
J. Cryptol. (2014) 27: 139–180
DOI: 10.1007/s00145-012-9141-6

Security Models and Proof Strategies for Plaintext-Aware
Encryption

James Birkett
Information Security Group, Royal Holloway, University of London, London, UK

Alexander W. Dent
Information Security Group, Royal Holloway, University of London, London, UK

alexander.dent@gmail.com
and

Qualcomm Research, Qualcomm Technologies Inc., San Diego, USA

Communicated by Phillip Rogaway

Received 1 August 2010
Online publication 9 January 2013

Abstract. Plaintext-aware encryption is a simple concept: a public-key encryption
scheme is plaintext aware if no polynomial-time algorithm can create a ciphertext
without “knowing” the underlying message. However, the formal definitions of plain-
text awareness are complex. This paper analyses these formal security definitions and
presents the only known viable strategy for proving a scheme is PA2 plaintext aware.
At the heart of this strategy is a new notion called PA1+ plaintext awareness. This secu-
rity notion conceptually sits between PA1 and PA2 plaintext awareness (although it is
formally distinct from either of these notions). We show exactly how this new security
notion relates to the existing notions and how it can be used to prove PA2 plaintext
awareness.

Key words. Public-key encryption, Provable security, Plaintext-aware encryption,
Plaintext awareness.

1. Introduction

The concept of plaintext awareness was initially developed as a tool to aid attempts to
prove the security of public-key encryption schemes. The basic idea is that a scheme
should be deemed plaintext aware if no polynomial-time algorithm can create a valid
ciphertext without “knowing” the underlying plaintext. This mitigates the usefulness
of the decryption oracle in the IND-CCA2 security model: an attacker automatically
knows the decryption of any ciphertext that attacker could submit to the decryption
oracle. Thus we would hope that a scheme which is IND-CPA secure [16] and plaintext
aware would be IND-CCA2 secure [23].

Initially, the formal model for plaintext awareness was developed in the mid-1990s
by Bellare and Rogaway [3] in an attempt to create a framework to prove the security of

© International Association for Cryptologic Research 2013

mailto:alexander.dent@gmail.com

140 J. Birkett and A. W.Dent

encryption schemes in the random oracle model. Unfortunately, the original formulation
only sufficed to prove IND-CCA1 security [21] rather than the preferred IND-CCA2 se-
curity [23]. A revised random oracle definition was proposed by Bellare et al. [6] in the
late 1990s that did imply IND-CCA2 security, but at the cost of a more complex defi-
nition. Moreover, this formulation could still not be easily translated from the random
oracle model into the standard model. The cryptographic community had to wait for a
decade until a formal model which could be achieved in the standard model was pro-
posed by Bellare and Palacio [2]. The key insight which allowed this new model to be
developed was that the security motion could not be formulated in a black-box manner.

The non-black-box security models for plaintext awareness are unusual and inde-
pendently interesting. This paper highlights the important differences that can be intro-
duced into a model through the decision to use a priori and a posteriori generated ran-
dom coins. The existing security models for plaintext awareness assume an adversary
with a pre-generated random tape—i.e. a priori generated random coins. We propose a
novel model for plaintext awareness which uses random values that can be generated
by the adversary during their execution—i.e. a posteriori random coins. A key insight
into the proof strategies in this work is that an a posteriori choice of randomness pro-
vides a stronger and more useful security model. The work on the models for plaintext
awareness contained in this model are essentially an investigation in to the relationship
between non-black-box models which assume a priori and a posteriori random coins
and therefore may be of independent interest.

While earlier work formalised a standard-model interpretation of plaintext aware-
ness, there was no known generic strategy for proving (full) plaintext awareness. This
paper provides the first such methodology and uses this methodology to prove that the
Cramer–Shoup encryption scheme [10] is plaintext aware under the well-known (but
non-falsifiable) Diffie–Hellman Knowledge (DHK) assumption.

Unfortunately, this methodology is not useful in proving IND-CCA2 security, as one
of the properties that the encryption scheme is required to fulfil in order to use this
methodology implies IND-CCA2 security. We claim that this fact does not seriously un-
dermine the contributions of this paper. We believe that the development of new models
for plaintext awareness may be of interest even if no solid methodology exists to prove
that a scheme meets the new security definition. Furthermore, we believe that the dis-
covery that an encryption scheme is plaintext aware is of theoretical interest beyond the
chore of proving IND-CCA2 security. Plaintext awareness gives an interesting insight
into why certain schemes achieve IND-CCA2 security and why certain schemes which
would appear to be IND-CCA2 secure have not been proven to achieve that security
level.

One of the main challenges of proving the IND-CCA2 security of a public-key en-
cryption scheme is the difficulty in simulating the decryption oracle without full knowl-
edge of the private decryption key. This challenge is made harder by the possibility of
trivial decryption oracle queries in which an attacker submits a ciphertext to the oracle
for which it already “knows” the underlying message. The simulated decryption oracle
must return the correct underlying message, as otherwise the attacker would be able to
distinguish the simulated decryption oracle from a real decryption oracle, despite the
fact that the query does not actually help the attacker break the security of the underly-
ing scheme. Plaintext awareness can be interpreted as a formalisation of the idea that all

Security Models and Proof Strategies for Plaintext-Aware Encryption 141

decryption oracle queries that a polynomial-time attacker can generate must be trivial.
IND-CCA2 proofs for encryption schemes which are not plaintext aware must either
(i) answer decryption queries using private information unknown to the attacker and
show that this does not leak “too much” of the private key to the attacker; (ii) show that
the scheme is plaintext aware for a large portion of the ciphertext space and that it is
unlikely that the attacker will be able to generate a valid ciphertext for which he does
not “know” the underlying plaintext; or (iii) show that the ability to decrypt non-trivial
ciphertexts does not enable an attacker to determine any information about the challenge
ciphertext.

Furthermore, plaintext awareness has been shown to be a useful property in its own
right and one that allows the construction of simple provably-secure encryption-based
protocols. For example, Di Raimondo et al. use plaintext awareness to analyse the deni-
ability of the SKEME key exchange protocol [13]. Di Raimondo et al.’s work considers
protocols which use a message transmission system of the following form:

1. Bob generates a symmetric session key K and encrypts it using Alice’s public key

pkA to form a ciphertext C
$← E (pkA,K). Bob sends this ciphertext to the sender.

2. Alice decrypts the ciphertext to recover the session key K . Alice uses this to en-
crypt a message m using an authenticated encryption system A E K(m) and sends
this to Bob.

Loosely speaking, this protocol is (sender) deniable if every possible legitimate protocol
transcript between Alice and Bob could have been produced by Bob alone. Bob may try
to break deniability by producing the ciphertext C in a non-standard way and showing
that Alice must have been involved in decrypting the ciphertext. This proves Alice’s
involvement in the protocol and removes Alice’s deniability. Di Raimondo et al. use
plaintext awareness to argue that Bob must know the symmetric key K encrypted by any
valid ciphertext C and so Bob can always simulate a protocol transcript. They conclude
that protocols of this form, including SKEME, are deniable if they are instantiated using
plaintext-aware encryption. A similar argument is made by Ventre and Visconti in the
construction of two-round extractable commitment schemes [30].

Models for Plaintext Awareness The concept of plaintext-aware encryption may be
simple, but the formal definition is complex and subtle. The problem lies in the diffi-
culty of formally defining what is meant by the phrase ‘an attacker knows the underlying
plaintext’. The initial definition of plaintext awareness, introduced by Bellare and Ro-
gaway [3] and extended by Bellare, Desai, Pointcheval and Rogaway [6], relies on the
random oracle model. A public-key encryption scheme was said to be plaintext aware
if it is possible to deduce the decryption of a ciphertext produced by an attacker by
observing the random oracle queries made by the attacker during the construction of
the ciphertext. A class of public-key encryption schemes, which make use of a hash-
based “checksum” value, can easily be proven plaintext aware in this model. However,
this definition relies on the random oracle model and has no obvious counterpart in the
standard model.

A more general treatment was introduced by Bellare and Palacio [2] who introduced a
definition of “knowledge” similar to the definition which appears in the analysis of zero-
knowledge protocols [17]. For a zero-knowledge protocol, an algorithm A is deemed

142 J. Birkett and A. W.Dent

to “know” a value if it could be altered to give an algorithm A∗ of similar complexity
which could output that value. For example, assuming the hardness of discrete logarithm
problem, a polynomial-time algorithm which is given a group generator g and a ran-
domly chosen element gx does not know x, since no polynomial-time algorithm could
compute x, but would know gx+1 since we could alter A to give an algorithm A∗(g, gx)

which outputs gx+1. In the context of plaintext-aware encryption, Bellare and Palacio
proposed that an encryption scheme be deemed plaintext-aware if (roughly) for any
polynomial-time algorithm A which can output ciphertexts, there exists a polynomial-
time algorithm A∗ which will output the underlying messages of those ciphertexts given
the same inputs as original algorithm. The algorithm A is known as the “ciphertext cre-
ator” and the algorithm A∗ is known as the “plaintext extractor” for obvious reasons. It
should be noted that the phrase “given the same inputs” is a very strong requirement:
crucially, the plaintext extractor A∗ should even be given the random coins of the ci-
phertext creator A.

From a model point of view, the approach proposed by Bellare and Palacio is very
appealing. The plaintext extractor A∗ can be thought of as a polynomial-time “spy”
which sits on the shoulder of an IND-CCA2 attacker A as it creates a ciphertext, deduces
the underlying message, and feeds this information back to the attacker when it makes
a decryption oracle query.

This model for plaintext awareness is known as PA1 plaintext awareness. Unfortu-
nately, PA1 plaintext awareness is not sufficient to allow us to prove the IND-CCA2 se-
curity of an IND-CPA secure encryption scheme. This is because the IND-CCA2 game
allows the attacker to make use of an extra piece of information to help them create a
ciphertext: the challenge ciphertext itself. It may be possible for an attacker to use the
challenge ciphertext to create a ciphertext which the plaintext extractor cannot success-
fully decrypt. In order to use the concept of plaintext awareness to prove IND-CCA2
security, Bellare and Palacio allowed the ciphertext creator A to query an encryption
oracle which would return the encryption of a randomly chosen message output by a
polynomial-time “plaintext creator” algorithm P . A scheme which remains plaintext
aware in the presence of any plaintext creator is deemed to be PA2 plaintext aware,
and a scheme which is both PA2 plaintext aware and IND-CPA secure is necessarily
IND-CCA2 secure.

Our Contribution1 The core of our approach to plaintext-aware public-key encryption
is the concept of PA1+ plaintext awareness. One major difference between PA1 and
PA2 plaintext awareness is that, in the PA1 model of plaintext awareness, the plaintext
extractor can determine every action that the ciphertext creator will take during its entire
execution, since the plaintext extractor knows all of the inputs that the ciphertext creator
will ever receive. In the definition of PA2 plaintext awareness, the plaintext extractor is
only able to determine the actions of the ciphertext creator up to the point at which it
queries the encryption oracle, since it cannot a priori know the ciphertext that oracle
will return.

This means, for a suitably random encryption scheme, the encryption oracle can actu-
ally be used to provide two services: it gives the ciphertext creator access to ciphertexts
and it gives the ciphertext creator access to a source of new random bits. PA1+ plain-

1 This paper presents, extends, and corrects errors in [12] and [8].

Security Models and Proof Strategies for Plaintext-Aware Encryption 143

text awareness is similar to PA1 plaintext awareness except that the plaintext creator is
also given access to a source of new random bits. Conceptually, the PA1+ model sits
between the PA1 and PA2 models: it gives the ciphertext creator access to a source of
randomness, but does not give the ciphertext creator access to a full encryption oracle.

We show how this new notion of PA1+ plaintext awareness relates to Bellare and
Palacio’s existing notions of PA1 and PA2 plaintext awareness; in particular, we show
that it is a weaker notion than PA2 plaintext awareness in the sense that any public-key
encryption scheme which is PA2 plaintext aware and IND-CPA secure is necessarily
PA1+ plaintext aware. We also show that a scheme which is PA1+ plaintext aware and
which presents ciphertexts which appear essentially random is necessarily PA2 plaintext
aware. This gives the only known viable strategy for proving PA2 plaintext awareness
in the standard model. We demonstrate the usefulness of this strategy by proving that
the Cramer–Shoup public-key encryption scheme is PA2 plaintext aware [10].

Related Work Obviously, the work in this paper builds heavily on the standard-model
definitions presented by Bellare and Palacio [2]. Bellare and Palacio also proved the
fundamental result that PA2 plaintext awareness and IND-CPA security implies IND-
CCA2 security. This result was improved by Teranishi and Ogata [29] who proved that
PA2 plaintext awareness and one-way security implies IND-CCA2 security. Jiang and
Wang investigated notions of the plaintext awareness of hybrid (KEM-DEM) encryption
schemes [19] and used the proof strategy in this paper to prove that the hash-proof-
based public-key encryption scheme of Kurosawa and Desmedt [20] is PA2 plaintext
aware. This latter result was independently obtained by Birkett [7] who also proved that
the hash-proof-based public-key encryption scheme of Cramer and Shoup [10] is PA2
plaintext aware.

2. Preliminaries

We let ← and
$← denote assignment. If A is a deterministic algorithm, then y ← A(x)

denotes the assignment to y of the output of running A on x. If A is a probabilistic

algorithm, then y
$← A(x) denotes the assignment to y of the output of running A on

x with a fresh set of random coins. We write y ← A(x;R) to denote the assignment to
y of the output of running A on x with the random coins R and we let R[A] denote
the random coins of A. An algorithm A is (strict) polynomial-time if there exists a
polynomial p such that the running time of A(x) is bounded by p(|x|). A function
f (k, x) is negligible in k if f (k, x) ∈ O(k−n) for all x ∈ {0,1}∗ and n ∈ N.

If S is a finite set, then y
$← S denotes the assignment to y of a randomly chosen ele-

ment of S. If X is a distribution over a finite set S, then y
$← X denotes the assignment to

y of an element of S chosen according to the distribution X. If X and Y are distributions
over some common finite set S, then the statistical distance between X and Y is

Δ[X,Y] = 1

2

∑

s∈S

∣∣Pr[X = s] − Pr[Y = s]∣∣.

The output of a probabilistic polynomial-time (PPT) algorithm A with input x and
access to an oracle O is written A O(x). If we are describing an algorithm A then we

144 J. Birkett and A. W.Dent

will use the phrase “Query β ← O(α)” to denote that A queries the oracle O on α and
receives the response β . We will frequently encounter a situation where an algorithm
A O(x) will be running an algorithm B O′

(y) as a subroutine. In this situation A will
be expected to simulate the oracle O′ for B. In order to describe this, we will use a
pseudocode description of the form

z
$← B O′

(y)

If B queries O′(α)

Perform calculations
Return β

to denote that B is run on y, may query the “oracle” O′ with an input α and will receive
a response β in return, and finally outputs z. We also make use of pseudocode of the
form

Repeat (k times) until E

Perform first calculations
Else

Perform second calculations

to mean that the set of first calculations is repeated until either E occurs or the loop has
been executed k times. If E has not occurred after k executions of the loop, then the
second set of calculations is performed.

We refer to a list of bitstrings using the form ALIST for some identifier A. All lists
are initially initialised to be empty (ALIST ← ε). Elements of the list are addressed as
ALIST[i] with the first entry addressed as ALIST[0]; the number of the entries in the
list is written as |ALIST|.

A public-key encryption scheme is a triple of PPT algorithms (G, E , D). The key
generation algorithm takes as input a security parameter 1k and outputs a public/private

key pair (pk, sk)
$← G(1k). The public key implicity defines the message space M and

ciphertext space C . The encryption algorithm takes a message m ∈ M and a public key

pk as input, and outputs a ciphertext C
$← E (pk,m) in the ciphertext space C . The (de-

terministic) decryption algorithm takes a ciphertext C ∈ C and a private key sk as input,
and output either a message m ← D(sk,C) in the message space M or the distinguished

error symbol ⊥. For correctness, we require that for all (pk, sk)
$← G(1k) and messages

m ∈ M, we have that D(sk, E (pk,m)) = m with probability 1.
We define five notions of security for a public-key encryption scheme: IND-ATK,

LH-IND-ATK, and OW-CPA for ATK ∈ {CPA,CCA2} [16,23]. These security notions
are defined via the experiments in Fig. 1. For the IND/LH-IND security notions, a PPT
attacker A is deemed to have advantage

Adv(LH-)IND

A (k) = ∣∣Pr
[
EXPT(LH-)IND-1

A = 1
] − Pr

[
EXPT(LH-)IND-0

A = 1
]∣∣.

For the OW security notion, a PPT attacker A is deemed to have advantage

AdvOW

A(k) = Pr
[
EXPTOW

A = 1
]
.

A public-key encryption scheme is OW/IND/LH-IND secure if the corresponding ad-
vantage is negligible. We will often prove results about the security of encryption

Security Models and Proof Strategies for Plaintext-Aware Encryption 145

EXPTIND-bA :

(pk, sk)
$← G(1k)

(m0,m1,ω)
$← AO D

1 (1k,pk)

C∗ $← E (pk,mb)

If |m0| �= |m1| then C∗ ←⊥
b′ $← AO D

2 (C∗,ω)

If b′ = 1 then output 1
Else output 0

EXPTLH-IND-bA :

(pk, sk)
$← G(1k)

(m0,m1,ω)
$← AO D

1 (1k,pk)

C∗ $← E (pk,mb)

b′ $← AO D
2 (C∗,ω)

If b′ = 1 then output 1
Else output 0

EXPTOWA :

(pk, sk)
$← G(1k)

m∗ $← M
C∗ $← E (pk,m∗)

m
$← A(1k,pk,C∗)

If m = m∗ then output 1
Else output 0

Fig. 1. Security notions for public-key encryption: IND (left), LH-IND (centre), and OW (right). In the IND
and LH-IND security games, the oracle O D depends on ATK. If ATK = CPA then the decryption oracle O D
returns the empty string ε on all inputs. If ATK = CCA2 then the decryption oracle O D returns D(sk,C) on
input C. The attacker A2 is forbidden from querying the decryption oracle O D on C∗.

schemes using game-hopping techniques [4,26] for which a short introduction is given
in Appendix A.

The LH-IND (length-hiding indistinguishable) security notion perhaps merits a few
words of explanation. A scheme is deemed to be IND secure if a ciphertext hides all
partial information about a message except perhaps its length. A scheme is deemed to
be LH-IND secure if hides all partial information about a ciphertext including its length.
Clearly, any scheme which has M = {0,1}� is LH-IND-ATK secure if and only if it is
IND-ATK secure. Equally clearly, any scheme which has M = {0,1}∗ is not LH-IND-
ATK secure even if it is IND-ATK secure (as one can break LH-IND-CPA security by
setting m0 to be a very short message and m1 to be a very long message and observing
the difference in ciphertext length).

Lastly, we will occasionally write

Pr[condition : experiment]
to denote the probability that condition is true after executing the steps described by
experiment.

3. Relations Between Notions of Plaintext Awareness

3.1. The Bellare–Palacio Notions of Plaintext Awareness

The standard-model definitions of plaintext awareness were provided by Bellare and
Palacio [2]. As we have already discussed, the main idea behind the Bellare–Palacio
definitions are the concepts of a ciphertext creator A and a plaintext extractor A∗. The
ciphertext creator will be able to submit ciphertexts to a “decryption oracle”. This oracle
will either be a real decryption oracle or the plaintext extractor attempting to play the
part of the real decryption oracle. The plaintext extractor is given all of the inputs of the
ciphertext creator, including the ciphertext creator’s random coins. Thus, the plaintext
extractor can be thought of as a modified version of the ciphertext creator which outputs
both ciphertexts and their underlying messages, thus realising the idea that the ciphertext
creator must “know” the underlying message in the sense introduced by zero-knowledge
protocols.

146 J. Birkett and A. W.Dent

EXPTREAL-PA1A,D
:

(pk, sk)
$← G(1k)

x
$← AO D (1k,pk)

If A queries O D (C):
Return D(sk,C)

b
$← D(x)

Output b

EXPTFAKE-PA1A,A∗,D
:

(pk, sk)
$← G(1k)

x
$← AO D (1k,pk)

If A queries O D (C):
Return A∗(1k,pk,C,R[A])

b
$← D(x)

Output b

Fig. 2. The PA1 plaintext awareness security games. We assume that A∗ is a stateful algorithm (that retains
its internal state between invocations) and recall that R[A] represents the random coins of A.

The following two definitions are taken from the work of Bellare and Palacio [2]. We
define plaintext awareness using two games in Fig. 2 which are played by a ciphertext
creator A, a plaintext extractor A∗ and a distinguisher algorithm D. The advantage is
defined to be

AdvvPA1

A,A∗,D(k) = ∣∣Pr
[
EXPTREAL-PA1

A,D = 1
] − Pr

[
EXPTFAKE-PA1

A,A∗,D = 1
]∣∣.

Definition 3.1 (PA1). A public-key encryption scheme is PA1 plaintext aware if for
every PPT ciphertext creator A there exists a PPT plaintext extractor A∗ such that for all
polynomial-time distinguisher algorithms D we have that AdvvPA1

A,A∗,D(k) is negligible.

As we mentioned previously, PA1 plaintext awareness is not sufficient to prove IND-
CCA2 security, since the model for PA1 plaintext awareness does not capture situations
in which the ciphertext creator may be able to obtain ciphertexts for which they do not
know the underlying message. This motivates the definition of PA2 plaintext awareness,
which is defined by the two games in Fig. 3. The central difference between PA1 and
PA2 plaintext awareness is the introduction of the encryption oracle OE . This oracle
gives the ciphertext creator access to a source of ciphertexts by returning the encryption
of a message output by a stateful, PPT plaintext creator algorithm P . This architecture
is shown in Fig. 4. The advantage of a ciphertext creator A, plaintext extractor A∗,
plaintext creator P , and a distinguisher algorithm D is given by

AdvvPA2

A,A∗,P ,D(k) = ∣∣Pr
[
EXPTREAL-PA2

A,P ,D = 1
] − Pr

[
EXPTFAKE-PA2

A,A∗,P ,D = 1
]∣∣.

Definition 3.2 (PA2). A public-key encryption scheme is PA2 plaintext aware if for
every PPT ciphertext creator A there exists a PPT plaintext extractor A∗ such that
for all PPT plaintext creators P and PPT distinguisher algorithms D we have that
AdvvPA2

A,A∗,P ,D
(k) is negligible.

Theorem 3.3 (Bellare–Palacio). A public-key encryption scheme that is (LH-)IND-
CPA secure and PA2 plaintext aware is (LH-)IND-CCA2 secure.

Theorem 3.4 (Teranishi–Ogata). A public-key encryption scheme that is OW-CPA se-
cure and PA2 plaintext aware is (LH-)IND-CPA secure.

Security Models and Proof Strategies for Plaintext-Aware Encryption 147

EXPTREAL-PA2A,P ,D
:

(pk, sk)
$← G(1k)

x
$← AO D ,O E (1k,pk)

If A queries O E (α):

m
$← P (α)

C
$← E (pk,m)

Append C to CLIST

Return C

If A queries O D on C:
If C ∈ CLIST then return ⊥
Else return D(sk,C)

b
$← D(x)

Output b

EXPTFAKE-PA2A,A∗,P ,D
:

(pk, sk)
$← G(1k)

x
$← AO D ,O E (1k,pk)

If A queries O E (α):

m
$← P (α)

C
$← E (pk,m)

Append C to CLIST

Return C

If A queries O D on C:
If C ∈ CLIST then return ⊥
Else return A∗(1k,pk,C,R[A],
CLIST)

b
$← D(x)

Output b

Fig. 3. The PA2 plaintext awareness security games. We assume that A∗ and P are stateful algorithms (that
retain their internal state between invocations).

Fig. 4. The EXPTFAKE-PA2A,A∗,P ,D
model.

Technically, both of these results are only proven for the IND security notions, but an
examination of the proofs shows that neither relies on the fact that |m0| = |m1| in the
IND security game. Thus, the proofs hold for the LH-IND security notions as well. This
allows us to prove the following result (which motivates our consideration of LH-IND
security at all):

Corollary 3.5. A public-key encryption scheme that is IND-CPA secure, PA2 plaintext
aware, and has the property that |M| grows faster than any polynomial in the security
parameter k is LH-IND-CPA secure.

Proof. An encryption scheme which is IND-CPA scheme and which has the property
that |M| grows faster than any polynomial is OW-CPA secure. Thus, by the Teranishi–
Ogata result, the scheme is LH-IND-CPA secure. �

148 J. Birkett and A. W.Dent

Conceptually, this minor observation proves that we should only consider schemes
which are LH-IND-CPA secure as candidates for PA2 plaintext awareness. Practically,
this means that no scheme with M = {0,1}∗ can ever be PA2 plaintext aware, which
eliminates most hybrid schemes. Interestingly, we will show that the Cramer–Shoup
hybrid encryption scheme is PA2 plaintext aware if we restrict the message space to
M = {0,1}k (and so, with the use of a suitable padding scheme, if M = {0,1}≤k).

3.2. PA1+ Plaintext Awareness

The crux of our approach to plaintext awareness is a new definition which we term PA1+
plaintext awareness. We claim that it lies conceptually between PA1 and PA2 plaintext
awareness, although it is formally distinct from either of them. In the definition of PA1
plaintext awareness, when the ciphertext creator A first invokes the plaintext extractor
A∗, the plaintext extractor can determine every action that the ciphertext creator will
take during its entire execution, since the ciphertext creator is given no independently
generated input during its execution.

In the PA2 model for plaintext awareness, the ciphertext creator can use the encryp-
tion oracle for two purposes:

– It can use the encryption oracle to generate encryptions of messages drawn from
polynomial-time distributions.

– For suitably randomised encryption schemes, the encryption oracle can be used as
a source of random bits (e.g. by hashing the ciphertext).

The ability to obtain “new” random bits means that the plaintext extractor cannot de-
termine the ciphertext creator’s complete execution in advance. This is a significant
difference between PA1 and PA2 plaintext awareness. PA1+ plaintext awareness explic-
itly gives the ciphertext creator one of the two abilities that it gets in the PA2 model: the
ability to access a source of new random bits. In order to allow the plaintext extractor
A∗ to track the execution of the ciphertext creator A, we give the plaintext extractor
access to all the random bits that have been generated up to the point that it is queried.

Definition 3.6 (PA1+). For any definition of plaintext awareness PA ∈ {PA1/PA2},
we give a new definition PA+ in which the ciphertext creator A is given access to a
randomness oracle R, which takes no input and returns a randomly-chosen bit. The
plaintext extractor A∗ is altered so that it takes a list RLIST of the random bits returned
by the randomness oracle as an additional input, i.e. the plaintext extractor is run as
A∗(1k,pk,C,R[A], CLIST, RLIST).

Another interpretation of the difference between the PA and PA+ definitions relates to
the way one defines a probabilistic Turing machine. If one defines a probabilistic Turing
machine as a Turing machine with access to infinite random tape, then one automati-
cally derives the PA notions of plaintext awareness. If one defines a probabilistic Turing
machine as a Turing machine with access to an oracle which will return a randomly
chosen bit, then one derives the PA+ notions of plaintext awareness. It is interesting that
these two definitions of probabilistic Turing machine, which are usually equivalent, lead
to different definitions of plaintext awareness.

Security Models and Proof Strategies for Plaintext-Aware Encryption 149

Interpreting the Difference Between PA1 and PA1+ The difference between PA1 and
PA1+ plaintext awareness seem to be fairly minor—PA1 provides the plaintext extractor
all the ciphertext creator’s random coins at the start of the game whereas PA1+ provides
the plaintext extractor the ciphertext creator’s random coins as they are used.

In order to highlight the conceptual differences between a priori and a posteriori ran-
domness in the PA1 and PA1+ definitions, we consider an analogous situation that may
occur in zero-knowledge protocols. Consider the standard “cut-and-choose” protocol
for proving that an element x2 = y ∈ Z

∗
N is a quadratic residue [14]:

– A prover P presents the verifier with � quadratic residues (R1,R2, . . . ,R�) in Z
∗
N

where Ri = r2
i .

– The verifier V sends the prover � random bits (b1, b2, . . . , b�).
– The prover returns the square roots (z1, z2, . . . , z�) where zi = ri · xbi in Z

∗
N .

– The verifier checks that z2
i = Ri · ybi for each 1 ≤ i ≤ � and accepts the proof if all

checks pass.

Now consider a simulator S which wishes to fool the verifier V into accepting a non-
residue by observing V ’s randomness. (In our analogy, the verifier V is analogous to
the ciphertext creator A and the simulator S is analogous to the plaintext extractor A∗.)
If the simulator S is working in a model in which the verifier’s randomness is an a priori
fixed random tape, i.e. using a security definition similar to PA1 plaintext awareness,
then it is simple for the simulator to fool the verifier by choosing the values of Ri so
that the it can compute the square roots of Ri ·ybi . However, if the verifier has the ability
to obtain new random bits during its execution, i.e. using a security definition similar
to PA1+ plaintext awareness, then the simulator cannot fool the verifier as it does not
know the bits (b1, b2, . . . , b�) when it has to commit to the values of (R1,R2, . . . ,R�).

The PA1+ definition prevents the plaintext extractor A∗ from returning values that
are based on the ciphertext creator A’s future actions (which prevents the use of certain
proof techniques such as rewinding). This makes the PA1+ definition harder to achieve.

3.3. Simplifying PA2 Plaintext Awareness

The full definition for PA2 plaintext awareness models a very general scenario: the
plaintext creator can be used to represent any number of (stateful) communicating users
which wish to generate any number of ciphertexts using any polynomial-time distribu-
tion. This definition appears stronger than is required to prove Theorem 3.3, which only
requires that we consider two plaintext creators, P0 and P1, defined as follows:2

2 The original version of this result [8] claimed that plaintext awareness with respect to a single plaintext
creator PI , which chooses a random bit b and then consistently outputs mb when given α = (m0,m1),
was sufficient to prove IND-CCA2 security. We called this property PA2I plaintext awareness. Sadly, this
result is not correct. We will sketch a counter-example here. Suppose Π = (G, E , D) is IND-CCA2 secure
and PA2I plaintext aware. Let Π ′ = (G, E ′, D′) be the encryption scheme with E ′(pk,m) = 0‖E (pk,m) and
D′(sk, δ‖C) = D(sk,C) for any δ ∈ {0,1}. This scheme is IND-CPA secure but not IND-CCA2 secure. We
claim that this scheme is still PA2I plaintext aware. We may build a plaintext extractor A∗ for a ciphertext
creator A working against Π ′ by noting two properties of the scheme. (a) Since Π is PA2I there exists a
plaintext extractor which can decrypt all decryption queries of the form δ‖C where 0‖C /∈ CLIST. (b) If
A requests the decryption of 1‖C where 0‖C ∈ CLIST then the correct response must be either m0 or m1,
which can be determined by observing the original encryption oracle query. Furthermore, since Π is IND-

150 J. Birkett and A. W.Dent

P0(α):
Parse α as (m0,m1)

If parsing fails, return 0
Else return m0

P1(α):
Parse α as (m0,m1)

If parsing fails, return 0
Else return m1

We will show that, under certain conditions, plaintext awareness with respect to these
two plaintext creators is equivalent to the general PA2 plaintext awareness.

Definition 3.7 (2PA2). A public-key encryption scheme is 2PA2 plaintext aware if for
every PPT ciphertext creator A there exists a PPT plaintext extractor A∗ such that for
the plaintext creators P ∈ {P0, P1} and PPT distinguisher algorithms D we have that
AdvPA2

A,A∗,P ,D(k) is negligible.

We may now begin to relate 2PA2 and PA2 plaintext awareness for LH-IND-CPA and
LH-IND-CCA2 schemes. We aim to show that a scheme which is LH-IND-CPA and
2PA2 plaintext aware is PA2. We will do this by showing a stronger theorem; we show
that for a scheme which is LH-IND-CCA2 (e.g. as it is IND-CPA and 2PA2 plaintext
aware) we have that a scheme that is plaintext aware with respect to any fixed plaintext
creator (e.g. the P0 plaintext creator in the 2PA2 definition) is plaintext aware with
respect to all plaintext creators (i.e. PA2 plaintext aware).

Theorem 3.8. Let P̂ be some fixed, stateless polynomial-time plaintext creator (i.e. P̂
does not pass state between invocations). If a public-key encryption scheme Π is LH-
IND-CCA2 secure and PA2 plaintext aware with respect to the plaintext creator P̂ , then
Π is PA2 plaintext aware.

Proof. Let Π = (G, E , D) and A be any PA2 ciphertext creator. Then, since Π is PA2
plaintext aware for the plaintext creator P̂ , there exists a plaintext extractor A∗ which
“simulates” the decryption oracle in EXPTFAKE-PA2

A,A∗,P̂ ,D
. We show that A∗ “simulates” the

decryption oracle for any plaintext creator P .
Suppose A makes at most n queries to the plaintext creator oracle. Consider

EXPTREAL-PA2

A,P ,D
instantiated with an arbitrary PPT plaintext creator P . Define the games

EXPTREAL-i

A,P ,D
to be identical to EXPTREAL-PA2

A,P ,D
except that the final i plaintext creator oracle

queries are answered using the plaintext creator P̂ . Hence, EXPTREAL-PA2

A,P ,D
= EXPTREAL-0

A,P ,D
and EXPTREAL-PA2

A,P̂ ,D
= EXPTREAL-n

A,P ,D
. Suppose that

∣∣Pr
[
EXPTREAL-0

A,P ,D = 1
] − Pr

[
EXPTREAL-n

A,P ,D

]∣∣

is non-negligible. Then, by a hybrid argument, there exists a sequence of values ik such
that

∣∣Pr
[
EXPT

REAL-ik

A,P ,D
= 1

] − Pr
[
EXPT

REAL-(ik + 1)

A,P ,D

]∣∣

CCA2 secure, no algorithm can distinguish between the case where A∗ returns the correct decryption of 1‖C
and the case where A∗ returns the message md (for some value d which was randomly chosen by A∗ during
its first execution). Thus Π ′ is IND-CPA secure and PA2I plaintext aware, but not IND-CCA2 secure, which
contradicts the claimed result of [8].

Security Models and Proof Strategies for Plaintext-Aware Encryption 151

is non-negligible. We use this to build an LH-IND-CCA2 attacker B = (B1, B2) as fol-
lows:

B D
1 (1k,pk):

Pick j
$← {1, . . . , n}

ctr ← 0

x
$← A O D ,O E (1k,pk)

If A queries O D(C)

Query m ← D(C)

Return m

If A queries O E (α)

ctr ← ctr + 1
If ctr �= j then return E (pk, P (α))

If ctr = j then m0
$← P (α),

m1
$← P̂ (α)

Pause A and output (m0,m1)

B D
2 (C∗):
Resume x

$← A O D ,O E (1k,pk)
by returning C∗

If A queries O D(C)

Query m ← D(C)

Return m

If A queries O E (α)

Return E (pk, P̂ (α))

Output D(x)

Thus,

AdvLH-IND

B (k) = ∣∣Pr
[
EXPTLH-IND-1

B = 1
] − Pr

[
EXPTLH-IND-0

B = 1
]∣∣

≥ 1

n

∣∣Pr
[
EXPT

REAL-ik

A,P ,D
= 1

] − Pr
[
EXPT

REAL-(ik + 1)

A,P ,D

]∣∣.

The fact that (G, E , D) is LH-IND-CCA2 secure means that AdvLH-IND

B (k) is negligible,
which is a contradiction. A similar argument (based on LH-IND-CPA security) shows
that

∣∣Pr
[
EXPTFAKE-PA2

A,A∗,P ,D = 1
] − Pr

[
EXPTFAKE-PA2

A,A∗,P̂ ,D
= 1

]∣∣

is negligible. However, since Π is 2PA2 plaintext aware, we have that

∣∣Pr
[
EXPTREAL-PA2

A,P̂ ,D
= 1

] − Pr
[
EXPTFAKE-PA2

A,A∗,P̂ ,D
= 1

]∣∣

is negligible. Thus, we conclude that

∣∣Pr
[
EXPTREAL-PA2

A,P ,D = 1
] − Pr

[
EXPTFAKE-PA2

A,A∗,P ,D = 1
]∣∣

is negligible, which means that Π is PA2 plaintext aware. �

Corollary 3.9. A public-key encryption scheme Π which is LH-IND-CPA secure and
2PA2 plaintext aware is PA2 plaintext aware.

Proof. If Π is LH-IND-CPA secure and 2PA2 plaintext aware, then Π is LH-IND-
CCA2 secure by Theorem 3.3. And so, by Theorem 3.8, it is PA2 plaintext aware. �

152 J. Birkett and A. W.Dent

(simulatable)

PA2+
⇐
⇒ PA1+

(IND-CPA) ⇑ ⇓ ⇓

PA2 ⇒ PA1

Fig. 5. The relationship between notions of plaintext awareness (including the result of Theorem 5.1).

3.4. Relations between Notions of Plaintext Awareness

It is trivial to see that PA2+ ⇒ PA1+ ⇒ PA1 and PA2+ ⇒ PA2 ⇒ PA1 (where X ⇒ Y
means that any public-key encryption scheme which satisfies notion X must also satisfy
notion Y). We would hope that, for sufficiently random encryption schemes, we also
have that PA2 ⇒ PA2+, and this does indeed turn out to be the case. We will also see
that, for encryption schemes whose ciphertexts resemble strings of random bits, PA1+
⇒ PA2+. The relationship between the notions of plaintext awareness is shown in Fig. 5.

In this section, we will prove that schemes which are IND-CPA and PA2 plain-
text aware are necessarily PA2+ plaintext aware (and therefore trivially PA1+ plaintext
aware). Our proof uses a universal hash family [9] to extract the randomness inherent in
the ciphertext produced by an IND-CPA encryption scheme.

Definition 3.10 (Universal Hash Family). A family (H,K,A,B) of functions
(Hk)k∈K , where Hk : A → B for all k ∈ K , is universal if for all x, y ∈ A satisfying
x �= y we have

Pr
[
Hk(x) = Hk(y) : k

$← K
] ≤ 1/|B|.

Definition 3.11 (Collision Probability). For a random variable x which takes values
on a set X, the collision probability is defined to be

κ(x) =
∑

y∈X

Pr[x = y]2.

Lemma 3.12. The following results will be useful in later proofs:

1. If x is a random variable on a set X, then maxy∈X Pr[x = y] ≤ √
κ(x).

2. Let (G, E , D) be a public-key encryption scheme and M be a deterministic
polynomial-time algorithm which outputs a message M(pk) ∈ M. If x is the ran-
dom variable on C distributed according to E (pk,M(pk)), then there exists an
IND-CPA adversary B such that κ(x) = AdvIND

B (k).

The first part follows trivially from the definition of collision probability. The sec-

ond part can easily be proven by noting that if C1,C2
$← E (pk,M(pk)) then the prob-

ability that C1 = C2 is κ(x). The IND-CPA attacker B is constructed by setting B1
to output m0 ← M(pk) and some arbitrary m1 �= m0, and setting B2 to output 0 if
C∗ = E (pk,M(pk)) and 1 otherwise.

Security Models and Proof Strategies for Plaintext-Aware Encryption 153

The leftover hash lemma was originally proven by Håstad et al. [18]. We present the
version given by Shoup [27, Theorem 6.21]:

Lemma 3.13 (Leftover Hash Lemma). Let (H,K,A,B) be a family of universal hash

functions. If k
$← K , x1, . . . , x� are random variables on A which are independent of k,

and y1, . . . , y�
$← B , then

Δ
[(

k,Hk(x1), . . . ,Hk(x�)
)
, (k, y1, . . . , y�)

] ≤ �
√|B|κ/2 where κ = �

max
i=1

{
κ(xi)

}
.

We are now in a position to state and prove the main theorem of this section. This
technical theorem essentially proves that a scheme which is IND-CPA secure and PA2
plaintext aware is PA2+ plaintext aware (and therefore PA1+ plaintext aware).

Theorem 3.14. If a public-key encryption scheme Π is IND-CPA secure and 2PA2
plaintext aware, then it is 2PA2+ plaintext aware.

Proof. Suppose Π = (G, E , D). We intend to simulate the randomness oracle by hash-
ing ciphertexts E (pk,0) using a universal hash function. Let �(k) be a (polynomial)
upper-bound on the length of E (pk,0) (such a bound exists as E is a strict polynomial-
time algorithm). Let A be the set of all strings of length at most �(k) and B = {0,1}. We
can construct a universal hash family from A to B without computational assumptions
[9], so let (Hk)k∈K be such a family.

Let A be a 2PA2+ ciphertext creator (i.e. A expects to have access to encryption,
decryption, and randomness oracles). Let qD and qR be a bound on the number of de-
cryption and randomness oracle queries respectively. We construct a 2PA2 ciphertext
creator B (i.e. B has access to an encryption and decryption oracle) as in Fig. 6. (Note
that we may assume that there exists a polynomial-bound t (k) on the number of random
bits on A’s initial random tape as A is polynomial time.) Since (G, E , D) is 2PA2 plain-
text aware, there exists a plaintext extractor B∗ for B. We use B∗ to construct a 2PA2+
plaintext extractor A∗ for A as in Fig. 6.

We now prove that A∗ simulates the decryption oracle for A. Fix a PPT distinguisher
algorithm D. We will define a series of games Gi in which A outputs a variable x and
let Wi be the event that D(x) = 1 in game Gi . The games are summarised in Figs. 7
and 8.

Game G1: G1 is the EXPTFAKE-2PA2+

A,A∗,P ,D
game.

Game G2: G2 is similar to G1 except that some of the components of the plaintext
extractor A∗ are moved into the randomness extractor O R. G1 and G2 are identical ex-
cept for one (subtle) exception. The ciphertext creator A is forbidden from submitting
a ciphertext C ∈ CLIST to the decryption oracle. This means that, in G2, the cipher-
text creator is forbidden from querying the decryption oracle on C ∈ RCLIST. The
two games are identical if this is does not occur. Throughout this proof, z will be the
distribution of E (pk,0) on C . The elements of RCLIST are distributed according to
z and are unknown to A. By Lemma 3.12, the probability that some specific decryp-
tion oracle query C is equal to some specific ciphertext C′ ∈ RCLIST is bounded by

154 J. Birkett and A. W.Dent

B O′
E ,O′

D (1k,pk):

k
$← K

R[A] $← {0,1}t (k)

x ← AO E ,O D ,O R (1k,pk;R[A])
If A queries O E (m0,m1)

Query C ← O′
E (m0,m1)

Return C

If A queries O D (C)

Query m ← O′
D (C)

Return m

If A queries O R
Query C ← O′

E (0,0)

ρ ← Hk(C)

Return ρ

Output x

A∗(1k,pk,C,R[A], CLIST, RLIST):
On first invocation

k
$← K

nR ← 0
RCLIST ← ε

For every O R query since last invocation
Repeat (k times) until Hk(C′) = RLIST[nR]

C′ $← E (pk,0)

Else
C′ ← 0

Append C′ to RCLIST

nR ← nR + 1
Interleave CLIST and RCLIST to give BCLIST

m
$← B∗(1k,pk,C, k‖R[A], BCLIST)

Return m

Fig. 6. The ciphertext creator B and the plaintext extractor A∗ . Note that R[B] = k‖R[A] as B generates
no other random values. The variable nR in A∗ counts the total number of randomness oracle queries made
by A and the list RCLIST gives a list of ciphertexts that, when hashed, give the bits in RLIST. The inter-
leave operation in A∗ interleaves CLIST and RCLIST according to the ordering of encryption oracle and
randomness oracle queries made by A. This creates a list BCLIST which is suitable for use with B∗.

√
κ(z) and κ(z) is bounded by AdvIND

B′ (k) for some IND-CPA adversary B′. Therefore,
|Pr[W1] − Pr[W2]| ≤ qDqR

√
AdvIND

B′ (k).
Game G3: G3 is similar G2 except that O R continues to generate ciphertexts C until

it generates one for which Hk(C) = ρ. Obviously, G2 and G3 are identical as long as
O R doesn’t “abort” and set C ← 0 in G2. By the Leftover Hash Lemma (Lemma 3.13),

if C′ $← E (pk,0) and ρ
$← {0,1}, then Δ[(k,Hk(C

′)), (k, ρ)] ≤ √
κ(z)/2. Since κ(z) =

AdvIND

B′ (k) and Π is IND-CPA secure, we have that Pr[Hk(C
′) = 0],Pr[Hk(C

′) = 1] ≤
2/3 for large enough k. Therefore, for large enough values of k, we have that the prob-
ability that we “abort” in G2 is bounded by qR(2/3)k and so |Pr[W2] − Pr[W3]| ≤
qR(2/3)k .

Game G4: G4 is similar to G3 except that we again alter the randomness oracle. In

G4 we compute ρ ← Hk(C
′) for C′ $← E (pk,0) rather than ρ

$← {0,1}. Suppose that
O R outputs random bits ρ1, . . . , ρqR

in G3 and ρ′
1, . . . , ρ

′
qR

in G4. By the Leftover Hash
Lemma, we have that

Δ
[
(k, ρ1, . . . , ρqR

),
(
k,ρ′

1, . . . , ρ
′
qR

)] ≤ qR

√
κ(z)/2 = qR

√
AdvIND

B′ (k)/2.

This is a distributional step in game hopping, see Appendix A, and so |Pr[W4] −
Pr[W3]| ≤ qR

√
AdvIND

B′ (k)/2.
Game G5: A close examination of the inputs to B in G4 shows that the event W4 is the

same as the event EXPTFAKE-2PA2

B,B∗,P ,D
= 1. G5 is the game in which decryption oracle queries

are answered by the real decryption algorithm. So W5 is the same as EXPTREAL-2PA2

B,P ,D
= 1.

Thus, |Pr[W5] − Pr[W4]| is negligible as Π is 2PA2 plaintext aware.
Game G6: G6 and G7 reverse the previous changes to the randomness oracle. In G6

the randomness oracle is changed so that it no longer adds ciphertexts to CLIST. Since
decryption oracle queries are answered by D(sk, ·), rather than the plaintext extractor

Security Models and Proof Strategies for Plaintext-Aware Encryption 155

G1: O D (C):

m
$← A∗(1k,pk,C,R[A], CLIST, RLIST)

Return m

O R :

ρ
$← {0,1}

Return ρ

A∗(1k ,pk,C,R[A], CLIST, RLIST):
On first invocation

k
$← K

nR ← 0
RCLIST ← ε

For every O R query since last invocation
Repeat (k times) until Hk(C′) = RLIST[nR]

C′ $← E (pk,0)

Else
C′ ← 0

Append C′ to RCLIST

nR ← nR + 1
Interleave CLIST and RCLIST to give BCLIST

m
$← B∗(1k ,pk,C, k‖R[A], BCLIST)

Return m

G2: O D (C):

m
$← A∗(1k,pk,C,R[A], CLIST, RLIST)

Return m

A∗(1k,pk,C,R[A], CLIST, RLIST):

m
$← B∗(1k,pk,C, k‖R[A], CLIST)

Return m

O R :

On first invocation

k
$← K

ρ
$← {0,1}

Repeat (k times) until Hk(C) = ρ

C
$← E (pk,0)

Else

C ← 0

Append C to CLIST

Return ρ

G3: O D (C):

m
$← A∗(1k,pk,C,R[A], CLIST, RLIST)

Return m

A∗(1k,pk,C,R[A], CLIST, RLIST):

m
$← B∗(1k,pk,C, k‖R[A], CLIST)

Return m

O R :
On first invocation

k
$← K

ρ
$← {0,1}

Repeat until Hk(C) = ρ

C
$← E (pk,0)

Append C to CLIST

Return ρ

G4: O D (C):

m
$← A∗(1k,pk,C,R[A], CLIST, RLIST)

Return m

A∗(1k,pk,C,R[A], CLIST, RLIST):

m
$← B∗(1k,pk,C, k‖R[A], CLIST)

Return m

O R :
On first invocation

k
$← K

C
$← E (pk,0)

ρ ← Hk(C)

Append C to CLIST

Return ρ

Fig. 7. Definition of games G1 – G4 for the proof of Theorem 3.14.

A∗, the only affect of this change is to allow the ciphertext creator A to query the
decryption oracle on ciphertexts in (the list previously described as) RCLIST. By a
similar argument to G2, we have that |Pr[W6] − Pr[W5]| ≤ qDqR

√
AdvIND

B′ (k).

156 J. Birkett and A. W.Dent

G5: O D (C):

m ← D(sk,C)

Return m

O R :
On first invocation

k
$← K

C
$← E (pk,0)

ρ ← Hk(C)

Append C to CLIST

Return ρ

G6: O D (C):
m ← D(sk,C)

Return m

O R :
On first invocation

k
$← K

C
$← E (pk,0)

ρ ← Hk(C)

Return ρ

G7: O D (C):
m ← D(sk,C)

Return m

O R :

ρ
$← {0,1}

Return ρ

Fig. 8. Definition of games G5 – G7 for the proof of Theorem 3.14.

Game G7: G7 changes the randomness oracle so that it simply returns a random bit.
By a similar argument to G4, we have that |Pr[W7]− Pr[W6]| ≤ qR

√
AdvIND

B′ (k)/2. Now,
an examination of G7 shows that it is identical to the EXPTREAL-2PA2+

A,P ,D
game. Therefore,

we have that
∣∣Pr

[
EXPTFAKE-2PA2+

A,A∗,P ,D = 1
] − Pr

[
EXPTREAL-2PA2+

A,P ,D = 1
]∣∣ = ∣∣Pr[W1] − Pr[W7]

∣∣

is negligible and so Π is 2PA2+ is plaintext aware. �

Corollary 3.15. If a public-key encryption scheme Π is PA2 plaintext aware, IND-
CPA secure and has that |M| grows faster than any polynomial in the security
parameter, then Π is PA2+ plaintext aware (and therefore also PA1+ plaintext
aware).

Proof. Since Π is PA2 plaintext aware, it is 2PA2 plaintext aware (by inclusion).
Since Π is IND-CPA secure and 2PA2 plainext aware, it is 2PA2+ plaintext aware (by
Theorem 3.14). We also have that, since Π is PA2 plaintext aware, IND-CPA secure and
has that |M| grows faster than any polynomial, Π is LH-IND-CPA (by Corollary 3.5).
Lastly, since Π is LH-IND-CPA and 2PA2+, it is PA2+ (by an argument analogous to
Corollary 3.9). �

4. Simulatable Sets and Algorithms

We now introduce a novel generalisation of dense sets: simulatable sets and algo-
rithms. Roughly speaking, a set is dense if a randomly chosen element of the set is

Security Models and Proof Strategies for Plaintext-Aware Encryption 157

indistinguishable from a randomly chosen element of the set {0,1}�. In essence, a
set is simulatable if it is computationally indistinguishable from the image of {0,1}�
under an invertible polynomial-time map. Since one can easily generate random ele-
ments in {0,1}�, one can also easily simulate a random element of the set by gener-
ating a random element of {0,1}� and applying the polynomial-time map (and vice
versa).

We consider a family of sets indexed by a security parameter k ∈ N. We may wish
to simulate different sets at the same security level, so we allow for the possibility of
further indexing at each security level. Hence, we consider families of sets of the form
S = ((Si)i∈Ik

)k∈N or (Sk)k∈N. A simulator for a family of sets ((Si)i∈Ik
)k∈N is a tuple

(f,f −1, �) where �(k) is a polynomial and (f,f −1) is a pair of PPT algorithms with
the following properties:

– f is a deterministic algorithm which takes as input a security parameter 1k , an
index i ∈ Ik , and a seed r ∈ {0,1}�(k), and outputs an element s ∈ Si .

– f −1 is a probabilistic algorithm which takes as input a security parameter 1k , an
index i, and an element s ∈ S, and outputs a seed r ∈ {0,1}�(k).

– For all k ∈ N, i ∈ Ik , s ∈ Si , we have that f (1k, i, f −1(1k, i, s)) = s.

In situations where the security parameter is clear by context, we will write f (i, r) and
f −1(i, s) for f (1k, i, r) and f −1(1k, i, s), respectively.

We require that f −1(1k, i, f (1k, i, r)) appears to be random. Let Uk be the uni-
form distribution on {0,1}�(k) and let Yk be the distribution on {0,1}�(k) given by

f −1(1k, i, f (1k, i, r)) where r
$← {0,1}�(k). We define the simulator to be “statistically

random-set simulatable” if Δ[Uk,Yk] is negligible as a function of k. We define a sim-
ulator to be “computationally random-set simulatable” if the distributions Uk and Yk

are computationally indistinguishable. This is defined by the games in Fig. 9. A PPT
algorithm A has advantage

AdvRAND

A = ∣∣Pr
[
EXPTRAND-1

A = 1
] − Pr

[
EXPTRAND-0

A = 1
]∣∣

in breaking the random-set simulatable property of the simulator. A simulator is “com-
putationally random-set simulatable” if every PPT algorithm A has negligible advan-
tage.

We also require that f (1k, i, r) looks like a random element of the set Si ; however, the
exact form of this definition depends upon whether we are talking about a simulatable
set or a simulatable algorithm (of various different types). Let Uk be the uniform distri-

bution on Si and let Yk be the distribution on Si given by f (1k, i, r) for r
$← {0,1}�(k).

We say that the set is “statistically image-set simulatable” if Δ[Uk,Yk] is negligible as
a function of k. A set is “computationally image-set simulatable” is Uk and Yk are com-
putationally indistinguishable. This is defined by the games in Fig. 10. A PPT attacker
has advantage

AdvIM

A(k) = ∣∣Pr
[
EXPTIM-1

A = 1
] − Pr

[
EXPTIM-0

A = 1
]∣∣

in breaking the image-set simulatable property of the simulator. A simulator is “compu-
tationally image-set simulatable” if every PPT algorithm A has negligible advantage.

158 J. Birkett and A. W.Dent

EXPTRAND-1A :

b′ $← AO R (1k, i)

If A queries O R
r

$← {0,1}�
Return r

Output b′

EXPTRAND-0A :

b′ $← AO R (1k, i)

If A queries O R
r

$← {0,1}�
Return f −1(1k, i, f (1k, i, r))

Output b′

Fig. 9. The security games for the random-set simulatable property. It is sufficient to restrict the attacker A
to a single O R query as this is equivalent to the case where multiple O R queries are allowed.

EXPTIM-1A :

b′ $← AOS (1k, i)

If A queries OS

s
$← Si

Return s

Output b′

EXPTIM-0A :

b′ $← AOS (1k, i)

If A queries OS

r
$← {0,1}�(k)

s ← f (1k,pk, r)
Return s

Output b′

Fig. 10. The security games for the image-set simulatable property. It is sufficient to restrict the attacker A
to a single OS query as this is equivalent to the multi-query case.

Definition 4.1 (Simulatable Set). A family of sets is statistically simulatable if there
exists a simulator which is both statistically random-set and statistically image-set
simulatable. A family of sets is computationally simulate if there exists a simula-
tor which is both computationally random-set and computationally image-set simulat-
able.

A simple hybrid argument/probability argument shows the following:

Lemma 4.2. If the sets A and B are computationally/statistically simulatable, then
the set A × B is computationally/statistically simulatable.

We will require the use of public-key encryption schemes with computationally sim-
ulatable ciphertext spaces; however, since we are going to attempt to simulate cipher-
texts in the presence of a decryption oracle, we require a stronger notion of simu-
latability than for sets. Note that we may define the ciphertext space of a public-key
encryption scheme as a family of sets ((Cpk)pk∈PKk

)k∈N where PKk is the set of all
public keys that could be produced for the security parameter 1k . We define ciphertext-
space simulatability using the games in Fig. 11. We define the attacker’s advantage
AdvPKE

A (k) in the usual way and define a public-key encryption scheme to be computa-
tionally ciphertext-space simulatable if every PPT algorithm A has negligible advan-
tage.

Definition 4.3 (Simulate PKE). A public-key encryption scheme is simulatable if
there exists a simulator for the family ((Cpk)pk∈PKk

)k∈N which is computationally
random-set simulatable and computationally ciphertext-space simulatable.

Security Models and Proof Strategies for Plaintext-Aware Encryption 159

EXPTPKE-1A :

(pk, sk)
$← G(1k)

b′ $← AO E ,D(sk,·)(1k,pk)
If A queries O E (m∗)

C∗ $← E (pk,m∗)

Return m∗
Output b′

EXPTPKE-0A :

(pk, sk)
$← G(1k)

b′ $← AO E ,D(sk,·)(1k,pk)
If A queries O E (m∗)

r
$← {0,1}�(k)

C∗ ← f (1k,pk, r)
Return m∗

Output b′

Fig. 11. The security games for the ciphertext-space simulatable property. The attacker may not submit any
response from the encryption oracle O E to the decryption oracle D(sk, ·). It is sufficient to restrict the attacker
A to a single O E query as this is equivalent to the multi-query case.

The following property was first noted by Stam [28].

Lemma 4.4. If a public-key encryption scheme is simulatable, then it is IND-CCA2
secure.

Sketch Proof. By the definition of a simulatable encryption scheme, one can replace

the generation of the challenge ciphertext C∗ $← E (pk,mb) with the generation of a
simulated ciphertext C∗ ← f (1k,pk, r) in the IND-CCA2 model. However, this is in-
dependent of the bit b, and so the probability that an attacker recovers b in this model
is 1/2. �

This lemma represents one of the major challenges of plaintext awareness: all known
proofs for plaintext awareness require that the public-key encryption scheme is simu-
latable. Thus, these proof techniques can only ever be applied to schemes which are
already known to be IND-CCA2 secure and so plaintext awareness is not an effective
tool for proving IND-CCA2 security.

5. A Strategy for Proving PA2 Plaintext Awareness

In this section, we will prove that a public-key encryption scheme which is PA1+ plain-
text aware and simulatable is PA2 plaintext aware. This is logical: if the encryption
scheme is simulatable then ciphertexts are indistinguishable from random bitstrings.
Hence, access to an encryption oracle is indistinguishable from access to a randomness
oracle. This gives the only known strategy for proving that schemes are PA2 plaintext
aware: one proves that the scheme is both simulatable and that it is PA1+ plaintext
aware.

Theorem 5.1. If Π is simulatable and PA1+ plaintext aware, then it is PA2 plaintext
aware.

Proof. Suppose that Π = (G, E , D) is simulatable with simulator (f,f −1, �) and let
A be a PA2 ciphertext creator. We define a PA1+ ciphertext creator B in Fig. 12. Since

160 J. Birkett and A. W.Dent

B O′
D ,O′

R (1k,pk):

x
$← AO E ,O D (1k,pk)

If A queries O D on C

Query m ← O′
D (C)

Return m

If A queries O E on α

Query r ← O′
R

C ← f (pk, r)
Return C

Output x

A∗(1k,pk,C,R[A], CLIST)

On first invocation:
RLIST ← ε

nC ← 0
Repeat until nC = |CLIST|

r ′ $← f −1(pk, CLIST[nc])
Append r ′ to RLIST

nC ← nC + 1

m
$← B∗(1k,pk,C,R[A], RLIST)

Return m

Fig. 12. The ciphertext creator B and plaintext extractor A∗. Without loss of generality, we assume that
the randomness oracle O′

R returns blocks of �(k) random bits. This could be achieved by querying a one-bit
oracle �(k) times. The variable nC counts the total number of ciphertexts on CLIST and RLIST contains a list
of random bits which could have given rise to CLIST under the action of f .

Π is PA1+ plaintext aware, there exists a PA1+ plaintext extractor B∗ for B. We use B∗
to construct a PA2 plaintext extractor A∗ for A in Fig. 12.

This proof is similar to, but slightly simpler than, Theorem 3.14. Fix a PPT distin-
guisher D and let Wi be the event that D(x) = 1 in game Gi . The games are shown in
Fig. 13.

Game G1: G1 is the EXPTFAKE-PA2

A,A∗,P ,D
game.

Game G2: G2 is similar to G1 except that the encryption oracle O E returns f (pk, r)

for r
$← {0,1}� rather than E (pk, P (α)). Any difference between Pr[W1] and Pr[W2]

gives rise to an attacker B′ against the computational ciphertext-space simulatable prop-
erty of the encryption scheme. The attacker B′ is defined as follows:

B′O′
E ,D(sk,·)(1k,pk):

x
$← A O E ,O D (1k,pk)

If A queries O E on α

m
$← P (α)

Query C
$← O′

E (m)

Return C

If A queries O D on C

m
$← A∗(1k,pk,C,R[A], CLIST)

Return m

Output D(x)

The event W1 is equivalent to EXPTPKE-1

B′ = 1 and the event W2 is equivalent to
EXPTPKE-0

B′ = 1. Hence, |Pr[W1] − Pr[W2]| ≤ AdvPKE

B′ (k) is negligible. (Note that B′ does
not make use of its decryption oracle in this step. This will not be the case when we
make an analogous game hop in G5.)

Game G3: G3 is similar to G2 except that the randomness oracle constructs RLIST

rather than the plaintext extractor A∗. In G2, the element f −1(pk, f (pk, r)) is added to
RLIST. In G3, the element r is added to RLIST. Any difference between Pr[W2] and
Pr[W3] gives rise to an attacker B∗ against the computational random-set simulatable
property of the encryption scheme. The attacker B∗ is defined as follows:

Security Models and Proof Strategies for Plaintext-Aware Encryption 161

G1: O D (C):

m
$← A∗(1k,pk,C,R[A], CLIST)

Return m

O E (α):

m
$← P (α)

C
$← E (pk,C)

Return C

A∗(1k,pk,C,R[A], CLIST)

On first invocation:
RLIST ← ε

nC ← 0
Repeat until nC = |CLIST|

r ′ $← f −1(pk, CLIST[nc])
Append r ′ to RLIST

nC ← nC + 1

m
$← B∗(1k,pk,C,R[A], RLIST)

Return m

G2: O D (C):

m
$← A∗(1k,pk,C,R[A], CLIST)

Return m

O E (α):

r
$← {0,1}�(k)

C ← f (pk, r)

Return C

A∗(1k,pk,C,R[A], CLIST)

On first invocation:
RLIST ← ε

nC ← 0
Repeat until nC = |CLIST|

r ′ $← f −1(pk, CLIST[nc])
Append r ′ to RLIST

nC ← nC + 1

m
$← B∗(1k,pk,C,R[A], RLIST)

Return m

G3: O D (C):

m
$← A∗(1k,pk,C,R[A], CLIST)

Return m

O E (α):

r
$← {0,1}�(k)

C ← f (pk, r)

Append r to RLIST

Return C

A∗(1k,pk,C,R[A], CLIST)

m
$← B∗(1k,pk,C,R[A], RLIST)

Return m

G4: O D (C):

m ← D(sk,C)

Return m

O E (α):

r
$← {0,1}�(k)

C ← f (pk, r)
Return C

G5: O D (C):
m ← D(sk,C)

Return m

O E (α):

m
$← P (α)

C
$← E (pk,m)

Return C

Fig. 13. Definition of games G1 and G5 for the proof of Theorem 5.1.

162 J. Birkett and A. W.Dent

B∗O′
R,D(sk,·)(1k,pk):

x
$← A O E ,O D (1k,pk)

If A queries O E on α

Query r ← O′
R

C ← f (pk, r)
Append r to RLIST

Return C

If A queries O D on C

m
$← B∗(1k,pk,C,R[A], RLIST)

Return m

Output D(x)

The randomness oracle O′
R returns either r

$← {0,1}� or f −1(pk, f (pk, r)) for r
$←

{0,1}� depending on the random-set simulatable game. In both cases, f (pk, r) is
returned to the ciphertext creator A, as f (pk, f −1(pk, f (pk, r))) = f (pk, r) since
f (pk, f −1(pk,C)) = C for all C ∈ C . The event W2 is identical to EXPTRAND-0

B∗ = 1 and
the event W3 is identical to EXPTRAND-1

B∗ = 1. Thus, |Pr[W3] − Pr[W2]| ≤ AdvRAND

B∗ (k) is
negligible by the random-set simulatable property.

Game G4: An examination of G3 shows that it is identical to EXPTFAKE-PA1+

B,B∗,D . G4

changes the decryption oracle so that it answers queries using the real decryption al-
gorithm, i.e. G4 is EXPTREAL-PA1+

B,D
. Since Π is PA1+, we have that |Pr[W4] − Pr[W3]| ≤

AdvPA1+

A,A∗,D(k) is negligible.
Game G5: G5 changes the action of the encryption oracle O E back to its original

state, i.e. the encryption oracle returns E (pk, P (α)). A similar argument to that in G2

shows that any difference between Pr[W4] and Pr[W5] leads to an attacker B† against
the computational ciphertext-space simulatable property of the encryption scheme (al-
though in this case decryption oracle queries made by A are handled using B†’s decryp-
tion oracle). Thus, |Pr[W5] − Pr[W4]| ≤ AdvPKE

B†(k) is negligible.
However, G5 is identical to EXPTREAL-PA2

A,P ,D
. So

∣∣Pr
[
EXPTFAKE-PA2

A,A∗,P ,D = 1
] − Pr

[
EXPTREAL-PA2

A,P ,D = 1
]∣∣ = ∣∣Pr[W1] − Pr[W5]

∣∣

is negligible and we conclude that Π is PA2 plaintext aware. �

A similar argument (with more complex book-keeping) can be used to prove that a
public-key encryption scheme which is simulatable and PA1+ plaintext aware is neces-
sarily PA2+ plaintext aware. However, we will be content with the basic result.

6. Extending the PA2 Proof Strategy to Hybrid Encryption Schemes

Section 5 provides a basic strategy for proving PA2 plaintext awareness; however, a
proof which applies this methodology directly can quickly become complex in practice.
In this section, we break the proof methodology down into several steps for hybrid
encryption schemes.

Security Models and Proof Strategies for Plaintext-Aware Encryption 163

6.1. Hybrid Encryption Using KEMs and DEMs

One common method to construct a practical public-key encryption scheme is to use
hybrid encryption. This technique separates the public-key encryption scheme into an
asymmetric key encapsulation mechanism (KEM) and a symmetric data encapsulation
mechanism (DEM). Owing to the use of the symmetric DEM, the resulting public-key
encryption scheme has the advantage of being able to encrypt messages of any length.

The notion of a hybrid encryption scheme was formalised using KEMs and DEMs by
Cramer and Shoup [10,25]. A KEM is a triple of PPT algorithms (Gen,Encap,Decap).
The key generation algorithm takes a security parameter 1k and outputs a public/private

key pair (pk, sk)
$← Gen(1k). The public key defines a ciphertext space C and a sym-

metric key space K. The encapsulation algorithm takes a public key pk as input, and

outputs a ciphertext and a symmetric key (C,K)
$← Encap(pk). The (deterministic) de-

capsulation algorithm takes a private key sk and a ciphertext C ∈ C , and outputs either
a symmetric key K ← Decap(sk,C) or the distinguished error symbol ⊥. For correct-

ness we require that for all (pk, sk)
$← Gen(1k) and (C,K)

$← Encap(pk), we have that
Decap(sk,C) = K with probability 1.

A DEM is defined by a pair of deterministic polynomial-time algorithms (ENC, DEC)

and these algorithms implicitly define a key space K, a message space M, and a cipher-
text space C . The encapsulation algorithm takes a symmetric key K ∈ K and a message
m ∈ M as input, and outputs a ciphertext C ← ENCK(m). The decapsulation algorithm
takes a symmetric key K ∈ K and a ciphertext C ∈ C as input, and outputs either a mes-
sage m ← DECK(C) or the distinguished error symbol ⊥. For correctness we require
that for all K ∈ K and m ∈ M, we have that DECK(ENCK(m)) = m.

A public-key encryption scheme may be formed from a KEM and a DEM by setting
the PKE key generation algorithm G to be the KEM key generation algorithm Gen,
and computing encryption and decryption as in Fig. 14. Cramer and Shoup proved that
the combination of a sufficiently secure KEM and a sufficiently secure DEM leads to an
IND-CCA2 public-key encryption scheme [10,25], although the exact form of that result
is not relevant to this paper. However, we will note that a “sufficiently secure” DEM
can be constructed through an “encrypt-then-MAC” construction using, for example,
counter mode encryption with a CBC-MAC algorithm.

6.2. Simulatable KEMS and DEMs

Our strategy requires us to extend the notion of simulatable encryption to KEMs and
DEMs. These notions are very similar to that of a simulatable encryption scheme.
For a simulatable KEM, we consider the family of sets which define the ciphertext
space ((Cpk)pk∈PKk

)k∈N as in Sect. 4 and define ciphertext-space simulatability using

E (pk,m):

(C1,K)
$← Encap(pk)

C2 ← ENCK(m)

C ← (C1,C2)

Return C

D(sk,C):
Parse C as (C1,C2)

K ← Decap(sk,C1)

m ← DECK(C2)

Return m

Fig. 14. Construction of a public-key encryption scheme from a KEM and a DEM.

164 J. Birkett and A. W.Dent

EXPTKEM-1A :

(pk, sk)
$← Gen(1k)

b′ $← AO E ,D(sk,·)(1k,pk)
If A queries O E

(C∗,K∗)
$← Encap(pk)

Return (C∗,K∗)

Return b′

EXPTKEM-0A :

(pk, sk)
$← Gen(1k)

b′ $← AO E ,D(sk,·)(1k,pk)
If A queries O E

r
$← {0,1}�(k)

C∗ ← f (1k,pk, r)

K∗ $← K
Return (C∗,K∗)

Return b′

Fig. 15. The security games for the KEM ciphertext-space simulatable property. The attacker may not sub-
mit any ciphertext C∗ received from the encapsulation oracle O E to the decapsulation oracle D(sk, ·). It is
sufficient to restrict the attacker A to a single O E query as this is equivalent to the multi-query case.

EXPTDEM-1A :

K
$← K

b′ $← AO E ,DECK(·)(1k)

If A queries O E (m∗)

C∗ ← ENCK(m∗)

Return C∗
Return b′

EXPTDEM-0A :

K
$← K

b′ $← AO E ,DECK(·)(1k)

If A queries O E (m∗)

r
$← {0,1}�(k)

C∗ ← f (1k, r)

Return C∗
Return b′

Fig. 16. The security games for the DEM ciphertext-space simulatable property. We assume that the attacker
does not submit the same message to the encryption oracle twice. The attacker may not submit any ciphertext
C∗ received from the encryption oracle O E to the decryption oracle DECK(·). It is sufficient to restrict the
attacker A to a single O E query as this is equivalent to the multi-query case.

the games defined in Fig. 15. We define the attacker’s advantage AdvKEM

A (k) in the usual
way and define a KEM to be computationally ciphertext-space simulatable if every PPT
algorithm A has negligible advantage.

Definition 6.1 (Simulatable KEM). A KEM is simulatable if there exists a simulator
for the family ((Cpk)pk∈PKk

)k∈N which is computationally random-set simulatable and
computationally ciphertext-space simulatable.

For a simulatable DEM, we consider the family of ciphertext spaces (Ck)k∈N and
define ciphertext-space simulatability via the games in Fig. 16. We define the at-
tacker’s advantage AdvDEM

A (k) in the usual way and define a DEM to be computa-
tionally ciphertext-space simulatable if every PPT algorithm A has negligible advan-
tage.

Definition 6.2 (Simulatable DEM). A DEM is simulatable if there exists a simulator
for the family (C)k∈N which is computationally random-set simulatable and computa-
tionally ciphertext-space simulatable.

There is a strong similarity between the notion of simulatable DEMs and the no-
tion of IND-R-CCA2 security for symmetric encryption schemes [24]. Using similar

Security Models and Proof Strategies for Plaintext-Aware Encryption 165

techniques, it is relatively easy to show that an encrypt-then-MAC DEM composed of
counter model encryption and CBC-MAC (each using an independent ideal cipher) is
simulatable when M = {0,1}n [5,22]. The following lemma follows easily from the
definitions:

Lemma 6.3. The composition of a simulatable KEM (with a super-polynomially-
sized symmetric key space) and a simulatable DEM is a simulatable hybrid encryption
scheme.

Remark 6.4. We have given the original definitions of simulatable sets/algorithms
[12] in which the attacker is given access to an oracle which supplies multiple set ele-
ments/ciphertexts. A simple hybrid argument can be used to show that the definitions are
equivalent to a simpler definition in which an attacker can only obtain a single set ele-
ment/ciphertext. These definitions can be phrased in terms of an attacker A = (A1, A2)

in which A1 outputs the single oracle query and A2 processes this oracle’s response.
We will use both version of these definitions in this paper. To prove a scheme is sim-
ulatable, we will use the single-query version of the definition; however, when making
use of a simulatable set/scheme in a larger construction, we will assume the multi-query
definition.

6.3. Proving PA2 Plaintext Awareness for Hybrid Encryption

We begin by defining a notion of PA1+ plaintext awareness for KEMs via the two games
given in Fig. 17 (which make use of a ciphertext creator A, a plaintext extractor A∗ and
a distinguisher algorithm D). The advantage is defined as

AdvvKEM-PA1+

A,A∗,D(k) = ∣∣Pr
[
EXPTREAL-KEM-PA1+

A,D = 1
] − Pr

[
EXPTFAKE-KEM-PA1+

A,A∗,D = 1
]∣∣.

Definition 6.5. A KEM ΠK is PA1+ plaintext aware if for every PPT ciphertext cre-
ator A there exists a PPT plaintext extractor A∗ such that for all PPT distinguisher
algorithms D we have that AdvvKEM-PA1+

A,A∗,D(k) is negligible.

EXPTREAL-KEM-PA1+A,D
:

(pk, sk)
$← Gen(1k)

x
$← AO D ,O R (1k,pk)

If A queries O R
ρ

$← {0,1}
Return ρ

If A queries O D (C)

K ← Decap(sk,C)

Return K

b
$← D(x)

Output b

EXPTFAKE-KEM-PA1+A,A∗,D
:

(pk, sk)
$← Gen(1k)

x
$← AO D ,O R (1k,pk)

If A queries O R
ρ

$← {0,1}
Append ρ to RLIST

Return ρ

If A queries O D (C)

K
$← A∗(1k,pk,C,R[A], RLIST)

Return K

b
$← D(x)

Output b

Fig. 17. The PA1+ plaintext awareness security games for KEMs.

166 J. Birkett and A. W.Dent

We now simplify the process of proving PA1+ plaintext awareness in the case of
hybrid encryption schemes by showing that a hybrid encryption scheme Π is PA1+
plaintext aware if and only if its KEM ΠK is PA1+ plaintext aware. This proof tech-
nique does not immediately extend to PA2 plaintext awareness and this issue is further
discussed by Jiang and Wang [19].

Lemma 6.6. Suppose Π is a public-key encryption scheme composed of a KEM
scheme ΠK and a DEM scheme ΠD . If ΠK is PA1+ plaintext aware, then Π is PA1+
plaintext aware.

Proof. Let A be a PA1+ ciphertext creator for Π and suppose that the DEM ΠD is a
(deterministic) DEM of the form (ENC, DEC). We may define a PA1+ ciphertext creator
B for ΠK as in Fig. 18. Since ΠK is PA1+, there exists a plaintext extractor B∗ for B.
We define a plaintext extractor A∗ for Π in Fig. 18. An examination of the games easily
shows that for any distinguisher algorithm D, we have EXPTREAL-PA1+

A,D
= EXPTREAL-KEM-PA1+

B,D

and EXPTFAKE-PA1+

A,A∗,D = EXPTFAKE-KEM-PA1+

B,B∗,D , which means that Π if PA1+ if ΠK is PA1+. �

This now gives a complete strategy to prove that a hybrid encryption scheme, con-
sisting of a KEM ΠK and a DEM ΠD , is PA2 plaintext aware:

– Prove that ΠK is PA1+ plaintext aware.
– Prove that both ΠK and ΠD are simulatable.

Recall that several DEMs have already been shown to be simulatable [5,22] and so we
may concentrate on proving that there are PA1+ and simulatable KEMs.

7. The Cramer–Shoup Encryption Scheme

In this section, we will use our strategy to show the hybrid Cramer–Shoup encryption
scheme [10] is PA2 under a variety of assumptions including the interactive Diffie–
Hellman Knowledge (DHK) assumption.3

B O′
D ,O′

R (1k,pk)

x
$← AO D ,O R

If A queries O R
Query r ← O′

R
Return r

If A queries O D (C)

Parse C as (C1,C2)

Query K ← O′
D (C1)

m ← DECK(C2)

Return m

Output x

A∗(1k,pk,C,R[A], RLIST)

Parse C as (C1,C2)

K
$← B∗(1k,pk,C1,R[A], RLIST)

m ← DECK(C2)

Output m

Fig. 18. The ciphertext creator B and plaintext extractor A∗ .

3 This is also sometimes known as the Knowledge-of-Exponent assumption (KEA).

Security Models and Proof Strategies for Plaintext-Aware Encryption 167

7.1. Assumptions

The Cramer–Shoup encryption scheme is defined over a group G with a generator g of
prime order q . We will require that the group is statistically simulatable (as a set), that
the DDH problem is hard on G, and that the DHK assumption holds on G.

Definition 7.1 (DDH). The DDH advantage of an attacker A is defined as

AdvDDH

A (k) =
∣∣∣∣∣Pr

[
b′ = 1 : x, y

$← Zq,

b′ $← A(g, gx, gy, gxy)

]

− Pr

[
b′ = 1 : x, y, z

$← Zq,

b′ $← A(g, gx, gy, gz)

]∣∣∣∣∣ .

The DDH problem is hard if every PPT attacker A has negligible advantage.

The DHK assumption was first introduced by Dåmgard [11]. It is a very strong, inter-
active assumption which is designed to capture the intuition that it does not seem to be
possible to create a Diffie–Hellman tuple (g, a, gx, ax) from (g, a) without knowing x.
Let DH = {(g, gx, gy, gxy) : x, y ∈ Zq}. We define DHK security via the security game
shown in Fig. 19.

Definition 7.2 (DHK). The DHK advantage of an attacker A and an extractor A∗ is
defined as AdvDHK

A,A∗(k) = Pr[EXPTDHK

A,A∗ = 1]. The DHK assumption holds if for every
PPT attacker A there exists a PPT extractor algorithm A∗ such that AdvDHK

A,A∗(k) is
negligible.

In order to prove that the Cramer–Shoup encryption scheme is plaintext aware, we
require groups which are simulatable and on which the DDH and DHK assumptions
are believed to hold. We will aim to show that a q-order finite field group Gk ⊆ Fpk

is
simulatable. Our strategy will be to show that Fpk

is simulatable and that sufficiently
large subsets of simulatable sets are also simulatable.

We begin by showing that families of sets S = ((Si)i∈Ik
)k∈N with Si = ZNi

and
2k−1 < Ni < 2k are statistically simulatable. We define a simulator ΠS = (f,f −1, �)

EXPTDHKA,A∗ :

a
$← G

AO (1k, g, a)

If A queries O(b, c)

x
$← A∗(g, a, b, c,R[A])

If (g, a, b, c) ∈ DH and b �= gx then output 1
Else return x

Output 0

Fig. 19. The security game for the Diffie–Hellman Knowledge (DHK) assumption. A∗ is run as a stateful
algorithm (which retains state between invocations).

168 J. Birkett and A. W.Dent

where � = 2k and
f (i, r):

x ← r mod Ni

Output x

f −1(i, s):
αi ← �22k/Ni�
t

$← {0, . . . , αi − 1}
r ← tNi + s

Output r

Lemma 7.3. The simulator ΠS witnesses the fact that S is simulatable, i.e. ΠS is
statistically random-set and statistically image-set simulatable.

Image-Set Simulatable Proof. Let αi = �22k/Ni� and βi = 22k mod Ni (i.e. 22k =
αiNi + βi). Let U be the uniform distribution on Si and let Y be the distribution

given by f (i, r) for r
$← {0,1}�. Split Si into two disjoint sets S+

i and S−
i where

S+
i = {0, . . . , βi − 1} and S−

i = {βi, . . . ,Ni − 1}. Hence,

∣∣Pr[Y = s] − Pr[U = s]∣∣ =
{∣∣αi+1

22k − 1
Ni

∣∣ if s ∈ S+
i ,

∣∣ αi

22k − 1
Ni

∣∣ if s ∈ S−
i .

Since 22k −αiNi = βi , and βi < Ni < 2k , we have that |Pr[Y = s]−Pr[U = s]| ≤ 1/22k

for all s ∈ Si . Thus, Δ[U,Y] ≤ 1/2k and S is statistically image-set simulatable. �

Random-Set Simulatable Proof. Now let U ′ be the uniform distribution on {0,1}�
and Y ′ be the distribution of f −1(i, f (i, r)) for r

$← {0,1}�. We have

∣∣Pr
[
Y ′ = r ′] − Pr

[
U ′ = r ′]∣∣ =

⎧
⎪⎪⎨

⎪⎪⎩

∣∣ αi+1
αi22k − 1

22k

∣∣ if r ′ < αiNi and r ′ mod Ni ∈ S+
i ,

∣∣ αi

αi22k − 1
22k

∣∣ if r ′ < αiNi and r ′ mod Ni ∈ S−
i ,

1
22k if r ′ ≥ αiNi.

There exists αiβi ≤ αiNi values for r ′ with r ′ < αiNi and r ′ mod Ni ∈ S+
i and there

exists βi < Ni values r ′ with r ′ ≥ αiNi . Thus, Δ[U ′, Y ′] ≤ 1/2k and S is statistically
random-set simulatable. �

This demonstrates that Fpk
is statistically simulatable when pk is a k-bit prime. How-

ever, this does not imply that a prime order group G ⊆ Fpk
is necessarily simulatable.

To prove that we use the following lemma:

Lemma 7.4 (Simulatable Subset Lemma). Suppose S = ((Si)i∈Ik
)k∈N is statistically

simulatable family of finite sets and that S′ = ((S′
i)i∈Ik

)k∈N satisfies S′
i ⊆ Si for all i ∈ Ik

and k ∈ N. Let μ(k, i) = |S′
i |/|Si | and ν(k, i) = 1 − μ(k, i). Suppose that there exists a

polynomial p(k) such that μ(k, i), ν(k, i) ≥ |1/p(k)| for all sufficiently large k and i ∈
Ik and that there exists polynomial-time algorithm Berμ(1k, i) which outputs a bit from
the Bernoulli distribution with probability μ(k, i). Suppose further that membership of
Si and S′

i are polynomial-time decideable. Then S′ is a statistically simulatable family
of sets.

Security Models and Proof Strategies for Plaintext-Aware Encryption 169

f ′(i, r):
bad_f ← false
Parse r as r1‖ . . .‖r�′

where rj ∈ {0,1}�′

For j = 1,2, . . . , kp(k):
If f (i, rj) ∈ S′

i
Output f (i, rj)

bad_f ← true
Output 0

f ′−1(i, s):
r ← ε

bad_finv ← false
found ← false
For j = 1,2, . . . , kp(k):

ρ
$← Berμ(1k, i)

If ρ = 1 and
found = false

rj
$← f −1(i, s)

Append rj to r

found ← true

If ρ = 0 and
found = false

Repeat (kp(k) times)
until s′

j
/∈ S′

i

rj
$← {0,1}�

s′
j

← f (i, rj)

Else
s′
j

← f (i,0�)

bad_finv ← true
Append f −1(i, s′

j
) to r

If found = true

rj
$← {0,1}�(k)

Append rj to r

Output r

Fig. 20. Simulator f ′ and f ′−1 for sets S′ ⊆ S.

Image-Set Simulatable Proof. Suppose (f,f −1, �) is a statistical simulator for S.
We define a new simulator (f ′, f ′−1, �′) where �′(k) = kp(k)�(k) and the remaining
algorithms are given in Fig. 20.

This proof can thought of as “distributional game hopping” and makes liberal use of
the results of Appendix A. We define a number of distributions – un-prime distributions
(e.g. X) are associated with (f,f −1, �) and prime distributions (e.g. X′) are associated
with (f ′, f ′−1, �′):

– U�, U�′ , UT refer to the uniform distributions over the sets {0,1}�, {0,1}�′
, T

respectively. Note that T could be any set including Si , S′
i and Si \ S′

i .

– X refers to the distribution f (i, r) for r
$← {0,1}�.

– Y refers to the distribution f −1(i, f (i, r)) for r
$← {0,1}�.

– Z refers to the distribution f −1(i, s) for s
$← Si .

– X′ refers to the distribution f ′(i, r) for r
$← {0,1}�′

and X̄′ refers to the distribution

f ′(i, r) for r
$← {0,1}�′

conditioned on the fact that f ′ does not set bad_f to be
true. Note that Δ[X′, X̄′] ≤ 1/2k .

– Y ′ refers to the distribution f ′−1(i, f (i, r)) for r
$← {0,1}�′

and Ȳ ′ refers to the

distribution f ′−1(i, f (i, r)) for r
$← {0,1}�′

conditioned on the fact that f ′ does
not set bad_f to be true. Note that Δ[Y ′, Ȳ ′] ≤ 1/2k .

– Z′ refers to the distribution f ′−1(i, s) for s
$← S′

i and Z̄′ refers to the distribution

f ′−1(i, s) for s
$← S′

i conditioned on the fact that f ′−1 does not set bad_finv to be
true. Note that Δ[Z′, Z̄′] ≤ 1/2k .

In order to show that S′ is statistically image-set simulatable, we need to show that
Δ[US′

i
,X′] is negligible. This follows simply as

Δ
[
US′

i
,X′] ≤ Δ

[
US′

i
, X̄′] + Δ

[
X̄′,X′] ≤ Δ

[
US′

i
, X̄′] + 1/2k ≤ p(k)Δ[US,X] + 1/2k

170 J. Birkett and A. W.Dent

and as Δ[USi
,X] is negligible (by definition). �

Random-Set Simulatable Proof. It is more difficult to show that S′ is statistically
random-set simulatable. We make use of the following simple fact:

Δ[U�,Z] ≤ Δ[U�,Y] + Δ[Y,Z] ≤ Δ[U�,Y] + Δ[X,USi
].

Thus, Δ[U�,Z] is negligible (as S is statistically image-set and random-set simulat-

able). This can be interpreted as saying that the distribution f −1(i, s) for s
$← Si is

statistically close to uniform on {0,1}�.

Consider r ′ $← f ′−1(i, f ′(i, r)) for r
$← {0,1}�′

. We may split r ′ into “blocks”
r ′

1‖ . . .‖r ′
kp(k)

where each r ′
j ∈ {0,1}�. Let λ be the smallest integer such that

f (i, r ′
λ) ∈ S′

i and note that the value λ is correctly distributed—i.e. if we chose sj
$← Si

and set λ to be the smallest value for which sλ ∈ S′
i then λ would have the same binomial

distribution as is produced by f −1. Therefore, it is sufficient to show that each “block”
rj is statistically close to an independent copy of the uniformly random distribution U�.
This is trivially true for blocks with j > λ.

In order to show that S′ is statistically random-set simulatable, we have to show that
Δ[U�′ , Y ′] is negligible. We begin by noting that

Δ
[
U�′ , Y ′] ≤ Δ

[
U�′ , Ȳ ′] + Δ

[
Ȳ ′, Y ′]

≤ Δ
[
U�′ , Ȳ ′] + 1/2k

(
as Δ

[
Ȳ ′, Y ′] ≤ 1/2k

)

≤ Δ
[
U�′ ,Z′] + Δ

[
Z′, Ȳ ′] + 1/2k

≤ Δ
[
U�′ ,Z′] + Δ

[
US′

i
, X̄′] + 1/2k (∗)

≤ Δ
[
U�′ ,Z′] + Δ

[
US′

i
,X′] + Δ

[
X′, X̄′] + 1/2k

≤ Δ
[
U�′ ,Z′] + Δ

[
US′

i
,X′] + 2/2k

(
as Δ

[
X̄′,X′] ≤ 1/2k

)

≤ Δ
[
U�′ , Z̄′] + Δ

[
Z̄′,Z′] + Δ

[
US′

i
,X′] + 2/2k

≤ Δ
[
U�′ , Z̄′] + Δ

[
US′

i
,X′] + 3/2k

(
as Δ

[
Z̄′,Z′] ≤ 1/2k .

)

The inequality (∗) holds because the only difference between Z′ and Ȳ ′ is in the distri-
bution of the element s′ input to f ′−1. We can characterise Ȳ ′ as f ′−1(i, X̄′) and Z′ as
f ′−1(i,US′

i
). Hence, Δ[Z′, Ȳ ′] ≤ Δ[X̄′,US′

i
]. We have already shown that Δ[US′

i
,X′]

is negligible and so it suffices to bound Δ[U�′ , Z̄′]. In other words, it suffices to show

that the distribution f ′−1(i, s) for s
$← S′

i (conditioned on the fact that f ′−1 does not
set bad_finv to be true) is statistically close to uniform.

Security Models and Proof Strategies for Plaintext-Aware Encryption 171

In order to show that Δ[U�′ , Z̄′] is negligible, we compare the simulator f ′−1(i, s) to
a perfect (non-polynomial-time) version f̂ −1(i, s):

f̂ −1(i, s):
r ← ε

found ← false
For j = 1,2, . . . , kp(k):

ρ
$← Berμ(1k, i)

If ρ = 1 and found = false

rj
$← f −1(i, s)

Append rj to r

found ← true

If ρ = 0 and found = false

s′
j

$← Si \ S′
i

Append f −1(i, s′
j) to r

If found = true

rj
$← {0,1}�(k)

Append rj to r

Output r

Let Ẑ′ be the distribution of f̂ −1(i, s) for s
$← S′

i . We have

Δ
[
U�′ , Z̄′] ≤ Δ

[
U�′ , Ẑ′] + Δ

[
Ẑ′, Z̄′].

We bound the term Δ[Ẑ′, Z̄′] by noting that the only difference between the two dis-
tributions is in the distribution of the value s′

j . We can characterise Z̄′ as f ′−1(i, X̄′)
conditioned on the fact that f ′−1 does not set the flag bad_finv to be true and Ẑ′ as
f ′−1(USi\S′

i
). In other words, we require that the distribution of X̄′ on Si \ S′

i is suffi-
ciently close to uniform. By an argument that is almost identical to the proof that S′ is
statistically image-set simulatable, we have that these two distributions are statistically
indistinguishable. Hence, Δ[Ẑ′, Z̄′] is negligible.

It therefore only remains to prove that Δ[U�′ , Ẑ′] is negligible. In Ẑ′, each “block” r ′
j

output by f̂ −1(i, s) is either uniformly randomly distributed or distributed as f −1(i, s)

for s
$← S (i.e. distributed according to Z). (This is because Z outputs a random element

of S′
i with probability μ and a random element of Si \S′

i with probability ν.) Therefore,
we have that

Δ
[
U�′, Ẑ′] ≤ kp(k)Δ[U�,Z]

which is negligible. Thus, S′ is statistically random-set simulatable. �

Note that the majority of groups used in cryptography (e.g. prime-order finite field
groups and elliptic curve groups) can be shown to be subgroups of Zp or Z

2
p which sat-

isfy the conditions of Theorem 7.4. Hence, most cryptographic groups are statistically
simulatable.

The Cramer–Shoup also requires the use of a target collision resistant hash function:

Definition 7.5 (TCR). Consider a family of hash functions TCRk : Ak → Bk . We de-
fine the TCR advantage of an attacker A as follows:

AdvTCR

A (k) = Pr

[
x �= y ∧

TCRk(x) = TCRk(y)
: x

$← Ak

y
$← A(1k, x)

]
.

172 J. Birkett and A. W.Dent

Gen(1k):

w
$← Zq ; g2 ← gw

1

x, y, z
$← Zq

e ← gx
1 ; f ← g

y
1

h ← gz
1

pk ← (g1, g2, h, e, f)

sk ← (w,x, y, z)

Output (pk, sk)

Encap(pk):

r
$← Zq

c1 ← gr
1; c2 ← gr

2
t ← TCR(c1, c2)

π ← ert f r

C ← (c1, c2,π)

K ← hr

Output (C,K)

Decap(C):
Parse C as (c1, c2,π)

t ← TCR(c1, c2)

If c2 = cw
1 and π = c

xt+y
1

Output cw
1

Else
Output ⊥

Fig. 21. The hybrid Cramer–Shoup encryption scheme (CS1b).

A hash function TCR is target collision resistant if every PPT attacker A has negligible
advantage.

We will write TCR in place of TCRk if the hash function family is implicit by context.

7.2. The Hybrid Cramer–Shoup Encryption Scheme

The hybrid Cramer–Shoup encryption scheme is defined on a group G of prime order
q and with generator g1, and uses a target collision-resistant hash function TCR : G

2 →
Zq . The scheme was famously proven IND-CCA2 secure by Cramer and Shoup in 1998
[10]. We present the scheme as a KEM in Fig. 21. The scheme has a symmetric key-
space G and so has to be used with a DEM with key-space G. However, a DEM can
with key space K can be converted into a DEM with key space G using a smooth hash
function4 H : G → K.

In accordance with the strategy in Sect. 6.3, we prove that this KEM is PA1+ and
simulatable. Recall that, according to Remark 6.4, we are only required to show that
the KEM is simulatable for attackers which obtain a single challenge ciphertext. In
order to evaluate the simulatability of the Cramer–Shoup KEM, we need to introduce
a new definition of security (which is very similar to the IND-R notion of security
for symmetric encryption schemes).5 The IND-R security notion for a KEM is defined
using the two games given in Fig. 22.

Definition 7.6 (IND-R-CCA2). A KEM Π = (Gen,Encap,Decap) is IND-R-CCA2
secure if for every PPT attacker A = (A1, A2) the advantage

AdvIND-R

A (k) = ∣∣Pr
[
EXPTIND-R-1

A = 1
] − Pr

[
EXPTIND-R-0

A = 1
]∣∣

is negligible.

Cramer and Shoup (essentially) proved the following theorem [10]:

4 A smooth hash function has the property that the distribution of H(x), for x
$← G, is computationally

indistinguishable from the uniform distribution on K
5 The original proof that the Cramer–Shoup encryption scheme is simulatable [12] has a (minor) flaw. The

proof does not “reset” the decryption oracle to its correct operation at the end of proof. This presentation
sidesteps the issue by using a simplified proof.

Security Models and Proof Strategies for Plaintext-Aware Encryption 173

Encap′(pk,m):

C
$← C

K
$← K

Output (C,K)

EXPTIND-R-1A :

(pk, sk)
$← G(1k)

ω
$← ADecap(sk,·)

1 (1k,pk)

(C∗,K∗)
$← Encap(pk)

b′ $← ADecap(sk,·)
2

(C∗,K∗,ω)

Return b′

EXPTIND-R-0A :

(pk, sk)
$← G(1k)

ω
$← ADecap(sk,·)

1 (1k,pk)

(C∗,K∗)
$← Encap′(pk)

b′ $← ADecap(sk,·)
2

(C∗,K∗,ω)

Return b′

Fig. 22. The IND-R-CCA2 security notion for KEMs. In G1 and G2 the attacker A2 is forbidden from
querying the decryption oracle on the ciphertext C∗.

Theorem 7.7 (Cramer–Shoup). Suppose the DDH problem is hard in the group G

and the hash function TCR is target collision resistant. Then the Cramer–Shoup KEM
is IND-R-CCA2 secure

There is a clear relationship between IND-R-CCA2 security and simulatability.
A simple hybrid argument can show that the following:

Theorem 7.8. If a KEM Π is IND-R-CCA2 secure and both C and K are computa-
tionally simulatable as sets, then Π is simulatable (as a KEM).

Thus, we can easily conclude:

Corollary 7.9. If G is a group on which the DDH problem is hard and which is sim-
ulatable as a set, and TCR is target collision resistant, then the Cramer–Shoup KEM is
simulatable (as a KEM).

Proof. Since G is computationally simulatable, we have that both C = G
3 and K = G

are computationally simulatable (by Lemma 4.2). Hence, by a combination of Theo-
rem 7.7 and Theorem 7.8, we have that the Cramer–Shoup KEM is simulatable. �

7.3. The Cramer–Shoup KEM is PA1+ Plaintext Aware

The proof that the Cramer–Shoup KEM is simulatable is heavily based on the proof that
it is IND-CCA2 secure. We introduce new techniques to prove that the Cramer–Shoup
KEM is PA1+.6

Theorem 7.10. Suppose G is a statistically simulatable group on which the DHK
assumption holds. Then the Cramer–Shoup KEM is PA1+ plaintext aware.

6 The original proof of this result claimed that it was sufficient for the group G to be computationally
simulatable. This is incorrect: we require that the group G is statistically simulatable. This error is relatively
minor in practice as all the common groups which are used for cryptography are statistically simulatable (see
Sect. 7.1). The original proof also failed to deal effectively with the differences in the way that the DHK
extractor B∗ and the PA1+ plaintext extractor A∗ handle the random inputs of their respective underlying
algorithms B and A. The DHK extractor B∗ requires all random bits of B to be known in advance, while the
PA1+ extractor A∗ must allow for the possibility that fresh random bits will be generated by A after A∗’s
execution.

174 J. Birkett and A. W.Dent

B O (1k, g, a):
g1 ← g; g2 ← a

re, rf , rh
$← {0,1}�

e ← Gf (re); f ← Gf (rf)

h ← Gf (rh)

pk ← (g1, g2, e, f,h)

R[A] $← {0,1}t (k)

x
$← AO D ,O R (1k,pk)

If A queries O R
ρ

$← {0,1}
Return ρ

If A queries O D (C)

Parse C as (c1, c2,π)

Query r ← O(c1, c2)

t ← TCR(c1, c2)

If c1 = gr
1 and c2 = gr

2
and π = ert f r

Return hr

Else
Return ⊥

Output 0

A∗(1k,pk,C,R[A], RLIST):
On first invocation

DLIST ← ε

nD ← 0
Else

nD ← nD + 1

re
$← Gf −1(e); rf

$← Gf −1(f)

rh
$← Gf −1(h)

RLIST′ = {0,1}qR−|RLIST|
R[B] ← re‖rf ‖rh‖R[A]‖RLIST‖RLIST′
Reset B∗ (i.e. delete its internal state)
Append C to DLIST

For j = 0,1, . . . , nD

Cj ← DLIST[j]
Parse Cj as (c1, c2,π)

rj
$← B∗(g1, g2, c1, c2,R[B])

t ← TCR(c1, c2)

If c1 = gr
1 and c2 = gr

2 and π = ert f r

mj ← hr

Else
mj ←⊥

Output mnD

Fig. 23. The DHK algorithm B and the plaintext extractor A∗. Since A runs in strict polynomial-time
attacker, there exists a polynomial bound t (k) on the running time of A, and so we may assume that R[A] is
t (k)-bits long. We also assume that A makes at most qR queries to its randomness oracle O R . Recall that
A∗ and B∗ run as stateful algorithms. DLIST contains a list of ciphertexts which have been submitted to the
decryption oracle. The counter nD gives the index for the current ciphertext C in DLIST.

Proof. Let (Gf ,Gf −1, �) be a simulator for the group G. Let A be an arbitrary PPT
PA1+ ciphertext creator. We define a DHK attacker B in Fig. 23. Since the DHK as-
sumption holds on G, there exists a DHK extractor B∗ for B, and we use this to define a
plaintext extractor A∗ in Fig. 23. One of the key points about the plaintext extractor A∗
is that for every ciphertext C submitted to the decryption oracle, the plaintext extractor
runs the DHK extractor B∗ from scratch over all of the ciphertexts submitted to the de-
cryption oracle up to this point. This is to cope with fact that the plaintext extractor A∗
is forced to guess the results of future randomness oracle queries RLIST′; if the DHK
extractor B∗ is run as a stateful algorithm in the obvious way (with one execution of B∗
for each execution of A∗) then we cannot argue that B∗’s responses are correct since
the list of random coins RLIST′ generated in the previous execution is unlikely to be
correct. Thus, the proof of this theorem revolves centrally around an argument that B∗’s
responses are identical when it is repeatedly run on the same ciphertexts in different
executions of the plaintext extractor A∗ (and therefore when it potentially has different
internal states).

Let D be an arbitrary polynomial-time distinguisher algorithm and Wi be the event
that D(x) outputs 1 in game Gi .

Game G1: G1 is the EXPTFAKE-PA1+

A,A∗,D game.
Game G2: Note that the group elements e, f,h are uniformly distributed in G in

G1. In G2 these elements are generated by choosing r̃e, r̃f , r̃h
$← {0,1}� and setting

Security Models and Proof Strategies for Plaintext-Aware Encryption 175

A∗
4(1k,pk,C,R[A], RLIST):
Parse C as (c1, c2,π)

If there exists no r such that c1 = gr
1 and c2 = gr

2
Return ⊥

Find r such that c1 = gr
1 and c2 = gr

2
t ← TCR(c1, c2)

If π = ert f r

Return hr

Else
Return ⊥

A∗
6(1k,pk,C,R[A], RLIST):
Parse C as (c1, c2,π)

If c2 �= cw
1

Return ⊥
t ← TCR(c1, c2)

If π = c
xt+y
1

Return cz
1

Else
Return ⊥

Fig. 24. The plaintext extractors A∗
4 and A∗

6 used in G4 and G6.

e ← Gf (r̃e), f ← Gf (r̃f), and h ← Gf (r̃h). This is a distributional game hopping step
(see Appendix A). Let U be the uniform distribution on G and Y be the distribution

of Gf (r̃) for r̃
$← {0,1}�. So |Pr[W2] − Pr[W1]| ≤ 3Δ[U,Y] which is negligible by the

assumption that G is statistically simulatable.
Game G3: Note that in G2 the plaintext extractor A∗ re-computes the values

re, rf , rh as Gf −1(Gf (r̃e)),Gf −1(Gf (r̃f)),Gf −1(Gf (r̃h)). G3 alters A∗ to use the val-
ues r̃e, r̃f , r̃h that were introduced in G2 as part of the key generation process. This is a
distributional game hopping step. Let U be the uniform distribution on {0,1}� and let Y

be the distribution of Gf −1(Gf (r)) for r
$← {0,1}�. So |Pr[W3] − Pr[W2]| ≤ 3Δ[U,Y]

which is negligible by the assumption that G is statistically simulatable.
Game G4: G4 responds to decryption oracle using the plaintext extractor A∗

4 rather
than A∗. A∗

4 is almost identical to A∗ except that it no longer uses B∗ but instead uses
computes the Diffie–Hellman value r exactly (even though this makes a A∗

4 a non-
polynomial-time algorithm). The complete description is given in Fig. 24.

Let E be the event that the decryption oracle returns a different response in G3 and G4

and let Ei be the event that this first occurs on the ith decryption oracle query. Suppose
that the ith decryption oracle query occurs on a ciphertext (c1, c2,π). If (g1, g2, c1, c2)

is not a Diffie–Hellman tuple, then the decryption oracle will return ⊥ in G3 and G4.
Hence, Ei only occurs if A submits a ciphertext to the decryption oracle for which
(g1, g2, c1, c2) is a valid Diffie–Hellman tuple but for which A∗ fails to compute a
value ri such that c1 = g

ri
1 and c2 = g

ri
2 .

We will bound Pr[Ei]. Consider the ith decryption oracle query. A∗ computes ri by
simulating an execution of the DHK game using B and B∗ for i DHK oracle queries.
This simulation doesn’t actually run B but supplies B∗ with the ciphertexts that B would
have computed using DLIST. Within this execution, let E′

j be the event that B∗ fails to
determine the correct value r̃j when queried with the j th ciphtertext (i.e. the j th DHK
oracle query is a pair (c1, c2) such that c1 = gr

1 and c2 = gr
2 but B∗ fails to return the

correct value of r).

– If any E′
j occurs, with 1 ≤ j < i, then we cannot determine whether B∗ will cor-

rectly determine the value ri that A∗ requires. This is because the internal state of
B∗ would be consistent with an execution of B which computed an incorrect de-
cryption of the j th ciphertext. Hence, the list of ciphertexts DLIST may be incon-
sistent with the ciphertexts output by the algorithm B that A∗ is trying to simulate.

176 J. Birkett and A. W.Dent

(Recall that Ei represents the first time the decryption oracle incorrectly decrypts
a ciphertext; hence, all previous ciphertexts must have been decrypted correctly.)

– If E′
i occurs, then the value ri computed by A∗ is incorrect by the definition of E′

i .

Thus, we can conclude

Pr[Ei] ≤ Pr
[
E′

1 ∨ E′
2 ∨ · · · ∨ E′

i−1 ∨ E′
i

]
.

However, by the definition of the DHK game, this value is bounded by AdvDHK

B,B∗(k).
Thus, Pr[Ei] ≤ AdvDHK

A,A∗(k) and so |Pr[W4]−Pr[W3]| ≤ Pr[E] ≤ qDAdvDHK

A,A∗(k) which
is negligible.

Game G5: Game G5 changes the distribution of e, f,h so that they are generated

as e, f,h
$← G rather than by using Gf . This “undoes” the change made in G2 and by

the same argument we have that |Pr[W5] − Pr[W4]| is negligible since G is statistically
image-set simulatable. (Note that we require statistical image-set simulatability here as
the extractor is not polynomial-time and so there is no guarantee that computational
image-set simulatability would suffice.) We do not have to “undo” the change made in
G3 since A∗

4 does not make use of the elements re, rf , rh.
Game G6: G6 changes the distribution of g2, e, f,h and uses the plaintext extractor

A∗
6 given in Fig. 24. The elements g2, e, f,h are computed by selecting w,x, y, z

$← Zq

and setting g2 ← gw
1 , e ← gx

1 , f ← g
y

1 , h ← gz
1. Obviously, this doesn’t change their

distribution, so we concentrate on showing that the action of A∗
6 is identical to the

action of A∗
4 used in G5. However, this can trivially be seen to be true by noting that

c2 = cw
1 if and only if there exist an r such that c1 = gr

1 and c2 = gr
2, and that if c1 = gr

1
then ertf r = cxt

1 c
y

1 and hr = cz
1. Thus, Pr[W6] = Pr[W5].

But an examination of A∗
6 shows that it is functionally identical to the real decryption

algorithm D(sk, ·). Thus, the event W6 is equivalent to the event EXPTREAL-PA1+

A,D
= 1. And

so, AdvPA1+

A,D(k) ≤ |Pr[W1] − Pr[W6]| is negligible and so the Cramer–Shoup KEM is
PA1+. �

Corollary 7.11. Suppose G is a statistically simulatable group on which both the
DDH problem is hard and the DHK assumption holds, and that TCR is a target collision
resistant hash function. Then the Cramer–Shoup KEM is PA2 plaintext aware.

Therefore, we have that the hybrid Cramer–Shoup encryption scheme (with M =
{0,1}n) is PA2 plaintext aware. (Recall that the condition that M = {0,1}n is required
in order to prove that the DEM is simulatable.)

8. Conclusions and Open Problems

This paper gave the first proof strategy for proving PA2 plaintext awareness and used
this strategy to prove that the hybrid Cramer–Shoup encryption scheme is PA2 plaintext
aware. At the heart of this strategy are the notions of simulatability and PA1+ plain-
text awareness. Both are strong requirements: a scheme which is simulatable is nec-
essarily IND-CCA2 secure and a proof of PA1+ plaintext awareness seems to require
strong extractor assumptions like the Diffie–Hellman Knowledge (DHK) assumption.

Security Models and Proof Strategies for Plaintext-Aware Encryption 177

Nevertheless, the fact that PA2 plaintext aware encryption schemes can be proven to
exist at all is theoretically interesting and the fact that the Cramer–Shoup encryption
scheme is PA2 plaintext aware gives some explanation as why the scheme achieves
IND-CCA2 security. The approach demonstrated here has been used to show that all
Cramer–Shoup hash-proof encryption schemes [7] and Kurosawa–Desmedt hash-proof
encryption schemes [7,19] are also plaintext aware (under certain extractor-based as-
sumptions).

There are many open problems in this area. The most important ones are:

– Is it possible to show any other schemes are plaintext aware? All the schemes that
are currently known to be PA2 plaintext aware are of the “hash-proof” variety. It
would be interesting to see if any other schemes could achieve this level of security.

– Is it possible to use plaintext-aware encryption to reason about protocols and at-
tack strategies? This approach was taken in the work of Di Raimondo, Gennaro
and Krawczyk [13] and Ventre and Visconti [30], but it may be useful in other
scenarios, e.g. in the analysis of protocols using formal methods.

– Is it possible to develop a strategy for proving PA2 plaintext awareness that does
not rely on simulatable encryption schemes? Since one of the major motivations for
the study of plaintext-aware encryption is its use in proving IND-CCA2 security,
the reliance of the strategy on simulatable encryption schemes, which are already
necessarily IND-CCA2 secure, is a disadvantage.

– Is it possible to prove that a scheme is PA1/PA2 plaintext aware without the use
of an extractor-based assumption like the DHK assumption? Alternatively, can it
be shown that plaintext awareness cannot be proven under any non-interactive as-
sumption?

It is also interesting to examine other ways in which the extraction methodology can
be applied. One interesting extension is the concept of secret-key awareness, which
moves the knowledge assumption from the ciphertext to the public key, i.e. a scheme is
secret-key aware if it is infeasible for any PPT algorithm to create a public key without
“knowing” the underlying private key [1]. This has applications to proving complete
non-malleability [15] and may have applications towards protocol analysis.

Acknowledgements

The majority of research for this paper was performed while both authors were mem-
bers of the Information Security Group at Royal Holloway, University of London. The
authors would like to thank the referees of Eurocrypt 2006, PKC 2008 and the Journal
of Cryptology for their helpful comments. The authors would also like to thank Martijn
Stam and Nigel Smart for their detailed and insightful comments.

Appendix A. Game Hopping

Game hopping is a proof technique that involves adapting the environment in which
an attacker runs until it is clear that an attacker has a negligible change of “winning”.
Every time the environment (game) is changed, the proof has to show that the attacker

178 J. Birkett and A. W.Dent

does not have a significantly greater probability of winning in the second game than in
the first—i.e. that the “game hop” does not significantly increase the attacker’s chance
of winning. Hence, the main game hopping proof techniques involve showing that an
attacker’s output is practical identical when running in two similar environments. We
will often make use of game hopping techniques when working with statistically similar
distributions, hence we begin by proving a few simple lemmas:

Lemma A.1. Let X, Y , Z be distributions over some common finite set S. Then
Δ[X,Z] ≤ Δ[X,Y] + Δ[Y,Z]. Furthermore, if A is any (possibly probabilistic) al-
gorithm, then Δ[A(X), A(Y)] ≤ Δ[X,Y].

A proof of these facts can be found in, for example, Shoup [27]. We restate the dif-
ference lemma [26] in terms of statistical distance:

Lemma A.2. Suppose that X is the random variable describing the output of a ran-
domised algorithm A (on a finite set). Let E be some event that may occur during A’s
execution. Let Y be the random variable which describes the output of A given that E

does not occur (i.e. Pr[Y = s] = Pr[X = s |¬E]). Then Δ[X,Y] ≤ Pr[E].

Proof. The result follows from a simple probability calculation:

Δ[X,Y] = 1

2

∑

s∈S

∣∣Pr[X = s] − Pr[Y = s]∣∣

= 1

2

∑

s∈S

∣∣Pr[X = s |E]Pr[E] + Pr[X = s |¬E]Pr[¬E] − Pr[Y = s]∣∣

= 1

2

∑

s∈S

∣∣Pr[X = s |E]Pr[E] + Pr[Y = s](1 − Pr[E]) − Pr[Y = s]∣∣

= 1

2

∑

s∈S

∣∣Pr[X = s |E]Pr[E] − Pr[Y = s]Pr[E]∣∣

≤ 1

2
Pr[E]

∑

s∈S

Pr[X = s |E] + 1

2
Pr[E]

∑

s∈S

Pr[Y = s]

≤ Pr[E]. �

The computational distance between families of distributions Xk and Yk for an algo-
rithm A is

distX,Y
A (k) = ∣∣Pr

[
A(s) = 1 : s

$← Xk

] − Pr
[

A(s) = 1 : s
$← Yk

]∣∣.

Xk and Yk are computationally indistinguishable if distX,Y
A (k) is negligible for all prob-

abilistic polynomial-time algorithms A.
A game G describes the distributions of a series of inputs to an algorithm A and a

“win condition” for that algorithm. Let Wi denote the event that A achieves the win

Security Models and Proof Strategies for Plaintext-Aware Encryption 179

condition. A game hop is relationship between the probability that A wins game G0
and game G1. We make use of three type of game hop:

1. Bridging Steps: The distribution of inputs to A in G0 and G1 are identical (al-
though the inputs may be generated in a different way). Thus, Pr[W0] = Pr[W1].

2. Distributional Steps: If the only difference between G0 and G1 is that an input s

to A is drawn from distribution X in G0 and from distribution Y in G1, then
∣∣Pr[W0] − Pr[W1]

∣∣ ≤ Δ[X,Y].
Furthermore, if A is a probabilistic, polynomial-time (PPT) algorithm, and W0
and W1 are polynomial-time decidable events, then

∣∣Pr[W0] − Pr[W1]
∣∣ ≤ distX,Y

A (k).

3. Small Error Steps: If G0 and G1 proceed identically unless some event E occurs,
then

∣∣Pr[W0] − Pr[W1]
∣∣ ≤ Pr[E].

The reader is referred to Bellare and Rogaway [4] and Shoup [26] for more information.

References

[1] M. Barbosa, P. Farshim, Strong knowledge extractors for public-key encryption schemes, in Aus-
tralasian Conference on Information Security and Privacy—ACISP 2010, ed. by P. Hawkes, R. Ste-
infeld. Lecture Notes in Computer Science, vol. 6168 (Springer, Berlin, 2010), pp. 164–181

[2] M. Bellare, A. Palacio, Towards plaintext-aware public-key encryption without random oracles, in Ad-
vances in Cryptology—Asiacrypt 2004, ed. by P.J. Lee. Lecture Notes in Computer Science, vol. 3329
(Springer, Berlin, 2004), pp. 48–62

[3] M. Bellare, P. Rogaway, Optimal asymmetric encryption, in Advances in Cryptology—Eurocrypt ’94,
ed. by A. De Santis. Lecture Notes in Computer Science, vol. 950 (Springer, Berlin, 1994), pp. 92–111

[4] M. Bellare, P. Rogaway, The security of triple encryption and a framework for code-based game-playing
proofs, in Advances in Cryptology—Eurocrypt 2006, ed. by S. Vaudenay. Lecture Notes in Computer
Science, vol. 4004 (Springer, Berlin, 2006), pp. 409–426

[5] M. Bellare, A. Desai, E. Jokipii, P. Rogaway, A concrete security treatment of symmetric encryption,
in Foundations of Computer Science—FOCS 1997 (IEEE Computer Society, Los Alamitos, 1997), pp.
394–403

[6] M. Bellare, A. Desai, D. Pointcheval, P. Rogaway, Relations among notions of security for public-key
encryption schemes, in Advances in Cryptology—Crypto 1998, ed. by H. Krawczyk. Lecture Notes in
Computer Science, vol. 1462 (Springer, Berlin, 1998), pp. 26–45

[7] J. Birkett, On plaintext-aware public-key encryption schemes. PhD thesis, Royal Holloway, University
of London, 2010

[8] J. Birkett, A.W. Dent, Relations among notions of plaintext awareness, in Public Key Cryptography—
PKC 2008, ed. by R. Cramer. Lecture Notes in Computer Science, vol. 4939 (Springer, Berlin, 2008),
pp. 47–65

[9] J.L. Carter, M.N. Wegman, New classes and applications of hash functions, in Foundations of Computer
Science—FOCS 1979 (IEEE Computer Society, Los Alamitos, 1979), pp. 175–182

[10] R. Cramer, V. Shoup, Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2004)

[11] I.B. Damgård, Towards practical public key systems secure against chosen ciphertext attacks, in Ad-
vances in Cryptology—Crypto ’91, ed. by J. Feigenbaum. Lecture Notes in Computer Science, vol. 576
(Springer, Berlin, 1991), pp. 445–456

180 J. Birkett and A. W.Dent

[12] A.W. Dent, The Cramer-Shoup encryption scheme is plaintext aware in the standard model, in Advances
in Cryptology—Eurocrypt 2006, ed. by S. Vaudenay. Lecture Notes in Computer Science, vol. 4004
(Springer, Berlin, 2006), pp. 289–307

[13] M. Di Raimondo, R. Gennaro, H. Krawczyk, Deniable authentication and key exchange, in ACM Con-
ference on Computer and Communications Security—ACM CCS ’06 (ACM, New York, 2006), pp. 400–
409

[14] U. Feige, A. Fiat, A. Shamir, Zero-knowledge proofs of identity. J. Cryptol. 1(2), 77–94 (1988)
[15] M. Fischlin, Completely non-malleable schemes, in Automata, Languages and Programming—ICALP

2005, ed. by L. Caires, G.F. Italiano, L. Monteiro, C. Palamidessi, M. Yung. Lecture Notes in Computer
Science, vol. 3580 (Springer, Berlin, 2005), pp. 779–790

[16] S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28, 270–299 (1984)
[17] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems. SIAM J.

Comput. 18(1), 186–208 (1989)
[18] J. Håstad, R. Impagliazzo, L.A. Levin, M. Luby, A pseudorandom generator from any one-way function.

SIAM J. Comput. 18(1), 1364–1396 (1999)
[19] S. Jiang, H. Wang, Plaintext-awareness of hybrid encryption, in Topics in Cryptology—CT-RSA 2010,

ed. by J. Pieprzyk. Lecture Notes in Computer Science, vol. 5985 (Springer, Berlin, 2010), pp. 57–72
[20] K. Kurosawa, Y. Desmedt, A new paradigm of hybrid encryption scheme, in Advances in Cryptology—

Crypto 2004, ed. by M. Franklin. Lecture Notes in Computer Science, vol. 3152 (Springer, Berlin,
2004), pp. 426–442

[21] M. Naor, M. Yung, Public-key cryptosystems provably secure against chosen ciphertext attacks, in Proc.
22nd ACM Symposium on the Theory of Computing—STOC ’90 (ACM, New York, 1990), pp. 427–437

[22] E. Petrank, C. Rackoff, CBC MAC for real-time data sources. J. Cryptol. 13(3), 315–339 (2000)
[23] C. Rackoff, D. Simon, Non-interactive zero-knowledge proof of knowledge and chosen ciphertext at-

tack, in Advances in Cryptology—Crypto ’91, ed. by J. Feigenbaum. Lecture Notes in Computer Sci-
ence, vol. 576 (Springer, Berlin, 1991), pp. 434–444

[24] P. Rogaway, M. Bellare, J. Black, T. Krovetz, OCB: a block-cipher mode of operation for efficient
authenticated encryption, in ACM Conference on Computer and Communications Security—ACM CCS
’01 (ACM, New York, 2001), pp. 196–205

[25] V. Shoup, Using hash functions as a hedge against chosen ciphertext attack, in Advances in Cryptology—
Eurocrypt 2000, ed. by B. Preneel. Lecture Notes in Computer Science, vol. 1807 (Springer, Berlin,
2000), pp. 275–288

[26] V. Shoup, Sequences of games: a tool for taming complexity in security proofs. Available from
http://eprint.iacr.org/2004/332, 2004

[27] V. Shoup, A Computational Introduction to Number Theory and Algebra (Cambridge University Press,
Cambridge, 2005)

[28] M. Stam, Personal e-mail correspondence, 2005
[29] I. Teranishi, W. Ogata, Relationship between standard model plaintext awareness and message hiding, in

Advances in Cryptology—Asiacrypt 2006, ed. by X. Lai, K. Chen. Lecture Notes in Computer Science,
vol. 4284 (Springer, Berlin, 2006), pp. 226–240

[30] C. Ventre, I. Visconti, 2-round extractable commitments: definitions, constructions and applications in
the plain model. Unpublished manuscript, 2010

http://eprint.iacr.org/2004/332

	Security Models and Proof Strategies for Plaintext-Aware Encryption
	Abstract
	Introduction
	Models for Plaintext Awareness
	Our Contribution
	Related Work

	Preliminaries
	Relations Between Notions of Plaintext Awareness
	The Bellare-Palacio Notions of Plaintext Awareness
	PA1+ Plaintext Awareness
	Interpreting the Difference Between PA1 and PA1+

	Simplifying PA2 Plaintext Awareness
	Relations between Notions of Plaintext Awareness

	Simulatable Sets and Algorithms
	A Strategy for Proving PA2 Plaintext Awareness
	Extending the PA2 Proof Strategy to Hybrid Encryption Schemes
	Hybrid Encryption Using KEMs and DEMs
	Simulatable KEMS and DEMs
	Proving PA2 Plaintext Awareness for Hybrid Encryption

	The Cramer-Shoup Encryption Scheme
	Assumptions
	The Hybrid Cramer-Shoup Encryption Scheme
	The Cramer-Shoup KEM is PA1+ Plaintext Aware

	Conclusions and Open Problems
	Acknowledgements
	Appendix A. Game Hopping
	References

