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Abstract. Rackoff and Simon proved that a variant of Chaum’s protocol for anony-
mous communication, later developed as the Onion Routing Protocol, is unlinkable
against a passive adversary that controls all communication links and most of the nodes
in a communication system. A major drawback of their analysis is that the protocol is
secure only if (almost) all nodes participate at all times. That is, even if only n � N

nodes wish to send messages, all N nodes have to participate in the protocol at all times.
This suggests necessity of sending dummy messages and a high message overhead.

Our first contribution is showing that this is unnecessary. We relax the adversary
model and assume that the adversary only controls a certain fraction of the communica-
tion links in the communication network. We think this is a realistic adversary model.
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For this adversary model we show that a low message overhead variant of Chaum’s
protocol is provably secure.

Furthermore, all previous security proofs assumed the a priori distribution on the
messages is uniform. We feel this assumption is unrealistic. The analysis we give holds
for any a priori information on the communication distribution. We achieve that by
combining Markov chain techniques together with information theory tools in a simple
and elegant way.

Key words. Mix protocol, Traffic analysis, Mixing time, Markov Chain, Unlinkabil-
ity.

1. Introduction

We focus on communication protocols that allow anonymous communication even if
the network is partially under an adversarial control. The anonymous communication
problem is very basic, and models well the privacy issues that occur when exchanging
messages over a public network such as Internet. It also serves as an underlying plat-
form in several cryptographic protocols, most notably in some e-auctions and electronic
voting protocols. Yet, up to date, there is no general satisfying solution to the problem.

The phrase “anonymous” can take several interpretations. First, we would like to hide
the content of a sent message m (this is sometimes called “confidentiality”). Second, we
might want to have senders and receivers anonymity. And finally, we would like to have
unlinkability meaning that even if an adversary knows the set {a1, . . . , an} of senders and
the set {b1, . . . , bn} of receivers, he cannot link the senders to the receivers.

The attack model also has several variants. In the passive model the adversary is
curious but honest, i.e., it listens on the communication links under its control, but
no node deviates from the protocol. We call such an adversary an eavesdropper. An
active adversary might change, initiate or delete messages. Both the passive and the
active adversaries can be non-adaptive, meaning that they determine the communication
links under their control before the protocol begins, or adaptive, meaning that they may
acquire communication links during the execution of the protocol and based on the
communication so far.

Finally, there is the cost issue. Two common cost functions are time delay which is
the time it takes a message to reach its destination, and message overhead which is
the number of messages transmitted in the protocol per send request. More precisely,
suppose at some time we have n senders, and the protocol takes t steps and M messages
to deliver the n messages to their destination, then the time delay is t and the message
overhead is M/n. For simplicity we assume a synchronous communication model.

Current solutions can be divided into three groups:

Solutions assuming a trusted party. A simplified solution of this type is: “To send a
message m to b, send (m,b) encrypted to the trusted party and ask it to send m

to b”. For a survey of such solutions look at Danezis and Diaz [14, Sect. 2].
Heuristic solutions. Many papers offer a protocol, and sometimes even propose an at-

tack model, but do not provide a security proof. The most notable example of this
approach is Chaum’s seminal paper from 1979 [6]. This short paper (only two page
long) is full with bright ideas, and is a basis for many follow-ups, including this paper.
We refer the reader to [14, Sect. 3] for a survey on the huge body of work building
upon Chaum’s seminal work. Chaum’s paper suggests a rigorous attack model but
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Table 1. Rigorous protocols with large time delay. The size of the network is N , and there are n � N active
nodes. α is any fixed fraction arbitrarily close to 1

Protocol Resources under adversary control Time delay Remarks

AMPC [20] Fraction α of nodes, fraction α of links O(N) Limited adversary
Large delay

Busses [4] Fraction α of nodes, all links O(N) Large delay

gives no proof. This is also the typical situation for much of the work surveyed in
[14, Sect. 3].
We believe informal work has many disadvantages and often leads to ad hoc solutions
and wrong claims. For example, the protocol Chaum suggested in [6] uses RSA as
an encryption method. In 1989, Pfitzmann and Pfitzmann [22] showed how to use the
multiplicative homomorphism property of RSA to break security of the protocol for
the attack model Chaum claimed. One can, of course, modify the protocol and make
it immune to the attack suggested in [22]. Yet, other attacks exist, and we refer the in-
terested reader to Danezis and Diaz [14, Sect. 3.1] for a nice survey. The bottom line,
in our opinion, is that it is not enough to suggest a protocol with heuristic security,
and instead one should look for a protocol with provable security.

Rigorous work. In 1988, Chaum suggested the DC-Nets protocol [8]. The protocol is
information theoretic secure, and is a special case of secure computation. It guaran-
tees both sender and receiver anonymity and unlinkability, and it is secure against
passive adversaries, as well as some stronger forms of adversaries. The protocol uses
shared secret keys and requires a secure and reliable broadcast mechanism. Further-
more, all nodes have to participate at each stage of the protocol, even if only few of
them actually wish to send a message.
The buses protocol [4] has a rigorous proof, but has a large time delay and a high
message overhead. Again, all nodes have to participate at each stage of the protocol,
leading to a high message overhead when the number of active nodes n is much
smaller than the network size N .
Rackoff and Simon [25] suggested several solutions, some building upon Chaum’s
work [6], giving a variant of Chaum’s protocol a rigorous security proof. Again, all
nodes have to participate at each stage of the protocol, so the protocol has a high mes-
sage overhead when n � N . The analysis proves the protocol has a polylogarithmic
time delay, and this can be improved to O(log2 N) using the techniques of Czumaj
et al. [10] and Czumaj and Kutyłowski [9].1 We remark that our protocol achieves
O(logn) time delay.

In all the above protocols all nodes have to participate at each stage of the protocol,
leading to a high message overhead when n � N . This is a major drawback. Imagine
for example a network with one million users, in which, on average, only 1000 users
wish to send messages at a given time. A protocol that forces all the one million users
to send messages at all times is clearly impractical. Our goal in this paper is to show a
rigorous protocol having low-message overhead.

1 It seems that O(log2 N) is the correct time delay for the protocol suggested in [25]. This is because the
protocol uses O(logn) stages, each requiring mixing messages within certain subgroups of nodes.
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Table 2. Rigorous protocols with small time delay but high message overhead. Notation is as in Table 1

Protocol Resources under adversarial
control

Time delay Message overhead Remarks

Mix-nets + sorting [25] All links, no nodes polylog(N) Npolylog(N) Passive adversary
High message load

DC-nets [8] All nodes, no links O(1) O(N2) Passive adversary
High message load

Our results A constant fraction of links polylog(n) 1 Passive adversary
Low message load

Some of the protocols above have both large time delay and high message overhead
(those are summarized in Table 1) and some have small time delay and high message
overhead (those are summarized in Table 2). The high message overhead and high de-
lay are often pointed out as a great weakness and as a non-realistic assumption when
considering email and Internet networks, see, e.g., Danezis and Diaz [14].

Another protocol with rigorous analysis is Crowds [24]. In Crowds a node takes a
probabilistic decision whether to send the message to its final destination, or to for-
ward it to another intermediate node. The security Crowds provides is very mild (it is
proportional to the path length).

Our goal in this paper is to rigorously analyze a communication protocol based on
Chaum’s idea. Our aim is to show that it is provably unlinkable against passive, non-
adaptive adversaries and has a low message overhead as well as a small time delay even
when the number of active nodes n is much smaller than the network size N .

1.1. Mix-Based Systems

Chaum’s approach to communication anonymity [7] uses two fundamental building
blocks.

A Mix A mix accepts batches of encrypted messages, each with its desired target ad-
dress. It decrypts the messages and then forwards each message to its destination ac-
cording to some predefined order, e.g., the lexicographic order.

Onion Routing Each sender randomly chooses a list of mixes through which the
message is to be routed. The message is then encrypted multiple times, each addi-
tional encryption layer contains the needed information for a specific mix on the path.
Chaum’s protocol also allows returning messages back to the sender without revealing
the sender’s identity even to the receiver. This is achieved by having the message include
two parts, the regular forward message “onion”, and another separate “onion” contain-
ing the needed routing information and encryption keys that allow backward return of
answers. Chaum’s protocol (with some modifications) is the basis to the protocol given
in Sect. 1.4.

1.2. Traffic Analysis and Adversary Model

Chaum’s protocol hides the content of the message and its destination using encryption.
Chaum’s protocol can therefore be seen as a reduction from the unlinkability problem



Provable Unlinkability Against Traffic Analysis with Low Message Overhead 627

to the traffic analysis problem. In the traffic analysis problem, n packets are routed in
the network. The n packets are indistinguishable to the adversary and the only way
the adversary can gain information on the communication is by analyzing the traffic
rather than the messages content. Chaum does not give a formal proof of this reduction
either. Nevertheless, in 2005, Camenisch and Lysyanskaya [11] defined and designed
a provably secure onion routing scheme. Using their work one can see that Chaum’s
protocol is indeed a provable reduction from unlinkability to traffic analysis. In this
paper we concern ourselves only with the traffic analysis problem.

The traffic analysis problem was not analyzed at all in [6]. In fact, Chaum’s protocol
does not withstand malicious adversaries [23] and other attacks (e.g., mix floods and
replay attacks). In 1993, Rackoff and Simon gave a variant of Chaum’s protocol a rigor-
ous analysis. This forced some changes to the attack model. Most importantly, Rackoff
and Simon mainly deal with passive adversaries.

Following Chaum, Rackoff and Simon assume that all communication links and some
constant fraction of the nodes are under adversarial control. In this attack model mixing
can happen only when a honest node receives two or more messages originally sent by
honest senders in the same step. We call this situation node mixing. Rackoff and Simon
set the number of mixes M to equal the number of nodes N , for otherwise very few
mixes take the burden of very many nodes. They also require that all nodes are active
at all times, which leads to the huge message overhead mentioned before when n � N .
We now explain why this choice is unavoidable in this adversarial model.

For simplicity, we assume that at each time there are P nodes wishing to send a
message, H of them are honest and the rest are dishonest. Furthermore, we let the
protocol know N,P and H in advance. As we do not have control over the adversary,
we should be able to deal with the scenario where all the dishonest nodes are active
at all times, and where the number P − H of dishonest active nodes is Ω(N). Also,
as we said before, because of load considerations the protocol chooses M to equal P .
If M � H 2 then, by the birthday paradox, we very rarely expect to see two honest
messages reaching the same mix, and mixing will not take place. We therefore need
the number H , of active honest players, to be at least Ω(

√
M) = Ω(

√
N). In fact, for

the protocol to work well we should have H = Ω(N). Rackoff and Simon simply take
P = N and make all nodes active at all times.

We show that the problem disappears, if we slightly change the attack model (but
still we keep it realistic). Specifically, we replace the assumption that the eavesdropper
controls all the communication links with the assumption that the eavesdropper controls
an arbitrarily large but fixed fraction of the communication links. We show that in this
case the key parameter is only the number n of active honest nodes, regardless of the
number of active dishonest players.

The main difference between the two models is that if the eavesdropper controls all
communication links, then it is necessary to send messages from most of the nodes
(sending dummy ones if necessary), whereas if we assume the eavesdropper only con-
trols many communication links, a small number of messages sent does not prevent
unlinkability within the sets of senders and receivers, and the system may have low
message overload.

Our analysis does not use node mixing. Instead we introduce a paradigm that we
call layer mixing. Layer mixing occurs when two honest nodes communicate with two
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other honest nodes using secure communication links, i.e. links not controlled by the
adversary. Layer mixing can happen even when node mixing does not. To demonstrate
this, assume there are only two active honest nodes. As Chaum pointed out [6], if at
some point the two messages reach the same honest node, then thereafter the adversary
cannot link the senders to the receivers. This is true even if the eavesdropper listens
to all communication links. However, the expected number of rounds needed for this
to happen is linear in the number of mixes in the network. Now we consider the same
situation but for layer mixing: we assume that the adversary listens only to a constant
fraction of the links. We shall see that we need on average O(1) rounds to achieve un-
linkability of these messages. If at some round i the messages are at nodes a and b,
and in the next round they are at nodes c and d such that the eavesdropper does not
listen to any of the four communication links (a, c),(a, d),(b, c) and (b, d), then there-
after the eavesdropper cannot link the senders to the receivers. Indeed, the adversary
cannot distinguish if the messages were sent on the edges (a, c),(b, d) or on the edges
(a, d), (b, c). The probability that the adversary does not listen to these four communi-
cation links at a given moment is constant. Therefore the expected number of rounds to
achieve unlinkability is O(1).2

We remark that since layer mixing is not done in the nodes, we may model a dis-
honest node by labeling all edges entering or leaving it insecure. Assume the fraction
of insecure communication links is blinks, and the fraction of insecure nodes is bnodes.
The fraction of communication links that are labeled insecure because they either enter
or leave an insecure node is at most 2bnodes. Thus, the total fraction of communica-
tion links in the network that are labeled insecure is at most b = blinks + 2bnodes. Thus,
from now on we will only consider the fraction of insecure communication links in the
network.

1.3. Prior Information

All the protocols mentioned so far deal only with unlinkability when the a priori prob-
ability distribution is uniform. In reality, however, the a priori distribution is very far
from uniform. For example, people tend to communicate more often with people speak-
ing their language. The prior information is often very significant and a protocol that is
secure with a priori uniform distribution, might be insecure in general. Our approach is
different in that it guarantees unlinkability for whatever a priori distribution. We believe
that any reasonable definition for unlinkability should deal with prior knowledge.

1.4. The Onion Protocol

The protocol that we consider in this paper is almost identical to the routing protocol
from Rackoff and Simon [25] based on onion-like encryption. Onion-routing can be
considered as an extension of MIX -protocol from Chaum [7].

2 Note that we rely on the assumption that the adversary is non-adaptive. An adaptive adversary may, e.g.,
track a packet p sent at time 0 by v0, by eavesdropping at time t all communication links going out of vt , the
node where packet p is at time t . If vt does not receive any other packet at time t (an event that is likely in
a system where the number of active nodes n is much smaller than the network size N ) then listening on the
edges leaving vt determines vt+1, and eventually the whole communication path.
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We consider a fully connected network, in which every node can send a message
directly to any other node of the network. Moreover, every protocol participant is aware
of all nodes of the network.3

The protocol works as follows: if node A wants to send a message m to node B , then
A picks T − 1 intermediate nodes v1, . . . , vT −1 independently at random from the set
of all nodes. Let Ev denote encryption with the public key of node v. Node A computes

a0 := Ev1

(
v2,Ev2

(
. . .EvT −2

(
vT −1,EvT −1

(
B,EB(m)

)))
. . .

)
,

that is a0 is computed recursively:

ai := Evi+1(vi+2, ai+1) for 0 ≤ i < T − 2 and aT −2 := EvT −1

(
B,EB(m)

)
.

The message a0 is sent to the node v1. This node can decrypt the message and retrieve
the name of the next server on the path—i.e. v2. Generally, node vi “peels off” one
encryption layer, gets the name of the next node on the path and the ciphertext to be
sent there. After T − 1 steps, message EB(m) is delivered to the destination node B .

In fact, to provide high level of security, an implementation must take into account
some details like for example applying an appropriate encryption method (see [22]).
The actual implementation that we use is that of Camenisch and Lysyanskaya [11] who
designed a provably secure onion routing scheme. Using their work we have a provable
reduction from unlinkability to traffic analysis, and we can concern ourselves only with
the traffic analysis problem.

We remark that one can also extend the protocol to handle return messages, e.g., by
using the reversed paths for the return messages as is done in [6]. Also, the protocol
can be adapted to a somewhat less synchronous setting, where all nodes have clocks, all
the clocks are within � accuracy from a common time and there is some time bound
�bound on transmission latency.

1.5. Summary of Results

Most previous work considered passive adversaries that control all communication links
and most communication nodes. We saw in Sect. 1.2 that protocols for such adversaries
are forced to have high message overhead. We weaken the adversary model and consider
passive adversaries that do not control some fraction of the communication links. We
show the following properties of the onion routing protocol against such an adversary:

Low overhead: we do not require that most nodes send messages at all times. We show
that traffic analysis does not provide substantial additional information regardless of
the number of non-active players in the system.

Small delay: we get the upper bound O(logn) on the message delay instead of the
former polylogarithmic bounds.

A priori distributions: unlike previous work, our analysis does not assume the receivers
of the messages are chosen uniformly at random, and it applies for arbitrary a priori
distributions.

3 This is an important assumption; see [16] for security problems for the case when the assumption is not
fulfilled.
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Informally, a protocol is α-unlinkable in an attack model (which in our case includes
passive, non-adaptive adversaries that eavesdrop at most some fixed constant fraction
of communication links in the system) if for any eavesdropper respecting that attack
model, for any fixed public set of senders and receivers, the amount of information
on the actual permutation linking senders to receivers is smaller than α. In Sect. 3 we
explain how we measure the information gain and we formally define α-unlinkability
against an attack model. We prove:

Theorem 1.1. Assume the protocol of Sect. 1.4 runs in a fully connected network with
N nodes, and some constant fraction of the communication links cannot be monitored by
the adversary. Let α(n) be an arbitrary function. Fix some n ≤ N . Suppose the number
of nodes on a path from a sender to a receiver is T = Ω(log n

α(n)
). Then for every n

honest vertices wishing to send a message, the protocol is α(n)-unlinkable.

The actual theorem we prove is stronger and deals, e.g., also with prior information.
The paper is organized as follows. After the preliminaries in Sect. 2, we give Rackoff

and Simon’s definition of unlinkability in Sect. 3 and prove an equivalent variant using
mutual information. In Sect. 4 we prove that our protocol is unlinkable in the no-prior
information case; in Sect. 5 we consider the prior information case. We conclude in
Sect. 6 with some open problems.

2. Technical Preliminaries

2.1. Information Theory

A distribution D over a finite set Λ is a function D:Λ→[0,1] such that
∑

x∈Λ D(x)=1.

For S ⊆ Λ, we denote D(S)
def= ∑

s∈S D(s). If A is a random variable that takes values
from Λ, then for x ∈ Λ by A(x) we denote the probability that the random variable A

takes value x. We measure distance between random variables (and their distributions)
defined over Λ with the �1 norm:

‖D1 − D2‖1
def=

∑

x∈Λ

∣∣D1(x) − D2(x)
∣∣.

The �1 distance is twice the variational distance, namely

‖D1 − D2‖1 = 2 max
S⊆Λ

(
D1(S) − D2(S)

)
.

Let A and B be random variables. By A ⊗ B we denote their product distribution,
and by (A,B) we denote their joint distribution. That is,

Pr
(
A ⊗ B = (a, b)

) def= Pr(A = a) · Pr(B = b),

Pr
(
(A,B) = (a, b)

) def= Pr(A = a ∧ B = b).

Let (A|B = b) denote the random variable A conditioned by the event that B = b.
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Let D be a random variable with values in a finite set Λ. The entropy of the random
variable D is

H(D)
def=

∑

x∈Λ

D(x) · log
1

D(x)

(where we assume that 0 · log 1
0 = 0).

Conditional entropy is defined as follows:

H
(
A|B) def= Eb∈BH

(
A|B = b

)
.

Let us recall that the entropy function is continuous. Moreover, if A and A′ are dis-
tributed over Λ and ‖A − A′‖1 ≤ α for some α < e−1, then

∣∣H(A) − H
(
A′)∣∣ ≤ α

(
log

(|Λ|) + log
(
α−1)) (1)

(see, e.g., [21, Box 11.2]).
The mutual information of random variables A and B is

I(A;B)
def= H(A) + H(B) − H(A,B). (2)

Similarly,

I
(
A;B|C) def= H

(
A|C) + H

(
B|C) − H

(
A,B|C)

.

Recall that the mutual information function is always positive. One way to think about
the mutual information I(A;B) is that it measures the amount of information contained
in A about B . It shows how much knowing the value of A affects our knowledge of B .
The chain rule states that

I(A;B,C) = I(A;B) + I
(
A;C|B)

. (3)

In particular, the mutual information is monotone: for every random variables A,B

and C, I(A;B,C) ≥ I(A;B).
Another important phenomenon expressed by mathematical properties of mutual in-

formation is that knowledge cannot increase without communication. This is captured
in the data processing inequality (see [21, Sect. 11.2.4]). It says that for every determin-
istic or probabilistic function f ,

I
(
f (A,C);B|C) ≤ I

(
A;B|C)

.

We stress that f should be a function of A and C alone.
The relative entropy of two random variables A and B distributed over the same

domain Λ, and having the property that for every x for which Pr(A = x) > 0 we also
have Pr(B = x) > 0, is defined as follows:

D
(
A||B) def=

∑

x∈Λ

Pr(A = x) · log
Pr(A = x)

Pr(B = x)
,
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where if the quantity 0 log 0 appears in the formula, it is interpreted as 0 (see [12,21]).
Relative entropy is not symmetric, i.e., D(A||B) is usually different than D(B||A).
Relative entropy is always non-negative and respects the following inequality:

D
(
A||B) ≥ 1

2 ln 2
‖A − B‖2

1. (4)

In particular, D(A||B) = 0 if and only if A = B . Another simple fact is that

I(A;B) = D
(
(A,B)||A ⊗ B

)
. (5)

These and other basic facts of information theory appear, e.g., in [12] and [21, Chap. 11].

2.2. Markov Chains

We use standard notions from the theory of finite Markov chains, as appearing, e.g., in
[19]. Let M be a homogeneous Markov chain with a finite state space S and a unique
stationary distribution μ. Abusing notation the transition matrix of M will be also de-
noted by M . Let Y 0 = Y be the initial distribution of the chain and Y t = MtY 0 the
distribution at time t . A standard measure of convergence to the stationary distribution
is the mixing time defined as

τM(ε)
def= min

{
T : ∀Y 0 ,∀t≥T

∥∥Y t − μ
∥∥

1 ≤ ε
}
.

2.2.1. Coupling

Coupling (and path coupling) is a very elegant technique to estimate from above the
mixing time of many Markov chains. We define coupling and path coupling below.
We refer the interested reader to Guruswami [18] for examples where coupling is used
and for a comparison of the coupling proof technique with other proof techniques for
proving rapid mixing of Markov chains.

Let M be a homogeneous Markov chain with a finite state space S. Let D be a ho-
mogeneous Markov chain with state space S × S. Define (Y ′, Ỹ ′) = D(Y, Ỹ ), i.e., the
transition matrix of D applied on the distribution on states defined by (Y, Ỹ ). We say D

marginally agrees with M over Γ ⊆ S × S, if for every (s1, s2) ∈ Γ :
(
Y ′|(Y, Ỹ ) = (s1, s2)

) = (
MY |Y = s1

)
,

(
Ỹ ′|(Y, Ỹ ) = (s1, s2)

) = (
MỸ |Ỹ = s2

)
.

We say D is a coupling [1] for M , if D marginally agrees with M over S × S. Note that
D may introduce arbitrary dependencies between Y ′ and Ỹ ′ as long as marginally Y ′
and Ỹ ′ develop as M .

The mixing time of M may be bounded using the following lemma:

Lemma 2.1 (The Coupling Lemma). Suppose D is a coupling for a Markov chain M ,
(Y t , Ỹ t ) = Dt(Y 0, Ỹ 0). If for every initial state (y0, ỹ0) for (Y 0, Ỹ 0) and t ≥ T ,

Pr
[
Y t �= Ỹ t |(Y 0, Ỹ 0) = (y0, ỹ0)

] ≤ ε,

then τM(ε) ≤ T .
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2.2.2. Path Coupling

The path coupling construction [3] reduces the task of finding a coupling that works on
all pairs of states, to that of finding one that needs to work only on states in a subset Γ .
Formally,

Lemma 2.2 (The Path Coupling Lemma). Let Γ ⊆ S × S be a symmetric relation
whose transitive closure is S × S. For (Y, Ỹ ) ∈ S × S, let d(Y, Ỹ ) be the length of the
shortest path from Y to Ỹ via Γ , and define

K = max
s1,s2∈S

d(s1, s2).

Let M be a homogeneous Markov chain with state space S, and D a homogeneous
Markov chain with state space S × S, such that D marginally agrees with M over Γ ⊆
S × S. Assume there exists a constant β < 1 such that for any (y0, ỹ0) ∈ Γ :

E
[
d
(
D(Y, Ỹ )

)|(Y, Ỹ ) = (y0, ỹ0)
]
< β.

Then,

τM(ε) ≤ ⌈
log

(
Kε−1)/ log

(
β−1)⌉.

2.3. Graph Theory

Let G = (V ,E) be a graph. We say (v1, v2, v3, v4) ∈ V 4 is a crossover, if (v1, v3),

(v1, v4), (v2, v3), (v2, v4) ∈ E. We will use the following lemma:

Fact 2.3 [2, Corollary 2.1]. Let G = (V ,E) be a graph and assume that |E| ≥ f ·(|V |
2

)
. If we choose vertices v1, v2, v3, v4 uniformly at random, then Pr[(v1, v2, v3, v4)

is a crossover] ≥ f 4.

3. Unlinkability

3.1. Unlinkability Measures

Let A and B be two possibly correlated random variables.

Definition 3.1. We say A and B are α-independent, if ‖(A,B) − A ⊗ B‖1 ≤ α.

Note that
∥∥(A,B) − A ⊗ B

∥∥
1 = Ea∈A

∥∥(
B|A = a

) − B
∥∥

1 = Eb∈B

∥∥(
A|B = b

) − A
∥∥

1.

So two random variables are α-independent, if on average knowing one does not affect
much the marginal distribution of the other.

Definition 3.2. We say A and B are α-unlinkable, if I(A;B) ≤ α.
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The following lemma asserts that the two definitions are in a certain sense equivalent.
This equivalence turns out to be very useful, since it enables to use information theoretic
tools and stochastic tools interchangeably in the proofs.

Lemma 3.1. Let A and B be two random variables defined over Λ.

• If A and B are α-unlinkable, then A and B are
√

2 ln 2
√

α-independent.
• If A and B are α-independent for α ≤ e−1, then A and B are δ-unlinkable for

δ = α(log |Λ| + logα−1).

Proof. For the first assertion, by (4) and (5)

∥∥(A,B) − A ⊗ B
∥∥

1 ≤
√

2 ln(2) · D(
(A,B)||A ⊗ B

) = √
2 ln(2) · I(A;B).

For the second assertion denote (A′,B ′) = A⊗B . We have ‖(A′,B ′)−(A,B)‖1 ≤ α so
by (1) we get |H(A′,B ′) − H(A,B)| ≤ δ. On the other hand, by (2) and I(A′;B ′) = 0,
we have

∣∣H
(
A′,B ′) − H(A,B)

∣∣

= ∣∣(H
(
A′) + H

(
B ′) − I

(
A′;B ′)) − (

H(A) + H(B) − I(A;B)
)∣∣ = I(A;B). �

3.2. Unlinkable Communication

Informally, a protocol is unlinkable, if for every set of n senders, n receivers and any
passive eavesdropper that listens to at most 1 − f fraction of links, the random variable
that describes the actual permutation π between senders and receivers has very little
mutual information with the information the eavesdropper knows.

Formally, fix an eavesdropper that at each time step eavesdrops at most 1 − f frac-
tion of the communication links. The eavesdropper is non-adaptive, i.e., it has to choose
which communication links are wiretapped before the protocol starts. We let E denote
the information the eavesdropper has gathered. Specifically, E is a matrix with rows
indexed by time steps t , columns indexed by communication links e, and values taken
from {∗,0,1, . . . , n}, where value i ∈ {0, . . . , n} means positive knowledge that i mes-
sages were sent on that link at time step t , and ∗ means lack of such knowledge.

We now run the protocol. We have N nodes and n honest senders. Let Q0 =
(w0

1, . . . ,w
0
n) be the list of senders. First the senders choose receivers according to the

a priori distribution ΠT , say QT is the list of n receivers (a node occurs multiple times
on the list, if it receives more than one message). Then, each sender w0

i chooses a ran-
dom path w0

i ,w
1
i , . . . ,w

T
i starting with him and ending at the receiver he chose (we

assume that the senders do not know the adversary’s choices). In this way, for every
time t = 0, . . . , T , the n senders determine the following two lists of active nodes (pos-
sibly with repetitions on each list):

• Qt = (wt
1, . . . ,w

t
n)—the list of the n active nodes at time t ordered by the original

senders, so that at time t the ith message is at wt
i .• P t = (vt

1, . . . , v
t
n)—the list of the n active nodes at time t ordered lexicographi-

cally.
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Furthermore, there is a permutation πt such that wt
i = vt

πt (i)
linking between a mes-

sage’s location at time t and its original sender. Note that we may assume Q0 is lexico-
graphically ordered, so that Q0 = P 0 and π0 = id . Informally, P t is a stripped-down
version of Qt that knows the active nodes at time t , but forgets the correspondence to
the original senders, while the permutation πt holds exactly the knowledge needed to
link between a sender and the location of his message at time t . As we explained before,
we do not try to conceal the identities of the senders or receivers, nor the intermediate
nodes. We thus assume the lists P 0, . . . ,P T are public. Let P = (P 1, . . . ,P T −1).

Thus, so far, we have made public the list of n honest senders P 0, the list of re-
ceivers P T , the a priori distribution ΠT and all the information the adversary (control-
ling only 1 − f fraction of communication links) knows. During protocol execution
also the set of intermediate active nodes P becomes public. All this data are public.
Moreover, for technical reasons which will become clear later, we shall also assume
that the adversary has complete knowledge of the communication occurring in all odd
time steps.

We now define a joint distribution (Πt ,Ct ) as the distribution obtained by the follow-
ing sampling process. We pick at random an execution of the protocol. This determines
π0, . . . , πT and the information E the eavesdropper has learned, where E also includes
all the public data (i.e., the set of N nodes, n senders, n receivers, intermediate nodes,
communication occurring in odd time steps, a priori distribution). For every t , we let σ t

be a permutation chosen at random from the set of all permutations consistent with E

(and therefore also with the public data). We then output (πt , σ t ).

Definition 3.3 (α(n)-unlinkability). We say that the protocol run for T steps is α(n)-
unlinkable and β(n)-independent, if for every set of n senders, n receivers, prior distri-
bution ΠT and any passive eavesdropper that listens to at most 1 − f fraction of links,
the random variables ΠT and CT are α(n)-unlinkable and β(n)-independent.

We find this definition pretty strong.
Two remarks are in place. First, we mention that previous definitions did not allow

prior information. This omission is explicit in the work of Rackoff and Simon, and im-
plicit in the vast body of work on “applied” protocols. It seems clear that the assumption
the eavesdropper has no prior information is typically false, e.g., an eavesdropper might
know that residents of China tend to correspond more with other Chinese. We believe
that any reasonable definition for unlinkability should deal with prior knowledge.

Also, we defined unlinkability as the amount of information that leaks given that the
set of senders and receivers is public. However, we do not try to conceal the set of
senders and receivers themselves. It is well known that if the protocol is run several
times and the a priori distribution is not uniform, then the public data of senders and
receivers itself might easily reveal a sender (see, e.g., [13]). Unlinkability means that
the eavesdropper does not gain (much) information beyond this.

4. Unlinkability Without Prior Information

In this section we consider the situation where each sender chooses message destination
uniformly at random. In Sect. 5 we deal with the more general case where messages are
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picked according to some known a priori distribution. All products in this section are
products in the symmetric group Sn.

Theorem 4.1. Let ε > 0 and assume a fraction f of communication links are se-
cure. Suppose the number of nodes on a path from a sender to a receiver is T =
2�ln(2nε−1)/ ln 1

1−f 4 �. Then the protocol is ε-independent and therefore O(ε(n logn+
log ε−1))-unlinkable.

Proof. We define a path coupling process. Let S be the state space Sn × Sn. Let
Y t be distributed according to (Π2t ,C2t ) as defined in Sect. 3. Thus, each step of
Y = {Y t }t∈N corresponds to two steps of the protocol. Y 0 = (id, id) corresponds to
the initial state where π0 = id and the eavesdropper has complete knowledge on it.
To get Y t+1 = (π2t+2, σ 2t+2) from Y t = (π2t , σ 2t ) we pick two random permuta-
tions κ,π ∈ Sn corresponding to the odd and even time steps respectively, and let
π2t+2 = πκπ2t . We let κ be known to the adversary (odd time step communications
are public) and proceed to examine the communication links that were used in the even
time step, to see which were wiretapped and which were not. We then pick a random
permutation σ that is consistent with the communication on the wiretapped commu-
nication links at time 2t + 2 and let σ 2t+2 = σκσ 2t . Thus, we see that Y develops
according to a (homogeneous) Markov chain M whose unique stationary distribution is
USn

× USn
.

Building up towards a path coupling argument for M , we define the set of adjacent
states Γ to contain all pairs ((π,σ ), (π̃ , σ̃ )) ∈ S × S such that there exists i �= j ∈
{1, . . . , n} for which either π = π̃ and σ = σ̃ (i, j) or π = π̃(i, j) and σ = σ̃ .

Note that Γ is symmetric and the transitive closure of Γ is indeed S × S. We let
d((π,σ ), (π̃ , σ̃ )) be the length of the shortest path between (π,σ ) and (π̃ , σ̃ ) via Γ .
Clearly d((π,σ ), (π̃ , σ̃ )) ≤ 2(n − 1).

We now define a path coupling D that marginally agrees with M over Γ . Given
((π0, σ 0), (π̃0, σ̃ 0)) ∈ Γ , we define

(
Y 1, Ỹ 1) = D

((
π0, σ 0),

(
π̃0, σ̃ 0))

as follows. The transition from Y 0 to Y 1 is performed according to the protocol. That
is, when Y 0 is in a state (π0, σ 0), then Y 1 = (πκπ0, σκσ 0).

We now define Ỹ 1. We know that ((π0, σ 0), (π̃0, σ̃ 0)) ∈ Γ , and therefore there exist
i < j ∈ {1, . . . , n} such that either π = π̃ and σ = σ̃ (i, j) or π = π̃ (i, j) and σ = σ̃ .
Consider the locations of the ith and j th messages at time steps 1 and 2, i.e.,

v1 = P 1
κπ0(i)

,

v2 = P 1
κπ0(j)

,

v3 = P 2
πκπ0(i)

,

v4 = P 2
πκπ0(j)

.
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We call (v1, v2, v3, v4) a crossover, if all of the links (v1, v3), (v2, v4), (v1, v4), (v2, v3)

are secure. We now have two cases (guaranteed by the assumption that ((π0, σ 0),

(π̃0, σ̃ 0)) ∈ Γ ):

Case 1: π0 = π̃0, σ 0 = σ̃ 0(i, j).
We let Ỹ 1 = (πκπ̃0, σ̃ κσ̃ 0), where σ̃ is defined as follows:

• If (v1, v2, v3, v4) is not a crossover, then we set σ̃ = σ ,
• otherwise, we set σ̃ = (v3v4)σ , i.e., σ̃ first acts according to σ , and then swaps

the locations of v3 and v4 in the second step of the protocol.

Case 2: π0 = π̃0(i, j), σ 0 = σ̃ 0.
We let Ỹ 1 = (π̃κπ̃0, σκσ̃ 0), where π̃ is defined as follows:

• If (v1, v2, v3, v4) is not a crossover, then we choose π̃ = π ,
• otherwise we choose π̃ = (v3v4)π .

We now claim,

Claim 1. D marginally agrees with M over Γ .

Proof. We only need to show that Ỹ 1 is a faithful copy of M since this is trivial for Y 1.
Assume (Y 0, Ỹ 0) ∈ Γ . Let Ỹ 1 = (π̃κπ̃0, σ̃ κσ̃ 0), and suppose Y 1 = (πκπ0, σκσ 0) for
some κ,π,σ selected according to M . In Case 1, π̃ = π and it is easy to see σ̃ is
selected uniformly at random among all permutations consistent with π and the wire-
tapped links. Case 2 is similar. �

Claim 2. For (Y 0, Ỹ 0) ∈ Γ , E[d(Y 1, Ỹ 1)] ≤ 1 − f 4.

Proof. In both cases, if (v1, v2, v3, v4) is not a crossover at time step 2 of the protocol,
then d(Y 1, Ỹ 1) remains 1. Otherwise step 2 yields d(Y 1, Ỹ 1) = 0. The adversary is
fixed before the active nodes at steps 1 and 2 of the protocol are chosen and the odd
steps ensure these nodes are chosen independently and uniformly at random. Therefore,
by Fact 2.3,

E
[
d
(
Y 1, Ỹ 1)] = Pr

[
(v1, v2, v3, v4) is not a crossover

] ≤ 1 − f 4. �

Finally, Using Lemma 2.2 with β = 1 − f 4 and K = 2n we obtain

τM(ε) ≤ T/2.

This shows ‖(ΠT ,CT ) − USn
× USn

‖1 ≤ ε. Since we are in the no-prior information
case, ΠT × CT = USn

× USn
and therefore the protocol is ε-independent. The bound

on the mutual information follows from Lemma 3.1. �

5. Unlinkability with Prior Information

We now deal with the general case where the a priori distribution Π is not necessarily
uniform. Technically, we show that our protocol is unlinkable by concentrating on the
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middle layer. This is intuitively natural, because the eavesdropper knows the initial per-
mutation Π0 at the beginning, and has partial information about the final permutation
ΠT given by the prior, but the permutation at the middle layer ΠT/2 is masked by the
random choices made throughout the protocol.

Lemma 5.1. Let ΠT be an arbitrary distribution and T = 4�ln(2nε−1)/ ln 1
1−f 8 �.

Then CT/2 and ΠT/2 are ε-independent and therefore O(n logn · ε)-unlinkable.

Proof. We say a node vt
i ∈ P t is associated with a node wT −t

j ∈ P T −t , if the message

that vt
i forwards eventually arrives at wT −t

j . We also say the communication link (w,v)

is associated with the communication link (v′,w′) if w is associated with w′, and v is
associated with v′.

For the proof, we give the eavesdropper the extra knowledge about which node at
level t is associated with which node at level T − t , for every 0 ≤ t ≤ T

2 . Let Ê be
all the information known to the eavesdropper including the additional information we
reveal to the eavesdropper. Let Ĉt be as in Sect. 3, defined with respect to Ê. Let us look
at the first T/2 steps in the protocol. From the eavesdropper’s point of view, n honest
nodes started a no-prior information protocol (it is no-prior information because ΠT/2

is uniform) and each communication link (vt , vt+1) is secure, if both the link (vt , vt+1)

and its associated link are secure. Clearly, when a link is secure, the eavesdropper (even
with the additional information we give him) does not know if there was communication
on that link or not.

Furthermore, let a, b, c, d be nodes and a′, b′, c′, d ′ their associated nodes. (a, b, c, d)

is a crossover if and only if both (a, b, c, d) and (a′, b′, c′, d ′) were crossovers before.
Each event happens with independent probability at least f 4. Altogether, the probability
of a crossover is at least f 8. Thus, from the eavesdropper point of view there are n

honest nodes that run the protocol for T/2 steps, and the probability of a crossover is at
least f 8. We are now in back to the no-prior information case! We therefore can proceed
as in the proof of Theorem 4.1 and conclude that ĈT /2 and ΠT/2 are O(ε) independent
and I(CT/2;ΠT/2) ≤ O(n logn · ε). In particular, I(CT/2;ΠT/2) ≤ I(ĈT /2;ΠT/2) ≤
O(n logn · ε). �

To complete the proof we show that since the eavesdropper gains very little infor-
mation about the middle layer, it must be the case that the eavesdropper does not gain
much information about the last layer. We claim:

Lemma 5.2. I(CT ;ΠT ) ≤ I(CT/2;ΠT/2).

Proof. Let E1 denote the random variable that contains the communication seen by
the eavesdropper throughout the first T/2 steps. Similarly, E2 is the random variable
that contains the communication seen by the eavesdropper throughout the last T/2
steps. We define a probabilistic function f (σ, e2) that given σ ∈ Sn and e2 chooses
a permutation π according to the distribution (ΠT |ΠT/2 = σ ∧ E2 = e2).

Note that f (ΠT/2,E2) = ΠT because we may think of it as first picking πT/2, e1, e2
according to the correlated distributions (ΠT/2,E1,E2), and then picking πT accord-
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ing to the distribution (ΠT |ΠT/2 = πT/2,E1 = e1,E2 = e2) = (ΠT |ΠT/2 = πT/2,

E2 = e2) which is what f (πT/2, e2) does.
Now, by the chain rule (3): I(ΠT ;E1,E2) = I(ΠT ;E2) + I(ΠT ;E1|E2). Also,

I(ΠT ;E2) = 0. This is so because one way to view the protocol is that the n nodes
first pick π ∈ ΠT , then independently pick random paths for the top T − 1 levels (thus
determining E2) and then complete the first layer to implement π . Thus, E2 is indepen-
dent of ΠT .4 Thus, using the data-processing inequality we get

I
(
ΠT ;E1,E2

) = I
(
ΠT ;E1|E2

) = I
(
f

(
ΠT/2,E2

);E1|E2
)

≤ I
(
ΠT/2;E1|E2

) ≤ I
(
ΠT/2;E1,E2

)
. �

We are now ready to prove

Theorem 5.3. Assume the protocol of Sect. 1.4 runs in a fully connected network with
N nodes, and some constant fraction of the communication links cannot be monitored
by the adversary. Let α(n) be an arbitrary function. Then for every n < N , and every
prior information on the communication, the protocol is α(n)-unlinkable when T =
Ω(log n

α(n)
), where T stands for the number of nodes on the path from the sender to the

receiver.

Proof. Combining Lemmas 5.1 and 5.2 we see that the protocol is (n logn · ε)-
unlinkable after T = c log n

ε
steps, for some constant c. Taking ε = α(n)

n logn
we see that the

protocol is α(n)-unlinkable after O(log n
ε(n)

) = O(log n2 logn
α(n)

) = O(log n
α(n)

) steps. �

We believe the proof clearly demonstrates the advantages one gets when quantifying
unlinkability using information theoretic tools.

6. Extensions and Open Problems

We now briefly discuss active adversaries. Chaum [6] suggests to check the behavior of
possibly dishonest nodes, and Rackoff and Simon make that concrete by using secure
computation and zero knowledge. It would be nice to have a variant of our protocol
(even using secure computation and zero knowledge) that is secure against active ad-
versaries and yet has low message overhead.

In our protocol (and many other protocols) we assume the underlying graph is com-
plete. However, in reality, the actual underlying graph is sparse. Simulating the complete
graph with the actual underlying sparse graph is not good, because for some graphs, the
eavesdropper may gain control of most of the communication links in the complete
graph by taking over a few communication links in the underlying graph. It is an in-
teresting problem to find a provably secure protocol with low message overhead when
the underlying graph has short mixing time. Gogolewski et al. [17] go in this direction
using node mixing.

4 Note that the above argument does not work for E2 and ΠT −1, and indeed E2 and ΠT −1 can be
dependent.



640 R. Berman et al.

References

[1] D.J. Aldous, Random walks on finite groups and rapidly mixing Markov chains, in Séminaire de Prob-
abilités de Strasbourg, vol. 17, (1983), pp. 243–297

[2] N. Alon, Testing subgraphs in large graphs, in FOCS, (2001), pp. 434–439
[3] R. Bubley, M. Dyer, Path coupling: a technique for proving rapid mixing in Markov chains, in FOCS,

(1997), pp. 223–231
[4] A. Beimel, S. Dolev, Buses for anonymous message delivery. J. Cryptol. 16(1), 25–39 (2003)
[5] R. Berman, A. Fiat, A. Ta-Shma, Provable unlinkability against traffic analysis, in Financial Cryptog-

raphy (FC). LNCS, vol. 3110, (2004), pp. 266–280
[6] D. Chaum, Untraceable electronic mail, return addresses, and digital pseudonyms. Thesis (M.S. in Com-

puter Science), University of California, Berkeley (1979)
[7] D. Chaum, Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM

24(2), 84–88 (1981)
[8] D. Chaum, The Dining Cryptographers Problem: unconditional sender and recipient untraceability.

J. Cryptol. 1(1), 65–75 (1988)
[9] A. Czumaj, M. Kutyłowski, Delayed path coupling and generating random permutations. Random

Struct. Algorithms 17(3–4), 238–259 (2000)
[10] A. Czumaj, P. Kanarek, M. Kutyłowski, K. Loryś, Delayed path coupling and generating random per-
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