
DOI: 10.1007/s00145-014-9187-8
J Cryptol (2016) 29:1–27

Enhanced Public Key Security for the McEliece
Cryptosystem∗

Marco Baldi · Marco Bianchi · Franco Chiaraluce
Università Politecnica delle Marche, Ancona, Italy

m.baldi@univpm.it; m.bianchi@univpm.it; f.chiaraluce@univpm.it

Joachim Rosenthal · Davide Schipani
University of Zurich, Zurich, Switzerland

rosenthal@math.uzh.ch; davide.schipani@math.uzh.ch

Communicated by Tatsuaki Okamoto

Received 26 November 2012
Online publication 15 August 2014

Abstract. This paper studies a variant of the McEliece cryptosystem able to ensure
that the code used as the public key is no longer permutation equivalent to the secret
code. This increases the security level of the public key, thus opening the way for
reconsidering the adoption of classical families of codes, like Reed–Solomon codes,
that have been longly excluded from the McEliece cryptosystem for security reasons. It
is well known that codes of these classes are able to yield a reduction in the key size or,
equivalently, an increased level of security against information set decoding; so, these are
the main advantages of the proposed solution. We also describe possible vulnerabilities
and attacks related to the considered system and show what design choices are best
suited to avoid them.

Keywords. McEliece cryptosystem, Niederreiter cryptosystem, Error correcting codes,
Reed–Solomon codes, Public key security.

1. Introduction

The McEliece cryptosystem [31] is one of the most promising public-key cryptosystems
able to resist attacks based on quantum computers. In fact, differently from cryptosys-

∗ The material in this paper was presented in part at the Seventh International Workshop on Coding and
Cryptography (WCC 2011), Paris, France, April 2011. The Research was supported in part by the Swiss Na-
tional Science Foundation under Grants No. 132256, 149716, and in part by the MIUR project “ESCAPADE”
(Grant RBFR105NLC) under the “FIRB - Futuro in Ricerca 2010” funding program.

© International Association for Cryptologic Research 2014

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-014-9187-8&domain=pdf

2 M. Baldi et al.

tems exploiting integer factorization or discrete logarithms, it relies on the hardness of
decoding a linear block code without any visible structure [9].

The original McEliece cryptosystem adopts the generator matrix of a binary Goppa
code as the private key and exploits a dense transformation matrix and a permutation
matrix to disguise the secret key into the public one. It has resisted cryptanalysis for
more than thirty years, since no polynomial-time attack to the system has been devised
up to now; however, the increased computing power and the availability of optimized
attack procedures have required to update its original parameters [11].

The main advantage of the McEliece cryptosystem consists in its fast encryption and
decryption procedures which require a significantly lower number of operations with
respect to alternative solutions (like RSA). However, the original McEliece cryptosystem
has two main disadvantages: low encryption rate and large key size, both due to the
binary Goppa codes it is based on. When adopting Goppa codes, a first improvement
is obtained through the variant proposed by Niederreiter [35], which uses parity-check
matrices instead of generator matrices. A further reduction in the public key size can
be obtained by replacing binary Goppa codes with non-binary Goppa codes and paying
attention that polynomial enumeration is prevented [13].

A significant improvement would be obtained if other families of codes could be
included in the system, allowing a more efficient code design and a more compact repre-
sentation of their matrices. In particular, the use of Generalized Reed–Solomon (GRS)
codes could yield significant advantages. In fact, GRS codes are maximum distance
separable codes, which ensures that they achieve maximum error correction capability
under bounded-distance decoding. In the McEliece system, this translates into shorter
keys for the same security level or a higher security level for the same key size, with
respect to binary Goppa codes (having the same code rate). In fact, Goppa codes are
subfield subcodes of GRS codes and the subcoding procedure makes them less efficient
than GRS codes. However, this also makes them secure against key recovering attacks,
while the algebraic structure of GRS codes, when exposed in the public key (also in
permuted form), makes them insecure against attacks aimed at recovering the secret
code, like the Sidelnikov–Shestakov attack [46].

Many attempts of replacing Goppa codes with other families of codes have exposed
the system to security threats [38,48], and some recent proposals based on Quasi-Cyclic
and Quasi-Dyadic codes have also been broken [47]. Low-Density Parity-Check (LDPC)
codes, in principle, could offer high design flexibility and compact keys. However, also
the use of LDPC codes may expose the system to severe flaws [5,6,34,36]. Nevertheless,
it is still possible to exploit Quasi-Cyclic LDPC codes to design a variant of the system
that is immune to any known attack [1–4].

The idea in [4] is to replace the permutation matrix used in the original McEliece
cryptosystem with a denser transformation matrix. The transformation matrix used in
[4] is a sparse matrix, and its density must be chosen as a trade-off between two opposite
effects [1]: (i) increasing the density of the public code parity-check matrix, so that it is
too difficult, for an opponent, to search for low weight codewords in its dual code and
(ii) limiting the propagation of the intentional errors, so that they are still correctable by
the legitimate receiver. The advantage of replacing the permutation with a more general
transformation is that the code used as the public key is no longer permutation equivalent
to the secret code. This increases the security of the public key, as it prevents an attacker

Enhanced Public Key Security for the McEliece Cryptosystem 3

from exploiting the permutation equivalence when trying to recover the secret code
structure.

We elaborate on this approach by introducing a more effective class of transformation
matrices and by generalizing their form also to the non-binary case. The new proposal
is based on the fact that there exist some classes of dense transformation matrices that
have a limited propagation effect on the intentional error vectors. The use of these
matrices allows better disguise the private key into the public one, with a controlled
error propagation effect. So, we propose a modified cryptosystem that can restore the
use of advantageous families of codes, like GRS codes, by ensuring increased public
key security.

The rest of the paper is organized as follows. In Sect. 2, we describe the proposed
system, both in the McEliece and Niederreiter versions. Design issues are discussed in
Sect. 3. In Sect. 4, a comparison with other variants of the classic McEliece cryptosystem
is developed. In Sect. 5, two kinds of attacks are considered, namely the information set
decoding attack and the attack based on a particular kind of distinguisher able to tell the
public matrices from random ones. We will show that both these attacks can be avoided,
by choosing proper values of the parameters. In Sect. 6, key size and complexity are
computed and then compared with other solutions. Finally, in Sect. 7, some conclusions
are drawn.

2. Description of the Cryptosystem

The proposed cryptosystem takes as its basis the classical McEliece cryptosystem, whose
block scheme is reported in Fig. 1, where u denotes a cleartext message and x its
associated ciphertext. The main components of this system are

• A private linear block code generator matrix G
• A public linear block code generator matrix G′
• A secret scrambling matrix S
• A secret permutation matrix P
• A secret intentional error vector e

In the figure, Y−1 denotes the inverse of matrix Y.
As for the original system, the proposed cryptosystem can be implemented in the

classical McEliece form or, alternatively, in the Niederreiter version. In both cases, the
main element that differentiates the proposed solution from the original cryptosystem
is the replacement of the permutation matrix P with a dense transformation matrix Q,
whose design is described next.

2.1. Matrix Q

The matrix Q is a non-singular n × n matrix having the form

Q = R + T, (1)

where R is a dense n × n matrix, and T is a sparse n × n matrix. The matrices R, T, and
Q have elements in Fq , with q ≥ 2.

The matrix R is obtained starting from two sets, A and B, each containing w matrices
having size z×n, z ≤ n, defined over Fq : A = {a1, a2, . . . , aw}, B = {b1,b2, . . . ,bw}.

4 M. Baldi et al.

Alice

e

Bobunsecure
channel

Goppa
encoder

intentional
errors

permutation

G' = S-1 G P-1

public key

G' P S

G

descramblingGoppa
decoder

uxxu
private key

Fig. 1. The original McEliece cryptosystem.

We also define a = ∑w
i=1 ai . The matrices in A and B are secret and randomly chosen;

then, R is obtained as

R =

⎡

⎢
⎢
⎢
⎣

a1
a2
...

aw

⎤

⎥
⎥
⎥
⎦

T

·

⎡

⎢
⎢
⎢
⎣

b1
b2
...

bw

⎤

⎥
⎥
⎥
⎦

, (2)

where T denotes transposition. Starting from (2), we make some simplifying assump-
tions, aimed at reducing the amount of secret data that are needed to be stored. In fact,
for the instances of the proposed cryptosystem, we will focus on two distinct cases,
both with w = 2: (i) a1 = a, a2 = 0 and (ii) b2 = 1 + b1, where 0 and 1 represent,
respectively, the all-zero and the all-one z×n matrices. In both these cases, the matrix R
has rank z, and there is neither need to store nor choose the matrix b2. For this reason, in
order to simplify the notation, we will replace b1 with b in the following. This obviously
does not prevent the applicability of the general form (2) of the matrix R.

Concerning the matrix T, it is obtained in the form of an n × n non-singular sparse
matrix having elements in Fq , and average row and column weight equal to m � n,
where m is not necessarily an integer value. We provide more details on its design in
Sect. 2.4.

In the system we propose, the matrix Q, having the form (1), replaces the permuta-
tion matrix P that is used in the original McEliece cryptosystem and in the Niederreiter
version. All these systems exploit an intentional error vector e = [e1, e2, . . . , en], ran-
domly generated, having a predetermined weight tpub ≤ t , where t is the error correction
capability of the secret code. In the original McEliece and Niederreiter systems, tpub = t
is used. In the system we propose, we have instead tpub = ⌊ t

m

⌋
. Additionally, each error

vector may be subject to further constraints, as explained below.
Let us suppose that a constraint is imposed to the vector e in the form:

a · eT = 0. (3)

Enhanced Public Key Security for the McEliece Cryptosystem 5

If we assume that the matrix a is full rank, the number of constraints we impose, through
(3), on the intentional error vectors is equal to z. Obviously, in order to be implemented,
this would require a to be disclosed as part of the public key, and this, together with
condition (3), may introduce a weakness in the system. This issue will be discussed next,
together with the ways to avoid such a weakness.

For the moment, let us suppose that a is disclosed and that condition (3) is verified.
As we will see in the following, for both the McEliece and Niederreiter versions of the
cryptosystem it turns out that, during decryption, the matrix Q has a multiplicative effect
on the intentional error vector e. As a result, e is transformed into e · Q = e · (R + T).
If (3) holds, for the two cases we focus on, the contribution due to R becomes:

e · R =
{
0, if a = a1, a2 = 0,

e · aT2 · 1, if b2 = 1 + b.
(4)

So, in the former case, e · Q reduces to e · T. In the latter case, instead, the legitimate
receiver should know the value of e · aT2 to remove the contribution due to e ·R. We will
see in the following how this can be done.

When the result of e · Q can be reduced to e · T, the use of the matrix Q as in (1)
allows increase the number of intentional errors (at most) by a factor m. For m = 1, the
required error correction capability is exactly the same as in the original McEliece and
Niederreiter cryptosystems, while, for m > 1, for the same number of intentional errors,
codes with higher error correction capability are required. LDPC codes can be used for
such purpose [2,4].

The advantage of using the matrix Q is that it allows disguise the private matrix of a
code over Fq in a way that can be much stronger than by using the standard permutation
matrix (as in the original McEliece system).

So, the proposed solution can help revitalizing previous attempts of using alternative
families of codes in the McEliece system. A first challenge is to reconsider the usage
of GRS codes over Fq . In the following sections we will show that the attacks that have
prevented their use in the past cannot be applied to the new variant, so that it shall be
considered secure against them.

2.2. McEliece Version

In the McEliece version of the proposed system, Bob chooses his secret key as the k×n
systematic generator matrix G of a linear block code over Fq , able to correct t errors.
He also chooses two further secret matrices: a k × k non-singular scrambling matrix S
and the n × n non-singular transformation matrix Q, defined in (1). The public key is

G′ = S−1 · G · Q−1. (5)

So, in general, differently from the original McEliece cryptosystem, the public code is
not permutation equivalent to the private code.

6 M. Baldi et al.

Alice, after obtaining Bob’s public key, applies the following encryption map:

x = u · G′ + e. (6)

After receiving x, Bob inverts the transformation as follows:

x′ = x · Q = u · S−1 · G + e · Q, (7)

thus obtaining a codeword of the secret code affected by the error vector e · Q.
The special form we adopt for the matrix Q allows Bob to reduce e · Q to e · T.

Obviously, this is immediately verified when e · R = 0 (former option in (4)), while it
will be shown in Sects. 3.2 and 3.3 how it can be achieved when e · R �= 0.

Bob is able to correct all the errors and get u · S−1, thanks to the systematic form of
G. He can then obtain u through multiplication by S.

2.3. Niederreiter Version

The Niederreiter version of the proposed cryptosystem works as follows. Bob chooses
the secret linear block code overFq , able to correct t errors, by fixing its r×n parity-check
matrix (H) and obtains his public key as

H′ = S−1 · H · QT
, (8)

where the scrambling matrix S is a non-singular r × r matrix and the transformation
matrix Q is defined as in (1).

Alice gets Bob’s public key, maps the cleartext vector into an error vector e with
weight tpub = � t

m 	, and calculates the ciphertext as the syndrome x of e through H′,
according to

x = H′ · eT . (9)

In order to decrypt x, Bob first calculates x′ = S · x = H · QT · eT = H · (e · Q)T .
The special form of Q allows Bob to reduce e ·Q to e ·T. Obviously, this is immediately
verified when e · R = 0, while it will be shown in Sects. 3.2 and 3.3 how it can be
achieved when e · R �= 0.

So, Bob gets H · TT · eT , and he is able to obtain eT = TT · eT , having weight
≤ t , by performing syndrome decoding through the private linear block code. Then, he
multiplies the result by (TT)−1 and finally demaps e into its associated cleartext vector
u.

In order to reduce the public key size, the matrix H′, defined by (8), can be put in
systematic form. For this purpose, let us divide H′ into a left r × r matrix H′

l and a right
r × k matrix H′

r , i.e., H′ = [
H′

l |H′
r
]
. We can suppose, without loss of generality, that

H′
l is full rank and obtain the systematic form of H′ as

H′′ = (
H′

l
)−1 · H′ =

[
I| (H′

l
)−1 · H′

r

]
= [

I|H′′
r
]
. (10)

Enhanced Public Key Security for the McEliece Cryptosystem 7

If H′′ is used as the public key, only H′′
r needs to be stored. When Alice uses H′′ for

encryption, she obtains a public message x′′ = H′′ · eT . Then, Bob must use S′′ = S·H′
l ,

in the place of S, in order to compute x′ = S′′ · x′′.

2.4. Design of T

As described in Sect. 2.1, the matrix T is an n × n non-singular sparse matrix having
elements in Fq and average row and column weight equal to m � n.

When m is an integer, T can be simply obtained as the sum of m generalized permuta-
tion matrices, with the only constraint that their non-null elements do not overlap. When
instead m is a rational value, a simple way to obtain T would be to design an almost
regular matrix, having only row and column weights equal to �m	 or
m�, (where �x	
and
x� denote the greatest integer smaller than or equal to x and the smallest integer
greater than or equal to x , respectively). As an example, if m = 1.4, 40 % of the rows
and columns in T could have weight equal to 2, while the remaining 60 % of the rows
and columns could have weight equal to 1.

However, if we design T in this way, the system must tolerate some probability that
the weight of e · T overcomes t , in which case decoding fails. By considering again
1 < m < 2 (that will be the case of interest in the following), it is easy to verify that
this can happen when more than δt = t − tpub errors occur at positions where T has
weight-2 rows. If we consider that the selected rows of T have disjoint supports, the
failure probability Pf can be estimated as

Pf =
tpub∑

i=δt+1

(tpub
i

)(n−tpub
l−i

)

(n
l

) , (11)

where l denotes the number of weight-2 rows. By taking into account the chance of non-
disjoint supports of the selected rows, the actual probability would result in a slightly
smaller value. To circumvent this problem, one of the following solutions can be adopted:

1. Limit to δt the number of columns of T with weight >1. If T has no more than δt
columns with weight >1, some or all of the weight-2 rows of T have non-disjoint
supports, and the weight of e ·T is always ≤ t . Obviously, such columns of T may
have weight >
m� to reach the desired density. This can be achieved by starting
from a generalized permutation matrix and then choosing δt columns at random
and filling them at will. In this process, the number of rows with weight >1 should
be maximized, since this is necessary to avoid attacks based on distinguishers, as
we will see in Sect. 5.1.2. Hence, the rows of T should still have weight ≤
m�.

2. Disclose the positions of the rows of T having weight =
m�, for example by
putting them in the first part of the matrix. This way, intentional error vectors
having more than δt errors in those positions could be discarded. This has the
drawback to leak some information on the intentional error vectors, which could
reduce the complexity of decoding attacks.

3. Reduce tpub such that tpub <
⌊ t
m

⌋
and Pf becomes sufficiently small. This way,

however, the complexity of decoding attacks, which depends on the number of
intentional error vectors, is reduced as well.

8 M. Baldi et al.

Based on the above considerations, the first solution has to be preferred, since it allows
fix tpub = ⌊ t

m

⌋
and does not affect the security level.

2.5. CCA2-Secure Conversions

The McEliece and Niederreiter cryptosystem constructions described above, as well as
their original versions, offer one-way security under passive attacks, which is a basic
level of security for any public key cryptosystem.

However, in order to use these cryptosystems in practice, a stronger notion of security
should be achieved, that is, indistinguishability against adaptive chosen ciphertext attacks
(IND-CCA2). For this purpose, several conversions of the McEliece and Niederreiter
cryptosystems have been proposed in the literature, and they also apply to our case.

Classical CCA2-secure conversions work in the random oracle model [22,28], while
the problem of finding efficient CCA2-secure conversions of these cryptosystem in
the standard model has been addressed more recently [18,19,39,42,44]. The use of a
CCA2-secure conversion also affects the public key size. In fact, by adopting a classical
CCA2-secure conversion in the random oracle model [28], the public key size of the
McEliece version can be reduced from k × n to k × r symbols, since a public generator
matrix in systematic form can be used. The same unfortunately cannot be achieved with
the CCA2-secure conversions in the standard model currently available, which are still
rather unpractical and require larger public keys.

Nevertheless, using conversions which are CCA2-secure in the random oracle model
has allowed achieve very efficient practical implementations of the McEliece and Nieder-
reiter systems [10]. On the other hand, as explained above, the Niederreiter construction
yields public keys of k × r symbols, both with and without CCA2-secure conversion.
Therefore, in Sect. 6 we will consider this reduced amount of storage needed for the
public key.

3. System Design

In this section, we describe some critical aspects and possible weaknesses that must be
carefully considered in the design of the proposed system.

3.1. Subcode Vulnerability

When a = a1 and a2 = 0, a possible vulnerability results from condition (3), since, in
such a case, a subcode of the public code is exposed, which is permutation equivalent
to a subcode of the private code. In fact, if we refer to the Niederreiter version of the
system, an attacker could consider the subcode generated by the following parity-check
matrix:

HS =
[
H′
a

]

=
[
S−1 · H · QT

a

]

=
[
S−1 · H · RT + S−1 · H · TT

a

]

. (12)

Each codeword c in the code defined by HS must verify a · cT = 0. Due to the
form of R, this also implies RT · cT = 0, so HS defines a subcode of H′ in which all

Enhanced Public Key Security for the McEliece Cryptosystem 9

codewords satisfy S−1 · H · TT · cT = 0. Hence, the effect of the dense R is removed
and, when T is a permutation matrix (that is, when m = 1), the subcode defined by HS

is permutation equivalent to a subcode of the secret code. We notice that this is true both
in the McEliece and Niederreiter versions of the cryptosystem since the parity check
matrix H′ can always be deduced from the public generator matrix G′.

The same vulnerability can also occur when b2 = 1 + b. In fact, in this case,

R =
[
a1
a2

]T

·
[

b
1 + b

]

= aT · b + aT2 · 1 (13)

and
H · RT = H · bT · a + H · 1T · a2. (14)

So, when the private code includes the all-one codeword, that is, H · 1T = 0, it results
H ·RT = H · bT · a, and a vulnerable subcode is still defined by HS as in (12). For this
reason, when R is defined as in (13), codes including the all-one codeword cannot be
used as secret codes. For example, when a GRS code defined over Fq and having length
n = q − 1 is used, the all-one codeword is always present. Shortened codes should be
considered in order to avoid the all-one codeword.

When a GRS code is used, and one of its subcodes is exposed (except for a permuta-
tion), an opponent could implement an attack of the type described in [48]. It is possible
to verify that, for practical choices of the system parameters, the subcode defined by HS

given by (12) is always weak against such an attack.
A similar situation occurs if LDPC codes are used as private codes, since low weight

codewords could be searched in the dual of the subcode defined byHS , so revealing some
rows of H (though permuted) [5]. Moreover, the existence of low weight codewords in
the dual of a subcode of the public code could be dangerous for the system security even
whenHS is not available to an attacker, since such codewords could still be searched in the
dual of the public code. So, when dealing with LDPC codes, it is always recommended
to define T by choosing m > 1, in order to avoid the existence of codewords with low
weight in the dual of the public code [4].

After having emphasized some potential weaknesses, in the following subsections we
propose two implementations of the cryptosystem that avoid the subcode vulnerability.
We describe them with reference to the Niederreiter version of the cryptosystem, but
they can also be applied to its McEliece version.

3.2. First Implementation

A first solution to overcome the subcode vulnerability consists in maintaining a1 = a
and a2 = 0 but hiding the constraint vector a. Obviously, this also eliminates the need
of selecting the intentional error vectors according to condition (3).

We refer to the Niederreiter version of the cryptosystem and we fix, for simplicity,
z = 1, but the same arguments can be extended easily to the general case 1 ≤ z ≤ n.
Let us suppose that a is private and that the error vector e generated by Alice is such
that a · eT = γ , with γ ∈ Fq . It follows that

10 M. Baldi et al.

RT · eT = γbT (15)

and
x′ = S · x = γH · bT + H · TT · eT . (16)

In this case, Bob can guess that the value of γ is γB and compute

x′′ = x′ − γBH · bT
= (γ − γB)H · bT + H · TT · eT .

(17)

So, if γB = γ , Bob obtains x′′ = H · TT · eT . In such a case, he can recover e
through syndrome decoding, check its weight, and verify that a · eT = γB . Otherwise,
it is γB �= γ and, supposing that b is not a valid codeword, syndrome decoding fails or
returns an error vector e′ �= e. The latter case is extremely rare, as shown below, and can
also be identified by Bob by checking the weight of e′ and the value of a · e′T . So, by
iterating the procedure, that is, changing the value of γB , Bob is able to find the right γ .

The probability of finding a correctable syndrome e′, for γB �= γ , is very low. In
fact, since b is randomly chosen, when γB �= γ , we can suppose that the vector (γ −
γB)H ·bT is a random r × 1 vector over Fq . The total number of correctable syndromes
is

∑t
i=1

(n
i

)
(q − 1)i , while the total number of random r × 1 vectors is qr . So, the

probability of obtaining a correctable syndrome is

Pe =
∑t

i=1

(n
i

)
(q − 1)i

qr
. (18)

The value of Pe, for practical choices of the system parameters, is very low, as ex-
pected. For example, by considering the set of parameters used in the original McEliece
cryptosystem, that is, q = 2, n = 1,024, k = 524, t = 50, it results in Pe ≈ 10−65.

To conclude this subsection, we notice that, by using such an implementation, the
complexity of the decryption stage is increased, on average, by a factor ≤ (q + 1)/2
with respect to the classical Niederreiter implementation. In fact, the average number of
decryption attempts needed by Bob is (q +1)/2. However, some steps of the decryption
procedure do not need to be repeated; so, an increase in the decryption complexity by a
factor (q + 1)/2 corresponds to a pessimistic estimate.

3.3. Second Implementation

A second solution to the subcode vulnerability is to adopt the choice a = a1 + a2,
b2 = 1+ b and to preserve condition (3), which implies, for Alice, the need to perform
a selection of the error vectors. In this case, according to (4):

RT · eT = 1T · a2 · eT . (19)

If we fix, for simplicity, z = 1 (but the same arguments can be extended easily to the
general case 1 ≤ z ≤ n) and suppose to work over Fq , the possible values of α = a2 ·eT
are, obviously, q. So, Bob needs to make up to q guesses on the value of α.

Enhanced Public Key Security for the McEliece Cryptosystem 11

First, Bob computes x′ = S · x = H · (R + T)T · eT . By using (19), we have

x′ = H · 1T · α + H · TT · eT . (20)

We observe that, if the secret code included the all-one codeword, thenH ·1T = 0, and
Bob would not need to guess the value of α. However, in this version of the cryptosystem,
the use of codes including the all-one codeword is prevented by the subcode vulnerability,
as discussed in Sect. 3.1; so, this facility cannot be exploited. Instead, Bob needs to make
a first guess by supposing α = αB and to calculate

x′′
αB = x′ − H · 1T · αB = H · 1T · (α − αB) + H · TT · eT . (21)

If αB = α, then x′′
αB = H · TT · eT ; therefore, Bob can recover e through syndrome

decoding, check its weight, and verify that a2 · eT = αB . Otherwise, the application
of syndrome decoding on x′′

αB results in a decoding failure or in obtaining e′ �= e,
for αB �= α. As for the first implementation, the probability of obtaining a correctable
syndrome e′ is very small; so, when αB �= α, the decoder will end up reporting failure
in most cases.

Also in this case, the average number of decryption attempts needed by Bob is (q +
1)/2, and the decryption complexity increases by a factor ≤ (q + 1)/2.

Concerning the subcode vulnerability, by using a1 �= a and a2 �= a, the matrix HS

as in (12) no longer defines a subcode permutation equivalent to a subcode of the secret
code. So, provided that the private code does not include the all-one codeword (for the
reasons explained in Sect. 3.1), the subcode vulnerability is eliminated.

Note that an attacker could try to sum two rows of H′, hoping that one of them
corresponds to a copy of the vector a1 in R and the other to a copy of the vector a2, so
that the sum of the two rows might still contain the vector a. If he was able to select
only sums of this type, then he might be able to find a weak subcode. This, however,
appears to be a hard task for the following reasons. If he adds one row with all the
other rows, he would get, on average, only r/2 = (n − k)/2 rows containing the vector
a, while the other sums would contain 2a1 or 2a2; even if he was able to select the
rows corresponding to a, the dimension of the subcode would not be large enough for a
feasible attack [32,48]. Furthermore, effectively obtaining a in the sum of two rows also
depends on how H is built, i.e., it may happen only if some special relations between
elements of H are satisfied. Again, this has only a (small) probability to occur. Lastly,
summing pairs of rows would also imply summing pairs of rows of TT ; so, their (very
low) weight would be doubled with a very high probability, making decoding harder.

For these reasons, it seems not easy to devise a further vulnerability for the subcode
that may allow mount an attack against this implementation.

3.4. Choice of Q

Also the choice of the matrix Q can involve some critical aspects. Let us focus on the
binary case (q = 2) and consider a particular instance of the first implementation, in
which the matrix Q is obtained as

12 M. Baldi et al.

Q1 = R + P1, (22)

P1 being a permutation matrix and

R = aT · b = [
a1 a2 · · · an

]T · [
b1 b2 · · · bn

]
, (23)

where a and b are two random vectors over F2.
In the choice of Q1, it is important to avoid some special cases which could allow an

attacker to derive a code that is permutation equivalent to the secret one, thus bringing
security back to that of the classical McEliece system.

For exploring the subject, let us suppose that the j-th element of b is zero and that P1
has a symbol 1 at position (i, j). In this case, the j-th column of Q1 is null, except for
its element at position i . Since Q−1

1 = Q̂1/ |Q1|, where Q̂1 is the adjoint matrix, and
|Q1| is the determinant of Q1, it follows from the definition of Q̂1 that the i-th column
of Q−1

1 is null, except for its element at position j . So, the i-th column of Q−1
1 has the

effect of a column permutation, like in the original McEliece cryptosystem.
In order to avoid such a possible flaw, we impose that all the elements of b are non-

zero. If we limit to the binary case, this imposes that b is the all-one vector. However,
in such a case, further issues exist in the design of Q. For example, let us consider a as
an all-one vector too, so that R = 1. A valid parity-check matrix for the public code is

H′ = H · QT , (24)

whereH is the parity-check matrix of the private code. In the special case ofQ1 = 1+P1,
we have H′ = H · 1 + H · PT

1 . By assuming a regular H (i.e., with constant row and
column weights), two cases are possible:

• If the rows of H have even weight, H · 1 = 0 and H′ = H · PT
1 .

• If the rows of H have odd weight, H · 1 = 1 and H′ = 1 + H · PT
1 .

In both cases, the public code has a parity-check matrix that is simply a permuted version
of that of the secret code (or its complementary). This reduces the security to that of the
original McEliece cryptosystem that discloses a permuted version of the secret code.
Such a security level is not sufficient when adopting, for example, LDPC codes, since
the permuted version of the secret matrix H can be attacked by searching for low weight
codewords in the dual of the secret code.

A more general formulation of the flaw follows from the consideration that Q1 =
1 + P1 has a very special inverse. First of all, let us consider that Q1 is invertible only
when it has even size. This is obvious, since, for odd size, Q1 has even row/column
weight; so, the sum of all its rows is the zero vector. If we restrict ourselves to even
size Q1 matrices, it is easy to show that their inverse has the form Q−1

1 = 1 + PT
1 , due

to the property of permutation matrices (as orthogonal matrices) to have their inverse
coincident with the transpose.

So, Q−1
1 has the same form of Q1 and, as in the case of H, disclosing G′ = S−1GQ−1

1
might imply disclosing a generator matrix of a permuted version of the secret code
or its complementary (depending on the parity of its row weight). Therefore, the form

Enhanced Public Key Security for the McEliece Cryptosystem 13

Q1 = 1 + P1 might reduce the security to that of the permutation used in the original
McEliece cryptosystem.

Based on these considerations, one could think that adopting a vector a different from
the all-one vector could avoid the flaw. However, by considering again that Q−1

1 =
Q̂1/ |Q1|, it is easy to verify that a weight-1 row in Q1 produces a weight-1 row in
Q−1

1 , and a weight-(n − 1) row in Q1 produces a weight-(n − 1) row in Q−1
1 . It follows

that Q−1
1 contains couples of columns having Hamming distance 2. Since their sum is

a weight-2 vector, the sum of the corresponding columns of the public matrix results
in the sum of two columns of S−1G. Starting from this fact, an attacker could try to
solve a system of linear equations with the aim of obtaining a permutation equivalent
representation of the secret code, at least for the existing distance-2 column pairs.

So, our conclusion concerning the binary case is that the choice of Q as in (22) and
(23) should be avoided. A safer Q is obtained by considering z > 1 and m > 1. This
obviously has the drawback of requiring codes with increased error correction capability.

These considerations about the structure of the matrix Q are useful in general for
every family of codes we would like to use in the proposed system, but a more specific
characterization is needed depending on the type of codes adopted. In fact, in order
to avoid specific attacks or to choose feasible parameters linked to the code’s error
correction capability, it is necessary to address further structure issues like those we will
analyze in Sect. 5.1.

4. Comparison with Other Variants of the McEliece Cryptosystem

The main difference between the proposed cryptosystem and many other variants of the
McEliece cryptosystem consists in the way that the secret generator matrix is disguised
into the public one, that is, by using a more general transformation matrix in the place
of the permutation matrix.

Other proposals for increasing key security have been made in the past, such as using a
distortion matrix together with rank codes in the GPT cryptosystem [23] and exploiting
the properties of subcodes in variants of the McEliece and the GPT cryptosystems
[8]. Unfortunately, cryptanalysis has shown that such approaches exhibit security flaws
[38,48].

The idea of using a rank-1 matrix with the structure (23) can be found in [24]. However,
such a matrix was added to the secret matrix (rather than multiplied by it), and no
selection of the error vectors was performed, so that a completely different solution was
implemented.

Instead, the idea of replacing the permutation in the McEliece cryptosystem with a
more general transformation matrix is already present in the variant of the GPT cryptosys-
tem adopting a column scrambler [37,43] and in cryptosystems based on full decoding
[27, Sect. 8.3]. These proposals are shortly examined next.

4.1. Comparison with the Modified GPT Cryptosystem

The original GPT cryptosystem has been the object of Gibson’s attack. To counter such
an attack, in [37] a variant including a column scrambler in place of the permutation
matrix has been proposed.

14 M. Baldi et al.

Apart from the code extension and the inclusion of an additive distortion matrix, in
the modified GPT cryptosystem the public generator matrix is obtained through right-
multiplication by a non-singular matrix that is not necessarily a permutation matrix. So,
in principle, it seems the same idea of using a more general transformation matrix as
in the proposed cryptosystem. However, in order to preserve the ability to correct the
intentional error vectors, the GPT cryptosystem works in the rank metric domain and
adopts rank distance codes, like Gabidulin codes.

Unfortunately, the properties of Gabidulin codes make it possible to exploit the effect
of the Frobenius automorphism on the public generator matrix in order to mount a
polynomial-time attack [38]. Recently, it has been shown that this attack can be avoided
[43], but the cryptosystem still needs to work with rank distance codes. Differently
from the GPT cryptosystem, the proposed solution is able to exploit Hamming distance
codes that (i) are more widespread than rank distance codes, (ii) can be chosen to have
convenient properties or structure, like GRS codes, and (iii) may take advantage of many
efficient codec implementations that are already available.

4.2. Comparison with Full-Decoding Cryptosystems

The main idea behind full-decoding cryptosystems in [27] is to let the intentional error
vectors have any arbitrary weight. This way, an attacker would be forced to try full-
decoding of the public code that is known to be an NP-complete task. Obviously, the
legitimate receiver must be able to decode any intentional error vector with reasonable
complexity; so, the problem of full decoding must be transformed from a one-way
function to a trapdoor function. For this purpose, the main idea is to use a transformation
that maps a set of error vectors with weight ≤ t into a set of arbitrary weight intentional
error vectors.

If this transformation is represented by the n × n matrix M, the public code (as
proposed first in [27]) would be G′ = G · M. The basic point for obtaining a trapdoor
function is to make Alice use only those error vectors that can be expressed as e′ = e ·M,
where e is a weight-t error vector. This way, when Bob uses the inverse of the secret
matrixM to invert the transformation, he re-maps each arbitrary weight error vector into a
correctable error vector. Unauthorized users would instead be forced to try full-decoding
over arbitrary weight error vectors; so, the trapdoor is obtained.

The set of intentional error vectors used in full-decoding cryptosystems is not the
set (or a subset) of the correctable error vectors, as in the proposed cryptosystem, but
a transformed version of it. In fact, the purpose of full-decoding cryptosystems is to
increase the security level with respect to the McEliece cryptosystem by relying on a
problem that is harder to solve. In order to exploit the full-decoding problem, Alice must
use for encryption only those error vectors that can be anti-transformed into correctable
error vectors. So, some information on the transformation used to originate them must
be disclosed. A solution is that the first p < n rows of M are made public [27]. However,
it has been proved that, this way, the security reduces to that of the original McEliece
cryptosystem, and an attacker does not have to attempt full-decoding but only normal
decoding.

Further variants aim at better hiding the secret transformation matrix in its disclosed
version [27]. In the last variant, a generator matrix of a maximum distance-t anticode is

Enhanced Public Key Security for the McEliece Cryptosystem 15

used to hide the secret transformation. This way, after inverting the secret transformation,
the error vector remains correctable for the legitimate receiver. To our knowledge, the
latter version has never been proved to be insecure or to reduce to the same problem
of the original McEliece cryptosystem. However, the construction based on anticodes
seems unpractical.

Differently from full-decoding cryptosystems, our proposal still relies on the same
problem as the original McEliece cryptosystem (that is, normal decoding); so, no trans-
formation is performed over the correctable random error vectors, but we need, at most,
only a selection of them. For this reason, the information leakage on the secret transfor-
mation matrix that is needed in the proposed cryptosystem is considerably smaller with
respect to what happens in full-decoding cryptosystems.

5. Attacks Against the Proposed Cryptosystem

A first concern about the proposed cryptosystem is to verify that it is actually able
to provide increased key security, with respect to previous variants of the McEliece
cryptosystem, in such a way as to allow the use of widespread families of codes (like
GRS codes) without incurring in the attacks that have prevented their use up to now.

From the comparison with the variants described in Sects. 4.1 and 4.2, we infer that
previous attacks targeted to those cryptosystems do not succeed against the proposed
one, due to the differences in the family of codes used and in the information leakage
on the secret transformation. Concerning the latter point, we observe that, even if the
whole matrix R (and not only the vector a) was public, an attacker would not gain much
information. In fact, in this case, he could compute x ·R = u ·G′ ·R. However, for the
choices of the parameters we consider, R has rank �n, so G′ · R is not invertible, and
recovering u is not possible.

The most general attack procedures against code-based cryptosystems, hence against
our proposed solution, are those techniques that attempt information set decoding (ISD)
on the public code; so we estimate the security level of the proposed cryptosystem
against this kind of attacks. Actually, there is no guarantee that the public code, defined
through the generator matrix (5) or, equivalently, the parity-check matrix (8), maintains
the same minimum distance and error correction capability of the secret code. Since
the private code has very good distance properties, and the transformation matrix is
randomly chosen, the public code will most probably have worse minimum distance
than the private one. So, in estimating the security level as the work factor (WF) of ISD
attacks, we make the pessimistic assumption that the public code is still able to correct
all intentional errors.

More specific attack techniques are those aimed at exploiting the particular structure
of the adopted codes. In this case, a necessary condition to perform the attack is the
ability to distinguish the public code matrix from a random matrix. If the attacker cannot
distinguish the complete random case from the implemented one, he is forced to use
ISD attack procedures in place of specific ones. Various distinguisher techniques are
used against specific codes: a notable one is that presented in [21]; in this case the
authors propose a polynomial algorithm to distinguish high rate alternant codes (Goppa
codes are alternant codes) from random codes. Since the existence of a distinguisher

16 M. Baldi et al.

attack would be more effective than ISD attacks, we discuss this issue first, in the next
subsection.

5.1. Distinguisher Attacks

We will analyze two possible kinds of distinguisher for the case of GRS codes adopted as
secret codes. The first one is that proposed in [21] that is able to distinguish matrices in
the classic Goppa code-based McEliece cryptosystem and CFS signature scheme [16],
for certain system parameters. The second one derives from [17,25], where the authors
focus just on the GRS codes. Both of them do not succeed in breaking the system we
propose in its general version, but, as often happens when dealing with distinguisher
attacks, the second one forces a particular choice of the system parameters, in the same
manner as the first one forces certain parameters for Goppa codes. We notice that a
distinguisher, able to discriminate between a random matrix and the generator (or parity
check) matrix of the public code, gives a clue regarding some possible vulnerabilities
but does not define an attack procedure, in strict sense. However, in the particular case
of GRS-based matrices, it is possible to derive an attack on the basis of a modified
distinguisher [17,25]. Before introducing the attack, we remark that, since the dual
space of a GRS code is still a GRS code, the parity check matrix of a GRS code is still a
generator matrix of a GRS code having dimension and redundancy inverted with respect
to the first one. This implies that the following procedure can be applied both to the
McEliece and Niederreiter versions of the system. For the sake of clarity, we will refer
to G as a generic GRS generator matrix, also in accordance with the notation used in
[25].

We define a Distinguisher Attack Procedure (DAP) through:

• the public code Cpub described by the public key matrix G′
• the code C whose generator matrix is G · T−1

• the matrix R · T−1 = B′T · A′, having rank equal to z
• the matrix P = I + R · T−1, where I is the identity matrix
• the matrix � = P−1 · B′T
• the code C�⊥ = C ∩ 〈�〉⊥, where 〈�〉⊥ is the space having � as parity check

matrix.

A′ and B′ are n × z matrices, whose existence is ensured by setting Q = R + T. It is
possible to show that C�⊥ is a large subspace of both Cpub and C. So, in the case ofm = 1,
C�⊥ is a large subspace of a permuted version of the secret code. Knowing this subspace
could allow the attacker to use the algorithm introduced in [48] for recovering the secret
code, once he has recovered the description of C�⊥ as GRS code, using the algorithm
presented in [46]. If the attacker is able to distinguish between the vectors belonging to
Cpub, but not to C�⊥ , and those belonging to Cpub and to C�⊥ he could hence recover the
secret key.

5.1.1. Alternant Distinguisher

The idea behind [21] is to consider the dimension of the solution space of a linear system
deduced from the polynomial system describing the alternant (Goppa) code by a lin-

Enhanced Public Key Security for the McEliece Cryptosystem 17

earization technique which introduces many unknowns. The solution of this linearized
system is indeed an algebraic attack against particular instances of the McEliece cryp-
tosystem (those having very structured matrices like quasi-cyclic or quasi-dyadic codes
that allow reduce the complexity of the linearized system). However, this attack is not
feasible in the general case, that is, the case of classic Goppa codes with no further
structure.

The authors propose not to solve the system but rather to consider the dimension of its
solution space in such a way as to distinguish systems induced from an alternant code,
a Goppa code or a random one. However, this distinguisher is ineffective against the
system we propose, since

• it is not able to distinguish the public key matrix of the proposed cryptosystem from
a randomly generated one, that is, our keys are resistant to this distinguisher, since
they are not generator matrices of alternant or GRS codes (this is due to the fact
that Q is not a permutation matrix);

• it does not allow mount a DAP: the distinguisher cannot work on subspaces of the
code, so it is unable to recover the subspace the attacker needs.

5.1.2. GRS Code-Based Distinguisher

Let us denote by � the so-called star product [29]. Given a = [a1, a2, . . . , an] and
b = [b1, b2, . . . , bn], we have a�b = [a1b1, a2b2, . . . , anbn]. Using this star product on
the elements of the public code, another distinguisher was devised in [17,25], specifically
designed to obtain a subcode needed to attack the system through a DAP.

The key idea is to choose 3 random codewords c1, c2, c3 of the code described by the
public generator matrix and compute all the possible star products gi � cj, where gi is
one of the rows in G′, with 1 ≤ i ≤ k and 1 ≤ j ≤ 3.

It is possible to verify that, if {c1, c2, c3} ∈ C�⊥ , the dimension of the space described
by G′ � {c1, c2, c3} is almost always equal to (or very close to) 2k + 2; otherwise, when
at least one cj /∈ C�⊥ , the dimension is equal to (or very close to) 3k − 3. For the sake
of simplicity, we call D� and Drand the dimension of the distinguisher space in the two
cases. We note that the DAP in [17,25] can be applied to a code having rate <0.5 or
to its dual if the rate is >0.5; so, k has to be replaced by r = n − k for the cases we
consider, where the rates are greater than 0.5.

Actually, by assuming z = 1 and m = 1, the complexity of the distinguisher phase
of the attack, hence not considering the subsequent subcode recovering phase and the
Sidelnikov–Shestakov attack, is O(nk2q3), where q is the cardinality of the field; so, it
seems feasible for any reasonable choice of the parameters.

Based on this fact, in [25] it has been demonstrated that a DAP is feasible when z = 1
and m = 1. This is obviously a very particular choice. In the following, instead, we will
consider more general cases with z > 1 and m > 1: one or both of these choices make
the system immune to this kind of attacks. In fact, two possible countermeasures to this
DAP can be devised, both based on an increase of z and/or m; the first one imposes
to increase the decoding complexity, while the second one comes for free, but requires
good error correction capabilities.

The probability to find, in a single attempt, a set of three vectors belonging to C�⊥
is 1

q3z . This means that increasing z yields a large increase in the distinguisher phase

18 M. Baldi et al.

work factor. Another strategy, that allows avoid the DAP regardless of its work factor,
is to increase the value of m. In fact, we have verified numerically that increasing from
1 to 2 the weight of a single row of matrix T has the effect of increasing also D� by the
same quantity. We have verified that this effect remains even when the weight-2 rows
of T have one of the two non-zero symbols concentrated in a small number of columns,
which is a desirable feature in the design of T, as explained in Sect. 2.4.

When D� = Drand, the distinguisher fails, since there is no dimension difference
between the space that the attacker needs to mount the DAP and the public key space.
The conditionD� = Drand can be achieved by adding 3r−3−(2r+2) = r−5 non-null
elements to the matrix T. In turn, this can be accomplished by setting m ≥ 1 + r−5

n . On
the other hand, in [25] the authors notice a non-negligible probability that D� is slightly
smaller than its expected value; so, it can be useful to increase the value of m such that
m ≥ 1 + r−3

n . Actually, this is only a precautionary condition, since, in all our tests, the
defect in D� or in Drand was never noticed.

Let t = tGRS be the correction capability of the secret GRS code, and tpub = � t
m 	 the

number of intentional errors in the encrypted message (for the McEliece version) or the
number of errors generating the transmitted syndrome (in the Niederreiter version).

The choice ofm > 1, which is needed to avoid attacks based on distinguishers, affects
the WF of the ISD attack techniques that will be presented in Sect. 5.2, since, for a fixed
error correction capability of the private code, the number of intentional errors to be
added during encryption decreases as m increases over 1.

5.2. ISD Attacks

The ISD attack is non-polynomial in the code dimension, since it aims at decoding a
random linear code without exploiting any structural property (even if present), and this
task is notoriously non-polynomial.

The complexity of ISD algorithms depends on the actual number of errors added to
a codeword (besides the cardinality of the field, the code length and dimension) and
not on the code correction capability; so, it is crucial to assess the number of errors
the algorithm is searching for. For such reason, we investigate whether the constraints
that may be imposed on the intentional error vectors in the proposed cryptosystem have
any consequences on its security. For this purpose, the approach we adopt consists in
considering a reduced number of intentional errors in the WF computations, that is,
t ′pub = tpub − z. This approach is conservative in the sense that we assume that the
attacker exactly knows both the position and the value of z errors, while he actually
knows only their values.

In [11] the authors propose some smart speedup techniques to reduce the work fac-
tor of Stern’s algorithm for ISD over the binary field, this way obtaining a theoretical
WF close to 260 for the original set of parameters (n = 1024, k = 524, t = 50).
As a consequence, the authors consider some new set of system parameters in order
to increase the security level. One of the biggest improvements presented in [11] is
a smart way to find k independent columns in the public generator matrix at each
iteration without performing Gaussian reduction on all such columns. A further im-
provement consists in the pre-computation of the sum of some rows during the reduc-
tion.

Enhanced Public Key Security for the McEliece Cryptosystem 19

Table 1. Work factor (log2) of ISD attacks on GRS codes with n = 546, defined over several finite fields, for
m = 1 + r−3

n and z = 1.

k 428 420 412 404 396 388 380 372 364 356 348 340 332 324
tpub 48 51 54 56 59 61 63 66 68 70 72 75 77 79
WFz=1(F547) [40] 131.1 133.8 136.1 135.7 137.6 136.9 136.2 137.5 136.6 135.5 134.4 135.1 133.8 132.4
WFz=1(F256) [40] 130.4 132.9 135.1 134.6 136.4 135.7 134.9 136.1 135.1 134.0 132.9 133.4 132.1 130.6
WFz=1(F128) [40] 128.5 131.1 133.3 132.8 134.6 133.9 133.1 134.3 133.3 132.3 131.1 131.6 130.3 128.8
WFz=1(F64) [40] 126.9 129.4 131.6 131.1 132.9 132.2 131.4 132.6 131.6 130.5 129.4 129.9 128.6 127.1
WFz=1(F32) [40] 125.2 127.7 130.0 129.5 131.3 130.6 129.8 131.0 130.0 129.0 127.8 128.4 127.0 125.6
WFz=1(F16) [40] 123.7 126.3 128.5 128.1 129.9 129.2 128.4 129.7 128.7 127.7 126.5 127.1 125.8 124.4
WFz=1(F2) [40] 123.4 125.9 128.1 127.4 129.2 128.3 127.3 128.6 127.4 126.2 124.9 125.5 124.0 122.5
WFz=1(F2) [7,33] 115.2 117.6 119.8 119.3 121.0 120.1 119.1 120.2 119.0 117.8 116.4 116.9 115.4 114.0

In [40], the algorithm is generalized to work over larger fields, and it is shown that
the speedups introduced in [11] are mostly efficient on very small fields. As it can
be argued from the table available in [41], for q > 16 the maximum values of the
speedup parameters are c = 2, s = 1, where c represents the number of columns to
be changed in the case an iteration fails, and s is the number of rows in a single pre-
sum (1 means no speedup). So, for large fields, these speedups are not relevant, and the
algorithm is quite similar to Stern’s one. The difference relies on guessing not only p
error positions but also p error values in the k independent columns, due to the field
cardinality.

Concerning ISD over the binary field, several advances have recently appeared in the
literature [7,12,30], which are able to reduce the attack work factor. Non-asymptotic
estimates of the work factor of the most recent algorithm [7] are reported in [26,33].
Unfortunately, there is no straightforward generalization of this algorithm to work over
non-binary fields. Therefore, we adopt a heuristic and conservative approach to take into
account the possible improvement coming from its generalization to non-binary fields.
It relies on the following observations:

• For a fixed set of parameters (code length and rate, and number of errors to
correct), the work factor of the algorithm in [40] is moderately affected by the
field size. For example, for codes with n = 546, z = 1, and a number of errors
equal to tpub − 1, passing from F547 to F2 gives a maximum reduction of the
work factor in the order of 210. The same holds for codes with n = 346, pass-
ing from F347 to F2. This conclusion results from Tables 1 and 2, where we re-
port the values of the ISD work factor computed according to [40] for these code
parameters, as a function of the number of errors and the field size. Such val-
ues of work factor have been computed through the PARI/GP script available in
[41].

• By considering the most recent ISD variant [7] and estimating its work factor as
in [33], we obtain that, for the binary case, a work factor reduction in the order of
29 or less results with respect to the approach in [40], when codes with the same
parameters as above are considered. This also results from Tables 1 and 2, where
we report the values of the ISD work factor computed according to [7,33], for the
binary case, as a function of the number of errors.

20 M. Baldi et al.

Table 2. Work factor (log2) of ISD attacks on GRS codes with n = 346, defined over several finite fields, for
m = 1 + r−3

n and z = 1.

k 284 276 268 260 252 244 236 228 220 212 204 196 188 180 172
tpub 26 29 32 34 37 39 42 44 46 48 50 52 54 56 58
WFz=1(F347) [40] 82.4 85.9 88.8 88.8 90.9 90.5 92.0 91.1 90.2 89.1 87.9 86.6 85.1 83.6 82.0
WFz=1(F256) [40] 82.3 85.8 88.7 88.7 90.8 90.4 91.9 91.0 90.1 89.0 87.8 86.5 85.1 83.5 81.9
WFz=1(F128) [40] 81.9 85.2 87.9 87.8 89.8 89.2 90.6 89.6 88.6 87.4 86.2 84.8 83.3 81.6 79.9
WFz=1(F64) [40] 80.3 83.6 86.3 86.2 88.2 87.7 89.0 88.1 87.0 85.9 84.6 83.2 81.7 80.0 78.3
WFz=1(F32) [40] 78.4 81.6 84.4 84.3 86.3 85.7 87.1 86.2 85.1 84.0 82.7 81.3 79.9 78.3 76.6
WFz=1(F16) [40] 76.9 80.2 83.0 82.8 84.9 84.3 85.7 84.8 83.8 82.7 81.5 80.2 78.8 77.3 75.7
WFz=1(F2) [40] 74.9 75.2 81.6 81.2 83.2 82.4 83.8 82.8 81.6 80.3 79.0 77.6 76.0 74.4 72.6
WFz=1(F2) [7,33] 68.2 71.6 74.2 73.7 75.6 74.8 76.0 74.9 73.7 72.4 70.9 69.4 68.2 66.2 64.5

Table 3. Work factor (log2) of ISD attacks estimated as in [40] for GRS codes with n = 546, defined over
F547, and m = 1 + r−3

n , z = 1, 2, 3, 4.

k 428 420 412 404 396 388 380 372 364 356 348 340 332 324
tGRS 59 63 67 71 75 79 83 87 91 95 99 103 107 111
m 1.211 1.225 1.240 1.255 1.269 1.284 1.299 1.313 1.328 1.342 1.357 1.372 1.386 1.401
tpub 48 51 54 56 59 61 63 66 68 70 72 75 77 79
WFz=1 131.1 133.8 136.1 135.7 137.6 136.9 136.2 137.5 136.6 135.5 134.4 135.1 133.8 132.4
WFz=2 128.4 131.1 133.5 133.3 135.2 134.7 134.0 135.4 134.5 133.6 132.6 133.3 132.0 130.7
WFz=3 125.7 128.5 131.0 130.8 132.9 132.4 131.9 133.3 132.5 131.7 130.7 131.5 130.3 129.1
WFz=4 123.0 125.9 128.5 128.4 130.6 130.2 129.7 131.3 130.6 129.8 128.9 129.7 128.6 127.4

Based on these considerations, we assume that, if a generalization of the algorithm in
[7] to non-binary fields was found, it would result in a work factor reduction in the order
of 29 or less with respect to the algorithm in [40], for the parameters we consider.

5.3. Numerical Examples

In Tables 3 and 4 we report some values of the ISD attack WF, when using GRS codes
in the variant of the McEliece cryptosystem we propose, with m = 1 + r−3

n and z =
1, 2, 3, 4. They were computed through the PARI/GP script available in [41], that allows
the estimation of the security level based on the algorithm in [40]. The reported WFs
are the lowest ones obtained for each set of parameters.

Based on Tables 3 and 4, we can compare the proposed cryptosystem with some
instances of the McEliece/Niederreiter system based on Goppa codes. Two examples
are selected below.

5.3.1. Example 1

To reach WF ≥ 280, the (1632, 1269) binary Goppa code is suggested in [11], resulting
in a public key size of 460647 bits (obtained by storing only k · r bits of H or G). With
the new variant, we can consider from Table 4 the GRS code with n = 346, k = 252,
tGRS = 47 over F347, having an estimated WF of 290.9 binary operations with z = 1.

Enhanced Public Key Security for the McEliece Cryptosystem 21

Table 4. Work factor (log2) of ISD attacks estimated as in [40] for GRS codes with n = 346, defined over
F347, and m = 1 + r−3

n , z = 1, 2, 3, 4.

k 284 276 268 260 252 244 236 228 220 212 204 196 188 180
tGRS 31 35 39 43 47 51 55 59 63 67 71 75 79 83
m 1.171 1.194 1.217 1.240 1.263 1.286 1.309 1.332 1.355 1.379 1.402 1.425 1.448 1.471
tpub 26 29 32 34 37 39 42 44 46 48 50 52 54 56
WFz=1 82.4 85.9 88.8 88.8 90.9 90.5 92.0 91.1 90.2 89.1 87.9 86.6 85.1 83.6
WFz=2 79.4 83.1 86.2 86.3 88.6 88.3 89.9 89.2 88.3 87.4 86.3 85.1 83.7 82.3
WFz=3 76.4 80.3 83.6 83.9 86.3 86.1 87.9 87.3 86.5 85.7 84.7 83.6 82.3 80.9
WFz=4 73.5 77.6 81.0 81.5 84.0 84.0 85.8 85.4 84.7 84.0 83.1 82.1 80.9 79.6

Hence, its security level remains higher than 280 even when considering the improvement
estimated in Sect. 5.2 for possible advances in ISD algorithms over non-binary fields.

Since we choose m = 1 + r−3
n , the distinguisher attack is avoided even when z = 1,

and the weight of the intentional error vector is tpub = 37. This way, by adopting the
first implementation (see Sect. 3.2), we obtain a public key size of 199899 bits, that
is about 57 % less than in the revised McEliece/Niederreiter cryptosystem [11]. If we
instead adopt the second implementation (see Sect. 3.3), we also need to store the 1×346
vector a, with elements over F347. This would increase the public key size by 2920 bits
that is not a significant change.

5.3.2. Example 2

To reach WF ≥ 2128, the (2960, 2288) binary Goppa code is suggested in [11], resulting
in a public key size of 1537536 bits. For the sake of comparison, we consider from Table
3 the GRS code with n = 546, k = 396, defined over F547, which achieves the security
level 2137.6 for z = 1. This value remains higher than 2128 even when considering
the improvement estimated in Sect. 5.2 for possible advances in ISD algorithms over
non-binary fields.

By adopting this code in the Niederreiter version of the first implementation (see
Sect. 3.2), and storing the last k columns of H′′, defined by (10), we obtain a public
key size of 540267 bits that is about 65 % less than in the revised McEliece/Niederreiter
cryptosystem based on binary Goppa codes [11]. If we compare this solution with the
non-binary Goppa codes proposed in [13], defined over fields ranging between F3 and
F32, we get a public key size reduction ranging between 24 and 68 % (we also note that
in [13] no improvement over the approach [40] was taken into account). Also in this
case, we choose m = 1 + r−3

n and, hence, the distinguisher attack is avoided even when
z = 1.

5.3.3. Impact of Variable z

The value of z plays a role in the ISD WF computation, as mentioned in Sect. 5.2.
So, it is meaningful to analyze the impact of increasing the value of z, under different
assumptions for m. Similarly to what done before for z = 1, we can estimate the WF of
an ISD attack for different values of z. Results for z = 2, 3, 4 are reported in Tables 3
and 4.

22 M. Baldi et al.

As we can observe from the tables, a WF decrease in the order of 23 or less occurs each
time z is increased by 1. So, for the considered parameters, the security level undergoes
some variation, as expected. It should be noted, however, that such an approach is very
conservative. To increase both m and z is an unfavorable condition from the key size
standpoint since, reducing the number of correctable intentional errors, it forces the user
to increase the error correction capability, by increasing the code length or reducing the
code rate.

Generalizing the analysis in Sect. 5.1.2 that is valid for m = 1, a lower bound on
the complexity of the DAP can be estimated in k3q3z operations and, for a given k, this
value increases by q3 for any increase of z by 1. Hence, it is possible to verify that, with
m = 1 and z ≥ 2, the DAP has WF ≥ 280 when q ≥ 401, while, for smaller q, z ≥ 3 is
needed.

More complex analyses could be developed to improve the mentioned lower bound,
which, however, are outside the goals of the present paper.

Moreover, we notice that increasing z also has detrimental effects on complexity, as
we will show in Sect. 6. Hence, it is preferable to make DAPs unfeasible by choosing
m > 1, rather than z > 1.

6. Key Size and Complexity

In this section, we compare the key length and complexity of the proposed system with
those of the classical Goppa code-based cryptosystem and of the RSA algorithm. We
refer to the Niederreiter version of both the proposed cryptosystem and of the Goppa
code-based solution.

As regards the key length, as already observed, the key of the proposed system is a
k × r matrix of elements in Fq . The same holds for the Goppa code-based Niederreiter
cryptosystem, with the only difference that the matrix entries are binary, while for RSA
the key length can be estimated as twice the block size, that is, 2n [14].

As regards the complexity, we must decide the convention for measuring the number of
operations. According to [15], we consider the costS of one addition between elements of
Fq to be equal to l = ⌈

log2(q)
⌉

binary operations, while the costM of one multiplication
equals that of 2l additions, that is, M = 2l2 binary operations. Following [15], we also
consider that an inversion overFq has the same cost as a multiplication, that is,M binary
operations.

The right (or left, respectively) multiplication of an x × y matrix by a vector having
w non-null elements requires to sum w columns (or rows, respectively) of the matrix,
which costs as (w−1)xS (or (w−1)yS, respectively) binary operations. When working
over Fq with q > 2, this quantity must be added with the operations needed to multiply
each element of the vector by the corresponding matrix column (or row, respectively),
that is, further wxM (or wyM, respectively) binary operations. Actually, if the matrix
is random, we can consider that each column (or row, respectively) has, on average, x

q

(or y
q , respectively) null elements. Hence, computing the element-wise sum or product

requires, on average, x q−1
q (or y q−1

q , respectively) sums or multiplications. For the sake

of simplicity, we neglect the term q−1
q , thus obtaining slightly pessimistic evaluations.

Enhanced Public Key Security for the McEliece Cryptosystem 23

In the Niederreiter cryptosystem, encryption consists in computing (9). If we consider
the systematic version of the key (10) and split the vector e into its left and right parts,
e = [el |er], the encryption function becomes x = eTl + H′′

r · eTr . Considering, as in
[14], that on average er has weight equal to w = k

n tpub, the encryption step requires
[(w−1)r+tpub−w]S binary operations when working overF2. More precisely, (w−1)r
sums come from the computation of H′′

r · eTr , and further tpub − w sums come from the
addition of eTl . When working over Fq , with q > 2, the number of binary operations
becomes [(w − 1)r + tpub − w]S + wrM. Here we do not consider the encoding step
needed to map the information vector into a constant weight vector (and, then, to demap
it), which gives a negligible contribution to the total complexity.

Concerning the decryption stage, we refer to the standard GRS syndrome decoding
algorithm, whose complexity can be easily estimated in closed form [15]. This provides
a worst-case estimation, since fast implementations exist which are able to achieve
significant complexity reductions [15]. Additional gains can also be obtained by novel
techniques as in [20,45]. The complexity of the main steps of GRS syndrome decoding
can be estimated [15] in: (i) 4t (2t + 2)M + 2t (2t + 1)S binary operations for the
key equation solver, (ii) n(t − 1)M + ntS binary operations for the Chien search, and
(iii) (2t2 + t)M + t (2t − 1)S binary operations for Forney’s formula. Here we do not
consider the syndrome computation step, since the ciphertext is already computed as a
syndrome in the Niederreiter cryptosystem.

The Niederreiter cryptosystem also needs to compute the product S · x. Since x is a
random r×1 vector overFq , we can consider it has, at most, weight r . So, computingS · x
requires further (r−1)rS binary operations when working overF2 and (r−1)rS+r2M
binary operations when working over Fq , with q > 2.

The system we propose replaces the permutation matrix with a denser transformation
matrix; hence Bob must compute eT = TT · eT , which requires further (t −1)nS binary
operations when working overF2 and (t−1)nS+tnM binary operations when working
over Fq , with q > 2. Furthermore, the proposed system requires to perform the guessing
stage described in Sect. 3. In fact, Bob needs to guess the value of z elements of Fq . We
want to stress that there is no need to execute all of the standard decoding operations in
decoding the guessed vector; in fact, there is a very high probability that, if the guessed
value is wrong, the word we are trying to decode is indeed not decodable at all. In this
case, the first step of the decoding algorithm, that is the key equation solving algorithm,
ends with an error, and it is useless to continue through the decoding process. So, only
the key equation solver has to be attempted multiple times, while the algorithms to find
the roots of the locator polynomial and the value of each error are to be executed only
once. In addition, according to (17) and (21), each guessing attempt requires to perform
at most r multiplications and r sums between elements of Fq (the vectors H · bT and
H · 1T can be precomputed only once, before decryption).

Based on the considerations above, the overall decryption complexity for the Nieder-
reiter version of the proposed cryptosystem can be estimated as

DGRS =
{
[4t (2t + 2) + r] qz2 + 2t2 + (2n + 1)t + r2 − n

}
M

+
{
[2t (2t + 1) + r] qz2 + 2t2 + (2n − 1)t + (r − 1)r − n

}
S,

(25)

24 M. Baldi et al.

Table 5. Comparison between the binary Goppa code-based Niederreiter cryptosystem, RSA, and the pro-
posed GRS code-based cryptosystem for 128-bit security.

Binary Goppa code-based
Niederreiter

RSA GRS code-based
proposed

n 2960 3072 546
k 2288 3072 396
Key size 1537536 6144 540267
Enc. complexity 72 5406 1679
Dec. complexity 15302 6643013 3228153

where the term qz

2 is given by the mean number of attempts needed to find the right
guessed set of z values.

In [14], an estimation of the decryption complexity for the Goppa code-based Nieder-
reiter cryptosystem can be found. It results in

DGoppa = n + 4g2t2 + 2g2t + gn(2t + 1) + r2

2
, (26)

where g = log2(n).
The complexity values estimated so far are expressed in terms of binary operations

needed to encrypt or decrypt one ciphertext. We are more interested in computing the
complexity per information bit, thus we divide them by the number of information bits

per ciphertext, that is, log2

[(
n
tpub

)

(q − 1)tpub

]

.

A comparison among the proposed system, the binary Goppa code-based Niederreiter
algorithm and RSA (whose complexity has been also evaluated in [14]) is shown in Table
5, for the same parameters considered in Example 2 of Sect. 5.3. The complexity values
are given per information bit, and the key length is expressed in bits. The ciphertext
and cleartext size (which coincide with n and k, respectively) are expressed in bits for
the binary Goppa code-based Niederreiter and RSA schemes, while they are in q-ary
symbols for the proposed GRS code-based solution.

These results point out that the proposed cryptosystem can be seen as a trade-off
between the classical binary Goppa code-based Niederreiter cryptosystem and RSA. In
fact, it is able to reduce the key size, by about three times, with respect to the binary
Goppa code-based solution. This comes at some cost in complexity, which, however,
remains lower than for the widely used RSA. More in detail, the encoding and decoding
complexities of the proposed cryptosystem are, respectively, more than three and two
times smaller than for RSA.

7. Conclusion

We have introduced a variant of the McEliece cryptosystem that, by replacing the secret
permutation matrix with a more general transformation matrix, is able to avoid that the
public code is permutation equivalent to the secret code. This allows prevent attacks

Enhanced Public Key Security for the McEliece Cryptosystem 25

against classical families of codes, like GRS codes, and to reconsider them as possible
good candidates in this framework.

We have proposed some practical implementations of the new cryptosystem, by con-
sidering both its McEliece and Niederreiter variants, and we have addressed some im-
portant issues that may influence their design.

We have also assessed the security level of the proposed cryptosystem, by considering
up-to-date attack procedures, and we have compared it with the classical McEliece
cryptosystem and the Niederreiter variant. Our results show that the proposed solution,
by exploiting GRS codes, is able to guarantee an increased security level and, at the same
time, a considerable reduction in the public key size. Moreover, for a given security level,
the proposed solution exhibits lower complexity than RSA.

Acknowledgements

The authors would like to thank Jean-Pierre Tillich and Ayoub Otmani for having pointed
out the subcode vulnerability for the private code.

References

[1] M. Baldi, M. Bianchi, F. Chiaraluce, Optimization of the parity-check matrix density in QC-LDPC
code-based McEliece cryptosystems, in Proceedings of the IEEE International Conference on Com-
munications (ICC 2013) - Workshop on Information Security over Noisy and Lossy Communication
Systems. (Budapest, Hungary 2013)

[2] M. Baldi, M. Bianchi, F. Chiaraluce, Security and complexity of the McEliece Cryptosystem based on
QC-LDPC codes. IET Inf. Secur. 7(3), 212–220 (2013)

[3] M. Baldi, M. Bianchi, N. Maturo, F. Chiaraluce, Improving the efficiency of the LDPC code-based
McEliece cryptosystem through irregular codes, in Proceedings of the IEEE Symposium on Computers
and Communications (ISCC 2013). (Split, Croatia, 2013)

[4] M. Baldi, M. Bodrato, F. Chiaraluce, A new analysis of the McEliece cryptosystem based on QC-LDPC
codes, in Security andCryptography forNetworks. LNCS, vol. 5229 (Springer, Berlin/Heidelberg, 2008),
pp. 246–262

[5] M. Baldi, F. Chiaraluce, Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC
codes, in Proceedings of the IEEE International Symposium on Information Theory (ISIT 2007) (Nice,
France, 2007), pp. 2591–2595

[6] M. Baldi, F. Chiaraluce, R. Garello, F. Mininni, Quasi-cyclic low-density parity-check codes in the
McEliece cryptosystem, in Proceedings of the IEEE International Conference on Communications (ICC
2007) (Glasgow, Scotland, 2007), pp. 951–956

[7] A. Becker, A. Joux, A. May, A. Meurer, Decoding random binary linear codes in 2n/20: How 1 + 1 =
0 improves information set decoding, in EUROCRYPT 2012. LNCS, vol. 7237 (Springer-Verlag 2012),
pp. 520–536

[8] T.P. Berger, P. Loidreau, How to mask the structure of codes for a cryptographic use.Des. CodesCryptogr.
35, 63–79 (2005)

[9] E. Berlekamp, R. McEliece, H. van Tilborg, On the inherent intractability of certain coding problems.
IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

[10] D.J. Bernstein, T. Chou, P. Schwabe, McBits: fast constant-time code-based cryptography, inProceedings
of theCryptographicHardware andEmbedded Systems (CHES2013). LNCS, vol. 8086 (Springer, 2013),
pp. 250–272

[11] D.J. Bernstein, T. Lange, C. Peters, Attacking and defending the McEliece cryptosystem, in Post-
Quantum Cryptography. LNCS, vol. 5299 (Springer, Berlin/Heidelberg, 2008), pp. 31–46

26 M. Baldi et al.

[12] D.J. Bernstein, T. Lange, C. Peters, Smaller decoding exponents: ball-collision decoding, in CRYPTO
2011. LNCS, vol. 6841 (Springer-Verlag, 2011), pp. 743–760

[13] D.J. Bernstein, T. Lange, C. Peters, Wild McEliece incognito. In: B.-Y. Yang (ed.) Post-Quantum Cryp-
tography: PQCrypto 2011. LNCS, vol. 7071 (Springer 2011), pp. 244–254

[14] A. Canteaut, Attaques de cryptosystemes a mots de poids faible et construction de fonction t-resilentes.
PhD Thesis, Universitè Paris (1996)

[15] N. Chen, Z. Yan, Complexity analysis of Reed-Solomon decoding over GF(2m) without using syn-
dromes. EURASIP J. Wirel. Commun. Netw. Article ID 843634 (2008)

[16] N. Courtois, M. Finiasz, N. Sendrier, How to achieve a McEliece-based digital signature scheme, in
ASIACRYPT 2001. LNCS, vol. 2248 (Springer, Berlin/Heidelberg, 2001), pp. 157–174

[17] A. Couvreur, P. Gaborit, V. Gauthier-Umaña, A. Otmani, J.-P. Tillich, Distinguisher-based attacks
on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr. (2014). doi:10.1007/
s10623-014-9967-z

[18] N. Döttling, R. Dowsley, J. Müller-Quade, A.C.A Nascimento, A CCA2 Secure Variant of the McEliece
Cryptosystem. IEEE Trans. Inf. Theory 58(10), 6672–6680 (2012)

[19] R. Dowsley, J. Müller-Quade, A.C.A. Nascimento, A CCA2 secure public key encryption scheme based
on the McEliece assumptions in the standard model, in Topics in Cryptology - CT-RSA 2009. LNCS,
vol. 5473 (Springer, Berlin/Heidelberg, 2009), pp. 240–251

[20] M. Elia, J. Rosenthal, D. Schipani, Polynomial evaluation over finite fields: new algorithms and com-
plexity bounds. Appl. Algebra Eng. Commun. Comput. 23(3–4), 129–141 (2011)

[21] J.-C. Faugère, A. Otmani, L. Perret, J.-P. Tillich, A distinguisher for high rate McEliece cryptosystems, in
Proceedings of the IEEE Information Theory Workshop (ITW 2011). (Paraty, Brazil, 2011), pp. 282–286

[22] E. Fujisaki, T. Okamoto, Secure integration of asymmetric and symmetric encryption schemes, in
CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Conference on Advances in
Cryptology. LNCS, vol. 6110 (Springer-Verlag 1999), pp. 537–554

[23] E.M. Gabidulin, A.V. Paramonov, O.V. Tretjakov, Ideals over a non-commutative ring and their applica-
tion in cryptography, in D.W. Davies (ed.) Advances in Cryptology - EUROCRYPT 91. LNCS, vol. 547
(Springer Verlag, 1991)

[24] E.M. Gabidulin, O. Kjelsen, How to avoid the Sidelnikov-Shestakov attack, inErrorControl, Cryptology,
and Speech Compression. LNCS, vol. 829 (Springer, Berlin/Heidelberg 1994), pp. 25–32

[25] V. Gauthier-Umaña, A. Otmani, J.-P. Tillich, A distinguisher-based attack on a variant of McEliece’s
cryptosystem based on Reed-Solomon codes. http://arxiv.org/abs/1204.6459

[26] Y. Hamdaoui, N. Sendrier, A non asymptotic analysis of information set decoding. Cryptology ePrint
Archive, Report 2013/162 (2013)

[27] G. Kabatiansky, E. Krouk, S. Semenov, Error Correcting Coding and Security for Data Networks:
Analysis of the Superchannel Concept. (Wiley, 2005)

[28] K. Kobara, H. Imai, Semantically secure McEliece public-key cryptosystems - conversions for McEliece
PKC. In: K. Kwangjo, (ed.) Proceedings of the 4th International Workshop on Practice and Theory in
Public Key Cryptosystems (PKC 2001). LNCS, vol. 1992 (Springer, 2001), pp. 19–35

[29] I. Marquez-Corbella, R. Pellikaan, Error-correcting pairs for a public-key cryptosystem, in Proceedings
of the Code-based Cryptography Workshop (CBC 2012) (Lyngby, Denmark, 2012)

[30] A. May, A., Meurer, E. Thomae, Decoding random linear codes in O(20.054n), in ASIACRYPT 2011.
LNCS, vol. 7073 (Springer-Verlag, 2011), pp. 107–124

[31] R.J. McEliece, A public-key cryptosystem based on algebraic coding theory. DSN Progress Report,
114–116 (1978)

[32] L. Minder, Cryptography based on error correcting codes. Ph.D. thesis, École Polytechnique Fédérale
de Lausanne (2007)

[33] R. Misoczki, J.-P. Tillich, N. Sendrier, P.S.L.M. Barreto, MDPC-McEliece: New McEliece variants from
moderate density parity-check codes. Cryptology ePrint Archive, Report 2012/409 (2012)

[34] C. Monico, J. Rosenthal, A. Shokrollahi, Using low density parity check codes in the McEliece cryp-
tosystem, in Proceedings of the IEEE International Symposium on Information Theory (ISIT 2000)
(Sorrento, Italy, 2000), p. 215

[35] H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory. Probl. Contr. Inf. Theory 15,
159–166 (1986)

http://dx.doi.org/10.1007/s10623-014-9967-z
http://dx.doi.org/10.1007/s10623-014-9967-z
http://arxiv.org/abs/1204.6459

Enhanced Public Key Security for the McEliece Cryptosystem 27

[36] A. Otmani, J.P. Tillich, L. Dallot, Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic
codes, inProceedings of the First International Conference on Symbolic Computation and Cryptography
(SCC 2008) (Beijing, China, 2008)

[37] A. Ourivski, E.M. Gabidulin, Column scrambler for the GPT cryptosystem. Discret. Appl. Math. 128,
207–221 (2003)

[38] R. Overbeck, Structural attacks for public key cryptosystems based on Gabidulin codes. J. Cryptol.
21(2), 280–301 (2008)

[39] E. Persichetti, On a CCA2-secure variant of McEliece in the standard model. Cryptology ePrint Archive,
Report 2012/268 (2012)

[40] C. Peters, Information-set decoding for linear codes over Fq , in N. Sendrier (ed.) Post-Quantum Cryp-
tography. LNCS, vol. 6061 (Springer, Berlin/Heidelberg, 2010), pp. 81–94

[41] C. Peters, (2010), http://christianepeters.wordpress.com/publications/tools/
[42] K. Preetha Mathew, S. Vasant, S., Venkatesan, C. Pandu Rangan, An efficient IND-CCA2 secure variant

of the Niederreiter encryption scheme in the standard model, in Information Security andPrivacy. LNCS,
vol. 7372 (Springer-Verlag, 2012), pp. 166–179

[43] H. Rashwan, E.M. Gabidulin, B. Honary, Security of the GPT cryptosystem and its applications to
cryptography. Secur. Commun. Netw. 4(8), 937–946 (2011)

[44] R. Rastaghi, An efficient CCA2-secure variant of the McEliece cryptosystem in the standard model.
Cryptology ePrint Archive, Report 2013/040 (2013)

[45] D. Schipani, M. Elia, J. Rosenthal, On the decoding complexity of cyclic codes up to the BCH bound, in
Proceedings of the IEEE International Symposium on Information Theory (ISIT 2011) (Saint Petersburg,
Russia, 2011), pp. 835–839

[46] V.M Sidelnikov, S.O. Shestakov, On insecurity of cryptosystems based on generalized Reed-Solomon
codes, Discret. Math. Appl. 2(4), 439–444 (1992)

[47] V.G. Umana, G. Leander, Practical key recovery attacks on two McEliece variants, in C. Cid, J.C. Faugère,
(eds.) Proceeedings of the 2nd International Conference on Symbolic Computation and Cryptography,
(Egham, UK, 2010), pp. 27–44

[48] C. Wieschebrink, Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes. In: N.
Sendrier (ed.) Post-Quantum Cryptography (PQCrypto 2010). LNCS, vol. 6061 (Springer, 2010), pp.
61–72

http://christianepeters.wordpress.com/publications/tools/

	Enhanced Public Key Security for the McEliece Cryptosystem
	1. Introduction
	2. Description of the Cryptosystem
	2.1. Matrix Q
	2.2. McEliece Version
	2.3. Niederreiter Version
	2.4. Design of T
	2.5. CCA2-Secure Conversions

	3. System Design
	3.1. Subcode Vulnerability
	3.2. First Implementation
	3.3. Second Implementation
	3.4. Choice of Q

	4. Comparison with Other Variants of the McEliece Cryptosystem
	4.1. Comparison with the Modified GPT Cryptosystem
	4.2. Comparison with Full-Decoding Cryptosystems

	5. Attacks Against the Proposed Cryptosystem
	5.1. Distinguisher Attacks
	5.1.1. Alternant Distinguisher
	5.1.2. GRS Code-Based Distinguisher

	5.2. ISD Attacks
	5.3. Numerical Examples
	5.3.1. Example 1
	5.3.2. Example 2
	5.3.3. Impact of Variable z

	6. Key Size and Complexity
	7. Conclusion
	Acknowledgements
	References

