
J. Cryptol. (2014) 27: 506–543
DOI: 10.1007/s00145-013-9152-y

Cryptography in the Multi-string Model∗

Jens Groth†

Computer Science Department, University College London, London, UK
j.groth@ucl.ac.uk

Rafail Ostrovsky‡

Department of Computer Science and Department of Mathematics, University of California, Los Angeles,
USA

rafail@cs.ucla.edu

Communicated by Yevgeniy Dodis

Received 11 October 2008
Online publication 29 May 2013

Abstract. The common random string model introduced by Blum, Feldman, and
Micali permits the construction of cryptographic protocols that are provably impossible
to realize in the standard model. We can think of this model as a trusted party generating
a random string and giving it to all parties in the protocol. However, the introduction
of such a third party should set alarm bells going off: Who is this trusted party? Why
should we trust that the string is random? Even if the string is uniformly random, how
do we know it does not leak private information to the trusted party? The very point
of doing cryptography in the first place is to prevent us from trusting the wrong people
with our secrets.

In this paper, we propose the more realistic multi-string model. Instead of having
one trusted authority, we have several authorities that generate random strings. We do
not trust any single authority; we only assume a majority of them generate random
strings honestly. Our results also hold even if different subsets of these strings are

∗ An extended abstract appeared in Advances in Cryptology—CRYPTO 2007, Lecture Notes in Computer
Science, vol. 4622, pages 323–341.

† The research of J. Groth leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agree-
ment n. 307937 and the Engineering and Physical Sciences Research Council grants EP/G013829/1 and
EP/J009520/1. The work was partially done while at UCLA Department of Computer Science and while visit-
ing IPAM and supported in part by NSF ITR/Cybertrust grant No. 0456717 and Cybertrust grant No. 0430254.

‡ Work of R. Ostrovsky partially done while visiting IPAM. Supported in part by NSF grants CCF-
0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174, US-Israel BSF grant 2008411,
OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Research Award. This material
is also based upon work supported in part by the Defense Advanced Research Projects Agency through the
U.S. Office of Naval Research under Contract N00014-11-1-0392. The views expressed are those of the author
and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

© International Association for Cryptologic Research 2013

mailto:j.groth@ucl.ac.uk
mailto:rafail@cs.ucla.edu

Cryptography in the Multi-string Model 507

used in different instances, as long as a majority of the strings used at any particular
invocation is honestly generated. This security model is reasonable and at the same time
very easy to implement. We could for instance imagine random strings being provided
on the Internet, and any set of parties that want to execute a protocol just need to agree
on which authorities’ strings they want to use.

We demonstrate the use of the multi-string model in several fundamental crypto-
graphic tasks. We define multi-string non-interactive zero-knowledge proofs and prove
that they exist under general cryptographic assumptions. Our multi-string NIZK proofs
have very strong security properties such as simulation-extractability and extraction
zero-knowledge, which makes it possible to compose them with arbitrary other proto-
cols and to reuse the random strings. We also build efficient simulation-sound multi-
string NIZK proofs for circuit satisfiability based on groups with a bilinear map. The
sizes of these proofs match the best constructions in the single common random string
model.

We also suggest a universally composable commitment scheme in the multi-string
model. It has been proven that UC commitment does not exist in the plain model with-
out setup assumptions. Prior to this work, constructions were only known in the com-
mon reference string model and the registered public key model. The UC commitment
scheme can be used in a simple coin-flipping protocol to create a uniform random
string, which in turn enables the secure realization of any multi-party computation pro-
tocol.

Key words. Common random string model, Multi-string model, Non-interactive
zero-knowledge, Universally composable commitment, Multi-party computation.

1. Introduction

The Problem In the common random string model, the parties executing a protocol
have access to a uniformly random bit-string. A generalization of this model is the
common reference string (CRS) model, where the string may have a non-uniform dis-
tribution. Blum, Feldman and Micali [7] introduced the CRS model (with a uniform
random string) to construct non-interactive zero-knowledge (NIZK) proofs. Some setup
assumption was needed, since only languages in BPP can have non-interactive or two-
round zero-knowledge proofs in the plain model [30]. There are other examples of pro-
tocols that cannot be realized in the standard model but are possible in the CRS model,
for instance universally composable (UC) commitment [12]. The CRS-model has there-
fore found widespread use in the field of cryptology.

Using the CRS-model creates a problem: where should the CRS come from? One
option is to have a trusted third party that generates the CRS, but this raises a trust issue.
It is possible that the parties cannot find a party that they all trust. Would Apple trust a
CRS generated by Microsoft? Would US government agencies be willing to use a CRS
generated by their Russian counterparts?

Alternatively, the parties could generate the CRS themselves at the beginning of the
protocol. If a majority are honest, they could for instance use multi-party computation
to generate a CRS. However, this makes the whole protocol more complicated and re-
quires them to have some initial rounds of interaction. They could also trust a group
of parties to jointly generate a CRS; however, this leaves them with the task of finding
a volunteer group of authorities to run a multi-party computation protocol whenever
a CRS is needed. There is also no guarantee that different sets of parties can agree on
trusting the same group of authorities, so potentially this method will require authorities
to participate in many generations of CRS’s.

508 J. Groth and R. Ostrovsky

The Multi-string Model We propose the multi-string model as a solution to the above
mentioned problem. In the multi-string model a number of authorities assist the protocol
execution by providing random strings. If a majority of the authorities are honest the
protocol will be secure.

There are two reasons that the multi-string model is attractive. First, the authorities
play a minimal role in the protocol. They simply publish random strings, they do not
need to perform any computation, be aware of each other or any other parties, or have
any knowledge about the specifics of the protocol to be executed. This permits easy im-
plementation; the parties wishing to execute a protocol can for instance simply down-
load a set of random strings from agreed upon authorities on the Internet. Second, the
security of the protocol only needs to rely on a majority of the authorities being honest
at the time they created the strings. Even if they are later corrupted, the random strings
can still be used. This is in contrast with multi-party computation protocols such as [6,
16,32] where the actual players must be aware of each other at all times with a majority
of players remaining uncorrupted at all times. Also, no matter how untrustworthy the
other parties in your protocol are, the protocol is secure if a majority of the authorities
is honest. In other words, the honesty of a small group of parties can be magnified and
used by any set of parties.

A natural generalization of the uniform random multi-string model described above
is the common reference multi-string model where the strings are sampled with a non-
uniform distribution. Since it is easier to generate uniform random strings and they
can be sampled without learning any secret trapdoor information about them we are
most interested in the uniform random multi-string model. However, for some of our
results the common reference multi-string model permits a relaxation of the underlying
cryptographic assumptions.

Related Work In the context of non-interactive proofs witness-indistinguishablity can
be obtained without a CRS [3,39] or zero-knowledge may be obtained using super-
polynomial simulation techniques [1]. But it is impossible to construct non-interactive
zero-knowledge proofs under standard assumptions without some sort of setup [30]. To
the best of our knowledge the multi-string model is the simplest trustworthy setup.

Multi-party computation is possible under computational assumptions when an hon-
est majority is available [32] and information theoretically when more than 2/3 of the
parties are honest [6,16]. However, if more parties are corrupt general multi-party com-
putation is impossible without some setup. Canetti, Lindell, Ostrovsky, and Sahai [14]
used the CRS-model as a setup to overcome this problem. As an alternative, Barak,
Canetti, Nielsen, and Pass [2] suggested the registered public key model as a relaxed
setup that makes multi-party computation possible. In the registered public key model,
parties can only register correctly generated keys. While there is no longer a common
reference string in the registered public key model, the underlying problem still persists:
who is the trusted party that will check that the parties only register correctly generated
public keys?

In the information-theoretic setting Beaver suggested commodity-based [4] and
server-assisted [5] cryptography where multi-party computation is made possible with
the assistance of third parties that are oblivious to the actual protocol executed as a way
to reduce the involvement of multiple parties. In his protocols the servers give distinct

Cryptography in the Multi-string Model 509

correlated values to the parties in the protocol. We on the other hand rely on computa-
tional assumptions, but get a simpler setup model. In the multi-string model each server
provides the same input to all parties and in the uniform random multi-string model this
input is just a random bit-string.

Results As argued above, the multi-string model is a reasonable and simple setup as-
sumption. The next question is whether there are interesting protocols that can be se-
curely realized in the multi-string model. We will answer this question affirmatively
in two separate directions: Our first set of results give constructions of NIZK proofs
in the multi-string model. Our second set of results give UC commitment and general
UC-secure multi-party computation in the multi-string model in the presence of adap-
tive adversaries. We stress that different parties may have different beliefs about which
common strings were generated by honest parties and which were generated maliciously
and that our results hold despite these different beliefs (even if only a subset of strings
are used) as long as the number of honestly generated strings used in any application
satisfies the threshold.

1.1. Non-interactive Zero-Knowledge

A zero-knowledge proof [32,34] is a two-party protocol, where a prover tries to convince
a verifier of the truth of some statement, typically membership of an NP-language. The
proof should have the following three properties: completeness, soundness, and zero-
knowledge. Completeness means that a prover who has an NP-witness for the truth of
the statement can convince the verifier. Soundness means that if the statement is false,
then it is impossible to convince the verifier. Zero-knowledge means that the verifier
does not learn anything else from the proof than the fact that the statement is true. In-
teractive zero-knowledge proofs are known to exist in the plain model without a CRS,
however, non-interactive and 2-round zero-knowledge proofs only exist for trivial lan-
guages [30]. Instead, much research has gone into constructing non-interactive zero-
knowledge proofs in the CRS-model [7,8,18,21–24,26,39,41].

Multi-string NIZK We define the notion of multi-string NIZK proofs in Sect. 2. In the
definitions, the adversary sees honestly generated strings and pick the ones she likes.
The adversary may also generate some of the strings itself, possibly in a malicious and
adaptive manner. Our definition of multi-string NIZK proofs calls for completeness,
soundness and zero-knowledge to hold in a threshold manner. If tc out of n common
reference strings are honest, then the prover holding an NP-witness for the truth of the
statement should be able to create a convincing proof. If ts out of n common reference
strings are honest, then it should be infeasible to convince the verifier of a false state-
ment. If tz out of n common reference strings are honestly generated, then it should be
possible to simulate the proof without knowing the witness.

It is desirable to minimize tc, ts , tz. As we shall see, tc = 0 is achievable, however,
multi-string soundness and multi-string zero-knowledge are complementary in the sense
that there is a lower bound ts + tz > n for non-trivial languages, see Sect. 2.

A natural question is under which assumptions we can obtain multi-string NIZK
proofs. We prove that if one-way functions exist then the existence of single-string
NIZK proofs imply the existence of multi-string NIZK proofs.

510 J. Groth and R. Ostrovsky

Beyond Vanilla Multi-string NIZK It is undesirable to require a group of authorities
to produce random strings for each proof we want to make. We prefer it to be possible
to use the same strings over and over again, so each authority has to produce only one
single random string. We must therefore consider a setting, where multiple protocols
may be running concurrently and where the adversary simultaneously acts as prover in
some multi-string NIZK proofs and as verifier in other multi-string NIZK proofs. When
the protocol designer has to prove security in such a setting, some of the proofs are
simulated while we still need other proofs to be sound. Moreover, in some cases we
may want to extract the witness from a proof. To enable security proofs, where we have
both simulations of some proofs and witness extraction of other proofs going on at the
same time, we introduce the notions of simulation-extractable multi-string NIZK and
extraction zero-knowledge multi-string NIZK.

In simulation-extractable multi-string NIZK, we require that it be possible to extract
a witness from the proof if ts strings are honestly generated, even if the adversary sees
simulated proofs for other statements. In extraction zero-knowledge, we require that
if there are tz honest strings, then even if the adversary sees extractions of witnesses
in some proofs, the other proofs remain zero-knowledge and reveal nothing. We offer
a multi-string NIZK proof based on general assumptions, which is both simulation-
extractable and extraction zero-knowledge.

Multi-string NIZK Proofs from Bilinear Groups Groth, Ostrovsky, and Sahai [39] con-
structed NIZK proofs from groups with a bilinear map. Their CRS contains a descrip-
tion of a bilinear group and a set of group elements. The group elements can be chosen
such that the CRS gives either perfect soundness or perfect zero-knowledge. Soundness
strings and simulation strings are computationally indistinguishable, so this gives an
NIZK proof in the CRS model.

There is a technical hurdle to overcome when trying to apply their techniques in the
multi-string model: single-string NIZK proofs rely on the common reference string to
contain a description of a bilinear group. In the multi-string model, authorities generate
their random strings obliviously of other authorities. There is therefore no agreement
on which bilinear group to use. One might try to let the prover pick the bilinear group,
however, this too causes problems since now we need to set up the random strings such
that they will work for many choices of bilinear groups.

We resolve these problems by inventing a novel technique to “translate” common
reference strings in one group to common reference strings in another group. Each au-
thority picks its own bilinear group and the prover also picks a bilinear group. Using
our translation technique, we can translate simulation reference strings chosen by the
authorities to simulation reference strings in the prover’s bilinear group. Similarly, we
can translate soundness reference strings chosen by the authorities to soundness refer-
ence strings in the prover’s bilinear group.

The resulting multi-string NIZK proofs for circuit satisfiability have size O((n +
|C|)k), where n is the number of random strings, |C| is the size of the circuit, and k is
a security parameter specifying the size of a group element. Typically n will be much
smaller than |C|, so this matches the best single-string NIZK proofs of [39] that have
complexity O(|C|k).

Cryptography in the Multi-string Model 511

1.2. Multi-party Computation

Canetti’s UC framework [11] defines secure execution of a protocol under concurrent
execution of arbitrary protocols. Informally a protocol is UC secure if its execution is
equivalent to the parties handing their protocol inputs to an honest trusted third party that
computes everything securely and returns the resulting outputs to the involved parties.
We refer the reader to Sect. 6 for a sketch of the UC framework.

UC Commitment It is known that in the plain model any (well-formed) ideal func-
tionality can be securely realized if a majority of the parties are honest. On the other
hand, there are certain functionalities that are provably impossible to realize in the plain
model if half or more of the parties may be corrupted. An example of an unrealizable
two-party functionality in the plain model is UC commitment [12].

We demonstrate that in the multi-string model UC commitment can be securely re-
alized. The key idea in this construction is to treat each common random string as the
key for a commitment scheme. By applying threshold secret sharing techniques, we can
spread the message over several commitments and tolerate a minority of fake common
reference strings.

General Multi-party Computation Canetti, Lindell, Ostrovsky, and Sahai [14] showed
that any (well-formed) ideal functionality can be securely realized in the CRS-model,
even against adversaries that can adaptively corrupt arbitrary parties and where parties
are not assumed to be able to securely erase any of their data. However, it was an open
question where the CRS should come from, since the parties provably could not com-
pute it themselves.

Armed with our multi-string UC commitment it is straightforward to solve the prob-
lem. We run a coin-flipping protocol using the UC commitment given above to create
a CRS. We can then use the CRS to securely realize any ideal functionality. This re-
sult points out a nice feature of the multi-string model; it scales extremely well. We
just require a majority of the authorities to be honest. Then no matter which group of
parties, even if it is a large group of mostly untrustworthy parties, we can magnify the
authorities’ honesty to enable this entire group to do secure computation.

UC Multi-string Model We formalize the multi-string model in the UC framework as
an ideal functionality that provides random strings and allows the adversary to inject a
minority of malicious strings before a protocol execution. This functionality is easy to
implement with a set of authorities that provide random strings on request.

We note that each string should only be used in one protocol; we do not guarantee
security if many protocols use the same strings. Canetti, Dodis, Pass, and Walfish [15]
have demonstrated that it is not possible to have one fixed global common random
string that is used for multiple arbitrary protocol executions and this result extends to
the multi-string model. Orthogonally to our work, they instead suggest the augmented
common reference string model where general UC secure multi-party computation is
possible.

512 J. Groth and R. Ostrovsky

Follow-up Works The conference version of this article [38] initiated the study of con-
structing UC secure protocols without relying on a single trusted external entity. In other
words, one of the important contributions of our work is to initiate research where the
beliefs in which cryptographic objects (e.g., reference strings) have the correct proper-
ties need not be agreed upon by all players, and different players may have different
beliefs. There were a number of follow-up works (that consider not just random strings
but also other cryptographic gadgets) where different participants may have different
beliefs [28,35].

2. Definitions

We model algorithms and adversaries as Turing machines. They get a security parameter
k as input written in unary, which we will often omit writing explicitly. The adversary
may be an interactive Turing machine that keeps state between different invocations and
may or may not have bounded running time.

We say a function ν : N → [0;1] is negligible if for all constants c > 0 there exists a
Kc so for all k > Kc we have ν(k) < k−c . For two functions f,g we write f (k) ≈ g(k)

if |f (k) − g(k)| is negligible. We say f is overwhelming if f (k) ≈ 1.
Let R be a polynomial time computable binary relation. For pairs (x,w) ∈ R we call

x the statement and w the witness. Let L be the NP-language consisting of statements
in R.

A multi-string proof system for a relation R consists of probabilistic polynomial time
algorithms K,P,V , which we will refer to as, respectively, the key generator, the prover
and the verifier. The key generation algorithm can be used to produce common refer-
ence strings Σ . We are most interested in the case where the key generator outputs a
uniformly random string of polynomial length �(k) but for the sake of generality we
permit other types of key generators in our definitions as well.

The prover takes as input (�Σ,x,w), where �Σ is a tuple of n common refer-
ence strings and (x,w) ∈ R, and produces a proof π . The verifier takes as input
(�Σ,x,π) and outputs 1 if the proof is acceptable and 0 if rejecting the proof. We call
(K,P,V) a (tc, ts, tz, n)-NIZK proof system for R if it has the (tc, n)-completeness,
(ts , n)-soundness and (tz, n)-zero-knowledge properties defined below. We remark that
(1,1,1,1)-NIZK proofs correspond to standard NIZK proofs in the common reference
string model (with composable zero-knowledge [37], which is stronger than the stan-
dard definition of zero-knowledge).

(tc, n)-COMPLETENESS Completeness means that the prover can create acceptable
proofs for true statements when at least tc out of n common reference strings have been
generated honestly.

Definition 1. (K,P,V) is (perfectly) (tc, n)-complete if for all non-uniform polyno-
mial time adversaries A we have

Pr
[
(�Σ,x,w) ← AK

(
1k

);π ← P(�Σ,x,w) : V (�Σ,x,π) = 1 or (x,w) /∈ R
] = 1,

Cryptography in the Multi-string Model 513

where K is an oracle that on the ith query outputs Σi ← K(1k) and the tuple �Σ =
(Σ1, . . . ,Σn) output by A includes at least tc common reference strings (possibly with
repetition) generated by K .

The protocols we construct in this paper are (tc, n)-complete for all 0 ≤ tc ≤ n. This
means that the prover always outputs an acceptable proof whenever (x,w) ∈ R; even if
all the common reference strings are chosen adversarially. We remark that with tc = 0
the adversary could in principle choose all Σi = ⊥. Typically we handle this by us-
ing a default common reference string such as Σ = K(1k;0) in place of bad common
reference strings.

The definition could be generalized slightly to computational (tc, n)-completeness
where the equality only needs to hold approximately. If the verifier is deterministic the
multi-string NIZK proof can easily be made perfectly complete though by letting the
prover use the witness itself as a replacement proof in the negligibly few occasions
where the normal NIZK proof is not accepting. The same holds for single-string NIZK
proofs and indeed all known constructions of single-string NIZK proofs can easily be
made perfectly complete, so we will with little loss of generality assume throughout the
paper that both multi-string and single-string NIZK proofs are perfectly complete.

(ts, n)-SOUNDNESS Soundness says that an adversary cannot forge a proof when at
least ts out of n common reference strings have been honestly generated.

Definition 2. (K,P,V) is (statistically) (ts , n)-sound if for all adversaries A we have

Pr
[
(�Σ,x,π) ← AK

(
1k

) : V (�Σ,x,π) = 1 and x /∈ L
] ≈ 0,

where K on the ith query outputs Σi ← K(1k) and the tuple �Σ = (Σ1, . . . ,Σn) output
by A includes at least ts common reference strings generated by K .

The definition above refers to statistical (ts , n)-soundness, where the adversary has
unbounded time. We call it perfect (ts , n)-soundness, when the probability is exactly 0.

(ts, n)-PROOF OF KNOWLEDGE Soundness prohibits giving valid proofs for false
statements, but does not imply the ability to compute a witness for the statement.
Strengthening the notion of soundness, we define a proof of knowledge as a proof sys-
tem where it is possible to extract a witness from a valid proof.

Definition 3. We say (K,P,V) is a (statistical) (ts , n)-proof of knowledge for R with
extractor (E1,E2) if E1,E2 are probabilistic polynomial time algorithms such that for
all adversaries A we have

Pr
[
Σ ← K

(
1k

) : A(Σ) = 1
] ≈ Pr

[
(Σ, ξ) ← E1

(
1k

) : A(Σ) = 1
]
,

and for all adversaries A we have

Pr
[
(�Σ, �ξ, x,π) ← AE1

(
1k

);w ← E2(�Σ, �ξ, x,π) :
V (�Σ,x,π) = 1 and (x,w) /∈ R

] ≈ 0,

514 J. Groth and R. Ostrovsky

where the oracle E1 on query i returns (Σi, ξi) ← E1(1k) and is queried at most a
polynomial number of times by the adversary, and the adversary outputs �Σ, �ξ with ts
pairs (Σi, ξi) having been generated by E1 and the remaining n − ts pairs being of the
form (Σi,⊥).

As in the definition of soundness, we can define a perfect (ts , n)-proof of knowledge
by requiring the equalities to be exact instead of allowing a negligible difference. A sta-
tistical (ts , n)-proof of knowledge is statistically (ts , n)-sound and a perfect (ts , n)-proof
of knowledge is perfectly (ts , n)-sound.

(tz, n)-ZERO-KNOWLEDGE Zero-knowledge means that the adversary learns nothing
from the proof (besides the truth of the statement) if at least tz out n common reference
strings have been honestly generated. We capture zero-knowledge by requiring that the
proof can be simulated without knowing the witness. A simulator for (K,P,V) con-
sists of two probabilistic polynomial time algorithms (S1, S2). S1 takes 1k as input and
outputs (Σ, τ), respectively a simulation reference string and a simulation trapdoor. S2
takes as input (�Σ, �τ , x,w) and simulates a proof π when �τ = (τ1, . . . , τn) is an n-tuple
with exactly tz values τi
= ⊥.

We will strengthen the standard definition of zero-knowledge by splitting the defini-
tion into two parts. The first part says that the adversary cannot distinguish real common
reference strings from simulation reference strings. The second part, says that even with
access to the simulation trapdoors the adversary cannot distinguish real proofs from
simulated proofs on a set of simulation reference strings.

Definition 4. We say (K,P,V) is (computationally) (tz, n)-zero-knowledge if there
is a simulator (S1, S2) with reference string indistinguishability and simulation indistin-
guishability as described below.

REFERENCE STRING INDISTINGUISHABILITY For all non-uniform polynomial time
adversaries A we have

Pr
[
Σ ← K

(
1k

) : A(Σ) = 1
] ≈ Pr

[
(Σ, τ) ← S1

(
1k

) : A(Σ) = 1
]
.

(tz, n)-SIMULATION INDISTINGUISHABILITY For all non-uniform interactive polyno-
mial time adversaries A we have

Pr
[
(�Σ, �τ , x,w) ← AS1

(
1k

);π ← P(�Σ,x,w) : A(π) = 1
]

≈ Pr
[
(�Σ, �τ , x,w) ← AS1

(
1k

);π ← S2(�Σ, �τ , x) : A(π) = 1
]
,

where S1 on the ith query outputs (Σi, τi) ← S1(1k), and the adversary outputs
(x,w) ∈ R and �Σ, �τ with tz pairs (Σi, τi) generated by S1 and n − tz pairs of the
form (Σi,⊥).

LOWER BOUNDS FOR MULTI-STRING NIZK PROOFS Soundness and zero-knowl-
edge are complementary. Intuitively, an adversary that controls enough strings to sim-
ulate a proof can prove anything and we no longer have soundness. We capture this
formally in the following theorem.

Cryptography in the Multi-string Model 515

Theorem 5. If L is an NP-language with a (tc, ts, tz, n)-NIZK proof system (K,P,V)

(for any tc ≥ 0) then L ∈ BPP or ts + tz > n.

Proof. Assume without loss of generality tc = n and that we have an (n, ts, tz, n)-
NIZK proof system for the relation R defining L with simulator (S1, S2) and ts + tz ≤ n.
We will build a probabilistic polynomial time algorithm that has more than 2/3 chance
of deciding whether x ∈ L or x /∈ L.

We first construct a decision algorithm that works well for large statements. Our
algorithm gets x as input and sets k = |x|. It simulates tz common reference strings
(Σi, τi) ← S1(1k) and generates n − tz common reference strings Σj ← K(1k) setting
τj = ⊥. It then simulates the proof π ← S2(�Σ, �τ , x) and outputs V (�Σ,x,π). It is clear
that this is a probabilistic polynomial time algorithm.

Let us analyze the probability of the algorithm deciding membership correctly on a
family of worst-case choices of statements {xk}∞k=1 with |xk| = k. For xk /∈ L the (ts , n)-
soundness gives us overwhelming (in k) probability of outputting 0 since n − tz ≥ ts
common reference strings have been generated correctly.

For xk ∈ L the (n,n)-completeness means that a prover with access to a witness wk

with overwhelming probability outputs an acceptable proof if all common reference
strings are generated correctly. The reference string indistinguishability property gives
overwhelming probability of accepting the proof even when some of the common ref-
erence strings are simulated. The (tc, n)-simulation indistinguishability, where we give
(xk,wk) as non-uniform advice to A, shows that a simulated proof also has overwhelm-
ing probability of being accepted. We therefore have overwhelming probability of the
algorithm outputting 1 on xk ∈ L.

We now have an algorithm that decides membership of L correctly with overwhelm-
ing probability as the size of the statements grows. This implies that there is at most a
constant number of statements for which the algorithm has less than 2/3 probability of
giving the right decision. We get a BPP decision algorithm for L by hardcoding these
statements and the corresponding membership decision into our algorithm. �

It is in the verifier’s interest to minimize ts to make it more probable that the protocol
is sound and it is in the prover’s interest to minimize tz to make it more probable that the
protocol is zero-knowledge. In many cases, choosing n odd and setting ts = tz = n+1

2
will be a reasonable compromise. However, there are also cases where it is appropriate
to have an imbalance between ts and tz. Consider for instance the case, where Alice
wants to e-mail an NIZK proof to Bob, but does not know Bob’s preferences with re-
spect to common reference strings. She may pick a set of common reference strings and
make a multi-string proof. Bob did not participate in deciding which common reference
strings to use, however, if they belong to trustworthy authorities he may be willing to
believe that one of them is honest. On the other hand, Alice gets to choose the authori-
ties, so she may be willing to believe that all of them are honest. The appropriate choice
in this situation, is a multi-string NIZK proof with ts = 1, tz = n.

SIMULATION-SOUNDNESS In security proofs it is often useful to simulate a proof for
a false statement. However, seeing a simulated proof for a false statement might enable
an adversary to generate more proofs for false statements. We say a multi-string NIZK

516 J. Groth and R. Ostrovsky

proof is simulation-sound if an adversary cannot prove any false statement even after
seeing simulated proofs of arbitrary statements.

Definition 6. A (tc, ts , tz, n)-NIZK proof system (K,P,V) with simulator (S1, S2) is
simulation-sound if for all non-uniform polynomial time adversaries A we have

Pr
[
(�Σ,x,π) ← AS′

1,S
′
2(·,·,·)(1k

) : (�Σ,x,π) /∈ Q and x /∈ L and V (�Σ,x,π) = 1
]≈ 0,

where S′
1 on query i runs (Σi, τi) ← S1(1k) and returns Σi , and S′

2 on input (�Σj, Ij , xj)

where Ij contain tz indices corresponding to common reference strings in �Σj that have
been generated by S1, returns π ← S2(�Σj, �τj , xj) where τj containing the tz simulation
trapdoors generated by S1 corresponding to the indices in Ij in the same positions and
the remaining entries are ⊥, and Q is a list of statements and corresponding proofs
(�Σj,xj ,πj) in the queries to S′

2.

SIMULATION-EXTRACTABILITY Since we are working in the multi-string model, we
assume strings can be used by anybody who comes along. Knowledge extraction and
zero-knowledge may both be very desirable properties, however, we may also imagine
security proofs where we at the same time need to extract witnesses from some proofs
and simulate other proofs. This joint simulation/extraction is for instance often seen in
security proofs in the UC framework [11].

Combining simulation-soundness and knowledge extraction, we may therefore re-
quire that even after seeing many simulated proofs, whenever the adversary makes a new
proof we are able to extract a witness. We call this property simulation-extractability.
Simulation-extractability implies simulation-soundness, because if we can extract a wit-
ness from the adversary’s proof, then obviously the statement must belong to the lan-
guage in question.

Definition 7. We say the (tc, ts , tz, n)-NIZK proof of knowledge (K,P,V) with sim-
ulator (S1, S2) and extractor (E1,E2) is simulation-extractable if there is a probabilistic
polynomial time algorithm SE1 that outputs (Σ, τ, ξ) where (Σ, τ) is distributed iden-
tically to the output of S1, and for all non-uniform polynomial time adversaries A we
have

Pr
[
(�Σ, �ξ, x,π) ← ASE′

1,S
′
2(·,·,·)(1k

);w ← E2(�Σ, �ξ, x,π) :
(�Σ,x,π) /∈ Q and (x,w) /∈ R and V (�Σ,x,π) = 1

]≈ 0,

where SE′
1 on query i outputs (Σi, ξi) from (Σi, τi, ξi) ← SE1(1k), and S′

2 on input
(�Σj, Ij , xj) outputs πj ← S2(�Σj, �τj , xj) where �τj as in the definition of simulation-
soundness is such that the tz pairs (Σi, τi) in (�Σj, �τj) corresponding to the indices in
Ij have been generated by SE′

1 and the remaining pairs are of the form (Σi,⊥), and
Q is a list of statements and corresponding proofs (�Σj,xj ,πj) made by S′

2, and �Σ, �ξ
contains exactly ts pairs (Σi, ξi) generated by SE′

1 and the remaining pairs are of the
form (Σi,⊥).

Cryptography in the Multi-string Model 517

EXTRACTION ZERO-KNOWLEDGE Combining simulation soundness and knowledge
extraction, we may also require that even after seeing many extractions it should still
be hard to distinguish real proofs and simulated proofs from one another. This defini-
tion resembles the definition of public-key encryption secure against chosen ciphertext
attack.

Definition 8. We say the (tc, ts , tz, n)-NIZK proof of knowledge (K,P,V) with sim-
ulator (S1, S2) and extractor (E1,E2) is extraction zero-knowledge if there is a proba-
bilistic polynomial time algorithm SE1 that outputs (Σ, τ, ξ) with an identical distribu-
tion to S1 when restricted to (Σ, τ) and for all non-uniform polynomial time adversaries
A we have

Pr
[
(�Σ,x,w) ← ASE′′

1 ,E′
2(·,·,·,·)(1k

);π ← P(�Σ,x,w) :
AE′

2(·,·,·,·)(π) = 1 and (x,w) ∈ R
]

≈ Pr
[
(�Σ,x,w) ← ASE′′

1 ,E′
2(·,·,·,·)(1k

);π ← S2(�Σ, �τ , x) :
AE′

2(·,·,·,·)(π) = 1 and (x,w) ∈ R
]
,

where SE′′
1 on query i outputs (Σi, τi) from (Σi, τi, ξi) ← SE1(1k), and E′

2 on input
(�Σj, Ij , xj ,πj) outputs w ← E2(�Σj, �ξj , xj ,πj) where Ij contains exactly ts indices
corresponding to strings Σi in �Σj generated by SE′′

1 and �ξj in the same positions has
the corresponding ξi extraction keys and ⊥ in all other positions, and after seeing π the
adversary does not make a query of the form (�Σ,∗, x,π).

3. Multi-string NIZK Proofs Based on General Assumptions

As a warm-up, we will start out with a simple construction of a multi-string NIZK
proof that works for tc = 0 and all choices of ts , tz, n where ts + tz > n. We use two
tools in the construction, a length-doubling pseudorandom generator PRG and a zap
(�zap,Pzap,Vzap).

ZAPS Zaps, introduced by Dwork and Naor [20], are two-round public coin witness-
indistinguishable proofs, where the verifier’s first message is a random string that can
be fixed once and for all and be reused in subsequent zaps. It follows from Dwork and
Naor’s construction that zaps exist if NIZK proofs exist in the common random string
model.

A zap for the NP-relation R is a triple (�zap,Pzap,Vzap), consisting of an input-
increasing polynomial �zap, a probabilistic polynomial time prover Pzap and a proba-
bilistic polynomial time verifier Vzap. Given an �zap(k)-bit random string σ , a statement
x and a witness w such that (x,w) ∈ R, the prover outputs a proof π . The verifier given
σ,x,π outputs 1 if accepting and 0 if rejecting the proof. The zap is complete, sound,
and witness-indistinguishable as defined below.

518 J. Groth and R. Ostrovsky

Definition 9 (Completeness of zap). We say (�zap,Pzap,Vzap) is (perfectly) complete
if for all (x,w) ∈ R we have

Pr
[
σ ← {0,1}�zap(k);π ← Pzap(σ, x,w) : Vzap(σ, x,π) = 1

]= 1.

Definition 10 (Soundness of zap). We say (�zap,Pzap,Vzap) is (statistically) sound if
for all adversaries A we have

Pr
[
σ ← {0,1}�zap(k); (x,π) ← A(σ) : x /∈ L ∧ Vzap(σ, x,π) = 1

]≈ 0.

Definition 11 (Witness-indistinguishability of zap). We say (�zap,Pzap,Vzap) is (com-
putationally) witness-indistinguishable if for all non-uniform polynomial time interac-
tive adversaries A we have

Pr
[
σ ← {0,1}�zap(k); (x,w0,w1) ← A(σ);b ← {0,1};π ← Pzap(σ, x,wb) :

A(π) = b
]≈ 1

2
,

where we require A outputs (x,w0,w1) such that (x,w0) ∈ R and (x,w1) ∈ R.

We will use zaps for circuit satisfiability. The verifier may not know the size of the
circuit when generating the common reference string so we need zaps that work for
arbitrarily large circuits. Following Dwork and Naor’s construction such zaps exist if
we have NIZK proofs that work for arbitrarily large circuits. Using the non-interactive
version of Naor’s statistically binding commitment scheme with security based on the
existence of one-way functions [25,43] such an NIZK proof can be constructed by com-
mitting to each wire-value in the circuit and making NIZK proofs for each wire commit-
ment that it contains 0 or 1 and making NIZK proofs for each gate that the committed
values respect the gate. We conclude that one-way functions can be used to stretch NIZK
proofs to work for arbitrary circuit sizes and hence to get zaps for arbitrary circuit sizes.

MULTI-STRING NIZK PROOFS A common reference string in our multi-string NIZK
proof will consist of a random value r and an initial message σ for the zap. Given
a statement x ∈ L, the prover makes n zaps using initial messages σ1, . . . , σn for the
statement

x ∈ L or there are tz common random strings where ri is a pseudorandom value.

In the simulation, we create simulation reference strings as r := PRG(τ) enabling the
simulator to make zaps without knowing a witness w for x ∈ L if instead the simulator
knows the seeds of tz pseudorandom values ri .

Common reference string:
Generate r ← {0,1}2k;σ ← {0,1}�zap(k). Output Σ := (r, σ).

Proof: Given input (Σ1, . . . ,Σn), a statement x and a witness w such that (x,w) ∈ R,
replace any malformed Σi with the default CRS Σi = (02k,0�zap(k)) and construct a
polynomial size circuit C that is satisfiable if and only if

x ∈ L or
∣∣{ri | ∃τi : ri = PRG(τi)

}∣∣ ≥ tz.

Cryptography in the Multi-string Model 519

The prover does this using a witness-preserving NP-reduction so it can use w to
compute a witness W for C being satisfiable. For all n common reference strings
generate πi ← Pzap(σi,C,W). Return the proof Π := (π1, . . . , πn).

Verification: Given n common reference strings (Σ1, . . . ,Σn) (again replacing any
malformed Σi with the default CRS (02k,0�zap(k))), a statement x and a proof Π =
(π1, . . . , πn) return 1 if and only if all of them satisfy Vzap(σi,C,πi) = 1, where C

is generated as in the proof.
Simulated reference string: Select τ ← {0,1}k; r := PRG(τ) and σ ← {0,1}�zap(k).

Output ((r, σ), τ).
Simulated proof: Given input (Σ1, . . . ,Σn), (τ1, . . . , τn), x such that there are exactly

tz non-trivial τi where ri = PRG(τi) we wish to simulate a proof Π . As in a proof,
use the witness-preserving NP-reduction to get a circuit C that is satisfiable if and
only if x ∈ L or |{ri | ∃τi : ri = PRG(τi)}| ≥ tz. Use the tz values τi
= ⊥ to get
ri = PRG(τi) and compute a witness W for the satisfiability of C. For all n common
reference strings, generate πi ← Pzap(σi,C,W). Return the simulated proof Π :=
(π1, . . . , πn).

Lemma 12. The construction given above is a (0, ts , tz, n)-NIZK proof with uniformly
random common reference strings for Circuit Satisfiability assuming PRG is a length-
doubling pseudorandom number generator and (�,Pzap,Vzap) is a zap.

Proof. Direct verification of our construction reveals that we have perfect complete-
ness even for tc = 0.

Let us now prove that we have statistical (0, ts, tz, n)-soundness. Any honestly gener-
ated common reference string has negligible probability of containing a pseudorandom
value r . With ts honestly generated strings and tz > n − ts , there is negligible probabil-
ity that Σ1, . . . ,Σn have tz or more pseudorandom values. If x /∈ L, the resulting circuit
C is unsatisfiable. Also, at least one of the common reference strings has a correctly
generated initial message for the zap. By the statistical soundness of the zap there is
negligible probability that there exists a valid zap on this initial message for C being
satisfiable.

We now turn to the question of computational (0, ts , tz, n)-zero-knowledge. Com-
putational reference string indistinguishability follows from the pseudorandomness of
PRG. With at least tz simulated reference strings the only difference between proofs
using the witness of x ∈ L and simulated proofs using the simulation trapdoors is the
witnesses we are using in the zaps. Computational simulation indistinguishability there-
fore follows from a standard hybrid argument using the witness indistinguishability of
the zaps. �

Theorem 13. Assuming one-way functions exist,1 the existence of NIZK proofs for
all NP-languages in the common random string model is equivalent to the existence
of multi-string NIZK proofs for all NP-languages in the uniformly random multi-string
model.

1 Assuming the existence of NIZK proofs the existence of one-way functions is equivalent to the existence
of hard on average languages in NP [45,46].

520 J. Groth and R. Ostrovsky

Proof. If one-way functions exist then pseudorandom generators exist [40]. If NIZK
proofs exist in the common random string model then zaps exist in the common random
string model [20]. Lemma 12 now shows that if one-way functions and NIZK proofs
with common random strings exist then multi-string NIZK proofs exist with uniformly
random strings.

Next, we will show that the existence of (n, ts, tz, n)-NIZK proofs implies the exis-
tence of standard NIZK proofs. The key generator picks n common reference strings
for the NIZK proof and concatenates them to get a single common reference string.
The prover interprets the common reference string as n common reference strings and
runs the multi-string prover. The verifier interprets the common reference string as n

common reference strings and runs the multi-string verifier. Completeness, soundness,
and zero-knowledge follow directly from the multi-string completeness, soundness, and
zero-knowledge. If the multi-string NIZK proof uses random strings then we get a ran-
dom string NIZK proof. �

4. Multi-string Simulation-Extractable NIZK Proofs

We will now construct advanced multi-string NIZK proofs of knowledge that are both
simulation-extractable and extraction zero-knowledge.

To permit the extraction of witnesses, we include a public key for an encryption
scheme secure against adaptive chosen ciphertext attacks (KCCA2,E,D) in each com-
mon reference string. The encryption scheme should have perfect decryption. To deal
with bad public keys injected by the adversary we require without loss of generality that
the encryption algorithm on an invalid public key outputs some ciphertext although with
no guarantees of security or decryptability. In a proof, the prover will make a (ts , n)-
threshold secret sharing of the witness and encrypt the shares under the n public keys.
To extract the witness, the extractor decrypts ts of these ciphertexts and combines the
shares to get the witness.

We will use a strong one-time signature scheme (Ksots,Sign,Vfy) to prevent mod-
ifications of valid proofs. The prover generates a key (vksots, sksots) ← Ksots(1k) that
she will use to sign the proof. The implication is that the adversary who sees simulated
proofs must use a different vksots in her forged proof because she cannot forge the strong
one-time signature.

Each common reference string will contain a random 2k-bit value, which in a sim-
ulation string will instead be a pseudorandom 2k-bit value. The prover will prove that
she encrypted a (ts , n)-threshold secret sharing of the witness, or that she knows how
to evaluate tz pseudorandom functions PRF on vksots using the seeds of the respective
common reference strings. On a real common reference string, this seed is not known
and therefore she cannot make such a proof. On the other hand, in the simulation the
simulator does know these seeds and can therefore simulate without knowing the wit-
ness.

Simulation soundness follows from the adversary’s inability to guess the pseudoran-
dom functions’ evaluations on vksots, even if she knew the evaluations on many other
verification keys.

Zero-knowledge under extraction attack follows from the adaptive chosen ciphertext
attack security of the encryption scheme. Even after many extractions the ciphertexts

Cryptography in the Multi-string Model 521

still reveal nothing about the witness or whether the seed for a pseudorandom function
has been used to simulate a proof.

Common reference string/simulation string: Generate (pk1, dk1), (pk2, dk2) ←
KCCA2(1k); r ← {0,1}2k;σ ← {0,1}�zap(k). Return Σ := (pk1,pk2, r, σ).
The simulators and extractors S1,E1, SE1 will generate the simulated reference
strings in the same way, except for choosing τ ← {0,1}k and r := PRFτ (0). We use
the simulation trapdoor τ and the extraction key ξ := dk1.
In case the adversary supplies us with malformed common reference strings, we re-
place them with the default common reference string Σ := K(1k;0), so in the fol-
lowing we will without loss of generality assume that all common reference strings
have the form (pk1,pk2, r, σ).

Proof: P((Σ1, . . . ,Σn), x,w) where (x,w) ∈ R runs as follows: Generate a key pair
for the strong one-time signature scheme (vksots, sksots) ← Ksots(1k). Use (ts , n)-
threshold secret sharing to get shares w1, . . . ,wn of w. Encrypt the shares as c1i :=
Epk1i

(wi, vksots; r1i) for i = 1, . . . , n and encrypt dummy values c2i ← Epk2i
(02k).

Consider the statement:
“All c1i encrypt (wi, vksots), where w1, . . . ,wn is a (ts , n)-secret sharing of a witness
w such that (x,w) ∈ R or there exist at least tz seeds τi such that ri = PRFτi

(0) and
c2i encrypts PRFτi

(vksots).”
Reduce this statement to a polynomial size circuit C and a satisfiability witness W .
For all i create a zap πi ← Pzap(σi,C,W) for C being satisfiable. Finally, sign every-
thing using the strong one-time signature sig ← Signsksots

(vksots, x,Σ1, c11, c21,π1,

. . . ,Σn, c1n, c2n,πn).
The proof is Π := (vksots, c11, c21,π1, . . . , c1n, c2n,πn, sig).

Verification: To verify Π of the form described above, verify the strong one-time sig-
nature and verify the n zaps π1, . . . , πn.

Extraction: To extract a witness check that the proof is valid. Next, use the ts extraction
keys in �ξ to decrypt the corresponding ts ciphertexts. Check that the plaintexts are of
the form (wi, vksots) and combine the ts secret shares to recover the witness w. If any
of the checks fail return ⊥.

Simulated proof: To simulate a proof use the tz simulation trapdoors in �τ . These are τi

such that ri = PRFτi
(0). As in the proof generate (vksots, sksots) ← Ksots(1k). Create

tz pseudorandom values vi := PRFτi
(vksots). Encrypt the values as c2i ← Epk2i

(vi).
For the other reference strings, just let c2i ← Epk2i

(02k). Let w1, . . . ,wn be a (ts , n)-
threshold secret sharing of 0 and encrypt these values as c1i ← Epk1i

(wi, vksots). Let
again C be the circuit corresponding to the statement
“All c1i encrypt (wi, vksots), where w1, . . . ,wn is a (ts , n)-secret sharing of a wit-
ness w or there exist at least tz seeds τi such that ri = PRFτi

(0) and c2i encrypts
PRFτi

(vksots).”
From the creation of the ciphertexts c2i we have a witness W for C being satisfiable.
Create zaps πi ← Pzap(σi,C,W) for C being satisfiable. Finally, make a strong one-
time signature on everything sig ← Signsksots

(vksots, x,Σ1, c11, c21,π1, . . . ,Σn, c1n,

c2n,πn). The simulated proof is Π := (vksots, c11, c21,π1, . . . , c1n, c2n,πn, sig).

Lemma 14. The construction given above is a (0, ts, tz, n)-NIZK proof of knowledge
for Circuit Satisfiability for all choices of ts + tz > n with simulation-extractability and

522 J. Groth and R. Ostrovsky

extraction zero-knowledge. If the public-key encryption scheme has random public keys
then the construction has uniform random strings.2

Proof. Perfect completeness follows by direct verification. Common reference strings
and simulated reference strings are indistinguishable by the pseudorandomness of the
pseudorandom function PRF. The (tz, n)-zero knowledge property follows from the
extraction zero-knowledge property that we will now prove.

The adversary knows the simulation trapdoors τi , and has access to an extraction
oracle. She selects a statement x and a witness w and has to distinguish a proof on
a simulated reference string created either by the prover using a real witness or the
simulator using the simulation trapdoors. We consider a series of hybrid experiments.

Hybrid 1: This is the experiment where we run the adversary on a simulated reference
string and make the challenge proof using the witness w as a real prover would do.

Hybrid 2: We modify hybrid 1 by encrypting tz pseudorandom values in c21, . . . , c2n

when making the challenge proof. We know tz seeds τi such that ri = PRFτi
(0).

Instead of setting c2i ← Epk2(0
2k), we encrypt c2i ← Epk2(PRFτi

(vksots)).
By the semantic security of the encryption scheme, hybrid 1 and hybrid 2 are com-
putationally indistinguishable.

Hybrid 3: We modify hybrid 2 by reducing the pseudorandom values and the random-
ness used in forming the ciphertexts c21, . . . , c2n to form a witness W for C being
satisfiable. We use this witness in the zaps when creating the challenge proof instead
of using the witness w.
By the witness-indistinguishability of the zaps, hybrid experiments 2 and 3 are indis-
tinguishable.

Hybrid 4: We modify hybrid 3 such that if the adversary’s extraction query is of the
form (�Σ,I, x,Π), where the index contains some i where Σi has been generated by
SE′

1 and c1i is recycled from the challenge proof then the extraction oracle returns ⊥.
To make a valid proof, the adversary has to give a strong one-time signature using
her chosen verification key. By the existential unforgeability of the strong one-time
signature scheme, this verification key has to differ from the verification key vksots
used in the challenge. This means c1i contains the wrong verification key. The regular
behavior of the extraction oracle in hybrid 3 would therefore also be to return ⊥, so
there is negligible difference between hybrid 3 and hybrid 4.

Hybrid 5: We modify hybrid 4 by making a (ts , n)-threshold secret sharing w1, . . . ,wn

of 0 instead of secret sharing w and encrypting these shares as c1i ← Epk1i
(wi, vksots)

in the challenge proof.
Hybrid 4 and hybrid 5 are indistinguishable. We have ruled out that the adversary ever
makes an extraction query requiring decryption of a ciphertext c1i that has been recy-
cled from the challenge proof. A hybrid argument using the chosen ciphertext attack
security of the encryption scheme can now be used to see that the adversary cannot
distinguish encryptions of shares of a threshold secret sharing of w from shares of a
threshold secret sharing of 0. The remaining n − tz < ts shares do not reveal whether
w or 0 has been secret shared.

2 CCA2-secure public-key encryption with random public-keys can for instance be constructed as a variant
of Cramer–Shoup encryption [17] defined over a suitable prime order group since primes can be sampled from
uniform strings and the public key group elements are random.

Cryptography in the Multi-string Model 523

Hybrid 6: We modify hybrid 5 by switching back to the original extraction oracle.
Hybrid 6 is identical to the case where we give the adversary a simulated challenge
proof.
Since there is negligible probability of forging a strong one-time signature, we can
give a similar argument as we did when going from hybrid 3 to hybrid 4 that either
type of extraction oracle with overwhelming probability outputs ⊥ when facing a
query (�Σ,I, x,Π) where the index indicates some i where c1i has been recycled
from the challenge proof.

Next, let us consider simulation-sound extractability. Here the adversary sees the ex-
traction keys but not the simulation trapdoors of the common reference strings generated
by SE′

1. She has access to a simulation oracle and in the end she outputs a statement
and a proof. By the unforgeability of the strong one-time signature scheme, she cannot
reuse a strong verification key vksots used in a simulated proof. Let us look at a simu-
lated reference string generated by SE′

1. Since the adversary does not know the seed for
the pseudorandom function, she cannot encrypt a pseudorandom function evaluation of
vksots. The zaps, of which at least one uses a correctly generated initial message, then
tell us that c11, . . . , c1n contain a (ts , n)-threshold secret sharing of w. Decrypting ts of
these ciphertexts, permits us to reconstruct the witness w.

A similar proof, shows that the construction gives a statistical (0, ts , tz, n)-proof of
knowledge. With overwhelming probability a random 2k-bit value r is not pseudoran-
dom, so by the statistical soundness of the zaps c11, . . . , c1n must encrypt a (ts , n)-
threshold secret sharing of a witness for x ∈ L. �

Theorem 15. If NIZK proofs with uniform random strings and CCA2-secure public
key encryption with uniformly random public keys exist, then multi-string NIZK proof
of knowledge with simulation-extractability and extraction zero-knowledge exist in the
uniform random strings model for all languages in NP.

Proof. CCA2-secure public key encryption implies the existence of one-way func-
tions, from which it is possible to construct both pseudorandom functions [31] and
strong one-way functions. NIZK proofs with uniform random strings imply the exis-
tence of zaps. Lemma 14 now gives us the existence of multi-string NIZK proofs of
knowledge with simulation-extractability and extraction zero-knowledge in the uniform
random strings model. �

5. Multi-string NIZK Proofs from Bilinear Groups

We will use bilinear groups to construct a (0, ts, tz, n)-simulation-sound NIZK proof
for circuit satisfiability consisting of O((n + |C|)k) bits, where |C| is the number of
gates in the circuit and k is a security parameter specifying the size of the bilinear group
elements. Typically, n will be much smaller than |C|, so the complexity matches the
best known NIZK proofs for circuit satisfiability in the single common reference string
model [39] that have proofs of size O(|C|k).

524 J. Groth and R. Ostrovsky

SETUP We will use bilinear groups generated by (p,G,GT , e, g) ← G(1k) such that:

• p is a k-bit prime.
• G,GT are cyclic groups of order p.
• g is a generator of G.
• e : G × G → GT is a bilinear map such that e(g, g) generates GT and for all

a, b ∈ Zp we have e(ga, gb) = e(g, g)ab .
• Group operations, group membership, and the bilinear map are efficiently com-

putable.
• Given a description (p,G,GT , e, g) it is efficiently verifiable that indeed it is a

bilinear group and that g generates G.
• There is an efficient sampling algorithm that given a random string of 61k bits in-

terprets it as 60 statistically close to uniformly random group elements. The sam-
pling algorithm is efficiently reversible, such that given 60 group elements we can
pick at random one of the 61k-bit strings that would lead to sampling them.

• The length of the description of (p,G,GT , e, g) is at most 4k bits.3

• If uniformly random reference strings are desired we will additionally assume G
simply outputs a uniformly random 4k-bit string from which (p,G,GT , e, g) can
be sampled.

The security of our multi-string NIZK proof will rely on the decisional linear (DLIN)
assumption introduced by Boneh, Boyen, and Shacham [10], which says that given
group elements (f, g,h,f r , gs, ht) it is hard to tell whether t = r + s or t is random.
Throughout the paper, we use bilinear groups (p,G,GT , e, g) ← G(1k) generated such
that the DLIN assumption holds for G , which we formally define below.

Definition 16 (DLIN group generator). A bilinear group generator G as described
above is a DLIN group generator if for all non-uniform polynomial time adversaries A

Pr
[
(p,G,GT , e, g) ← G

(
1k

);φ,η, r, s ← Zp; t = r + s :
A

(
p,G,GT , e, f, g,h,f r , gs, ht

) = 1
]

≈ Pr
[
(p,G,GT , e, g) ← G

(
1k

);φ,η, r, s, t ← Zp :
A

(
p,G,GT , e, f, g,h,f r , gs, ht

) = 1
]
.

Example We will offer a class of candidates for DLIN groups as described above.
Consider the elliptic curve y2 ≡ x3 + 1 mod q , where q ≡ 2 mod 3 is a prime. It is
straightforward to check whether a point (x, y) is on the curve. Furthermore, picking
y ∈ Zq and computing x ≡ (y2 − 1)(1+2(q−1))/3 mod q gives us a point on the curve.
The curve has a total of q + 1 points after including also the point at infinity.

When generating bilinear groups, we will pick p as a k-bit prime. We then let
q ≡ 2 mod 3 be the smallest prime4 such that p|q + 1 and define G to be the order p

3 The constant 4 is chosen to exceed the size of current descriptions of bilinear groups. It is, however, easy
to modify our protocol to work whenever the description of the bilinear group is O(k) bits.

4 In other words, q is the smallest prime in the arithmetic progression 3p−1,6p−1,9p−1, Granville

and Pomerance [36] conjecture that it requires O(k2) steps in this progression to encounter such a prime q .

Cryptography in the Multi-string Model 525

subgroup of the curve. The target group is the order p subgroup of F
∗
q2 and the bilinear

map is the modified Weyl-pairing [9]. Verification of (p,G,GT , e, g) being a bilinear
group is straightforward, since it corresponds to checking that p,q are primes such that
p|q + 1 and q ≡ 2 mod 3 and g is an order p element on the curve. A random point on
the curve can be sampled by picking y ← Zq ∪ {∞} and solving for the unique x such
that y ≡ x3 + 1 mod q or letting it be the point of infinity in case y = ∞. A random
element of the group G can be sampled by picking a random point (x, y) on the curve
and raising it to 1+2(q−1)

p
. These sampling processes are reversible since multiplying a

group element with a random point on the curve of order 1+2(q−1)
p

, i.e., a random point
raised to p, gives a random (x, y) on the curve that would generate the group element.

PSEUDORANDOM GENERATORS IN DLIN GROUPS Before proceeding, let us
demonstrate that the DLIN assumption permits the construction of a pseudorandom
number generator. Consider a DLIN group (p,G,GT , e, g). Choose x, y ← Z

∗
p at ran-

dom and set f = gx , h = gy . Given random elements u,v ← G, we can compute
w = u1/xv1/y . The DLIN assumption says that (f,h,u, v,w) is indistinguishable from
(f,h,u, v, r), where r is a random group element from G. In other words, we can cre-
ate a pseudorandom generator (x, y,u, v) �→ (gx, gy, u, v,u1/xv1/y) that stretches our
randomness with an extra group element.

We will need a bigger stretch, so let us generalize the construction above using the
idea of synthesizers from Naor and Reingold [44]. We pick M pairs (xi, yi) ← Z

∗
p ×Z

∗
p

and create corresponding fi = gxi , hi = gyi . We can now stretch 2N group elements
u1, v1, . . . , uN , vN with MN extra group elements by computing wij := u

1/xi

j v
1/yi

j .
If the N pairs of group elements (uj , vj) are chosen at random, then (f1, h1, . . . , fM,

hM,u1, v1, . . . , uN , vN,w11, . . . ,wMN) looks like a random 2M + 2N + MN -tuple of
group elements. To see this, consider the following hybrid experiment EI,J , where we
pick wij at random for pairs (i, j) where i < I ∨ (i = I ∧ j < J) and compute the rest
of the wij ’s according to the method described above. We need to prove that the wij ’s
generated in, respectively, E1,1 and EM,N+1 are indistinguishable.

Consider first experiments EI,J ,EI,J+1 for 1 ≤ I ≤ M,1 ≤ J ≤ N . In case there
is a non-uniform polynomial time adversary A that can distinguish these two ex-
periments, then we can break the DLIN assumption as follows. We have a chal-
lenge (f,h,u, v,w) and wish to know whether w = u1/xv1/y or w is random. We let
fI := f,hI := h and generate all the other fi, hi ’s according to the protocol. We set
uJ := u, vJ := v and wIJ := w. For i < I we pick wij at random. Also, for i = I ,
j < J we pick wij at random. For i = I, j > J we pick rj , sj at random and set
(uj , vj ,wIj) = (f rj , hsj , grj +sj). For j < J we select (uj , vj) at random. Finally, for
i > I we compute all wij according to the protocol. If (u, v,w) is a linear tuple, we
have the distribution from experiment EI,J , whereas if (u, v,w) is a random tuple we
have the distribution from experiment EI,J+1. An adversary distinguishing these two
experiments, therefore permits us to distinguish linear tuples from random tuples. We
conclude the proof by observing EI+1,1 = EI,N+1.

Observe, it is straightforward to provide a witness for (u, v,w) being a linear tuple.
The witness consists of π = uy/x and (u, v,w) is a linear tuple if and only if there is a
π such that e(u,h) = e(f,π) and e(g,πv) = e(w,h). In other words, we can provide

526 J. Groth and R. Ostrovsky

MN proofs πij for wij being correct. Furthermore, all these proofs consist of group
elements and can be verified by checking a set of pairing product equations. It follows
from Groth [37] that there exists a simulation-sound NIZK proof of size O(MN) group
elements for the wij ’s having been computed correctly.

MULTI-STRING NIZK PROOFS FROM DLIN GROUPS One could hope that the con-
struction from Sect. 3 could be implemented efficiently using groups with a bilinear
map. However, this strategy does not work because each common reference string is
generated at random and independently of the others. This means that even if the com-
mon reference strings contain descriptions of groups with bilinear maps, most likely
they are different and incompatible groups.

In our construction, we instead let all the common reference strings describe different
groups and we also let the prover pick a group with a bilinear map. Our solution to
the problem described above, is to translate simulation reference strings created by the
authorities into simulation reference strings in the prover’s group. This translation will
require the use of a pseudorandom generator that we constructed earlier. As mentioned
earlier this pseudorandom generator is constructed in such a way that there exist linear
size simulation-sound NIZK proofs for a value being pseudorandom [37].

Consider a common reference string with group Gi and the prover’s group G. We
will let the common reference string contain a random string ri . The prover will choose
a string si . Consider the pair of strings (ri ⊕ si , si). Since strings can be interpreted
as group elements, we have corresponding sets of group elements in respectively Gi

and G. However, since ri is chosen at random it is unlikely that ri ⊕ si corresponds to
a pseudorandom value in Gi and at the same time si corresponds to a pseudorandom
value in G. Of course, the prover has some degree of freedom in choosing the group
G, but if we are careful and chooses a pseudorandom generator that stretches the input
sufficiently then we can use an entropy argument for it being unlikely that both strings
are pseudorandom values.

Now we use non-interactive zaps and NIZK proofs to bridge the two groups. The
prover will select si such that ri ⊕ si is a pseudorandom value in Gi specified by the
common reference string and give an NIZK proof for this using that common reference
string. In her own group, she gets n values s1, . . . , sn and proves that tz of those are
pseudorandom or C is satisfiable. In the simulation, she knows the simulation trapdoors
for tz reference strings and she can therefore simulate NIZK proofs of ri ⊕ si being
pseudorandom. This means, she can select the corresponding si ’s as pseudorandom val-
ues and use this to prove that there are at least tz pseudorandom values in her own group,
so she does not need to know the satisfiability witness w for C being satisfiable to carry
out the proof in her own bilinear group.

There is another technical detail to consider. We want the construction to be efficient
in n. Therefore, instead of proving directly that there are tz pseudorandom values or C

is satisfiable, we use a homomorphically encrypted counter. In the simulation, we set
the counter to 1 for each pseudorandom value and to 0 for the rest of the values in the
prover’s group. The homomorphic property enables us to multiply these ciphertexts and
get an encrypted count of tz. It is straightforward to prove that the count is tz or C is
satisfiable.

These ideas describe how to get soundness. We can set up the common reference
strings such that they enable us to make simulation-sound NIZK proofs in their bilinear

Cryptography in the Multi-string Model 527

groups. With a few extra ideas, we then get a (0, ts, tz, n)-simulation-sound NIZK proof
for circuit satisfiability when ts + tz > n.

Common reference string/simulation reference string: Generate a DLIN group
(p,G,GT , e, g) ← G(1k). Generate a common reference string for a simulation-
sound NIZK proof on basis of this group σ ← Ksim-sound(p,G,GT , e, g) as in [37].
Also, pick a random string r ← {0,1}61k . Output Σ := (p,G,GT , e, g, σ, r).
If one can sample DLIN groups from uniformly random strings the common refer-
ence strings can be uniformly random bit-strings.
When generating a simulation reference string, use the simulator for the simulation-
sound NIZK proof to generate (σ, τ) ← Ssim-sound(p,G,GT , e, g). Output Σ as de-
scribed above and simulation trapdoor τ .
It is possible to efficiently verify the validity of the bilinear group, the correct length
of r and that σ gives perfect completeness. If either check fails we will assume the
prover and verifier replace it with a default common reference string.

Proof: Given (Σ1, . . . ,Σn),C,w such that C(w) = 1 do the following. Pick a group
(p,G,GT , e, g) ← G(1k). Pick also keys for a strong one-time signature scheme
(vksots, sksots) ← Ksots(1k). Encode vksots as a tuple of O(1) group elements from G.
For each common reference string Σi do the following. Pick a pseudorandom value
with 6 key pairs, 6 input pairs and 36 structured elements. This gives us a total of 60
group elements from Gi . Concatenate the tuple of 60 group elements with vksots to
get O(1) group elements from Gi . Make a simulation-sound NIZK proof, using σi ,
for these O(1) group elements being of a form such that the first 60 of them constitute
a pseudorandom value. From [37] we know that the size of this proof is O(1) group
elements from Gi . Define si ∈ {0,1}61k to be a random string such that ri ⊕ si parses
to the 60 group element pseudorandom value.
From now on we will work in the group (p,G,GT , e, g) chosen by the prover.
Pick pk := (f,h) as two random group elements. This gives us a CPA-secure en-
cryption scheme [10], encrypting a message m ∈ G with randomness r, s ∈ Zp

as Epk(m; r, s) := (f r , hs, gr+sm). For each i = 1, . . . , n we encrypt 1 = g0 as
ci ← Epk(1). Also, we take si and parse it as a tuple zi of 60 group elements.
Make a non-interactive zap π using the group (p,G,GT , e, g) and combining tech-
niques of [39] and [37] for the following statement:

C satisfiable ∨
(

n∏

i=1

ci encrypts gtz ∧ ∀i :

ci encrypts g0 or g1 ∧ (
zi is a pseudorandom value ∨ ci encrypts g0)

)

.

(1)

The zap consists of O(n + |C|) group elements and has perfect soundness.
Sign everything sig ← Signsksots

(vksots,C,Σ1, s1,π1, c1, . . . ,Σn, sn,πn, cn,p,G,

GT , e, g, f,h,π).
The proof is Π := (vksots, s1,π1, c1, . . . , sn,πn, cn,p,G,GT , e, g, f,h,π, sig).

Verification: Given common reference strings Σ1, . . . ,Σn, a circuit C and a proof as
described above, do the following. For all i check the simulation-sound NIZK proofs

528 J. Groth and R. Ostrovsky

πi for ri ⊕ si encoding a pseudorandom value in Gi using common reference string
σi . Verify (p,G,GT , e, g) is a group with a bilinear map. Verify the zap π . Verify
the strong one-time signature on everything. Output 1 if all checks are ok.

Simulated proof: We are given reference strings Σ1, . . . ,Σn, of which tz are simu-
lation strings where we know the simulation trapdoors τi for the simulation-sound
NIZK proofs. We wish to simulate a proof for a circuit C being satisfiable.
We start by choosing a group (p,G,GT , e, g) ← G(1k) and public key f,h ← G.
We create ciphertexts ci ← Epk(g

1) for the tz simulation reference strings, where we
know the trapdoor τi , and set ci ← Epk(g

0) for the rest. We also choose a strong
one-time signature key pair (vksots, sksots) ← Ksots(1k).
For tz of the common reference strings, we know the simulation key τi . This permits
us to choose an arbitrary string si and simulate a proof πi that ri ⊕ si encodes a
60 element pseudorandom value. This means, we are free to choose si such that it
encodes a pseudorandom value zi in G

60. For the remaining n − tz < ts reference
strings, we select si such that ri ⊕ si does encode a pseudorandom value in Gi and
carry out a real simulation-sound NIZK proof πi for it being a pseudorandom value
concatenated with vksots.
For all i we have ci encrypting gb , where b ∈ {0,1}. We have

∏n
i=1 ci encrypting

gtz . We also have for the tz simulation strings, where we know τi that si encodes
a pseudorandom value, whereas for the other common reference strings we have ci

encrypts g0. This means we can create the non-interactive zap π for (1) without
knowing C’s satisfiability witness.
Sign everything sig ← Signsksots

(vksots,C,Σ1, s1,π1, c1, . . . ,Σn, sn,πn, cn,p,G,

GT , e, g, f,h,π).
The simulated proof is Π := (vksots, s1,π1, c1, . . . , sn,πn, cn,p,G,GT , e, g, f,h,π,

sig).

Theorem 17. If G is a DLIN group generator as defined in the beginning of this sec-
tion, then the construction above gives us a (0, ts, tz, n)-simulation-sound NIZK proof
for circuit satisfiability, where the proofs have size O((n + |C|)k) bits. The scheme can
be set up with uniformly random reference strings if we can sample groups with bilinear
maps from uniformly random strings.

Proof. We have already argued in the construction that if we can sample groups and
group elements from random strings and vice versa given groups and group elements
sample random strings that yield these group elements then we can use uniformly ran-
dom strings. Perfect completeness follows by straightforward verification.

Let us prove that we have statistical (0, ts , tz, n)-soundness. Consider first an arbitrary
group (p,G,GT , e, g) chosen by the prover. By assumption, it can be verified that this
describes a group with a bilinear map.

We will now bound the probability of both ri ⊕ si and si sampling pseudorandom
60-tuples of group elements in their respective groups for a random choice of ri . Con-
sider first the probability that a random string si specifies a pseudorandom value in G

60.
There are at most 224k pseudorandom strings, since the 12 pairs (fi, hi) and the 12 pairs
(uj , vj) fully define the pseudorandom value. 60 random group elements have at least

Cryptography in the Multi-string Model 529

59k bits of entropy, so we get a probability of at most 224k−59k = 2−35k of si speci-
fying a pseudorandom value in G

60. Similarly, for a random choice of ri we have at
most probability 2−35k that ri ⊕ si is a pseudorandom value in the group specified by
the common reference string. With ri , si both chosen at random, we have a combined
maximal probability of 2−70k of both ri ⊕ si and si specifying pseudorandom values.
The prover can choose the group freely, giving her at most 24k different choices for
describing the group G and g. She can also choose si freely, giving her 261k possibil-
ities. Since ri is chosen at random, there is at most probability 24k+61k−70k = 2−5k of
it being possible to choose si and the group G such that both ri ⊕ si and si specify
pseudorandom values. With overwhelming probability, we can therefore assume that no
honestly generated common reference string exists such that both ri ⊕ si and si specify
pseudorandom values in Gi and G, respectively.

Any common reference string Σi that is honestly generated has overwhelming prob-
ability of having a common reference string σi for the simulation-sound NIZK with
perfect soundness. Whenever the prover makes a proof using this string, she must there-
fore pick si such that ri ⊕ si is pseudorandom. Consequently, si does not specify a
pseudorandom value in the group G. The zap has perfect soundness, so it shows that
C is satisfiable or ci contains g0. Similarly, for any string Σi that is not honestly gen-
erated, the zap demonstrates that C is satisfiable or ci contains g0 or g1. Since at least
ts > n − tz strings are honestly generated, we see that if C is unsatisfiable, then

∏n
i=1 ci

contains one of the values g0, . . . , gtz−1. The zap therefore shows us that C must be
satisfiable.

To argue computational (0, ts , tz, n)-simulation-soundness, observe that simulated
proofs are signed with a strong one-time signature. Since the signature scheme has
existential unforgeability, the adversary must choose a different vksots that it has not
seen in a simulation. Recall, whenever we make a simulation-sound NIZK using a par-
ticular common reference string Σi , we concatenate vksots to ri ⊕ si to get the state-
ment we wish to prove. By the simulation-soundness of the NIZK proofs on honestly
generated strings, we cannot forge such a proof even though we have already seen sim-
ulated proofs. Therefore, ri ⊕ si must be a pseudorandom string. We can now argue
(0, ts, tz, n)-simulation-soundness just as we argued (0, ts , tz, n)-soundness.

It remains to prove computational (0, ts, tz, n)-zero-knowledge. Reference string in-
distinguishability follows from the reference string indistinguishability of the simula-
tion-sound NIZK proofs. We will now consider simulation indistinguishability, so con-
sider a case where the adversary sees simulated reference strings and gets the simulation
trapdoors that allow the simulation of proofs for the reference strings. The adversary,
chooses a set of common reference strings and receives a proof generated with the
satisfiability witness for C or alternatively a simulated proof and wants to distinguish
between the two possibilities.

Let us start with a simulated proof and compare it with a hybrid experiment, where
we use the satisfiability witness for C in the non-interactive zap. By the computational
witness-indistinguishability of the zap, the adversary cannot tell these two experiments
apart. Next, let us choose all ci ’s as encryptions of g0. By the semantic security of the
encryption scheme, the adversary cannot detect this change. We already select si such
that ri ⊕ si specifies a pseudorandom value for the reference strings not generated by
S1. Let us switch to also selecting si such that ri ⊕ si specify a pseudorandom value

530 J. Groth and R. Ostrovsky

in the common reference strings where we do know the simulation trapdoor. By the
pseudorandomness of the strings, the adversary cannot detect this change either. Finally,
instead of simulating the proofs for ri ⊕ si specifying a pseudorandom value in Gi , let
us make a real proof. By the zero-knowledge property of the simulated reference strings
for the simulation-sound NIZK proofs, the adversary cannot distinguish here either.
With this last modification, we have actually ended up constructing proofs exactly as
a real prover with access to a satisfiability witness does, so we have (0, ts , tz, n)-zero-
knowledge. �

6. Multi-party Computation in the UC Framework

In the rest of the paper, we will work in Canetti’s UC framework. The universal compos-
ability (UC) framework, see [11] for a detailed description, is a strong security model
capturing security of a protocol under concurrent execution of arbitrary protocols. We
model everything happening concurrently with the protocol but not directly related to it
through an environment Z . The environment can at its own choosing give inputs to the
parties running the protocol and according to the protocol specification the parties may
give outputs to the environment. In addition, there is an adversary A that attacks the
protocol. A can communicate freely with the environment. She can adaptively corrupt
parties, in which case she learns the entire history of the party and gains complete con-
trol over the actions of the party. The environment learns whenever a party is corrupted.

To model security we use a simulation paradigm. We specify the functionality F
that the protocol should realize. The functionality F can be seen as a trusted party that
handles the entire protocol execution and tells the parties what they would output if they
executed the protocol correctly. In the ideal process, the parties simply pass on inputs
from the environment to F and whenever receiving a message from F they output it to
the environment. In the ideal process, we have an ideal process adversary S . S does not
learn the content of messages sent from F to the parties, but is in control of when, if
ever, a message from F is delivered to the designated party. S can corrupt parties and
when doing so it learns the history of the party. As the real world adversary, S can freely
communicate with the environment.

Comparing these two models we say that the protocol securely realizes F if no envi-
ronment can distinguish between the two worlds. This means, the protocol is secure, if
for any polynomial time A running in the real world, there exists a polynomial time S
running in the ideal process with F , so no non-uniform polynomial time environment
can distinguish between the two worlds.

One of our goals is to show that any well-formed functionality can be securely real-
ized in the multi-string model. By well-formed functionality, we mean a functionality
that is oblivious of corruptions of parties, runs in polynomial time, and in case all par-
ties are corrupted it reveals the internal randomness used by the functionality to the ideal
process adversary. This class contains all functionalities that we can reasonably expect
to implement with multi-party computation, because an adversary can always corrupt a
party and just have it follow the protocol, in which case the other parties in the protocol
would never learn that it was corrupted.

Cryptography in the Multi-string Model 531

Functionality FMCRS

Parameterized by polynomial �mcrs, and running with parties P1, . . . ,PN and adversary S .
String generation: On input (crs, sid) from S , pick Σ ← {0,1}�mcrs(k) and store it. Send (crs, sid, σ)

to S .
String selection: On input (multi, sid,Σ1, . . . ,Σn) where Σ1, . . . ,Σn ∈ {0,1}�mcrs(k) from S check

that more than half of the strings Σ1, . . . ,Σn match stored strings. In that case output
(multi, sid,Σ1, . . . ,Σn) to all parties and halt.

Fig. 1. The ideal multi-string generator.

Functionality FBC

Running with parties P1, . . . ,Pn and adversary S .
Broadcast: On input (broadcast, sid, ssid,m) from Pi , send (broadcast, sid, ssid,Pi ,m) to all parties

and S . Ignore future (broadcast, sid, ssid, ·) inputs from Pi .

Fig. 2. The ideal authenticated broadcast functionality.

IDEAL FUNCTIONALITIES Let us formalize the multi-string model in the UC frame-
work. Figure 1 gives an ideal multi-string functionality FMCRS.

We will assume parties can broadcast their messages and we make this assumption
explicit by giving them access to the ideal broadcast functionality in Fig. 2. Ideal broad-
cast permits each party to broadcast messages to other parties. We remark that broadcast
can be securely realized in a constant number of rounds if authenticated communication
is available [33]. Furthermore, authenticated communication can be securely realized
using digital signatures, so one possible setup is that the parties somehow have ex-
changed verification keys for a digital signature scheme.

6.1. Tools

We will now present a few tools that we will need in our constructions.

ENCRYPTION SCHEME WITH PSEUDORANDOM PUBLIC KEYS AND PSEUDORAN-
DOM CIPHERTEXTS An encryption scheme (Kpseudo,E,D) has pseudorandom ci-
phertexts of length �E(k) if for all non-uniform polynomial time adversaries A we have

Pr
[
(pk, dk) ← Kpseudo

(
1k

) : AEpk(·)(pk) = 1
]

≈ Pr
[
(pk, dk) ← Kpseudo

(
1k

) : ARpk(·)(pk) = 1
]
,

where Rpk(m) runs c ← {0,1}�E(k) and returns c. Moreover, an encryption scheme
has pseudorandom public keys of length �K(k) if correctly generated public keys are
computationally indistinguishable from random strings of length �K(k) bits.

We will use an encryption scheme with pseudorandom public keys and pseudoran-
dom ciphertexts with errorless decryption. Damgård and Nielsen [19] show that such
encryption schemes, which they call simulatable encryption schemes, exist under stan-
dard assumptions such as RSA or DDH.

532 J. Groth and R. Ostrovsky

TAG-BASED SIMULATION-SOUND TRAPDOOR COMMITMENT A tag-based simu-
lation sound trapdoor commitment scheme [42] has four probabilistic polynomial time
algorithms (Ktag-com,Com,TCom,Topen). The key generation algorithm Ktag-com pro-
duces a commitment key ck as well as a trapdoor key tk. The commitment key specifies
amongst other things the message space, which we will assume is of the form {0,1}�
for some suitable � polynomially bounded by k. There is a commitment algorithm that
takes as input the commitment key ck, a message m ∈ {0,1}� and any tag tag ∈ {0,1}∗
and outputs a commitment c := Comck(tag;m; r). To open a commitment c with tag
tag we reveal m and the randomness r . Anybody can now verify c = Comck(tag;m; r).
As usual, the commitment scheme must be both hiding and binding.

The algorithms Tcom,Topen allow us to create an equivocal commitment and later
open this commitment to any value we prefer. We create an equivocal commitment and
an equivocation key as (c, ek) ← Tcomtk(tag). Later we can open it to any message m

as r ← Topenek(tag;m), such that c = Comck(tag;m; r).
We require that equivocal commitments and openings are indistinguishable from real

openings. For all non-uniform polynomial time adversaries A we have the following
trapdoor property:

Pr
[
(ck, tk) ← Ktag-com

(
1k

) : A R(·,·)(ck) = 1
]

≈ Pr
[
(ck, tk) ← Ktag-com

(
1k

) : A O(·,·)(ck) = 1
]
,

where R(m, tag) returns uniformly random coins r and O(m, tag) computes (c, ek) ←
Tcomtk(tag); r ← Topenek(tag,m) and returns r . Both oracles ignore queries with tags
that have already been queried.

The tag-based simulation-soundness property means that a commitment using tag
remains binding even if we have made equivocations for commitments using differ-
ent tags. For all non-uniform polynomial time adversaries A we have the following
simulation-soundness property:

Pr
[
(ck, tk) ← Ktag-com

(
1k

); (tag, c,m0, r0,m1, r1) ← A O(·)(ck) : tag /∈ Q and

c = Comck(tag;m0; r0) = Comck(tag;m1; r1) and m0
= m1
]≈ 0,

where O(Com, tag) computes (c, ek) ← Tcomtk(tag), returns c and stores (c, tag, ek),
and O(Open, c,m, tag) returns r ← Topenek(tag,m) if (c, tag, ek) has been stored, and
where Q is the list of tags for which equivocal commitments have been made by O.

Tag-based simulation-sound trapdoor commitments were implicitly used in Di
Crescenzo, Ishai and Ostrovsky [25]. The explicit term was coined by Garay, MacKen-
zie, and Yang [27], while the definition presented here is from MacKenzie and Yang
[42]. The latter paper offers a construction based on one-way functions as well as more
efficient constructions based on the DSA or the strong RSA assumptions.

Since we are working over random strings, we want Ktag-com to output public keys
that are random or pseudorandom. We say the commitment scheme has pseudorandom
keys if there is a polynomial �tag-com such that ck ← {0,1}�tag-com(k) is computationally
indistinguishable from correctly generated commitment keys. This property can also be
achieved based on the existence of one-way functions.

Cryptography in the Multi-string Model 533

TAG-BASED SIMULATION-EXTRACTABLE COMMITMENT SCHEME We will need
something stronger than tag-based simulation-sound trapdoor commitments, namely
tag-based simulation-extractable commitments. A tag-based simulation-extractable
commitment is a tag-based simulation-sound trapdoor commitment scheme (Kse-com,

SCom,STcom,STopen) with an additional algorithm Extract that given an extraction
key ξ is able to extract the committed message. More precisely, with the trapdoor key
we can make equivocal commitments, however, for all other tags the adversary will
with overwhelming probability make commitments from which a unique possible mes-
sage can be extracted. For all non-uniform polynomial time adversaries A we have the
following simulation-extractability property:

Pr
[
(σ, τ, ξ) ← Kse-com

(
1k

); (tag,m, r) ← A O(·)(σ, ξ); c := SComσ (tag;m; r) :
Extractξ (tag, c)
= m and tag /∈ Q

]≈ 0,

where O(Com, tag) computes (c, ek) ← STcomτ (tag), returns c and stores (c, tag, ek),
and O(Open, c,m, tag) returns r ← STopenek(tag,m) if some (c, tag, ek) has been
stored, and where Q is the list of tags for which equivocal commitments have been
made by O.

We will construct a tag-based simulation-extractable commitment scheme from tag-
based simulation-sound trapdoor commitments and encryption schemes with pseudo-
random public keys and pseudorandom ciphertexts. We use a tag-based simulation-
sound trapdoor commitment scheme to commit to each bit of m. If m has length �

this gives us commitments c1, . . . , c�. When making equivocal commitments, we can
use the trapdoor key to create equivocal commitments c1, . . . , c� that can be opened to
any bit we like.

We need to make this commitment scheme extractable. We therefore encrypt the
openings of the commitments. Now we can extract messages but we have reintroduced
the problem of equivocation. An equivocal commitment may have two different open-
ings of a commitment ci to, respectively, 0 and 1, however, if we encrypt the opening
then we are stuck with one possible opening. This is where the pseudorandomness prop-
erty of the encryption scheme comes in handy. We can simply make two encryptions,
one of an opening to 0 and one of an opening to 1. Since the ciphertexts are pseudo-
random, we can open the ciphertext containing the opening we want and claim that the
other ciphertext was chosen as a random string [14].

To recap, the idea so far is to commit to a bit b by making a tag-based simulation-
sound trapdoor commitment ci to this bit and create a ciphertext Ci,b containing an
opening of ci to b, while choosing Ci,1−b as a random string. We now present the full
commitment scheme in Fig. 3.

Theorem 18. Tag-based simulation-extractable commitment schemes exist if encryp-
tion schemes with pseudorandom ciphertexts exist. If encryption schemes with pseu-
dorandom public keys and pseudorandom ciphertexts exist then tag-based simulation-
extractable commitments with pseudorandom public keys exist.

Proof. Tag-based simulation-sound trapdoor commitments with pseudorandom keys
can be built from one-way functions [42] so the assumptions give us the tools needed

534 J. Groth and R. Ostrovsky

Random key: Return σ := (ck,pk) ← {0,1}�tag-com(k) × {0,1}�pseudo(k)

Simulation-extraction key:

1. (ck, tk) ← Ktag-com(1k)

2. (pk, dk) ← Kpseudo(1k)

3. Return σ = (ck,pk), τ = (σ, tk), ξ = (σ, xk)

Commitment: On input (σ, tag,m), where m = m1m2 . . .m� when written in binary, and randomizers
as described below do

1. For i = 1 to � select ri at random and let ci := Comck((tag, i);mi ; ri)
2. For i = 1 to � select Ri,mi

at random and set Ci,mi
= Epk(ri ;Ri,mi

) and choose Ci,1−mi
as a

random string.
3. Return C := (c1,C10,C11, . . . , c�,C�0,C�1)

Opening: On input (tag, c,m, r1,R1,m1 , . . . , r�,R�,m�
) do

1. Verify that for all i we have ci = Comck((tag, i);mi ; ri)
2. Verify that for all i we have Ci,mi

= Epk(ri ;Ri,mi
)

3. Return 1 if all checks work out, else return 0

Equivocal commitment: On input τ = (σ, tk) do

1. For i = 1 to � let (ci , eki) ← Tcomtk(tag, i) and let ri0, ri1 be equivocations such that ci =
Comck((tag, i);0; ri0) = Comck((tag, i);1; ri1).

2. For i = 1 to � select randomness Ri,b and set Cib := Epk(rib;Ri,b).
3. Return C := (c1,C10,C11, . . . , c�,C�0,C�1) and EK := (σ, r1,R1,0,R1,1, . . . , r�,R�,0,

R�,1).

Equivocation: On input (tag,EK,C,m) return (r1,m1 ,R1,m1 , . . . , r�,m�
,R�,m�

).
Extraction: On input (tag, (σ, dk),C) use the decryption key to decrypt the ciphertexts Cib . In case, we

for i have exactly one ciphertext Cib that decrypts to rib such that ci = Comσ ((tag, i);b; rib), we set
mi := b. In case all these processes succeed, we return the concatenation m, else we return ⊥.

Fig. 3. Tag based simulation-extractable commitment.

in the construction in Fig. 3. This also shows that we have pseudorandom keys for
the tag-based simulation-extractable commitment scheme if the encryption scheme has
pseudorandom public keys.

We now need to prove that even after seeing equivocal commitments and equivo-
cations it is hard to come up with a commitment with a different tag and open this
commitment to a message that differs from the extracted message. Consider first the
case where the adversary for some index i creates ci,Ci0,Ci1 such that both Ci0 and
Ci1 decrypt to valid openings of ci to, respectively, 0 and 1. Since tag has not been
used before, we have not used (tag, i) in any commitment we have equivocated before
so this breaks the simulation-sound binding property of the tag-based simulation-sound
trapdoor commitment. The errorless decryption property of the pseudorandom encryp-
tion scheme now tells us that if the adversary opens all triples ci,Ci0,Ci1 successfully
to either 0 or 1, then we get the opening when decrypting.

We also need to prove that we have the trapdoor property. We will modify
the oracle in several steps and show that A cannot tell the difference. Let us
start with the oracle R(·, ·) that on input (tag,m) returns a randomly chosen ran-
domizer r1,R1,m1,C1,1−m1 , . . . , r�,R�,m�

,C1,1−m�
. Instead of making commitments

ci := Comck((tag, i);mi; ri), we may instead run (ci, eki) ← Tcomtk(tag, i); ri ←

Cryptography in the Multi-string Model 535

Functionality F 1:N
COM

Parameterized by polynomial �, and running with parties P1, . . . ,PN and adversary S .
Commitment: On input (commit, sid,m) from party Pi check that m ∈ {0,1}�(k) and in that case store

(sid,Pi ,m) and send (commit, sid,Pi) to all parties and S . Ignore future (commit, sid, ·) inputs
from Pi .

Opening: On input (open, sid) from Pi check that (sid,Pi ,m) has been stored, and in that case send
(open, sid,Pi ,m) to all parties and S .

Fig. 4. The ideal commitment functionality.

Topeneki
(mi) and use ri as the randomizer. By the trapdoor property of the tag-based

simulation-sound commitment the two oracles are indistinguishable to A.
Next, consider the oracle O(·, ·) where we make equivocations to both ri0 and ri1

such that ci = Comck((tag, i);b; ri,b) for both b = 0 and b = 1. We encrypt ri,b with
randomness Ri,b . We then return ri ,Ri,mi

, ci,1−mi
. By the pseudorandomness of the

ciphertexts this is indistinguishable from the previously modified R(·, ·) oracle. �

6.2. UC Commitment in the Multi-string Model

We will now show how to securely realize the ideal UC commitment functionality
F 1:N

COM described in Fig. 4 in the multi-string model. Let us start by giving some in-
tuition behind our construction. To prove that our UC commitment is secure, we will
describe an ideal process adversary S that interacts with F 1:N

COM and makes a black-box
simulation of A running with FBC, FMCRS and P1, . . . ,PN . There are two general types
of issues that can come up in the ideal process simulation. First, when F 1:N

COM tells S that
a party has committed to some message, S does not know which message it is but has
to simulate to A that this party makes a UC commitment. Therefore, we want to be able
to make equivocal commitments and later open them to any value. Second, if a corrupt
party controlled by A sends a UC commitment then S needs to input some message to
F 1:N

COM. In this case, we need to extract the message from the UC commitment.
As a tool to get both the equivocation/simulation property and at the same time the

extractability property, we will use a tag-based simulation-extractable commitment. Our
idea in constructing a UC commitment is to use each of the n common random strings
output by FMCRS as a public key for a tag-based simulation-extractable commitment
scheme. This gives us a set of n commitment schemes of which at least t = �n+1

2 �
are secure. Without loss of generality, we will from now on assume we have exactly t

secure commitment schemes. In the ideal process, S simulates FMCRS and can therefore
pick the honest strings as simulation-extractable public keys where it knows both the
simulation trapdoors and the extraction keys.

To commit to a message m, a party makes a (t, n)-threshold secret sharing of it and
commits to the n secret share using the n public keys specified by the random strings.
When making an equivocal commitment, S makes honest commitments to n − t ran-
dom shares for the adversarial keys and equivocal commitments with the t simulation-
extractable keys. Since the adversary knows at most n − t < t shares, S can later open
the commitment to any message by making suitable trapdoor openings of the latter t

shares. To extract a message m from a UC commitment made by the adversary, S ex-

536 J. Groth and R. Ostrovsky

tracts t shares from the simulation-extractable commitments and combines the shares
to get the only possible adversarial message m.

One remaining issue is when the adversary recycles a commitment or parts of it. We
may risk that it uses an equivocal commitment made by an honest party, in which case
S is unable to extract a message. To guard against this problem, we let the tag for the
simulation-extractable commitment scheme contain the identity of the sender Pi forcing
the adversary to use a different tag and enabling S to extract.

Another problem arises when A corrupts a party, which enables it to send messages
on behalf of this party. At this point, however, S learns the message so we just need
to force A to reuse the same message if it reuses parts of the equivocal commitment.
We therefore introduce a second commitment scheme, which will be a standard trapdoor
commitment scheme, and use this trapdoor commitment scheme to commit to the shares
of the message. The tag for the simulation-extractable commitment will include this
trapdoor commitment. Therefore, if reusing a tag the adversary must also reuse the
same trapdoor commitment in the tag, which in turn binds her to use the same share as
the one the party committed to before being corrupted. We now describe the full UC
commitment scheme, which has the additional benefit of being non-interactive.

Commitment: On input (multi, sid, (ck1, σ1), . . . , (ckn, σn)) from FMCRS and
(commit, sid,m) from Z , the party Pi does the following. She makes a (t, n)-
threshold secret sharing s1, . . . , sn of m. She picks randomizers rj and makes
commitments cj := Comckj

(sj ; rj). She also picks randomizers Rj and makes
tag-based commitments Cj := SComσj

((Pi, cj); sj ;Rj). The commitment is c :=
(c1,C1, . . . , cn,Cn). She broadcasts (broadcast, sid, commit, c) (using ssid =
commit).

Receiving commitment: A party on input (multi, sid, (ck1, σ1), . . . , (ckn, σn)) from
FMCRS and (broadcast, sid, commit,Pi, c) from FBC outputs (commit, sid,Pi) to
the environment.

Opening commitment: Party Pi wishing to open her commitment broadcasts
(broadcast, sid,open, s1, r1,R1, . . . , sn, rn,Rn) (using ssid = open).

Receiving opening: A party receiving an opening (broadcast, sid,open,Pi, s1, r1,

R1, . . . , sn, rn,Rn) from FBC to a commitment she received earlier checks that all
commitments are correctly formed cj = Comckj

(sj ; rj) and Cj = SComσj
((Pi, cj);

sj ;Rj). She also checks that s1, . . . , sn are valid shares of a (t, n)-threshold secret
sharing of some message m ∈ {0,1}�(k). In that case she outputs (open, sid,Pi,m) to
the environment.

Theorem 19. F 1:N
COM can be securely realized in the (FBC, FMCRS)-hybrid model

assuming tag-based simulation-extractable commitment schemes with pseudorandom
public commitment keys exist.

Proof. We claim that the protocol described above is a secure realization of F 1:N
COM. Let

us describe the ideal-process adversary S , which runs a black-box simulation of A. In
particular, S simulates the parties P1, . . . ,PN and the ideal functionalities FMCRS and
FBC. The dummy parties that are actually involved in the protocol and communicate
with Z are written as P̃1, . . . , P̃N .

Cryptography in the Multi-string Model 537

Communication: S forwards all communication between the simulated adversary A
and the environment Z . Also, whenever A delivers a message to a party Pi she sim-
ulates this message delivery.

Common random strings: Whenever A asks FMCRS for a common random string
select (ck, tk) ← Ktrapdoor(1k) and (σ, τ, ξ) ← Kse-com(1k) and return (crs, sid,

(ck, σ)), while storing the corresponding keys (ck, tk, σ, τ, ξ).
When A inputs (multi, sid, (ck1, σ1), . . . , (ckn, σn)) to FMCRS S checks that more
than half the pairs (ck1, σ1), . . . , (ckn, σn) match the stored public keys. In that case,
S sends (multi, sid, (ck1, σ1), . . . , (ckn, σn)) to all parties and halts the simulation of
FMCRS. Note, we only need t stored keys so if there are more than t honest public
key pairs S just uses t of the secret key tuples.

Commitment by honest party: On receiving (commit, sid,Pi) from F 1:N
COM we learn

that Pi has made a commitment, albeit we do not know the message. If the multi-
string has not yet been delivered, S waits until A has submitted reference strings to
FMCRS and delivers them to Pi .

S makes a (t, n)-threshold secret sharing s1, . . . , sn of 0. For the n − t ref-
erence strings where she does not know the trapdoors she commits to sj as
cj := Comtk(sj ; rj) and Cj := SComσj

(Pi, cj ; sj ;Rj). For the t reference strings
where she does know the trapdoors, she makes trapdoor commitments (cj , ekj) ←
Tcom(tk) and equivocal commitments (Cj ,EKj) ← STcomτj

(Pi, cj). She simu-
lates broadcasting (broadcast, sid, commit, c1,C1, . . . , cn,Cn).

Opening by honest party: When S receives (open, sid,Pi,m) from F 1:N
COM it means

that P̃i has been instructed to open the commitment and it was a commitment to
m. S recalls the n − t shares for adversarial reference strings and fit them into
a (t, n)-threshold secret sharing s1, . . . , sn of m. She opens the n − t commit-
ment pairs cj ,Cj correctly and equivocates the t commitment pairs cj ,Cj where
she knows the corresponding equivocation keys as rj ← Topenekj

(sj) and Rj ←
STopenEKj

((Pi, cj), sj). She simulates Pi broadcasting (broadcast, sid,open, s1, r1,

R1, . . . , sn, rn,Rn).
Honest party receiving commitment: On A delivering (broadcast, sid, commit,Pi,

c1,C1, . . . , cn,Cn) from FBC to a party Pj deliver the corresponding (commit,
sid,Pi) message from F 1:N

COM to the dummy party P̃j .
Honest party receiving opening: On A delivering (broadcast, sid,open,Pi, s1, r1,

R1, . . . , sn, rn,Rn) from FBC to a party Pj check that she has received a commit-
ment from Pi and continue if she already has received a commitment or after she
receives a commitment.
Check that the commitments contain a consistent (t, n)-threshold secret sharing of
s1, . . . , sn of a message m and for all j we have cj = Comckj

(sj ; rj) and Cj =
SComσj

(Pi, cj ; sj ;Rj). If the checks pass deliver (open, sid,Pi,m) from F 1:N
COM to

the dummy party P̃j that outputs the opening to Z .
Corruption: If A corrupts a party Pi , S corrupts the corresponding dummy party P̃i .

S needs to simulate the history of this party. Receipt of commitments and openings
is already known to A. If the party has not yet made a commitment there is therefore
no history to simulate. If the party has made a commitment and already opened it
A already has a simulated history. If the party has made a commitment but not yet

538 J. Groth and R. Ostrovsky

opened it, S must simulate an opening of the commitment. On corrupting P̃i she
learns the message and she can now use the opening simulation for honest parties
described earlier.
Once a party is corrupted it is controlled by A. S will forward communication be-
tween P̃i and the environment Z as prescribed by the simulated A.

Commitment by corrupt party: When a corrupt party Pi makes a commitment
(broadcast, sid, commit,Pi, c1,C1, . . . , cn,Cn), S must input some message to
F 1:N

COM.
After simulating the receipt by FBC S uses the extraction keys to extract t committed
values sj ← Extractξj

((Pi, cj),Cj). The only case, where she cannot extract a value
sj from Cj may be when the tag (Pi, cj) has been used before by S in making an
equivocal commitment. However, this can only happen if Pi used (Pi, cj) as a tag
when it was honest and then upon corruption S made an equivocation of cj to some
sj . But then S does not need to extract from Cj since it already knows the purported
value sj contained in the commitment.
After having obtained t shares S reconstructs m and inputs (commit, sid,m) to
F 1:N

COM on behalf of the dummy party P̃i . In case she did not manage to extract a
message, she inputs m := 0 to F 1:N

COM. Note that inputting a dummy value 0 is fine
since as we will show in the proof we will not end up in a situation where S needs to
ask F 1:N

COM to open the dummy commitment.
Opening by corrupt party: When a corrupt party wants to open a commitment by

broadcasting (broadcast, sid,open, s1, r1,R1, . . . , sn, rn,Rn), S simulates the re-
ceipt by FBC, checks the opening and if acceptable inputs (open, sid,m) to F 1:N

COM.

To see that this gives us a good simulation, consider the following hybrid experiments.

Hybrid 1: This is the protocol executed with A and environment Z and parties
P1, . . . ,Pn in the (FBC, FMCRS)-hybrid model.

Hybrid 2: This is the protocol, where we generate and store (ck, tk, σ, τ, ξ) and return
(ck, σ) whenever A queries FMCRS for a common random string.
Since both commitment schemes have pseudorandom keys, hybrid 1 and hybrid 2
cannot be distinguished.

Hybrid 3: This is hybrid 2 modified such that honest party Pi uses the t known trap-
doors to make equivocal commitments corresponding to these keys to the secret
shares instead of making real commitments. When opening the commitments Pi uses
the equivocation keys to generate randomizers so the commitments open to the (t, n)

secret sharing of the message.
Hybrid 2 and hybrid 3 are indistinguishable due to the trapdoor properties of the
commitment schemes.

Hybrid 4: We modify hybrid 3 such that when an honest party Pi uses a (t, n)-
threshold secret sharing of 0 instead of a threshold secret sharing of m when making
a commitment. In the opening phase it opens the n − t pairs (cj ,Cj) where it does
not know the trapdoors to the sj ’s it committed to. It reconstructs shares sj for the t

equivocal commitments so s1, . . . , sn is a (t, n)-threshold secret sharing of m. It then
opens the equivocal commitments to these values.
Hybrid 3 and hybrid 4 are perfectly indistinguishable since n − t < t shares in a
(t, n)-threshold secret sharing scheme do not reveal anything about m.

Cryptography in the Multi-string Model 539

Functionality FCRS

Parameterized with polynomial � and running with parties P1, . . . ,PN and adversary S .
CRS generation: Generate random Σ ← {0,1}�(k) and output (crs, sid,Σ) to all parties and S . Halt.

Fig. 5. The ideal common random string generator.

Hybrid 5: We now turn to modify the way we handle corrupt parties. Whenever a
corrupt party Pi submits a commitment (broadcast, sid, commit, c1,C1, . . . , cn,Cn)

to FBC we want to extract a message.
For any of the t Cj ’s where we know the extraction key there are two cases to con-
sider. One case is where (Pi, cj) has been used as a tag when Pi was still honest.
In this case, we learned an opening sj , rj of cj upon corruption and will therefore
consider sj the share. The second case is when (Pi, cj) has not been used as a tag in
a simulation-extractable commitment. In that case, we can extract a share sj .
We now have t secret shares that we combine to get a possible message m. We abort
the simulation if the commitment is ever successfully opened to a different message.
Hybrid 4 and hybrid 5 are indistinguishable since there is negligible probability of
aborting. An abort happens if the extracted m does not match the opening. There are
two ways this could happen. One possibility is that cj created by an honest party that
is later corrupted is opened to a different share than in the simulation. However, this
would imply a breach of the binding property of the trapdoor commitment scheme.
Another possibility is that the extraction fails. However, this would imply breaking
the simulation-extractability of the commitment scheme.
We conclude the proof by observing that hybrid 5 is identical to the simulation. �

6.3. Multi-party Computation

We will now show how to generate a common random string on the fly using UC com-
mitments. More precisely, we will securely realize the ideal functionality FCRS in Fig. 5
that produces a random bit-string.

COIN-FLIPPING The parties will use the natural coin-flipping protocol where all par-
ties commit to random strings and subsequently open all the commitments and use the
exclusive-or of the random strings as the output.

Commitment: Pi chooses at random ri ← {0,1}�(k). It submits (commit, sid, ri) to
F 1:N

COM. F 1:N
COM on this input sends (commit, sid,Pi) to all parties.

Opening: Once Pi sees (commit, sid,Pj) for all j , it sends (open, sid) to F 1:N
COM.

F 1:N
COM on this input sends (open, sid,Pi, ri) to all parties.

Output: Once Pi sees (open, sid,Pj , rj) for all j , it outputs (crs, sid,
⊕N

j=1 rj) and
halts.

Theorem 20. The ideal common reference string generator FCRS can be (perfectly)
securely realized in the F 1:N

COM-hybrid model.

Proof. We claim the protocol above securely realizes FCRS. Consider the following
ideal process adversary S working in the FCRS-hybrid model, giving her a common ref-

540 J. Groth and R. Ostrovsky

erence string Σ . She runs a black-box simulation of A, a simulated copy of F 1:N
COM and

simulated parties P1, . . . ,PN , not to be confused with the dummy parties P̃1, . . . , P̃N

that interact with Z and FCRS. Whenever the simulated A communicates with the envi-
ronment Z , S simply forwards those messages. We now list the events that can happen
in the protocol.

On activation of Pi , S simulates F 1:N
COM receiving a commitment from Pi by out-

putting (commit, sid,Pi) to all parties and A.
On delivery of commitments from all parties to an honest party Pi , she selects ri at

random, subject to the continued satisfiability of condition Σ = ⊕N
j=1 rj and stores it.

She then simulates F 1:N
COM receiving an opening of Pi ’s commitment to ri .

In case A corrupts a party Pi , the simulator corrupts the corresponding dummy party
P̃i . If Pi has made a commitment but it has not yet been opened, S selects ri at random,
subject to the continued satisfiability of the condition Σ = ⊕N

j=1 rj , and simulates that
this was the commitment Pi made. In all other cases of corruption, either ri has not yet
been selected, or the commitment has already been opened and A already knows ri .

The two experiments, A running with parties P1, . . . ,PN in the F 1:N
COM-hybrid model,

and S running with dummy parties P̃1, . . . , P̃N in the FCRS-hybrid model are perfectly
indistinguishable to Z . To see this, consider a hybrid experiment, where we run the
simulation and choose all ri ’s at random and then set Σ := ⊕N

i=1 ri . Inspection shows
that this gives a perfect simulation of Z ’s view of the protocol in the F 1:N

COM-hybrid
model. At the same time, also here we get a uniform random distribution on Σ and the
rj ’s subject to the condition Σ = ⊕N

j=1 rj . �

MULTI-PARTY COMPUTATION Armed with a coin-flipping protocol we can gener-
ate random strings. Canetti, Lindell, Ostrovsky, and Sahai [14] demonstrated that with
access to a common random string it is possible to do any kind of multi-party compu-
tation in the presence of a malicious adaptive adversary that can corrupt any number of
parties. The multi-party computation protocol of Canetti, Lindell, Ostrovsky, and Sa-
hai [14] assumes the existence of encryption schemes with pseudorandom public keys
and pseudorandom ciphertexts and enhanced trapdoor permutation, and when using a
uniformly random string it also assumes the existence of encryption schemes with dense
public keys and dense ciphertexts [21].

The requirement for encryption schemes with pseudorandom public keys and pseu-
dorandom ciphertexts is not explicitly stated in [14], however, a careful reading reveals
that such encryption schemes are used. Encryption Schemes with pseudorandom public
keys and pseudorandom ciphertexts imply the existence of augmented non-committing
encryption [19], which is also used in their construction.

Enhanced trapdoor permutation are trapdoor permutations that remain hard to invert
even given the random coins of the domain sampler. Enhanced trapdoor permutations
can for instance be built from the RSA assumption [13]. The construction in [13] has
the additional feature that the public keys are dense so via a standard hardcore-bit trans-
formation [29] this also gives an example of an encryption scheme with dense public
keys and dense ciphertexts.

We now have the following corollary to Theorems 18, 19, and 20.

Cryptography in the Multi-string Model 541

Theorem 21. For any well-formed functionality F there is a non-trivial protocol that
securely realizes it in the (FBC, FMCRS)-hybrid model assuming the existence of en-
cryption schemes with pseudorandom public keys and pseudorandom ciphertexts and
assuming the existence of enhanced trapdoor permutations with dense public keys.

Proof. From [14] we find that any well-formed functionality F has a non-trivial pro-
tocol that securely realizes it in the (FBC, FCRS)-hybrid model assuming the existence
of encryption schemes with pseudorandom public keys and pseudorandom ciphertexts
and enhanced trapdoor permutations with dense public keys.

Theorem 20 shows that we can securely realize FCRS in the F 1:N
COM-hybrid model.

Therefore, by the universal composability theorem [11], we can securely realize F in
the (FBC, F 1:N

COM)-hybrid model.
Theorem 19 shows that we can securely realize F 1:N

COM in the (FBC, FMCRS)-hybrid
model assuming the existence of simulation-extractable commitments, which Theo-
rem 18 shows can be built from encryption schemes with pseudorandom public keys
and pseudorandom ciphertexts. By the universal composability theorem [11] we see
that F can be securely realized in the (FBC, FMCRS)-hybrid model under the stated
cryptographic assumptions. �

Acknowledgements

We thank Silvio Micali and Eyal Kushilevitz for an inspiring discussion in February
2004 that motivated us to explore this setting.

References

[1] B. Barak, R. Pass, On the possibility of one-message weak zero-knowledge, in TCC. Lecture Notes in
Computer Science, vol. 2951 (2004), pp. 121–132

[2] B. Barak, R. Canetti, J.B. Nielsen, R. Pass, Universally composable protocols with relaxed set-up as-
sumptions, in FOCS (2004), pp. 186–195

[3] B. Barak, S.J. Ong, S.P. Vadhan, Derandomization in cryptography. SIAM J. Comput. 37(2), 380–400
(2007)

[4] D. Beaver, Commodity-based cryptography (extended abstract), in STOC (1997), pp. 446–455
[5] D. Beaver, Server-assisted cryptography, in Workshop on New Security Paradigms (1998), pp. 92–106
[6] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant

distributed computation, in STOC (1988), pp. 1–10
[7] M. Blum, P. Feldman, S. Micali, Non-interactive zero-knowledge and its applications, in STOC (1988),

pp. 103–112
[8] M. Blum, A. De Santis, S. Micali, G. Persiano, Noninteractive zero-knowledge. SIAM J. Comput. 20(6),

1084–1118 (1991)
[9] D. Boneh, M.K. Franklin, Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3),

586–615 (2003)
[10] D. Boneh, X. Boyen, H. Shacham, Short group signatures, in CRYPTO. Lecture Notes in Computer

Science, vol. 3152 (2004), pp. 41–55
[11] R. Canetti, Universally composable security: a new paradigm for cryptographic protocols, in FOCS

(2001), pp. 136–145
[12] R. Canetti, M. Fischlin, Universally composable commitments, in CRYPTO. Lecture Notes in Computer

Science, vol. 2139 (2001), pp. 19–40

542 J. Groth and R. Ostrovsky

[13] R. Canetti, U. Feige, O. Goldreich, M. Naor, Adaptively secure multi-party computation, in STOC
(1996), pp. 639–648

[14] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Universally composable two-party and multi-party secure
computation, in STOC (2002), pp. 494–503

[15] R. Canetti, Y. Dodis, R. Pass, S. Walfish, Universally composable security with pre-existing setup, in
TCC. Lecture Notes in Computer Science, vol. 4392 (2007), pp. 61–85

[16] D. Chaum, C. Crépeau, I. Damgård, Multiparty unconditionally secure protocols (extended abstract), in
STOC (1988), pp. 11–19

[17] R. Cramer, V. Shoup, Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack, in CRYPTO. Lecture Notes in Computer Science, vol. 1462 (1998),
pp. 13–25

[18] I. Damgård, Non-interactive circuit based proofs and non-interactive perfect zero-knowledge with pre-
processing, in EUROCRYPT. Lecture Notes in Computer Science, vol. 658 (1992), pp. 341–355

[19] I. Damgård, J.B. Nielsen, Improved non-committing encryption schemes based on a general complexity
assumption, in CRYPTO. Lecture Notes in Computer Science, vol. 1880 (2000), pp. 432–450

[20] I. Damgård, J.B. Nielsen, Perfect hiding and perfect binding universally composable commitment
schemes with constant expansion factor, in CRYPTO. Lecture Notes in Computer Science, vol. 2442
(2002), pp. 581–596

[21] A. De Santis, G. Persiano, Zero-knowledge proofs of knowledge without interaction, in FOCS (1992),
pp. 427–436

[22] A. De Santis, G. Di Crescenzo, G. Persiano, Non-interactive zero-knowledge: a low-randomness char-
acterization of NP, in ICALP. Lecture Notes in Computer Science, vol. 1644 (1999), pp. 271–280

[23] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, A. Sahai, Robust non-interactive zero knowl-
edge, in CRYPTO. Lecture Notes in Computer Science, vol. 2139 (2002), pp. 566–598

[24] A. De Santis, G. Di Crescenzo, G. Persiano, Randomness-optimal characterization of two NP proof
systems, in RANDOM. Lecture Notes in Computer Science, vol. 2483 (2002), pp. 179–193

[25] G. Di Crescenzo, Y. Ishai, R. Ostrovsky, Non-interactive and non-malleable commitment, in STOC
(1998), pp. 141–150

[26] U. Feige, D. Lapidot, A. Shamir, Multiple non-interactive zero knowledge proofs under general assump-
tions. SIAM J. Comput. 29(1), 1–28 (1999)

[27] J.A. Garay, P.D. MacKenzie, K. Yang, Strengthening zero-knowledge protocols using signatures. J.
Cryptol. 19(2), 169–209 (2006)

[28] S. Garg, V. Goyal, A. Jain, A. Sahai, Bringing people of different beliefs together to do UC, in TCC.
Lecture Notes in Computer Science, vol. 6597 (2011), pp. 311–328

[29] O. Goldreich, L.A. Levin, A hard-core predicate for all one-way functions, in STOC (1989), pp. 25–32
[30] O. Goldreich, Y. Oren, Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1),

1–32 (1994)
[31] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions. J. ACM 33(4), 792–807

(1986)
[32] O. Goldreich, S. Micali, A. Wigderson, How to play ANY mental game, or A completeness theorem for

protocols with honest majority, in STOC (1987), pp. 218–229
[33] S. Goldwasser, Y. Lindell, Secure multi-party computation without agreement. J. Cryptol. 18(3), 247–

287 (2005)
[34] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proofs. SIAM J. Comput.

18(1), 186–208 (1989)
[35] V. Goyal, J. Katz, Universally composable multi-party computation with an unreliable common refer-

ence string, in TCC. Lecture Notes in Computer Science, vol. 4948 (2008), pp. 142–154
[36] A. Granville, C. Pomerance, On the least prime in certain arithmetic progressions. J. Lond. Math. Soc.

s2–41(2), 193–200 (1990)
[37] J. Groth, Simulation-sound NIZK proofs for a practical language and constant size group signatures, in

ASIACRYPT. Lecture Notes in Computer Science, vol. 4248 (2006), pp. 444–459
[38] J. Groth, R. Ostrovsky, Cryptography in the multi-string model, in CRYPTO. Lecture Notes in Computer

Science, vol. 4622 (2007), pp. 323–341
[39] J. Groth, R. Ostrovsky, A. Sahai, New techniques for noninteractive zero-knowledge. J. ACM 59(3),

11:1–11:35 (2012)

Cryptography in the Multi-string Model 543

[40] J. Håstad, R. Impagliazzo, L.A. Levin, M. Luby, A pseudorandom generator from any one-way function.
SIAM J. Comput. 28(4), 1364–1396 (1999)

[41] J. Kilian, E. Petrank, An efficient noninteractive zero-knowledge proof system for NP with general
assumptions. J. Cryptol. 11(1), 1–27 (1998)

[42] P.D. MacKenzie, K. Yang, On simulation-sound trapdoor commitments, in EUROCRYPT. Lecture Notes
in Computer Science, vol. 3027 (2004), pp. 382–400

[43] M. Naor, Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)
[44] M. Naor, O. Reingold, Synthesizers and their application to the parallel construction of pseudo-random

functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)
[45] R. Ostrovsky, One-way functions, hard on average problems, and statistical zero-knowledge proofs, in

Structure in Complexity Theory Conference (1991), pp. 133–138
[46] R. Ostrovsky, A. Wigderson, One-way functions are essential for non-trivial zero-knowledge, in ISTCS

(1993), pp. 3–17

	Cryptography in the Multi-string Modelt1
	Abstract
	Introduction
	The Problem
	The Multi-string Model
	Related Work
	Results
	Non-interactive Zero-Knowledge
	Multi-string NIZK
	Beyond Vanilla Multi-string NIZK
	Multi-string NIZK Proofs from Bilinear Groups

	Multi-party Computation
	UC Commitment
	General Multi-party Computation
	UC Multi-string Model
	Follow-up Works

	Definitions
	(tc,n)-Completeness
	(ts,n)-Soundness
	(ts,n)-Proof of Knowledge
	(tz,n)-Zero-Knowledge
	Lower Bounds for Multi-string NIZK Proofs
	Simulation-Soundness
	Simulation-Extractability
	Extraction Zero-Knowledge

	Multi-string NIZK Proofs Based on General Assumptions
	Zaps
	Multi-string NIZK Proofs

	Multi-string Simulation-Extractable NIZK Proofs
	Multi-string NIZK Proofs from Bilinear Groups
	Setup
	Example
	Pseudorandom Generators in DLIN Groups
	Multi-string NIZK Proofs from DLIN Groups

	Multi-party Computation in the UC Framework
	Ideal Functionalities
	Tools
	Encryption Scheme with Pseudorandom Public Keys and Pseudorandom Ciphertexts
	Tag-Based Simulation-Sound Trapdoor Commitment
	Tag-Based Simulation-Extractable Commitment Scheme

	UC Commitment in the Multi-string Model
	Multi-party Computation
	Coin-flipping
	Multi-party Computation

	Acknowledgements
	References

