0]x[5] ⊕ x[3]x[5] ⊕ x[6] ⊕ x[2]x[6] ⊕ x[4]x[6]
⊕ x[5]x[6] ⊕ x[6]x[7] ⊕ x[2]x[8] ⊕ x[7]x[8],

y[5] = x[2] ⊕ x[0]x[3] ⊕ x[1]x[4] ⊕ x[3]x[4] ⊕ x[1]x[6] ⊕ x[4]x[6] ⊕ x[7] ⊕ x[3]x[7]
⊕ x[5]x[7] ⊕ x[6]x[7] ⊕ x[0]x[8] ⊕ x[7]x[8],

y[6] = x[0]x[1] ⊕ x[3] ⊕ x[1]x[4] ⊕ x[2]x[5] ⊕ x[4]x[5] ⊕ x[2]x[7] ⊕ x[5]x[7] ⊕ x[8]
⊕ x[0]x[8] ⊕ x[4]x[8] ⊕ x[6]x[8] ⊕ x[7]x[8] ⊕ 1,

y[7] = x[1] ⊕ x[0]x[1] ⊕ x[1]x[2] ⊕ x[2]x[3] ⊕ x[0]x[4] ⊕ x[5] ⊕ x[1]x[6] ⊕ x[3]x[6]
⊕ x[0]x[7] ⊕ x[4]x[7] ⊕ x[6]x[7] ⊕ x[1]x[8] ⊕ 1,

y[8] = x[0] ⊕ x[0]x[1] ⊕ x[1]x[2] ⊕ x[4] ⊕ x[0]x[5] ⊕ x[2]x[5] ⊕ x[3]x[6] ⊕ x[5]x[6]
⊕ x[0]x[7] ⊕ x[0]x[8] ⊕ x[3]x[8] ⊕ x[6]x[8] ⊕ 1.

Appendix 2: Proof of Propagation Rules

Proof of Rule1 (Substitution)

Let F be a function that consists of m S-boxes, where Fi denotes the i th S-box and
the bit length and the algebraic degree is ni bits and di , respectively. The input and the
output take a value of (F

n1
2 × F

n2
2 × · · · × F

nm
2 ), and X and Y denote the input multiset

and the output multiset, respectively.
First, we only apply the first S-box and evaluate the division property of the multiset

whose elements are represented by [F1(x1), x2, . . . , xm]. Assuming that the multiset
X has the division property Dn1,n2,...,nm

K
, the parity

⊕
x∈X πv([F1(x1), x2, . . . , xm]) is

evaluated as follows:



Integral Cryptanalysis on Full MISTY1 945

⊕

x∈X
πv([F1(x1), x2, . . . , xm]) =

⊕

x∈X

(

(πv1 ◦ F1)(x1) ×
m∏

i=2

πvi (xi )

)

=
⊕

x∈X

⎛

⎜
⎝

⎛

⎜
⎝

⊕

u1∈Fn1
2

a
(πv1◦F1)
u1 πu1(x1)

⎞

⎟
⎠ ×

(
m∏

i=2

πvi (xi )

)
⎞

⎟
⎠

=
⊕

u1∈Fn1
2

(
⊕

x∈X

(

a
(πv1◦F1)
u1 πu1(x1) ×

m∏

i=2

πvi (xi )

))

=
⊕

u1∈Fn1
2

(

a
(πv1◦F1)
u1

⊕

x∈X
π[u1,v2,v3,...,vm ](x)

)

.

Therefore, for anyv ∈ (F
n1
2 ×F

n2
2 ×· · ·×F

nm
2 ), the parity

⊕
x∈X πv([F1(x1), x2, . . . , xm])

is 0 if

a
(πv1◦F1)
u1

⊕

x∈X
π[u1,v2,v3,...,vm ](x)

is 0 for all u1 ∈ F
n1
2 . Since the algebraic degree of (πv1 ◦ F1) is at most w(v1) × d1,

a
(πv1◦F1)
u1 = 0 when w(u1) > w(v1) × d1. Therefore, the parity becomes unknown only
if we cannot determine the value of

⊕
x∈X π[u1,v2,v3,...,vm ](x)whenw(u1) ≤ w(v1)×d1.

Now, since the multiset X has the division property Dn1,n2,...,nm
K

,

⊕

x∈X
πu(x) =

{
unknown if there exist k ∈ K s.t. W (u) 	 k,

0 otherwise.

Therefore, the necessary condition that
⊕

x∈X π[u1,v2,v3,...,vm ](x) becomes unknown is
expressed as follows:

W ([u1, v2, v3, . . . , vm]) 	 k,

⇒ [w(v1) × d1, w(v2), . . . , w(vm)] 	 k,

⇒ [w(v1), w(v2), . . . , w(vm)] 	
[ ⌈

k1
d1

⌉

, k2, k3, . . . , km

]

.

Namely,
⊕

x∈X πv([F(x1), x2, . . . , xm]) is unknownonly if there exists k ∈ K satisfying

W (v1, v2, v3, . . . , vm) 	
[ ⌈

k1
d1

⌉

, k2, k3, . . . , km

]

.
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Therefore, the division property of the output multiset is Dn1,n2,...,nm
K′ , where K

′ has the
following vectors

[⌈
k1
d1

⌉

, k2, . . . , km

]

for all k ∈ K.

Next, assume that F1 is bijective and k1 = n1. Then, the algebraic degree of (πv1 ◦ F1) is
less than n1 for w(v1) < n1 and becomes n1 for only w(v1) = n1. Therefore, the neces-
sary condition that

⊕
x∈X π[u1,v2,v3,...,vm ](x) becomes unknown isw(v1) = n1. Namely,

if k1 = n1, [n1, k2, k3, . . . , km] is inserted into K
′ instead of [k1/d1� , k2, . . . , km].

Finally, Rule1 is proven by repeating the same procedure for other S-boxes.

Proof of Rule2 (Copy)

Let F be a copy function, where the input x takes a value of F
n
2 and the output is

calculated as [y1, y2] = [x, x]. LetX andY be the input multiset and the output multiset,
respectively.
Assuming that the multiset X has the division propertyDn

k , the parity
⊕

y∈Y πv( y) is
evaluated as follows:

⊕

y∈Y
πv( y) =

⊕

x∈X
π[v1,v2]([x, x]) =

⊕

x∈X

(
πv1(x) × πv2(x)

) =
⊕

x∈X

(
πv1∨v2(x)

)
.

Since the multiset X has the division property Dn
k ,

⊕

x∈X
πu(x) =

{
unknown w(u) ≥ k,

0 w(u) < k.

When w(v1) + w(v2) < k, the parity
⊕

y∈Y πv( y) is 0 because w(v1 ∨ v2) ≤ w(v1) +
w(v2) < k. Moreover, the necessary condition that the parity becomes unknown is
w(v1) + w(v2) ≥ k. Therefore, the division property of Y is Dn,n

K′ , where K
′ has the

following vectors

[k − i, i] for 0 ≤ i ≤ k.

Thus, Rule2 is proven.

Proof of Rule3 (Compression by XOR)

Let F be a compression function by an XOR, where the input [x1, x2] takes a value of
(Fn

2 ×F
n
2) and the output is calculated as y = x1 ⊕ x2. Let X and Y be the input multiset

and the output multiset, respectively.
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Assuming that the multiset X has the division property Dn,n
K

, the parity
⊕

y∈Y πv(y)
is evaluated as follows:

⊕

y∈Y
πv(y) =

⊕

[x1,x2]∈X
πv(x1 ⊕ x2) =

⊕

[x1,x2]∈X

(
n∏

i=1

(x1[i] ⊕ x2[i])v[i]
)

=
⊕

[x1,x2]∈X

⎛

⎝
⊕

w∈{1,2}n

(
n∏

i=1

xwi [i]v[i]
)⎞

⎠

=
⊕

w∈{1,2}n

⎛

⎝
⊕

[x1,x2]∈X

(
n∏

i=1

xwi [i]v[i]
)⎞

⎠

=
⊕

w∈{1,2}n

⎛

⎝
⊕

[x1,x2]∈X

(
πδ1(v,w)(x1) × πδ2(v,w)(x2)

)
⎞

⎠ ,

where

δ j (v,w)[i] =
{
1 v[i] = 1 and wi = j,

0 otherwise.

Since the multiset X has the division property Dn,n
K

,

⊕

x∈X
π[u1,u2](x) =

{
unknown if there exist [k1, k2] ∈ K s.t. [w(u1), w(u2)] 	 [k1, k2],
0 otherwise.

When w(v) = w(δ1(v,w)) + w(δ2(v,w)) < mink∈K{k1 + k2}, the parity ⊕
y∈Y πv(y)

is 0 because there is not [k1, k2] ∈ K satisfying [w(δ1(v,w)), w(δ2(v,w))] 	 [k1, k2].
Moreover, the necessary condition that the parity becomes unknown is w(v) ≥
mink∈K{k1+k2}. Therefore, the division property of Y isDn

k′ , where k′ = mink∈K{k1+
k2}. Note that the parity is 0 for all v if k′ is greater than n. Thus, Rule3 is proven.

Proof of Rule4 (Split)

Let F be a split function, where the input x takes a value ofFn
2 and the output is calculated

as y1‖y2 = x , where [y1, y2] takes a value of (F
n1
2 × F

n−n1
2 ). Let X and Y be the input

multiset and the output multiset, respectively.
Assuming that the multiset X has the division propertyDn

k , the parity
⊕

y∈Y πv( y) is
evaluated as follows:

⊕

y∈Y
πv( y) =

⊕

x∈X
π[v1‖v2](x).
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Since the multiset X has the division property Dn
k ,

⊕

x∈X
πu(x) =

{
unknown w(u) ≥ k,

0 w(u) < k.

When w(v1) + w(v2) < k, the parity
⊕

y∈Y πv( y) is 0 because w(v1‖v2) = w(v1) +
w(v2) < k. Moreover, the necessary condition that the parity becomes unknown is
w(v1)+w(v2) ≥ k. Therefore, the division property of Y isDn1,n−n1

K′ , where K
′ has the

following vectors

[k − i, i] for 0 ≤ i ≤ k.

Note that we cannot choose more than n1 and n − n1 bits from y1 and y2, respectively.
Thus, Rule4 is proven.

Proof of Rule5 (Concatenation)

Let F be a concatenation function, where the input [x1, x2] takes a value of (F
n1
2 × F

n2
2 )

and the output is calculated as y = x1‖x2. Let X and Y be the input multiset and the
output multiset, respectively.
Assuming that the multisetX has the division propertyDn1,n2

K
, the parity

⊕
y∈Y πv(y)

is evaluated as follows:

⊕

y∈Y
πv(y) =

⊕

[x1,x2]∈X
πv1‖v2(x1‖x2) =

⊕

[x1,x2]∈X
π[v1,v2]([x1, x2]),

where v = v1‖v2, and the bit length of v1 and that of v2 is n1 and n2, respectively. Since
the multiset X has the division property Dn1,n2

K
,

⊕

x∈X
π[u1,u2](x) =

{
unknown if there exist [k1, k2] ∈ K s.t. [w(u1), w(u2)] 	 [k1, k2],
0 otherwise.

When w(v) = w(v1)+w(v2) < mink∈K{k1 + k2}, the parity ⊕
y∈Y πv(y) is 0 because

there is not [k1, k2] ∈ K satisfying [w(v1), w(v2)] 	 [k1, k2]. Moreover, the necessary
condition that the parity becomes unknown is w(v) ≥ mink∈K{k1 + k2}. Therefore, the
division property of Y is Dn

k′ , where k′ = mink∈K{k1 + k2}. Thus, Rule5 is proven.

Appendix 3: Example—Propagation from D7,2,7
{[4,2,6]} for F I Function

We consider the propagation characteristic of the division property for the F I function
(see Fig. 4). Assume that X1 has the division property D7,2,7

{[4,2,6]}.
From X1 to X2: Since the first 7-bit value and the second 2-bit value are concatenated,

Rule5 is applied. Thus, the multiset X2 has the division property D9,7
{[6,6]}.
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From X2 to X3: The 9-bit S-box S9 is applied. Thus, the multiset X3 has the division
property D9,7

{[3,6]}.
From X3 to X4: Since the first 9-bit value is split to 2-bit and 7-bit values, Rule4 is

applied. Thus, the multiset X4 has the division property D2,7,7
{[0,3,6],[1,2,6],[2,1,6]}.

From X4 to X5: Since the second 7-bit value is XORed with the last 7-bit value, Rule2
and Rule3 are applied. In this case, the propagation of the division property is
calculated as

[0, 3, 6] ⇒ [0, 3, 6], [0, 4, 5], [0, 5, 4], [0, 6, 3], [0, 7, 2],
[1, 2, 6] ⇒ [1, 2, 6], [1, 3, 5], [1, 4, 4], [1, 5, 3], [1, 6, 2], [1, 7, 1],
[2, 1, 6] ⇒ [2, 1, 6], [2, 2, 5], [2, 3, 4], [2, 4, 3], [2, 5, 2], [2, 6, 1], [2, 7, 0].

The position is rotated, and then, the division property of X5 has D7,2,7
K

, where K

has 18 vectors as

[6, 0, 3], [5, 0, 4], [4, 0, 5], [3, 0, 6], [2, 0, 7],
[6, 1, 2], [5, 1, 3], [4, 1, 4], [3, 1, 5], [2, 1, 6], [1, 1, 7],
[6, 2, 1], [5, 2, 2], [4, 2, 3], [3, 2, 4], [2, 2, 5], [1, 2, 6], [0, 2, 7].

From X5 to X6: The 7-bit S-box S7 is applied. Here, we exploit the vulnerable property
of S7. Thus, the following 18 vectors

[4, 0, 3], [2, 0, 4], [2, 0, 5], [1, 0, 6], [1, 0, 7],
[4, 1, 2], [2, 1, 3], [2, 1, 4], [1, 1, 5], [1, 1, 6], [1, 1, 7],
[4, 2, 1], [2, 2, 2], [2, 2, 3], [1, 2, 4], [1, 2, 5], [1, 2, 6], [0, 2, 7],

are calculated. For example, the vector [2, 0, 5] is removed because [2, 0, 5] �
[2, 0, 4]. Similarly, after removing redundant vectors, and the division property of
X6 has D7,2,7

K
, where K has 10 vectors as

[0, 2, 7], [1, 0, 6], [1, 1, 5], [1, 2, 4], [2, 0, 4],
[2, 1, 3], [2, 2, 2], [4, 0, 3], [4, 1, 2], [4, 2, 1].

From X6 to X7: Since the first 7-bit value is XORed with the last 7-bit value, Rule2
and Rule3 are applied. In this case, the propagation of the division property is
calculated as

[0, 2, 7] ⇒ [0, 2, 7], [1, 2, 6], [2, 2, 5], [3, 2, 4], [4, 2, 3], [5, 2, 2], [6, 2, 1], [7, 2, 0],
[1, 0, 6] ⇒ [1, 0, 6], [2, 0, 5], [3, 0, 4], [4, 0, 3], [5, 0, 2], [6, 0, 1], [7, 0, 0],
[1, 1, 5] ⇒ [1, 1, 5], [2, 1, 4], [3, 1, 3], [4, 1, 2], [5, 1, 1], [6, 1, 0],
[1, 2, 4] ⇒ [1, 2, 4], [2, 2, 3], [3, 2, 2], [4, 2, 1], [5, 2, 0],
[2, 0, 4] ⇒ [2, 0, 4], [3, 0, 3], [4, 0, 2], [5, 0, 1], [6, 0, 0],
[2, 1, 3] ⇒ [2, 1, 3], [3, 1, 2], [4, 1, 1], [5, 1, 0],



950 Y. Todo

[2, 2, 2] ⇒ [2, 2, 2], [3, 2, 1], [4, 2, 0],
[4, 0, 3] ⇒ [4, 0, 3], [5, 0, 2], [6, 0, 1], [7, 0, 0],
[4, 1, 2] ⇒ [4, 1, 2], [5, 1, 1], [6, 1, 0],
[4, 2, 1] ⇒ [4, 2, 1], [5, 2, 0].

After removing redundant vectors, the position is rotated and then the division
property of X7 has D2,7,7

K
, where K has 16 vectors as

[0, 0, 6], [0, 1, 5], [0, 2, 4], [0, 3, 3], [0, 4, 2], [0, 6, 1], [1, 0, 5], [1, 1, 4],
[1, 2, 3], [1, 3, 2], [1, 5, 1], [2, 0, 4], [2, 1, 3], [2, 2, 2], [2, 4, 1], [2, 7, 0].

From X7 to X8: Since the first 2-bit value and the second 7-bit value are concatenated,
Rule5 is applied. Then, the following 16 vectors

[0, 6], [1, 5], [2, 4], [3, 3], [4, 2], [6, 1], [1, 5], [2, 4],
[3, 3], [4, 2], [6, 1], [2, 4], [3, 3], [4, 2], [6, 1], [9, 0],

are calculated. After removing redundant vectors, the division property of X8 has
D9,7
K

, where K has 7 vectors as

[0, 6], [1, 5], [2, 4], [3, 3], [4, 2], [6, 1], [9, 0].

From X8 to X9: The 9-bit S-box S9 is applied. Then, the following 7 vectors

[0, 6], [1, 5], [1, 4], [2, 3], [2, 2], [3, 1], [9, 0],

are calculated. After removing redundant vectors, the division property of X9 has
D9,7
K

, where K has 5 vectors as

[0, 6], [1, 4], [2, 2], [3, 1], [9, 0].

From X9 to X10: Since the first 9-bit value is split to 2-bit and 7-bit values, Rule4 is
applied. Thus, the multiset X10 has the division property D2,7,7

K
, where K has 10

vectors as

[0, 6] ⇒ [0, 0, 6],
[1, 4] ⇒ [0, 1, 4], [1, 0, 4],
[2, 2] ⇒ [0, 2, 2], [1, 1, 2], [2, 0, 2],
[3, 1] ⇒ [0, 3, 1], [1, 2, 1], [2, 1, 1],
[9, 0] ⇒ [2, 7, 0].

From X10 to X11: Since the second 7-bit value is XORed with the last 7-bit value,
Rule2 and Rule3 are applied. In this case, the propagation of the division property
is calculated as
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[0, 0, 6] ⇒ [0, 0, 6], [0, 1, 5], [0, 2, 4], [0, 3, 3], [0, 4, 2], [0, 5, 1], [0, 6, 0],
[0, 1, 4] ⇒ [0, 1, 4], [0, 2, 3], [0, 3, 2], [0, 4, 1], [0, 5, 0],
[1, 0, 4] ⇒ [1, 0, 4], [1, 1, 3], [1, 2, 2], [1, 3, 1], [1, 4, 0],
[0, 2, 2] ⇒ [0, 2, 2], [0, 3, 1], [0, 4, 0],
[1, 1, 2] ⇒ [1, 1, 2], [1, 2, 1], [1, 3, 0],
[2, 0, 2] ⇒ [2, 0, 2], [2, 1, 1], [2, 2, 0],
[0, 3, 1] ⇒ [0, 3, 1], [0, 4, 0],
[1, 2, 1] ⇒ [1, 2, 1], [1, 3, 0],
[2, 1, 1] ⇒ [2, 1, 1], [2, 2, 0],
[2, 7, 0] ⇒ [2, 7, 0].

After removing redundant vectors, the position is rotated, and then the division
property of X11 has D7,2,7

K
, where K has 12 vectors as

[0, 0, 4], [0, 1, 3], [0, 2, 2], [1, 0, 3], [1, 1, 2], [1, 2, 1],
[2, 0, 2], [2, 1, 1], [2, 2, 0], [4, 0, 1], [4, 1, 0], [6, 0, 0].

Algorithm1 can automatically search for the propagation characteristic of the division
property from any D7,2,7

{k} . We create the propagation characteristic tables, which are
shown in “Appendix 6”, by implementing Algorithm1.

Appendix 4: Revisiting Known Characteristic for MISTY1

It was already shown in [25] that reduced MISTY1 has a 14th order differential char-
acteristic, and the principle was also discussed in [1,6]. In the 14th order differential
characteristic, 14 bits PR[10, . . . , 16, 26, . . . , 32] are active and the others are constant.
Then, the first seven bits of X R

5 are balanced. We evaluate the principle of the char-
acteristic by using the propagation characteristic of the division property. We search
for the integral characteristics by using Algorithm4 with perfect SizeReduce. We
use k = [0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 7] as the input of Algorithm4, and Table6 shows
the propagation of K. The output of the 4th round function has the division property
D7,2,7,7,2,7,7,2,7,7,2,7
K

, where K has 12 vectors as follows:

Table 6. Propagation from D0,0,0,0,0,0,0,0,7,0,0,7
{[6,2,7,7,2,7,7,2,7,7,2,7]}.

#rounds 0 (plaintexts) 1 2 FL 3 4 FL

|K| 1 1 460 400 125 12 12
maxw(K) 14 14 14 14 4 2 1
minw(K) 14 14 4 4 1 1 1
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[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

This result implies the existence of a 14th order differential characteristic, where the left
seven bits of X R

5 are balanced.
The 14th order differential characteristic is extended to a 46th order differential char-

acteristic, where 14 bits PL [10, . . . , 16, 26, . . . , 32] and 32 bits PR are active and the
others are constant. Then, the first seven bits of XL

5 are balanced.We also revisit the 46th
order differential characteristic.Namely,we evaluate the propagation characteristic of the
division property, where the input set has the division property D7,2,7,7,2,7,7,2,7,7,2,7

{[0,0,7,0,0,7,7,2,7,7,2,7]}.
As a result, we can get an integral characteristic that the first 16 bits of XL

5 are balanced.
In the simple extension shown in [11] and [28], only the first 7 bits are balanced. Thus,
our method proves that the number of balanced bits is extended from 7 bits to 16 bits.

Appendix 5: Propagation from D7,2,7,7,2,7,7,2,7,7,2,7
{[6,2,7,7,2,7,7,2,7,7,2,7]}

When the input set has the division property D7,2,7,7,2,7,7,2,7,7,2,7
{[6,2,7,7,2,7,7,2,7,7,2,7]}, the division prop-

erty of the set of texts encrypted 6 rounds without the first and the last FL layers is
represented as D7,2,7,7,2,7,7,2,7,7,2,7

K
. Here, K has 131 vectors as follows:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2] [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2] [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1] [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2] [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1] [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3] [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2] [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1] [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2]
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1] [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0] [0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1] [0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2] [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1] [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1] [0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2] [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1] [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2] [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0] [0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1] [0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0] [0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2] [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1] [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0] [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1]
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0] [0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1] [0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2] [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0] [0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1] [0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0] [0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1] [0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0] [0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0] [0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3] [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2] [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1] [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1] [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0] [0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1] [0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0] [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2] [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1] [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1] [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0] [0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0] [0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1]
[0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0] [0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0] [0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 0, 0] [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2]
[0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1] [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0] [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1] [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0]
[0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0] [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]
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[0, 0, 0, 0, 0, 0, 1, 1, 4, 0, 0, 0] [0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1] [0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1, 0] [0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0] [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2] [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1] [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0]
[0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1] [0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0] [0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0] [0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1]
[0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0] [0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0] [0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0] [0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0] [0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0] [0, 0, 0, 0, 0, 0, 2, 1, 3, 0, 0, 0] [0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1] [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0] [0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0] [0, 0, 0, 0, 0, 0, 3, 1, 2, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 0] [0, 0, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0] [0, 0, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0] [0, 0, 0, 0, 0, 0, 5, 1, 1, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 5, 2, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 7, 0, 1, 0, 0, 0] [0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Assume that X has the division property D7,2,7,7,2,7,7,2,7,7,2,7
K

. Let ei ∈ Z
12 be a unit

vector whose i th element is one and the others are zero. When there do not exist ei in
K,

⊕
x∈X xi = 0. Since the vector [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] is not included in 131

vectors, we are certain that the first 7 bits are balanced.

Appendix 6: Propagation Characteristic Table for F I Function

See Tables 7, 8, 9, 10, 11, 12, 13 and 14.

Table 7. Propagation from D7,2,7
{[0,∗,∗]} to D

7,2,7
K

.

k K

[0 0 0] [0 0 0]
[0 0 1] [0 0 1] [0 1 0] [1 0 0]
[0 0 2] [0 0 1] [0 1 0] [1 0 0]
[0 0 3] [0 0 1] [0 2 0] [1 0 0]
[0 0 4] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[0 0 5] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [2 0 0]
[0 0 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]
[0 0 7] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[0 1 0] [0 0 1] [0 1 0] [1 0 0]
[0 1 1] [0 0 1] [0 1 0] [2 0 0]
[0 1 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[0 1 3] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[0 1 4] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
[0 1 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]
[0 1 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[0 1 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[0 2 0] [0 0 1] [0 1 0] [1 0 0]
[0 2 1] [0 0 1] [0 1 0] [2 0 0]
[0 2 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[0 2 3] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[0 2 4] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
[0 2 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]
[0 2 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[0 2 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
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Table 8. Propagation from D7,2,7
{[1,∗,∗]} to D7,2,7

K
.

k K

[1 0 0] [0 0 1] [0 1 0] [1 0 0]
[1 0 1] [0 0 1] [0 1 0] [2 0 0]
[1 0 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[1 0 3] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[1 0 4] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
[1 0 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]
[1 0 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[1 0 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[1 1 0] [0 0 1] [0 1 0] [1 0 0]
[1 1 1] [0 0 1] [0 1 0] [2 0 0]
[1 1 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[1 1 3] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[1 1 4] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
[1 1 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]
[1 1 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[1 1 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[1 2 0] [0 0 1] [0 1 0] [2 0 0]
[1 2 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[1 2 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[1 2 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
[1 2 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[1 2 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[1 2 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[1 2 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

Table 9. Propagation from D7,2,7
{[2,∗,∗]} to D7,2,7

K
.

k K

[2 0 0] [0 0 1] [0 1 0] [1 0 0]
[2 0 1] [0 0 1] [0 1 0] [2 0 0]
[2 0 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[2 0 3] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]
[2 0 4] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
[2 0 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]
[2 0 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[2 0 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[2 1 0] [0 0 1] [0 1 0] [2 0 0]
[2 1 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[2 1 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[2 1 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
[2 1 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[2 1 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[2 1 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[2 1 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[2 2 0] [0 0 1] [0 1 0] [2 0 0]
[2 2 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[2 2 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[2 2 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
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Table 9. continued.

k K

[2 2 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[2 2 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[2 2 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[2 2 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

Table 10. Propagation from D7,2,7
{[3,∗,∗]} to D

7,2,7
K

.

k K

[3 0 0] [0 0 1] [0 1 0] [2 0 0]
[3 0 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[3 0 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[3 0 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
[3 0 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[3 0 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[3 0 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[3 0 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[3 1 0] [0 0 1] [0 1 0] [2 0 0]
[3 1 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[3 1 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[3 1 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
[3 1 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[3 1 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[3 1 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[3 1 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[3 2 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[3 2 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[3 2 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[3 2 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[3 2 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[3 2 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[3 2 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[3 2 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]

Table 11. Propagation from D7,2,7
{[4,∗,∗]} to D

7,2,7
K

.

k K

[4 0 0] [0 0 1] [0 1 0] [2 0 0]
[4 0 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[4 0 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[4 0 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]
[4 0 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[4 0 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[4 0 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[4 0 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[4 1 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]



956 Y. Todo

Table 11. continued.

k K

[4 1 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[4 1 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[4 1 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[4 1 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[4 1 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[4 1 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[4 1 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]
[4 2 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[4 2 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[4 2 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[4 2 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[4 2 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[4 2 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[4 2 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[4 2 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]

Table 12. Propagation from D7,2,7
{[5,∗,∗]} to D

7,2,7
K

.

k K

[5 0 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[5 0 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[5 0 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[5 0 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[5 0 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[5 0 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[5 0 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[5 0 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]
[5 1 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[5 1 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[5 1 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[5 1 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[5 1 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[5 1 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[5 1 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[5 1 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]
[5 2 0] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[5 2 1] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[5 2 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[5 2 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[5 2 4] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[5 2 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[5 2 6] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]
[5 2 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [4 0 2] [4 1 1] [4 2 0]

[6 0 1] [6 1 0]
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Table 13. Propagation from D7,2,7
{[6,∗,∗]} to D

7,2,7
K

.

k K

[6 0 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]
[6 0 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[6 0 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[6 0 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]
[6 0 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[6 0 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]
[6 0 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[6 0 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]
[6 1 0] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[6 1 1] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[6 1 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[6 1 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[6 1 4] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[6 1 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[6 1 6] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]
[6 1 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [4 0 2] [4 1 1] [4 2 0]

[6 0 1] [6 1 0]
[6 2 0] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[6 2 1] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[6 2 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[6 2 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[6 2 4] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[6 2 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[6 2 6] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]
[6 2 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [4 0 2] [4 1 1] [4 2 0]

[6 0 1] [6 1 0]

Table 14. Propagation from D7,2,7
{[7,∗,∗]} to D

7,2,7
K

.

k K

[7 0 0] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[7 0 1] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[7 0 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[7 0 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[7 0 4] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[7 0 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[7 0 6] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]
[7 0 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [4 0 2] [4 1 1] [4 2 0]

[6 0 1] [6 1 0]
[7 1 0] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]
[7 1 1] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[7 1 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
[7 1 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]
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Table 14. continued.

k K

[7 1 4] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[7 1 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
[7 1 6] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]

[5 0 1] [5 1 0] [7 0 0]
[7 1 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [4 0 2] [4 1 1] [4 2 0]

[6 0 1] [6 1 0]
[7 2 0] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [3 0 3] [3 1 2] [3 2 1] [5 0 2] [5 1 1] [5 2 0]

[7 0 1] [7 1 0]
[7 2 1] [0 0 6] [0 1 5] [0 2 4] [1 0 5] [1 1 4] [1 2 3] [2 0 4] [2 1 3] [2 2 2] [4 0 3] [4 1 2] [4 2 1]

[6 0 2] [6 1 1] [6 2 0]
[7 2 2] [0 0 6] [0 1 5] [0 2 4] [1 0 5] [1 1 4] [1 2 3] [2 0 4] [2 1 3] [2 2 2] [4 0 3] [4 1 2] [4 2 1]

[6 0 2] [6 1 1] [6 2 0]
[7 2 3] [0 0 6] [0 1 5] [0 2 4] [1 0 5] [1 1 4] [1 2 3] [2 0 4] [2 1 3] [2 2 2] [4 0 3] [4 1 2] [4 2 1]

[6 0 2] [6 1 1] [6 2 0]
[7 2 4] [0 0 7] [0 1 6] [0 2 5] [1 0 6] [1 1 5] [1 2 4] [2 0 5] [2 1 4] [2 2 3] [3 0 4] [3 1 3] [3 2 2]

[5 0 3] [5 1 2] [5 2 1] [7 0 2] [7 1 1] [7 2 0]
[7 2 5] [0 0 7] [0 1 6] [0 2 5] [1 0 6] [1 1 5] [1 2 4] [2 0 5] [2 1 4] [2 2 3] [3 0 4] [3 1 3] [3 2 2]

[5 0 3] [5 1 2] [5 2 1] [7 0 2] [7 1 1] [7 2 0]
[7 2 6] [0 2 7] [1 1 7] [1 2 6] [2 0 7] [2 1 6] [2 2 5] [3 0 6] [3 1 5] [3 2 4] [4 0 5] [4 1 4] [4 2 3]

[5 0 4] [5 1 3] [5 2 2] [7 0 3] [7 1 2] [7 2 1]
[7 2 7] [7 2 7]
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