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Abstract. Weshowhow to securely obfuscate the class of conjunction functions (func-
tions like f (x1, . . . , xn) = x1 ∧ ¬x4 ∧ ¬x6 ∧ · · · ∧ xn−2). Given any function in the
class, we produce an obfuscated programwhich preserves the input–output functionality
of the given function, but reveals nothing else. Our construction is based on multilinear
maps, and can be instantiated using the recent candidates proposed by Garg, Gentry and
Halevi (EUROCRYPT 2013) and by Coron et al. (CRYPTO 2013). We show that the
construction is secure when the conjunction is drawn from a distribution, under mild
conditions on the distribution. Security follows from multilinear entropic variants of
the Diffie–Hellman assumption. We conjecture that our construction is secure for any
conjunction, regardless of the distribution from which it is drawn. We offer supporting
evidence for this conjecture, proving that our obfuscator is secure for any conjunction
against generic adversaries.
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1. Introduction

Code obfuscation is the problem of compiling a computer program so as to make it
unintelligible to an adversary, or impossible to reverse-engineer, while preserving its
input–output functionality. Obfuscation has been of long-standing interest to both the
cryptography and security communities. However, despite the importance of the prob-
lem, and its many exciting applications, very few techniques or effective heuristics are
known. In particular, the theoretical study of the problem (in the “virtual black box
model” [6]) led to a handful of known constructions, which apply to very limited classes

∗ Zvika Brakerski: Supported by a Simons Postdoctoral Fellowship and by DARPA.

© International Association for Cryptologic Research 2015

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-015-9221-5&domain=pdf


290 Z. Brakerski, G. N. Rothblum

of functions. These include the class of point functions, and extensions such as multi-
point functions, “lockers” and constant-dimension hyperplanes.
In this work, we present an obfuscator for a new and different class: conjunction

functions. These are functions that take n-bit strings as input and only accept if a subset of
these bits are set to predefinedvalues.Our construction relies on (asymmetric)multilinear
maps, and is instantiated using the new candidate construction due to Garg et al. [21].

Previous Results The goal of an obfuscator is generating a program that preserves
the functionality of the original program, but reveals nothing else. One commonly used
formalization of this objective is “virtual black box” obfuscation, due to Barak et al. [6].
Our work uses this formalization , as well as alternative formalizations from subsequent
works (see below).
In their work, Barak et al. [6] also proved the impossibility of general-purpose ob-

fuscators (i.e., ones that work for any functionality) in the virtual black box model.
This impossibility result was extended in [23]. While these negative results show seri-
ous limitations on the possibility of general-purpose obfuscation, they focus on specific
functionalities, e.g., cryptographic functionalities with pseudo-entropy in the results
of [23]. They do not rule out the possibility of obfuscating many natural functionalities.
Positive results on obfuscation focus on specific, simple programs. One program

family, which has received extensive attention, is that of “point functions”: password
checking programs that only accept a single input string, and reject all others. Starting
with the work of Canetti [10], several works have shown obfuscators for this family
under various assumptions [16,29,35], as well as extensions [4,11]. Canetti et al. [17]
showed how to obfuscate a function that checks membership in a hyperplane of constant
dimension (over a large finite field). Other works showed how to obfuscate cryptographic
function classes under different definitions and formalizations. These function classes
include checking proximity to a hidden point [19], vote mixing [2], and re-encryption
[27]. Several works [10,16,26,27] relaxed the security requirement so that obfuscation
only holds for a random choice of a program from the family, we will also use this relax-
ation for one of our results. A different relaxation, known as “best-possible obfuscation,”
which allows the obfuscation to leak non-black box information was presented in [24].

This Work: Obfuscating Conjunctions Our main contribution is a new obfuscator for
conjunctions. A conjunction C = (W, V ) is a function on n bit inputs, specified by a
set W ⊆ [n] of “wildcard” entries, and a vector V ∈ {0, 1}n of target values for non-
wildcard entries. The conjunction accepts an input �x ∈ {0, 1}n if for all i ∈ ([n] \ W ),
�x[i] = V [i], i.e., if for all non-wildcard entries in �x , their values equal those specified in
V . We use the convention that if W [i] = 1 then V [i] = 0 (wildcard entries are ignored,
so this does not affect the conjunction’s functionality).
The class of conjunctions, while obviously quite limited, has a rich combinatorial and

computational expressive power. They are studied in a multitude of settings throughout
computer science (e.g., in learning theory [28]).One significant distinction fromprevious
function classes for which obfuscators were known is that a conjunction may ignore
some of its input bits (the wildcard entries). An obfuscator for conjunctions needs to
produce a program that hides which bits are ignored and which ones are influential.
Conjunctions are similar to prior work in that the set of accepting inputs can be sparse,
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see the subsequent work of Barak et al. [3] for an exploration of this property and its
role in obfuscation (we note that their positive results do not apply to the family of
conjunctions).
As an example of the applications of a conjunction obfuscator, consider the following

setting. There are k passwords, each controlling access to a particular type of resource.
Each individual knows some subset of the k passwords, which corresponds to the re-
sources it is allowed to access. A gatekeeper wishes to check whether an individual has
access to some combination of resources, i.e., whether the individual knows a particular
subset S ⊂ [k] of the passwords, without revealing to an observer which combination it
is checking. A conjunction, which takes as input k concatenated passwords, can check
whether the passwords for resources in S are correct, while ignoring passwords for re-
sources not in S. An obfuscation of this conjunction can be made public, and used to
check whether an individual has access to that combination of resources without reveal-
ing which resources are being checked (nor, of course, what any of the passwords are)
to any user that is denied access (A user with access can of course learn which of her
passwords were in fact required).

1.1. Our Construction and Its Security

The main tool in our construction is multilinear maps. In particular, we utilize a recent
candidate for graded encoding (a generalization of multilinear maps) due to [21].1 We
prove the security of our obfuscator when the conjunction is chosen from a distribution
with sufficient entropy: namely when sampling C = (W, V ) from the distribution, even
given the wildcard locations W , there is sufficient (superlogarithmic) entropy in V . We
stress that this does not imply that the attacker is allowed to learn W ; on the contrary,
we prove that if C is drawn from a distribution with the aforementioned property, the
adversary cannot learn anything, wildcard locations included.2 As noted above, here
we follow several works [10,16,26,27] which relax the security requirement to hold
only when the circuit to be obfuscated is drawn from a distribution from a certain class
(usually one with sufficient entropy).
We prove the above under two security assumptions on graded encodings schemes:

The first is a translation of the SXDH assumption on bilinear groups to the setting of
graded encoding schemes.3 The second assumption is reminiscent of “Canetti’s As-
sumption” [10] on Diffie–Hellman groups, which was introduced for the purpose of
obfuscating point functions.
We conjecture that the construction is secure for every conjunction, butwewere unable

to produce a proof based on a well-established assumption (naturally, one can always
take the security of the obfuscator as an assumption). As supportive evidence for the

1We use the asymmetric variant of the encoding scheme, where there are several distinct “source groups.”
2We remark that in this case nothing at all can be learned from black box access to the function since

it is infeasible to find an accepting input. We also remark that, for example, the conjunctions used for the
k-resource application above naturally satisfy this condition, because of the entropy in each password.

3This assumption is actually known to be false for the construction and formulation of [21]. However,
we show a more careful definition of the scheme and the assumption for which no attack is known. Also, no
attack is known for the recent construction of Coron et al. [14].
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conjectured security, we prove that the obfuscator is secure against generic adversaries:
Ones that only use the group structure and not the representation of the group elements.
This is similar to the generic groupmodel of [30,33]. Theproof of security against generic
adversaries is non-trivial, and we view this as one of our main technical contributions.
In fact, in subsequent work [8] we leverage the framework introduced in this work and
provide the first generic proof of security for an obfuscator for general circuits.
We note that previous works on obfuscation [17,29] have also used the random oracle

and generic groupmodels to provide evidence for the security of constructions. However,
subsequent works showed that obfuscation for general circuits is possible in the generic
model despite being impossible in the standard model (see Sect. 1.2). Thus, one should
not take generic model proofs to imply security (or even a possibility of security) in
the standard model. Still, no impossibility is known for obfuscating simple classes such
as conjunctions and we do view our generic model security proof as evidence that our
construction is secure against simple (algebraic) attacks.
We proceed with an overview of our construction and results. As we explained, the ob-
fuscator uses the recent construction of multi-linear maps via graded encoding schemes
[21]. We begin with a high-level overview on the properties of multilinear maps that will
be used. We then proceed with an overview of our construction, and state our two main
results.

Multilinear Maps and Graded Encoding Schemes: Background We begin by recalling
the notion of multilinear maps, due to Boneh and Silverberg [9]. Rothblum [31] con-
sidered the asymmetric case, where the groups may be different (this is crucial for our
construction).

Definition 1.1. (Asymmetric Multilinear Map [9,31]) For τ +1 cyclic groups G1, . . . ,

Gτ , GT of the same order p, a τ -multilinear map e : G1 × · · · × Gτ → GT has the
following properties:

1. For elements {gi ∈ Gi }i=1,...,τ , index i ∈ [τ ] and integer α ∈ Zp, it holds that:

e(g1, . . . , α · gi , . . . , gτ ) = α · g(g1, . . . , gτ )

2. The map e is non-degenerate: when its inputs are all generators of their respective
groups {Gi }, then its output is a generator of the target group GT .

Recently, Garg et al. [21] suggested a candidate for graded encoding, a generalization
of (symmetric or asymmetric) multilinear maps. See Sect. 2.2 for a more complete
overview of these objects. For this introduction, we treat them as a generalization of
asymmetric multilinear maps in the following way. For a τ -multilinear map e, for the
groupGi of prime order p, we consider the ringZp . For an element σ ∈ Zp, we can think
of gσ

i as an “encoding” of σ inGi .We denote this by enci (σ ).We note that this encoding
is easy to compute, but (presumably) hard to invert. The multilinear map e lets us take τ

encodings {enci (σi )}i∈[τ ],σi∈Zp , and compute the target group encoding encT (
∏

i σi ).
Graded encoding schemes afford a similar functionality, albeit with randomized and
noisy encodings, and with a procedure for testing equality of encoded elements in the
target group.



Obfuscating Conjunctions 293

Our Construction For a conjunction C = (W, V ) on n-bits inputs, the obfuscator
uses the graded encoding scheme to obtain the above generalization to an (n + 1)-
multilinear map. For each input entry i ∈ [n], the obfuscator picks ring elements
(ρi,0, ρi,1, αi,0, αi,1) distributed as follows: if i /∈ W , namely the entry isn’t a wild-
card, then the ring elements are independent and uniformly random. If i ∈ W , namely
the entry is a wildcard, then the ring elements are uniformly random under the constraint
that αi,0 = αi,1. After picking the ring elements, the obfuscator outputs two pairs of
encodings for each i ∈ [n]:

{(wi,b = enci (ρi,b), ui,b = enci (ρi,b · αi,b))}i∈[n],b∈{0,1}

Note that if i ∈ W , then the ratio between the ring elements encoded in ui,0 and wi,0, is
equal to the ratio between the ring elements encoded in ui,1 and wi,1 (these ratios are,
respectively, αi,0 and αi,1, which are equal when i ∈ W ). We remark that this part of the
obfuscation depends only on the wildcards W , but not on the values V .

To complete the obfuscation, the obfuscator picks independent and uniformly random
ring element ρn+1, and outputs a pair of encodings:

(wn+1 = encn+1(ρn+1), un+1 = encn+1(ρn+1 ·
∏

i∈[n]
αi,V [i]

︸ ︷︷ ︸
=αn+1

))

To evaluate the obfuscated program on an input �x ∈ {0, 1}n , we test equality between
two multilinear products4:

e(. . . , ui,�x[i], . . . , wn+1)
?= e(. . . , wi,�x[i], . . . , un+1) (1)

The full construction is in Sect. 3.

Correctness Examining the twomultilinear products in Eq. (1), the element encoded in
the left-hand side is (

∏
i∈[n] ρi,�x[i] ·αi,�x[i]) ·ρn+1. The element encoded in the right-hand

side is (
∏

i∈[n] ρi,�x[i] · αi,V [i]) · ρn+1. Thus, Eq. (1) holds if and only if:

∏

i∈[n]
αi,�x[i] =

∏

i∈[n]
αi,V [i] (2)

For i ∈ W we have αi,0 = αi,1, the contributions from the i-th group to both products
in Eq. (2) are identical. For i /∈ W , the contribution from the i-th group in the left-hand
side of Eq. (2) is αi,�x[i]. In the right-hand side, the contribution is αi,V [i]. Except for
a negligible probability of error, Eq. (2) holds if and only if all these contributions are
identical, i.e., if and only if ∀i /∈ W : �x[i] = V [i].

4For the candidate of [21], the encodings are randomized, but there is a procedure for testing equality
between encoded elements in the target group.
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Security Security is not as straightforward. A slightly misleading intuition for security
is that if a DDH-like assumption holds within each groupGi separately, then no observer
can distinguish from that group’s encodings whether αi,0 = αi,1. This is true for each
group in isolation, but it is insufficient because the obfuscation also includes encodings,
in group Gn+1, of items that are correlated with the items encoded in group i . The
multilinear map e might allow an adversary to distinguish whether the i-th entry is a
wildcard.
For example, if in C all the entries are wildcards, the adversary can pick a random

input, run the obfuscation, see that it accepts, and then by flipping the input bits one-by-
one it can determine that all of the entries are wildcards. This attack clearly demonstrates
that (for some conjunctions) an adversary can determine which entries are wildcards and
which aren’t. Note, however, that (for the specific example of a conjunction that is all-
wildcards) this could also be accomplished using black box access to the conjunction.
Indeed, we prove the security of the obfuscator when the conjunction is drawn from a

distribution, under mild conditions on the distribution’s entropy. We conjecture that the
obfuscator is actually secure for any conjunction, and as supporting evidence we show
that it is secure against generic adversaries. An overview on both results follows.

Security for High Entropy We prove the security of our scheme in the case where C =
(W, V ) is drawn from a distributionwhere the entropy of V givenW is superlogarithmic.
We do so by resurrecting the flawed argument described above: We use the entropy to
remove the dependence between the elements in Gn+1 and those in the other groups,
and then apply DDH in each group.
We start by noting that this dependence is due to the relation

αn+1 =
∏

i∈[n]
αi,V [i], (3)

and if we could replace αn+1 with a completely uniform variable, independent of the
other α’s, we’d be done. To this end, we notice that Eq. (3) describes an (almost) pairwise
independent hash function, whose seed are the values αi,b and whose input is V . We
show that such a hash function is a good entropy condenser, so that almost all of the
entropy in V is preserved in αn+1. (It is important to notice that the distinguisher has side
information which depends on W , and therefore we must require that the conditional
entropy is high.)

Once we establish that αn+1 has superlogarithmic entropy, we use a “Canetti-like
Assumption” [10]: we assume a high-entropy element in the exponent of a random group
generator is indistinguishable from uniform.5 We thus isolate αn+1 from the dependence
on the other α’s, which allows us to apply DDH in groups G1, . . . ,Gn , and obtain the
final result: that the obfuscated program comes from a distribution that can be efficiently
simulated.
The security proof is in Sect. 4.

5Wee [35] showed that these types of assumptions (hardness given only super-logarithmic entropy) are
essential even for obfuscating point functions.
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Security in The Generic Model We prove security against generic adversaries. A
generic adversary is one that succeeds regardless of the representation of the encod-
ing scheme. This is modeled by allowing it to only manipulate encodings in the graded
encoding scheme via oracle access to an oracle for the operations that are available using
the evparams parameters. We show that for any generic adversaryA, which takes as in-
put an obfuscation and outputs a single bit, there exists a generic simulator S s.t. for any
conjunction C , the adversary’s output on an obfuscation of C is statistically close to the
simulator’s output given only black box access to C . The distribution of the adversary
is taken over the choice of a random graded encoding scheme oracle: an oracle that
represents each encoding in each group using a (long enough) uniformly random string.
In thismodel, since each element’s encoding is uniformly random, and the obfuscation

contains the encodings of distinct ring elements, the obfuscation of any conjunction
is simply a collection of uniformly random strings. Thus simulating the obfuscator’s
output is easy. The main challenge is that the outputs to oracle calls on the string in
the obfuscation are highly dependant on the conjunction C . It is thus not clear how the
simulator can simulate the oracle’s outputs. For example, each accepting input �x for
C specifies two possible inputs to the oracle implementing the multilinear map, which
should both yield the same encoding in the target group. Indeed, simulating the oracle call
outputs proves challenging. Moreover, the more generalized notion of graded encoding
schemes permits more general generic operations.
The simulator S operates as follows. It feeds the adversary A with a “dummy ob-

fuscation” containing uniformly random strings. It then follows A’s calls to the graded
encoding scheme (GES) oracle, and tries to simulate the output. For each call made by
A, we show how S can (efficiently) identify a polynomial size set X of inputs, such that
if ∀�x ∈ X,C(�x) = 0, then the oracle’s output is essentially independent of C and can be
simulated. On the other hand, if there exists �x ∈ X s.t. C(�x) = 1, then the simulator can
use its black box access to C to identify this input. Once an accepting input is identified,
the simulator can further use its block-box access to C to retrieve the conjunction’s
explicit description (W, V ) (see Claim 3.3 below). Once the simulator knows (W, V )

it can (perfectly) simulate the adversary’s behavior. We view this proof of security for
generic adversaries as one of our main technical contributions.
The full specification and treatment of the generic GES model, as well as the proof

of security for generic adversaries, are in Sect. 5.

1.2. Concurrent and Subsequent Work

In subsequent work [7], we extend techniques from this paper and present an obfuscator
for the more general class of d-CNF formulae, for any constant d. We prove security
in the generic model. This proof builds on the proof in this paper, albeit with additional
complicationsmostly stemming from the fact that an accepting input does not necessarily
expose the obfuscated function.
Concurrently to this work and to [7], Garg et al. [22] use graded encoding schemes

to present a candidate obfuscator for the class of all polynomial size circuits. They
conjectured that their obfuscator is an indistinguishability obfuscator [6]. Based on
the techniques from this work and from [7], we construct a variant of their obfuscator
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and prove its security in the generic model [8] (no such proof is known for the [22]
obfuscator). Subsequent works presented additional obfuscators with generic proofs.
Perhaps surprisingly, the generic proofs extended to the VBB setting as well. Since it

is known that VBB obfuscation for general circuits is impossible, these results highlight
the fact that one should not take generic model proofs as a guarantee for security in the
standard model.
We emphasize that in this work we aim for VBB obfuscation of conjunctions (and

provide a proof in the generic model). We also prove security in the standard model
for high-entropy distributions on conjunctions (under hardness assumptions on graded
encoding schemes, see above). While indistinguishability obfuscation has proved to be
very valuable in the construction of many cryptographic primitives, it is not on its own
known to imply a VBB obfuscator for conjunctions nor is it known to imply obfuscation
for high-entropy families of conjunctions.

2. Preliminaries

Notation We use �(·, ·) to indicate total variation distance (statistical distance). We
use �1 (respectively, �0) to denote the all-1 (all-0) vector. We use ei to denote the i th
indicator vector. The dimension will be clear from the context in all of these cases.

Composite-Order Schwartz-Zippel We use the following corollary of the Schwartz-
Zippel Lemma (the proof below is taken from [1]).

Corollary 2.1. Let σ ∈ N, let p1, . . . , pσ be distinct primes and let P = ∏σ
i=1 pi .

Then a multivariate polynomial of total degree d has at most dσ roots over ZP .

Proof. Consider the CRT representation of root over ZP . Each of its component must
be a root modulo the respective Zpi . By Schwartz-Zippel, the polynomial has at most
d roots modulo each pi and therefore there are at most dσ distinct tuples where all
components are roots. �

2.1. Min-Entropy and Extraction

The following are information-theoretic tools that will be required in our proof. Themain
notion of entropy used in this work is that of averagemin-entropy from [18], as well as its
smooth version (see Definitions 2.2, 2.3 below). We then show that applying a pairwise
independent hash function with a large enough image on an average min-entropy source,
roughly preserves the average min-entropy (that is, it is an entropy condenser). This is
derived from the generalized “crooked” leftover hash lemma [5,19].
We start by defining average min-entropy.

Definition 2.2. (average min-entropy [18]) Let X, Z be (possibly dependent) random
variables, the average min-entropy of X conditioned on Z is:

H̃∞(X |Z) = − log

(

E
z←Z

[
2−H∞(X |Z=z)

])
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It follows from the definition that for every deterministic function f (that may depend
on Z ):

H̃∞( f (X)|Z) ≤ H̃∞(X |Z). (4)

We will also use a smooth variant introduced in [18, Appendix A] following [32].

Definition 2.3. (smooth average min-entropy [18]) Let X, Z be as above and let ε > 0,
then

H̃ε∞(X |Z) = max
(X ′,Z ′):�((X,Z),(X ′,Z ′))≤ε

H̃∞(X ′|Z ′).

For our next step, we will require the following tool.

Lemma 2.4. (generalized “crooked” LHL [5, Lemma 7.1]) Let X, Z be random vari-
ables, let H be a pairwise independent hash family, and let h ← H be a properly
sampled function from this family, finally let f be a function of image size K , then

�(( f (h(X)), Z , h), ( f (U ), Z , h)) ≤ 1

2

√
K · 2− 1

2 H̃∞(X |Z),

where U is uniformly distributed in the domain of f .

We will show that pairwise independent function condense average min-entropy in
the following way.

Lemma 2.5. Let X, Z be random variables, let H be a pairwise independent hash
family whose output is a binary string of length ≥ ⌊

H̃∞(X |Z) − 2 log(1/ε) + 2
⌋
, for

some ε > 0. Then letting h ← H be a properly sampled function from this family, it
holds that

H̃ε∞(h(X)|Z , h) ≥ H̃∞(X |Z) − 2 log(1/ε) + 1.

Proof. Let X, Z ,H, h, ε be as in the lemma statement. Our goal is to show that there
exists a random variable Y such that

�((h(X), Z , h), (Y, Z , h)) ≤ ε,

and

H̃∞(Y |Z , h) ≥ H̃∞(X |Z) − 2 log(1/ε) + 1.

Let f be the function that outputs the first k bits of its input, for

k = ⌊
H̃∞(X |Z) − 2 log(1/ε) + 2

⌋ ≥ H̃∞(X |Z) − 2 log(1/ε) + 1,

and note that f (U ) is uniform over {0, 1}k (in fact, we can use any function that has this
property).
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Then by Lemma 2.4, it holds that

�(( f (h(X)), Z , h), ( f (U ), Z , h)) ≤ ε.

Now, consider a 2-step process for sampling the joint distribution (h(X), Z , h): first,
sample ( f (h(X)), Z , h) from the appropriate marginal distribution; and then sample
h(X) conditioned on the previously sampled values.
We define Y using the following process: First, sample a tuple according to the dis-

tribution ( f (U ), Z , h), and then apply the second stage of the sampling process from
above. The result will be the distribution (Y, Z , h). Clearly,

�((h(X), Z , h), (Y, Z , h)) = �(( f (h(X)), Z , h), ( f (Y )
︸ ︷︷ ︸
= f (U )

, Z , h)) ≤ ε,

where the first equality is since there is a deterministic mapping ( f ) from the left-hand
side to the right-hand side, and a randomized mapping (the second step sampler) from
the right-hand side to the left-hand side.
To conclude, we notice that

H̃∞(Y |Z , h) ≥ H̃∞( f (Y )|Z , h) = H̃∞({0, 1}k |Z , h)

= k ≥ H̃∞(X |Z) − 2 log(1/ε) + 1.

�

2.2. Graded Encoding Schemes and Assumptions

We begin with the definition of a graded encoding scheme, due to Garg et al. [21]. While
their construction is very general, for our purposes a more restricted setting is sufficient
as defined below.

Definition 2.6. (τ -Graded Encoding Scheme [21]) A τ -encoding scheme for a ring R
is a collection of sets S = {S(α)

v ⊂ {0, 1}∗ : v ∈ {0, 1}τ , α ∈ R}, with the following
properties:

1. For every index v ∈ {0, 1}τ , the sets {S(α)
v : α ∈ R} are disjoint, and so they are a

partition of the indexed set Sv = ⋃
α∈R S(α)

v .
2. There are binary operations “+” and “−” such that for all v ∈ {0, 1}τ , α1, α2 ∈ R

and for all u1 ∈ S(α1)
v , u2 ∈ S(α2)

v :

u1 + u2 ∈ S(α1+α2)
v and u1 − u2 ∈ S(α1−α2)

v ,

where α1 + α2 and α1 − α2 are addition and subtraction in R.
3. There is an associative binary operation “×” such that for all v1, v2 ∈ {0, 1}τ such

that v1 + v2 ∈ {0, 1}τ , for all α1, α2 ∈ R and for all u1 ∈ S(α1)
v1 , u2 ∈ S(α2)

v2 , it
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holds that

u1 × u2 ∈ S(α1·α2)
v1+v2 ,

where α1 · α2 is multiplication in R.

Definition 2.7. (Efficient Procedures for a τ -Graded Encoding Scheme [21]) We con-
sider τ -graded encoding schemes (see above) where the following procedures are effi-
ciently computable.

• Instance Generation InstGen(1λ, 1τ ) outputs the set of parameters params, a de-
scription of a τ -Graded Encoding Scheme. (Recall that we only consider Graded
Encoding Schemes over the set indices {0, 1}τ , with zero testing in the set S�1). In
addition, the procedure outputs a subset evparams ⊂ params that is sufficient for
computing addition, multiplication and zero testing6 (but possibly insufficient for
encoding or for randomization).

• Ring Sampler samp(params) outputs a “level zero encoding” a ∈ S(α)

�0 for a nearly
uniform α ∈R R.

• Encode and Re-Randomize7 encRand(params, i, a) takes as input an index i ∈ [τ ]
and a ∈ S(α)

�0 , and outputs an encoding u ∈ S(α)
ei , where the distribution of u is

(statistically close to being) only dependent on α and not otherwise dependent of
a.

• Addition and Negation add(evparams, u1, u2) takes u1 ∈ S(α1)
v , u2 ∈ S(α2)

v , and
outputs w ∈ S(α1+α2)

v . (If the two operands are not in the same indexed set, then
add returns ⊥). We often use the notation u1 + u2 to denote this operation when
evparams is clear from the context. Similarly, negate(evparams, u1) ∈ S(−α1)

v .
• Multiplication mult(evparams, u1, u2) takes u1 ∈ S(α1)

v1 , u2 ∈ S(α2)
v2 . If v1 + v2 ∈

{0, 1}τ (i.e., every coordinate in v1+v2 is atmost 1), thenmult outputsw ∈ S(α1·α2)
v1+v2 .

Otherwise,mult outputs⊥.Weoften use the notationu1×u2 to denote this operation
when evparams is clear from the context.

• Zero Test isZero(evparams, u) outputs 1 if u ∈ S(0)
�1 , and 0 otherwise.

Remark 2.8. (TheOrder of the Ring R.) In this work, the ring R will always be (congru-
ent to) Zp for an integer p. We allow p to be either prime or a product of distinct primes.
In general, we denote p = ∏σ

i=1 pi such that pi are distinct primes. We require that
all pi ’s are super-polynomial in the security parameter. Indeed, some known candidate
multilinear maps (including the recent [15]) use composite order p, and their security is
severely compromised if pi are chosen to be polynomial in the security parameter. For
such fvalues of p, we notice that:

6The “zero testing” parameter pzt defined in [21] is a part of evparams.
7This functionality is not explicitly provided by Garg et al. [21]; however, it can be obtained by combining

their encoding and re-randomization procedures.
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1. For any polynomial poly(·):

poly(λ)σ

p
=

σ∏

i=1

(
poly(λ)

pi

)

= negl(λ).

2. Almost all elements in the ring are units, namely

Pr
x←Zp

[
x �∈ Z

∗
p

]
= 1 −

σ∏

i=1

(1 − 1/pi ) = negl(λ).

Comparison with the Definition of [21]. We now explain the relation between our
definitions of graded encoding and those appearing in [21]. This section is intended to
those readers who are familiar with the [21] work and can safely be skipped by other
readers as our work stands self-contained without it.
We start by noting that Definition 2.6 above is the special case of the [21] construction

in which we consider only binary index vectors (in the [21] notation, this corresponds
to setting κ = 1), and we construct our encoding schemes to be asymmetric (as will
become apparent below when we define our zero-text index vzt = �1).
In the [14,21] constructions, encodings are noisy and the noise level increases with

addition and multiplication operations, so one has to be careful not to go over a specified
noise bound. However, the parameters can be set so as to support O(τ ) operations, which
are sufficient for our purposes. We therefore ignore noise management throughout this
manuscript. An additional subtle issue is that with negligible probability the initial noise
may be too big. However, this can be avoided by adding rejection sampling to samp
and therefore ignored throughout the manuscript as well.
It is also important to notice that our Definition 2.7 deviates from that of [21] as we

define two sets of parameters params and evparams. While the former will be used by
the obfuscator in our construction (and therefore will not be revealed to an external
adversary), the latter will be used when evaluating an obfuscated program (and thus
will be known to an adversary). When instantiating our definition, the guideline is to
make evparamsminimal so as to give the least amount of information to the adversary. In
particular, in the known candidates [14,21], evparams only needs to contain the zero-test
parameter pzt (as well as the global modulus).

2.2.1. Hardness Assumptions

In this work, we will use two hardness assumptions over graded encoding schemes.
The first, which we call “graded external DDH” (or GXDH, Assumption 2.9 below)
is an analog of the symmetric external DH assumption (SXDH), instantiated for the
multilinear case. The second assumption (GCAN Assumption 2.10) is an analog of
Canetti’s assumption [10], that taking a randomgenerator to a high-entropy power results
in a random-looking element. We note that we make these assumptions against non-
uniform adversaries. We further note that both assumptions hold in the generic model.
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Assumption 2.9. (GradedExternalDH)Let (params, evparams) ← InstGen(1λ, 1τ ),
for all i = 1, . . . , τ , sample ri,0, ri,1, ai,0, ai,1 ← samp(params) and consider the fol-
lowing values:

wi,0 ← encRand(params, i, ri,0) wi,1 ← encRand(params, i, ri,1)
ui,0 ← encRand(params, i, ri,0 × ai,0) ui,1 ← encRand(params, i, ri,1 × ai,1)

u′
i,1 ← encRand(params, i, ri,1 × ai,0)

The GXDH assumption is that for every choice of τ ∈ N and i∗ ∈ [τ ], no ensemble
of polynomial time adversaries can have non-negligible advantage in distinguishing the
distributions:

(
evparams, {(wi,0, ui,0, wi,1, ui,1, u′

i,1)}i �=i∗ , (wi∗,0, ui∗,0, wi∗,1, ui∗,1)
)

and(
evparams, {(wi,0, ui,0, wi,1, ui,1, u′

i,1)}i �=i∗ , (wi∗,0, ui∗,0, wi∗,1, u′
i∗,1)

)

We note that a stronger version of this assumption, where the distinguisher is given
access to params rather than evparams, was presented in the early versions of [21]. It
was later shown that this stronger assumption is false, see later versions of [21] for the
attack. This later led to a number of attacks on [14,21] known as “zeroizing attacks,”
columinating in a complete break of [14] and nearly complete break of [21] in the
case where params are given to the attacker [13,25]. In some cases, this attack can be
launched also when only evparams are given (in addition to other encodings) [12]. A
new candidate by Coron, Lepoint and Tibouchi [15] is currently not known to be affected
by zeroizing attacks.
Since we only provide our distinguisher with evparams, it may not be able to generate

DDH tuples by itself.We therefore provide it with correctly labeled DDH samples for all
groups except i∗. This is the minimal assumption that is required for our construction;
however, we conjecture that a stronger variant where the adversary is allowed to receive
an unbounded number of labeled samples at any group (including i∗) is also true.

For our next assumption, we introduce the following notation. Consider a distribution
D over Sv = ∪α∈RS

(α)
v . The distribution enc−1(D) is defined by the following process:

Sample x ← D, let α be such that x ∈ S(α)
v , output α. We also recall the definition of

smooth average min-entropy (see Definition 2.3 above).

Assumption 2.10. (“Graded Canetti”) Let (params,pzt) ← InstGen(1λ, 1τ ) and let
{(Dλ, Zλ)}λ∈N be a distribution ensemble over S�0 × {0, 1}∗, such that

H̃ε∞(enc−1(Dλ)|Zλ) ≥ h(λ),

for some ε = negl(λ) and function h(λ) = ω(log λ).
TheGCANassumption is that no ensemble of polynomial time adversaries and indices

i can have non-negligible advantage in distinguishing the distributions

(params, evparams, w, u, z) and (params, evparams, w, u′, z),



302 Z. Brakerski, G. N. Rothblum

where (params, evparams) ← InstGen(1λ, 1τ ), r ← samp(params),w ← encRand
(params, i, r), (x, z) ← (Dλ, Zλ), u ← encRand(params, i, r × x), u′ ← encRand
(params, i, samp(params)). (Note that in this definition, the distinguisher is given both
params and evparams.)

This assumption is consistent with our knowledge on candidate graded encoding
schemes. However, if we want to make an even weaker assumption, we can set the
minimal entropy requirement to be higher than just ω(log λ). The constructions in this
paper can trivially be adapted to such weaker variants (with the expected degradation in
security).

2.3. Obfuscation

Definition 2.11. (Virtual Black Box Obfuscator [6]) Let C = {Cn}n∈N be a family of
polynomial size circuits, where Cn is a set of Boolean circuits operating on inputs of
length n. And let O be a PPTM algorithm, which takes as input an input length n ∈ N,
a circuit C ∈ Cn , a security parameter λ ∈ N, and outputs a boolean circuit O(C) (not
necessarily in C).
O is an obfuscator for the circuit family C if it satisfies:

1. Preserving Functionality For every n ∈ N, and every C ∈ Cn , and every �x ∈
{0, 1}n , with all but negl(λ) probability over the coins of O:

(O(C, 1n, λ))(�x) = C(�x)

2. Polynomial Slowdown For every n, λ ∈ N and C ∈ C, the circuit O(C, 1n, 1λ) is
of size at most poly(|C |, n, λ).

3. Virtual Black Box For every (non-uniform) polynomial size adversary A, there
exists a (non-uniform) polynomial size simulator S, such that for every n ∈ N and
for every C ∈ Cn :

∣
∣
∣
∣ PrO,A

[A (O (
C, 1n, 1λ

)) = 1
] − Pr

S

[
SC

(
1|C|, 1n, 1λ

)
= 1

]∣∣
∣
∣ = negl(λ)

Remark 2.12. A stronger notion of functionality, which also appears in the literature,
requires that with overwhelming probability the obfuscated circuit is correct on every
input simultaneously. We use the relaxed requirement that for every input (individually)
the obfuscated circuit is correct with overwhelming probability (in both cases the proba-
bility is only over the obfuscator’s coins). We note that our construction can be modified
to achieve the stronger functionality property (by using a ring of sufficiently large size
and the union bound).

Definition 2.13. (Average-CaseSecureVirtualBlackBox) LetC = {Cn}n∈N be a family
of circuits and O a PPTM as in Definition 2.11. Let D = {Dn}n∈N be an ensemble of
distribution families Dn , where each D ∈ Dn is a distribution over Cn .
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O is an obfuscator for the distribution class D over the circuit family C, if it satisfies
the functionality and polynomial slowdown properties of Definition 2.11 with respect
to C, but the virtual black box property is replaced with:

3. Distributional Virtual Black Box For every (non-uniform) polynomial size ad-
versary A, there exists a (non-uniform) polynomial size simulator S, such that
for every n ∈ N, every distribution D ∈ Dn (a distribution over Cn), and every
predicate P : Cn → {0, 1}:
∣
∣
∣
∣ Pr
C∼Dn ,O,A

[A (O (
C, 1n, 1λ

)) = P(C)
] − Pr

C∼Dn ,S

[
SC

(
1|C |, 1n, 1λ

)
= P(C)

]∣∣
∣
∣ = negl(λ)

Remark 2.14. Our proof of average-case security for the conjunction obfuscator (The-
orem 4.2) is in fact stronger. We show a simulator S that does not even require black
box access to the circuit C . Rather, for a circuit C drawn from a distribution in D, the
probability of predicting P(C) from an obfuscation of C , is the same as the probability
of predicting P(C) from a “dummy obfuscation” that is independent ofC . See the proof
for further details.

3. Obfuscating Conjunctions

In this section, we present our obfuscator for conjunctionsConjObf (Fig. 1).We provide
a proof of security for functions that are not determined by the locations of the wildcards
in Sect. 4. Finally, in Sect. 5 we provide evidence of the security of our construction for
any conjunction, by proving that it is secure against generic adversaries that do not use
the representation of the specific graded encoding scheme.
We start with a formal definition of the class of conjunctions.

Definition 3.1. (n-bit Conjunction) For an input length n, a conjunctionC = (W, V ) :
{0, 1}n → {0, 1} is a predicate on n-bit inputs, which is defined by two vectors W, V ∈
{0, 1}n . For every input �x ∈ {0, 1}n ,C(�x) = 1 iff for all i ∈ [n],W [i] = 1orV [i] = �x[i].
For the sake of unity of representation, we require that wheneverW [i] = 1, it holds that
V [i] = 0.
We often alternate between treating W as an index vector and treating it as a subset

of [n]. If i ∈ W then we say that i is a wildcard location.

An ensemble of conjunctions is defined in the standard way.

Definition 3.2. (Conjunction Ensemble) A conjunction ensemble C = {Cn}n∈N is a
collection of conjunctions Cn : {0, 1}n → {0, 1}, one for each input length.

We now state a useful (for our purposes) property of conjunctions:

Claim 3.3. There exists an efficient algorithm B, such that for any conjunction C =
(W, V ), and any accepting input �x of C, B can recover (W, V ):

∀C = (W, V ),∀�x : C(�x) = 1, BC (�x) = (W, V )
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Fig. 1. Obfuscator for Conjunctions.

Proof. Take n = |�x |, the algorithm B enumerates over the bits of �x . For each bit i , it
flips the i-th bit of �x : �x (i) = �x ⊕ ei , and checks whether C(�x (i)) = 1. If so, then i must
be a wildcard: W [i] = 1 and V [i] = 0. Otherwise, i is not a wildcard: W [i] = 0 and
V [i] = �x[i]. �

Our obfuscator for the class of conjunctions is presented in Fig. 1. Correctness follows
in a straightforward manner as described in the following lemma. We note that the error
is one sided, it is always the case that if C(�x) = 1 then for the obfuscated program
OC (�x) = 1 as well.

Lemma 3.4. (Obfuscator Functionality) Let C be an n-variable conjunction and con-
sider its obfuscation OC = ConjObf(C, 1n, 1λ). Then for all �x,

Pr[OC (�x) �= C(�x)] ≤ poly(n)/p,

where p = 2�(λ) is the order of the group in the graded encoding scheme, and the
probability is taken over the randomness of ConjObf.
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Proof. Let C,OC be as in the lemma statement. Let �x be an input and let us examine
OC (�x) first for the case where C(�x) = 1 and then the case where C(�x) = 0.
If C(�x) = 1 then by the definition of ConjObf

ρn+1 · (�i∈[n]ρi,�x[i] · αi,�x[i]) = ρn+1 · (�i∈[n]αi,V [i]) · (�i∈[n]ρi,�x[i]),

and therefore OC (�x) = 1.
Otherwise, consider the polynomial over Zp

p( �ρ, �α) = ρn+1 · (�i∈[n]ρi,�x[i] · αi,�x[i]) − ρn+1 · (�i∈[n]αi,V [i]) · (�i∈[n]ρi,�x[i]).

This polynomial is not identically zero and it is defined over poly(n) uniformly dis-
tributed variables. Therefore, since p has no small divisors (Remark 2.8), then by
Schwartz-Zippel (Corollary 2.1) it will be zero with probability at most poly(n)σ /p =
negl(λ). �

As a concluding remark, we note that if our graded encoding scheme has the property
that p � 2n (which is indeed achievable in the candidate of [21]), then a stronger
correctness guarantee, as mentioned in Remark 2.12, can be achieved by using the union
bound. In this parameter range, the proof of security also becomes somewhat simpler
(see Sect. 4). However, we want to present our scheme in the most generic way so as
to be compatible with possible choices of the security parameter and with future graded
encoding schemes.

4. Security from GXDH and GCAN

In this section, we prove thatConjObf is a secure distributional black box obfuscator for
any distribution over the conjunctions family for which the function is hard to determine
(i.e., has super-logarithmic entropy) even if the locations of all the wildcards are known.
Namely, there is sufficientmin-entropy in V even givenW (recall that V [i] = 0wherever
W [i] = 1).

Definition 4.1. (equivocality given wildcards) Let C be the class of conjunctions, and
letD = {Dλ}be an ensemble of families of distributions.We say thatD is equivocal given
the wildcards if there exists h(λ) = ω(log λ) such that for all D ∈ Dλ, if (V,W ) ← D
then

H̃∞(V |W ) ≥ h(λ).

Wewill prove the security ofConjObf for such functions under theGXDHandGCAN
assumptions (see Sect. 2.2).

Theorem 4.2. Based on the GXDH andGCAN assumptions, the algorithmConjObf
is an average-case black box obfuscator for ensembles of distribution families that are
equivocal given the wildcards.
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Proof. We start by stating a claim that will be used later on in the proof.

Claim 4.3. Let p be an integer and let k ∈ N be integer. Consider the hash familyH ⊆
{0, 1}k → Z

∗
p, where each function in H is defined by a sequence a0, a1, . . . , ak ∈ Z

∗
p

and

Ha0,a1,...,ak (x1, . . . , xk) = a0 ·
∏

i∈[k]
axii ,

then H is pairwise independent.

This claim follows in a straightforward manner sinceH (defined therein) is a random
linear function “in the exponent.”
Consider a function C = (W, V ) drawn from a distribution Dλ, and consider the

distribution of a properly obfuscated program ConjObf(C). We will show, using a se-
quence of hybrids, that this distribution is computationally indistinguishable from one
that does not depend onC , even for a distinguisher who knows the value of the predicate
P(C). This will immediately imply a simulator. We note that our proof works even for
P(C) with multiple-bit output, so long as h(λ) − |P(C)| = ω(log λ).

1. In this hybrid, we use ConjObf as prescribed:

OC = ConjObf(C) =
(
params,pzt,

{
(wi,b, ui,b)

}
i∈[n],b∈{0,1} , (wn+1, un+1)

)
.

2. We change step 4 of the obfuscator, and sample an+1 ← samp(params).
We show that the resulting OC distribution is computationally indistinguishable
from the previous hybrid under the GCAN assumption (Assumption 2.10), even
when the distinguisher knows P(C). Namely,wewill show that for some negligible
ε, the distributions in the previous hybrid are such that

H̃ε∞(αn+1|
{
(wi,b, ui,b)

}
i∈[n],b∈{0,1} , P(C)) = ω(log λ), (5)

which will allow us to apply GCAN and conclude that αn+1 can be replaced by a
uniform variable.
To show that Eq. (5) holds, we present a slightly different way to generate the
variables αi,b (note that from this point and on, we are a completely information-
theoretic setting, so we will not worry about computational aspects). We will first
sample {α̂i,b}i∈[n],b∈{0,1} completely uniformly in Zp, and then set αi,b as follows.
IfW [i] = 0 then αi,0 = α̂i,0, αi,1 = α̂i,1; and ifW [i] = 1 then αi,0 = αi,1 = α̂i,0.
Note that the resulting distribution of the α’s is exactly as prescribed. We let E
denote the event where all α̂i,b ∈ Z

∗
p. As noted in Remark 2.8, this event happens

with all but negligible probability: Pr[E] = 1 − negl(λ).
We notice that conditioned on E, α̂i,b are invertible, and therefore we can write

αn+1 =
∏

i∈[n]
α
1−V [i]
i,0 α

V [i]
i,1 =

∏

i∈[n]
α̂
1−V [i]
i,0 α̂

V [i]
i,1 =

∏

i∈[n]
α̂i,0 ·

∏

i∈[n]
(α̂i,1/α̂i,0)

V [i]

(6)
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where the second equality is since α and α̂ only differ whereW [i] = V [i] = 0. By
Claim 4.3 it follows, therefore, that αn+1 is the output of a pairwise independent
hash function applied to V .
We proceed to apply Lemma 2.5. We note that H̃∞(V |W, P(C)) ≥ H̃∞(V |W ) −
|P(C)| ≥ h(λ)−1. Therefore, theremust exist h′(λ) = ω(log λ) such that h′(λ) ≤
h(λ) − 1, and in addition the length of αn+1 is at least h′(λ)/3 + 2. We can thus
apply Lemma 2.5 with ε′ = 2−h′(λ)/3 = negl(λ) to argue that

H̃ε′
∞

(
αn+1|W, P(C),

({α̂i,b}|E
)) ≥ h′(λ)/3 = ω(log λ). (7)

Letting ε = ε′ + Pr[E], this implies that

H̃ε∞
(
αn+1|W, P(C), {α̂i,b}

) ≥ H̃ε′
∞

(
αn+1|W, P(C),

({α̂i,b}|E
)) ≥ h′(λ)/3 = ω(log λ).

(8)

Finally, Eq. (5) follows by noticing that there is an invertible mapping between
W, {α̂i,b} and

{
(wi,b, ui,b)

}
i∈[n],b∈{0,1}.

It is interesting to note that this hybrid (and therefore our entire argument) works
not only for predicates. In fact, 
-bit functions of the circuit C can be used, so long
as h(λ) − 
 = ω(log λ).
At this point, OC does not depend on V anymore, however it still depends on W
via step 2 of ConjObf.

3. We change step 2 of the obfuscator to always act as if i �∈ W , namely αi,0 and αi,1
are uniform and independent.
A sequence of n hybrids will show that any adversary distinguishing this distribu-
tion from the previous one, can be used to break GXDHwith only a factor n loss in
the advantage. This implies that the hybrids are computationally indistinguishable
assuming GXDH. Note that knowledge of P(C) (or even of C in its entirety) is
useless for the distinguisher at this point.

After the last hybrid, we are at a case where all ai,b, ri,b, an+1, rn+1 are completely
independent of each other, and are sampled in the same way regardless of (V,W ). It
follows that our final distribution is independent ofC , but producesOC indistinguishable
from ConjObf(C) (even given P(C)). Since this distribution is efficiently sampleable
(via the process we describe in the proof), the theorem follows. �

5. Security in the Generic Graded Encoding Scheme (GES) Model

5.1. The Generic Graded Encoding Scheme Model

We would like to prove the security of our construction against generic adversaries. To
this end,wewill use thegeneric graded encoding schememodel, analogous to thegeneric
group model (see Shoup [33] and Maurer [30]). In this model, an algorithm/adversary
A can only interact with the graded encoding scheme via oracle calls to the add, mult,
and isZero operations from Definition 2.7. Note that, in particular, we only allow access
to the operations that can be run using evparams. To the best of our knowledge, non-
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generic attacks on known schemes require use of params and cannot be mounted when
only evparams is given.
We use G to denote an oracle that answers adversary calls. The oracle operates as

follows: for each index v ∈ {0, 1}τ , the elements of the indexed set Sv = ⋃
α∈R S(α)

v are
arbitrary binary strings. The adversaryA can manipulate these strings using oracle calls
(via G) to the graded encoding scheme’s functionalities. For example, the adversary can
useG to perform an add call: taking strings s1 ∈ S(α1)

v , s2 ∈ S(α2)
v , encoding indexed ring

elements (v, α1), (v, α2) (respectively), and obtaining a string s ∈ S(α1+α2)
v , encoding

the indexed ring element (v, (α1 + α2)).
We say thatA is a generic algorithm (or adversary) for a problem on graded encoding

schemes (e.g., for computing a moral equivalent of discreet log), if it can accomplish
this task with respect to any oracle representing a graded encoding scheme, see below.
In the add example above, there may be many strings/encodings in the set S(α1+α2)

v .
One immediate question is which of these elements should be returned by the call to
add. In our abstraction, for each v ∈ {0, 1}τ and α ∈ R, G always uses a single unique
encoding of the indexed ring element (v, α). I.e. the set Sα

v is a singleton. Thus, the
representation of items in the graded encoding scheme is given by a map σ(v, α) from
v ∈ {0, 1}τ andα ∈ R, to {0, 1}∗.We restrict our attention to the casewhere thismapping
has polynomial blowup.

Remark 5.1. (Unique versus Randomized Representation)We note that the known can-
didate of secure graded encoding schemes [21] does not provide unique encodings: their
encodings are probabilistic. Nonetheless, in the generic graded encoding scheme ab-
straction we find it helpful to restrict our attention to schemes with unique encodings.
For the purposes of proving security against generic adversaries, this makes sense: a
generic adversary should work for any implementation of the oracle G, and in particular
also for an implementation that uses unique encodings.
Moreover, our perspective is that unique encodings are more “helpful” to an adver-

sary than randomized encodings: a unique encoding gives the adversary the additional
power to “automatically” check whether two encodings are of the same indexed ring el-
ement (without consulting the oracle). Thus, we prefer to prove security against generic
adversaries even for unique representations.

We remark that the set of legal encodings may be very sparse within the set of images
of σ , and indeed this is the main setting we will consider when we study the generic
model. In this case, the only way for A to obtain a valid representation of any element
in any graded set is via calls to the oracle. Finally, we note that if oracle calls contain
invalid operators (e.g., the input is not an encoding of an element in any graded set, the
inputs to add are not in the same graded set, etc.), then the oracle returns ⊥.

RandomGradedEncoding SchemeOracle Wefocus on a particular randomized oracle:
the randomgeneric encoding scheme (GES) oracleRG.RG operates as follows: for each
indexed ring element (with index v ∈ {0, 1}τ and ring element σ ∈ R), its encoding
is of length 
 = (τ · log |R| · poly(λ)). The encoding of each indexed ring element
is a uniformly random string of length 
. In particular, this implies that the only way
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that A can obtain valid encodings is by calls to the oracle RG (except with negligible
probability).
The oracle RG maintains a table T (initially empty) containing the indexed ring

elements that were provided as outputs to prior calls made by A. As the execution of
A proceeds, its oracle calls are handled one at a time. On each such call, the oracle
RG checks whether every input argument that encodes an indexed ring element is the
output of a previous call to RG. If not, then the oracle immediately returns ⊥ (at least
one input argument is an invalid encoding). Otherwise, the oracle retrieves from its table
T the indexed ring elements encoded in all input arguments. Using these, the oracle
computes the correct output indexed ring element (or returns⊥ if the inputs are invalid).
If this output already has an entry in the table T , then its encoding has already been
determined, and can be provided as output. Otherwise, the oracle RG chooses a new
uniformly random string in {0, 1}
, outputs this string as the output encoding, and adds
the appropriate entry to the table T .
The definition of secure obfuscation in the random GES model is as follows.

Definition 5.2. (Virtual Black Box in the Random GES Model) Let C = {Cn}n∈N be a
family of circuits and O a PPTM as in Definition 2.11.
A generic algorithm ORG is an obfuscator in the random generic encoding scheme

model, if it satisfies the functionality and polynomial slowdown properties of Definition
2.11 with respect to C and to any GES oracle RG, but the virtual black box property is
replaced with:

3. Virtual Black Box in the Random GESModel For every (non-uniform) polynomial
size generic adversary A, there exists a (non-uniform) generic polynomial size
simulator S, such that for every n ∈ N and every C ∈ Cn :
∣
∣
∣
∣

(

Pr
RG,O,A

[
ARG (

ORG (
C, 1n, 1λ

))]
= 1

)

−
(

Pr
RG,S

[
SC

(
1|C |, 1n, 1λ

)]
= 1

)∣
∣
∣
∣ = negl(λ)

We remark that while it makes sense to allow S to access the oracleRG, this is in fact
not necessary. This is since RG can be implemented in polynomial time (as described
above), and therefore S can just implement it by itself.

5.2. Security of ConjObf

Theorem 5.3. (Security against Generic Adversaries) The algorithm ConjObf is a
secure black box obfuscator for conjunctions in the generic GES model.

In fact, we prove a somewhat stronger statement. Whereas the definition of black box
obfuscation requires to simulate adversaries with single-bit output, our simulator will
be able to successfully simulate any polynomial time generic adversary, regardless of
the number of bits it outputs.

Proof. Fix a security parameter λ, and the obfuscation of a conjunction C . The ob-
fuscation is generated by choosing parameters for a graded encoding scheme, and then
picking ring elements for all encodings. For each i ∈ [n], b ∈ {0, 1}, the obfuscator
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picks ρi,b, αi,b ∈ R, and also picks ρn+1, αn+1 ∈ R. Note that these ring elements
are not all independently distributed (though each of them, on its own, is uniformly
random in R). For the security proof, we treat the encoded ring elements as random vari-
ables. We use �ρ to denote the vector containing {ρi,b}i∈[n+1],b∈{0,1}, and we call these
the ρ random variables. We use �α to denote the vector containing {αi,b}i∈[n+1],b∈{0,1},
and we call these the α random variables. (For notational convenience, we use the
notation ρn+1,0 = ρn+1,1 = ρn+1, and αn+1,0 = αn+1,1 = αn+1).
For a conjunction C = (W, V ), consider the joint distribution of the ( �ρ, �α) random

variables. The elements in �ρ are all independent and uniformly random ring elements.
For each i ∈ [n], the αi,0, αi,1 RVs are either equal (if i ∈ W ) or independent (if
i /∈ W ). Finally, the αn+1 RV is always determined by the other α random variables
(αn+1 = �iαi,V [i]).

The Distributions Dobf (C) and Ddummy. Let Dobf (C) denote the obfuscator’s output
distribution on the conjunction C :

(
params, {(wi,0, ui,0), (wi,1, ui,1)}i∈[n], (wn+1, un+1)

)

where (wi,b, ui,b) are the encodings of ρi,b and (ρi,b · αi,b) (respectively) in Sei , and
(wn+1, un+1) are the encodings of ρn+1 and (ρn+1 · αn+1) (respectively) in Sen+1 . The
obfuscator’s output is determined by the choice of ring elements (with joint distribution
as above), together with the coins (if any) used to randomize the encodings.8

In the security proof, we also consider a “dummy obfuscation” distribution Ddummy.
This dummy distribution is generated by choosing all of the encoded ring elements
independently and uniformly at random, and then outputting their encodings.

The Simulator S. For a polynomial size generic adversary A (w.l.o.g. we assume that
A is deterministic, otherwise sample a random tape for A and fix it throughout the
simulation), the simulator S executes A on the dummy distribution Ddummy with a
random graded encoding scheme (GES) oracle RG (where RG is simulated by S). In
particular, S = SA can be viewed as a uniform machine with oracle access to A.
For a conjunction C = (W, V ), consider the “real” distribution A(Dobf (C)), where

the randomness is over the choice of random GES oracle and the obfuscator’s random
coins, and a “simulated” distribution A(Ddummy), where again the randomness is over
the choice of random GES oracle and the choice of random ring elements for Ddummy.
See Sect. 5.1 for the specification of a random GES oracle.
First, observe that in both cases, the obfuscation is identically distributed: the strings

{(wi,b, ui,b)} and (wn+1, un+1), which w.h.p. are all encodings of distinct indexed ring
elements, are all independent and uniformly random (over the randomness ofRG). We
emphasize that the indexed ring elements may not be independent, but their encodings
under RG are nonetheless independent uniformly random strings. The difference be-
tween the two distributions is inRG’s answers to the adversary’s queries. For example,
if the adversary computes the obfuscation’s output on an input �x for which C(�x) = 1,

8Recall that, as discussed in Remark 5.1, for security proofs in the random graded encoding schememodel,
we assume that the encoding of each indexed ring element is unique.
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then in Dobf (C) this unveils a non-trivial multilinear equality between the indexed ring
elements encoded in the obfuscation, whereas in Ddummy the indexed ring elements are
independent, and there is no such multilinear equality between them. Thus, the oracle’s
answers allow the adversary to distinguish the two cases.
While this specific attack clearly demonstrates that the two distributions can be dis-

tinguished, it requires “knowing” an input �x for which C(�x) = 1. We show that this is
(essentially) always the case: for each oracle call made by A, either its output is identi-
cally distributed in Dobf (C) and in Ddummy (even conditioned on past answers and table
state) or the call (implicitly) specifies a polynomial size set X of inputs, such that unless
∃�x ∈ X,C(�x) = 1, the call’s output is uniformly random and identically distributed in
Dobf (C) and in Ddummy.
The high-level strategy ofS is as follows. It feedsAwith an obfuscation from Ddummy.

As noted above, the distributions of the obfuscation and the initial state of the table T
in Dobf (C) and Ddummy are identical. The simulator now monitors each call made by
A toRG. For each such call, either its output and the updated table state are identically
distributed in Dobf (C) and in Ddummy or the call specifies a set of inputs X s.t. for some
�x ∈ X , C(�x) = 1. Moreover, for each call, S can efficiently find such a set X , and then
use its black box access toC to test, for every �x ∈ X , whether �x is an accepting input and
C(�x) = 1. If S finds an accepting input, it is essentially done—it can use its black box
access to C to retrieve W and V (see Claim 3.3), and continue the simulation perfectly
as in Dobf (C). If there is no �x ∈ X for which C(�x) = 1, then the output and the updated
table state are identically distributed in Dobf (C) and in Ddummy, and the simulator can
continue its simulation as in Ddummy. Thus, the simulator can process A’s calls one by
one, and generate a view that is statistically close to A(Dobf (C).

We now elaborate on the simulator’s operation, and its procedures for identifying the
implicit inputs specified by A’s oracle calls.

Characterizing A’s Oracle Calls.We examine A’s oracle calls in sequence, and con-
sider A’s view when it is run on Dobf (C) and on Ddummy. For the add,negate,mult
procedures, the indexed ring element in their output is a multilinear function of the �ρ
and �α random variables. For the isZero procedure, the output is a multilinear equality
test on the random variables. In fact, these are multilinear functions of ( �ρ, �α)with a very
specific structure. We call these cross-linear functions, see Definition 5.8 and Claim
5.9 below. The difference between Dobf (C) and Ddummy is that these cross-linear func-
tions may take different values because the variables in �α have a different distribution in
Dobf (C) and Ddummy. As shown in the example above, running the obfuscated program
on an input �x such that C(�x) = 1 ended in an isZero call specifying a multilinear con-
straint that was true when the random variables are distributed as in Dobf (C), but false
in Ddummy.
We proceed as follows. Recall that the oracle RG maintains a table T of all indexed

ring elements whose encodings have already been specified (see Sect. 5.1). For each
element in the table T , we consider its representation as a (cross-linear) function of
the ( �ρ, �α) random variables. After the obfuscation (real or dummy) is specified, the
entries in T contain the indexed elements ρi,b and ρi,b · αi,b. As A makes additional
oracle calls, new entries are added to the table T . For these new entries, we consider the
representations of their indexed ring elements as cross-linear functions of ( �ρ, �α). We
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focus here on calls to the add,negate,mult,encRand procedures (calls to samp and
isZero are handled similarly). For each such call, the inputs should be encodings in the
table T : for any other string, the probability that it is a valid encoding is negligible, and
the oracle RG just answers ⊥ (in both the real and simulated executions). Otherwise,
the inputs are in the table T , and the output may form a new entry in T . The functional
representation of a table entry is defined as follows: �

Definition 5.4. (Functional Representation) For each entry in RG’s table T , with in-
dexed ring element (v, σ ) ∈ {0, 1}τ × R and encoding s ∈ {0, 1}∗, its functional
representation f ( �ρ, �α) is defined recursively:

1. Initially, the only table entries are encodings that appear in the obfuscation, i.e., the
entries for the ring elements {(ρi,b, (ρi,b · αi,b))}i∈[n],b∈{0,1}, where the variables
associated with i are indexed by ei . These table entries are all distinct (excet with
negligible probability), and for each table entry its functional representation is
simply f ( �ρ, �α) = ρi,b or f ( �ρ, �α) = (ρi,b · αi,b) (respectively).

2. For subsequent entries that are created on A’s calls to RG, their functional rep-
resentation is defined recursively, e.g. for an add call, with input encodings s1
and s2, if s1 or s2 is not in RG’s table T , then that input does not represent a
valid encoding, the output is ⊥ and no new table entry is created. If the inputs
are in the table T , let (v1, σ1) and (v2, σ2) be the indexed ring elements that they
encode. If v1 �= v2 then again the output is ⊥ and no new table entry is created.
The remaining case is v1 = v2 = v. In this case, let f1 and f2 be the functional
representations of the input encodings. If a new table entry is created for the output,
then its representation is ( f1 + f2).
The cases of samp,encRand,negate,mult calls are handled similarly.

Remark 5.5. We emphasize that, for a table entry t , its functional representation is
completely independent of the conjunction being obfuscated. Indeed, the functional rep-
resentation remains unchanged even if the ( �ρ, �α) random variables are drawn uniformly
at random, as in Ddummy.

By definition, the functional representation indeed computes the ring element in a
table entry (for any setting of ( �ρ, �α)). Moreover, for any table entry, S can compute a
polynomial size arithmetic circuit computing that table entry’s functional representation:

Claim 5.6. For any setting of the initial random variables ( �ρ, �α), and for an entry t in
the table T containing the indexed ring element (vt , σt ) and with functional represen-
tation ft , it is the case that σt = ft ( �ρ, �α).

Claim 5.7. For each entry t inRG’s table T , the simulatorS can compute a polynomial
size arithmetic circuit computing its functional representation ft ( �ρ, �α).

Proof Sketch. The proof is by induction, following the recursive structure of Definition
5.4:
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1. Induction basis for the obfuscation encodings that are initially in table T , S can
compute the functional representation (ρi,b or ρi,b · αi,b) for each of these table
entries, and a polynomial size arithmetic circuit that computes it.

2. Induction step for one ofA’s calls toRG, say an add call, as in Definition 5.4, if S
knows functional representations f1 and f2 of the input arguments (and poly-sized
arithmetic circuits that compute them), then it can also compute the output’s func-
tional representation ( f1 + f2) (and a poly-sized arithmetic circuit that computes
it). �

As noted above, the functional representations of all table entries are multilinear
functions on ( �ρ, �α). Moreover, they are multilinear functions with a specific structure,
which we call cross-linear functions:

Definition 5.8. (cross-linear function) A function g is a cross-linear term over ( �ρ, �α)

if it is of the form:

g = γ ·
∏

i∈I
ρi,�x[i] ·

∏

i∈I∩A

αi,�x[i]

where I, A ⊆ [n + 1], �x ∈ {0, 1}n+1, and γ ∈ R.
A function f is a cross-linear function of ( �ρ, �α) if it can be expressed as a sum of

cross-linear terms. I.e., it is of the form:

f =
∑

j

γ j ·
∏

i∈I j
ρi,�x j [i] ·

∏

i∈I j∩A j

αi,�x j [i]

where for each j : I j , A j ⊆ [n + 1], �x j ∈ {0, 1}n+1, and γ j ∈ R. We assume that the
expansion is compact in the sense that the tuples {(I j , A j , �x j )} j are all distinct. We call
this particular expansion the cross-linear expansion of f .

Claim 5.9. For any entry in the table T , its functional representation is a cross-linear
function of ( �ρ, �α).

Proof. We show that, for every entry in the table T , indexed by a vector v, its functional
representation is a cross-linear function of the ρ and α variables that are indexed by
vectors ei for which v[i] = 1. The proof is by induction over the number of calls to the
oracle RG.

• For the induction basis, after the obfuscator completes its run, the only entries
in the table T are for the ring elements {(ρi,b, (ρi,b · αi,b))}i∈[n],b∈{0,1}, where the
variables associatedwith i are indexed by ei . For each such indexed ring element, its
functional representation is of the form ρi,b or ρi,b ·αi,b, which are both cross-linear
functions over the variables indexed by ei .

• For the induction step, we first handle the case of add calls. The proofs for negate
and encRand are similar. The proof formult is slightly different, and follows be-
low. For an add call, let s1 and s2 be the input encodings. As in Definition 5.4,
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add’s output is ⊥ unless the encodings are both in the table T , and contain in-
dexed ring elements (v, σ1) and (v, σ2). In this case, by induction, the functional
representation of both input items is a cross-linear function of the α and ρ ran-
dom variables indexed by vectors ei for which v[i] = 1. Thus, the functional
representation of the sum is also a cross-linear function of these same variables.
For a call to mult, similarly to the above, the output is ⊥ unless the inputs are
encodings of table entries (v1, σ1) and (v2, σ2), and the supports of v1 and v2 (the
entries on which they are 1) are disjoint. In this case, by the induction hypothesis,
the functional representations of the input arguments are cross-linear functions of
disjoint sets of ρ and α variables, and we conclude that the output’s functional
representation is a cross-linear function of the variables indexed by ei for which
v1[i] = 1 or v2[i] = 1. �

We note that while it is true that S can compute a polynomial size circuit computing
each table entry’s functional representation (Claim 5.7), it does not seem that the sim-
ulator can obtain the cross-linear expansion of these functions. Indeed, the cross-linear
expansion may not have a polynomial size description.

ClassifyingA’s Oracle Queries. From Claim 5.9 we know that the functional represen-
tations of all entries in T (and in particular the representations of all inputs and outputs
to oracle calls) are cross-linear functions of ( �ρ, �α). For any fixed call and table state,
the outputs’ functional representations in the execution of A on Dobf (C) and Ddummy
are identical (see Remark 5.5). This does not, however, mean that the outputs are iden-
tically distributed: as noted above, it might be the case that when the random variables
are sampled as in Dobf (C), the dependencies between the random variables causes the
functional representation to become equivalent to that of an item that’s already in the
table T ; e.g., following the example outlined above, there are two distinct ways products
of the random variables that evaluate to �ρi,V [i] · αi,V [i]. In this case, when the second
product is evaluated, the output will be the encoding of an item that’s already in the
table. For that same call in the simulation on Ddummy, however, the random variables
are independent, and the functional representation of the new output is different from
all entries in the table. In this case, the output is a fresh uniformly random encoding.
This is the main challenge for the simulator S. For each ofA’s calls toRG, S “wants

to know” whether the output is the same as an entry that’s already in the table or not.
We show that for a fixed table T , and an oracle call made by A, there are only three
possibilities:

Possibility I : Output (Always) Identical to Another Entry This is the simplest case.
Here, in both the real and simulated executions, the output’s functional representation
is equivalent to some other entry in T . Namely taking fo to be the output’s functional
representation, there exists some entry t in T with functional representation ft , such that
fo ≡ ft . In this case, for both executions, the oracle outputs item t’s encoding and the
table remains unchanged.
We note that ( fo− ft ) is a cross-linear function of ( �ρ, �α), and that for any cross-linear

function there exists a simple procedure for testing whether ( fo − ft ) ≡ 0.
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Claim 5.10. Let f be a cross-linear function of ( �ρ, �α). There exists an efficient algo-
rithmwith black box access to f , such that if f �≡ 0, then with all but negl(λ) probability,
the algorithm outputs 1. Otherwise the algorithm outputs 0.

Proof. The algorithm picks a uniformly random assignment for ( �ρ, �α) in R = Zp,
and checks whether f is 0 on this assignment. If so, it outputs 0, otherwise it outputs
1. Since f is cross-linear, its total degree is at most 2(n + 1). By the Schwartz-Zippel
Lemma, if f �≡ 0 then the algorithmwill output 0 with probability at most O(nσ /|R|) =
negl(λ). �

To recognize calls of type I , the simulator operates as follows: for each ofA’s oracle
calls, it computes the output’s functional representation and then tests whether is equiv-
alent to the functional representation of any table entry. If so, S passes the call to the
oracle, returns the output to A, and continues the simulation without changing T .

Possibility I I : Output (Always) Different from All Entries Here, in both the real and
simulated executions, the output’s functional representation is not equivalent to that of
any other entry in T . In this case, for both distributions, the oracle outputs a fresh,
uniformly random encoding for that output and updates the table to include the new
item.
Below, we show a simple condition that the simulator can use efficiently identify calls

of this type. Once such a call is recognized, the simulator can simply pass the call to
the oracle, return the output to A, and update its view of the table T to include the new
indexed item and its functional representation.

Possibility I I I :Output VariesThis is the trickiest case: in the real execution, the output’s
functional representation is equivalent to some other entry in T , but in the simulated exe-
cution, it is not equivalent to that entry. This is problematic case, becauseS doesn’t know
what the output distribution is in the real execution, and can’t continue the simulation.
We show that whenever this case occurs, the adversary’s call specifies an efficiently

recoverable input �x ∈ {0, 1}n such that C(�x) = 1. S can therefore find this �x and then
use its C-oracle to recover C and complete the simulation.

AnsweringA’s Oracle Queries. For a successful simulation, S needs to distinguish and
handle cases I I and I I I above. For this, we use the following definitions:

Definition 5.11. (ρ-Monomials, full monomials) A function f is a ρ-monomial if it
is a cross-linear term in �ρ (i.e., independent of �α). We say that a ρ-monomial is full
if its total degree is exactly n + 1 (i.e., it has maximal total degree). In this case f =
((

∏
i∈[n] ρi,�x[i]) ·ρn+1,0), for some �x ∈ {0, 1}n , and we say that f is the full ρ-monomial

�x .
Definition 5.12. (Cross-linear function with a full ρ-monomial) We say that a cross-
linear function f of ( �ρ, �α) includes a full ρ-monomial, if in f ’s cross-linear expansion,
there exists a j such that γ j �= 0 and I j is of size exactly (n + 1) (and so the j-th term
in the expansion is a full ρ-monomial).
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We show that for any cross-linear function f , if it includes a non-full ρ-monomial,
then (for any conjunctionC) when ( �ρ, �α) are drawn as in Dobf (C), with all but negligible
probability f ( �ρ, �α) �= 0. Moreover, if f does include a full ρ-monomial �x , then for any
conjunction C , if C(�x) = 0, then when ( �ρ, �α) are drawn as in Dobf (C), with all but
negligible probability f ( �ρ, �α) �= 0. This is shown in Claims 5.13 and 5.14. Finally, we
show that there exists an efficient procedure for identifying a ρ-monomial of a function
f . This is in Claim 5.15.
S’s strategy for simulating A’s oracle calls that are not of type I follows from these

claims. For each such call, whose output has functional representation fo, for each
entry t in the table T with functional representation ft , S can identify a ρ-monomial of
( fo − ft ): if it finds a non-full monomial, then by Claim 5.13, w.h.p. in both Dobf (C)

and Ddummy, the indexed ring element in the call’s output is not equal to the element
in entry t of the table. Otherwise, if S finds a full ρ monomial �xt of ( fo − ft ), then it
uses its black box access to C to test whether C(�xt ) = 1. If so, S can further use its
black box access to extract the representation (W, V ) of C and complete the simulation
perfectly. If not, then by Claim 5.14, w.h.p. in both Dobf (C) and Ddummy, the indexed
ring element in the call’s output is not equal to the element in entry t . Finally, if after
testing all entries in the table, S has not found an accepting input, then the call is of type
I I and the simulation can continue.
The claims follow:

Claim 5.13. Let f be a cross-linear function of ( �ρ, �α) s.t. f �≡ 0. If f includes a
non-full ρ-monomial, then for any conjunction C, for an assignment to ( �ρ, �α) drawn as
in Dobf (C), it holds that Pr( �ρ,�α)[ f ( �ρ, �α) = 0] = negl(λ).

Proof. Let g( �ρ) = �i∈Sρi,�x[i] be a non-full monomial, with I � [n + 1] and �x ∈
{0, 1}n+1. Then, by definition, the cross-linear expansion of f can be written as a sum:

f (�α, �ρ) = (γ · g( �ρ) · h(�α)) +
∑

j :((I j �=I )∨(�x j �=�x))
γ j ·

∏

i∈I j
ρi,�x j [i] · h j (�α)

where γ �= 0, and where h(�α) �≡ 0 can be expanded as:

h(�α) =
∑

k

δk ·
∏

i∈I∩Ak

αi,�x[i]

and each Ak is a (distinct) subset of I .
Now consider h(�α), where the �α random variables are chosen as in Dobf (C), for

C = (W, V ). This means that the �α random variables are not independent, but rather
for some i’s it may be that αi,0 = αi,1, and αn+1 = ∏

i αi,V [i]. Other than these restric-
tions the random variables in �α are independent and uniformly random. In particular,
this means that the random variables on which h depends, namely {αi,�x[i]}i∈I�[n+1],
are all independent and uniformly random (or rather within statistical distance negl(λ)

of independent and uniformly random).9 Thus h is a nonzero multilinear function of

9The only dependence is that if for i ∈ [n] any of the �αi,�x[i] variables are 0, then αn+1 is also 0.
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independent uniformly random variables, and by the Schwartz-Zippel Lemma with all
but negl(λ) probability over the choice of �α by Dobf (C), we have that h(�α) �= 0.

Drawing �α as in Dobf (C), and setting those variables in f , we examine the expansion
of f . We get that:

f�α( �ρ) = (γ ′ · g( �ρ)) +
∑

j :((I j �=I )∨(�x j �=�x))
δ′
j ·

∏

i∈I j
ρi,�x j [i]

where with all but negl(λ) probability over �α, we have that γ ′ �= 0. In this case, since the
�ρ random variables are all independent and uniformly random, the g( �ρ) monomial in
the expansion cannot be canceled out and f�α( �ρ) �≡ 0. Thus when we pick �ρ uniformly
at random (as in Dobf (C)), with all but negl(λ) probability we have 0 �= f�α( �ρ) =
f ( �ρ, �α). �

Claim 5.14. Let f be a cross-linear function of ( �ρ, �α) s.t. f �≡ 0. Suppose f includes a
full ρ-monomial �x ∈ {0, 1}n. For any conjunction C, if C(�x) = 0, then for an assignment
on ( �ρ, �α) drawn as in Dobf (C), Pr( �ρ,�α)[ f ( �ρ, �α) = 0] = negl(λ).

Proof. The proof is similar to that of Claim 5.13. Let g( �ρ) = �i∈[n+1]ρi,�x[i] be the full
ρ-monomial (we take �x[n+1] = 0 for notational convenience). Then, by definition, the
cross-linear expansion of f can be written as a sum:

f (�α, �ρ) = (γ · g( �ρ) · h(�α)) +
∑

j :((I j �=[n+1])∨(�x j �=�x))
γ j ·

∏

i∈I j
ρi,�x j [i] · h j (�α)

where γ �= 0 and h(�α) �≡ 0 can be expanded as:

h(�α) =
∑

k

γk ·
∏

i∈Ak

αi,�x[i]

where each Ak is a (distinct) subset of [n + 1].
As in Claim 5.13, if C(�x) = 0, then the input variables to h are (close to) independent

and uniformly random even under Dobf (C). Thus w.h.p. over the choice of �α as in
Dobf (C), we have h(�α) �= 0. Fixing any such α, we get that f�α( �ρ) �≡ 0, and so w.h.p.
over the choice of �ρ we get: 0 �= f�α( �ρ) = f ( �ρ, �α). �

Claim 5.15. Let f be a cross-linear function on ( �ρ, �α). There is an efficient algorithm
with black box access to f , such that if f is not a constant function, then with all but
negl(λ) probability, the algorithm outputs a ρ-monomial of f .

Proof. The algorithm proceeds as follows. Initially set f0 = f , I = �, and i = 0.
Proceed in iterations i ← 0, . . . , n:
In the i-th iteration, set both ρi,0 and ρi,1 to 0 in fi , and check whether the resulting
function is identically 0 (using the algorithm of Claim 5.10):
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• If not, then there must exist a ρ-monomial in fi that includes neither ρi,0 nor ρi,1.
The algorithm sets �x[i] = 0, sets fi+1 to be equal to fi , but with the variables
ρi,0, ρi,1 set to 0, and proceeds to iteration (i + 1).

• Otherwise (the resulting function above was not identically equal to 0), then there
must exist a ρ-monomial in fi that includes either ρi,0 or ρi,1. Similarly to the
above, the algorithm can determine whether there exists ρ-monomial that includes
ρi,0 (by setting ρi,1 to 0 and checking that the resulting function is not always 0).
If such a monomial exists, then the algorithm adds i to the set I , sets �x[i] = 0, sets
fi+1 to be equal to fi , but setting ρi,0 = 1 and ρi,1 = 0, and proceeds to iteration
(i + 1).

• Finally, in the remaining case, there exists a monomial that includes ρi,1, the al-
gorithm adds i to the set I , sets �x[i] = 1, sets fi+1 to be equal to fi , but setting
ρi,0 = 0 and ρi,1 = 1, and proceeds to the next iteration.

The algorithm’s output is the ρ-monomial
∏

i∈I ρi,�x[i], which (by construction) is a
ρ-monomial of f . Observe that unless f is a constant function, with all but negligible
probability the algorithm identifies a ρ-monomial. �
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