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Abstract. We revisit the security definitions of blind signatures as proposed by
Pointcheval and Stern (J Cryptol 13(3):361–396, 2000). Security comprises the notions
of one-more unforgeability, preventing a malicious user to generate more signatures
than requested, and of blindness, averting a malicious signer to learn useful informa-
tion about the user’s messages. Although this definition is well established nowadays,
we show that there are still desirable security properties that fall outside of the model.
More precisely, in the original unforgeability definition is not excluded that an adversary
verifiably uses the same message m for signing twice and is then still able to produce
another signature for a new message m′ �= m. Intuitively, this should not be possi-
ble; yet, it is not captured in the original definition, because the number of signatures
equals the number of requests. We thus propose a stronger notion, called honest-user
unforgeability, that covers these attacks. We give a simple and efficient transformation
that turns any unforgeable blind signature scheme (with deterministic verification) into
an honest-user unforgeable one.
Keywords. Blind signatures, Formalization, Aborts, Probabilistic verification.

1. Introduction

Blind signature schemes have been suggested by Chaum [12,13]. Roughly speaking, this
widely studied primitive allows a signer to interactively issue signatures for a user such
that the signer learns nothing about the message being signed (blindness) while the user
cannot compute any additional signature without the help of the signer (unforgeability).
Typical applications of blind signatures include e-cash, where a bank signs coins with-
drawn by users, and e-voting, where an authority signs public keys that voters later use to
cast their votes. Another application of blind signature schemes are anonymous creden-
tials, where the issuing authority blindly signs a key [10,11]. Very recently, Microsoft
introduced a new technology called U-Prove to “overcome the long-standing dilemma
© International Association for Cryptologic Research 2016
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between identity assurance and privacy” [6,29]. Their solution uses blind signatures as
a central building block [6,9].

The two security properties, blindness and unforgeability, have been formalized in
[27,31]. The blindness definition [27] basically says that amalicious signer should not be
able to link signatures generated in interactionswith the user to the individual executions.
In other words, the signer cannot tell which session of the signing protocol corresponds
to which message. The unforgeability property [31] states that an adversary, even if able
to impersonate the user and interact freely with the signer, should not be able to produce
more signatures than the number of interactions that took place with the signer.
While the above properties have been formalized unambiguously through the com-

mon game-based frameworks, and the definitions seem to capture the basic security
requirements appropriately, a closer look reveals that the guarantees are rather fragile
with respect to slight changes in the adversary’s capabilities: In the traditional definition
of unforgeability due to [27,31], the adversary takes the role of the user and needs to
output more signatures than interactions with the signer took place. To be precise, it
needs to output more distinct messages with valid signatures than signer invocations.
Assume for the moment that the adversary would be able to compute a signature for a
messagem′ after having faithfully obtained two signatures for the samemessagem �= m′
through the signer (but no signatures on other messages). Then the adversary cannot out-
put signatures for more (distinct) messages m,m′ than the number of invocations of the
signer—namely two—and the scheme would be deemed unforgeable according to the
unforgeability notions in [27,31], even though the adversary holds a signature for a fresh
message m′ which it has never used in the interaction.

The above is not surprising in light of the fact that blindness prevents the signer to
know which message has been signed. As such, the adversary above could have let the
signer in the two executions sign the messagesm andm′ instead. Since there is no way to
prevent this, the above attack should indeed not be considered a success. The situation,
however, changes if an honest user would have asked for the two signatures for m. Then
the adversary would be able to create the additional signature for m′ “out of the blue,”
without having interacted with the signer and with the assurance that the signer has never
issued a signature for m′. A more detailed example is given in Sect. 1.1.

1.1. Unforgeability in the Presence of Honest Users

To underline the importance of considering unforgeability in the presence of honest users
and motivate our approach, let us first consider an example where this property may be
desirable. For this, consider the setting of an online video store such as Netflix. In our
setting, we assume that the store is implemented via two entities: the content provider
and the reseller. We assume that the contract between client and reseller is a flat rate that
allows the client to download a fixed number of movies. For privacy reasons, we do not
wish the reseller to know which movies the client actually watches. On the other hand,
we wish to ensure that underage clients can only download movies suitable for their age.
Suppose that this is implemented through a (trusted) entity, the parental control server
whose job is to work as a proxy between reseller and client and to ensure that the client
only obtains appropriate movies. Then, to download a movie X , the client first sends her
name and X to the parental control server. If X is appropriate for the client, the parental
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Fig. 1. Setting of an online video store.

control server then runs a blind signature scheme with the reseller to obtain a signature
σ on (X, name) (the blind signature is used to protect the privacy of the client, there is
no need for the reseller to know which movies the client watches). Then σ is sent to the
client, and the client uses σ to download X from the content provider (we assume that
all communication is suitably authenticated) (Fig. 1).
At a first glance, it seems that this protocol is secure. In particular, the client will not

be able to download a movie that is not approved by the parental control server. It turns
out, however, that the client could cheat the parental control server if the scheme does
not guarantee unforgeability in the presence of honest users: Assume the client requests
a signature on some harmless movie X twice. He will then obtain two signatures σ1 and
σ2 on X from the parental control server. Then, given σ1 and σ2, the client’s children,
observing the signatures on the computer, may be able to compute a signature on an
adult movie Y that has not been approved by the parental control server.
Our first result is to formally confirm that (basic) unforgeability is in general too weak

for the above scenario. That is, we show in Sect. 4.2 that blind signature schemes exist
that allow such attacks but that are still unforgeable in the sense of [27,31]. (We note that
this is independent of the other issues mentioned before, namely unforgeability under
aborts and probabilistic verification.)

Defining unforgeability in the presence of honest users To cover attacks like the one
above, we thus propose a new game-based definition, unforgeability in the presence of
honest users, which is a strengthening of unforgeability. Alternatively, one could also
define an ideal functionality (see [4,16]) that covers these attacks, but schemes that
achieve such strong security properties are usually less efficient. Our definition can be
outlined as follows:

Definition 1. (Unforgeability in the presence of honest users—informal) If an adver-
sary performs k direct interactions with the signer, and requests signatures for the mes-
sages m1, . . . ,mn from the user (which produces these signatures by interacting with
the signer), then the adversary cannot produce signatures for pairwise distinct messages
m∗

1, . . . ,m
∗
k+1 with {m∗

1, . . . ,m
∗
k+1} ∩ {m1, . . . ,mn} = ∅.

Notice that this definition also covers the hybrid case in which the adversary interacts
with an honest user and the signer simultaneously. Alternatively, one could also require
security in each of the settings individually: security when there is no honest user (that



Security of Blind Signatures Revisited 473

is, the regular definition of unforgeability), and security when the adversary may not
query the signer directly (we call this S + U-unforgeability). We show in Sect. 4.4 that
requiring these variants of security individually leads to a strictly weaker security notion.
Notice that S + U-unforgeability would be sufficient to solve the problem in our video
store example. It seems, however, restrictive to assume that in all protocols, there will
always be queries either only from honest users or only from dishonest users, but never
from both in the same execution.

Achieving honest-user unforgeability We show that any unforgeable blind signature
scheme can be converted into an honest-user unforgeable blind signature scheme. The
transformation is very simple and efficient: Instead of signing a message m, in the
transformed scheme the user signs the message (m, r) where r is some sufficiently long
random string. Furthermore, we show that if a scheme is already strongly unforgeable,
then it is strongly honest-user unforgeable (as long as the original scheme is randomized
which holds for most signature schemes).

1.2. Insecurity with Probabilistic Verification

Most (regular or blind) signature schemes have a deterministic verification algorithm.
In general, however, having a deterministic verification is not a necessity. Yet, when we
allow a probabilistic verification algorithm (and this is usually not explicitly excluded),
both the definition of unforgeability and the definition of honest-user unforgeability are
subject to an attack: Consider again our video store example. Let λ denote the security
parameter. Fix a polynomial p = p(λ) > λ. Assume that the parental control server
and the client are malicious and collude. The parental control server interacts with the
reseller λ times and produces p > λ “half-signatures” on movie names X1, . . . , X p.
Here, a half-signature means a signature that passes verification with probability 1

2 .
Then the client can download the movies X1, . . . , X p from the content provider. (If in
some download request, a half-signature does not pass verification, the client just retries
his request.) Thus the client got p > λ movies, even if his flat rate only allows for
downloading λ movies.
Can this happen? It seems that unforgeability would exclude this because p > λ

signatures were produced using λ queries to the signer. In the definition of unforgeability,
however, the adversary succeeds if it outputs p > λ signatures such that all signatures
pass verification. However, the signatures that are produced are half-signatures: That
is, the probability that all p > λ signatures pass the verification simultaneously is
negligible! Thus, producing more than λ half-signatures using λ queries would not be
considered an attack by the usual definition of unforgeability. In Sect. 5, we show that
blind signature schemes exist that allow such attacks but that satisfy the definition of
unforgeability. The same applies to honest-user unforgeability as described so far; we
thus need to augment the definition further.
There are two solutions to this problem.One is to explicitly require that the verification

algorithm is deterministic. Since most schemes have deterministic verification, this is
not a strong restriction. To cover the case of probabilistic verification, we propose an
augmented definition of honest-user unforgeability in Sect. 5: This definition considers
a list of signatures as a successful forgery if each of them would pass verification with
noticeable probability (roughly speaking).
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We do not propose a generic transformation that makes schemes with probabilistic
verification secure according to our definition. Yet, since most schemes have a deter-
ministic verification anyway, these schemes will automatically satisfy our augmented
definition.

1.3. Related Work

Many blind signature schemes have been proposed in the literature, and these schemes
differ in their round complexity, their underlying computational assumptions, and the
model in which the proof of security is given. For example, some schemes rely on
the random oracle heuristic [1,4,7,8,31], some constructions are secure in the stan-
dard model [2,14,19,25,28,30,33] ([2,19] assume the existence of a common reference
string), and some constructions are based on general assumptions [16,22,26,27,33].
Only a few works consider the security of blind signatures [17,27,31] or their round
complexity [18,20,22,33].
As mentioned before, Camenisch et al. [15] have already considered the limitations

of the standard blindness notion. They have introduced an extension called selective-
failure blindness in which a malicious signer should not be able to force an honest user
to abort the signature issue protocol because of a certain property of the user’s message,
which would disclose some information about the message to the signer. They present
a construction of a simulatable oblivious transfer protocol from the so-called unique
selective-failure blind signature schemes (in the random oracle model) for which the
signature is uniquely determined by the message. Since the main result of the work [15]
is the construction of oblivious transfer protocols, the authors note that Chaum’s scheme
[12] and Boldyreva’s protocol [8] are examples of such selective-failure blind schemes,
but do not fully explore the relationship to (regular) blindness.
Hazay et al. [26] present a concurrently secure blind signature scheme and, as part

of this, they also introduce a notion called a posteriori blindness. This notion considers
blindness of multiple executions between the signer and the user (as opposed to two
sessions as in the basic case) and addresses the question how to deal with executions in
which the user cannot derive a signature. However, the definition of a posteriori blindness
is neither known to be implied by ordinary blindness, nor does it imply ordinary blindness
(as sketched in [26]). Thus, selective-failure blindness does not follow from this notion.
Aborts of players have also been studied under the notion of fairness in two-party

and multi-party computations, especially for the exchange of signatures, e.g., [5,21,24].
Fairness should guarantee that one party obtains the output of the joint computation if
and only if the other party receives it. Note, however, that in case of blind signatures the
protocol only provides a one-sided output to the user (namely, the signature). In addition,
solutions providing fairness usually require extra-assumptions like a trusted third party
in case of disputes, or they add a significant overhead to the underlying protocol.

2. Blind Signatures

Before presenting our results, we briefly recall some basic definitions. In what follows,
wedenote byλ ∈ N the security parameter. Informally,we say that a function isnegligible
if it vanishes faster than the inverse of any polynomial. We call a function non-negligible
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if it is not negligible. If S is a set, then x
$← S indicates that x is chosen uniformly at

random over S (which in particular assumes that S can be sampled efficiently).
To define blind signatures formally, we introduce the following notation for interactive

executions between algorithmsX andY . By (a, b) ← 〈X (x),Y(y)〉we denote the joint
execution of X and Y , where x is the private input of X and y defines the private input
of Y . The private output of X equals a and the private output of Y is b. We write
Y〈X (x),·〉∞(y) if Y can invoke an unbounded number of executions of the interactive
protocol with X in arbitrarily interleaved order. Accordingly, X 〈·,Y(y0)〉1,〈·,Y(y1)〉1(x)
can invoke arbitrarily interleaved executions with Y(y0) and Y(y1), but interact with
each algorithm only once. The invoking oracle machine does not see the private output
of the invoked machine. In the above definition, this means that Y does not learn a, and
that X does not learn Y’s outputs.

Definition 2. (Interactive signature scheme)We define an interactive signature scheme
as a tuple of efficient1 algorithmsBS = (KG, 〈S,U〉 ,Vf) (the key generation algorithm
KG, the signer S, the user U , and the verification algorithm Vf) where

Key Generation KG(1λ) for parameter λ generates a key pair (sk, pk).
Signature Issuing The execution of algorithm S(sk) and algorithm U(pk,m) for mes-

sage m ∈ {0, 1}∗ generates an output σ of the user, and some output
out for the signer (possibly empty, or a status message like ok or ⊥),
(out, σ ) ← 〈S(sk),U(pk,m)〉.

Verification Vf(pk,m, σ ) outputs a bit.

It is assumed that the scheme is complete, i.e., for any function f , with overwhelming
probability in λ ∈ N the following holds: when executing (sk, pk) ← KG(1λ), setting
m := f (λ, pk, sk), and letting σ be the output of U in the joint execution of S(sk) and
U(pk,m), then we have Vf(pk,m, σ ) = 1.

Note that we assume that the message is {0, 1}∗ and in particular independent of the
public key. However, our positive constructions (Sect. 4.5) can easily be seen to work
in the same way for smaller messages spaces, and message spaces depending on the
public key. (As long as they are big enough to contain the appended random number r ,
of course.)

3. Basic Security Notions for Blind Signatures

Security of blind signature schemes is defined by unforgeability and blindness. We first
present the established notions by [27,31].

1More precisely, KG and Vf run in polynomial-time in the total length of their inputs. The total running
time of S is polynomial in the total length of its input (sk) plus the total length of its incoming messages. The
total running time of U is polynomial in the total length of its input (pk,m). (But the running time of U may
not depend on its incoming messages.) The asymmetry between the running time of S and U is necessary to
ensure that (a) an interaction between U and S always runs in polynomial-time, and that (b) the running time
of S may depend on the length of the message m that only U has in its input.
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Unforgeability An adversary U∗ against unforgeability tries to generate k + 1 valid
message/signatures pairs with different messages after at most k completed interactions
with the honest signer, where the number of executions is adaptively determined by
U∗ during the attack. To identify completed sessions, we assume that the honest signer
returns a special symbol ok when having sent the final protocol message in order to
indicate a completed execution (from its point of view). We remark that this output is
“atomically” connected to the final transmission to the user.

Definition 3. (Unforgeability) An interactive signature scheme BS = (KG, 〈S,U〉 ,

Vf) is called unforgeable if for any efficient algorithmA (the malicious user), the prob-
ability that experiment ForgeBSA (λ) evaluates to 1 is negligible (as a function of λ)
where

Experiment ForgeBSA (λ)

(sk, pk) ← KG(1λ)

((m∗
1, σ

∗
1 ), . . . , (m∗

k+1, σ
∗
k+1)) ← A〈S(sk),·〉∞(pk)

Return 1 iff
m∗

i �= m∗
j for all i, j with i �= j , and

Vf(pk,m∗
i , σ

∗
i ) = 1 for all i , and

S has returned ok in at most k interactions.

An interactive signature scheme is strongly unforgeable if the condition “m∗
i �= m∗

j for
i, j with i �= j” in the above definition is substituted by “(m∗

i , σ
∗
i ) �= (m∗

j , σ
∗
j ) for i, j

with i �= j”.
Observe that the adversary A does not learn the private output out of the signer

S(sk). We assume schemes in which it can be efficiently determined from the interaction
between signer and adversary whether the signer outputs ok. If this is not the case, we
need to augment the definition and explicitly give the adversary access to the output out
since out might leak information that the adversary could use to produce forgeries.
Blindness The blindness condition says that it should be infeasible for a malicious signer
S∗ to decide which of two messages m0 and m1 has been signed first in two executions
with an honest user U . This condition must hold, even if S∗ is allowed to choose the
public key maliciously [3]. If one of these executions has returned ⊥, then the signer
is not informed about the other signature. (Otherwise, the signer could trivially identify
one session by making the other abort.)

Definition 4. (Blindness) A blind signature scheme BS = (KG, 〈S,U〉 ,Vf) is called
blind if for any efficient algorithm S∗ (working in modes find, issue, and guess), the
probability that the following experiment BlindBSS∗ (λ) evaluates to 1 is negligibly close
to 1/2, where

Experiment BlindBSS∗ (λ)

(pk,m0,m1, stfind) ← S∗(find, 1λ)

b
$← {0, 1}

stissue ← S∗〈·,U(pk,mb)〉1,〈·,U(pk,m1−b)〉1(issue, stfind)
and let σb, σ1−b denote the (possibly undefined) local outputs
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of U(pk,mb) resp. U(pk,m1−b).
set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

4. Unforgeability in the Presence of Honest Users

In this section, we introduce our stronger notion of unforgeability in the presence of
honest users.

4.1. Definition

Before proposing the new definition, we fix some notation. Let P(sk, pk, ·) be an ora-
cle that on input a message m executes the signature issue protocol 〈S(sk),U(pk,m)〉
obtaining a signature σ . Let trans denote the transcript of the messages exchanged in
such an interaction. We assume that the transcript consists of all messages exchanged
between the parties. This oracle then returns (σ, trans).
(The execution of 〈S(sk),U(pk,m)〉 by P is atomic, i.e., during a call to P , no other

interactions take place. And if the interaction aborts, (⊥, trans) is returned where trans
describes the transcript up to that point.)

Definition 5. (Honest-user unforgeability) An interactive signature scheme BS =
(KG, 〈S,U〉 ,Vf) is honest-user unforgeable if Vf is deterministic and the following
holds: For any efficient algorithmA the probability that experimentHForgeBSA (λ) eval-
uates to 1 is negligible (as a function of λ) where

Experiment HForgeBSA (λ)

(sk, pk) ← KG(1λ)

((m∗
1, σ

∗
1 ), . . . , (m∗

k+1, σ
∗
k+1)) ← A〈S(sk),·〉∞,P(sk,pk,·)(pk)

Let m1, . . . ,mn be the messages queried to P(sk, pk, ·).
Return 1 iff

m∗
i �= m j for all i, j

m∗
i �= m∗

j for all i, j with i �= j , and
Vf(pk,m∗

i , σ
∗
i ) = 1 for all i , and

S has returned ok in at most k interactions with A.

(Note that, when counting the interactions in which S returns ok, we do not count the
interactions simulated by P .)

An interactive signature scheme is strongly honest-user unforgeable if the condition
“m∗

i �= m j for all i, j” in the above definition is substituted by “(m∗
i , σ

∗
i ) �= (m j , σ j )

for all i, j” and if we change the condition “m∗
i �= m∗

j for all i, j with i �= j” to
“(m∗

i , σ
∗
i ) �= (m∗

j , σ
∗
j ) for all i, j with i �= j”.

Notice that we require Vf to be deterministic. When we drop this requirement, the
definition does not behave as one would intuitively expect. We explain this problem in
detail in Sect. 5. Note further that this definition can be further strengthened by giving
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the adversary also the randomness of the honest user and that all our results and proofs
also hold for this stronger definition.

4.2. Unforgeability Does Not Imply Honest-User Unforgeability

We show that unforgeability does not imply honest-user unforgeability. In particular,
a merely unforgeable blind signature scheme does not exclude the attack on the video
store described in Sect. 1.1. The high-level idea of our counterexample is to change the
verification algorithm of an interactive signature scheme such that it accepts a message
m′ if it obtains as input two distinct and valid signatures on some message m �= m′ (in
addition to accepting honestly generated signatures). More precisely, fix an unforgeable
and blind signature scheme BS = (KG, 〈S,U〉 ,Vf) that is strongly unforgeable. Fix
someefficiently computable injective function f �= id onbitstrings (e.g., f (m) := 0‖m).
We construct a blind signature scheme BS1 = (KG1, 〈S1,U1〉 ,Vf1) as follows:

• KG1 := KG, S1 := S, and U1 := U .
• Vf1(pk,m, σ ) executes the following steps:

– Invoke v := Vf(pk,m, σ ). If v = 1, return 1.
– Otherwise, parse σ as (σ 1, σ 2). If parsing fails or σ 1 = σ 2, return 0.
– Invoke vi := Vf(pk, f (m), σ i ) for i = 1, 2. If v1 = v2 = 1, return 1.
Otherwise return 0.

Lemma 6. If BS is complete, strongly unforgeable, and blind, then BS1 is complete,
unforgeable, and blind.

Blindness and completeness of BS1 follow directly from the blindness and complete-
ness ofBS. Themain idea behind unforgeability is the following: The only possibility for
the adversary to forge a signature is to obtain two different signatures σ1, σ2 on the same
message f (m). Then (σ1, σ2) is a valid signature on m. However, since the underlying
scheme BS is strongly unforgeable, the adversary can only get σ1, σ2 by performing
two signing queries. Thus, using two queries, the adversary gets two signatures on the
message f (m) and one on m. This is not sufficient to break the unforgeability of BS1
since the adversary would need to get signatures on three different messages for that.

Proof of Lemma 6. Assume for the sake of contradiction that BS1 is not unforgeable.
Then, there is an efficient adversaryA that succeeds in the unforgeability game for BS1
with non-negligible probability. This attacker, when given oracle access to the signer S1,
returns a (k + 1)-tuple ((m1, σ1), . . . , (mk+1, σk+1)) of message/signature pairs, where
Vf1(pk,mi , σi ) = 1 for all i and mi �= m j for all i �= j and where S has returned ok at
most k times. In the following, we call such a tuple k-bad. We now show how to build
an algorithm B that wins the strong unforgeability game of BS.
The input of the algorithm B is the public key pk. It runs a black-box simulation ofA

on input pk and answers all oracle queries with its own oracle by simply forwarding all
messages. Eventually, A stops, outputting a tuple F := ((m1, σ1), . . . , (mk+1, σk+1)).
Suppose in the following that A succeeds. Then the tuple F is k-bad. We will show
how to efficiently construct from F k + 1 distinct message/signature pairs (m∗

i , σ
∗
i ) that
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verify underVf(pk, ·, ·). Now, consider a message/signature pair (m, σ ) and observe that
the verification algorithm Vf1 outputs 1 if Vf(pk,m, σ ) = 1 or if σ = (σ 1, σ 2) (where
σ 1 �= σ 2) and Vf(pk, f (m), σ 1) = Vf(pk, f (m), σ 2) = 1. We define two sets V0 and
V1 where V1 is the set that contains a message/signature pairs (mi , σi ) that verify under
the first condition, and the set V0 contains all pairs (mi , σi ) (with σi = (σ 1

i , σ 2
i )) that

verify under the second condition, i.e.,

V1 := {(mi , σi ) : Vf(pk,mi , σi ) = 1} and V0 := {(mi , σi ) : Vf(pk,mi , σi ) = 0}.

Clearly, sinceA succeeds and F is k-bad, all messages mi are distinct and hence |V0| +
|V1| = k + 1. Next, we define the set V ′

0 that consists of the message/signature pairs
( f (mi ), σ

1
i ), ( f (mi ), σ

2
i ) where (mi , σi ) ranges over V0. Formally,

V ′
0 := {( f (mi ), σ

1
i ), ( f (mi ), σ

2
i ) : (mi , (σ

1
i , σ 2

i )) ∈ V0}.

Note that V0 contains only elements (mi , σi ) with Vf1(mi , σi ) = 1 and Vf(mi , σi ) =
0. By definition of Vf1 this implies that σi = (σ 1

i , σ 2
i ) with σ 1

i �= σ 2
i and

Vf( f (mi ), σ
1
i ) = Vf( f (mi ), σ

2
i ) = 1. Thus

∣
∣V ′

0

∣
∣ = |V0| and for all (m, σ ) ∈ V ′

0 ∪ V1
we have that Vf(pk,m, σ ) = 1. We proceed to show that

∣
∣V ′

0 ∪ V1
∣
∣ ≥ k + 1 and

we then let B output this set. First note that for any (mi , (σ
1
i , σ 2

i )) ∈ V0, at most
one of ( f (mi ), σ

1
i ), ( f (mi ), σ

2
i ) is contained in V1. Otherwise, V1 would either con-

tain two pairs (m, σ ) with the same m, or σ 1
i = σ 2

i . Furthermore, since f is injec-
tive, for any distinct (mi , (σ

1
i , σ 2

i )), (m j , (σ
1
j , σ

2
j )) ∈ V0 we have mi �= m j . Hence

( f (mi ), σ
a
i ) �= ( f (m j ), σ

b
j ) for any a, b ∈ {1, 2} and i �= j . Thus

∣
∣V ′

0\V1
∣
∣ ≥ |V0| and

therefore
∣
∣V ′

0 ∪ V1
∣
∣ = ∣

∣(V ′
0\V1) ∪̇ V1

∣
∣ = ∣

∣V ′
0\V1

∣
∣ + |V1| ≥ |V0| + |V1| = k + 1.

The algorithm B then computes the set V ′
0 ∪ V1 and then picks distinct pairs

(m∗
1, σ

∗
1 ), . . . , (m∗

k+1, σ
∗
k+1) ∈ V ′

0 ∪ V1

and outputs (m∗
1, σ

∗
1 ), . . . , (m∗

k+1, σ
∗
k+1).

Analysis Obviously, B is efficient because A is efficient and because the overhead of
handling all queries can be done efficiently. Since A outputs a k-bad tuple with non-
negligible probability in the unforgeability game for BS1, it follows that B outputs k+1
distinct (m∗

i , σ
∗
i ) with Vf(m∗

i , σ
∗
i ) = 1 in the unforgeability game for BS with at least

the same probability. Thus, B breaks the strong unforgeability of BS. Since we assumed
thatBS is strongly unforgeable, we have a contradiction, thus our initial assumption that
BS1 is not unforgeable was false. �

Before proving the next lemma, we need to define what a randomized (interactive)
signature is. Roughly speaking, schemes that have this property output the same signature
in two independent executions with same message only with negligible probability.

Definition 7. (Randomized signature scheme) An interactive signature scheme BS
= (KG, 〈S,U〉 ,Vf) is randomized if with overwhelming probability in λ ∈ N the
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following holds: for any (sk, pk) in the range of KG(1λ), any message m ∈ {0, 1}∗,
we have σ1 �= σ2 where σ1 ← 〈S(sk),U(pk,m)〉 and σ2 ← 〈S(sk),U(pk,m)〉. The
probability is taken over the random coins of KG,S and U .

Note that any scheme can easily bemodified such that it satisfies this definition by letting
the user algorithm pick some random value r , setting m′ ← m‖r , and including r in the
signature. (See Construction 1 on Page 13.)

Lemma 8. IfBS is complete and randomized, thenBS1 is not honest-user unforgeable.

Proof. We construct an efficient adversary A against BS1 as follows: Let m ∈ {0, 1}∗
be such that f (m) �= m. Recall that f �= id, and therefore such a value m exists. Note
that we can hardcode m directly into the adversary and therefore it is not necessary that
m can be efficiently found.

The attackerA queriesP (themachine simulating 〈S1,U1〉) twice, both times with the
same message f (m), and obtains the signatures σ1 and σ2. Since BS is randomized, and
S1 = S and U1 = U , with overwhelming probability σ1 �= σ2. Since BS is complete,
Vf(pk, f (m), σ1) = Vf(pk, f (m), σ2) = 1 with overwhelming probability. Hence with
overwhelming probability, Vf1(pk,m, σ ) = 1 for σ := (σ1, σ2). The adversary A
outputs (m, σ ). Since A never queried S, and because A only queries f (m) �= m from
P , this breaks the honest-user unforgeability of BS1. �

Theorem 9. If complete, blind, and strongly unforgeable interactive signature schemes
exist, then there are complete, blind, and unforgeable interactive signature schemes that
are not honest-user unforgeable.

Proof. If complete, blind, and strongly unforgeable interactive signature schemes exist,
then there is a complete, blind, strongly unforgeable, and randomized interactive sig-
nature scheme BS (e.g., by applying the transformation from Sect. 4.5). From BS we
construct BS1 as described at the beginning of the section. By Lemmas 6 and 8, BS1 is
complete, blind, and unforgeable but not honest-user unforgeable. �

4.3. Strong Honest-User Unforgeability

In this section, we show that strong unforgeability implies strong honest-user unforge-
ability.

Lemma 10. Assume thatBS is complete,2 randomized, and strongly unforgeable. Then
BS is strongly honest-user unforgeable.

2Completeness is actually necessary to show this lemma: For example, let BS′ be a scheme derived from
a complete and strongly unforgeable scheme BS in the following way: All machines except for the user are
the same in BS and BS′. When the user U ′ should sign a message m, he signs m + 1 instead. Since the user
does not occur in the definition of strong unforgeability, the strong unforgeability of BS implies the strong
unforgeability of BS′. Yet BS′ is not strongly honest-user unforgeable: By performing a signature query for
m from the user U ′, the adversary can get a valid signature for m + 1.
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This lemma shows that for strongly unforgeable schemes, the traditional (non-honest-
user) definition of unforgeability is sufficient. It can also easily be shown that strong
unforgeability is strictly stronger than honest-user unforgeability. The separating exam-
ple appends a bit b to the signature that is ignored by the verification algorithm. Then
the signature can easily be changed by flipping the bit. Thus honest-user unforgeability
lies strictly between unforgeability and strong unforgeability.

Proof of Lemma 10. Assume that BS is not strongly honest-user unforgeable. Then
there is an adversary A in the strong honest-user unforgeability game for BS such that
with non-negligible probability, the following holds:

(i) The adversary outputs a tuple ((m∗
1, σ

∗
1 ), . . . , (m∗

k+1, σ
∗
k+1) for some k.

(ii) The signer S outputs ok at most k times.
(iii) For all i �= j , we have (m∗

i , σ
∗
i ) �= (m∗

j , σ
∗
j ).

(iv) For all i , we have Vf(pk,m∗
i , σ

∗
i ) = 1.

(v) Letm1, . . . ,mn be themessages queried from the userU (which is part of the oracle
P), and let σ1, . . . , σn be the corresponding answers. Then (mi , σi ) �= (m∗

j , σ
∗
j )

for all i, j .

Furthermore, since BS is complete, with overwhelming probability we have that

(vi) Vf(pk,mi , σi ) = 1 for all i .

And since BS is randomized, with overwhelming probability we have that

(vii) (mi , σi ) �= (m j , σ j ) for all i �= j .

This implies that, with non-negligible probability, properties (i)–(vi) hold. Let
(m̃∗

1, σ̃
∗
1 ), . . . , (m̃∗

k+n+1, σ̃
∗
k+n+1)be the sequence (m∗

1, σ
∗
1 ), . . . , (m∗

k+1, σ
∗
k+1), (m1, σ1),

. . . , (mn, σn). From properties (iii), (v), and (vi), it follows that (m̃∗
i , σ̃

∗
i ) �= (m̃∗

j , σ̃
∗
j )

for all i �= j . From (iv) and (vi), it follows that Vf(pk, m̃∗
i , σ̃

∗
i ) = 1 for all i .

Let B be an adversary for the strong unforgeability game, constructed as follows: B
simulatesA andU in a black-box fashion.WheneverAqueriesU , thenB invokes the sim-
ulated user algorithm U . If the simulated user U or the simulatedA communicates with
the signer, then B routes this communication to the external signer S. Finally, B outputs
(m̃∗

1, σ̃
∗
1 ), . . . , (m̃∗

k+n+1, σ̃
∗
k+n+1). Then we have that in the strong unforgeability game,

with non-negligible probability,B outputs a tuple (m̃∗
1, σ̃

∗
1 ), . . . , (m̃∗

k+n+1, σ̃
∗
k+n+1) such

that (m̃∗
i , σ̃

∗
i ) �= (m̃∗

j , σ̃
∗
j ) for all i �= j and Vf(pk, m̃∗

i , σ̃
∗
i ) = 1 for all i and the signer

outputs ok at most k + n times (k times due to the invocations fromA, and n times due
to the invocations from the simulated U). This violates the strong unforgeability of BS,
we have a contradiction, and thus BS is strongly honest-user unforgeable. �

Implications for known blind signature schemes Lemma 10 shows that for strongly
unforgeable schemes, the traditional definition of unforgeability is sufficient. This imme-
diately shows that the unique blind signature schemes based on RSA [7], as well as the
scheme by Boldyreva [8] are honest-user unforgeable. However, most known blind sig-
nature schemes (e.g., [2,17,22,23,26,32]) are not strongly unforgeable and it is an open
problem whether these schemes are secure with respect to our definition.
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4.4. S + U-Unforgeability
Themotivating example from Sect. 1.1 shows us that there is an attack that is not covered
by the usual definition of unforgeability of blind signatures: An adversary may create
signatures for messages that he has never queried signatures for. Such behavior is not
excluded by the usual definition of unforgeability for blind signature schemes. It is,
however, excluded by the usual definition of unforgeability for normal (non-interactive)
signatures schemes. Indeed, every blind (and non-blind) interactive signature scheme
defines a non-interactive signature scheme Sig in which signing just consists of running
an interaction between honest signer and honest user.Unforgeability ofSig then excludes
the attack described in the motivating example.
So one may wonder if, instead of requiring honest-user unforgeability, it might not

be sufficient to just require the blind signature scheme to be unforgeable both as a non-
interactive scheme (we call that “S +U-unforgeability” below) and as a blind signature
scheme according to the usual definition of unforgeability (i.e., Definition 3). At least
the motivating example is covered.
We show below that indeed, S + U-unforgeability together with the usual definition

of unforgeability is not be sufficient, since it does not exclude attacks that result from a
combination of honest and dishonest signing queries. We first give a formal definition:

Definition 11. (S + U-unforgeability) Let BS = (KG, 〈S,U〉 ,Vf) be an interactive
signature scheme. We define Sig as the algorithm that gets as input (pk, sk,m) and
simulates (out, σ ) ← 〈S(sk),U(pk,m)〉 and returns σ . The scheme BS is S + U-
unforgeable (resp. strongly unforgeable), if (KG,Sig,Vf) is unforgeable (resp. strongly
unforgeable).

Let us rephrase our question: If a scheme is interactively unforgeable and S + U-
unforgeable, is it then automatically honest-user unforgeable? We settle this question in
the negative. The main intuition why this is not implied is that both properties are con-
sidered independently of each other. Thus, we construct the following counterexample
where we can forge a signature if we combine malicious queries together with honest
protocol executions.
Fix an interactive signature schemeBS = (KG, 〈S,U〉 ,Vf) that is complete, random-

ized, blind, and strongly unforgeable. Fix some efficiently computable injective function
f �= id on bitstrings (e.g., f (m) := 0‖m) and let g be a one-way function. We construct
an interactive signature scheme BS2 = (KG2, 〈S2,U2〉 ,Vf2) as follows:

• KG2(1λ) computes a key pair (sk, pk) ← KG(1λ), it picks a random x in the domain
of g, it sets y := g(x), sk2 := (sk, x), and pk2 := (pk, y) and returns (sk2, pk2).

• S2((sk, x)) behaves like S(sk), except for the following extension: At any point in
the interaction, the user may send a message getx (which is assumed never to be
sent by the honest user U), whereupon S2 will return x . Thereafter, the interaction
continues as with S. (In other words, a malicious user may retrieve x for free.)

• U2((pk, y),m) executes U(pk,m).
• Vf2((pk, y),m, σ ) executes the following steps:

– Invoke v := Vf(pk,m, σ ). If v = 1, return 1.
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– Otherwise, parse σ as (σ1, σ2, x ′). If parsing fails or σ1 = σ2 or f (x ′) �= y,
return 0.

– Invoke vi := Vf(pk, f (m), σi ) for i = 1, 2. If v1 = v2 = 1, return 1.
Otherwise return 0.

Notice that the only change with respect to the counterexample from the previous section
is that the secret key now contains a secret value x that is needed to “unlock” the
possibility of producing additional signatures. This value x can be accessed easily by a
malicious user, but an honest user will never get this value.

Lemma 12. If BS is complete, strongly unforgeable, and blind, then BS2 is complete,
unforgeable, and blind.

The proof is analogous to that of Lemma 6 and is omitted.

Lemma 13. If BS is strongly unforgeable, complete, and randomized, then BS2 is
strongly S + U-unforgeable.

Proof. We define Sig2 as the algorithm that gets as input (pk, sk,m) and simulates
(out, σ ) ← 〈S2(sk),U2(pk,m)〉 and returns σ . Analogously, we define Sig simulating
S and U . By definition, to show that BS2 is strongly S + U-unforgeable, we have to
show that (KG2,Sig2,Vf2) is strongly unforgeable.

Assume that this is not the case and that there is an adversaryA that breaks the strong
unforgeability game for (KG2,Sig2,Vf2). Note that since U2 never sends getx, Sig2
never accesses x . Thus, in the strong unforgeability game, x is only used to produce y =
f (x). Since g is a one-way function, the probability that the signature σ = (σ1, σ2, x ′)
output by the adversary A contains x ′ such that f (x ′) = y is negligible. On the other
hand, if the signatures do not contain such an x ′, then Vf2 coincides with Vf. But then,A
breaks the unforgeability game for (KG,Sig,Vf), whichwould imply that (KG,Sig,Vf)
is not strongly unforgeable.
However, sinceBS is strongly unforgeable, complete, and randomized, by Lemma 10,

BS is strongly honest-user unforgeable which is easily seen to imply that BS is S + U-
unforgeable. By definition, this contradicts the fact that (KG,Sig,Vf) is not strongly
unforgeable. Hence our assumption that (KG2,Sig2,Vf2) is not strongly unforgeable
was false. �

Lemma 14. If BS is complete and randomized, then BS2 is not honest-user unforge-
able.

Proof. We construct an adversary A against BS2 as follows: Let m ∈ {0, 1}∗ be such
that f (m) �= m and fix some m′ with m �= m′ �= f (m). The adversary A queries
P (the oracle simulating 〈S2,U2〉) twice, both times with the same message f (m).
Call the resulting signatures σ1 and σ2. Since BS is randomized, and both S1 = S
and U1 = U except for the different format of the public and secret key and for
the fact that S1 additionally reacts to the message getx, with overwhelming proba-
bility, we have σ1 �= σ2. Since BS is complete, with overwhelming probability, we
have Vf(pk, f (m), σ1) = Vf(pk, f (m), σ2) = 1. Then the adversary A interacts with
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Fig. 2. Issue protocol of the blind signature scheme.

S2 directly to get a signature σ ′ for m′. Here A behaves like an honest U2, except
that it additionally sends the message getx and learns x . Since BS is complete,
with overwhelming probability, we have Vf(pk,m′, σ ′) = 1. Since y = f (x) and
Vf(pk, f (m), σ1) = Vf(pk, f (m), σ2) = 1 and σ1 �= σ2, with overwhelming probabil-
ity, we have Vf2(pk2,m, σ ) = 1 for σ := (σ1, σ2, x). The adversary A outputs (m, σ )

and (m′, σ ′). Since A queried S only once, and because A only queries f (m) �= m,m′
from U , this breaks the honest-user unforgeability of BS2. �

Theorem 15. If complete, blind, and strongly unforgeable interactive signature
schemes exist, then there are complete, blind, unforgeable, and strongly S + U-
unforgeable interactive signature schemes that are not honest-user unforgeable.

Proof. If complete, blind, and strongly unforgeable interactive signature schemes exist,
then there is a complete, blind, strongly unforgeable, and randomized interactive sig-
nature scheme BS (e.g., by applying the transformation from Sect. 4.5). From BS we
construct BS2 as described at the beginning of this section. By Lemmas 12, 13, and 14,
BS2 is complete, blind, unforgeable, and stronglyS+U-unforgeable, but not honest-user
unforgeable. �

4.5. From Unforgeability to Honest-User Unforgeability

In this section, we show how to turn any unforgeable interactive signature scheme into
an honest-user unforgeable one. Our transformation is extremely efficient as it only adds
some randomness to the message. Therefore, it not only adds a negligible overhead to
original scheme, but it also preserves all underlying assumptions. The construction is
formally defined in Construction 1 and depicted in Fig. 2.

Construction 1. Let BS′ = (KG′,
〈S ′,U ′〉 ,Vf′) be an interactive signature scheme

and define the signature scheme BS through the following three procedures:

Key Generation The algorithm KG(1λ) runs (sk′, pk′) ← KG′(1λ) and
returns this key pair.
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Signature Issue Protocol The signer S is identical to the original signer S ′. The
user U(pk,m) picks r

$← {0, 1}λ, sets m′ ← m‖r , and
invokes the original userU ′(pk,m′)who then interactswith
the signer. When U ′ returns a signature σ , U computes
σ ′ ← (σ, r) and outputs σ ′. (See also Fig. 2.)

Signature Verification The input of the verification algorithm Vf is a public key
pk, a message m, and a signature σ ′ = (σ, r). It sets m′ ←
(m‖r) and returns the result of Vf′(pk,m‖r, σ ).

We first show that our transformation preserves completeness and blindness.

Lemma 16. If BS′ is a complete and blind interactive signature scheme, so is BS.

Since the proof follows easily, we omit it here.
Now, we prove that our construction turns any unforgeable scheme into an honest-user

unforgeable one.

Lemma 17. If BS′ is an unforgeable interactive signature scheme, then BS is honest-
user unforgeable (Definition 5).

Proof. Assume for the sake of contradiction that BS is not honest-user unforgeable.
Then there exists an efficient adversaryA that wins the honest-user unforgeability game
with non-negligible probability. We then show how to build an attacker B that breaks
the unforgeability of BS′.
The input of the algorithm B is a public key pk. It runs a black-box simulation of A

and simulates the oracles as follows. Whenever A engages in an interactive signature
issue protocol with the signer, i.e., when the algorithm A plays the role of the user,
then B relays all messages between A and the signer. If A invokes the oracle P on

a message m, then B picks a random r
$← {0, 1}λ, sets m′ ← m‖r , and engages in

an interactive signature issue protocol where B runs the honest-user algorithm U ′. At
the end of this protocol, the algorithm B obtains a signature σ on the message m′. It
sets σ ′ ← (σ, r), stores the pair (m′, σ ′) in a list L , and returns σ ′ together with the
corresponding transcript trans to the attacker A.
Eventually, the algorithm A stops, outputting a sequence of message/signature

pairs (m∗
1, σ

∗
1 ), . . . , (m∗

k+1, σ
∗
k+1). In this case, B recovers all message/signature pairs

(m′
1, σ

′
1), . . . , (m

′
n, σ

′
n) stored in L , it parses σ ∗

i as (σ̃i , r ′
i ), it sets m̃i ← m∗

i ‖r∗
i for all

i = 1, . . . , k + 1 and outputs (m′
1, σ

′
1), . . . , (m

′
n, σ

′
n), (m̃1, σ̃1), . . . , (m̃k+1, σ̃k+1).

Analysis For the analysis first observe that B runs in polynomial-time because A is
efficient and because the handling of all queries can be done efficiently. Suppose thatA
succeedswith non-negligible probability. Then it outputs (k+1)message/signature pairs
that verify under Vf. Since B runs the honest-user algorithm to compute the signatures
σ ′
1, . . . , σ

′
n , it follows (from the completeness) that all message/signature pairs that B

returns, verify with overwhelming probability. It is left to show that (a) the algorithm B
outputs one more message/signature pair (than queries to the signing oracle with output
ok took place) and (b) all messages are distinct.
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The distinctness property follows immediately from the definition of the success
probability in the honest-user unforgeability game and from the construction. More
precisely, consider the messages (m′

1, . . . ,m
′
n) and (m̃1, . . . , m̃k+1), wherem′

i = mi‖ri
and m̃ j = m∗

j‖r∗
j . According to our assumption that A succeeds, it follows that all

message pairs m∗
r and m∗

s (for all r �= s) differ from each other. But then it follows
easily that m̃∗

r and m̃
∗
s are also distinct (for all r �= s). Since the ri are chosen randomly,

the messages (m′
1, . . . ,m

′
n) also differ from each other with overwhelming probability.

Now, consider themessages (m1, . . . ,mn) thatA sends to the oracleP . Note that all these
messages must differ from the messages (m∗

1, . . . ,m
∗
k+1) returned by A by definition.

This means, however, that m̃∗
r differs from m′

i for all i, r .
Finally, we have to show that B returns one more message/signature pair (property

(a)) than protocol executions with the signer S ′ took place (and that produced output
ok). SinceAwins the game, it follows that in at most k of the protocol executions that B
forwarded betweenA and its external signer, the signer returned ok.B itself has executed
n user instances to simulate the oracle P . SinceA outputs k+1 message signature pairs
(s.t. mi �= m j for all i, j), it follows that B has asked at most n + k queries in which the
signer S ′ returned ok, but B returned n + k + 1 message/signature pairs. This, however,
contradicts the assumption that BS is unforgeable. �

Putting together the above results, we get the following theorem.

Theorem 18. If complete, blind, and unforgeable interactive signature schemes exist,
then there are complete, blind, unforgeable, and honest-user unforgeable interactive
signature schemes (with respect to Definition 5).

The proof of this theorem follows directly from Lemmas 16 and 17.

5. Probabilistic Verification

In this section, we show that, if we allow for a probabilistic verification algorithm, both
the definition of honest-user unforgeability and the usual definition of unforgeability will
consider schemes to be secure that do not meet the intuitive notion of unforgeability.
One may argue that discussing problems in the definition of blind signature schemes

in the case of probabilistic verification is not necessary because one can always just use
schemes with deterministic verification. We disagree with this point of view: Without
understanding why the definition is problematic in the case of probabilistic verification,
there is no reason to restrict oneself to schemes with deterministic verification. Only the
awareness of the problemallows us to circumvent it.We additionally give a definition that
works in the case of probabilistic verification. This is less important than pointing out the
flaws, since inmost cases one can indeed use schemeswith deterministic verification. But
there might be (rare) cases where this is not possible (note that no generic transformation
outside the random oracle model is known that makes the verification deterministic).
First, we give some intuition for our counterexample and formalize it afterward.

Assume an interactive signature scheme BS3 that distinguishes two kinds of signatures:
a “full-signature” thatwill pass verificationwith probability 1, and a “half-signature” that
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passes verification with probability 1
2 . An honest interaction between the signer S3 and

the userU3 will always produce a full-signature. Amalicious user, however, may interact
with the signer to get half-signatures for arbitrary messages. Furthermore, the malicious
user may, by sending λ half-signatures to the signer (λ is the security parameter) and
performing a special interaction, get two (or more) further half-signatures instead of
one. (“Buy λ + 1 signatures, get one free.”) At the first glance, one would expect that
such a scheme cannot be honest-user unforgeable or even unforgeable. But in fact, the
adversary has essentially two options: First, he does not request λ half-signatures. Then
he will not get a signature for free and thus will not win in the honest-user unforgeability
game. Second, he does request λ half-signatures and then performs the extra-query and
thus gets λ + 2 half-signatures using λ + 1 queries. Then, to win, he needs that all
λ + 2 signatures pass verification (since the definition of unforgeability/honest-user
unforgeability requires that Vf3(pk,m∗

i , σ
∗
i ) evaluates to 1 for all signatures (m∗

i , σ
∗
i )

output by the adversary). However, since each half-signature passes verification with
probability 1

2 , the probability that all signatures pass verification is negligible (< 2−λ).
Thus, the adversary does notwin, and the scheme is honest-user unforgeable. Clearly, this
is not what one would expect; so Definition 5 should not be applied to the case where the
verification is probabilistic (and similarly the normal definition of unforgeability should
not be applied either in that case).
More precisely, let BS = (KG, 〈S,U〉 ,Vf) be a randomized, complete, blind, and

honest-user unforgeable interactive signature schemewith deterministic verification. Let
Q be an efficiently decidable set such that the computation of arbitrarily many bitstrings
m ∈ Q and m′ /∈ Q is efficiently feasible.
We define the scheme BS3 = (KG3, 〈S3,U3〉 ,Vf3) as follows:

• KG3 := KG.
• S3(sk) behaves like S(sk), except when the first message from the user is of the
form (extrasig,m◦

1, . . . ,m
◦
λ, σ

◦
1 , . . . , σ ◦

λ ,m′
1, . . . ,m

′
q) where λ is the security

parameter. Then S3 executes the following steps:

–Checkwhetherm◦
1, . . . ,m

◦
λ ∈ Q are pairwise distinctmessages, and for all i =

1, . . . , q we havem′
i /∈ Q, and for all i = 1, . . . , λwe have Vf(pk, 1‖m◦

i , σ
◦
i )

= 1.3 If not, ignore the message.
– If the check passes, run 〈S(sk),U(pk, 1‖m′

i )〉 for each i = 1, . . . , q, resulting
in signatures σ̃i , and set σ ′

i := 1‖σ̃i .
Then S3 sends (σ ′

1, . . . , σ
′
n) to the user, outputs ok, and does not react to any

further messages in this session.

• U3(pk,m) runs σ ← U(pk, 0‖m) and returns 0‖σ .
• Vf3(pk,m, σ ) performs the following steps:

– If σ = 0‖σ ′ and Vf(pk, 0‖m, σ ′) = 1, Vf3 returns 1.
– If σ = 1‖σ ′ and Vf(pk, 1‖m, σ ) = 1, Vf3 returns 1 with probability p := 1

2
and 0 with probability 1 − p.

– Otherwise, Vf3 returns 0.

3Without loss of generality, we assume that the public key pk can efficiently be computed from the secret
key sk.
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Thus here a signature 0‖σ where σ signs 0‖m is a full-signature, and a signature 1‖σ
where σ signs 1‖m is a half-signature.

Lemma 19. If BS is blind and complete, so is BS3.

Proof. Blindness and completeness of BS3 follow directly from that of BS. The only
difference between the schemes is that instead of a messagem, a message 0‖m is signed
and 0 is prepended to the signatures (as long as the user is honest as is the case in the
definitions of blindness and completeness). �

Lemma 20. If BS is honest-user unforgeable, so is BS3.

Proof. We first fix some notation. A pair (m, σ ) is

– a full-signature if σ = 0‖σ ′ and Vf(pk, 0‖m, σ ′) = 1;
– a half-signature if σ = 1‖σ ′ and Vf(pk, 1‖m, σ ′) = 1;
– and a non-signature otherwise.

Note that if (m, σ ) is a full-, half-, or non-signature, then Vf3(pk,m, σ ) is 1, p = 1
2 , or

0, respectively. An interaction between A and S3 that begins with a (extrasig, . . .)-
message passing the check in the definition of S3 is called an extra-query. Other inter-
actions betweenA and S3 that lead to an output ok from S3 are called standard queries.

Fix an efficient adversary A against the honest-user unforgeability game for BS3.
Without loss of generality, we assume that the output of A is always of the form
((m∗

1, σ
∗
1 ), . . . , (m∗

k+1, σ
∗
k+1)) for some k. Let ke denote the number of extra-queries

and ks the number of standard queries performed by A. Let m1, . . . ,mn be the mes-
sages queried byA to the oracle P (which simulates 〈S3,U3〉), and let σ1, . . . , σn be the
answers from P . In an execution of the game, we distinguish the following cases:

(i) ke + ks > k, or for some i , (m∗
i , σ

∗
i ) is a non-signature, or for some i �= j ,

m∗
i = m∗

j , or for some i, j , m∗
i = m j .

(ii) For h > λ different indices i , (m∗
i , σ

∗
i ) is a half-signature. And (i) does not hold.

(iii) No extra-query was performed. And (i), (ii) do not hold.
(iv) All other cases, i.e., (i), (ii), (iii) do not hold.

In case (i), by definition, the adversary does not win.
In case (ii), the probability that Vf3(pk,m∗

i , σ
∗
i ) = 1 for all i is upper-bounded by the

probability thatVf3(pk,m, σ ) = 1 for all half-signatures (m, σ ) output byA. That prob-
ability, in turn, is bounded by ph = 2−h ≤ 2−λ because each invocation of Vf(pk,m, σ )

succeeds with probability p for a half-signature (m, σ ). Thus the adversary wins with
negligible probability in case (ii).
Hence A only wins with non-negligible probability, if either case (iii) or (iv) occurs

with non-negligible probability.
Assume that case (iii) happens with non-negligible probability, and observe that any

full- or half-signature on a message m can be efficiently transformed into a signature
on 0‖m or 1‖m, respectively (with respect to the original scheme BS). We construct an
adversary B against the honest-user unforgeability game for the original scheme BS.
B runs a black-box simulation of A and behaves as follows: Whenever A performs an
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extra-query, then B aborts. IfA queries σi ← P(mi ), then B sets m′
i = 0‖mi and sends

m′
i to its own oracleP (which simulates 〈S,U〉); it then obtains a signature σi and returns

0‖σi toA. WheneverA queries the signer directly, then B forwards all messages in both
directions.
When A outputs ((m∗

1, b
∗
1‖σ ∗

1 ), . . . , (m∗
k+1, b

∗
k+1‖σ ∗

k+1)) with b∗
i ∈ {0, 1}, then the

algorithm B outputs ((b∗
1‖m∗

1, σ
∗
1 ), . . . , (b∗

k+1‖m∗
k+1, σ

∗
k+1)). Obviously, if all m

∗
i are

distinct and different from all mi , then all b∗
i ‖m∗

i are distinct and different from all
0‖mi . And if Vf′(m∗

i , b
∗
i ‖σ ∗

i ) = 1, then Vf(b∗
i ‖m∗

i , σ
∗
i ) = 1. Thus, when (iii) occurs

with non-negligible probability in the honest-user unforgeability game withA and BS3,
then B wins with non-negligible probability in the honest-user unforgeability game with
BS. By assumption, BS is honest-user unforgeable, so we have a contradiction. Thus
our assumption that case (iii) occurs with non-negligible probability was false. Hence
case (iii) occurs with negligible probability.
Now assume that case (iv) occurs with non-negligible probability. In this case, let � f

be the set of all full-signatures output by A. Note that this is not the set of all k + 1
signatures output byA becauseAmay also output half-signatures. Let�h denote the set
of all half-signatures used in the first extra-query. More precisely, (m, σ ) ∈ �h iff the
first extra-query was of the form (extrasig,m◦

1, . . . ,m
◦
λ, σ

◦
1 , . . . , σ ◦

λ ,m′
1, . . . ,m

′
q)

with (m, σ ) = (m◦
i , σ

◦
i ) for some i . Let�e denote the half-signatures returned by extra-

queries, i.e., (m′, σ ′) ∈ �e iff an extra-query (extrasig,m◦
1, . . . ,m

◦
λ, σ

◦
1 , . . . , σ ◦

λ ,

m′
1, . . . ,m

′
q) was answered with (σ ′

1, . . . , σ
′
q) such that (m′, σ ′) = (m′

i , σ
′
i ) for

some i . Let �u be the set of all signatures received from the oracle P , i.e., �u =
{(m1, σ1), . . . , (mn, σn)}. By completeness, with overwhelming probability �u con-
tains only full-signatures. Let � be the number of half-signatures in the output ofA. We
have � ≤ λ since otherwise we would be in case (ii).

Given a set � of pairs of messages and signatures, let �∗ denote the set �∗ :=
{(b‖m, σ ′) : (m, b‖σ ′) ∈ �, b ∈ {0, 1}}.
Since the messages in � f are distinct, and the messages in �h are distinct, and

� f contains only full-signatures, and �h contains only half-signatures, we have that all
messages in�∗

f ∪�∗
h are distinct, that |�∗

f ∪�∗
h | = |� f |+|�h | ≥ (k+1−�)+λ ≥ k+1,

and that all (m, σ ) ∈ �∗
f ∪ �∗

h satisfy Vf(pk,m, σ ) = 1.
Furthermore, the messages in �∗

h are different from those in �∗
u because �h contains

only half- and �u only full-signatures. The messages in �∗
f are different from those in

�∗
u because the messages in � f are different from those in �u (otherwise we would be

in case (i)). The messages in �∗
h are different from those in �∗

e since by definition of
extra-queries, the messages in �h are in Q while the messages in �e are not in Q. The
messages in �∗

f are different from those in �∗
e because � f contains only full- and �e

only half-signatures. Thus, the messages in �∗
f ∪ �∗

h are different from the messages in
�∗

u ∪ �∗
e .

Summarizing, in case (iv), we have |�∗
f ∪�∗

h | ≥ k + 1, the messages in �∗
f ∪�∗

h are
pairwise distinct and different from the messages in�∗

u ∪�∗
e , and all (m, σ ) ∈ �∗

f ∪�∗
h

satisfy Vf(pk,m, σ ) = 1.
We then construct an adversary B against the original scheme BS. The attacker

B simulates A with the following modifications. When A queries the oracle P on
a message mi , then B invokes its external oracle P (which simulates 〈S,U〉) on
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input (0‖mi ), gets an answer σ ′
i , and returns σi := 0‖σ ′

i to A. If A performs an
extra-query (extrasig, . . . ,m′

1, . . . ,m
′
q), then B answers with (σ ′

1, . . . , σ
′
q) :=

(1‖P(1‖m′
1), . . . , 1‖P(1‖m′

q)) instead. Suppose that A outputs a message/signature
sequence, then B computes the sets �∗

u , �
∗
h , �

∗
f , and �∗

e instead and outputs the mes-
sage/signature pairs contained in the set �∗

f ∪ �∗
h . Notice that B only queries messages

from P that are in the set �∗
u ∪ �∗

e . If (iv) occurs with non-negligible probability, then
we have an adversary B that, with non-negligible probability, outputs at least k + 1
message/signature pairs (m, σ ) that are valid (i.e., Vf(pk,m, σ ) = 1), that are pairwise
distinct, and that also differ from all message queried to P . Thus, B breaks the honest-
user unforgeability of BS. Since by assumption, BS is honest-user unforgeable, our
assumption that case (iv) occurs with non-negligible probability was false.
Summing up, we have shown that both case (iii) and case (iv) happen only with neg-

ligible probability. Since in cases (i) and (ii), the adversaryA wins only with negligible
probability, it follows that overall, A wins only with negligible probability. Since this
holds for any adversary A, BS3 is honest-user unforgeable. �

The following lemma shows that, although BS3 is honest-user unforgeable (and thus
also unforgeable) according to the definitions of these notions, it should not be considered
secure. Namely, an adversary can, given λ queries, produce λ + 1 message/signature
pairs, each of which passes verification with probability 1

2 . In particular in a setting
where the machine which verifies the signatures is stateless and where the adversary
may thus just resubmit a rejected signature, such signatures are as good as signatures
that pass verification with probability 1. Thus, the adversary has essentially forged one
signature.

Lemma 21. We call (m, σ ) a half-signature (with respect to some implicit public key
pk) if the probability that Vf(pk,m, σ ) = 1 is 1/2. If BS is complete, then for any
polynomial p, there is an adversary A that performs λ + 1 interactions with S3 and
does not query P and that, with overwhelming probability, outputs p(λ) half-signatures
(m∗

1, σ
∗
1 ), . . . , (m∗

p(λ), σ
∗
p(λ)) such that all m∗

i are distinct.

Proof. The adversary A that performs λ interactions with S3 and that never queries P
works as follows. It picks λ distinct messages m◦

1, . . . ,m
◦
λ from Q and chooses p(λ)

additional distinct messages m′
j �∈ Q. It then queries the signer sequentially on the

message 1‖m◦
i and obtains the corresponding signature σ ◦

i for i = 1, . . . , λ. SinceBS is
complete, with overwhelming probability the (m◦

i , σ
◦
i ) are half-signatures. Afterward,

the adversary A initiates another signature issue protocol session with the signer and
sends as the first message: (extrasig,m◦

1, . . . ,m
◦
λ, σ

◦
1 , . . . , σ ◦

λ ,m∗
1, . . . ,m

∗
p(λ)). The

signer answers with signatures σ ∗
1 , . . . , σ ∗

p(λ). SinceBS is complete, with overwhelming
probability the (m∗

i , σ
∗
i ) are half-signatures.

Finally, A stops, outputting (m∗
1, σ

∗
1 ), . . . , (m∗

p(λ), σ
∗
p(λ)).

Thus A outputs p(λ) half-signatures while performing only λ + 1 queries. �
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5.1. Adapting the Definition

Wehave shown that, if we allow for a probabilistic verification algorithm in the definition
of honest-user unforgeability (and similarly in the definition of unforgeability), schemes
that are intuitively insecure will be considered secure by the definition. There are two
possible ways to cope with this problem.
The simplest solution is to require that the verification algorithm is deterministic.

This is what we did in Sect. 4.1 (Definition 5). This choice is justified since almost
all known blind signature schemes have a deterministic verification algorithm anyway.
Thus restricting the verification algorithm to be deterministic may be preferred in order
to obtain a simpler definition.4

In some cases, however, it might not be possible tomake the verification deterministic.
In such cases, it is necessary to strengthen the definition of honest-user unforgeability.
Looking back at our counterexample, the problem was the following: If the adversary
produces many signatures that each pass verification with non-negligible but not over-
whelming probability, this is not considered an attack: The probability that all signatures
pass verification simultaneously is negligible. In order to fix this problem,we thus need to
change the definition in such a way that a signature that is accepted with non-negligible
probability is always considered a successful forgery. More precisely, if a signature
passes verification at least once when running the verification algorithm a polynomial
number of times, then the signature is considered valid. This idea leads to the following
definition:

Definition 22. (Honest-user unforgeability with probabilistic verification) Given a
probabilistic algorithm Vf and an integer t , we define Vft as follows: Vft (pk,m, σ )

runs Vf(pk,m, σ ) t times. If one of the invocations of Vf returns 1, Vft returns 1. If all
invocations of Vf return 0, Vft returns 0.
A blind signature scheme BS = (KG, 〈S,U〉 ,Vf) is called honest-user unforgeable

(with probabilistic verification) if the following holds: For any efficient algorithm A
and any polynomial p, the probability that experiment HUnforgeBSA (λ) evaluates to 1
is negligible (as a function of λ) where

Experiment HUnforgeBSA (λ)

(sk, pk) ← KG(1λ)

((m∗
1, σ

∗
1 ), . . . , (m∗

k+1, σ
∗
k+1)) ← A〈S(sk),·〉∞,P(sk,pk,·)(pk)

Let m1, . . . ,mn be the messages queried to P(sk, pk, ·).
Return 1 iff

m∗
i �= m j for all i, j

m∗
i �= m∗

j for all i, j with i �= j , and

Vfp(λ)(pk,m∗
i , σ

∗
i ) = 1 for all i , and

S has returned ok in at most k interactions.

(When counting the interactions in which S returns ok, we do not count the interactions
simulated by P .)

4Notice that one could weaken the requirement and only require that two invocations of the verification
algorithm output the same value with overwhelming probability.
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Notice that the only difference to Definition 5 is that we additionally quantify over a
polynomial p and use Vfp(λ) instead of Vf. If a signature is accepted with non-negligible
probability, then there is a polynomial p such that Vfp(λ) will accept that signature with
overwhelming probability. (For our counterexample BS3, one can choose p(λ) := λ to
show that it does not satisfy Definition 22.)
Notice that there is no obvious transformation for taking a signature scheme satisfying

the regular unforgeability definition and constructing a scheme secure with respect to
Definition 22 out of it. One obvious approach would be to include the randomness for
verification in the message and thus to make the scheme deterministic. This might,
however, make the scheme totally insecure because in this case a forger might include
just the right randomness to get a signature accepted (if that signature would be accepted
with negligible but nonzero probability otherwise). Another obvious approach would be
to change the verification algorithm such that it verifies each signature p times (for
a suitable polynomial p) and only accepts when all verifications succeed. This would
make, e.g., half-signatures into signatures with negligible acceptance probability. But
also this approach does not work in general: For any p, the adversary might be able to
produce signatures that fail each individual verification with probability 1/2p and thus
pass the overall verification with constant probability.

6. Conclusion and Open Problems

We revisited the well-established definition of unforgeability proposed by Pointcheval
and Stern (Journal of Cryptology, 2000). Our results show that the original unforgeability
definition does not exclude that an adversary verifiably uses the same message m for
signing twice and is then still able to produce another signature for a new message
m′ �= m. Intuitively, this should not be possible; yet, it is not captured in the original
definition, because the number of signatures equals the number of requests. To handle
these types of attacks, we proposed a stronger notions, called honest-user unforgeability,
and we gave a simple and efficient transformation that turns any unforgeable blind
signature scheme (with deterministic verification) into an honest-user unforgeable one.
Wealso discussed the problemof definingblind signatureswith probabilistic verification.
The main observation is that if we allow for a probabilistic verification algorithm, both
the definition of honest-user unforgeability and the usual definition of unforgeability will
consider schemes to be secure that do not meet the intuitive notion of unforgeability.
Sincewe do not propose a generic transformation that makes schemeswith probabilis-

tic verification secure according to our definition, it would be interesting to see wether
such a transformation exists. Alternatively, an impossibility result would also improve
our understanding in this area.
Furthermore, it is an interesting question whether existing, not strongly unforgeable,

blind signature schemes in the literature (e.g., [2,17,22,23,26,32]) are already honest-
user unforgeable (so that our transformationwould not have to be applied in those cases).
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