
J. Cryptol. (2014) 27: 317–357
DOI: 10.1007/s00145-013-9146-9

On Strong Simulation and Composable Point Obfuscation

Nir Bitansky and Ran Canetti
Tel Aviv University, 55 Haim Levanon St., Tel Aviv, Israel

canetti@tau.ac.il
and

Boston University, 111 Cummington St., Boston, MA, USA

Communicated by Rafail Ostrovsky.

Received 29 September 2010
Online publication 16 February 2013

Abstract. The Virtual Black Box (VBB) property for program obfuscators provides
a strong guarantee: anything computable by an efficient adversary, given the obfuscated
program, can also be computed by an efficient simulator, with only oracle access to the
program. However, we know how to achieve this notion only for very restricted classes
of programs.

This work studies a simple relaxation of VBB: allow the simulator unbounded com-
putation time, while still allowing only polynomially many queries to the oracle. We
demonstrate the viability of this relaxed notion, which we call Virtual Grey Box (VGB),
in the context of composable obfuscators for point programs: it is known that, with re-
spect to VBB, if such obfuscators exist, then there exist multi-bit point obfuscators (also
known as “digital lockers”) and subsequently also very strong variants of encryption
that are resilient to various attacks, such as key leakage and key-dependent-messages.
However, no composable VBB-obfuscators for point programs have been shown. We
show composable VGB-obfuscators for point programs under a strong variant of the
Decision Diffie–Hellman assumption. We show that VGB (instead of VBB) obfus-
cation still suffices for the above applications, as well as for new applications. This
includes extensions to the public key setting and to encryption schemes with resistance
to certain related key attacks (RKA).

Key words. Obfuscation, Strong simulation, Composable point obfuscation, Strong
encryption, Decision Diffie–Hellman.

1. Introduction

Informally, an obfuscator is an algorithm which gets as input a program (e.g., a Turing
machine or circuit) and outputs a new program that has the same functionality as the

∗ Supported by The Check Point Institute for Information Security, Marie Curie grant PIRG03-GA-2008-
230640, ISF Grant 1144/09, and NSF grant 1218461. An extended abstract of this paper appears in the pro-
ceedings of Crypto’10.

© International Association for Cryptologic Research 2013

mailto:canetti@tau.ac.il

318 N. Bitansky and R. Canetti

original one, but is otherwise “unintelligible”. The rigorous study of obfuscation was
initiated by the authors of [4], who introduced the concept of virtual black box security
(VBB, in short). This concept requires the obfuscated program to behave like a “black
box”, in the sense that it should not leak any information about the program except its
input–output behavior. More precisely, any efficient adversary with access to an obfus-
cated program can be simulated by an efficient simulator with only oracle access to the
program. The same work presented the impossibility of “universal VBB obfuscation”,
showing a family of programs that cannot be VBB obfuscated.

In light of this negative result, subsequent work has included several research di-
rections. One line of work extends the result of [4], ruling out obfuscation in various
settings [15,25]. Another line of work is aimed at constructing obfuscators for specific
program families that are not ruled out by the universal impossibility result. Here, if we
stick to VBB obfuscators, our knowledge is essentially limited to obfuscating point pro-
grams and their extensions [8,9,11–14,23,25]. A point program Pv : Dn → {0,1} holds
a value v ∈ Dn in its code and accepts its input x iff x = v. We only know how to obfus-
cate point programs in which the point v is explicitly obtainable from the code. More-
over, the known constructions depend on rather strong hardness assumptions, which
was shown to be somewhat inherent in [25].

A third line of work focuses on relaxations of VBB. In this context, [4] suggested
the notion of indistinguishability obfuscators (INDO), according to which obfuscations
of two related size programs, implementing the same functionality, should be indistin-
guishable to any efficient adversary. Another relaxation, called best possible obfusca-
tion (BPO) [17], requires that any information which the obfuscation leaks is efficiently
learnable from any other program with the same functionality and related size (hence
“best possible”). These two notions turn out to be equivalent when restricted to efficient
obfuscators.

Both the INDO and BPO notions are easier to satisfy than VBB; however, the security
guarantee they provide is less clear. Unlike VBB, both seem to lose their meaning for
a relatively wide range of program classes that are natural candidates for obfuscation.
For instance, these notions become meaningless if we allow the obfuscator to work only
when the program is given in some “canonical” representation, in which case no two
programs have the same functionality. Another relaxation requires the obfuscation to
be secure only when the program is sampled from some adequate distribution (rather
than requiring security for any program in the family). This was done in the context of
perfect one-way hashing [11], point proximity testing [14], re-encryption [22], and more
[3,18,21]. However, in some scenarios such a relaxation does not capture the security
properties we would expect from an obfuscation.

A natural goal is thus to come up with a notion of secure obfuscation that is both
meaningful and achievable. Here, there is room to consider notions which might be
meaningful only for certain program families but not for all.

1.1. This Work

We study a new relaxation of VBB security notion for obfuscators. The requirement is
that an obfuscation leaks no information about the program, rather than what can also be
learned by an all-powerful learner that witnesses only a limited number of input-output
pairs (at his choice).

On Strong Simulation and Composable Point Obfuscation∗ 319

More formally, any efficient adversary with access to an obfuscated program can be
simulated by an all-powerful simulator with polynomially many oracle queries to the
program (in contrast to poly-time simulation which VBB requires). For lack of better
name, we call this notion virtual grey box (or VGB, in short). The extra power given to
the simulator is intended to allow it to “reverse engineer” the adversary while avoiding
technical difficulties that might be irrelevant to the overall goal. In certain cases (such
as “highly unlearnable” programs), this could be done without losing too much of the
meaningfulness of the guarantee.

Relationship with Existing Notions VGB obfuscation is clearly weaker than VBB ob-
fuscation. In particular, a VGB obfuscation is allowed to leak information which a VBB
obfuscation cannot. Formally, we show that VGB is strictly weaker, demonstrating a
family of programs that cannot be VBB obfuscated but is (trivially) VGB obfuscatable.
On the other hand, we show that VGB obfuscators are stronger than the indistinguisha-
bility obfuscators and best possible obfuscators (INDO and BPO) mentioned above. To
do so, we observe that, even if we further weaken the VGB security requirement by
allowing the simulator an unlimited number of oracle queries, it still implies INDO and
BPO.

For Turing machine obfuscators, the impossibility result of [4] extends to rule out
“universal VGB obfuscation”. However, we could not rule out universal VGB circuit
obfuscators (see more details within regarding this difference). We note that the authors
of [17] show impossibility of strong universal BPO obfuscation that can handle even
circuits that use random oracle gates. This impossibility applies to the stronger VGB
notion.

A Setting Where VGB Is Both Meaningful and Achievable Like INDO and BPO, VGB
is not strong enough for some desirable obfuscation tasks; its weakness might be re-
vealed in cases where an all-powerful simulator, even with limited oracle access to the
program, has a clear advantage over a bounded simulator (as is often the case for “cryp-
tographic functionalities” such as, say, pseudo-random functions). In general, it seems
that VGB is mostly meaningful for program classes which are unlearnable with only
polynomially many queries even for learners with unbounded computation time. We
demonstrate concrete obfuscation tasks where VGB obfuscation is both meaningful and
achievable (under appropriate hardness assumptions) while VBB is not known to be
achievable.

The main task we consider is that of composable obfuscation of point programs.
A point program obfuscator is t-composable if any adversary that has access to t ob-
fuscated programs can be simulated, given only oracle access to the programs. Ideally,
t could be any polynomial.

As in other cryptographic settings where composability is studied, here too the goal
is to construct obfuscators for more elaborate types of programs from obfuscators of
a simpler type, namely, point obfuscators. As an important example, in the context of
VBB obfuscation, composable point obfuscators were shown to suffice for obfuscating
multi-bit point programs (MBPP). An MBPP has two hidden values (k,m) in its code.
It returns m on input k, and ⊥ on any other input. MBPP obfuscators (MBPOs) were,
in turn, shown to imply strong symmetric encryption schemes that are simultaneously

320 N. Bitansky and R. Canetti

secure against weakly random keys (i.e., keys with any super-log entropy) and key de-
pendent messages (KDM) [10]. However, as natural and fruitful as the composability
property may seem, none of the known point program obfuscators were shown to be
composable (with respect to VBB).

We show that, with respect to VGB obfuscation, composable point obfuscators do
exist, under appropriate hardness assumptions. Specifically, we show that, under a
strong variant of the Decision Diffie–Hellman assumption, the point program obfuscator
from [8] is VGB-composable for any polynomial number of instances. (The mentioned
assumption is a natural extension of the one used in [8] to show VBB security, without
addressing composability).

We then show that VGB composable point obfuscators suffice for constructing MB-
POs that are VGB composable on their own. This yields very strong encryption schemes
that are resilient to a variety of attacks. This includes the aforementioned KDM and
weak keys resilience, as well as new implications to resistance to certain related key
attacks (RKA) [1]. We also show that, given an extra re-randomization property (that
the [8] obfuscator has), the encryption schemes can also be extended to the public key
setting. We remark that the result for KDM encryption should be contrasted with the
fact that fully KDM-secure encryption schemes cannot be proven secure using fully
black-box reductions to efficiently falsifiable assumptions [19]; indeed, the assumption
that a given construction is a VGB obfuscator is not an efficiently falsifiable one. (In
fact, Wee [25] shows that VBB point obfuscators cannot be constructed using black-
box simulators; Wee’s result also applies for VGB point obfuscators, as VBB and VGB
are equivalent for the case of a single point.)

1.2. Our Techniques

Proving composability for point obfuscators encounters several difficulties. We sketch
these difficulties, as well as the ideas and techniques we use to overcome them. In
particular, we exhibit how the VGB relaxation comes to our aid.

Simulation and Distributional Indistinguishability Taking a similar approach to [8,25]
(for non-composable point obfuscation), we first study an appropriate indistinguishabil-
ity notion of obfuscation and then show how it leads to composable VGB point obfus-
cation.

Ideally, we might try to require that for fixed sequence of points, the resulting ob-
fuscated point programs would appear to an efficient adversary as a sequence of ob-
fuscated random point programs (similarly to the semantic security requirement for
encryption schemes). This would allow simple simulation, by running the adversary on
obfuscations of random hidden values. However, in the context of obfuscation such a
requirement is unachievable, since the adversary is able to run the program and verify
any guesses it might have; in particular it can have some hardwired values which it can
always recognize. Instead, we consider a weaker requirement which we call Distribu-
tional Indistinguishability (DI in short). We show that: (a) DI is necessary and sufficient
for constructing VGB simulators, and (b) it is achievable under appropriate hardness
assumptions.

DI is an extension of a notion used in [8] in the context of single point (non-
composable) obfuscators. The requirement refers to coordinatewise well spread (CWS)

On Strong Simulation and Composable Point Obfuscation∗ 321

distributions over tuples, where each coordinate has super-logarithmic min-entropy. In
other words, {(X(1)

n . . .X
(t)
n)} is a CWS distribution ensemble on {Dt

n} if, for any a ∈ Dn

and i ∈ [t], Xi �= a, except with negligible probability.
Essentially, O is a t-DI obfuscator if for any CWS distribution X , over t-tuples of

elements in Dn, no efficient adversary can distinguish obfuscations of t uniform values
from obfuscations of a tuple of values sampled from X . We show:

Theorem 1.1 (Informal). If O is a t-DI point obfuscator, then it is a t-composable
VGB point obfuscator. Moreover, if O is t-DI for any polynomial t , then it is a compos-
able VGB point obfuscator, for any polynomial number of point programs.

The main technical difficulty in this work is in proving Theorem 1.1. We sketch the
ideas used in the proof. Our starting point is a result of [8] showing that for point ob-
fuscators (i.e., t = 1) the notions of DI and VBB obfuscation are equivalent and that DI
obfuscation is achievable under certain number theoretic assumptions.

First, we ask whether t-DI obfuscators imply t-composable VBB obfuscators for
t > 1. We show that this is the case as long as t = O(1). However, when t = ω(1), major
(and seemingly inherent) difficulties arise. Specifically, recall that, when constructing
a simulator, we should deal with the fact that the adversary can run the obfuscated
programs and might have some hardwired values that it can always recognize. When
the adversary has access only to a single obfuscated point program, [8,10,25] show that,
in fact, it cannot do much more than have a polynomial number of such hardwired test
elements. We call these the distinguishing elements. This allows hardwiring into the
simulator the polynomially many distinguishing elements, and having it query its oracle
to the circuit only on these elements.

However, in the case of multiple obfuscated points, this plan does not go through. The
main difficulty is adaptivity. More specifically, while in the case of a single hidden point
there is only a single secret, in the case of composable point obfuscators, the adversary
might first discover only some of the points, and then use this partial information to
make his next choices. In other words, in addition to having an “initial set of hardwired
distinguishing elements”, the adversary may adaptively compute “new distinguishing
elements”, after having discovered some of the hidden points.

Fortunately, we can show that, for any partial information already learned (which is,
intuitively, the subset of hidden points that the adversary have revealed so far), there is
a corresponding poly-size set of “new distinguishing elements”. Still, there remains the
question of how can the simulator compute these elements ahead of time.

We show that the total number of potentially queried elements is nΘ(t). Here, when
t = ω(1), VGB comes to our aid. That is, having limited oracle access to the point pro-
grams and sufficient power to compute the distinguishing elements allows performing
the required simulation.

We remark that a converse statement is also true; that is, DI is necessary for VGB
composable obfuscation (and thus also for the stronger VBB notion).

A t-DI Point Obfuscator Finally, we reconsider the point program obfuscator con-
structed in [8]. Under a strong variant of the Decision Diffie–Hellman assumption
(SDDH), we show that this obfuscator is t-DI for any polynomial t and hence is a

322 N. Bitansky and R. Canetti

t-composable VGB point obfuscator. As evidence of plausibility, we show that our as-
sumption holds in the Generic Group Model [24], where algorithms are only allowed
to perform generic group operations and cannot exploit the representation of group ele-
ments. We note that there exist well studied group ensembles (e.g., Quadratic Residues
modulo a prime, and Elliptic Curves groups) where the best cryptanalytic techniques
are, in fact, generic ones [6].

Relation to Previous POs and MBPOs As mentioned above, VBB point obfuscators
(POs), for point programs with a single output bit, were constructed in [8] and [25].
Also, in [25], the construction was extended to point programs with log(n) output bits.
In contrast, VBB obfuscators for programs with poly(n) output bits (MBPOs) are only
known assuming composable point obfuscation [9], or for the restricted case that the
output m is independent of the key k [9,10]. Likewise, the applications to RKA and
KDM encryption mentioned in this work also require composability. However, Com-
posable (VBB) point obfuscators cannot be obtained, in general, from single point ob-
fuscators, even if these satisfy a stronger notion of security with auxiliary input (see
Appendix A).

Nevertheless, the point obfuscators mentioned above [8,25] may still be composable;
the question, however, is under what kind of assumptions. Here, we would clearly like
to rely on assumptions that do not go as far as assuming that a given obfuscator is
composable (i.e., assuming that a simulator exists). Instead, as done in [8,25] for the
case of non-composable obfuscation, we formulate a distributional indistinguishability
requirement that can be obtained from corresponding indistinguishability assumptions
(as the variants of DDH mentioned above). Then, we try to explicitly construct the
simulator; however, due to the difficulties explained above we only manage to obtain
VGB simulation.

Organization Section 3 recalls the VBB notion and some of its previous relaxations.
Section 4 is devoted to the definition and discussion of VGB obfuscation and its relative
place in the obfuscation field. Section 5 shows a general way to construct composable
VGB point obfuscators for point programs. Section 6 discusses a construction of a com-
posable point obfuscator under a number theoretic assumption. Section 6.1 discusses the
nature and plausibility of our hardness assumption. Section 7 demonstrates the appli-
cations of composable point obfuscators to obfuscation of set programs and multi-bit
point programs as well as to strong encryption schemes. In Appendix A, we discuss the
relation between obfuscation with auxiliary input and composability. In Appendix B, we
further explain the relations between some of the point obfuscation definitions provided
in this work and those provided in [8].

2. Preliminaries

Turing Machines, Circuits, and Adversaries TM is shorthand for Turing machine. By a
circuit we mean a standard boolean circuit with logical gates (taken from some universal
system). Most of the adversaries in this work are represented by circuit families of
polynomial size. By PPT we refer to probabilistic polynomial-time Turing machines.
We say that an algorithm (circuit family) is efficient if it is PPT (or poly-size in the case

On Strong Simulation and Composable Point Obfuscation∗ 323

of circuits). For a function f we denote by Af an algorithm A with oracle (black-box)
access to f .

Distributions, Indistinguishability, and Min-entropy We say that a function ν : N → N

is negligible if ν(n) = n−ω(1) (i.e., it decays faster than any polynomial). Given an en-
semble of domains D = {Dn}, we denote by U (D) = {U(Dn)} the ensemble of uni-
form distributions on this domain (we may omit the brackets when it is clear what
is the domain). Given two distribution ensembles X = {Xn}n∈N, Y = {Yn}n∈N, where
Supp(Xn) ∪ Supp(Yn) ⊆ {0,1}poly(n), we say that X is computationally indistinguish-
able from Y if for any poly-size adversary A there exists a negligible ν such that for all
sufficiently large n: |Prx←Xn

[A(x) = 1] − Pry←Yn
[A(y) = 1]| ≤ ν(n). We denote the

latter by X ≈c Y . For a distribution ensemble X = {Xn}n∈N and an algorithm A, A(Xn)

denotes the distribution induced by running (the probabilistic) A on an input sampled
from Xn. A(X) = {A(Xn)}n∈N denotes the corresponding distribution ensemble. The
min-entropy of a distribution X is defined as H∞(X) = minx∈Supp(X) log 1

Pr[X=x] .

3. Definitions

We recall the virtual black box (VBB) definition and two of its previous relaxations.
In all following definitions, we consider the task of obfuscating an ensemble C = {Cn},
where each Cn is a collection of circuits with input length n and poly(n) size.

Definition 3.1 (Obfuscator [4]). A PPT O is a VBB obfuscator for C if it satisfies:

• Functionality. For any n ∈ N, C ∈ Cn, O(C) is a circuit that computes the same
function as C.

• Polynomial slowdown. There is a polynomial q such that, for any n ∈ N, C ∈ Cn,
|O(C)| ≤ q(|C|).

• Virtual black-box.1 For any poly-size adversary A, and polynomial p, there is a
poly-size simulator S such that for all sufficiently large n ∈ N and C ∈ Cn:

∣
∣
∣ Pr

A,O

[

A
(

O(C)
) = 1

] − Pr
S

[

S C
(

1|C|) = 1
]
∣
∣
∣ ≤ 1

p(n)
.

Definition 3.2 (Indistinguishability obfuscation [4]). O is said to be an indistinguisha-
bility obfuscator (INDO) for C if it satisfies the functionality and polynomial slowdown,
and for any ensemble of circuit pairs C(1) × C(2) = {(C(1)

n ,C
(2)
n) ∈ Cn × Cn}, where the

two circuits in each pair are of the same size and functionality, it holds that:

O
(

C(1)
) ≈c O

(

C(2)
)

.

Another relaxation of VBB is Best Possible Obfuscation (BPO) [17]. Here, the re-
quirement is that any information that the obfuscation leaks is efficiently learnable

1 As noted by [4], the following can be replaced with the equivalent requirement that |Pr[A(O(C)) =
π(C)] − Pr[S C(1|C|) = π(C)]| ≤ 1

p(n)
, for any predicate π : Cn → {0,1}. Also the size of the simulator can

depend on p(n), namely the required simulation quality.

324 N. Bitansky and R. Canetti

from any other circuit with the same functionality and related size (hence it is “best
possible”). The two definitions are equivalent when the obfuscator is required to be a
PPT [17].

Before presenting our definition, in the next section, we make the following prelimi-
nary observation regarding the nature of the above relaxations. The INDO definition is,
in fact, equivalent to a weak black-box definition that allows an unbounded simulator
with unlimited number of oracle queries.

Proposition 3.1. O is an indistinguishability obfuscator, for an ensemble of circuits
C = {Cn}, iff for any efficient distinguisher A and polynomial p, there is a (possibly
inefficient) simulator S such that for all large enough n and C ∈ Cn:

∣
∣
∣ Pr

A,O

[

A
(

O(C)
) = 1

] − Pr
S

[

S C
(

1|C|) = 1
]
∣
∣
∣ ≤ 1

p(n)
.

Proof. Assume O is an obfuscator for C = {Cn} satisfying the unbounded simula-
tion property. Let A be an efficient distinguisher and let C(1) × C(2) = {(C(1)

n ,C
(2)
n) ∈

Cn × Cn}n∈N be an ensemble of circuit pairs of the same functionality and of the same
size, cn. Then for any c ∈ N, there exists a simulator S = Sc , such that for any large
enough n ∈ N, i ∈ {1,2}:

∣
∣
∣Pr

[

A
(

O
(

C(i)
n

)) = 1
] − Pr

[

S C
(i)
n

(

1cn
) = 1

]
∣
∣
∣ ≤ n−c.

Moreover, since C
(1)
n , C

(2)
n compute the same function, obviously:

Pr
[

S C
(1)
n

(

1cn
) = 1

] = Pr
[

S C
(2)
n

(

1cn
) = 1

]

,

implying that for any c ∈ N and large enough n:
∣
∣
∣Pr

[

A
(

O
(

C(1)
n

)) = 1
] − Pr

[

A
(

O
(

C(2)
n

)) = 1
]
∣
∣
∣ ≤ 2n−c.

For the converse, assume O is an indistinguishability obfuscator for C . Consider the
unbounded simulator that gets as input 1c as well as oracle access to a function f , and
operates as follows. It first learns the function and produces a circuit C̃ ∈ Cn of size
|C̃| = c that computes the function. Then it computes an obfuscation O(C̃) and feeds it
as input to the simulated adversary. The result follows directly from the indistinguisha-
bility condition. �

The definitions above concern obfuscators for circuits. That is, both the input program
and the output of the obfuscator are given by circuits. One can naturally adjust these
definitions to fit the case of Turing Machine obfuscators (both input and output are given
by a description of a TM). We next give the VBB TM definition. In what follows, we
assume all TMs have some canonical description. By A(M) we mean that the algorithm
A gets as input the description of M . In addition, all TMs discussed have some timeout
mechanism (i.e., they always halt and output).

On Strong Simulation and Composable Point Obfuscation∗ 325

Definition 3.3 (VBB TM obfuscator [4]). A PPT O is a VBB obfuscator for a TM
family M if it satisfies:

• Functionality. For any M ∈ M, O(M) is a TM that computes the same function
as M .

• Polynomial slowdown. There is a polynomial q such that, for any M ∈ M,
|O(M)| ≤ q(|M|), and for any x ∈ {0,1}∗, if M(x) performs at most t steps, then
O(M)(x) performs at most q(t) steps.

• Virtual black-box. For any poly-size adversary A and polynomial p, there is a
poly-size simulator S such that, for all sufficiently large n ∈ N and M ∈ M of
description size |M| = n:

∣
∣Pr

[

A
(

O(M)
) = 1

] − Pr
[

S M
(

1n
) = 1

]∣
∣ ≤ 1

p(n)
,

where the probability is taken over the coins of A, S and O.

4. VGB Obfuscation

In this section, we formalize the notion of virtual grey box obfuscation with strong
simulators, and explore its relation to existing notions. The new definition relaxes the
VBB security requirement by allowing the simulator to have more computational power.
However, we still restrict the number of oracle queries it is allowed to make. The func-
tionality and polynomial slowdown requirements should be satisfied as in Definition 3.1.
The VBB requirement is replaced by the following. Denote by C[q] an oracle to the cir-
cuit (function) C that allows at most q queries.

Definition 4.1 (Virtual Grey Box—obfuscation with a strong simulator). A PPT O has
the VGB property if, for any PPT adversary A and polynomial p, there is a (possibly
inefficient) simulator S and a polynomial q such that for all sufficiently large n ∈ N and
any C ∈ Cn:

∣
∣
∣ Pr

A,O

[

A
(

O(C)
) = 1

] − Pr
S

[

S C[q(n)](1|C|) = 1
]
∣
∣
∣ ≤ 1

p(n)
.

Remark 4.1. This definition can be naturally adjusted to the case of Turing Machine
obfuscators, by replacing the simulator in (Definition 3.3) with an unbounded simulator
with polynomially many queries.

When Is VGB Meaningful? Like INDO and BPO, VGB obfuscation does not seem
strong enough for some desirable obfuscation tasks. Examples include: transforming
private key encryption schemes to public ones and constructing homomorphic encryp-
tion schemes.2 Informally, the problem in these scenarios is that the obfuscated program
computes some kind of cryptographic functionality that does not remain secure in the
presence of unbounded simulators. In general, it seems that VGB is mostly meaningful

2 See the section on applications in [4] for more details.

326 N. Bitansky and R. Canetti

for program classes that are unlearnable with only polynomially many queries, even
for learners with unbounded computation time. For other program families, VGB might
not guarantee the required security (in the proof of Proposition 4.1, we describe such a
family).

4.1. VGB Vs. VBB and INDO

VGB Is Strictly Weaker than VBB The VGB definition is clearly implied by the VBB
definition. We show that, in fact, it is strictly weaker. That is, we show a family that
cannot be obfuscated according to the VBB definition but is (trivially) obfuscatable
under the weaker VGB definition. To do so, we use a slight variation of the family
constructed in the [4] impossibility result.

Proposition 4.1. Assuming the existence of one-way permutations, there exists a fam-
ily of programs that is not VBB obfuscatable but is VGB obfuscatable.

To prove the above proposition, we use the notion of TM obfuscation. This choice
is only for the sake of simplicity; indeed, constructing TM families that are not VBB-
obfuscatable is technically much simpler than constructing such circuit families as re-
flected in [4]. The separation can be extended to case of circuit families using pseudo-
random functions that are exactly learnable for unbounded adversaries with polynomi-
ally many queries (which can also be easily constructed from one-way permutations).

We recall the definition of one way permutations and then turn to prove Proposi-
tion 4.1

Definition 4.2 (One way permutation). A family of permutations f = {fn : {0,1}n →
{0,1}n}n∈N is a one-way permutation if f is efficiently computable and for any poly-
size A:

Pr
x

U←{0,1}n
[

A
(

fn(x)
) = x

] = n−ω(1).

Proof of Proposition 4.1. We describe a family of TMs that is not VBB obfuscatable
but is (trivially) VGB obfuscatable. We use a slight variation of the family constructed in
the negative result of [4] (for TMs). For n ∈ N, α,β ∈ {0,1}n, consider TMs Cα,β,Dα,β

with the following functionality:

Cα,β(x) =
{

β x = α,

⊥ otherwise,

Dα,β(M,1t) =
{

1 M halts on input α with output β after at most t steps,

⊥ otherwise.

We assume that both TMs have descriptions of size Θ(n), that Cα,β runs at most δn

steps for some constant δ, and Dα,β runs in poly-time (in its input length). We also
assume that given (α,β), both TMs can be generated (by another TM) in time poly(n).

On Strong Simulation and Composable Point Obfuscation∗ 327

Let f = {fn : {0,1}n → {0,1}n}n∈N be a one-way permutation family. For any n ∈ N,

α,β,β ′ ∈ {0,1}n define another TM:

Fα,β,β ′(i, s) =

⎧

⎪⎨

⎪⎩

Cα,β(s) i = 1,

Dα,β ′(s) i = 2,

fn(α), fn(β
′) i = 3.

Consider the corresponding families Fn = {Fα,β,β ′ } and F = ⋃

n∈N
Fn. We first claim

that F is trivially VGB obfuscatable, the obfuscator is just the identity function. An un-
bounded simulator can invert fn, retrieve α,β ′, use its oracle to compute β = Cα,β(α)

and run the simulated adversary on the corresponding Fα,β,β ′ . We now show that F is
not VBB obfuscatable. Indeed, let O be any candidate for obfuscation, and let c be the
polynomial slowdown constant such that for any F ∈ ⋃

Fn, it holds that |O(F)| ≤ |F |c
and if F(x) halts after t steps then (O(F))(x) halts after at most tc steps with the same
output. Let A be the adversary that, given a program P as input, where |P | = k, first
computes the code of a new program C = P(1, ·) that, given any input x, runs P(1, x).
Then, the adversary computes P(2,C, (δk)c). A runs in poly time for any input in F .3

Furthermore, for any α,β,β ′ ∈ {0,1}n, it holds that A(O(Fα,β,β ′)) = 1 iff β = β ′.4 On
the other hand, for a randomly chosen α,β,β ′ ∈ {0,1}n any efficient simulator, with
nothing but black-box access to Fα,β,β , fails to determine whether β = β ′, except with
negligible probability. Indeed, the simulator fails to learn anything from its oracle except
for fn(α), fn(β

′) (i.e., sees only ⊥) as long as it never queries on (1, α) or on (2,C,1t),
where C is the code of a TM which on input α returns β ′ in time t . The latter happens
only with negligible probability; otherwise, we could construct a poly-size adversary
which inverts f . Indeed, given an adversary A that on input fn(α), fn(β

′) (for random
α,β ′) produces a program C that on input α outputs β ′ in time poly(n), we could invert
f as follows. On input fn(β

′) choose a random α and compute fn(α), then use A to cre-
ate the program C and run it on α. Ruling out an adversary that on input fn(α), fn(β

′)
outputs α is straight forward. It follows that F is not VBB obfuscatable. �

VGB Implies INDO (BPO) The relation between VGB obfuscation and INDO (BPO)
follows from Proposition 3.1. That is, even when VGB is further weakened by allow-
ing the (unbounded) simulator unlimited oracle access, it still implies INDO and (for
efficient obfuscators) BPO.

4.2. Impossibility Results

We consider the possibility of “universal VGB obfuscation”. That is, could there exist
a VGB obfuscator for the class of all programs? We observe that for TMs obfuscators
the impossibility result of [4] extends and also applies for VGB obfuscation. However,
for circuit obfuscators, the separation shown in [4] no longer holds. Essentially, the rea-
son for this difference is that the VBB unobfuscatable circuit family constructed by [4]
includes cryptographic functionalities (such as encryption schemes and pseudo-random

3 Formally, one should also set a time out mechanism to deal with other inputs.
4 Note that k = |O(Fα,β,β′)| ≥ n so A is allowed poly(n) steps.

328 N. Bitansky and R. Canetti

functions) that fail to remain secure in the presence of unbounded simulators (even with
limited oracle access). We could not rule out universal VGB obfuscation in the circuit
case.

We note that the authors of [17] show impossibility of universal BPO obfuscation for
circuits that are allowed to use random oracle gates. Their result also applies for the
stronger VGB notion; however, the meaning of an impossibility result in such a setting
is somewhat less clear.

4.3. VGB Obfuscation with Auxiliary Information

A more general notion of obfuscation is obfuscation with auxiliary information (for
either VBB or VGB). In this setting, the adversary also has some prior information re-
garding the obfuscated circuit. This notion was previously studied in [15] who showed
impossibility results for VBB obfuscation with auxiliary input. While, for VBB, obfus-
cation with auxiliary input seems to be a stronger notion than plain VBB obfuscation,
we show that, for VGB, it actually does not add any extra power. In Appendix A, we
give the formal definitions and prove this result (Proposition A.3).

5. Composable Point Obfuscators

In this section, we define composable VGB point obfuscators and study the relation
between the natural simulation-based definition and an indistinguishability-based defi-
nition. In Sect. 6, we study a concrete construction satisfying the indistinguishability-
based definition, under appropriate number-theoretic assumptions.

5.1. Composition of Obfuscators

One central question in the context of obfuscation is the question of composition, which
asks when and whether is it secure to obfuscate a sequence of programs by obfuscating
each program on its own and combining the obfuscated programs. There are several
forms of composition one could consider, in this work we consider one specific form,
namely composition by concatenation [23].

Definition 5.1 (t-Composable obfuscation [23]). A PPT O is a t-composable obfus-
cator for a circuit ensemble C = {Cn} if it satisfies the functionality and polynomial
slow-down requirements, as in Definition 3.1, and for any poly-size binary adversary
A and polynomial p, there is a simulator S such that for any sequence of circuits
C1, . . . ,Ct ∈ Cn (where t = poly(n)), and any sufficiently large n:

∣
∣Pr

[

A
(

O
(

C1), . . . , O
(

Ct
)) = 1

] − Pr
[

S C1,...,Ct (

1|C1|, . . . ,1|Ct |) = 1
]∣
∣ ≤ 1

p(n)
,

where C1, . . . ,Ct gets as input (x, i) and returns Ci(x).

Remark 5.1. A special case of t-composability is t-self-composability, where C1 =
C2 = · · · = Ct . This captures the requirement that multiple obfuscations of the same
point would not reveal more information than a single obfuscation of that point.

On Strong Simulation and Composable Point Obfuscation∗ 329

Remark 5.2. Reference [23] naturally refer to VBB obfuscation, i.e., the simulator S
is polynomially bounded. We consider the definition also for VGB obfuscators; i.e., we
allow the simulator to be unbounded with polynomially many oracle queries.

5.2. Point Obfuscators

Point Circuits For a security parameter n ∈ N and a domain Dn, a point circuit Cx :
Dn → {0,1} returns 1 on input x and 0 on all other inputs. The point circuits we discuss
are given in some “canonical” form where the point x is explicit. As the size of the
canonical circuits is determined by the parameter n, we simplify our notation by letting
the simulator take input 1n (instead of the circuit size). The natural choice for the domain
is Dn = {0,1}n. However, to avoid confusion when discussing tuples of points in D

t
n,

we shall stick to the more general notation. We refer to obfuscators for point circuits as
point obfuscators.

Is Any Point Obfuscator Composable? Point obfuscators have been constructed, both
in the plain model and in the random oracle model. A natural question is whether any
VBB secure point obfuscator is also guaranteed to be composable (as in Definition 5.1).
The authors of [23] conjectured that the answer is negative. To support their conjecture
they give a point obfuscator in the Random Oracle model that is not even 2-composable.
In the standard model, it can be shown that if point obfuscators exist, then there are
also point obfuscators which are not Ω(n)-composable [9] (see further discussion in
Appendix A). In general, none of the constructions of point obfuscators were known to
be composable.

Does Obfuscation with Auxiliary Information Imply Composability? In the context of
cryptographic protocols, auxiliary information is known to be tightly related to com-
posability. A natural question is whether the same holds for obfuscation; in particular,
whether point obfuscators with auxiliary input would imply composable point obfus-
cation. This was partially answered in [9] who showed that such an implication does
not hold for a certain type of auxiliary information. In Appendix A, we extend this to a
more general setting (Proposition A.1). However, we show that point obfuscation with
auxiliary information does imply a more restricted notion of composability, namely
constant-self-composability (Proposition A.2).

5.3. Distributional Indistinguishability and Composable Point Obfuscation

To overcome the difficulties in achieving composable point obfuscators, we explore in
this section an additional property of point obfuscators called Distributional Indistin-
guishability (or DI, in short).5 We will show that this additional property is necessary
for composable obfuscation, even under the VGB notion, just as it is necessary for the
stronger VBB notion. More importantly, we will show that, in fact, it suffices for VGB
point obfuscation. The definition we present generalizes the DI definition presented
in [8].

5 DI should not be confused with Indistinguishability Obfuscators of [4], which were presented in Defini-
tion 3.2.

330 N. Bitansky and R. Canetti

Definition 5.2 (Coordinatewise well spread distribution). Let X = {Xn} be an ensem-
ble where each Xn is a distribution on D

t (n)
n for a domain ensemble {Dn}. We say that

X is CWS if:

max
a∈Dn

Pr
x̄←Xn

[∃i ∈ [t] : xi = a
] = n−ω(1).

That is, any element has only a negligible chance of being picked within a vector
sampled from the distribution. Equivalently, in a CWS ensemble the distributions X

(i)
n

all have super-log min-entropy, i.e., mini∈[t] H∞(X
(i)
n) = ω(logn).

Definition 5.3 (Distributional indistinguishability). O is t-DI if for any CWS distri-
bution ensemble, X = {Xn = 〈X(1)

n , . . . ,X
(t)
n 〉}, it holds that:

O(CX (1)), . . . , O(CX (t)) ≈c O(CU (1)), . . . , O(CU (t)),

where each O(CX (i)) is an ensemble of distributions on point obfuscations, and the hid-
den point is drawn from X (i) and U (1), . . . , U (t) are ensembles of independent uniform
distributions over {Dn}.

We note that, for the case t = 1, Definition 5.3 is equivalent to the DI definition in [8]
(see Appendix B). There, it is shown that for t = 1, DI and VBB are, in fact, equivalent.
The proof there does not follow through for larger t . Nevertheless, we show:

Theorem 5.1 (Restatement of Theorem 1.1). Any t-DI point obfuscator is a t-com-
posable VGB point obfuscator. Moreover, for t = O(1), it is VBB composable. Con-
versely, any t-composable VGB point obfuscator is t-DI.

We first prove the second part of Theorem 5.1, which is simpler, and then prove the
more involved second part. We start by introducing preliminary notation.

Notations Given a vector of t points x̄ = 〈x1, . . . , xt 〉, we abuse notation and denote
by Cx̄ the vector of point circuits 〈Cx1 , . . . ,Cxt 〉. We also denote by O(Cx̄) the com-
position O(Cx1), . . . , O(Cxt). Speaking of vectors, we shall often be interested in the
(unordered) set of their elements. Whenever we use set operators such as ∈,∩,∪ on
vectors, it should be interpreted as operating on the corresponding sets. For integers
s ≤ t we denote by

([t]
s

)

the family of subsets of [t] of size s. For vectors x̄, z̄ of dimen-
sions s and t − s, and a set of indices I ⊆ [t] of size |I | = s, we denote by CMBI (x̄, z̄)

the t-vector with the elements of x̄ in coordinates I and those of z̄ in coordinates [t]− I

(the mapping is according to ascending order of indices).6

Proof—Any t-composable VGB point obfuscator is t-DI. Let X be a CWS distri-
bution ensemble over vectors in D

t
n and let A be a binary poly-size adversary. By the

VGB assumption, for any polynomial p, there exists an (unbounded) simulator S that

6 For example, CMB{2,5}((a, b), (c, d, e)) = (c, a, d, e, b).

On Strong Simulation and Composable Point Obfuscation∗ 331

is allowed q = poly(n) many oracle queries and satisfies, for all x̄ ∈ D
t
n and sufficiently

large n:
∣
∣
∣ Pr

A,O

[

A
(

O(Cx̄)
) = 1

] − Pr
S

[

S Cx̄ [q](1n
) = 1

]
∣
∣
∣ ≤ 1/4p. (1)

It follows that, for large enough n,
∣
∣
∣ Pr

x̄←Xn
O,A

[

A
(

O(Cx̄)
) = 1

] − Pr
ū

U←D
t
n

O,A

[

A
(

O(Cū)
) = 1

]
∣
∣
∣

≤
∣
∣
∣ Pr
x̄←Xn

[

S Cx̄ [q](1n
) = 1

] − Pr
ū

U←Dt
n

[

S Cū[q](1n
) = 1

]
∣
∣
∣ + 1

2p
.

We can assume WLOG that S is deterministic (by fixing its coins to those that maximize
the above difference). To conclude the claim, observe that

∣
∣
∣ Pr
x̄←Xn

[

S Cx̄ [q](1n
) = 1

] − Pr
ū

U←Dt
n

[

S Cū[q](1n
) = 1

]
∣
∣
∣ = n−ω(1). (2)

Indeed, for any CWS distribution Y = {Yn} on vectors in D
t
n, the probability that S

queries an element of a vector sampled from Yn is at most q · max
a∈Dn

Prȳ←Yn[∃i ∈ [t] :
yi = a], which is negligible when Y is CWS. Thus, S distinguishes any two CWS
distributions, such as X and U , with negligible probability. �

Proving the First Part of Theorem 5.1—A Road Map The proof follows the ideas pre-
sented in Sect. 1.2: our eventual goal is to establish that, for any partial information
learned by the adversary (intuitively corresponding to hidden points the adversary re-
vealed), there is a corresponding polynomial set of distinguishing elements that it may
try to identify in its next set of queries. Then, we will construct a simulator that, us-
ing its unbounded power (and a polynomially bounded number of oracle queries), will
compute the distinguishing elements on the fly in order to simulate.

More concretely, the first Lemma 5.1 deals with the case that no partial information is
learned, showing that there is a polynomial set L of distinguishing elements, such that,
as long as the obfuscated vector does not contain any elements from the distinguishing
set L, it cannot be distinguished from an obfuscated random vector. For a single point
(non-composable obfuscation), this lemma is sufficient for constructing a VBB (i.e.,
efficient) simulator (as in [8]); indeed, the simulator can use its oracle to the hidden
point to check whether it is taken from the polynomial distinguishing set, and if not
simply simulate the obfuscation using a random point. However, in our setting, this is
clearly not enough, as it might be that only some of the elements in the hidden vector
are taken from the distinguishing set; this intuitively corresponds to the case that the
adversary learns some part of the obfuscated vector, and may adapt its learning strategy
accordingly.

To deal with the above, we show in Lemma 5.2 that, for any partial information
learned by the adversary, there is still a corresponding polynomial distinguishing set

332 N. Bitansky and R. Canetti

that may depend on this partial information. Then, we show in Lemma 5.3 how to de-
duce a function F that computes, from any such partial information, a corresponding
set of distinguishing elements, where the size of any such set is bounded by some fixed
polynomial; however, this function may not be efficiently computable. Finally, we con-
struct the simulator, which will use its unbounded power to compute the function F
on the fly, while performing only a fixed polynomial number of queries. Specifically,
the constructed simulator, in each iteration, computes the set of distinguishing elements
L = F (I) relative to the partial information I it has learned so far (including some of
the elements of hidden vector, as well as their positions). Then, it queries its oracle on
the elements in L to try and reveal more elements. If eventually it reveals all the hidden
points, it can perfectly simulate the adversary; otherwise, it gets to a point where it re-
vealed information I , and none of the unrevealed points are in the relative set L = F (I)

of distinguishing elements, meaning it can simulate them as random points, without the
adversary being able to distinguish.

Lemma 5.1. Assume O is t-DI, then, for any poly-size A with binary output and
polynomial p, there is a poly-size family L = {Ln ⊆ Dn} such that any vector x̄ ∈ D

t
n

that does not intersect Ln (i.e., x̄ ⊆ Dn \ Ln) satisfies:

∣
∣
∣ Pr

A,O

[

A
(

O(Cx̄)
) = 1

] − Pr
A,O,ū

U←Dt
n

[

A
(

O(Cū)
) = 1

]
∣
∣
∣ ≤ 1

p(n)
. (3)

Proof. Consider a binary poly-size A and a polynomial p. We describe the corre-
sponding family L. Let Xn be the set of all “identifiable vectors”, namely vectors that
do not satisfy Equation (3). We treat Xn as the union of two sets, Xn = X+

n ∪X−
n , where:

X+
n =

{

x̄ ∈ D
t
n : Pr

[

A
(

O(Cx̄)
) = 1

] − Pr
[

A
(

O(Cū)
) = 1

] ≥ 1

p(n)

}

,

X−
n =

{

x̄ ∈ D
t
n : Pr

[

A
(

O(Cū)
) = 1

] − Pr
[

A
(

O(Cx̄)
) = 1

] ≥ 1

p(n)

}

.

First, we reduce X+
n to a subset of vectors Y+

n ⊆ X+
n such that: (a) any identifiable

vector x̄ ∈ X+
n shares an element with some vector in Y+

n , i.e., x̄ ∩ ⋃

ȳ∈Yn

ȳ �= ∅, and (b)

any element a ∈ Dn appears in at most one vector ȳ ∈ Y+
n . Similarly, reduce X−

n to Y−
n .

Let Yn = Y+
n ∪ Y−

n and define

Ln =
⋃

ȳ∈Yn

ȳ = {a ∈ Dn : ∃ȳ ∈ Yn, a ∈ ȳ}.

By the construction of Ln, any x̄ ⊆ Dn\Ln is not in the set Xn = X+
n ∪X−

n , and hence
it is not identifiable, i.e., it satisfies Eq. (3). Thus, it remains to show that |Ln| = poly(n).
As |Ln| ≤ t |Yn|, it suffices to show that |Yn| = poly(n). Assume towards contradiction
that the latter does not hold. We shall construct a CWS distribution ensemble Z = {Zn}
over D

t
n such that A distinguishes O(CZ) from O(CU (Dt)) with advantage 1/p, con-

tradicting the DI property. By the assumption on the size of |Ln|, there exists a function

On Strong Simulation and Composable Point Obfuscation∗ 333

(n) = nω(1) such that for infinitely many n’s either |Y+
n | ≥
(n) or |Y−

n | ≥
(n). We
assume WLOG the first case holds (the proof is similar for the second). For any n ∈ N

such that |Ln| ≥
(n), set Zn to be uniform on the set Y+
n . For other n, let Zn be uniform

on some arbitrary set of size
(n) in which any element appears in at most one vector
(we can take
 = o(|Dn|) to assure such a choice is possible). The resulting ensemble
Z is CWS since any single vector is drawn with probability at most 1/
, and any single
element appears in at most one vector. Moreover, for any n such that Zn � U(Y+

n), it
holds that:

Pr
z̄←Zn

[

A
(

O(Cz̄)
) = 1

] − Pr
ū←U(Dt

n)

[

A
(

O(Cū)
) = 1

]

≥ min
ȳ∈Y+

n

Pr
[

A
(

O(Cȳ)
) = 1

] − Pr
ū←U(Dt

n)

[

A
(

O(Cū)
) = 1

] ≥ 1

p(n)
.

�

The next lemma shows that, for any partial information learned by the adversary,
there is still a corresponding polynomial distinguishing set.

Lemma 5.2. Assume O is t-DI. Let s = s(n) be any length function such that s ≤ t

and let T = {(x̄n, In) ∈ D
s
n × ([t]

s

)}n∈N be a family of vectors and index sets.7 Then, for
any poly-size A with binary output and polynomial p, there exists a poly-size family
L T = {Ln} such that for any ȳ ∈ D

t−s
n that does not intersect Ln:

∣
∣Pr

[

A
(

CMBIn

(

O(Cx̄n), O(Cȳ)
)) = 1

] − Pr
[

A
(

CMBIn

(

O(Cx̄n), O(Cū)
)) = 1

]∣
∣ ≤ 1

p(n)
,

where ū
U← D

t−s
n and the probabilities are over the coins of A, O and ū.

To prove the lemma, we shall need the following (rather intuitive) claim.

Claim 5.1. If O is t-DI, then it is also s-DI for any s ≤ t .

Proof of claim. Assume towards contradiction there is an adversary A and a CWS
distribution ensemble X over s-dimensional vectors such that A distinguishes O(CX)

from O(CU (Ds)) with some non-negligible advantage. We examine a new CWS distri-
bution ensemble X ′ = X × U (Dt−s) and an adversary A′ that, given an obfuscation
of t points, runs A on the first s obfuscations. Then A′ distinguishes O(CX ′) from
O(CU (Dt)) (with the same advantage) contradicting the t-DI property. �

Proof of Lemma 5.2. Consider the function r = t − s, then by Claim 5.1, O
is r-DI. Consider an adversary A′ (for r-compositions) that has T hardwired and,
on input w̄ (here w̄ = O(Cȳ) for some y1 . . . yr), runs A on the valid obfuscation

7 Any pair (x̄, I) should be thought of as partial information on a tuple of size t with the elements of x̄ in
the indices I .

334 N. Bitansky and R. Canetti

CMBIn(O(Cx̄n), O(Cȳ)). By Lemma 5.1, this A′ has a family L T which satisfies the
required property with respect to the original adversary A. �

The next lemma shows that there is a uniform polynomial bound on the size of all
distinguishing sets (corresponding to any partial information), and hence there exists a
distinguishing function family that, given any partial information, outputs a poly-size
set of all distinguishing elements (with respect to this information).

Lemma 5.3. Let O be a t-DI obfuscator. Then for any poly-size A with binary out-
put, and polynomial p, there exists a family of functions F = {Fn} and a q = poly(n)

such that Fn : ⋃s≤t (D
s
n × ([t]

s

)

) → ⋃

s≤q

(
Dn

s

)

and for any (x̄, I) ∈ D
|I |
n × ([t]

|I |
)

and any

ȳ ∈ D
t−|I |
n which does not intersect the set Fn(x̄, I):

∣
∣Pr

[

A
(

CMBIn

(

O(Cx̄), O(Cȳ)
)) = 1

] − Pr
[

A
(

CMBIn

(

O(Cx̄), O(Cū)
)) = 1

]∣
∣ ≤ 1

p(n)
,

where ū
U← D

t−|I |
n and the probabilities are over the coins of A, O and ū.

Remark 5.3. The function Fn is defined for any “partial information”; in particular,
the set of indices I is allowed to be the empty set corresponding to no partial information
as in Lemma 5.1.

Proof. For any (x̄, I) ∈ D
|I |
n × ([t]

|I |
)

, let Fn(x̄, I) ⊆ Dn be the minimal set that satis-
fies the above condition (note that such a set always exists as Dn trivially satisfies the
requirement). We show that there exists a polynomial q such that |Fn| ≤ q(n) (i.e., q is
a uniform bound on all images). Let (x̄∗

n, I ∗
n) be the pair which maximizes Fn(x̄, I),

i.e., |Fn(x̄
∗
n, I ∗

n)| = max
I⊆[t],x̄∈D

|I |
n

|Fn(x̄, I)|. By Lemma 5.2, there exists a polynomial
q for which |Fn(x̄

∗
n, I ∗

n)| ≤ q(n) (just by considering the family {(x̄∗
n, I ∗

n)}n∈N). The
result follows. �

To complete the proof of the theorem, we construct a simulator using the family
of distinguishing functions F . However, as it might not be computable by a poly-size
simulator, the result holds only for strong simulators as in the VGB definition.

Proof—Any t-DI point obfuscator is also a t-composable VGB point obfuscator
(sketch). Let A be a binary poly-size adversary and p a polynomial. Let F be the
corresponding family of functions given by Lemma 5.3, and let q be the polynomial
bound on the size of the images of F (which are sets). We construct an unbounded
simulator S that performs at most q · t oracle queries (the full description is given by
Algorithm 5.1). Given oracle access to a tuple of circuits Cx̄ = Cx1, . . . ,Cxt , for some
x̄ ∈ D

t
n, S first runs Fn (on the empty set), retrieves a set L(0) of all distinguishing

elements with respect to no partial information, and queries its oracle on all the elements
in L(0). In the case it did not reveal any elements (i.e., x̄ ∩ L(0) = ∅), it chooses a

uniform vector ū
U← D

t
n, computes obfuscations of the points in ū and runs A on their

composition. Otherwise, it revealed some elements given by a pair (z̄(0), I (0)). It then

On Strong Simulation and Composable Point Obfuscation∗ 335

Algorithm 5.1 Simulator S Cx1 ,...,Cxt

1: (z̄, I) ← (∅,∅)

2: L ← ∅
3: while not all the coordinates of x̄ were revealed do
4: L ← Fn(z̄, I)

5: Query all values in L

6: if New elements were revealed then
7: Update partial information (z̄, I) accordingly
8: else
9: ū

U← D
t−|I |
n \ L

10: return A(CMBI (O(Cz̄), O(Cū)))

11: end if
12: end while
13: return A(O(Cx̄))

computes L(1) = Fn(z̄
(0), I (0)), and as in the first step, queries all the values in L(1). In

the case it did not reveal any new values, it chooses a uniform vector ū
U← D

t−|I (0)|
n and

runs A on an obfuscation CMBI (0) (O(Cz̄(0)), O(Cū)). Otherwise, it has updated partial
information given by a pair (z̄(1), I (1)). It continues in this manner. If at any point it
revealed all the points in x̄, it just runs A on a random composed obfuscation of the
points in x̄ performing a perfect simulation. Otherwise, it stops after at most t iterations,
guaranteeing a simulation with 1/p accuracy. This completes the main part of the proof
of Theorem 5.1. �

A more careful analysis shows that we can somewhat “compress” the distinguishing
function F to a set of distinguishing elements. This yields the following.

Proposition 5.1. If O is a t-DI obfuscator, then any binary adversary, given a se-
quence of t obfuscations, can be simulated by a simulator of size nO(t) and poly(n)

queries. In particular, for t = O(1) this yields a polynomially bounded simulator (VBB).

Proof sketch. Going back to our proof of simulation (in Theorem 5.1), we show that
one can replace F by hardwiring into the simulator sets of distinguishing elements of
total size at most nO(t). The main point is to note that the simulator does not need the
distinguishing elements corresponding to all partial information sets, but only to some.
Formally, let (x̄, I) be some partial information (where I ⊆ [t],dim x̄ = |I |). We shall

say that the partial information (ȳ, J), Fn-extends (x̄, I) and denote (x̄, I)
Fn� (ȳ, J), if

the following holds:

I ⊆ J, (4)

ȳ|I = x̄, (5)

ȳ|J \ I ⊆ Fn(x̄, I), (6)

336 N. Bitansky and R. Canetti

where ȳ|I denotes the restriction of ȳ to the coordinates corresponding to I . In addition,
we define the following t sets of partial information pairs.

G(0)
n = {

(∅∅)
}

(no partial information)

∀k ∈ [t − 1] : G(k)
n = {

(ȳ, J) : |J | = k,∃(x̄, I) ∈ G(k−1)
n , (x̄, I)

Fn� (ȳ, J)
}

.

We claim that we can construct a simulator by hardwiring into it only the distinguishing
sets corresponding to the family Gn = ⋃

k G
(k)
n . Indeed, consider a simulator that tries to

reveal a single new element at a time; one can think of its query strategy as a tree, where
the kth level corresponds to G

(k)
n , and a concrete run corresponds to a path in the tree

(which ends when no distinguishing elements are found). That is, the simulator starts
by querying the values in Fn(∅), when it finds an element x1 in coordinate i1, it stops
and locates Fn(〈x1〉, {i1}) (as (〈x1〉, {i1}) ∈ G

(1)
n). It then continues in the same manner,

each time locating the proper extension (in the j th step it finds xj at coordinate ij
and locates Fn(〈x1 . . . xj 〉, {i1 . . . ij })). If at any point it queries all values in the current
set L, without revealing any new elements, it completes its partial information with
uniform elements that do not intersect L, computes the corresponding composition of
obfuscations, and runs the adversary on it (just as in the proof of the theorem). The
properties of the sets Fn guarantee the required simulation accuracy. It is left to show
that the total size of the family (or tree) Gn is at most nO(t). Indeed, any set in the family
is of size at most q (where q is the polynomial bound on F given by Lemma 5.3).
Hence, any pair (x̄, I) ∈ G

(k−1)
n has at most q(t − k) ≤ qt extensions in G

(k)
n (there are

at most q elements in Fn(x̄, I) each having t − k possible coordinates). It follows that
|G(k)

n | ≤ qt · |G(k−1)
n | (the degree is bounded by qt) and hence the total number of pairs

in Gn is (qt)O(t). Since each corresponding set contains at most q elements, and both
q and t are polynomial, the total number of elements is bounded by nO(t). �

5.4. On the Possibility of Bounded Simulation (VBB)

We note that our result does not rule out the possibility of bounded simulation for any
t = poly(n); namely, it may still be that any t-DI point obfuscator is also a t-composable
VBB point obfuscator. More specifically, it might be that there always exists a function
family F , such as the one required in Theorem 5.1, that is also efficiently computable,
or even a “compressed” poly set of distinguishing elements as in Proposition 5.1. Alter-
natively, there might be other techniques that allow efficient simulation. In this context,
we show an example of an adversary whose distinguishing function cannot be com-
pressed into a poly set. We also show that, if bounded simulation exists, then so does an
efficiently computable function family F , i.e., simulation can be proven using the same
technique we use above.

Example 5.1. Intuitively speaking, the reason we can compress the distinguishing
function F for constant dimension t is that the adversary has a relatively limited amount
of adaptivity to aid it, while when t grows, there are simply too many adaptive options,
which cannot be captured within a polynomial set. This is given by the following exam-
ple.

On Strong Simulation and Composable Point Obfuscation∗ 337

For t = ω(1) consider obfuscating points in {0,1}n (i.e., Dn = {0,1}n). Consider
an adversary A which first checks for any x ∈ {0,1}logn if x ◦ 0n−logn is one of the
obfuscated points (simply by running the obfuscation). Let bx be the indicator for the
case in which x ◦ 0n−logn is indeed one of the points and let b = (bx)x∈{0,1}logn be
the n-bit string given by the answers. The adversary now checks whether b is one of
the points and returns 1 only if this is indeed the case. We claim that any poly-size
family cannot cover all “distinguishing elements”. More precisely, we show that for any
poly-size family L = {Ln}, there are infinitely many n’s for which there is some partial
information, given by a vector x̄ that does not intersect Ln, and two possible ways (ȳ, z̄)

to complete it to a vector of t points such that

Pr
[

A
(

O(Cx̄◦ȳ)
) = 1

] − Pr
[

A
(

O(Cx̄◦z̄)
) = 1

] = 1,

where x̄ ◦ ȳ = CMB[dim x̄](x̄, ȳ) is just the vector of t points given by the concatenation
of x̄, ȳ. In particular, for some w̄ ∈ {ȳ, z̄}:

∣
∣Pr

[

A
(

O(Cx̄◦w̄)
) = 1

] − Pr
[

A
(

O(Cx̄◦ū)
) = 1

]∣
∣ ≥ 1

2
,

where ū is a uniformly chosen vector with elements in {0,1}n.
Indeed, define the following set of strings:

Gt
n =

{

b ∈ {0,1}n :
∑

x∈{0,1}logn

bx ≤ t

}

,

and note that:8

∣
∣Gt

n

∣
∣ =

∑

i≤t

(
n

i

)

≥
(

n

logn

)ω(1)

= nω(1);

hence, for any large enough n ∈ N, there must be some a ∈ Gt
n − (Ln ∪ ({0,1}logn ×

{0n−logn})). We now consider the set T = {x ◦ 0n−logn : x ∈ {0,1}logn, ax = 1}, a vector
x̄ consisting of the elements in T (in some arbitrary order) and two vectors ȳ, z̄ of t −|T |
elements in {0,1}n that do not intersect Ln∪({0,1}logn×{0n−logn}) and satisfy a ∈ ȳ \ z̄

(e.g., ȳ = at−|T |, z̄ = bt−|T | for some b /∈ Ln ∪ ({0,1}logn × {0n−logn})). Equation (3)
follows as required.

It should be noted that although the above example rules out the technique of hard-
wiring a polynomial set of “distinguishing elements”, it does not rule out the possibility
of efficient simulation in general. In particular, the adversary described above makes a
“black box” attack (i.e. only runs the program) and hence can be easily (and efficiently)
simulated.

Proposition 5.2. If O is a t-composable VBB point obfuscator, then there exists an
efficient algorithm B computing a distinguishing function family F (with the properties
given in Lemma 5.3).

8 If t ≥ logn then |Gt
n| ≥ (n

logn

) ≥ (n
logn

)logn and otherwise |Gt
n| ≥ (n

t

) ≥ (n
t)t ≥ (n

logn
)ω(1) .

338 N. Bitansky and R. Canetti

Previously, we showed that, for constant-dimensional vectors, bounded simulation
is, in fact, possible. The above proposition shows that, in fact, if efficient simulation is
possible, then there must be a distinguishing function family F that is also efficiently
computable (i.e., it can be proven using the same techniques we used above).

Proof sketch of Proposition 5.2. Let A be a binary poly-size adversary and p a poly-
nomial. We describe the algorithm B. By the VBB property, there exists an efficient
simulator S such that, for any vector v̄ ∈ D

t
n, it holds that:

∣
∣Pr

[

A
(

O(Cv̄)
) = 1

] − Pr
[

S Cv̄
(

1n
) = 1

]∣
∣ ≤ 1/3p(n),

where the probability is over the coins of A, S, O.
Given partial information (x̄, I), let Cx̄◦0̄ : D×[t] → {0,1} denote the function which

returns 1 on input (z, i) if i ∈ I and xi = z and 0 otherwise. B will run S Cx̄◦0̄ and
will record its set of queries, it will independently repeat this process k times (where
k = poly(n, log |Dn|) will be specified later on). Eventually, it will output the set of all
recorded queries Q = ⋃

i∈[k] Qi . We show that there is only a negligible probability
(over the coins of B) that there exists a vector ȳ of dimension (t − |I |) that does not
intersect Q and satisfies:

∣
∣Pr

[

A
(

CMBI

(

O(Cx̄), O(Cȳ)
)) = 1

] − Pr
[

A
(

CMBI

(

O(Cx̄), O(Cū)
)) = 1

]∣
∣ ≥ 1

p(n)
,

(7)

where ū is a uniform vector (of the same dimension as ȳ) and the probabilities are over
the coins of A, O and the choice of ū.

Concretely, for any vector ȳ satisfying Eq. (7), we show that ȳ ∩ Q = ∅ with proba-
bility at most 2−n|Dn|−2t . Denote x̄ ◦ ȳ = CMBI (x̄, ȳ). By the simulation property and
Eq. (7),

∣
∣Pr

[

S Cx̄◦ȳ
(

1n
) = 1

] − Pr
[

S Cx̄◦ū
(

1n
) = 1

]∣
∣ ≥ 1/3p(n).

On the other hand, the probability that S Cx̄◦ū queries an element of ū is at most |S|·t
|Dn| =

n−ω(1), and hence
∣
∣Pr

[

S Cx̄◦0̄
(

1n
) = 1

] − Pr
[

S Cx̄◦ū
(

1n
) = 1

]∣
∣ ≤ n−ω(1).

It follows that
∣
∣Pr

[

S Cx̄◦0̄ = 1
] − Pr

[

S Cx̄◦ȳ = 1
]∣
∣ ≥ 1/3p(n) − n−ω(1).

As before, conditioning on the event that S does not query any element of ȳ, the above
probabilities are equal. It follows that S queries some element in ȳ with probability at
least 1/4p(n). Hence, the probability that ȳ ∩ Qi = ∅ for all i ∈ [k] is bounded by:

(

1 − 1

4p(n)

)k

≤ 2−k/4p < 2−n|Dn|−t ,

On Strong Simulation and Composable Point Obfuscation∗ 339

where the last inequality holds for k = Θ(pt log |Dn|). Using union bound over all pos-
sible vectors ȳ (there are at most |Dn|t such vectors), we get the required result. �

6. A Concrete Composable Point Obfuscator

After establishing the proper framework in the previous, this section is devoted to a
concrete construction of composable VGB point obfuscators. We consider the point
obfuscator constructed in [8] and analyze its security under composition.

Construction 6.1 (The r, rx point obfuscator [8]). Let G = {Gn}n∈N be a group en-
semble, where each Gn is a group of prime order pn ∈ (2n−1,2n). We define an obfus-

cator O, for points in the domain Zpn as follows: Cx
O�−→ C[r, rx] where r

U← G
∗
n is a

random generator of Gn, and C[r, rx] is a circuit that has r, rx hardwired into it, and
on input z, it checks whether rx = rz.

In [8], Construction 6.1 is shown to be secure under a strong variant of the Decision
Diffie–Hellman assumption. We now present our assumption, which is a generalization
of the [8] assumption to tuples of points.

Assumption 6.1 (t-Strong vector decision Diffie–Hellman I). Let t = poly(n). There
exists a group ensemble G = {Gn : |Gn| = pn is prime} with efficient representation and
operations such that for any CWS distribution ensemble X = {Xn} over vectors in Z

t
pn

the following holds:
⎧

⎪⎨

⎪⎩

g1, g
a1
1

...

gt , g
at
t

: ḡ
U← (G∗

n)
t

ā
Xn← Z

t
pn

⎫

⎪⎬

⎪⎭

n∈N

≈c

⎧

⎪⎨

⎪⎩

g1, g
u1
1

...

gt , g
ut
t

: ḡ
U← (G∗

n)
t

ū
U← Z

t
pn

⎫

⎪⎬

⎪⎭

n∈N

.

We observe that Assumption 6.1 implies that the r, rx point obfuscator is t-DI with
respect to the corresponding group ensemble G , given by the construction. Hence, The-
orem 5.1 yields:

Theorem 6.1. Under Assumption 6.1, the r, rx point obfuscator is a t-composable
VGB point obfuscator (with respect to the group ensemble G given by the assumption).
Assuming the existence of a “universal” group ensemble that satisfies Assumption 6.1
for any t = poly(n) implies composable VGB point obfuscators (i.e., t-composable for
any t = poly(n)).

In the following subsection, we further discuss our hardness Assumption 6.1.

6.1. On the Assumption

As shown in [25], strong hardness assumptions are inherently necessary for point ob-
fuscation (even non-composable). We next discuss the specific nature of our Assump-
tion 6.1, including its relation to previous Decision Diffie–Hellman variants. In addition,
we show that it holds in the Generic Group Model.

340 N. Bitansky and R. Canetti

Relation to Previous DDH Assumptions We start by presenting another strong variant
of DDH for tuples of points, which is in a sense a natural generalization to the standard
and strong DDH assumptions [6,8].

Assumption 6.2 (t-Strong vector decision Diffie–Hellman II). Let t = poly(n). There
exists a group ensemble G = {Gn : |Gn| = pn is prime} with efficient representation and
operations such that for any CWS distribution ensemble X = {Xn} over vectors in Z

t
pn

the following holds:

⎧

⎪⎪⎨

⎪⎪⎩

g1, g
a1
1 , g

b1
1 , g

c1
1

...

gt , g
at
t , g

bt
t , g

ct
t

:
ḡ

U← (G∗
n)

t

ā
Xn← Zpn

b̄, c̄
U← Z

t
pn

⎫

⎪⎪⎬

⎪⎪⎭

n∈N

≈c

⎧

⎪⎪⎨

⎪⎪⎩

g1, g
a1
1 , g

b1
1 , g

a1b1
1

...

gt , g
at
t , g

bt
t , g

at bt
t

:
ḡ

U← (G∗
n)

t

ā
Xn← Z

t
pn

b̄
U← Z

t
pn

⎫

⎪⎪⎬

⎪⎪⎭

n∈N

.

Restricting the assumption to t = 1 results in the strong DDH (SDDH) assumption
in [8]. If in addition we restrict X to be the uniform distribution ensemble, we get the
standard DDH assumption. Assumption 6.2 appears as a more familiar and a natural
generalization of SDDH and DDH than Assumption 6.1. However, Assumption 6.1 is
somewhat simpler and is clearly weaker (the distributions induced by the last two ele-
ments of each foursome in Assumption 6.2 are identical to those in Assumption 6.1).
It is also not hard to see that if Assumption 6.1 holds for 2t then Assumption 6.1
holds for t , but, in fact, the assumptions are equivalent also with the same parame-
ter t .

Proposition 6.1. Assumptions 6.1 and 6.2 are equivalent for t ≥ 2.

Proof sketch. As explained above, Assumption 6.2 trivially implies Assumption 6.1
(for any t). To prove that Assumption 6.1 implies Assumption 6.2 for any t ≥ 2,
we show that the following distribution ensembles are computationally indistinguish-
able:

⎧

⎪⎪⎨

⎪⎪⎩

g1, g
a1
1 , g

b1
1 , g

a1b1
1

...

gt , g
at
t , g

bt
t , g

at bt
t

:
ḡ

U← (G∗
n)

t

ā
Xn← Z

t
pn

b̄
U← Z

t
pn

⎫

⎪⎪⎬

⎪⎪⎭

n∈N

, (8)

⎧

⎪⎨

⎪⎩

g1, g
a1
1 , g

b1
1 , g

a1b1
1

...

gt , g
at
t , g

bt
t , g

at bt
t

: ḡ
U← (G∗

n)
t

(ā, b̄)
U← Z

t×2
pn

⎫

⎪⎬

⎪⎭

n∈N

, (9)

⎧

⎪⎨

⎪⎩

g1, g
a1
1 , g

b1
1 , g

c1
1

...

gt , g
at
t , g

bt
t , g

ct
t

: ḡ
U← (G∗

n)
t

(ā, b̄, c̄)
U← Z

t×3
pn

⎫

⎪⎬

⎪⎭

n∈N

, (10)

On Strong Simulation and Composable Point Obfuscation∗ 341

⎧

⎪⎪⎨

⎪⎪⎩

g1, g
a1
1 , g

b1
1 , g

c1
1

...

gt , g
at
t , g

bt
t , g

ct
t

:
ḡ

U← (G∗
n)

t

ā
Xn← Z

t
pn

(b̄, c̄)
U← Z

t×2
pn

⎫

⎪⎪⎬

⎪⎪⎭

n∈N

. (11)

(8) ≈c (9), since given a distinguisher A for these two ensembles, we can construct a
distinguisher A′ for the ensembles in Assumption 6.2. Given input g1, g

a1
1 , . . . , gt , g

at
t ,

A′ samples b̄
U← Z

t
pn

and runs A on g1, g
a1
1 , g

b1
1 , g

a1b1
1 , . . . , gt , g

at
t , g

bt
t , g

at bt
t . The fact

that (9) ≈c (10) follows from standard DDH by applying a standard hybrid argument,
while standard DDH follows from Assumption 6.1 with t = 2 and X = U . Finally,
(10) ≈c (11) is equivalent to Assumption 6.1, as the last two elements in each four-
some are uniform over G

∗
n and independent of the first two, hence any distinguisher can

simulate these on its own. �

A natural question is whether Assumptions 6.1 and 6.2 for t = 1 imply the corre-
sponding assumptions for general polynomial t (or even just larger constant t). For
the case that the distribution ensemble X is the uniform distribution, this is true (cor-
responds to showing DDH for any poly number of foursomes from DDH for a single
foursome by an hybrid argument). However, when allowing any CWS distribution, such
an argument fails to work for two main reasons: (a) dependence among coordinates,
(b) the distribution ensemble might not even be efficiently samplable. In general, we do
not know whether SDDH implies SVDDH.

6.2. SVDDH Holds in the Generic Group Model

We show that Assumption 6.1 holds in the generic group model [24] where algorithms
cannot exploit the representation of the group elements. As noted in the introduction,
there exist well studied group ensembles (e.g., Quadratic Residues modulo a prime, and
Elliptic Curves’ groups) where the best cryptanalytic techniques are, in fact, generic
ones [6].

Formally, a generic poly-size algorithm A in (Zp,+) takes as input a list of
encodings σ(g1), . . . , σ (gk), where σ is a random encoding of Zp to bit-strings
{0,1}m, for m = poly(|p|). In addition, it has access to two oracles: the first, ADDσ ,
takes as input two (previously given) encodings σ(g1), σ (g2) and a bit b, and re-
turns σ(g1 + (−1)bg2), the second 1σ , returns σ(1) on all inputs.9 For a vector
ḡ = (g1, . . . , gt) of group elements, we shall denote by σ(ḡ) the corresponding en-
codings vector σ(g1), . . . , σ (gt). For two vectors of elements (ḡ, h̄), we denote by
ḡh̄ = (g1h1, . . . , gtht) the corresponding vector of products. To prove that Assump-
tion 6.2 holds in this model, we show the following.

Proposition 6.2. Let X1,X2 be two distributions on Z
t
p , such that for both i ∈ {1,2}

it holds that maxa∈Zp
Prv̄←Xi

[∃j ∈ [t] : vj = a] ≤ ν for some ν ≤ 1. Let A be a generic

9 Adding such an oracle allows the algorithm to get the encoding of any arbitrary element in Zp by
applying ADDσ (in particular, it could sample random elements).

342 N. Bitansky and R. Canetti

algorithm that makes at most q queries to its oracles and denote:

pi = Pr
x̄

Xi←Zt
p,ū

U←Zt
p

[

A
(

σ(ū, ūx̄)
) = 1

]

,

where the probability is also taken over σ and the coins of A. Then:

|p1 − p2| ≤ (q + 2t)2
(

ν + 1

p

)

.

In the setting of Assumption 6.1, one distribution is taken from a CWS ensemble X
and the other is taken from the uniform distribution ensemble.

Proof. To prove the proposition, we shall need the following simple claim.

Claim 6.1. Let P : Z
2t
p → Zp be a multivariate polynomial such that 0 ≤ degP ≤ 1.

Then for i ∈ {1,2} and x̄
Xi← Z

t
p, ū

U← Z
t
p , it holds that

Pr
[

P(ū, ūx̄) = 0
] ≤ ν + 1

p
.

Proof of claim. In the case degP = 0, P is a constant non-zero polynomial and
the claim trivially holds. Assume degP = 1 and write P(ū, ūx̄) = a0 + ∑

i∈[t] aiui +
∑

i∈[t] ai+t uixi = a0 + ∑

i∈[t](ai + ai+t xi)ui . Since degP = 1, there is some j ∈ [t]
such that (aj , aj+t) �= (0,0). This implies that aj + aj+t xj = 0 with probability at
most ν. Indeed, in case aj �= 0, aj+t = 0 the above term never vanishes, while if
aj+t �= 0, the term vanishes only when xj = −aja

−1
j+t , which occurs with probability at

most ν. Given that aj + aj+t xj �= 0, P(ū, ūx̄) = 0 with probability at most 1/p as uj is
independent of all other random variables. Overall, P(ū, ūx̄) vanishes with probability
at most ν + 1/p. �

We now prove Proposition 6.2, using the same technique applied in [6,24]. First note
that at each step of A’s execution, all the encodings it got so far correspond to some
linear polynomial evaluated at ū, x̄ū. More precisely, its input consists of encodings
σi = σ(Pi(ū, x̄ū)) : −2t + 1 ≤ i ≤ 0, where Pi(x̄) = xi+2t is just a projection poly-
nomial. At its kth query, it either queries ADDσ (σi, σj , (−1)b) for some i, j < k and
is answered with an encoding σk = σ([Pi + (−1)bPj](ū, x̄ū)) or it queries 1σ and is
answered with σk = σ(1) (which is just a constant polynomial). Informally, we show
that for the algorithm to distinguish the two distributions it must perform queries cor-
responding to two distinct polynomials Pi �= Pj such that Pi(ū, x̄ū) = Pj (ū, x̄ū), oth-
erwise it only sees uniform samples independently of the underlying distribution. For-
mally, consider an alternative setting in which x,u are disregarded through the entire in-
teraction. Instead, we emulate the interaction by storing a table with values σi ∈ {0,1}m
and corresponding linear polynomials Pi . As input, we give the algorithm random dis-
tinct strings σ−2t+1, . . . , σ0, and store each with a corresponding projection polyno-
mial Pi(x̄) = xi+2t . At the kth query, if ADDσ (σi, σj , (−1)b) is called (with some

On Strong Simulation and Composable Point Obfuscation∗ 343

i, j < k), we compute the corresponding polynomial Pk = Pi + (−1)bPj , and check
whether Pk = P
 for some
 < k. In case it does, we return σk = σ
, otherwise we
choose σk to be a random value in {0,1}m \ {σj }j<k . Same goes for queries to 1σ .
Denote by p∗ the probability that A outputs 1 in such an interaction; we show that

|pi − p∗| ≤ (q+2t)2

2 (ν + 1
p
). Note that the altered interaction differs from a true inter-

action (where x̄, ū are used) only when there are some i < j and Pi �= Pj , such that
Pi(ū, x̄ū) = Pj (ū, x̄ū), in which case the true interaction would return σj = σi , while
the altered interaction returns a new random value. Denote by Ci the event in which
such an equality occurs, when x̄ is sampled from Xi and denote by pi |Ci the proba-
bility that A outputs 1 in the original (non altered) interaction given that Ci occurs.10

Then:

∣
∣pi − p∗∣∣ = ∣

∣Pr[Ci](pi |Ci) + Pr[Ci]p∗ − p∗∣∣ = Pr[Ci]
∣
∣(pi |Ci) − p∗∣∣ ≤ Pr[Ci];

hence, it is enough to bound Pr[Ci]. Indeed, for any arbitrary 2t + q linear polynomials
P−2t+1, . . . ,Pq , the probability that for some pair Pi �= Pj and [Pi − Pj](ū, ūx̄) = 0
is at most ν + 1/p by Claim 6.1. Taking union bound over

(
q+2t

2

)

< (q + 2t)2/2 pairs
yields the required bound. �

7. Applications

In this section, we show how composable VGB point obfuscators can be used to con-
struct VGB set obfuscators and composable VGB point obfuscators for MBPCs. Then
we discuss how these can be used to obtain strong encryption schemes that are simul-
taneously resilient to key dependent messages (KDM), leakage and related key attacks
(RKA).

7.1. Application to Obfuscation of Set Circuits

Another application is obfuscation of set membership circuits (or set circuits, in short).
A set circuit CT : Dn → {0,1} returns 1 for any element in the set T ⊆ Dn and 0 for all
other inputs. Again we deal with set circuits in some canonical form where the set is
given explicitly. Set obfuscators have been considered in past work regarding extensions
of point obfuscators [9,13]. We show that a natural construction described at [9] implies
VGB (VBB) set obfuscators based on t-composable VGB (VBB) point obfuscators.

Proposition 7.1. Let O be a t-composable point obfuscator. Consider a new PPT O′,
which given a set T of size |T | = t , first chooses some random ordering of the elements,
applies O to each circuit and wraps these obfuscations with a circuit that on input z

checks if z is one of the obfuscated points (by applying an ∨ gate). Then O′ is a set
obfuscator.

10 Formally, these are defined on a joint probability space, where both the original and altered interac-
tion are executed, and it refers to the polynomials determined by the altered interaction. In particular, these
polynomials are independent of x̄, ū.

344 N. Bitansky and R. Canetti

Proof. As in Sect. 5, we denote by O(Cx̄) the composition O(Cx1), . . . , O(Cxt). Let
A be a poly-size adversary (for set obfuscations) and let p be a polynomial. Since O is
a composable obfuscator, there exists an efficient simulator S such that for any vector
x̄ ∈ D

t
n:

∣
∣Pr

[

A
(

O(Cx̄)
) = 1

] − Pr
[

S Cx̄
(

1n
) = 1

]∣
∣ ≤ 1

p(n)
;

in particular, for any set T = {x1, . . . , xt } of size t :

∣
∣Pr

[

A
(

O′(CT)
) = 1

] − Pr
[

S Cσ̄(T)
(

1n
) = 1

]∣
∣ ≤ 1

p(n)
,

where σ̄ (T) = 〈xσ(1), . . . , xσ(t)〉 is a random ordering of the elements in T . We now
describe a simulator S ′ which simulates A with oracle access to a set circuit CT . S ′
chooses a random permutation σ and stores a table of size t × 2, where the first column
has indexes i ∈ [t] and the second will represent corresponding values (at the beginning
it is initialized with blanks). S ′ runs S and keeps a counter c of how many distinct
values were queried by S so far (where by distinct we mean distinct elements of Dn,
i.e., queries (x, i), (x, j) are not considered distinct). When S queries (x, i), S ′ first
checks if x is in the table. If it appears next to the index i, S ′ answers S with 1, if
it appears but next to another index, S ′ answers with 0. In case it does not appear,
S ′ queries CT on x, if CT (x) = 0 it answers with 0 and continues. Otherwise it sets
c ← c + 1 and writes x in the table next to index σ(c) and answers 1 only if σ(c) = i.
We now note that for any set T ⊆ Dn of size |T | = t :

Pr
[

S ′CT
(

1n
) = 1

] = Pr
[

S Cσ̄(T)
(

1n
) = 1

]

,

indeed, by our construction of S ′, the emulated S is experiencing oracle access to a
truly random order on T . It follows that

∣
∣Pr

[

A
(

O′(T)
) = 1

] − Pr
[

S ′CT
(

1n
) = 1

]∣
∣ ≤ 1

p(n)
.

The proposition follows. �

7.2. Application to Obfuscation of Point Circuits with Multi-bit Output

A multi-bit point circuit (or MBPC, in short) Cx→y : Dn → {0,1}m returns y on input
x and ⊥ on all other inputs (once again we assume Cx→y is given in some canonical
form where x, y are explicit). MBPC obfuscators were constructed by [9] assuming the
existence of a composable VBB point obfuscators. However, as explained earlier, no
known obfuscator has been shown to be composable. We show that applying the [9]
construction to composable VGB point obfuscators results in VBB (rather than VGB)
MBPC obfuscator that is also VGB composable. We remark that existing MBPOs were
only shown to be secure for the restricted case that the message m is independent of
the key k [9,10]. Moreover, they were not shown to be composable. Both properties are
essential for the encryption schemes discussed in the next subsection, in order to get
resilience to key-dependent-messages and related key attacks.

On Strong Simulation and Composable Point Obfuscation∗ 345

Construction 7.1 (Multibit-bit output point obfuscator [9]). Let O be a point obfus-
cator. Define a PPT O(m) for point circuits with m-bit output as follows. For a point
x ∈ Dn and output y = y1y2 · · ·ym ∈ {0,1}m, choose a random s ∈ Dn − {x} and define
ā = 〈a0, a1, . . . , am〉 as follows. a0 = x, and for any i ∈ [m] ai = x if yi = 1 and ai = s

otherwise. The output of the obfuscator is:

O(m)(Cx→y) = C
[

O(Ca0), . . . , O(Cam)
]

,

where each O(Cai
) is an obfuscation of the point circuit Cai

, and C[O(Ca0), . . . ,

O(Cam)] is a circuit that has the obfuscated programs O(Ca0), . . . , O(Cam) hardwired
into it; it operates as follows: on input z, it first checks if z = a0 = x (by running the first
obfuscated circuit), and if so, it returns ⊥; otherwise, it finds all other coordinates such
that ai = z = x (by running the rest of the obfuscated circuits) and outputs y1 · · ·ym,
where yi = 1 if ai = z = x and 0 otherwise.

Proposition 7.2. If O is an (m + 1)-composable VGB point obfuscator, then O(m)

(given by Construction 7.1) is a VBB obfuscator for m-bit point circuits. Moreover,
for any decomposition, m + 1 = t × (m′ + 1) O(m′) is a t-composable MBPC VGB
obfuscator.

We prove this proposition in two steps. First we claim that if O is an (m + 1)-
composable VGB point obfuscator, then for any decomposition m + 1 = t × (m′ + 1),

O(m′) is a t-composable MBPC VGB obfuscator (in particular, for t = 1 it is an m-bit
VGB point obfuscator). The proof basically follows the arguments in [9] (replacing the
bounded simulator by an unbounded one) and hence, we omit it. In the second step,
we show that (putting composability aside) for MBPC VBB and VGB obfuscation are
equivalent.

Proposition 7.3. Assume O is a VGB obfuscator for the family of m-bit output point
circuits. Then it is also a VBB obfuscator for the family.

Proof. We start by giving the intuition behind the proposition. Note that a simulator
that fails to query the hidden point has an output distribution that is actually indepen-
dent of the hidden point (and corresponding output). In this case, the only concern we
might have is that the simulator’s output cannot be efficiently sampled (as the simu-
lator is unbounded). However, this cannot be the case, as this distribution is strongly
related to the one generated by the efficient adversary. Moreover, the strong simulator
has only polynomially many oracle queries and hence there are relatively few elements
that it queries with high probability. Thus, we will be able to perform bounded simu-
lation by hardwiring those elements into our simulator. We remark that applying some
of the techniques used in Theorem 5.1 and Proposition 5.1, one could strengthen the
above proposition and show that for any t = O(1) and m = poly(n), a t-composable
VGB point obfuscator with m-bit output is in fact a t-composable VBB obfuscator. We
present the proof only for the simple case t = 1.

We shall first prove two preliminary claims. In what follows, Let A be a binary poly-
size adversary, p a polynomial, and S = SA,p the corresponding VGB simulator (which

346 N. Bitansky and R. Canetti

is unbounded). Recall that S can make only poly(n) queries to its given oracle. We shall
denote the number of allowed queries by q = q(n).

Claim 7.1. Let Z be the function which returns ⊥ on all inputs. Then there are at most
pq elements which S Z queries with probability more than 1/p (over the coins of S).

Proof of claim. Denote by X the distribution on query vectors (in D
q
n) induced by S Z

and define

G
p
n = {

a ∈ Dn : Pr
x̄←X

[a ∈ x̄] ≥ 1/p
}

.

Consider a distribution X̃ defined by first drawing a vector from X and then choosing
one of its coordinates uniformly. Then for any a ∈ G

p
n , it holds that X̃(a) ≥ 1/pq , hence

|Gp
n | ≤ pq . �

Claim 7.2. For any two values x1, x2 which S Z queries with probability at most 1/p

and for any y1, y2 it holds that:
∣
∣Pr

[

A
(

O(Cx1→y1)
) = 1

] − Pr
[

A
(

O(Cx2→y2)
) = 1

]∣
∣ ≤ 4/p.

Proof of claim. Since S simulates A (with accuracy 1/p):
∣
∣Pr

[

A
(

O(Cx1→y1)
) = 1

] − Pr
[

A
(

O(Cx2→y2)
) = 1

]∣
∣

≤ ∣
∣Pr

[

S Cx1→y1
(

1n
) = 1

] − Pr
[

S Cx2→y2
(

1n
) = 1

]∣
∣ + 2/p.

Denote by Q the event (set of random tapes) in which S Z queries x1 or x2 and note
that:

Pr[Q] ≤ 2/p,

Pr
[

S Cx1→y1
(

1n
) = 1|Q] = Pr

[

S Cx2→y2
(

1n
) = 1|Q] = Pr

[

S Z
(

1n
) = 1|Q]

,

which in turn implies
∣
∣Pr

[

S Cx1→y1
(

1n
) = 1

] − Pr
[

S Cx2→y2
(

1n
) = 1

]∣
∣

= ∣
∣Pr[Q](Pr

[

S Cx1→y1
(

1n
) = 1|Q] − Pr

[

S Cx2→y2
(

1n
) = 1|Q])∣

∣ ≤ Pr[Q] ≤ 2/p.

The claim follows. �

We now return to proving Proposition 7.3. Given an adversary A and a correspond-
ing unbounded simulator S with accuracy 1/p, we show how to construct an alterna-
tive simulator S ′ which is polynomially bounded and has polynomial accuracy 4/p.
S ′ has the set G

p
n (given by the first claim) hardwired. Given oracle access to Cx1→y1 ,

it first queries its oracle on all values in G
p
n . In the case it found the hidden value x1,

it retrieves y1, creates an obfuscation O(Cx1→y1) and feeds it to A, performing a per-
fect simulation. Otherwise, it chooses an arbitrary x2 /∈ G

p
n and an arbitrary y2, and as

On Strong Simulation and Composable Point Obfuscation∗ 347

before runs A(O(Cx2→y2)). According to the second claim, it achieves in this case a
simulation with 4/p accuracy. The running time (or size) of S ′ is proportional to that of
A plus an overhead of |Gp

n | ≤ pq . �

7.3. Application to Strong Encryption Schemes

As noted in [9], obfuscation of MBPCs implies a very strong type of symmetric en-
cryption (which they call a digital locker). This usage was further explored by [10] who
showed tight relations between MBPC (VBB) obfuscation and the notions of weak key
encryption and key dependent messages encryption (KDM). Informally, they show that
the existence of MBPC VBB obfuscators implies the existence of strong symmetric en-
cryption schemes that are secure for key dependent messages even with weak random
keys. We extend their results by showing that using composable VGB MBPC obfusca-
tors (as the ones described above), similar implications still hold, even for the scenario
of multiple messages and keys which are correlated (the implications of composable
MBPC obfuscation to related key attacks resilient encryption (RKA) was not discussed
in previous work).

Remark 7.1. Consistently with prior work, the encryption schemes discussed in this
section are analyzed based on a simulation-based definition (specifically in our case,
VGB); however, they can also analyzed directly using the t-DI obfuscation definition.
The VGB simulation definition (which holds for arbitrary distributions on tuples of
points) is more attractive from a definitional point of view, capturing more closely what
we expect of obfuscation in general. In addition, one can consider conceptually stronger
simulation-based definitions of KDM/RKA encryption, with respect to arbitrary distri-
butions on keys and messages.

We start by presenting the basic natural transformation between MBPC obfuscators
and symmetric encryption schemes.

Construction 7.2 (MBPC obfuscator to symmetric encryption). Let O be an MBPC
obfuscator, define (probabilistic) encryption and decryption algorithms:

EO
k (m) � O(Ck→m),

DO
k (C) = C(k),

where C is interpreted as an MBPC and k is a key taken from a domain of keys Dn (key
sampling is addressed below).

There are several definitions regarding KDM, RKA and leakage [1,2,5,7,20]. We use
a variant of the definition in [10] extended to the setting of multiple related keys. In
this definition, t keys are generated from a distribution X = {Xn} on key vectors in
D

t
n and the adversary witnesses t encryptions of predetermined functions of the keys.

Any message might depend on any key, and the keys themselves might also be depen-
dent according to the joint distribution Xn. The definition considers the case where the
distributions Xn are not necessarily uniform but only have certain entropy guarantee.

348 N. Bitansky and R. Canetti

Definition 7.1 (Encryption with multi keys-messages dependence—MKM). An en-
cryption scheme (E,D) is (m, t)-MKM secure if for any CWS distribution ensemble
X = {Xn} on key vectors in D

t
n, any poly-size A, functions f1, . . . , ft : D

t
n → {0,1}m

and all large enough n,
∣
∣
∣ Pr

k̄←Xn
E,A

[

A
(

Ek1

(

f1(k̄)
)

, . . . ,Ekt

(

ft (k̄)
)) = 1

]

− Pr
k̄
U←D

t
n

E,A

[

A
(

Ek1(0̄), . . . ,Ekt (0̄)
) = 1

]
∣
∣
∣ = n−ω(1),

where m(n), t (n) are polynomially bounded length functions and 0̄ = 0m.

Theorem 7.1. Let O be a t-composable VGB obfuscator for m-bit point circuits, then
the encryption scheme (EO,DO) is (m, t)-MKM secure.

Proof. Let X be a CWS distribution ensemble over t-dimensional vectors (of keys)
and A be a binary poly-size adversary. Since O is a t-composable VGB obfuscator
for m-bit point circuits, for any polynomial p there exists an (unbounded) simulator
S which is allowed q = poly(n) many oracle queries and satisfies for all k̄, ȳ ∈ D

t
n ×

{0,1}m×t and sufficiently large n:
∣
∣
∣ Pr

A,O

[

A
(

O(Ck1→y1), . . . , O(Ckt→yt)
) = 1

] − Pr
S

[

S Ck̄→ȳ [q]
(1n) = 1

]
∣
∣
∣ ≤ 1/4p;

in particular, the above holds if ȳ = f (k̄) = 〈f1(k̄), . . . , ft (k̄)〉 for arbitrary functions fi

with output of length m. This implies:
∣
∣
∣ Pr
k̄←Xn
E,A

[

A
(

Ek1

(

f1(k̄)
)

, . . . ,Ekt

(

ft (k̄)
)) = 1

] − Pr
k̄

U←D
t
n

E,A

[

A
(

Ek1(0̄), . . . ,Ekt (0̄)
) = 1

]
∣
∣
∣

=
∣
∣
∣ Pr
k̄←Xn

O

[

A
(

O(Ck1→f1(k̄)), . . . , O(Ckt→ft (k̄))
) = 1

]

− Pr
k̄

U←Dn
O

[

A
(

O(Ck1→0m), . . . , O(Ckt→0m)
) = 1

]
∣
∣
∣

≤
∣
∣
∣ Pr
k̄←Xn

[

S Ck1→f (k̄),...,Ckt →f (k̄)[q](1n
) = 1

]

− Pr
k̄

U←Dn

[

S Ck1→0m,...,Ckt →0m [q](1n
) = 1

]
∣
∣
∣ + 1

2p
.

Assume WLOG that S is deterministic (by fixing its coins to those which maximize
the above difference). To conclude the claim, observe that the left term in the above
sum is of negligible size. Indeed, for any CWS distribution Y = {Yn} on t-dimensional
vectors, the probability that S queries an element of a vector sampled from Yn is at most

On Strong Simulation and Composable Point Obfuscation∗ 349

q · maxa∈Dn
Prȳ←Yn [a ∈ ȳ], which is negligible. The latter implies that S distinguishes

any two CWS distributions (such as the two distributions given above) with negligible
probability. The result follows. �

Remark 7.2. The key dependent messages (KDM) resilience of Construction 7.2 is
restricted to a non-adaptive model in which the adversary has to choose in advance the
functions of the key which it is interested in.11 We remark that this restricted setting
is still meaningful and captures common KDM resilience such as the classical circular
dependence.

Remark 7.3. There are several definitions of related key attacks (RKA) resilience that
can be considered. References [1,2] define a model in which a secret key k is chosen
uniformly, and the adversary witnesses encryptions under t new keys k1, . . . , kt which
are derived from k according to some correlation function. The correlation function
can be either determined in advance (non-adaptive RKA), or alternatively the adver-
sary can adaptively choose correlation functions according to the encryptions it already
witnessed (adaptive RKA). In general, Construction 7.2 only yields non-adaptive RKA.
However, considering the instantiation of the scheme with the obfuscator given by Con-
struction 6.1, one gets also adaptive RKA security for the family of affine functions of
the key. This follows simply because the construction allows affine homomorphisms of
the key (which yields adaptive RKA [1]).

Extension to Asymmetric Encryption In case the underlying point obfuscator used
in Constructions 7.1, 7.2 can be re-randomized, we can, in fact, get a CPA-secure
public key encryption scheme with essentially the same strong properties described
above.

Definition 7.2 (Re-randomizable obfuscator). Let O be an obfuscator for a family of
circuits C . Denote by Or (C) an obfuscation of a circuit C ∈ C using random coins r ∈ P
(for some domain P). Also denote by O(C) the distribution given by drawing r

U← P
and computing Or (C). We say that O is re-randomizable if there exists a PPT R such
that for any C ∈ C and fixed r0 ∈ P , R(Or0(C)) � O(C).

Construction 7.3 (Re-randomizable point obfuscator to asymmetric bit encryption).
Let O be a re-randomizable point circuit obfuscator with re-randomization algo-
rithm R. For a distribution X on secret keys from D, we define key generation, en-
cryption and decryption algorithms:

GO(X) � (sk,pk) : sk ← X, pk ← O(Csk)

EO
pk(b) � C : s U← D \ {sk}, C ←

{

R(pk) b = 1,

O(Cs) b = 0,

DO
sk(C) = C(sk).

11 This can be equivalently formulated as an adaptive definition where the family of correlation functions
is polynomially bounded.

350 N. Bitansky and R. Canetti

We can extend the MKM Definition 7.1 to the public key setting. In such an exten-
sion, t secret keys are drawn from a CWS distribution, t corresponding public keys are
generated as in Construction 7.3, and the encrypted messages are allowed to depend on
the keys (according) to pre-determined dependence functions. Using similar arguments
as in Theorem 7.1, it follows that using a composable VGB point obfuscator in Con-
struction 7.3 yields an MKM public key encryption scheme (for any polynomial number
of secret keys). Finally, we note that the point obfuscator given by Construction 6.1 is
indeed re-randomizable as in Definition 7.2.

Acknowledgements

We thank Sebastian Gajek and Mayank Varia for helpful comments.

Appendix A. Obfuscation with Auxiliary Input and Composability

In this section, we discuss obfuscation with auxiliary input. In this setting, the adver-
sary also has some prior information regarding the obfuscated circuit. This notion was
previously studied in [15] who referred to two variants, obfuscation with “dependent”
auxiliary input, and with “independent” auxiliary input. Here, we discuss only the first
(stronger) dependent auxiliary input variant. The following definition only concerns the
security requirement, functionality and polynomial slow-down are also required as for
standard obfuscators.

Definition A.1 (Obfuscation with auxiliary input [15]). O is an obfuscator with aux-
iliary input for a circuit ensemble C = {Cn} if for any poly-size adversary A and poly-
nomials p,q there is a simulator S such that for all large enough n ∈ N, C ∈ Cn and
auxiliary input z ∈ {0,1}q(n):

∣
∣ Pr

A,O

[

A
(

O(C), z
) = 1

] − Pr
S

[

S C
(

1n, z
) = 1

]∣
∣ ≤ 1

p(n)
.

Remark A.1. Once, again we can consider this definition in the VBB setting with a
poly-size simulator or in the VGB setting with an unbounded simulator with polynomi-
ally many oracle queries.

Obfuscation with Auxiliary Input and Composability In the context of cryptographic
protocols, auxiliary information is known to be tightly related to composability. Here,
we question whether the same holds for obfuscation; in particular, whether point ob-
fuscators with auxiliary input would imply composable point obfuscation. This was
partially answered in [9] who showed that such an implication does not hold, in gen-
eral. They focus on a distributional obfuscation definition with uninvertible auxiliary
input. We extend this to the general simulation (Definition A.1). However, we show
that point obfuscation with auxiliary information does imply a more restricted notion of
composability, namely constant-self-composability.

On Strong Simulation and Composable Point Obfuscation∗ 351

Construction A.1 (From point obfuscation to non-composable point obfuscation [9]).
Let O be a point obfuscator for the domain Dn = {0,1}n. Consider a new algorithm O′
defined as follows:

O′
r,s(Cx) = (

Or (Cx), s, x · s),

where Or (Cx) denotes an obfuscation of x using random coins r , s
U← {0,1}n and x · s

denotes the scalar product mod2.

In [9], it is shown that if O is a VBB point obfuscator then so is O′. However, O′ is
not Ω(n)-self-composable as Ω(n) linear equations in x allow to fully recover it. The
proof that O′ remains an obfuscator relies on the fact that O(Cx) is one-way in x as
long as x is taken from a Well Spread distribution Xn, i.e., H∞(Xn) = ω(logn). The
latter implies by [16] that

(

Or (Cx), s, x · s) ≈c

(

Or (Cx), s, b
)

,

for b
U← {0,1} and x which is taken from any WS distribution. This, in turn, implies

that O′ is indeed an obfuscator (an easy way to see it would be applying Theorem 5.1).
We now question whether the same idea should also work if we also consider auxiliary
input. That is, we assume that O is a point obfuscator with auxiliary input and ask
whether O′ is also a point obfuscator with auxiliary input. Now, it is not sufficient that
O(Cx) is one-way, as we should consider O(Cx), z together. We show the following
proposition.

Proposition A.1. Let O be a VBB point obfuscator with auxiliary input (as in Defini-
tion A.1). Then O′ given by Construction A.1 is a VBB point obfuscator with auxiliary
input which is not Ω(n)-self-composable.

Proof sketch. The fact that O′ is not composable is shown in the same way as in the
standard case (with no auxiliary input). We focus on showing that O′ is indeed a point
obfuscator with auxiliary input. Informally, we consider two cases. In the first, the extra
bit x · s appears random (even given the obfuscation and auxiliary information), which
will allow easy simulation. In the second case, the adversary can predict this extra bit
with noticeable chance. Here, the fact that O is a VBB obfuscator that is secure against
binary adversaries implies a simulator that, given the auxiliary input and oracle access
to the hidden point circuit Cx , can also predict this with noticeable chance. However,
this implies that with noticeable chance it can also recover the hidden point x using the
well known [16] list decoding algorithm. This suffices for perfect simulation.

For the actual proof, let A be a binary poly-size adversary and let p,q be poly-
nomials. Our goal is to construct a simulator for A as in Definition A.1. We call
(x, z) ∈ {0,1}n × {0,1}q(n) a distinguishing pair if:

∣
∣ Pr

A,r,s

[

A
(

Or (Cx), s, x · s, z) = 1
] − Pr

A,r,s,b

[

A
(

Or (Cx), s, b, z
) = 1

]∣
∣ ≥ 1

2p(n)
,

352 N. Bitansky and R. Canetti

where r are random coins for O, s
U← {0,1}n and b

U← {0,1}. We can now transform
the distinguisher A to a predictor P , such that for any distinguishing pair (x, z):

Pr
r,s

[

P
(

Or (Cx), s, z
) = x · s] ≥ 1

2
+ 1

2p(n)
.

Since O is an obfuscator with auxiliary input, there is a poly-size simulator SP , such
that for all large enough n and any (x, s, z) ∈ {0,1}n × {0,1}n × {0,1}q(n):

∣
∣Pr

S P

[

S Cx

P (s, z) = x · s] − Pr
r

[

P
(

Or (Cx), s, z
) = x · s]∣∣ ≤ 1

4p(n)
.

It follows that for all large enough n, any distinguishing pair (x, z) ∈ {0,1}n ×{0,1}q(n)

and a random s
U← {0,1}n:

Pr
S P ,s

[

S Cx

P (s, z) = x · s] ≥ 1

2
+ 1

4p(n)
.

By [16], we can use SP to obtain a poly-size invertor I such that for the all large enough
n and distinguishing pairs (x, z) ∈ {0,1}n × {0,1}q(n):

Pr
I

[

I Cx (z) = x
] ≥ n−O(1).

Since I can verify a successful inversion using its oracle, we can amplify it to get an
invertor which obtains x with overwhelming probability.

Finally, we can construct a simulator SA for A. First, we consider an adversary B
that, given an obfuscation Or (Cx) and auxiliary input z, samples (s, b)

U← {0,1}n ×
{0,1} and runs A on Or (Cx), s, b, z. B can be simulated by a poly-size simulator SB
with accuracy 1/2p(n). Now, to simulate A, given auxiliary input z and oracle access
to Cx , SA first runs I Cx (z) and records the result x̃. In case x̃ is the hidden point x,
it can perform a perfect simulation. Otherwise, it runs S Cx

B (z) . It follows that for any
non-distinguishing pair SA has simulation accuracy 1

p(n)
and for any distinguishing

pair it performs almost perfect simulation (up to the negligible probability that I fails
to obtain x). �

Proposition A.2. Any VBB obfuscator with auxiliary input is also c-self-composable
for any constant c.

Proof sketch. For simplicity, we start with the case c = 2. Let O be an obfuscator
with auxiliary input for a family of circuits C = {Cn}, and let A be a binary poly-size
adversary and p a polynomial. By obfuscation with auxiliary input, there is a poly-size
simulator S , such that for any C ∈ Cn and auxiliary input z ∈ {0,1}q(n):

Pr
A,r,s

[

A
(

Or (C), Os(C), z
) = 1

] − Pr
s

[

S C
(

Os(C), z
) = 1

] ≤ 1

2p(n)
,

On Strong Simulation and Composable Point Obfuscation∗ 353

where we treated the second obfuscation as auxiliary input. Now, we can consider a
poly-size adversary S′ that perfectly simulates S C(Os(C), z) with no oracle access to C.
Instead, it uses the obfuscation Os(C) to evaluate the oracle queries of S . Now since O
is an obfuscator with auxiliary input, it follows that S ′ can also be simulated by S ′′C(z)

with accuracy 1
2p(n)

(where S ′′ is also of poly-size). The result follows for c = 2. In gen-
eral, we can use the above argument to show that for any polynomially bounded function
t = t (n), if O is t-self-composable with auxiliary input it is also t + 1-self-composable
with auxiliary input. In particular we get c-self-composability for any constant c. �

On VGB Obfuscation with Auxiliary Input When considering point obfuscators, it
seems that VBB obfuscators with auxiliary input is a stronger notion than plain point ob-
fuscators (with no auxiliary input). In particular, it implies constant-self-composability,
while plain obfuscators are not known to imply it (and are even conjectured not to imply
it). In contrast, the following proposition shows that for VGB obfuscators, the notion of
VGB obfuscation with auxiliary input is not stronger than plain VGB obfuscation.

Proposition A.3. Let O be a VGB obfuscator for a circuit ensemble C = {Cn}. Then
O is also a VGB obfuscator with auxiliary input for the ensemble.

Proof sketch. To show this we use a similar idea to the one used in the proof of
Theorem 5.1. Roughly speaking, we note that for a fixed auxiliary input VGB implies
simulation on all circuits in the family. In general, different auxiliary inputs correspond
to different simulators, while we wish to have a single simulator for all auxiliary inputs.
However, a VGB simulator which gets some auxiliary input z can compute on its own
the best simulator corresponding to z and run it.

More formally, for any adversary A, polynomial q , and auxiliary information se-
quence Z = {zn ∈ {0,1}q(n)}n∈N, we can consider a new (non-uniform) adversary
{A(·, zn)}n∈N which has zn hardwired. By VGB (with no auxiliary input) for any poly-
nomial p there is a VGB simulator S = SZ which makes r(n) = poly(n) queries such
that for all large enough n ∈ N and any C ∈ Cn:

Pr
[

A
(

O(C), zn

) = 1
] − Pr

[

S C[r](1n
) = 1

] ≤ 1

p(n)
. (A.1)

Now for any12 n ∈ N and z ∈ {0,1}q(n), let Sn = Sn(z) be a circuit with minimal
number of oracle queries that satisfies for all C ∈ Cn:

Pr
[

A
(

O(C), z
) = 1

] − Pr
[

S C
n

(

1n
) = 1

] ≤ 1

p(n)
.

Consider a family of functions F = {Fn} that, given an input z ∈ {0,1}q(n), re-
turns Sn(z). We show that there is a uniform bound r(n) = poly(n) on the number of
oracle queries made by the circuits that F outputs. Indeed, we can consider the auxiliary
information sequence Z ∗ = {z∗

n} which maximizes Sn(z), and get a polynomial bound

12 To be more accurate, we should first note that for all large enough n ∈ N and any z ∈ {0,1}q(n) there is
indeed a circuit with the required property. Then we can restrict our discussion to all large enough n’s.

354 N. Bitansky and R. Canetti

given by Eq. (A.1). We can now construct a simulator S for A which performs well on
any C ∈ Cn and z ∈ {0,1}q(n). On input z and oracle access to C, S simply computes
Fn(z) and runs the resulting simulator. The proposition follows. �

Appendix B. More on Distributional Indistinguishability and [8]

The DI Definition 5.3 presented in this work is formulated differently from the DI def-
inition in [8], and is seemingly cleaner and simpler. We show that both formulations
are indeed equivalent. We address the single point case, which is the focus of [8]. In
particular, we deal with well spread (WS) distributions, which is a special case of the
CWS distributions given by Definition 5.2 (restricted to a single point).

Definition B.1 (Distributional Indistinguishability [8]). A point obfuscator O is DI if
for any poly-size adversary A and any WS distribution ensemble X = {Xn} on points
in {Dn}:

X1, A
(

O(CX1)
) ≈c X1, A

(

O(CX2)
)

,

where X1, X2 are two independent instances of the distribution X .

Proposition B.1. Definitions 5.3 and B.1 are equivalent.

Proof. Throughout the proof, we use the following notations. For an element x ∈ Dn,
define

Px = Pr
A,O

[

A
(

O(Cx)
) = 1

] = E
A,O

A
(

O(Cx)
)

,

where E denotes expectation.
For a distribution X on points in Dn, define

PX = E
x

X←Dn

Px.

We start by showing that if Definition 5.3 holds then so does Definition B.1. Con-
cretely, we show something stronger, the distribution ensembles given in Definition B.1
are statistically indistinguishable.

Claim B.1. Assume there exists an adversary A, and a WS distribution ensemble X
such that

SD
(

X ◦ A
(

O(CX)
)

,X ◦ A
(

O(CY)
)) ≥ ε,

for infinitely many n’s, where X,Y are two independent instances of Xn and ε = n−O(1).
Then for all such n’s either |PXn − PUn | ≥ ε/4 or there exists another distribution X′

n

with H∞(X′
n) = H∞(Xn) − log 4

ε
for which |PX′

n
− PUn | ≥ ε/4.

On Strong Simulation and Composable Point Obfuscation∗ 355

This claim implies there exist some WS distribution ensemble X ′′ (consisting of the
distributions Xn or X′

n) such that A distinguishes O(X) from O(U) with advantage ε/4,
contradicting Definition 5.3.

Proof of claim. Consider any n for which the assumption holds and let X,Y be two
independent instances of Xn. Define the set G = {x ∈ Dn : |Px − PX| ≥ ε/2}. We first
show that Pr[X ∈ G] ≥ ε/2. Indeed for any set T ⊆ Dn:

∣
∣Pr

[

X ∈ T , A
(

O(CX)
) = 1

] − Pr
[

X ∈ T , A
(

O(CY)
) = 1

]∣
∣

≤ Pr[X ∈ G] + Pr[X /∈ G]Pr[X ∈ T |X /∈ G]∣∣Pr
[

A
(

O(CX)
) = 1|X ∈ T \ G

]

− Pr
[

A
(

O(CY)
) = 1

]∣
∣

≤ Pr[X ∈ G] + |PX|X∈T \G − PX| ≤ Pr[X ∈ G] + ε/2,

where we used the fact that X,Y are independent and the definition of G. It follows that

Pr[X ∈ G] ≥ max
T ⊆Dn

∣
∣Pr

[

X ∈ T , A
(

O(CX)
) = 1

] − Pr
[

X ∈ T , A
(

O(CY)
) = 1

]∣
∣ − ε

2

= SD
(

X ◦ A
(

O(CX)
)

,X ◦ A
(

O(CY)
)) − ε

2
≥ ε

2
.

Consider now the sets

G+ = {x ∈ Dn : Px − PX ≥ ε/2},
G− = {x ∈ Dn : PX − Px ≥ ε/2}.

Then, G = G+ ∪ G−, and hence one of them has density at least ε/4, assume WLOG
that it holds for G+, and define X′ = X|X ∈ G+. It clearly holds that H∞(X′) =
H∞(X′) − log 4

ε
. Moreover, ε

2 ≤ PX′ − PX ≤ |PX′ − PU | + |PX − PU |. The result fol-
lows. �

We now show that Definition B.1 implies that Definition 5.3.

Claim B.2. Assume there exists an adversary A, and a WS distribution ensemble X
such that A distinguishes O(X) from O(U) with advantage ε, i.e., |PXn − PUn | ≥ ε

for infinitely many n’s. Then there exists a WS distribution ensemble X ′ and a poly-
size distinguisher D, which distinguishes X ′

1, A(O(CX ′
1
)) from X ′

1, A(O(CX ′
2
)) with

advantage Ω(ε).

Proof of claim. Consider any n for which the assumption holds. Let Zn � Xn+Un

2 be
the distribution defined by flipping a fair coin, and then drawing a sample from Xn or
Un according to the result. Note that H∞(Zn) ≥ min{H∞(Xn),H∞(Un)} ≥ H∞(Xn).
Moreover,PZn = PUn+PXn

2 and hence |PZn −PXn | ≥ ε/2. We first show that at least one
of the distributions X ∈ {Xn,Zn} satisfies Pr

x
X←Dn

[|Px − PX| ≥ ε/4] ≥ 1/3. Indeed,

356 N. Bitansky and R. Canetti

assume this does not hold for Xn, then

Pr
x

Zn←Dn

[|Px − PZn] ≥ ε/4
] ≥ 1

2
Pr

x
Xn←Dn

[|Px − PXn] ≤ ε/4
] ≥ 1

2
· 2

3
. (B.1)

Now, construct X ′ consisting of the distributions Xn, Zn, according to Eq. (B.1). Then
X ′ is clearly WS and we can now construct a distinguisher D as required. Given input
x, b ∈ Dn × {0,1}, D first estimates Px using n/ε2 samples of A(O(Cx)). In case its
estimate satisfies |P̃x − PX′

n
| ≥ ε/8 it outputs b, and otherwise it outputs 1. Denote by

F the first event (i.e., D outputs b), and by G the event in which |Px − PX′
n
| ≥ ε

4 . Let
X,Y be two independent instances of X′

n. Then for the infinitely many n’s satisfying
Pr[G] ≥ 1/3 it holds that

∣
∣Pr

[

D
(

X, A
(

O(CX)
)) = 1

] − Pr
[

D
(

X, A
(

O(CY)
)) = 1

]∣
∣

≥ Pr[G,F]|PX|G,F − PX′
n
| − Pr[G,F]

≥ 1

2
· ε

4
− e−Ω(n),

where we used the fact that given F , D outputs the same for both distributions and the
fact that both Pr[F |G] and Pr[F |G] are bounded by Pr[|P̃x − Px | ≥ ε/8|] which is at
most e−Ω(n) by Chernoff inequality. �

This completes the proof of Proposition B.1 �

References

[1] B. Applebaum, D. Harnik, Y. Ishai, Semantic security under related-key attacks and applications, in ICS
(2011), pp. 45–60

[2] B. Applebaum, Fast cryptographic primitives based on the hardness of decoding random linear
code. Technical Report TR-845-08, Princeton University (2008). Available at ftp://ftp.cs.princeton.edu/
techreports/2008/845.pdf

[3] B. Adida, D. Wikström, How to shuffle in public, in TCC (2007), pp. 555–574
[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.P. Vadhan, K. Yang, On the

(im)possibility of obfuscating programs, in CRYPTO (2001), pp. 1–18
[5] D. Boneh, S. Halevi, M. Hamburg, R. Ostrovsky, Circular-secure encryption from decision Diffie–

Hellman, in CRYPTO (2008), pp. 108–125
[6] D. Boneh, The decision Diffie–Hellman problem, in ANTS (1998), pp. 48–63
[7] J. Black, P. Rogaway, T. Shrimpton, Encryption-scheme security in the presence of key-dependent mes-

sages, in Selected Areas in Cryptography (2002), pp. 62–75
[8] R. Canetti, Towards realizing random oracles: hash functions that hide all partial information, in

CRYPTO (1997), pp. 455–469
[9] R. Canetti, R.R. Dakdouk, Obfuscating point functions with multibit output, in EUROCRYPT (2008),

pp. 489–508
[10] R. Canetti, Y. Tauman Kalai, M. Varia, D. Wichs, On symmetric encryption and point obfuscation, in

TCC (2010), pp. 52–71
[11] R. Canetti, D. Micciancio, O. Reingold, Perfectly one-way probabilistic hash functions (preliminary

version), in STOC (1998), pp. 131–140
[12] R. Canetti, G.N. Rothblum, M. Varia, Obfuscation of hyperplane membership, in TCC (2010), pp. 72–

89

ftp://ftp.cs.princeton.edu/techreports/2008/845.pdf
ftp://ftp.cs.princeton.edu/techreports/2008/845.pdf

On Strong Simulation and Composable Point Obfuscation∗ 357

[13] R. Canetti, M. Varia, Non-malleable obfuscation, in TCC (2009), pp. 73–90
[14] Y. Dodis, A. Smith, Correcting errors without leaking partial information, in STOC (2005), pp. 654–663
[15] S. Goldwasser, Y. Tauman Kalai, On the impossibility of obfuscation with auxiliary input, in FOCS

(2005), pp. 553–562
[16] O. Goldreich, L.A. Levin, A hard-core predicate for all one-way functions, in STOC ’89: Proceedings

of the Twenty-First Annual ACM Symposium on Theory of Computing (ACM, New York, 1989), pp.
25–32

[17] S. Goldwasser, G.N. Rothblum, On best-possible obfuscation, in TCC (2007), pp. 194–213
[18] S. Hada, Secure obfuscation for encrypted signatures, in Eurocrypt (2010)
[19] I. Haitner, T. Holenstein, On the (im)possibility of key dependent encryption, in TCC (2009), pp. 202–

219
[20] S. Halevi, H. Krawczyk, Security under key-dependent inputs, in ACM Conference on Computer and

Communications Security (2007), pp. 466–475
[21] D. Hofheinz, M.-L. John, M. Stam, Obfuscation for cryptographic purposes, in TCC (2007), pp. 214–

232
[22] S. Hohenberger, G.N. Rothblum, A. Shelat, V. Vaikuntanathan, Securely obfuscating re-encryption, in

TCC (2007), pp. 233–252
[23] B. Lynn, M. Prabhakaran, A. Sahai, Positive results and techniques for obfuscation, in EUROCRYPT

(2004), pp. 20–39
[24] V. Shoup, Lower bounds for discrete logarithms and related problems, in EUROCRYPT (1997), pp.

256–266
[25] H. Wee, On obfuscating point functions, in STOC (2005), pp. 523–532

	On Strong Simulation and Composable Point Obfuscation
	Abstract
	Introduction
	This Work
	Relationship with Existing Notions
	A Setting Where VGB Is Both Meaningful and Achievable

	Our Techniques
	Simulation and Distributional Indistinguishability
	A t-DI Point Obfuscator
	Relation to Previous POs and MBPOs
	Organization

	Preliminaries
	Turing Machines, Circuits, and Adversaries
	Distributions, Indistinguishability, and Min-entropy

	Definitions
	VGB Obfuscation
	When Is VGB Meaningful?
	VGB Vs. VBB and INDO
	VGB Is Strictly Weaker than VBB
	VGB Implies INDO (BPO)

	Impossibility Results
	VGB Obfuscation with Auxiliary Information

	Composable Point Obfuscators
	Composition of Obfuscators
	Point Obfuscators
	Point Circuits
	Is Any Point Obfuscator Composable?
	Does Obfuscation with Auxiliary Information Imply Composability?

	Distributional Indistinguishability and Composable Point Obfuscation
	Notations
	Proving the First Part of Theorem 5.1-A Road Map

	On the Possibility of Bounded Simulation (VBB)

	A Concrete Composable Point Obfuscator
	On the Assumption
	Relation to Previous DDH Assumptions

	SVDDH Holds in the Generic Group Model

	Applications
	Application to Obfuscation of Set Circuits
	Application to Obfuscation of Point Circuits with Multi-bit Output
	Application to Strong Encryption Schemes
	Extension to Asymmetric Encryption

	Acknowledgements
	Appendix A. Obfuscation with Auxiliary Input and Composability
	Obfuscation with Auxiliary Input and Composability
	On VGB Obfuscation with Auxiliary Input

	Appendix B. More on Distributional Indistinguishability and 8
	References

