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Abstract. Göös et al. (ITCS, 2015) have recently introduced the notion of Zero-
Information Arthur–Merlin Protocols (ZAM). In this model, which can be viewed as a
private version of the standard Arthur–Merlin communication complexity game, Alice
and Bob are holding a pair of inputs x and y, respectively, and Merlin, the prover,
attempts to convince them that some public function f evaluates to 1 on (x, y). In addi-
tion to standard completeness and soundness, Göös et al., require a “zero-knowledge”
property which asserts that on each yes-input, the distribution ofMerlin’s proof leaks no
information about the inputs (x, y) to an external observer. In this paper, we relate this
new notion to the well-studied model of Private Simultaneous Messages (PSM) that
was originally suggested by Feige et al. (STOC, 1994). Roughly speaking, we show that
the randomness complexity of ZAM corresponds to the communication complexity of
PSM and that the communication complexity of ZAM corresponds to the randomness
complexity of PSM. This relation works in both directions where different variants of
PSM are being used. As a secondary contribution, we reveal new connections between
different variants of PSM protocols which we believe to be of independent interest. Our
results give rise to better ZAM protocols based on existing PSM protocols, and to better
protocols for conditional disclosure of secrets (a variant of PSM) from existing ZAMs.
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1. Introduction

In this paper we reveal an intimate connection between two seemingly unrelated mod-
els for non-interactive information-theoretic secure computation. We begin with some
background.

1.1. Zero-Information Unambiguous Arthur–Merlin Communication Protocols

Consider a pair of computationally unbounded (randomized) parties, Alice and Bob,
each holding an n-bit input, x and y respectively, to some public function f : {0, 1}n ×
{0, 1}n → {0, 1}. In our first model, a third party, Merlin, wishes to convince Alice and
Bob that their joint input mapped to 1 (i.e., (x, y) is in the language f −1(1)). Merlin
gets to see the parties’ inputs (x, y) and their private randomness rA and rB , and is
allowed to send a single message (“proof”) p to both parties. Then, each party decides
whether to accept the proof based on its input and its private randomness. We say that
the protocol accepts p if both parties accept it. The protocol is required to satisfy natural
properties of (perfect) completeness and soundness. Namely, if (x, y) ∈ f −1(1), then
there is always a proof p = p(x, y, rA, rB) that is accepted by both parties, whereas if
(x, y) ∈ f −1(0), then, with probability 1− δ (over the coins of Alice and Bob), no such
proof exists. As usual in communication complexity games, the goal is to minimize the
communication complexity of the protocol, namely the length of the proof p.
This model, which is well studied in the communication complexity literature [5,19,

20], is viewed as the communication complexity analogue ofAM protocols [8]. Recently,
Göös et al. [13] suggested a variant of this model which requires an additional “zero-
knowledge” property defined as follows: For any 1-input (x, y) ∈ f −1(1), the proof
sent by the honest prover provides no information on the inputs (x, y) to an external
viewer. Formally, the random variable px,y = p(x, y, rA, rB) induced by a random
choice of rA and rB should be distributed according to some universal distribution D
which is independent of the specific 1-input (x, y).Moreover, an additionalUnambiguity
property is required: Any 1-input (x, y) ∈ f −1(1) and any pair of strings (rA, rB)

uniquely determine a single accepting proof p(x, y, rA, rB).
This modified version of AM protocols (denoted by ZAM) was originally presented

in attempt to explain the lack of explicit nontrivial lower bounds for the commu-
nication required by AM protocols. Indeed, Göös et al., showed that any function
f : {0, 1}n × {0, 1}n → {0, 1} admits a ZAM protocol with at most exponential com-
munication complexity of O(2n). Since the transcript of a ZAM protocol carries no
information on the inputs, the mere existence of such protocols forms a “barrier” against
“information complexity” based arguments. This suggests that, at least in their standard
form, such arguments cannot be used to prove lower bounds against AM protocols (even
with unambiguous completeness).
Regardless of the original motivation, one may view the ZAM model as a simple

and natural information-theoretic analogue of (non-interactive) zero-knowledge proofs
where instead of restricting the computational power of the verifier, we split it between
two non-communicating parties (just like AM communication games are derived from
the computational complexity notion ofAM protocols). As cryptographers, it is therefore
natural to ask:
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Fig. 1. Flow of messages.

How does the ZAM model relate to other more standard models of
information-theoretic secure computation?

As we will later see, answering this question also allows us to make some (modest)
progress in understanding the communication complexity of ZAM protocols.

1.2. Private Simultaneous Message Protocols

Another, much older, notion of information theoretically secure communication game
was suggested by Feige et al. [10]. As in the previous model, there are three (compu-
tationally unbounded) parties: Alice, Bob, and a Referee. Here too, an input (x, y) to a
public function f : {0, 1}n ×{0, 1}n → {0, 1} is split between Alice and Bob, which, in
addition, share a common random string c. Alice (resp., Bob) should send to the referee
a single message a (resp., b) such that the transcript (a, b) reveals f (x, y) but nothing
else. That is, we require two properties: (Correctness) There exists a decoder algorithm
Dec which recovers f (x, y) from (a, b) with high probability; and (Privacy) There
exists a simulator Sim which, given the value f (x, y), samples the joint distribution of
the transcript (a, b) up to some small deviation error. (See Sect. 4 for formal definitions.)

Following [14], we refer to such a protocol as a private simultaneous messages (PSM)
protocol. APSM protocol for f can be alternatively viewed as a special type of random-
ized encoding of f [1,15], where the output of f is encoded by the output of a randomized
function F((x, y), c) such that F can be written as F((x, y), c) = (F1(x, c), F2(y, c)).
This is referred to as a “2-decomposable” encoding in [17]. (See Remark 4.5.)

1.3. ZAM versus PSM

Our goal will be to relate ZAM protocols to PSM protocols. Since the latter object is
well studied and strongly “connected” to other information-theoretic notions (cf. [7]),
such a connection will allow us to place the new ZAM in our well-explored world of
information-theoretic cryptography.
Observe thatZAM andPSM share some syntactic similarities (illustrated in Fig. 1). In

both cases, the input is shared between Alice and Bob and the third party holds no input.
Furthermore, in both cases the communication pattern consists of a single message. On
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the other side, in ZAM the third party (Merlin) attempts to convince Alice and Bob that
the joint input is mapped to 1, and so the communication goes fromMerlin to Alice/Bob
who generate the output (accept/reject). In contrast, in a PSM protocol, the messages
are sent in the other direction: from Alice and Bob to the third party (the Referee) who
ends up with the output. In addition, the privacy guarantee looks somewhat different.
For ZAM, privacy is defined with respect to an external observer and only over 1-inputs,
whereas soundness is defined with respect to the parties (Alice and Bob) who hold the
input (x, y). (Indeed, an external observer cannot even tell whether the joint input (x, y)

is a 0-input.) Accordingly, in the ZAM model, correctness and privacy are essentially
two different concerns that involve different parties. In contrast, for PSM protocols
privacy should hold with respect to the view of the receiver who should still be able to
decode.
The picture becomes even more confusing when looking at existing constructions. On

onehand, the generalZAM constructions presented byGöös et al. [13,Theorem6] (which
use a reduction to Disjointness) seemmore elementary than the simplestPSM protocols
of [10].On the other hand, there areZAMconstructionswhich share common ingredients
with existing PSM protocols. Concretely, the branching program (BP) representation of
the underlying function have been used both in the context of PSM [10,14] and in the
context of ZAM [13, Theorem 1]. (It should be mentioned that there is a quadratic gap
between the complexities of the two constructions.) Finally, both in ZAM and in PSM,
it is known that any function f : {0, 1}n × {0, 1}n → {0, 1} admits a protocol with
exponential complexity, but the best known lower-bound is only linear in n. Overall,
it is not clear whether these relations are coincidental or point to a deeper connection
between the two models.1

2. Our Results

We prove thatZAM protocols andPSM protocols are intimately related. Roughly speak-
ing, we will show that the inverse of ZAM is PSM and vice versa. Therefore, the ran-
domness complexity of ZAM essentially corresponds to the communication complexity
of PSM and the communication complexity of ZAM essentially corresponds to the ran-
domness complexity of PSM. This relation works in both directions where different
variants of PSM are being used. We exploit this relation to obtain (modest) improve-
ments in the complexity of ZAM and the complexity of some variants of PSM (e.g.,
Conditional Disclosure of Secrets). We proceed with a formal statement of our results.
See Fig. 2 for an overview of our transformations.

2.1. From Perfect PSM to ZAM

We begin by showing that a special form of perfect PSM protocols (referred to pPSM)
yields ZAM protocols.

1The authors of [13] seem to suggest that there is no a-priori obvious connection between the two models.
Indeed, they explicitly mention PSM as “a different model of private two-party computation, [...] where the
best upper and lower bounds are also exponential and linear.”
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Fig. 2. Overview of the constructions.

Theorem 2.1. Let f be a function with a pPSM protocol that has communication
complexity t and randomness complexity s. Then f has a 1/2-sound ZAM scheme with
randomness complexity of t and communication complexity of s + 1.

A pPSM protocol is a PSM in which both correctness and privacy are required
to be errorless (perfect), and, in addition, the encoding should satisfy some regularity
properties.2

To prove the theorem, we use the combinatorial properties of the perfect encoding
to define a new function g(x, y, p) = (g1(x, p), g2(y, p)) which, when restricted to a
1-input (x, y), forms a bijection from the randomness space to the output space, and
when (x, y) is a 0-input the restricted function g(x, y, ·) covers only half of the range.
Given such a function, it is not hard to design a ZAM: Alice (resp., Bob) samples a
random point rA in the range of g1 (resp., rB in the range of g2) and accepts a proof
p if p is a preimage of rA under g1 (resp. p is a preimage of rB under g2). It is not
hard to verify that the protocol satisfies unambiguous completeness, 1/2-soundness and
zero-information. (See Sect. 5.)

Although the notion of pPSM looks strong, we note that all known general PSM
protocols are perfect. (See Appendices A and B.) By plugging in the best known protocol
from [7], we derive the following corollary.

Corollary 2.2. Every function f : {0, 1}n × {0, 1}n → {0, 1} has a ZAM with com-
munication complexity and randomness complexity of O(2n/2).

Previously, the best known upper bound for the ZAM complexity of a general function
f was O(2n) [13]. Using known constructions of BP-based pPSM, we can also re-prove
the fact that ZAM complexity is at most polynomial in the size of the BP that computes
f . (Though, our polynomial is worse than the one achieved by Göös et al. [13].)

2.2. From ZAM to One-Sided PSM

Wemove on to study the converse relation. Namely, whether ZAM can be used to derive
PSM. For this, we consider a relexation of PSM in which privacy should hold only with

2Essentially, the range of F = (F1, F2) can be partitioned into two equal sets S0 and S1 and for every
input (x, y) the function Fx,y(c) that maps the randomness c to the transcript (a, b) forms a bijection from the
randomness space to the set S f (x). In the context of randomized encoding, this notion was originally referred
to as perfect randomized encoding [1]. See Sect. 4 for formal definitions.
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respect to 1-inputs. In the randomized encoding literature, this notion is referred to as
semi-private randomized encoding [1,3]. In the context of PSM protocols we refer to
this variant as 1PSM.

Theorem 2.3. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-sound ZAM
protocol that has communication complexity � and randomness complexity m. Then, for
all k ∈ N, the following hold:

1. f has (22nδk)-correct and 0-private 1PSM with communication complexity of km
and 2km bits of shared randomness.

2. f has (22nδk +2−�k)-correct and (2−�k)-private 1PSMwith communication com-
plexity of km and 2�k bits of shared randomness.

In particular, if the underlying ZAM protocol has a constant error (e.g., δ = 1/2),
we can get a 1PSM with an exponential small error of exp(−�(n)) at the expense of
a linear overhead in the complexity, i.e., communication complexity and randomness
complexity of O(nm) and O(�n), respectively.
Both parts of the theorem are proven by “inverting” the ZAM scheme. That is, as a

common randomness Alice and Bob will take a proof p sampled according to the ZAM’s
accepting distribution. Since each proof forms a rectangle, Alice and Bob can locally
sample a random point (rA, rB) from p’s rectangle (Alice samples rA and Bob samples
rB). The 1PSM’s encoding functions output the sampled point (rA, rB). We show that if
(x, y) is a 1-input then (rA, rB) is distributed uniformly, while in the case of the 0-input
the sampled point belongs to some specific set Z that covers only a small fraction of the
point space. Therefore, the 1PSM’s decoder outputs 0 if the sampled point is in Z and
1, otherwise.
The difference between the two parts of Theorem 2.3 lies in the way that the common

randomness is sampled. In the first part we sample p according to the exact ZAM’s
acceptingdistribution,whereas in the secondpartwe compromise on imperfect sampling.
This allows us to reduce the length of the shared randomness in 1PSM at the expense
of introducing the sampling error in privacy and correctness. The proof of the theorem
appears in Sect. 6.

2.3. From 1PSM to PSM

Theorem 2.3 shows that a ZAM protocol with low randomness complexity implies
communication-efficient 1PSM protocol. However, the latter object is not well stud-
ied and one may suspect that, for one-sided privacy, such low-communication 1PSM
protocols may be easily achievable. The following theorem shows that this is unlikely
by relating the worst-case communication complexity of 1PSM to the worst-case com-
munication complexity of general PSM (here “worst case” ranges over all functions of
given input length.)

Theorem 2.4. Assume that for all n, each function f : {0, 1}n ×{0, 1}n → {0, 1} has a
δ(n)-correct ε(n)-private 1PSM protocol with communication complexity t (n) and ran-
domness complexity s(n). Then, each f has a [δ(n)+δ(t (n))]-correctmax(ε(n), δ(n)+
ε(t (n)))-privatePSM protocol with communication complexity t (t (n)) and randomness



From Private Simultaneous Messages to Zero-Information Arthur–Merlin Protocols and Back 967

complexity s(n)+ s(t (n)). In particular, if every such f has a 1PSM with poly(n) com-
munication and randomness, and negligible privacy and correctness errors of n−ω(1),
then every f has a PSM with poly(n) communication and randomness, and negligible
privacy and correctness errors of n−ω(1).

An important open question in information-theoretic cryptography is whether every
function f : {0, 1}n × {0, 1}n → {0, 1} admits a PSM whose communication and
randomness complexity are polynomial in n and its privacy and correctness errors are
negligible in n. Therefore, by Theorem 2.4, constructing 1PSM with such parameters
would be considered to be a major breakthrough. Together with Theorem 2.3, we con-
clude that it will be highly non-trivial to discover randomness-efficient ZAM protocols
for general functions.

2.4. Constructing CDS

In theCDSmodel [11], Alice holds an input x and Bob holds an input y, and, in addition,
both parties hold a common secret bit b. The referee, Carol, holds both x and y, but it does
not know the secret b. Similarly to the PSM case, Alice and Bob use shared randomness
to compute the messages m1 and m2 that are sent to Carol. TheCDS requires that Carol
can recover b from (m1, m2) iff f (x, y) = 1. Moving to the complement f = 1− f of
f , one can view the CDS model as a variant of 1PSM, in which the privacy leakage in
case of 0-inputs is full, i.e., given the messages sent by Alice and Bob, one can recover
their secret b but on 1-input b remains secret. (Note that x and y are assumed to be public
in both cases.) Indeed, it is not hard to prove the following observation.

Theorem 2.5. Assume that the function f has a δ-complete ε-private 1PSM with
communication complexity t and randomness complexity s. Then the function f =
1− f has a δ-correct and ε-private CDS scheme with communication complexity t and
randomness complexity s.

Clearly, one can combine the above theorem with the ZAM to 1PSM transformation
and get a transformation from ZAM to CDS. However, one can do better by using a
direct construction that avoids the overhead in the ZAM to 1PSM transformation of
Theorem 2.3.

Theorem 2.6. Assume that the function f : {0, 1}n × {0, 1}n → {0, 1} has a δ-sound
ZAM protocol with communication complexity � and randomness complexity m. Then
the following hold.

1. The function f = 1 − f has a δ-correct and 0-private CDS with communication
complexity m and randomness complexity 2m.

2. For any t ∈ N, the function f has a (δ +2−t )-correct and (2−t )-private CDS with
communication complexity m and randomness complexity (� + t).

The communication complexity of CDS protocols was studied in several previous
works. Recently, it was shown by Ishai and Wee [18] that the CDS complexity of f is
linear in the size of the arithmetic branching program (ABP). (This improves the previous
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quadratic upper-bound of [11].) We can reprove this result by combining Theorem 2.6
with the ZAM construction of [13] whose complexity is also linear in the ABP size
of f . Interestingly, the resulting CDS protocol is different from the construction of
Ishai and Wee [18], and can be extended to work with dependency programs (DP). The
latter model was introduced in [22] and can be viewed as a generalization of arithmetic
branching program. (See Sect. 8 for a formal definition.) By applying the ideas of [13],
we derive the following result.

Theorem 2.7. Assume that the function f has a dependency program of size m. Then,
for every t ∈ N, the function f has an 2−t -correct perfectly private CDS scheme with
randomness complexity and communication complexity of O(m · t).

The theorem extends to the case where the secret is a field element (see Theorem 8.2)
and to the case where f is computed by an arithmetic dependency program and so its
inputs are also field elements (see Remark 8.4). To the best of our knowledge, The-
orem 2.7 yields the first CDS whose complexity is linear in the dependency program
of the underlying function. This is incomparable to the best previous result, implicit
in [18, Section 7], which achieves linear dependency in the size of the arithmetic span
program (ASP) [21] that computes f .3 Indeed, it is known that the size of the smallest
dependency program of a function is polynomially related to the size of its smallest span
program, but the transformation from onemodel to the other may incur some polynomial
overhead [6]. Hence, for some functions, Theorem 2.7 can potentially lead to polyno-
mial improvement over the ASP- (and ABP-) based schemes. On the other hand, the
construction of [18] achieves perfect correctness, while our construction suffers from a
nonzero decoding error.4 We further mention that our construction can be viewed as dual
to the construction of [18]; See Remark 8.5. Finally, we note that CDS protocols have
recently found applications in attribute-based encryption (see [12]). For this application,
the CDS is required to satisfy some linearity properties which hold for our CDS-based
construction. (See Remark 8.3.)

3. Preliminaries

For an integer n ∈ N, let [n] = {1, . . . , n}. The complement of a bit b is denoted by
b = 1 − b. For a set S, we let Sk be the set of all possible k-tuples with entries in S,
and for a distribution D, we let Dk be the probability distribution over k-tuples such that

each tuple’s element is drawn according to D. We let s
R← S denote an element that is

sampled uniformly at random from the finite set S. The uniform distribution over n-bit
strings is denoted by Un . For a boolean function f : S → {0, 1}, we say that x ∈ S is

3Arithmetic span programs [21] can emulate ABPs with constant overhead, while the converse is known
only with polynomial overhead [6]. Hence, the ASP-based CDS subsume, in terms of complexity, the above-
mentioned ABP-based construction.

4Moreover, the ABP-based construction of [18] applies not only toCDS, but also to a more general notion
of partial garbling schemes which can be viewed as an intermediate notion between CDS and PSM.
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0-input if f (x) = 0, and is 1-input if f (x) = 1. A subset R of a product set A × B is a
rectangle if R = A′ × B ′ for some A′ ⊆ X and B ′ ⊆ Y .

The statistical distance between two random variables, X and Y , denoted by�(X; Y )

is defined by �(X; Y ) := 1
2

∑
z |Pr[X = z] − Pr[Y = z]|. We will also use statistical

distance for probability distributions, where for a probability distribution D the value
Pr[D = z] is defined to be D(z).
We write �

x1
R←D1,...,xk

R←Dk
(F(x1, . . . , xk); G(x1, . . . , xk)) to denote the statistical

distance between two distributions obtained as a result of sampling xi ’s from Di ’s and
applying the functions F and G to (x1, . . . , xk), respectively. We use the following facts
about the statistical distance. For every distributions X and Y and a function F (possibly
randomized), we have that �(F(X), F(Y )) ≤ �(X, Y ). In particular, for a boolean
function F this implies that Pr[F(X) = 1] ≤ Pr[F(Y ) = 1] + �(X; Y ).

For a sequence of probability distributions (D1, . . . , Dk) and a probability vector
W = (w1, . . . , wk), we let Z = ∑

wi Di denote the “mixture distribution” obtained by

sampling an index i ∈ [k] according to W and then outputting an element z
R← Di .

Lemma 3.1. For any distribution Z = ∑
wi Di and probability distribution S, it holds

that

�(S; Z) ≤
k∑

i=1

wi�(S; Di ).

Proof. By the definition of statistical distance we can write �(S; Z) as

1

2

∑

z

∣
∣
∣
∣
∣
S(z) −

k∑

i=1

wi Di (z)

∣
∣
∣
∣
∣
= 1

2

∑

z

∣
∣
∣
∣
∣

k∑

i=1

wi (S(z) − Di (z))

∣
∣
∣
∣
∣

≤ 1

2

∑

z

k∑

i=1

wi |S(z) − Di (z)|

= 1

2

k∑

i=1

wi

∑

z

|S(z) − Di (z)|

=
k∑

i=1

wi�(S; Di ).
�

4. Definitions

4.1. PSM-Based Models

Definition 4.1. (PSM) Let f : {0, 1}n×{0, 1}n → {0, 1}be a boolean function.We say
that a pair of (possibly randomized 5) encoding algorithms F1, F2 : {0, 1}n ×{0, 1}s →

5In the original paper [10], the functions F1, F2 are deterministic. We extend this model by allowing Alice
and Bob to use local randomness that is assumed to be available freely.
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{0, 1}t are PSM for f if the function F(x, y, c) = (F1(x, c), F2(y, c)) that corresponds
to the joint computation of F1 and F2 on a common c, satisfy the following properties:

δ-Correctness: There exists a deterministic algorithm Dec, called decoder, such
that for every input (x, y) we have that

Pr
c

R←{0,1}s

[Dec(F(x, y, c)) 	= f (x, y)] ≤ δ. (1)

ε-Privacy: There exists a randomized algorithm (simulator) Sim such that for any
input (x, y) it holds that

�

c
R←{0,1}s

(Sim( f (x, y)); F(x, y, c)) ≤ ε. (2)

The communication complexity of thePSM protocol is defined as the encoding length t ,
and the randomness complexity of the protocol is defined as the length s of the common
randomness.

One can also consider relaxations of this definition that are private only on a subset
of inputs. We study such a relaxation 1PSM [1,3] that is required to be private only on
1-inputs:

ε-Privacy on 1-inputs: There exists a simulator Sim such that for any 1-input
(x, y) of f it holds that

�

c
R←{0,1}s

(Sim, (F1(x, c), F2(y, c))) ≤ ε. (3)

A stronger variant of PSM is captured by the notion of perfect PSM [1].

Definition 4.2. (pPSM) Let f : {0, 1}n × {0, 1}n → {0, 1}. A pair of deterministic
algorithms F1, F2 : {0, 1}n ×{0, 1}s → {0, 1}t is a pPSM of f if (F1, F2) is a 0-correct,
0-private PSM of f such that:

Balance: There exists a 0-private (perfectly private) simulator Sim such that
Sim(U1) ≡ U2t .
Stretch-Preservation: We have that 1 + s = 2t .

Remark 4.3. (pPSM – combinatorial view) One can also formulate the pPSM defini-
tion combinatorially [1]: For f ’s b-input (x, y), let Fxy(c) denote the joint output of the
encoding (F1(x, c), F2(y, c)). Let Sb := {Fxy(c) | c ∈ {0, 1}s, (x, y) ∈ f −1(b)} and
let R = {0, 1}t × {0, 1}t denote the joint range of (F1, F2). Then, (F1, F2) is a pPSM
of f if and only if (1) The 0-image S0 and the 1-image S1 are disjoint; (2) The union
of S0 and S1 equals to the range R; and (3) for all (x, y) the function Fxy is a bijection
on S f (x,y). One can also consider a case when F1 and F2 have arbitrary ranges, i.e.,
Fi : {0, 1}n × {0, 1}s → {0, 1}ti . In this case we say that (F1, F2) is a pPSM of f if the
above conditions hold with respect to the joint range R = {0, 1}t1 × {0, 1}t2 .
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We consider a variant ofCDS called conditional disclosure of the common secret [11].
As in PSM, Alice and Bob hold the inputs x and y, respectively, and, in addition, both
parties get a secret b ∈ {0, 1}. The goal is to reveal the secret to an external referee Carol
only if some predicate f (x, y) evaluates to 1. Unlike the PSM model, we assume that
Carol knows both x and y. Formally, a CDS scheme is defined below.

Definition 4.4. (CDS) Let f : {0, 1}n × {0, 1}n → {0, 1} be a predicate. Let F1, F2 :
{0, 1}n × {0, 1} × {0, 1}s → {0, 1}t be (possibly randomized) encoding algorithms.
Then, the pair (F1, F2) is aCDS scheme for f if and only if the function F(x, y, b, c) =
(F1(x, b, c), F2(y, b, c)) that corresponds to the joint computation of F1 and F2 on a
common b and c, satisfies the following properties:

δ-Correctness: There exists a deterministic algorithm Dec, called a decoder,
such that for every 1-input (x, y) of f and any secret b ∈ {0, 1} we have that

Pr
c

R←{0,1}s

[Dec(x, y, F(x, y, b, c)) 	= b] ≤ δ.

ε-Privacy: There exists a simulator Sim such that for every 0-input (x, y) of f
and any secret b ∈ {0, 1} it holds that

�

c
R←{0,1}s

(Sim(x, y) ; F(x, y, b, c)) ≤ ε.

Similarly to PSM, the communication complexity of the CDS protocol is t and its
randomness complexity is s.

The above definition naturally extends to the case where the secret comes from some
non-binary domain B, and where the domain of the randomness and of the output of F1
and F2 is taken to be some arbitrary finite set. (When the output domain Z1 of F1 and
Z2 of F2 differ, we define the communication complexity to be maxi log |Zi |.)

Remark 4.5. (CDS and PSM as Randomized Encoding) We can view PSM and CDS
protocols under the framework of randomized encodings of functions (RE) [1,15]. For-
mally, a function F(x, y, c) is a δ-correct ε-private RE of f (x, y) if F(x, y) satisfies
Eqs. (1) and (2) from Definition 4.1. Under this terminology, PSM is simply an encod-
ing F(x, y, c) which can be decomposed into two parts, F1 which depends on x and
c but not on y and F2 which depends on y and c but not on x . Similarly, the notion
of pPSM and 1PSM can be derived by considering 2-decomposable perfect encodings
and 2-decomposable encoding with 1-sided privacy. We further mention that aCDS can
be also viewed as a randomized encoding. Indeed, (F1, F2) is a CDS of f if and only
if F(x, y, b, c) = (x, y, F1(x, b, c), F2(y, b, c)) encodes the (non-boolean) function
g(x, y, b) = (x, y, f (x, y) ∧ b).
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4.2. ZAM

Definition 4.6. (ZAM) Let f : {0, 1}n × {0, 1}n → {0, 1}. We say that a pair of
deterministic boolean functions A, B : {0, 1}n × {0, 1}m × {0, 1}� → {0, 1} is a ZAM
for f if the predicate Accept(x, y, rA, rB, p) = A(x, rA, p) ∧ B(y, rB , p) satisfies the
following properties:

Unambiguous Completeness: For any 1-input (x, y) and any randomness
(rA, rB) ∈ {0, 1}m × {0, 1}m there exists a unique p ∈ {0, 1}� such that
Accept(x, y, rA, rB, p) = 1.
Zero-Information: There exists a distribution D on the proof space {0, 1}� such
that for any 1-input (x, y) we have that

∀p ∈ {0, 1}� D(p) = Pr
rA,rB

R←{0,1}m

[Accept(x, y, rA, rB, p) = 1].

The distribution D is called the accepting distribution.
δ-Soundness: For any 0-input (x, y) it holds that

Pr
rA,rB

R←{0,1}m

[∃p ∈ {0, 1}� : Accept(x, y, rA, rB, p) = 1] ≤ δ.

The communication complexity (resp., randomness complexity) of the ZAM protocol is
defined as the length � of the proof (resp., the length m of the local randomness).

The Zero-Information property asserts that for every accepting input (x, y) the distrib-
ution Dx,y , obtained by sampling rA and rB and outputting the (unique) proof p which
is accepted by Alice and Bob, is identical to a single universal distribution D.

Following [13], we sometimes refer to the proofs as “rectangles” because for each
(x, y) a proof p naturally corresponds to a set of points

{(rA, rB) : Accept(x, y, rA, rB, p) = 1}
= {rA : A(x, rA, p) = 1} × {rB : B(y, rB , p) = 1}

which forms a rectangle in {0, 1}m × {0, 1}m .

5. From pPSM to ZAM

In this section we construct a ZAM scheme from a pPSM protocol. By exploiting the
combinatorial structure of pPSM, for each input (x, y) we construct a function hxy

that is a bijection if (x, y) is a 1-input and is two-to-one if (x, y) is a 0-input. In the
constructed ZAM scheme Alice and Bob use their local randomness to sample a uniform
point in h’s range (Alice samples its x-coordinate rA and Bob samples its y-coordinate
rB). Merlin’s proof is the preimage p for the sampled point, i.e., a point p such that
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hxy(p) = (rA, rB). In order to accept the proof p, Alice and Bob verify that it is a
preimage for the sampled point (rA, rB).

First, the constructed ZAM is unambiguously complete because hxy is a bijection
if (x, y) is a 1-input of f . Second, the constructed ZAM satisfies the Zero-Information
property because the distribution of the accepted proofs is uniform.Third, the constructed
ZAM is sound, because if (x, y) is a 0-input, then hxy is two-to-one, implying that with
probability at least 1/2 no preimage exists.
Theorem 2.1. Let f be a function with a pPSM protocol that has communication
complexity t and randomness complexity s. Then f has a 1/2-sound ZAM scheme with
randomness complexity of t and communication complexity of s + 1.

Proof. Let f : {0, 1}n ×{0, 1}n → {0, 1} be a function with a pPSM F1, F2 : {0, 1}n ×
{0, 1}s → {0, 1}t .We show that there exists a 1/2-soundZAMprotocol for f withAlice’s
and Bob’s local randomness spaces {0, 1}m and proof space {0, 1}� where m = t and
� = 2t .

First, we prove some auxiliary statement about pPSM. Let g(x, y, c) := (F1(x, c),
F2(y, c)). For any (x, y), we define a new function hxy : {0, 1}s × {0, 1} → {0, 1}t ×
{0, 1}t as follows.

hxy(c, b) :=
{

g(x, y, c), if b = 0;
g(x0, y0, c), i f b = 1(where (x0, y0) is a canonical 0-input for f ).

The function h satisfies the following useful properties as follows from the combina-
torial view of pPSM (Remark 4.3).

Fact 5.1. If (x, y) is a 1-input for f , then the function hxy is a bijection. Otherwise,
if (x, y) is a 0-input for f , then the image of the function hxy covers exactly half of the
range {0, 1}t × {0, 1}t .

We now describe a ZAM protocol for f in which the local randomness of Alice and
Bob is sampled from {0, 1}t , and the proof space is {0, 1}s ×{0, 1}. Recall that (F1, F2)

is a pPSM and therefore s+1 = 2t and {0, 1}s ×{0, 1} = {0, 1}2t . TheZAM’s accepting
functions A, B are defined as follows:

A(x, m1, (c, b)) =
{
1, if (m1 = F1(x, c) and b = 0) or (m1 = F1(x0, c) and b = 1);
0, otherwise.

B(y, m2, (c, b)) =
{
1, if (m2 = F2(y, c) and b = 0) or (m2 = F2(y0, c) and b = 1);
0, otherwise.

Observe that the following equivalence holds.

Claim 5.2. ∀x, y, c, b, m1, m2

[
hxy(c, b) = (m1, m2)

]
⇔ [

A(x, m1, (c, b)) = 1 =
B(y, m2, (c, b))

]
.
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Now we verify that (A, B) is ZAM for f :

Unambiguous Completeness: Consider any f ’s 1-input (x, y) and take any
(m1, m2) ∈ {0, 1}t × {0, 1}t . Since (x, y) is a 1-input for f , we have that hxy

is a bijection. This means that there exists a unique (c, b) such that hxy(c, b) =
(m1, m2). By Claim 5.2, this proof (c, b) is the only proof which is accepted by
both Alice and Bob when the randomness is set to m1, m2.
Zero-Information: We show that the accepting distribution is uniform, i.e., for
any 1-input (x, y) and for any p ∈ {0, 1}s × {0, 1} it holds that

Pr
rA,rB

R←{0,1}t

[A(x, rA, p) = 1 = B(y, rB , p)] = 2−2t .

Take any 1-input (x, y). Since (x, y) is a 1-input for f , we have that hxy is a
bijection. Hence, there exists a unique (m∗

1, m∗
2) ∈ {0, 1}n × {0, 1}n such that

hxy(c, b) = (m∗
1, m∗

2). By Claim 5.2, this means that Alice and Bob accept only
this (m∗

1, m∗
2). Hence, for all proofs p we have that

Pr
rA,rB

R←{0,1}t

[A(x, rA, p) = 1 = B(y, rB, p)]

= Pr
rA,rB

R←{0,1}t

[rA = m∗
1, rB = m∗

2] = 2−2t .

1/2-Soundness: Fix some 0-input (x, y), and recall that the image H of hxy covers
exactly half of the range {0, 1}t×{0, 1}t , i.e., |H | = ∣

∣{0, 1}t × {0, 1}t
∣
∣ /2. It follows

that, with probability 1/2, the randomness of Alice and Bob (m1, m2) chosen
randomly from {0, 1}t ×{0, 1}t lands outside H . In this case, the set h−1

xy (m1, m2)

is empty and so there is no proof (c, b) that will be accepted. �

6. From ZAM to 1PSM

In this sectionwe construct1PSM protocols from aZAM scheme and prove Theorem2.3
(restated here for convenience).
Theorem 2.3. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-sound ZAM
protocol that has communication complexity � and randomness complexity m. Then, for
all k ∈ N, the following hold:

1. f has (22nδk)-correct and 0-private 1PSM with communication complexity of
km and 2km bits of shared randomness.

2. f has (22nδk + 2−�k)-correct and (2−�k)-private 1PSM with communication
complexity of km and 2�k bits of shared randomness.

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-sound ZAM protocol
(A, B) with Alice’s and Bob’s local randomness spaces {0, 1}m and the proof space
{0, 1}�. Fix some integer k. We start by constructing the first 1PSM protocol.
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We first define some additional notation and prove auxiliary claims. For a pair of
inputs (x, y) let

Exy := {(rA, rB) ∈ {0, 1}m × {0, 1}m | ∃p : A(x, rA, p) = 1 = B(y, rB , p)}

and Z := ⋃
(x,y)∈ f −1(0) Ek

xy .

Claim 6.1. |Z | ≤ 22n(δ22m)k .

Proof. By the soundness property of ZAM, we have that |Exy | ≤ δ22m for any 0-input
(x, y). Hence, each |Ek

xy | ≤ (δ22m)k . We conclude that

|Z | =
∣
∣
∣
∣
∣
∣

⋃

(x,y)∈ f −1(0)

Ek
xy

∣
∣
∣
∣
∣
∣
≤

∑

(x,y)∈ f −1(0)

∣
∣
∣Ek

xy

∣
∣
∣ ≤ 22n(δ22m)k = δk22n+2mk .

�
Let Ax

p := {rA ∈ {0, 1}m | A(x, rA, p) = 1} and By
p := {rB ∈ {0, 1}m |

B(y, rB , p) = 1}.

Claim 6.2. Let Dacc be the accepting distribution ofZAM. Then, for any 1-input (x, y)

and p ∈ {0, 1}� we have that Dacc(p) = 2−2m |Ax
p||By

p|.

Proof. By definition

Dacc(p) = |{(rA, rB) ∈ {0, 1}m × {0, 1}m | A(x, rA, p) = 1 = B(y, rB , p)}|
|{0, 1}m | · |{0, 1}m | .

In order to derive the claim, note that since every proof forms a “rectangle” (see Sect. 4.2),
we have that

{(rA, rB) ∈ {0, 1}m × {0, 1}m | A(x, rA, p) = 1 = B(y, rB , p)} = Ax
p × By

p.

�
We can now describe the encoding algorithms G1 and G2 and the decoderDec. First,

G1 and G2 use the shared randomness to sample a proof p according to the accepting
distribution. ThenG1 andG2 sample (private) randomness that can lead to the acceptance

of p on their input (x, y), i.e., G1 computes a
R← Ax

p and G2 computes b
R← By

p. We
have that if f (x, y) = 1 then (a, b) is distributed uniformly, while if f (x, y) = 0 then
(a, b) is sampled from the set Z . The task of the decoder is to verify whether it is likely
that a point has been sampled from Z or uniformly. This is achieved by repeating the
protocol k times. Below is the formal description of the algorithms G1, G2, and decoder.
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– (Shared Randomness) The common randomness c ∈ {0, 1}k·2m is used for sam-
pling k independent samples (p1, . . . , pk) from Dacc. (Each such sample can be

obtained by sampling r = (rA, rB)
R← {0, 1}2m and outputting the unique proof

p that corresponds to r and to some fixed 1-input (x0, y0).)

– (Encoders) The encoder G1(x, c) outputs (a1, . . . , ak)
R← Ax

p1 × · · · ×Ax
pk

and

the encoder G2 outputs (b1, . . . , bk)
R← By

p1 × · · · × Bx
pk
.

– (Decoder) Dec((a1, . . . , ak), (b1, . . . , bk)) outputs 0 if ((a1, b1), ..., (ak, bk)) ∈
Z ; otherwise, it outputs 1.

Let us verify that the proposed protocol is a 1PSM for f .
(22nδk)-Correctness. Since that the decoder never errs on 0-inputs, it suffices to ana-

lyze the probability that some 1-input (x, y) is incorrectly decoded to 0. Fix some 1-input
(x, y). Below we will show that the message s = ((a1, b1), . . . , (ak, bk)) generated by
the encoders G1 and G2 is uniformly distributed over the set ({0, 1}m ×{0, 1}m)k . Hence,
the probability that s lands in Z (and decoded incorrectly to 0) is exactly |Z |

|({0,1}m×{0,1}m )k | ,
which, by Claim 6.1, is upper-bounded by 22nδk .
It is left to show that s is uniformly distributed. To see this, consider themarginalization

of (ai , bi )’s probability distribution: For a fixed (rA, rB) we have that

Pr[(ai , bi ) = (rA, rB)] =
∑

p∈{0,1}�
Pr[(ai , bi ) = (rA, rB) | pi = p]Pr[pi = p].

Because of the unambiguous completeness property of ZAM, we have that there exists
a single p∗ such that (rA, rB) ∈ Ax

p∗ × By
p∗ . Hence, all probabilities Pr[(ai , bi ) =

(rA, rB) | pi = p] are zero, if p 	= p∗. This implies that

Pr[(ai , bi ) = (rA, rB)] = Pr[(ai , bi ) = (rA, rB) | pi = p∗]Pr[pi = p∗].

We have that Pr[pi = p] = Dacc(p) = 2−2m |Ax
p||By

p| (due to Claim 6.2), and

Pr[(ai , bi ) = (rA, rB) | pi = p∗] is 1
|Ax

p |·|By
p | by the construction of the encoding func-

tions. Hence, Pr[(ai , bi ) = (rA, rB)] = 2−2m . Because all pairs (ai , bi ) are sampled
independently, we get that the combined tuple s = ((a1, b1), . . . , (ak, bk)) is sampled
uniformly from ({0, 1}m × {0, 1}m)k , as required.

Privacy for 1-inputs. As shown above, if (x, y) is a 1-input, then s is uniformly dis-
tributed over ({0, 1}m ×{0, 1}m)k . Hence, the simulator for proving the privacy property
of PSM can be defined as a uniform sampler from ({0, 1}m × {0, 1}m)k .

The second protocol. The second item of the theorem is proved by using the first
protocol, except that the point p = (p1, . . . , pk) is sampled from a different distribution
D′. For a parameter t , the distribution D′ is simply the distribution Dk

acc discretized into
2−(�k+t)-size intervals. Such D′ can be sampled using only �k+t randombits.Moreover,
for each point p, the difference between Dk

acc( p) and D′( p) is atmost 2−(�k+t). Since the
support of Dk

acc is of size atmost 2�k , it follows that�(D′; Dk
acc) ≤ 2−(�k+t) ·2�k = 2−t .

As a result, we introduce an additional error of 2−t in both privacy and correctness. By
setting t to �k, we derive the second 1PSM protocol. �
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7. From 1PSM to PSM

In this section we show how to upgrade a 1PSM protocol into a PSM protocol. We
assume that we have a way of constructing 1PSM for all functions. Our main idea is to
reduce a construction of a PSM scheme for f to two 1PSM schemes. The first 1PSM
scheme computes the function f , and the second 1PSM scheme computes the function
Dec f , i.e., the complement of the decoder Dec f of the first scheme. We show how to
combine the two schemes such that the first scheme protects the privacy of 1-inputs and
the second scheme protects the privacy of 0-inputs.
Theorem 2.4. Assume that for all n, each function f : {0, 1}n × {0, 1}n → {0, 1}
has a δ(n)-correct ε(n)-private 1PSM protocol with communication complexity
t (n) and randomness complexity s(n). Then, each f has a [δ(n) + δ(t (n))]-correct
max(ε(n), δ(n) + ε(t (n)))-private PSM protocol with communication complexity
t (t (n)) and randomness complexity s(n) + s(t (n)). In particular, if every such f has a
1PSM with poly(n) communication and randomness, and negligible privacy and cor-
rectness errors of n−ω(1), then every f has a PSM with poly(n) communication and
randomness, and negligible privacy and correctness errors of n−ω(1).

Proof. Let f : {0, 1}n ×{0, 1}n → {0, 1}. Let F1, F2 : {0, 1}n ×{0, 1}s(n) → {0, 1}t (n)

be a δ(n)-correct and ε(n)-private on 1 inputs 1PSM for f with decoderDec f and simu-
latorSim f . Define a function g : {0, 1}t (n)×{0, 1}t (n) → {0, 1} to be 1−Dec f (m1, m2).
Let G1, G2 : {0, 1}t (n) × {0, 1}s(t (n)) → {0, 1}t (t (n)) be a δ(t (n))-correct and ε(t (n))-
private on 1 inputs 1PSM for g with decoder Decg and simulator Simg .
We construct a (standard)PSM for f as follows. Let {0, 1}u = {0, 1}s(n)×{0, 1}s(t (n))

be the space of shared randomness, let {0, 1}v = {0, 1}t (t (n)) be the output space and
define the encoding functions H1, H2 : {0, 1}n × {0, 1}u → {0, 1}v , by

H1(x, (c, r)) = G1(F1(x, c), r) and H2(y, (c, r)) = G2(F2(y, c), r).

We show that (H1, H2) is a PSM by verifying its security properties.

δ(n) + δ(t (n))-Correctness: On an input (e1, e2) define the decoding algorithm
Dec to output 1 − Decg(e1, e2). The decoding algorithm Dec works correctly
whenever bothDecg andDec f succeed. Hence, the error probability for decoding
can be bounded as follows:

Pr
(c,r)

R←{0,1}u

[Dec(H1(x, (c, r)), H2(y, (c, r))) 	= f (x, y)]

= Pr
(c,r)

R←{0,1}u

[1 − Decg(G1(F1(x, c), r)), G2(F2(y, c), r))) 	= f (x, y)]

≤ Pr
c

R←{0,1}s(n)

[1 − (
1 − (Dec f (F1(x, c), F2(y, c)))

) 	= f (x, y)] + δ(t (n))

= Pr
c

R←{0,1}s(n)

[Dec f (F1(x, c), F2(y, c)) 	= f (x, y)] + δ(t (n))

≤ δ(n) + δ(t (n)).
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ε-Privacy:Wedefine the simulatorSim as follows: on 0-inputs it outputsSimg and
on 1-inputs it computes Sim f = (m1, m2), randomly samples r from {0, 1}s(t (n)),
and outputs (G1(m1, r), G2(m2, r)). We verify that the simulator truthfully simu-
lates the randomized encoding (H1, H2) with deviation error of at most ε.

We begin with the case where (x, y) is a 0-input for f . For any c, let Lc denote

the distribution of the random variable (G1(F1(x, c), r), G2(F2(y, c), r)) where r
R←

{0, 1}s(t (n)). Let M denote the “mixture distribution” which is defined by first sampling

c
R← {0, 1}s(n) and then outputting a random sample from Lc, that is, the distribution

M = ∑
c∈{0,1}s(n) Pr[Us(n) = c]Lc. Due to Lemma 3.1, we have that

�(Simg; M)≤
∑

c∈{0,1}s(n)

Pr[Us(n) = c]�(Simg; Lc).

Let C denote a subset of c ∈ {0, 1}s(n) such that (F1(x, c), F2(y, c)) is a 1-input for g.
The set C satisfies the following two properties: (1) ∀c ∈ C�(Simg; Lc) ≤ ε(t (n)) and
(2) |C |/2s(n) ≥ 1− δ(n). The property (1) holds because G1, G2 is private on 1-inputs
of g. The property (2) holds because Dec f decodes correctly with the probability at
least 1 − δ(n). After splitting the mixture sum in two, we have that

∑

c∈{0,1}s(n)

Pr[Us(n) = c]�(Simg; Lc)

=
∑

c∈C

2−s(n)�(Simg; Lc) +
∑

c 	∈C

2−s(n)�(Simg; Lc).

Because of the properties ofC , we have that the first sum is upperbounded by ε(t (n)) and
the second one is upperbounded by δ(n). This implies that�(Simg; M)≤δ(n)+ε(t (n)).
We move on to the case where (x, y) is a 1-input. Then

�

c
R←{0,1}s(n)

(Sim f ; (F1(x, c), F2(y, c))) ≤ ε(n).

Consider the randomized procedure G which, given (m1, m2), samples r
R← {0, 1}s(t (n))

and outputs the pair (G1(m1, r), G2(m2, r)). Applying G to the above distributions we
get:

�

(c,r)
R←{0,1}u

(G(Sim f ; r) ; G(F1(x, c), F2(y, c); r)) ≤ ε(n). (4)

Recall that, for a random r
R← {0, 1}s(t (n), it holds that G(Sim f ; r) ≡ Sim(1), and for

every r , G(F1(x, c), F2(y, c); r) = (H1(x, (c, r)), H2(y, (c, r))). Hence, Eq. 4 can be
written as
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�

(c,r)
R←{0,1}u

(Sim(1) ; (H1(x, (c, r)), H2(y, (c, r)))) ≤ ε(n).

Since ε(n) ≤ max(ε(n), δ(n) + ε(t (n))), the theorem follows. �

8. Constructing CDS Schemes

8.1. From 1PSM to CDS

In this section we construct a CDS scheme from a 1PSM protocol. Our construc-
tion is based on the observation (due to [11]) that constructing a CDS scheme for a
function f can be reduced to constructing a PSM scheme for the sharing function
f ′((x, s), (y, s)) = f (x, y) ∧ s. We show that one can strengthen this statement by
substituting PSM with a weaker security primitive 1PSM.

Theorem 2.5. Assume that the function f has a δ-complete ε-private 1PSM with
communication complexity t and randomness complexity s. Then the function f = 1− f
has a δ-correct and ε-private CDS scheme with communication complexity t and
randomness complexity s.

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1}. Let F1, F2 : {0, 1}n × {0, 1}s → {0, 1}t

be a δ-correct and ε-private on 1-inputs 1PSM for f with decoder Dec f and simulator
Sim f . Let g denote 1− f . Then, (F1, F2) is δ-correct and ε-private on 0-inputs 1PSM
for g with Decg = 1 − Dec f and Simg = Sim f .
We construct a CDS scheme (H1, H2) for g as follows. Let (x0, y0) be some fixed

0-input of g. We define H1(x, b, c) to output F1(x0, c) if b = 0, and F1(x, c) if b = 1.
Similarly, H2(y, b, c) outputs F2(y0, c) if b = 0 and F2(y, c) if b = 1. The decoder
Dec simply applies the 1PSM decoder of g, namely: given two messages m1 and m2,
we reconstruct the secret b by outputting Decg(m1, m2). We define the simulator Sim
to run the simulator Simg .
We prove that the pair (H1, H2) is a CDS scheme for g.

δ-Correctness: Take any 1-input (x, y) of g:

– If b = 0 then m1 = F1(x0, c) and m2 = F2(y0, c). By the correctness property of
1PSM, we have thatDecg(m1, m2) = Decg(F1(x0, c), F2(y0, c)) = g(x0, y0) =
0 except with probability δ.

– If b = 1 then m1 = F1(x, c) and m2 = F2(y, c). By the correctness property of
1PSM, we have that Decg(m1, m2) = Decg(F1(x, c), F2(y, c)) = g(x, y) = 1
except with probability δ.

ε-Privacy: Fix some 0-input (x, y) of g. Then, by the 1-sided privacy of the1PSM,
we have that, for b = 0,

�

c
R←{0,1}s

(Sim(x, y); (H1(x, 0, c), H2(y, 0, c)))

= �

c
R←{0,1}s

(Simg; (F1(x0, c), F2(y0, c))) ≤ ε,
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and, for b = 1,

�

c
R←{0,1}s

(Sim(x, y); (H1(x, 1, c), H2(y, 1, c)))

= �

c
R←{0,1}s

(Simg; (F1(x, c), F2(y, c))) ≤ ε.

�

8.2. From ZAM to CDS

We now describe a direct construction of CDS from ZAM that avoids the overhead in
the transformation from ZAM to 1PSM (Theorem 2.3). The saving is mainly due to the
fact that, unlike the 1PSM setting, in the CDS setting the decoder is allowed to depend
on the inputs (x, y).
Theorem 2.6. Assume that the function f : {0, 1}n × {0, 1}n → {0, 1} has a δ-sound
ZAM protocol with communication complexity � and randomness complexity m. Then
the following hold.

1. The function f = 1 − f has a δ-correct and 0-private CDSwith communication
complexity m and randomness complexity 2m.

2. For any t ∈ N, the function f has a (δ + 2−t )-correct and (2−t )-private CDSwith
communication complexity m and randomness complexity (� + t).

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-sound ZAM protocol
(A, B)with randomness complexity ofm and communication complexity of �. Fix some
integer k. We start by recalling some notation from Theorem 2.3. For a pair of inputs
(x, y) let

Exy := {(rA, rB) ∈ {0, 1}m × {0, 1}m | ∃p : A(x, rA, p) = 1 = B(y, rB , p)}.

Let Ax
p := {rA ∈ {0, 1}m | A(x, rA, p) = 1} and By

p := {rB ∈ {0, 1}m |
B(y, rB , p) = 1}.
We construct a CDS scheme (F1, F2) for g as follows. As common randomness

the scheme takes p sampled from the accepting distribution Dacc of the ZAM scheme
(as in Theorem 2.3, Dacc can be perfectly simulated using 2m uniform bits). On an

input (x, b, p) the function F1 computed by Alice outputs r1
R← {0, 1}m if b = 1, and

r1
R← Ax

p, otherwise. Similarly, on an input (y, b, p) the function F2 computed by Bob

outputs r2
R← {0, 1}m if b = 1, and r2

R← By
p, otherwise. The decoding procedure

works as follows: on input (x, y, r1, r2) the decoder outputs 0 if (r1, r2) ∈ Exy , and 1
otherwise.
Nowweprove that (F1, F2) is aCDS scheme for f by verifying its security properties:

δ-Correctness: Take any 1-input (x, y) of f , which is a 0-input of f .

– If the secret bit b = 0, then r1 and r2 are sampled uniformly from Ax
p and By

p,
respectively. This means that with probability 1 the pair (r1, r2) lands in Exy and
hence decoding of (x, y, r1, r2) never fails in this case.
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– If the secret bit b = 1, then r1 and r2 are sampled uniformly from {0, 1}m . This
implies that the probability that (x, y, r1, r2) is decoded incorrectly to 0 is the
probability of (r1, r2) landing in Exy . Due to the soundness property of ZAM, the
latter probability is at most δ.

Perfect Privacy:We define the simulatorSim to output a random point (r1, r2) ∈
{0, 1}m ×{0, 1}m . Take any 0-input (x, y) of f , which is a 1-input of f . We verify
that Sim perfectly simulates the distribution of (F1, F2) for any b ∈ {0, 1}. For
b = 0 we have that F1 and F2 each output Um by construction. For b = 1 we use
the observation from the proof of Theorem 2.3 that the joint distribution of (r1, r2)

sampled from Ax
p and By

p for p
R← Dacc is uniform over {0, 1}m × {0, 1}m .

The second protocol. Similarly to Theorem 2.3, the second protocol is identical to
the first protocol except it uses an approximation of Dacc. We know that for any t ∈ N

the distribution Dacc can be approximated using (� + t) bits at the cost of deviating by
2−t in terms of the statistical distance from Dacc. This introduces an additional error of
2−t in both privacy and correctness of the second protocol. �

8.3. CDS for Dependency Programs

A dependency program is amodel of computation introduced in [22]. The original model
captures functions over binary inputs.

Definition 8.1. (DP) A dependency program over a field F is a pair (M, ρ), where
M is a matrix over F and ρ is a labeling of the rows of M by the literals from
{x1, . . . , xn, x1, . . . , xn} (every row is labeled with a single literal, and the same lit-
eral can be used in many rows). For an input u ∈ {0, 1}n let Mu denote the matrix
obtained from M by selecting only the rows assigned to the literals satisfied by u, i.e.,
a row labeled with xi (resp. xi ) is chosen if the i th bit of u is 1 (resp., 0). A dependency
program accepts an input u if and only if the rows of Mu are linearly dependent. A
dependency program computes a Boolean function f if it accepts only 1-inputs of f .
The size of the dependency program is the number of rows in M . We also write |M | to
denote the number of row the matrix M has.

The number of columns s in DP is not counted toward its size. Without loss of
generality we may assume that s is upper-bounded by the number of rows (the size)
since the matrix M can be restricted to a maximal set of linearly independent columns
without changing the function that is computed (cf. [6, Remark 2.4]). It will also be
convenient to assume that the number of rows labeled by xi is equal to the number of
rows that are labeled by its complement x̄i . (If this is not the case and Mxi contains less
rows than Mx̄i then we can add new linearly independent rows labeled by xi , possibly
at the expense of increasing the number of columns. Overall, the size of the resulting
dependency program will be at most twice as large as the size of the original program.)
Observe that if the input is partitioned betweenAlice and Bob, then the above convention
guarantees that for every input x (resp., y) Alice (resp., Bob)will hold amatrix Mx (resp.,
My) with a fixed number of rows which is independent of the input.
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We construct CDS for dependency programs. The following theorem generalizes
Theorem 2.7 from the introduction to arbitrary finite fields.

Theorem 8.2. (Theorem 2.7 generalized) Assume that the function f : {0, 1}n ×
{0, 1}n → {0, 1} has a dependency program of size m over a finite field F. Then, for
every t ∈ N, the function f has an (1/|F|)t -correct perfectly privateCDS scheme where
the secret is an element of F and the protocol communicates O(m · t) field elements and
consumes O(m · t) random field elements.

Note that for large fields, the scheme achieves low decoding error even for small values
of t (e.g., 1).

Proof. Let (M, ρ) be a dependency program for the function f : {0, 1}n × {0, 1}n →
{0, 1} over the finite field F. Let s denote the number of columns in M , and let m1 (resp.,
m2) denote the number of rows of M held by Alice for an input x (resp., held by Bob
for an input y). Recall that, by convention, m1 and m2 are independent of x and y, and
that m′ = m1 + m2 is at most m, the size of M .
We present a basicCDS scheme (F1, F2) for f where the secret b can be an arbitrary

field element. The scheme communicates at most 2m field elements, and uses at most
2m random field elements. It achieves perfect privacy and has a completeness error
of 1/|F|. In fact, the decoder will either output the right answer or will output, with
probability 1/|F|, a special failure symbol. Therefore, by repeating the protocol t times
(with independent randomness), we can reduce the error to |F|−t with a multiplicative
overhead of t in communication and randomness, as stated in the theorem.
The basic CDS scheme (F1, F2) is defined as follows. As common randomness the

scheme takes a pair of random vectors c ∈ F
s and d ∈ F

m′
. On an input (x, b, c, d), the

function F1 computed by Alice outputs the pair (d1, r1) where d1 ∈ F
m1 is the first m1

entries of the vector d, and r1 = Mx · c +b ·d1. (Recall that b ∈ F is a scalar.) Similarly,
on an input (y, b, c, d) the function F2 computed by Bob outputs the pair (d2, r2) where
d2 ∈ F

m2 is the last m2 entries of the vector d and r2 = My · c + b · d2. For a 1-instance
(x, y), the decoding procedure decodes (d = (d1, d2), r = (r1, r2)) as follows: (1) The
decoder finds a nonzero vector v ∈ F

m′
for which vT Mxy = 0 (such a vector must exist

since the rows of Mxy are linearly dependent); (2) If the dot product (vT · d) is nonzero
the decoder outputs the value b′ = (vT · r)/(vT · d), and otherwise it outputs a special
failure symbol.
We prove that the pair (F1, F2) is a CDS for f .

Correctness: Fix some 1-input (x, y) of f . Since v is in the left nullspace of
Mxy , it holds that

vT · r = vT (Mxy · c + b · d) = b · (vT · d).

Therefore, decoding succeeds as long as (vT · d) 	= 0. The latter event happens
with probability 1 − 1/|F| since d ∈ F

m′
is uniformly distributed.

Perfect Privacy: Fix some 0-input (x, y) of f . We show that in this case the
random variables (d1, r1) = F1(x, b, c, d) and (d2, r2) = F2(y, b, c, d) induced
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by a random choice of c and d, are just vectors of uniformly and independently
chosen field elements. First note that, by construction, d = (d1, d2) is uniformly
chosen from F

m′
. Recall that r = Mxy · c + b · d, and therefore it suffices to show

that Mxy ·c is uniform over Fm′
. The latter boils down to showing that the image of

Mxy is equal toFm′
. Indeed, since (x, y) is 0-input of f , the rows of thematrix Mxy

are linearly independent (i.e., the left nullspace of Mxy has rank 0), and so, by the
fundamental theorem of linear algebra, the linear space spanned by the columns
of Mxy equals to Fm′

. �

Remark 8.3. (Linearity) We say that a CDS (F1, F2) is linear [12] if for any fixed
1-input (x, y) the decoding functionDecx,y which maps the messages of Alice and Bob
(viewed together as a vector over a field F) to the secret b ∈ F is linear over F. It is
not hard to verify that Theorem 2.7 yields a linear CDS. In fact, our scheme satisfies
a stronger notion of linearity: for any fixed input (x, y) the functions F1 and F2 are
degree 1 functions in the secret b and in the common randomness (c, d). These linearity
properties are useful for some applications such as attribute-based encryption schemes
(cf. [12,18]).

Remark 8.4. (Extension to non-binary inputs) We can get CDS for functions whose
inputs are field elements, i.e., f : F

n × F
n → {0, 1}, by considering an arithmetic

generalization of dependencies programs. Formally, we define an arithmetic dependency
program (ADP) over a field F to be a triplet (W, V, ρ), where W, V ∈ F

m×s and
ρ : [m] → [n]. For an input u ∈ F

n , let Mu denote the m × s matrix whose i-th
row corresponds to Wi · uρ(i) + Vi , where Wi and Vi denote the i-th row of W and
V , respectively. An ADP computes a Boolean function f if for every u ∈ F

n we have
f (u) = 1 if and only if the rows of Mu are linearly dependent. Theorem 8.2 and its
proof readily extends to ADPs. More generally, the CDS construction from Theorem 8.2
applies as long as Alice and Bob can locally compute matrices Mx and My (respectively)

with the property that f (x, y) = 1 if and only if the rows of the matrix M =
(

Mx
My

)
are

linearly dependent.

Remark 8.5. (Comparison with CDS for span programs) It is instructive to compare
our construction to the CDS construction of span programs (implicit in [18, Section 7]).
Say that Alice’s input x defines a set of row vectors which together form the matrix Mx ,
and that Bob’s input y defines a set of row vectors which together form the matrix My .
For span program the predicate accepts (x, y) if some target row vector t ∈ F

s is in the

row-span of the m × s matrix M =
(

Mx
My

)
. (At the extreme, the rows of M span the

whole space.) To get a CDS, Alice and Bob use a shared random column vector c ∈ F
s

and output the vector Mc =
(

Mx c
Myc

)
together with b + tc (i.e., the secret b is masked by

the dot product of t and c). In a more compact form, the CDS can be written as

(
M
t

)

· c + b′, (5)
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where b′ = (0 · · · 0b). It is not hard to show that this is a valid CDS. (Indeed, if t can be
written as a linear combination of the rows of M , i.e., t = wᵀM , then the referee can
recover tc = wᵀMc and un-pad the secret; On the other hand, if t is not spanned by
the rows of M then tc is uniformly distributed conditioned on Mc, and so the secret is
perfectly hidden.) Getting back to dependency programs, recall that a DP is satisfied if
the rows of M are linearly dependent (at the extreme no vector is spanned by the rows
of M), which intuitively correspond to the converse of span programs. Indeed, the PSM
for dependency programs can be written as

(
M d

) ·
(

c
b

)

, (6)

where c ∈ F
s and d ∈ F

m are shared random inputs. Comparing (5–6), we see that for
span programs the secret is padded by a random image v of (an extended version of) M ,
whereas for dependency programs the secret is hidden as part of the preimage of v. In
this sense, the two constructions are dual to each other.
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9. Appendix 1: [10] is pPSM

Weshow that thePSM construction given in [10] is also perfect, i.e., is apPSM construc-
tion. We start by describing the [10] scheme (F1, F2) for a boolean f : [N ] × [N ] →
{0, 1}. (Our description is based on [7].) The shared randomness of the scheme is N
random bits r = (r0, . . . , rN−1) and a random index s ∈ [N ]. The algorithms F1 and
F2 are defined as follows:

Algorithm F1(x, (r, s)):

1. For each i ∈ {0, . . . , N − 1}, compute ci =
f (x, i) + ri .

2. For each i ∈ {0, . . . , N − 1}, compute di =
ci+s mod N .

3. Output m1 = (d0, . . . , dN−1).

Algorithm F2(y, (r, s)):

1. Compute u = ry and v =
y − s.

2. Output m2 = (u, v).

Decoding is performed by outputting the value u + dv . We have that F1’s output space
is R1 = {0, 1}N and the output space of F2 is R2 = {0, 1} × [N ]. Define Fxy(r, s) :
{0, 1}N−1 × [N ] → R1 × R2 by (F1(x, (r, s)), F2(y, (r, s))). For b ∈ {0, 1}, let Sb :=
{Fxy(r, s) | (r, s) ∈ {0, 1}N × [N ], (x, y) ∈ f −1(b)}. We prove that S0 and S1 satisfy
the required combinatorial properties of pPSM (Remark 4.3):

• S0∩S1 = ∅, since each Sb consists of ((d0, . . . , dN−1), (u, v)) such thatb = u+dv .
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• S0∪S1 = R1×R2, since Sb consists of all pairs ((d0, . . . , dN−1), (u, v)) satisfying
the correctness requirement b = u + dv .

• For any fixed input (x, y), we show that Fxy is a bijection on S f (x,y). First, we
prove that it is an injection. Indeed, say that Fxy(r, s) = Fxy(r ′, s′) = (d, u, v) and
let c = (c1, . . . , cN−1) and c′ = (c′

1, . . . , c′
N−1) denote the intermediate values

computed by F1(x, (r, s)) and F1(x, (r ′, s′)), respectively. Then, by correctness, it
holds that y−s = y−s′. This means that s = s′, which, in turn, implies that c = c′
and so r = r ′. It follows that Fxy is injective. Second, we claim that Fxy is a surjec-
tion on S f (x,y). Toward this end, we show that any tuple ((d0, . . . , dN−1), (u, v))

from S f (x,y) has a preimage (s, r) under Fxy . Indeed, let s := y − v, and for
each i ∈ {0, . . . , N − 1}, let ri := di−s mod N − f (x, i). By construction, we
have that (r, s) is a preimage of ((d0, . . . , dN−1), (u, v)), i.e., Fxy(r, s) equals to
(d0, . . . , dN−1), (u, v).

10. Appendix 2: [7] is pPSM

In this section we describe the PSM protocol of [7] and prove that it forms a pPSM. To
simplify the proof, our description slightly deviates from the original description though
the resulting protocol is identical.
Before constructing apPSM for the function f : [N ]×[N ] → {0, 1}, we introduce some
auxiliary definitions. Let us view f as a function of four arguments by splitting its first
and second argument in half, i.e., f (x, y) = f (v1, v2, v3, v4) where each vi ∈ [N 1/2].
Following [7], we associate f with a 4-dimensional cube as follows: each coordinate
(v1, v2, v3, v4) of the cube is associated with the value f (v1, v2, v3, v4). For any v ∈
[N 1/2], let ev denote the N 1/2-bit indicator vector which has 1 at location v, and 0
elsewhere. For any two N 1/2-bit vectors u1, u2 let 〈u1, u2〉 denote their inner product.
For four N 1/2-bit vectors u1, u2, u3, u4 we define the function G(u1, u2, u3, u4) to
compute the XOR of the subcube defined by the 1-coordinates in u1, u2, u3, u4, i.e.,

G(u1, u2, u3, u4)

=
∑

v1,v2,v3,v4∈[N1/2]

〈
ev1 , u1

〉 · 〈
ev2 , u2

〉 · 〈
ev3 , u3

〉 · 〈
ev4 , u4

〉 · f (v1, v2, v3, v4),

where addition and multiplication are computed over the binary field. The following fact
has been observed in [9].

Fact 10.1. Let v1, v2, v3, v4 ∈ [N 1/2] be any four values and let u1, u2, u3, u4 be any
four N 1/2-bit vectors. For each k ∈ [4], let u0

k = uk and let u1
k = uk ⊕ evk (where ⊕ is

a bit-wise XOR of vectors). Then, it holds that

f (v1, v2, v3, v4) =
∑

(b1,b2,b3,b4)∈{0,1}4
G

(
ub1
1 , ub2

2 , ub3
3 , ub4

4

)
.
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We now describe how Alice and Bob each holding input x = (x1, x2) and y = (y1, y2),
respectively, compute an encoding of f (x1, x2, y1, y2). Letu1, u2, u3, u4 be four random
N 1/2-bit vectors that Alice and Bob use as common randomness. For k ∈ [4] and
b ∈ {0, 1}, define additional vectors ub

k as follows: for each k ∈ [4], let u0
k = uk ;

and let u1
1 = u1 ⊕ ex1 , u1

2 = u2 ⊕ ex2 , u1
3 = u3 ⊕ ey1 , u1

4 = u4 ⊕ ey2 . Alice and
Bob compute the encoding of f (x1, x2, y1, y2) by computing an encoding of the sum
∑

(b1,b2,b3,b4)∈{0,1}4 G(ub1
1 , ub2

2 , ub3
3 , ub4

4 ). They do this by splitting the sum into two
summands:

G
(

u1
1, u1

2, u1
3, u1

4

)
+

∑

(b1,b2,b3,b4)∈{0,1}4\{(1,1,1,1)}
G

(
ub1
1 , ub2

2 , ub3
3 , ub4

4

)
.

The first summand is encoded with the tuple (u1
1, u1

2, u1
3, u1

4), i.e., the values u1
i are sent

by Alice and Bob in plain, so that the Referee can compute the term G(u1
1, u1

2, u1
3, u1

4).
As observed in [7], the second summand can be computed by a multiplicative depth-
1 circuit C(x, y, (u1, u2, u3, u4)) of size O(N 1/2) and so it can be encoded via the
following lemma whose proof is implicit in [16] (see also [2]).

Lemma 10.2. Every multiplicative depth-1 circuit of size m has a pPSM with ran-
domness and communication complexity of size O(m).

Let H1 and H2 denote the pPSM of the circuit C . Then, the encoding of the second term
is computed by Alice and Bob by applying H1 and H2, respectively.
Formally, the resulting encoding F1, F2 for the function f is described below.

Parameters: Alice’s input x = (x1, x2), Bob’s input y = (y1, y2), four random N 1/2-
bit vectors (u1, u2, u3, u4) = u and a common randomness c used by H1, H2.

Alice’s algorithm F1(x, (u, c)):

1. Compute m1 = H1((x, u), c).
2. Compute u1

1 = u1 ⊕ ex1 and u1
2 =

u2 ⊕ ex2 .
3. Output M1 = (u1

1, u1
2, m1).

Bob’s algorithm F2(y, (u, c)):

1. Compute m2 = H2((y, u), c).
2. Compute u1

3 = u3 ⊕ ey1 and u1
4 =

u4 ⊕ ey2 .
3. Output M2 = (u1

3, u1
4, m2).

The decoding algorithm works as follows: Given (u1
1, u1

2, m1) and (u1
3, u1

4, m2), the
decoder first uses a decoder of the pPSM (H1, H2) to recover the bit z = C(x, y, u),
and then outputs z + G(u1

1, u1
2, u1

3, u1
4).

Lemma 10.3. The encoding (F1, F2) is a pPSM for f with randomness and commu-
nication complexity of O(N 1/2).

Proof. We prove that (F1, F2) is a pPSM by viewing it as a composition of two perfect
encodings (seeRemark4.5).Consider the encoding J ,which takes (x, y) as deterministic
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inputs and u = (u1, u2, u3, u4) where ui ∈ {0, 1}N1/2
as common randomness, and

outputs the pair

(C(x, y, u), (u1
1, u1

2, u1
3, u1

4)) ∈ {0, 1} × [N 1/2]4,

where each u1
k are computed as in (F1, F2). We prove that J (x, y, u) is a pPSM of f by

showing that J satisfies the required combinatorial properties of pPSM as formulated
in Remark 4.3.
Let Jxy(u) = J (x, y, u) and, for b ∈ {0, 1}, define Sb := {Jxy(u) | u ∈ [N 1/2]4, (x, y) ∈
f −1(b)}. Then the following hold:

• S0 ∩ S1 = ∅ since each Sb consists of (d, (w1, w2, w3, w4)) such that d +
G(w1, w2, w3, w4) = b.

• We prove that S0 ∪ S1 = {0, 1} × [N 1/2]4. Take any (d, (w1, w2, w3, w4)) from
{0, 1} × [N 1/2]4. Let z = d + G(w1, w2, w3, w4). Take any z-input (x, y) of f .
Define u1 = w1 ⊕ ex1 , u2 = w2 ⊕ ex2 , u3 = w3 ⊕ ey1 , and u4 = w4 ⊕ ey2 . By
construction we have that Jxy(u1, u2, u3, u4) = (d, (w1, w2, w3, w4)).

• For any fixed input (x, y), we show that Jxy is a bijection on S f (x,y). First, we prove
that it is an injection. Indeed, say that Jxy(u) = Jxy(u′) = (d, (w1, w2, w3, w4)).
Then, we have that u = (w1 ⊕ ex1, w2 ⊕ ex2 , w3 ⊕ ey1, w4 ⊕ ey2) = u′. It follows
that Jxy is injective. Second, we claim that Jxy is a surjection on S f (x,y). Toward
this end, we show that any tuple (d, (w1, w2, w3, w4)) from S f (x,y) has a preimage
(u1, u2, u3, u4) under Jxy . Indeed, define u1 = w1 ⊕ ex1, u2 = w2 ⊕ ex2 , u3 =
w3 ⊕ ey1 , and u4 = w4 ⊕ ey2 . By construction, we have that u is a preimage of
(d, (w1, w2, w3, w4)).

Finally, we observe that (F1, F2) can be viewed as an encoding of J since it encodes the
C(x, y, u) part by the pPSM (H1, H2) and outputs (u1

1, u1
2, u1

3, u1
4) as is. It follows, by

standard properties of pPSM [1, Lemmas 4.10 and 4.11], that the encoding (F1, F2) is
also a pPSM of f . Let sF , sJ , sH (resp., tF , tJ , tH ) denote the randomness complexities
(resp., communication complexities) of the encodings (F1, F2), J , and (H1, H2). By
construction, we have that sJ and tJ are in O(N 1/2) and, by Lemma 10.2, we also have
that sH and tH are in O(N 1/2). Since sF = sJ + sH and tF = tJ + tH we conclude that
F has a communication and randomness complexity of O(N 1/2). �
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