
DOI: 10.1007/s00145-014-9186-9
J Cryptol (2015) 28:879–898

Collision Attack on Grindahl

Thomas Peyrin
Nanyang Technological University, Singapore, Singapore

thomas.peyrin@gmail.com

Communicated by Preneel

Received 2 November 2007
Online publication 28 May 2014

Abstract. Hash functions have been among the most scrutinized cryptographic prim-
itives in the previous decade, mainly due to the cryptanalysis breakthroughs on MD-
SHAfamily and the NIST SHA-3 competition that followed. Grindahl is a hash
function proposed at FSE 2007 that inspired several SHA-3 candidates. One of its par-
ticularities is that it follows the AES design strategy, with an efficiency comparable
to SHA-256. This paper provides the first cryptanalytic work on this scheme and we
show that the 256-bit version of Grindahl is not collision resistant. Our attack uses
byte-level truncated differentials and leverages a counterintuitive method (reaching an
internal state where all bytes are active) in order to ease the construction of good differ-
ential paths. Then, by a careful utilization of the freedom degrees inserted every round,
and with a work effort of approximatively 2112 hash computations, an attacker can gen-
erate a collision for the full 256-bit version of Grindahl.

Keywords. Grindahl, AES, Hash functions, Collision, Cryptanalysis.

1. Introduction

Cryptographic hash functions are fundamental primitives in information security used
in a variety of applications such as message integrity, authentication schemes, or digital
signatures. Mathematically speaking, a hash function maps {0, 1}∗, the set of all finite
length bit strings, to {0, 1}n , where n is the fixed size of the hash value. Ideally, a
cryptographic hash function H should possess the following properties [33]:

– collision resistance: finding a pair x �= x ′ ∈ {0, 1}∗ such that H(x) = H(x ′) should
require 2n/2 operations;

– 2nd preimage resistance: for a given x ∈ {0, 1}∗, finding an x ′ �= x such that
H(x) = H(x ′) should require 2n operations;

– preimage resistance: for a given y ∈ {0, 1}n , finding an x ∈ {0, n}∗ such that
H(x) = y should require 2n operations.

© International Association for Cryptologic Research 2014

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-014-9186-9&domain=pdf

880 T. Peyrin

Generally, hash functions are built upon a compression function and a domain exten-
sion algorithm. A compression function h has the same security requirements as a hash
function but takes fixed-length inputs instead. Then, a domain extension method allows
the hash function to handle arbitrary length inputs by defining an (often iterative) algo-
rithm using the compression function as a black box. The pioneering work of Merkle
and Damgård [12,34] provided designers an easy way in order to turn collision resistant
compression functions onto collision resistant hash functions. After dividing the mes-
sage to hash (appropriately padded) into blocks mi , one simply has to update iteratively
a state cvi (called chaining variable) with each message block: cvi+1 = h(cvi ,mi). The
first state is defined by the initial value cv0 = I V . Finally, after having processed every
message block, the final state is the output of the hash function. Even if preserving col-
lision resistance, it has been shown that this iterative process presents flaws [13,24–26],
and new algorithms [2,6] with better security properties have been proposed.

Almost all published hash functions define a compression function that can be used
with any hash domain extension algorithm. There are three different ways of building a
compression function. First, one can relate the security of h to a hard problem, such as
factorization [9], finding small vectors in lattices [3], syndrome decoding [1], or solv-
ing multivariate quadratic equations [7]. The usually bad efficiency of these schemes
is compensated by the proofs of security they provide. Another very active domain is
the construction of secure compression functions based on block ciphers, which would
allow, for example, to build AES-based compression functions. The problem of building
a secure n-bit compression function from an ideal n-bit block cipher is more or less re-
solved [8,42,43] and due to a need of bigger output size, the cryptographic community is
now concentrating on the problem of building a secure (k×n)-bit compression function
from an ideal n-bit block cipher [20,41,45]. Finally, the most common and efficient way
of building a compression function is from scratch, for example, the well known and
previously standardized SHA-1 [37] or MD5 [44]. Usually, the dedicated compression
functions follow the Davies-Meyer mode that turns a block cipher into a compression
function, and a block cipher is, therefore, built from scratch for that purpose. Neverthe-
less, most hash standards (based on addition-rotation-XOR operations) use this type and
they have been broken by novel cryptanalysis results [46–49].
In order to anticipate further improvements of the attacks, NIST has initiated, in

2008, an effort [36] to develop the next hash standard through a public competition,
similar to the development process for the Advanced Encryption Standard [38]. This
competition finally ended with the choice of KECCAK [4] as the new SHA-3 standard.
As precursors of many SHA-3 candidates, some hash functions have been published
before the competition, such as LAKE [23], FORK-256 [21], Radio-Gatùn [5], or
Grindahl [29].
Despite using known parts of AES for its round transformation, Grindahl cannot

be considered as a conservative proposal. This 256-bit hash function does neither use
the famous Merkle-Damgård paradigm nor the Davies-Meyer construction and the de-
signers preferred a new configuration: an internal state much bigger than the output size,
updated by message words thanks to a fast round function. As output function, blank
roundswithout incomingmessagewords precede the final truncation of the internal state.
Regarding implementation, it requires notmuchmemory and runs faster thanSHA-256.
The idea underlying this construction is that a big internal state will make it harder for

Collision Attack on Grindahl 881

an attacker to build internal collisions (collisions happening before the blank rounds),
while collisions due to the final truncation are very unlikely to be forced because of
the large number of cryptographic operations during the blank rounds. The designers of
Grindahl claimed a collision security of 2128 operations as for an ideal 256-bit hash
function1, and security arguments were provided with regard to the number of active
Sboxes in a differential path. However, we show in this article that one can find a colli-
sion with a work effort of only 2112 hash computations. Our method utilizes truncated
differences which are very helpful for simplifying the differential analysis of AES-based
primitives. In order to further facilitate the search for good differential paths, we will
intentionally reach internal states entirely filled with differences and build the collision
path backward starting from a colliding state. Finally, once the differential path set, we
leverage the freedom degrees available at each round in order to reduce the collision
attack complexity as much as possible.
The paper is organized as follows. In Sect. 2, we briefly recall the specification of

the Grindahl hash function and in Sects. 3 and 4 we begin the analysis with various
observations on the scheme and the general methodology that allows us to build a
differential path. Then, in Sect. 5, we provide the first collision attack on Grindahl.
Finally, we discuss possible patches in Sect. 6 and we conclude in Sect. 7.

Since the first publication of our attack at the ASIACRYPT 2007 conference [39],
several attacks were built on our results. First, our reasoning was likely to apply to the
512-bit version of Grindahl as well, even if the much bigger internal state hardens
the attacker’s task (his ability to control the differential transitions of the MixColumns
operations is reduced). Using our findings,Khovratovich [27] described the first collision
attack on the 512-bit version of Grindahl by starting with potentially less interesting
truncated differential paths, but for which whole structures of inputs (instead of pairs)
can be built in order to greatly reduce the attack complexity. Moreover, our idea to apply
truncated differential analysis for the study of AES-based cryptography primitives (only
reasoning on theMixColumns truncated differential transitions) looks very promising, as
confirmed by the later discovery of rebound attacks [32] and its numerous variations [17,
30,31] that broke many SHA-3 candidates during the competition. Finally, it is to be
noted that our freedom degrees fixing technique is quite efficient against stream-cipher-
oriented hash functions, as shown, for example, on Radio-Gatùn [16].
On the constructive side, several SHA-3hash functions proposals [19,22,35] took

care of our attacks during the design phase. In particular, the designers of FUGUE [19]
managed to prove lower bounds on the complexity of our techniques when applied to
their proposal. In general, preventing this type of attacks without an important efficiency
drop is not trivial, and it seems that slightly increasing the internal state size is a good
solution.

2. The Grindahl Family of Hash Functions

Grindahl is a family of hash functions based on the so-called Concatenate-Permute-
Truncate strategy, where in our case the permutation uses the design principles of

1Concerning second-preimage andpreimage, the authors also claimed a resistance up to 2128 computations,
which is lower than what one expects from an ideal 256-bit hash function.

882 T. Peyrin

Rijndael [10], well known for being the winning candidate of the Advanced En-
cryption Standard (AES) process [38]. Two algorithms are defined, a version with a
256-bit output and a 512-bit one. Also, a compression function mode is given, taking
only fixed-length inputs, to be used with any hash domain extension algorithm. We give
in this section a brief description of the Grindahl hash function with a 256-bit output.
For a more detailed specification of the algorithm, we refer to [29].
Let n = 256 be the number of output bits of the hash function H , with an internal state

IS of 48 bytes (384 bits), and let M be the message (appropriately padded) to be hashed.
M is split into m blocks M1, . . . , Mm of 4 bytes each (32 bits). At each iteration k, the
message block Mk is used to update the internal state ISk−1. We call extended internal
state EISk the concatenation of the message block Mk+1 and the internal state ISk , i.e.,
EISk = Mk+1||ISk and we thus have |EISk | = 416 bits. We denote by trunct (x) the
rightmost t bits of x . Let P : {0, 1}416 �−→ {0, 1}416 be a non-linear permutation, and let
IS0 be the initial internal state defined by IS0 = {0}384. Then, for each iteration k with
0 < k < m, we have ISk = trunc384(P(EISk−1)). For the last iteration, the truncation is
omitted: EISm = P(EISm−1). Finally, we apply eight blank rounds EISk = P(EISk−1),
for m < k ≤ m + 8, and the final output of the hash function is trunc256(EISm+8).
The description is not complete since P has not yet been defined. This permutation

follows the design principle of AES (the reader is expected to be familiar with the
transformation defined in the AES specifications) and thus the extended state EIS is
viewed as a matrix of bytes. However, instead of a (4, 4) byte matrix, we have a matrix
α of 4 rows and 13 columns in the case of the 256-bit version of Grindahl. The entry
of the matrix α located at the i-th row and the j-th column is a byte denoted by αi, j .
Consequently, we have

α =

⎛
⎜⎜⎝

α0,0 α0,1 · · · α0,12
α1,0 α1,1 · · · α1,12
α2,0 α2,1 · · · α2,12
α3,0 α3,1 · · · α3,12

⎞
⎟⎟⎠ .

By splitting the extended internal state EIS into 52 8-bit chunks x0, . . . , x51, we can
define the conversion from EIS to α by αi, j = xi+4× j and this mapping has a natural
inverse. Before each iteration, the first column of α is overwritten with the incoming
message block. To conclude the description, the permutation P is defined as

P(α) = MixColumns ◦ ShiftRows ◦ SubBytes ◦ AddConstant(α).

MixColumns:This transformation is defined as in theAES specifications, that is a linear
mixing operation which operates on each column of the state independently, combining
the four bytes in each column in order to provide diffusion.
ShiftRows:As for AES, this transformation cyclically shifts bytes a number of positions
along each row, but here the i-th row is rotated by ρi positions to the right, with ρ0 = 1,
ρ1 = 2, ρ2 = 4, and ρ3 = 10.
SubBytes: The only non-linear part of the permutation. This substitution replaces each
byte of the state by its corresponding byte in the AES Sbox lookup table.

Collision Attack on Grindahl 883

AddConstant: Because we are in the hash function setting, no key is available and the
AddRoundKey function from AES has to be changed. Therefore, it is replaced by the
function AddConstant which is simply defined by α3,12 ←− α3,12 ⊕ 01, where 01 is
the byte-wise hexadecimal value of 1.
The 512-bit version ofGrindahl is based on the same design principle as the 256-bit

version, but the extended internal state is larger (8 rows instead of 4). The compression
functionmode for Grindahl-256 simply consists in hashing 40 4-byte message blocks
for each compression function call.

3. First Observations

Before describing the whole collision attack, we begin this section with some remarks
about Grindahl that will be useful in the following sections. The first observation
allows us to build a differential path in a precomputation phase and the second one
speeds up the final collision search.

3.1. A potential attack and the truncated differences

In the original Grindahl paper [29], a section explains a potential attack method,
pointed out by an anonymous reviewer. This method seems quite natural: the attacker
does not look at the actual values of differences inserted in the bytes of the internal
state, but only checks if there is a difference or not (this greatly simplifies the analysis).
Said in other words, he only forces the zero difference to some bytes of the state, while
allowing any difference for the remaining bytes. We call this kind of zero or non-zero
differences truncated differences in reference to the very similar truncated differences
used by Knudsen in [28]. Then, a chain of truncated differences in which in every round
the number of actives bytes (bytes with a non-zero truncated difference) is low must be
found. In this differential path, the truncated differences can only be erased during two
stages of an iteration: during aMixColumns transformation or during the truncation at the
end of the iteration. This implies that the number of truncated differences in a column
can be reduced and their row position changed by a clever use of the MixColumns
transformation, even if one can never erase all the truncated differences of a column at
a time. Otherwise, a truncated difference is deleted if it goes to the first column of α

at the end of the iteration, due to the truncation trunc384(·). Since at this stage of the
attack, the whole differential path is already settled, one cannot force anything for the
truncation but one can play with the message blocks inserted at each iteration, in order
to force a correct behavior in the MixColumns processes (see Sect. 3.2). In fact, the
message bytes act as control bytes in the sense that new input bytes do not affect some
parts of the internal state for a limited number of rounds (see Sect. 3.3).
To summarize, a truncated difference can be removed during the differential path

construction by the truncation or during the collision search by a clever use of control
bytes. The feasibility of this method was left as an open problem: one of its main points
is that the attacker has to always keep as few active bytes as possible in the differential
path, but we will see later that the designers of Grindahl prevented this kind of low

884 T. Peyrin

weight path during the conception. We argue in Section 4.1 that there exists a better
technique to find collisions for Grindahl.

3.2. Differences Transitions in the MixColumns Function

The MixColumns transformation matrix used in Grindahl is the same as in the spec-
ifications of AES [10], and its Maximum Distance Separable (MDS) property ensures
maximal difference propagation. More precisely, the sum of the number of active bytes
of the input and the output is always greater than or equal to 5. In other words, the
number of non-zero truncated differences of the input and the output of MixColumns is
always greater than or equal to 5 (or obviously equal to zero if there is no difference at
all).
More formally, let V = (A, B,C, D) be an input vector of four bytes A, B, C , and

D; and let W = (A′, B ′,C ′, D′) be an output vector of four bytes A′, B ′, C ′, and D′.
We denote the function MixColumns by MC : V �−→ W or MC : (A, B,C, D) �−→
(A′, B ′,C ′, D′).We also denote by Di (V1, V2) the function returning 1 if the i-th byte of
the 4-byte vectors V1 and V2 are different, and 0 otherwise. Finally, ND(V1, V2) returns
the number of such differences, i.e., ND(V1, V2) = #{i | Di (V1, V2) = 1}. We thus have
that if W1 = MC(V1) and W2 = MC(V2) with V1 �= V2, then

ND(V1, V2) + ND(W1,W2) ≥ 5.

Another interesting property is that any input byte of MixColumns defines a permuta-
tion for any output byte. Therefore, with W1 = MC(V1), W2 = MC(V2), and V1 �= V2
drawn uniformly and randomly in {0, 1}4×8, we have for any 1 ≤ i ≤ 4:

PD = P[Di (W1,W2) = 0] = 2563 − 1

2564 − 1
 2−8,

PD = P[Di (W1,W2) = 1] = 1 − PD 1 − 2−8.

Our goal is to compute the probability that a fixedmask of input- truncated differences
maps to a fixed mask of output-truncated differences (later this will be often utilized in
order to compute the probability of success of the differential path). For example, we
want to compute the probability that two input words V1 and V2 distinct in their 2 first
bytes result in two output words different in their 3 first bytes throughMixColumns (note
that this is slightly different from the event that any 2-byte difference input maps to any
3-byte difference output). We can compute those probabilities in two ways, formally or
empirically by testing exhaustively all the input values: since MixColumns are linear,
dealing with differences or values is the same (during the test, instead of looking for
differences or non-differences, we checked for zero values or non-zero values). We give
in Table 1 an approximation of the probability P that two 4-byte input words with
DI �= 0 different bytes in predefined positions map to two 4-byte output words with
DO �= 0 different bytes in predefined positions throughMixColumns: P 2−8×(4−DO)

if DI + DO ≥ 5, and P = 0 otherwise.

Collision Attack on Grindahl 885

Table 1. Approximate probability that two 4-byte input words with DI �= 0 different bytes in predefined
positions map to two 4-byte output words with DO �= 0 different bytes on predefined positions through
MixColumns. The values are base 2 logarithms.

DI

DO 0 1 2 3 4

0 0 - ∞ - ∞ - ∞ - ∞
1 - ∞ - ∞ - ∞ - ∞ 0
2 - ∞ - ∞ - ∞ -8 0
3 - ∞ - ∞ -16 -8 0
4 - ∞ -24 -16 -8 0

Table 2. Influences on the columns of the extended internal states for a modification of a byte of the message
block Mk = (Ak , Bk ,Ck , Dk) incoming at iteration k in Grindahl. We denote by ✓ if the column is
affected (or active) and void if not. The first table shows influences on ISk−1, the second on ISk and the third
on ISk+1.

3.3. The Control Bytes

Modifying some message bytes will obviously modify quite quickly the internal state,
but not immediately. For each modified byte of the message Mk , we give in Table 2 the
columns of s (in its matrix representation α) affected by this modification after 1, 2,
and 3 iterations. For more than 3 iterations, the Grindahl diffusion is such that any
message byte affects the complete internal state. This diffusion feature will allow us to
attack different columns of different iterations independently: we will be able to control
independently the behavior of some MixColumns transitions. Those control bytes will
be useful during the collision search phase of the attack and will later help us to speed
up the search for a message pair that follows exactly our predefined differential path.

886 T. Peyrin

4. High-Level View of the Attack

In this section, we study possible ways of finding a good differential path for the 256-
bit version of Grindahl: we look for a path of k iterations starting from IS0 and
so that with two different messages M and M ′ we have the same hash output, i.e.,
trunc256(EISm+8) = trunc256(EISm′+8). Finding a differential path leading to a col-
lision and including the blank rounds seems hard since no message block is inserted
during this last operation and so we have very little control on this part. However, the
problem looks much easier when trying to find an internal collision: a differential path
excluding the blank rounds, i.e., EISm = EISm′ . One can easily see that by avoiding to
add any difference right after, an internal collision will directly provide a full collision
after the blank rounds. Here, we explain how to find such a differential path and give
techniques that decrease the overall complexity of the attack.

4.1. A Counterintuitive Strategy

We now have all the necessary tools to build a truncated differential path, evaluate its
probability of success, and speed up the collision search. But how to actually find a good
truncated differential path? The natural intuition one would have (as the anonymous
reviewer suggested) is to always maintain a low number of truncated differences along
the path in order to increase its probability of success, though finding one such path
seems really difficult as one can convince oneself with Property 1 from the original
Grindahl paper [29]:

Property 1. An internal collision for Grindahl-256 requires at least 5 iterations.
Moreover, any differential path starting or ending in the extended state with no difference
contains at least one round where at least half of the extended state bytes (excluding the
first column) are active.

This property can be verified with a meet-in-the-middle exhaustive search, as ex-
plained in the original Grindahl paper. Besides, with a small speed improvement of
this algorithm, one can check that an internal collision for Grindahl-256 requires in
fact at least 6 iterations. Another observation is that by introducing differences in the
state and after a few iterations we quickly come to an all-active pair of extended states.
This all-active pair of extended states is almost stable: the probability that an all-active
pair of columns remains an all-active pair of columns through MixColumns is approxi-
matively PA = (1 − 2−8)4, so for the twelve columns of the extended state (except the
first column) we have a probability of P12

A 2−0.27. Thus, our first idea is to not search
for a path starting from a zero difference but from an all-active pair of extended states,
which is very easy to get. The overwhelming probability P12

A allows us to start with as
much valid starting states as we want (each valid starting state can be generated with an
average complexity of 20.27 computations).
This concept of letting all the differences spread is really counterintuitive for a cryp-

tographer, especially when dealing with hash functions where an attacker always tries to
keep control of the difference spreading during the differential path. Nevertheless, this
idea makes sense here because it looks like the designers built their hash function with

Collision Attack on Grindahl 887

the major security argument being that controlling the difference spreading should be
hard, as illustrated by Property 1 from their original paper. Thus, we will let it be totally
out of our control (but in fact completely under control in terms of truncated differential
path) and right after try to force it to a collision. Furthermore, this method is facilitated
by the fact that unconstrained fresh message words are arriving at each iteration and
then the two different parts of the attack (first arrive to an all difference state and second
make it a collision) can be done independently.
Overall, thismethod allows us to greatly simplify the truncated differential path search

(just like we simplified the analysis with the truncated differences). Even if we might
not obtain the best possible path with this technique, we will get very good ones, which
will be sufficient for a collision attack.

4.2. How to Build a Truncated Differential Path

Searching for a differential path starting from an all-active pair of extended internal
states and ending in a collision is quite easy. One method is to search backward almost
exhaustively since in Grindahl the truncated differences propagate in the forward
direction as quickly as in the backward direction.More precisely, ifwe look for a collision
at the end of iteration k, we try all the possible truncated differencemasks for themessage
blocks inserted at iterations k, k − 1, etc., and all the possible backward transitions of
truncated differences through MixColumns (same as for the onward direction), until we
come to an all-active pair of extended states. This algorithm can be greatly improved
with an early-abort strategy: we compute a lower bound on the complexity cost of the
current path we are building (taking in account the control provided by the active/passive
bytes, see Section 5) and we stop the search branch if the complexity of the attack is
already greater than or equal to 2128 operations. We also stop the search if we went too
far in terms of number of iterations: in some particular cases, the overall complexity
of a differential path can remain stable even if its number of iterations increases, for
example, when the number of MixColumns transitions imposed is lower than or equal
to the number of control bytes inserted.
Obviously, always adding truncated differences to all the message blocks inserted is

the fastest way to reach this goal. However, we will later use the message bytes inserted
as control bytes to attack some parts of the differential path independently and, therefore,
increase the probability of success of the path. Then, it may be better not to go too fast on
adding truncated differences in order to have more iterations during the differential path.
Doing so increases the total number of message blocks inserted and, therefore, provides
more control bytes. This can be regarded as some kind of dilution of the MixColumns
constraints to be imposed by stretching the differential path. For example, we can find
a path starting from an all-active pair of extended internal states and requiring only 4
iterations to get a collision, with a probability of success of approximatively 2−312. Still,
another path requiring 8 iterations to get a collision with a probability of success of
approximatively 2−440 may be better. Indeed, in the latter case, even if the probability of
success has been divided by a factor 2128, we have inserted 8 message word pairs instead
of only 4 in the former case. Consequently, we get roughly 256 additional degrees of
freedom compared to the former case (4 pairs of message of 4 bytes each) and those can
be used to attack some parts independently, potentially decreasing the complexity by

888 T. Peyrin

more than a factor 2128. Naturally, limits exist: at some point, addingmore iterations does
not improve things anymore. Also, control bytes cannot always be used in an ideal way
and we only come to a lower bound on the complexity cost of the path. Once potentially
good paths have been found, a case-by-case analysis is required. This analysis can be
automated and is explained in the next section.

5. A Collision Attack for Grindahl-256

In this section, we use the previous observations to present a complete collision attack
for the 256-bit version of Grindahl. Other attacks might be possible, depending on
which differential path we use, but we explain here the details for the collision attack
corresponding to the best path found according to our technique.

5.1. Our Truncated Differential Path

Before describing our attack, we give in Fig. 1 the truncated differential path used, which
has been generated with a program implementing the previously explained method (see
Sect. 4.2). It starts from an all-active pair of states and collides after 9 iterations (for space
reasons, the first iteration is not represented in Fig. 1, but it simply maps an all-active
truncated difference to itself). A cell stands for a byte and each group of cells represents
a 52-byte extended internal state. A dark cell means that we have a non-zero difference
for this byte, and a light cell stands for no difference. Each row of extended internal states
represents one iteration. The first column gives the differences in the state just after its
update with the 4-byte message word, and the second column gives the same state after
application of the ShiftRows transformation. Finally, the third column represents the
internal state just after application of the MixColumns function. In this third column,
the dark active cells marked with a light-gray circle in the middle represent the cells
located in a column for which the differential transition through the MixColumns is not
free (the cells located in the first column of the state are filled with dark gray to depict
that we do not care about the differences in these cells since they will be erased by the
truncation). Note that because the AddConstant and SubBytes functions have no effect
on the differential path, they are omitted here. Each first 4-byte column of the first column
states represents the message words inserted at each iteration, that will later be used as
control bytes. The first 4-byte column of the state after every MixColumns transition
can have whatever difference mask since those bytes will be immediately truncated.
This differential path is the best found among other possible candidates leading to the

same complexity. We denote by k the number of the last iteration of our differential path,
i.e., the last row of Fig. 1. First, one can check that all the MixColumns transitions are
valid, i.e., verify the MDS property. This differential path has a probability of success of
approximatively 2−55×8 = 2−440 (55 MixColumns constraints forced in total), which
seems very low at first sight. However, in this path, we also have a lot of message
blocks inserted that one can use during the collision search to force some MixColumns
constraints independently.
Our aim is to find a pair of messages following the expected differential path. For this,

we do not handle each iteration one by one, but we deal with each of the 4-byte message

Collision Attack on Grindahl 889

Fig. 1. Apossible truncated differential path, starting from an all-active internal state and potentially providing
a collision after 8 iterations.

words inserted one by one. Said in other words, we will fix the four bytes of a message
word pair and check that the newly imposed MixColumns differential transitions are the
ones expected in our truncated differential path. If so, we continue to the next message
word pair until we get a collision.
In Table 3, we give all the dependencies of the MixColumns transitions with the

message blocks inserted, used as control bytes during the collision search, following the
differential path from Fig. 1. The cost of all the transitions is given (see Sect. 3.2) along

890 T. Peyrin

with the number of control bytes inserted at each iteration (see Sect. 3.3). The second
column of the table gives the position of the columns of the state in which we force
a truncated differential transition during a MixColumns transformation, and the first
column indicates in which iteration of this event occurs. For each transition, we give in

Table 3. Dependencies of the message blocks used as control bytes and inserted during the truncated differ-
ential path from Figure 1, for a collision at the end of iteration k.

Collision Attack on Grindahl 891

the third column its cost in terms of number of bytes (i.e., for a cost c, the transition has
a probability of 2−c×8). Then, each of the seven other columns of the table represents
a pair of message words that will be used as control bytes (the letters a or A, b or B, c
or C, and d or D represent, respectively, the first, second, third, and fourth byte of the
4-byte message inserted). Capital letters mean that we have 2 control bytes (a difference
is inserted for this message block and we can make independently both messages of the
pair vary) and small letters mean that we only have 1 control byte (no difference inserted
for this message block). In the core of the table, a dash or a cross represents the fact
that the MixColumns transition indicated by the corresponding row is affected by the
control byte indicated by the corresponding column. We divided those dependencies for
the sake of simplicity, the crosses are the dependencies that may be used for the attack:
chronologically they represent for each MixColumns transition the dependencies of the
last involvedmessageword during the attack. The last row gives the cost of eachmessage
word insertion during the collision search in terms of number of bytes. The sum for all
the message blocks gives the total complexity of the attack.
By looking at Table 3, since there can be several crosses in a single column, one may

have the impression that some bytes of the message are used several times during the
attack. However, we recall that in Table 3 the crosses do not represent the dependencies
that we will use, but the ones that we may use during the attack. We ensured that no
freedom degree is used twice during the message bytes fixing procedure.
Finally, from Table 3, one can check that we need to test 214×8 = 2112 all-active

pairs of internal state in order to have a good probability of obtaining a collision, as 14
MixColumns constraints cannot be forced independently during the collision search.We
explain the whole process in more details in the next section.

5.2. The Collision Search

Our final collision search is based on three steps. The first one generates a sufficient
number of all-active extended internal states and the secondone checks for each candidate
if a collision can be found by using the control bytes. Once a pair of message blocks
following the differential path is found, the third step ensures the validity of our new
internal collision by forcing the last truncation.

5.2.1. First Step:

start with the predefined initial value of Grindahl and compute a few iterations with
lots of truncated differences in the incoming message blocks in order to quickly come
to an all-active pair of states denoted A after a few iterations. From this pair of states
A, generate 214×8 = 2112 new all-active pairs of states A1, . . . ,A2112 , for example, by
choosing randomly a new input pair of message blocks. When all the possible pairs of
message blocks forA are exhausted, replaceA by another all-active pair of states found
during the process. This part requires 2112 × 20.27 = 2112.27 iterations.

5.2.2. Second Step:

in this step, for each pair of message words (Mk−i , M ′
k−i) inserted, their bytes are used

in order to adjust the behavior of the MixColumns transitions where crosses appear

892 T. Peyrin

at column Mk−i in Table 3. Then, we continue the attack by fixing the control bytes
iteration per iteration: for the message blocks inserted at the beginning of iterations
k−8, k−7, k−6 of our truncated differential path from Table 3, there are more control
bytes incoming than necessary. Indeed, we have 8, 8, and 7 control bytes available
for the messages inserted at iterations k − 8, k − 7, and k − 6, respectively, whereas
we only require 2, 7, and 7 bytes of degrees of freedom. Note that since in Table 3 the
crosses represent the bytes of the last message word involved in a transition, the previous
dependencies (represented by a dash) are already fixed at this point. For each step, the
total cost is equal to the sum of the costs of all the MixColumns transitions involved
minus the number of control bytes available from Mk−i , provided they can all be utilized
properly (which is often the case). Consequently, at this point of the attack, we maintain
2112 pairs of messages and states following the differential path. For the message words
inserted at iteration k − 5, we have 6 control bytes for 7 bytes of conditions, thus we
only keep 1 out of 28 message pairs and we go to the (k − 4)-th message word with
2104 valid pairs. We continue in the same way for the three remaining message words
k − 4, k − 3, and k − 2, having 7, 8, and 4 control bytes, respectively, and requiring 9,
14, and 9 bytes of conditions. Concerning the k − 2 case, we only have 4 control bytes
and not 6 as indicated in Table 3, because c and d are not involved in any MixColumns
transition and so they cannot be considered as control bytes. Finally, we expect to have
one pair of messages following the differential path with a good probability by starting
with 214×8 = 2112 all-active pairs of states.

5.2.3. Third Step:

add a (k+1)-th message block without truncated difference in order to force a truncation
after the last iteration k of the differential path (remember that there is no truncation of
the extended internal state before the blank rounds).

5.3. Discussion on the Attack

The distinction between crosses and dash dependencies is a restriction for the attacker but
allows a simpler description of the attack.When dealing with crosses, the attacker knows
that all the previous dependencies are already set and it makes things much simpler even
if better attacks may exist by using a more complicated message byte fixing schedule.
The very same remark applies for the fact that we fix the message bytes word by word:
much simpler to describe but may be not the best technique.
To the contrary, dealing with crosses does not mean that the control bytes can be used

carelessly. There may exist situations where the attacker cannot use all of its control
bytes: we took care of the dependencies word wise with the crosses/dash distinction, but
the byte-wise dependencies remain. Still, those situations occur relatively rarely and do
not happen in our presented differential path.
For the sake of clarity, we explain more precisely how to deal with the control bytes

by giving an example. Let us set ourselves when the attacker has to fix the message pair
incoming at step k − 5 (seventh column in Table 3). The previous message words have
already been fixed during the attack, thuswe only have to deal with the crosses in Table 3.
Some MixColumns differential transitions have to behave as required by the truncated

Collision Attack on Grindahl 893

differential path, and this has a cost. For example, at the second column of the (k−5)-th
iteration, we need a 4 non-zero truncated differences to 3 non-zero truncated differences
transition and this will happen with probability 2−8, therefore, with a cost of 1 byte.
However, in order to make this event occur, we can use the second byte of the message
word inserted at iteration k − 5 in order to randomize the instantiation of the transition.
There are several ways of doing this step, and this is discussed below. We actually have
a good probability to find 28 valid pairs of message bytes for this transition: two control
bytes for one byte of condition. We repeat the process for the seventh column transition
of iteration k − 4 with the fourth byte of the message word: again two control bytes for
one byte of condition. Next, we identify the subset of the cross product of the two sets
of 28 byte pairs such that the twelfth column transitions of iteration k − 4 are verified
(depending only on the two previously fixed pairs of message bytes), which costs one
byte of condition. So, we maintain 28 valid possibilities. Then, we fix the first byte of
the message word to deal with the third column transition of iteration k − 4: since this
costs one control byte for one byte of condition, we still maintain 28 valid possibilities.
Finally, with the remaining byte of the message word (the third), we look for a good
transition for the ninth column of iteration k−3: this costs one control byte for two bytes
of conditions but we had maintained 28 valid possibilities before, so that in the end we
have a good probability to find a valid message word for all the transitions cited. Yet we
did not take care of the eleventh column of iteration k − 4, which costs us one byte of
condition. To summarize, this whole step will cost us 28 tries because we had a total of
six control bytes for a total of seven bytes of conditions. Repeating this reasoning for
all the message words inserted at each iteration of the differential path explains the 2112

tries cost for the whole collision attack.
For simplicity we described an attack requiring 2112 memory but a simple version

without memory is also possible with the same computational complexity. During the
first step, instead of memorizing all the elements A1, . . . ,A2112 before launching the
second step, one can directly run the second step for each element Ai , without keeping
track of them.
One may argue that even if the attacker needs to try 2112 all-active pairs of states,

the basic operation may be costly when playing with the control bytes. Indeed, with
the previous example, some steps require to pass through 28 or 216 values of message
words, each requiring only a SubBytes computation on a whole column, or one or two
iteration processes (depending on the column in which the state the transition occurs).
Even if it is still an attack, the complexity would be slightly higher. This argument is true
if the attacker uses a naive search method. However, inexpensive precomputations allow
to reduce the computational cost of the search table lookups. For example, with as few
as 232 precomputation time and memory, one can generate all the information needed
to quickly execute the search needed during the third step of the collision search. Only
a few table lookups would then be required. One might also wonder why we did not
count the complexity of the few 4 non-zero truncated differences to 4 non-zero truncated
differences transitions. Such transitions always have a high probability to happen PA =
(1 − 2−8)4 2−0.02, and therefore, they have very little effect on the complexity
of the attack. Finally, the compression function mode performs 40 iterations for one
compression call. Thus, our attack actually runs in less than 2112 hash computations, all
the complexity coming from the generation of 2112 all-active pairs of states.

894 T. Peyrin

We checked that this method also works with a complexity of at most 2120 hash
computations for all the rotation constants providing the best diffusion, which seems
to indicate that the internal state of Grindahl is not large enough to ensure a proper
collision resistance.

6. Possible Patches

Most of the difficulty of the presented attack is to actually find a good differential
path, and this is possible by the analysis simplification induced by letting the differences
totally spread and start from an all-active pair of states. Besides, even if better differential
paths may be found by maintaining a low weight of differences (which seems hard to
find) instead of going through an all-active pair of states, we believe that the complexity
would not drastically decrease compared to our attack. In fact, the complexity cost grows
quickly due to the last iterations of the differential path where very few control bytes are
available, and these steps will remain very costly whatever the differential path used.
Said in other words, we can compute a lower bound on the complexity of an attack using
any truncated differential path and control bytes. For example, a short program tells us
that a similar truncated differential attack for the 256-bit version of Grindahl requires
at least 2104 operations (whatever the truncated differential path and the message words
byte fixing schedule) even if this does not mean that such an attack exists.
Thus, it would be very interesting to think of a new version of Grindahl, with

a comparable efficiency, that resists not only the presented attack but also any attack
dealing with truncated differences and control bytes (and also the independent flaw
identified in [18]). However, one needs some assumption on the power of the control
bytes.Aplausible assumption could be that a control byte can only correct aMixColumns
transition located at one, two, or three iterations after its introduction. This seems a
relatively weak assumption since after three iterations, a message byte affects the entire
internal state of the compression function. Using no assumption at all would lead to
nonsense as in this case using a path with a huge number of iterations would theoretically
provide enough control bytes for the entire differential path, reducing the lower bound
to 1. It is a bidimensional problem since apart from the lower bound value, with a too
weak assumption the programmay go through too many leaves in the search tree (whose
size is reduced with an early-abort programming) and never output anything. Moreover,
a too strong assumption may not model well the attacker in practice.
Finally, one wants the lower bound on the complexity of an attack using truncated

differential path and control bytes to be at least 2128 operations, and even larger for a good
securitymargin. If this is possible, an attacker whowants to find a collisionwould have to
first find a differential path and then to deal with the actual values of differences in order
to lower the complexity. The SubBytes transformation would, therefore, discourage this
kind of attack and we would obtain a hash function with a strong security argument.
A new Grindahl version with such a property and a reasonable efficiency could be,
therefore, designed by adding some more columns in the states for example.
The question of the number of columns to be added or other possible patches is

left open for future research. However, it is to be noted that the SHA-3 semi-finalist
FUGUE [19], a direct successor of Grindahl, was built with the aim of resisting to

Collision Attack on Grindahl 895

this type of attack [39]. In particular, the designers increased the internal state size and
proposed a much better diffusion layer, finally succeeding in formally proving resistance
of FUGUE against the methods we presented in this article. Moreover, the SHA-3 hash
function candidates AURORA [22] and LUX [35] also proposed arguments with regard to
our attacks as their proposals share similarities with Grindahl. However, some other
vulnerabilities were later discovered for these two candidates [11,14,15,40].

7. Conclusion and Future Work

In this article, we described a collision attack on the AES-based Grindahl hash func-
tion using a byte-wise truncated differential path. The rather small internal state size can
be exploited by a counterintuitive technique in which the attacker first lets all the differ-
ences spread. Then, by a sharp message bytes fixing schedule along with the backward
construction of a colliding-truncated differential path starting from an all-active internal
state, one can compute a collision with not more than 2112 round computations for the
full 256-bit version of Grindahl.

Attacking the second-preimage resistance of Grindahl using the same method
seems difficult since the attacker has access to much less freedom degrees (only the
difference in the message bytes can be randomized, not the values anymore) and the
security claim from the designers is the same as for collision resistance, i.e., 2n/2.

Acknowledgements

The author would like to thank the designers of Grindahl (Lars Knudsen, Christian
Rechberger, Søren Thomsen), Henri Gilbert, Olivier Billet, and Yannick Seurin for their
valuable remarks on the attack and discussions on the Grindahl design, as well as the
anonymous referees for their helpful comments. This article is the extended and updated
version of an article published at ASIACRYPT 2007 [39]. The author is supported by
the Singapore National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).

References

[1] D. Augot, M. Finiasz, N. Sendrier. A family of fast syndrome based cryptographic hash functions, in
E. Dawson, S. Vaudenay, editors, Progress in Cryptology—Mycrypt 2005. Lecture Notes in Computer
Science, vol. 3715 (Springer-Verlag, Berlin, 2005), pp. 64–83

[2] M. Bellare, T. Ristenpart, Multi-property-preserving hash domain extension and the EMD transform,
in X. Lai, K. Chen, editors, Advances in Cryptology—ASIACRYPT 2006, Lecture Notes in Computer
Science, vol. 4284, (Springer-Verlag, Berlin, 2006), pp. 299–314

[3] K. Bentahar, D. Page, M-J.O. Saarinen, J.H. Silverman, N.P. Smart, LASH, in Proceedings of Second
NIST Cryptographic Hash Workshop, 2006. Available from: www.csrc.nist.gov/pki/HashWorkshop/
2006/program_2006.htm

[4] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, The Keccak SHA-3 submission, in Submission to
NIST (Round 3), 2011. Available from: http://keccak.noekeon.org/Keccak-submission-3.pdf

www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm
www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm
http://keccak.noekeon.org/Keccak-submission-3.pdf

896 T. Peyrin

[5] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche. RadioGatun, a Belt-and-Mill hash function, in
Proceedings of Second NIST Cryptographic Hash Workshop, 2006. Available from: www.csrc.nist.gov/
pki/HashWorkshop/2006/program_2006.htm

[6] E. Biham, O. Dunkelman, A framework for iterative hash functions: HAIFA, in Proceedings of Second
NIST Cryptographic Hash Workshop, 2006. Available from: www.csrc.nist.gov/pki/HashWorkshop/
2006/program_2006.htm

[7] O. Billet, M.J.B. Robshaw, T. Peyrin, On building hash functions from multivariate quadratic equations,
in J. Pieprzyk, H. Ghodosi, E. Dawson, editors, Information Security and Privacy—ACISP 2007, Lecture
Notes in Computer Science, vol. 4586 (Springer-Verlag, Berlin, 2007), pp. 82–95

[8] J. Black, P. Rogaway, T. Shrimpton, Black-box analysis of the block-cipher-based hash-function con-
structions from PGV, in M. Yung, editor, Advances in Cryptology—CRYPTO 2002, Lecture Notes in
Computer Science, vol. 2442 (Springer-Verlag, Berlin, 2002) pp. 320–335

[9] S. Contini, A.K. Lenstra, R. Steinfeld, VSH, an efficient and provable collision-resistant hash function, in
S. Vaudenay, editor, Advances in Cryptology—EUROCRYPT 2006, Lecture Notes in Computer Science,
vol. 4004 (Springer-Verlag, Berlin, 2006) pp. 165–182

[10] J. Daemen, V. Rijmen, The design of rijndael. (Springer-Verlag, Berlin, 2002)
[11] W. Dai. OFFICIAL COMMENT: LUX. NIST mailing list (local link), 2008. Available from: http://

ehash.iaik.tugraz.at/uploads/e/ec/Lux_dai.txt
[12] I. Damgård, A design principle for hash functions, in G. Brassard, editor, Advances in Cryptology—

CRYPTO’89, Lecture Notes in Computer Science, vol. 435 (Springer-Verlag, Berlin, 1989), pp. 416–427
[13] R.D. Dean, Formal aspects of mobile code security, PhD thesis. (Princeton University, Princeton, 1999)
[14] N. Ferguson, RE:OFFICIAL COMMENT:LUX. NIST mailing list (local link), 2009. Available from:

http://ehash.iaik.tugraz.at/uploads/2/21/Lux_niels.txt
[15] N. Ferguson, S. Lucks, Attacks on AURORA-512 and the double-mix Merkle-Damgaard transform.

Cryptology ePrint Archive, Report 2009/113, 2009
[16] T. Fuhr, T. Peyrin. Cryptanalysis of radioGatún, inO.Dunkelman, editor,Fast SoftwareEncryption—FSE

2009, Lecture Notes in Computer Science, vol. 5665 (Springer-Verlag, Berlin, 2009), pp. 122–138
[17] H. Gilbert, T. Peyrin, Super-sbox cryptanalysis: improved attacks for AES-like permutations, in S. Hong,

T. Iwata, editors, Fast Software Encryption—FSE 2010, Lecture Notes in Computer Science, vol. 6147
(Springer-Verlag, Berlin, 2010), pp. 365–383

[18] M. Gorski, S. Lucks, T. Peyrin, Slide attacks on a class of hash functions, in J. Pieprzyk, editor, Advances
in Cryptology—ASIACRYPT 2008, Lecture Notes in Computer Science, vol. 5350 (Springer-Verlag,
Berlin, 2008), pp. 143–160

[19] S. Halevi, W.E. Hall, C.S. Jutla, The hash function fugue. Submission to NIST (updated), 2009
[20] S. Hirose, Some plausible constructions of double-block-length hash functions, in M.J.B. Robshaw,

editor, Fast Software Encryption—FSE 2006, Lecture Notes in Computer Science, vol. 4047 (Springer-
Verlag, Berlin, 2006), pp. 210–225

[21] D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon, S. Chee, A new dedicated 256-bit hash
function: FORK-256, in M.J.B. Robshaw, editor, Fast Software Encryption—FSE 2006, Lecture Notes
in Computer Science, vol. 4047 (Springer-Verlag, 2006), pp. 195–209

[22] T. Iwata, K. Shibutani, T. Shirai, S. Moriai, T. Akishita, AURORA: A Cryptographic Hash Algorithm
Family. Submission to NIST, 2008. Available from: http://ehash.iaik.tugraz.at/uploads/b/ba/AURORA.
pdf

[23] J-P. Aumasson, W. Meier, R.C.-W. Phan, The hash function family LAKE, in M.J.B. Robshaw, editor,
Fast Software Encryption—FSE 2008, Lecture Notes in Computer Science, vol. 5086, (Springer-Verlag,
Berlin, 2008), pp. 36–53

[24] A. Joux, Multi-collisions in iterated hash functions, Application to cascaded Constructions, in M.
Franklin, editor, Advances in cryptology—CRYPTO 2004, Lecture Notes in Computer Science, vol.
3152 (Springer-Verlag, Berlin, 2004), pp. 306–316

[25] J. Kelsey and T. Kohno. Herding Hash Functions and the Nostradamus Attack. In S. Vaudenay, editor,
Advances inCryptology—EUROCRYPT2006,LectureNotes inComputer Science, vol. 4004 (Springer-
Verlag, Berlin, 2006), pp. 183–200

[26] J. Kelsey and B. Schneier, Second preimages on n-bit hash functions for much less than 2n work, in R.
Cramer, editor, Advances in Cryptology—EUROCRYPT 2005, Lecture Notes in Computer Science, vol.
3494, (Springer-Verlag, Berlin, 2005), pp. 474–490

www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm
www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm
www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm
www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm
http://ehash.iaik.tugraz.at/uploads/e/ec/Lux_dai.txt
http://ehash.iaik.tugraz.at/uploads/e/ec/Lux_dai.txt
http://ehash.iaik.tugraz.at/uploads/2/21/Lux_niels.txt
http://ehash.iaik.tugraz.at/uploads/b/ba/AURORA.pdf
http://ehash.iaik.tugraz.at/uploads/b/ba/AURORA.pdf

Collision Attack on Grindahl 897

[27] D. Khovratovich, Cryptanalysis of hash functions with structures, in M.J. Jacobson Jr., V. Rijmen, R.
Safavi-Naini, editors, Selected Areas in Cryptography—SAC 2009, Lecture Notes in Computer Science,
vol. 5867, (Springer-Verlag, Berlin, 2009), pp. 108–125

[28] L.R. Knudsen, Truncated and higher order differentials, in B. Preneel, editor,Fast Software Encryption—
FSE 1994, Lecture Notes in Computer Science, vol. 1008 (Springer-Verlag, 1995), pp. 196–211

[29] L.R. Knudsen, C. Rechberger, S.S. Thomsen, Grindahl—a family of hash functions, in A. Biryukov,
editor, Fast Software Encryption—FSE 2007, Lecture Notes in Computer Science, vol. 4593 (Springer-
Verlag, Berlin, 2007), pp. 39–57

[30] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, M. Schläffer, Rebound distinguishers: results on
the full whirlpool compression function, in M. Matsui, editor, Advances in Cryptology—ASIACRYPT
2009, Lecture Notes in Computer Science, vol. 5912 (Springer-Verlag, Berlin, 2009), pp. 126–143

[31] F. Mendel, T. Peyrin, C. Rechberger, M. Schläffer, Improved cryptanalysis of the reduced grøstl com-
pression function, ECHO permutation and AES block cipher, in M.J. Jacobson Jr., V. Rijmen, R. Safavi-
Naini, editors, Selected Areas in Cryptography—SAC 2009, Lecture Notes in Computer Science, vol.
5867 (Springer-Verlag, Berlin, 2009), pp. 16–35

[32] F. Mendel, C. Rechberger, M. Schläffer, S.S. Thomsen, The rebound attack: cryptanalysis of reduced
whirlpool and grøstl, in O. Dunkelman, editor, Fast Software Encryption—FSE 2009, Lecture Notes in
Computer Science, vol. 5665 (Springer-Verlag, Berlin, 2009), pp. 260–276

[33] A.J. Menezes, S.A. Vanstone, P.C. Van Oorschot, Handbook of applied cryptography, (CRC Press Inc,
Boca Raton, FL, 1996)

[34] R.C. Merkle, One way hash functions and DES, in G. Brassard, editor, Advances in Cryptology—
CRYPTO’89, Lecture Notes in Computer Science, vol. 435 (Springer-Verlag, Berlin, 1989), pp. 428–446

[35] I. Nikolić, A. Biryukov, D. Khovratovich, Hash family LUX—Algorithm Specifications and Supporting
Documentation. Submission to NIST, 2008. Available from: http://ehash.iaik.tugraz.at/uploads/f/f3/
LUX.pdf

[36] NIST. National institute of standards and technology: Advanced hash standard. Available from: www.
csrc.nist.gov/pki/HashWorkshop/index.html

[37] NIST. National institute of standards and technology: FIPS 180–2: Secure hash standard, August 2002.
Available from: www.csrc.nist.gov

[38] NIST.National institute of standards and technology: FIPS 197 advanced encryption standard,November
2001. Available from: www.csrc.nist.gov

[39] T. Peyrin, Cryptanalysis of grindahl, in K. Kurosawa, editor, Advances in Cryptology—ASIACRYPT
2007, Lecture Notes in Computer Science, vol. 4833 (Springer-Verlag, Berlin, 2007), pp. 551–567

[40] T. Peyrin, Slide attacks on LUX. NIST mailing list (local link), 2008. Available from: http://ehash.iaik.
tugraz.at/uploads/6/62/Lux_peyrin.txt

[41] T. Peyrin, H. Gilbert, F. Muller, M.J.B. Robshaw, Combining compression functions and block cipher-
based hash functions, in X. Lai, K. Chen, editors, Advances in Cryptology—ASIACRYPT 2006, Lecture
Notes in Computer Science, vol. 4284 (Springer-Verlag, Berlin, 2006), pp. 315–331

[42] B. Preneel, Analysis and design of cryptographic hash functions, PhD thesis, Katholieke Universiteit
Leuven, 1993

[43] B. Preneel, R. Govaerts, J. Vandewalle, Hash functions based on block ciphers: a synthetic approach, in
D.R. Stinson, editor, Advances in Cryptology—CRYPTO ’93, Lecture Notes in Computer Science, vol.
773 (Springer-Verlag, Berlin, 1993), pp. 368–378

[44] R. L. Rivest, RFC 1321: The MD5 message-digest algorithm, April 1992. Available from: http://www.
ietf.org/rfc/rfc1321.txt.

[45] Y. Seurin, T. Peyrin, Security analysis of constructions combining FIL random oracles, in A. Biryukov,
editor, Fast Software Encryption—FSE 2007, Lecture Notes in Computer Science, vol. 4593 (Springer-
Verlag, Berlin, 2007), pp. 119–136

[46] X. Wang, X. Lai, D. Feng, H. Chen, X. Yu, Cryptanalysis of the hash functions MD4 and RIPEMD, in
R. Cramer, editor, Advances in Cryptology—EUROCRYPT 2005, Lecture Notes in Computer Science,
vol. 3494 (Springer-Verlag, Berlin, 2005), pp. 1–18

[47] X. Wang, Y.L. Yin, H. Yu, Finding collisions in the full SHA-1, in V. Shoup, editor, Advances in
Cryptology—CRYPTO 2005, Lecture Notes in Computer Science, vol. 3621 (Springer-Verlag, Berlin,
2005), pp. 17–36

http://ehash.iaik.tugraz.at/uploads/f/f3/LUX.pdf
http://ehash.iaik.tugraz.at/uploads/f/f3/LUX.pdf
www.csrc.nist.gov/pki/HashWorkshop/index.html
www.csrc.nist.gov/pki/HashWorkshop/index.html
www.csrc.nist.gov
www.csrc.nist.gov
http://ehash.iaik.tugraz.at/uploads/6/62/Lux_peyrin.txt
http://ehash.iaik.tugraz.at/uploads/6/62/Lux_peyrin.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt

898 T. Peyrin

[48] X. Wang, H. Yu, How to break MD5 and other hash functions, in R. Cramer, editor, Advances in
Cryptology—EUROCRYPT 2005, Lecture Notes in Computer Science, vol. 3494 (Springer-Verlag,
Berlin, 2005), pp. 19–35

[49] X. Wang, H. Yu, Y.L. Yin, Efficient collision search attacks on SHA-0, in V. Shoup, editor, Advances in
Cryptology—CRYPTO 2005, Lecture Notes in Computer Science, vol. 3621 (Springer-Verlag, Berlin,
2005), pp. 1–16

	Collision Attack on Grindahl
	1. Introduction
	2. The Grindahl Family of Hash Functions
	3. First Observations
	3.1. A potential attack and the truncated differences
	3.2. Differences Transitions in the MixColumns Function
	3.3. The Control Bytes

	4. High-Level View of the Attack
	4.1. A Counterintuitive Strategy
	4.2. How to Build a Truncated Differential Path

	5. A Collision Attack for Grindahl-256
	5.1. Our Truncated Differential Path
	5.2. The Collision Search
	5.2.1. First Step:
	5.2.2. Second Step:
	5.2.3. Third Step:

	5.3. Discussion on the Attack

	6. Possible Patches
	7. Conclusion and Future Work
	Acknowledgements
	References

