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Abstract. A signature scheme is fully leakage resilient (Katz and Vaikuntanathan,
ASIACRYPT’09) if it is existentially unforgeable under an adaptive chosen-message
attack even in a setting where an adversary may obtain bounded (yet arbitrary) leakage
information on all intermediate values that are used throughout the lifetime of the
system. This is a strong and meaningful notion of security that captures a wide range
of side-channel attacks.

One of the main challenges in constructing fully leakage-resilient signature schemes
is dealing with leakage that may depend on the random bits used by the signing algo-
rithm, and constructions of such schemes are known only in the random-oracle model.
Moreover, even in the random-oracle model, known schemes are only resilient to leak-
age of less than half the length of their signing key.

In this paper we construct the first fully leakage-resilient signature schemes with-
out random oracles. We present a scheme that is resilient to any leakage of length
(1 — o(1))L bits, where L is the length of the signing key. Our approach relies on
generic cryptographic primitives, and at the same time admits rather efficient instanti-
ations based on specific number-theoretic assumptions. In addition, we show that our
approach extends to the continual-leakage model, recently introduced by Dodis, Har-
alambiev, Lopez-Alt and Wichs (FOCS’10), and by Brakerski, Tauman Kalai, Katz and
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Vaikuntanathan (FOCS’10). In this model the signing key is allowed to be refreshed,
while its corresponding verification key remains fixed, and the amount of leakage is
assumed to be bounded only in between any two successive key refreshes.

Key words. Leakage-resilient cryptography, Signature schemes.

1. Introduction

One of the main goals of research in the foundations of cryptography is designing sys-
tems that withstand adversarial behavior. Given a cryptographic task, such as public-key
encryption, one must formalize an attack model specifying a class of adversaries, and
define a notion of security capturing what it means to break the system. Within such a
framework, it is then possible to rigorously analyze the security of cryptographic sys-
tems.

Starting with the seminal work of Goldwasser and Micali [29], various and increas-
ingly strong attack models and notions of security have been proposed. Over the years,
however, theoreticians and practitioners began to notice that a large class of realistic
attacks, called side-channel attacks, are not captured by the existing models. In such
attacks, the adversary may learn some additional information regarding the internal se-
cret state of a system, by measuring various properties resulting from specific physical
implementations (e.g., timing information, detection of internal faults, electromagnetic
radiation, power consumption etc. [8,11,46,47]). As a result, it has become an important
research agenda to extend the standard models to capture such side-channel attacks, and
to design cryptographic systems whose security guarantees can be rigorously analyzed
and clearly stated in these stronger models. Our work focuses on the model of memory
attacks, and its bounded-leakage and continual-leakage variants, which we describe
next (several other models are described in Sect. 1.2).

Memory Attacks: Bounded-Leakage and Continual-Leakage The model of memory at-
tacks was introduced by Akavia, Goldwasser, and Vaikuntanathan [1]. Its main premise
is that the adversary can learn arbitrary information regarding the secret state of a sys-
tem, subject only to the constraint that the amount of information learned is somehow
bounded. More precisely, the adversary can adaptively select arbitrary poly-time com-
putable functions f; : {0, 1}* — {0, 1}* and learn the value of f; applied to the internal
state of the system, subject only to some constraint on the output sizes A;.

The work of [1] assumes that there is an a priori determined leakage bound A, which
bounds the overall amount of information learned by the adversary throughout the en-
tire lifetime of the system to be Zi Ai < A. We call this the bounded-leakage model.
Usually the leakage bound X is also related to the secret-key size, so that a relatively
large fraction A /|sk| of the secret key can be leaked. A great deal of research has gone
into devising various cryptographic primitives in this model, such as public-key and
identity-based encryption schemes, signature schemes, and more (see, for example, [2,
3,13,19,43,51,55]).

A drawback of the bounded-leakage model is that, if a system is being used contin-
ually for a sufficiently long time, then the amount of leakage observed by the attacker
may exceed any a priori determined leakage bound. Hence, we would like to bound the
rate of leakage rather than the overall amount of leakage. If we do not bound the overall
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leakage, then any static piece of information that stays unmodified on the system can
eventually be fully recovered by the adversary. Hence the secret keys of such systems
must be periodically refreshed.

Recently, Dodis et al. [18] and Brakerski et al. [15] suggested the continual-leakage
model, in which a scheme periodically self-refreshes its internal secret key, while the
corresponding public key remains fixed. In this model, only the amount of leakage seen
by the adversary in between any two successive refreshes is assumed to be a priori
bounded by some leakage bound A.! However, there is no a priori bound on the overall
amount of information seen by the adversary throughout the lifetime of the system.

We note that in both the bounded-leakage model and the continual-leakage model the
adversary may be able to learn partial, but yet arbitrary, information on the entire secret
key. This is in contrast with other models, where either the leakage is assumed to be of
“low complexity” (such as AC 0 circuits) [25,40], or certain secret values are assumed
to be leak-free [23,24,31,42,54,59].

Leakage-Resilient Signature Schemes 1In this paper we study the security of signature
schemes in the bounded-leakage and continual-leakage models. Signature schemes in
the bounded-leakage model were proposed by Alwen, Dodis, and Wichs [3] and by Katz
and Vaikuntanathan [43], who focused mainly on leakage of (only) the signing key of
the scheme. Specifically, a signature scheme is leakage-resilient in the bounded-leakage
model if it is existentially unforgeable against an adaptive chosen-message attack [30]
even when adversarially chosen functions of the signing key are leaked in an adap-
tive fashion. Signature schemes satisfying this notion of security were constructed both
based on generic cryptographic primitives in the standard model [43] and based on the
Fiat—Shamir transform [26] in the random-oracle model [3,43].

Although this notion of leakage resilience already captures some attacks, it does not
fully capture general leakage attacks, which may depend on the entire internal state of
the system. In particular, the problem is that both of the signature scheme constructions
from [3,43] are randomized and hence the internal state includes, in addition to the
secret key, all of the random coins used by the signing algorithm.> The prior schemes
may therefore be vulnerable to leakage attacks that (also) depend on this randomness.

This was already noted by Katz and Vaikuntanathan [43], who put forward the stricter
notion of a fully leakage-resilient signature schemes (in the bounded-leakage model).
This notion requires a signature scheme to remain existentially unforgeable under an
adaptive chosen-message attack even when the adversary obtains bounded leakage in-
formation on all intermediate values used by the signer throughout the lifetime of the
system, including the secret keys and internal random coins (the notion can be naturally
extended to the continual-leakage model [15,18]). This stronger notion seems to better
capture real attacks, relying on e.g. timing or power consumption patterns, since these
likely do depend on the internal randomness.

L1f the time between refreshing is fixed, we can think of this as bounding the rate of leakage.

2 No known deterministic or public-coin constructions of leakage-resilient signatures are known. Without
leakage, the signing algorithm of any signature scheme can be made deterministic by using, as its random
coins, the output of a pseudorandom function (PRF) applied to the message, where the seed of the PRF is
made part of the secret key. However, in the setting of key leakage, this transformation may no longer be
secure since the seed to the PRF can also leak.
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Currently, however, the known constructions of fully leakage-resilient signature
schemes are proven secure only in the random-oracle model [3,15,18,43]. Moreover,
even in the random-oracle model, known schemes are either resilient to leakage of at
most half the length of the signing key [3,18,43], or require refreshing of the signing
key after every few invocation of the signing algorithm, even when no leakage occurs
[15] (this is required even in the bounded-leakage model, where refreshing is not part
of the typical functionality). In the standard model, only constructions of “one-time”
signatures® from [43] are known to be fully leakage resilient.

In a concurrent and independent work, Malkin, Teranishi, Vahlis and Yung [52] pro-
pose an alternative signature scheme in the continual-leakage model. Although the two
schemes appear very different at first, they can be seen as separate instantiations of a
common strategy, which we will explain shortly.

1.1. Our Contributions

We construct the first fully leakage-resilient signature schemes without random oracles.
We first present a scheme in the bounded-leakage model that is resilient to any leak-
age of (1 — o(1))L bits, where L is the bit-length of the signing key. Our scheme is
based on generic cryptographic primitives, and is inspired by the approach of Katz and
Vaikuntanathan [43] (although their scheme is resilient to leakage from the signing key
only). Moreover, we show that our construction can be instantiated based on specific
number-theoretic assumptions to yield a rather efficient scheme.

We then extend our approach to the continual-leakage model by relying on any con-
tinual leakage-resilient one-way relation, a primitive recently introduced by Dodis, Har-
alambiev, Lopez-Alt and Wichs [18]. Our resulting signature scheme construction in-
herits the leakage-resilience properties of the underlying one-way relation with respect
to leakage allowed between successive key updates and during the refreshing algorithm.
Instantiating our scheme with the construction of the one-way relations from [63] we
can get signature schemes that are resilient to any leakage of length (1 — o(1))L bits
between any refreshes and a logarithmic number of bits during the refreshing, under the
decisional linear assumption. Alternatively, using a construction of one-way relations
from [20], we get a signature scheme that is secure for up to some O (L) bits of leakage
in-between and during each refreshing, under the same assumption.

Finally, we note that our approach yields the first separation between the bounded-
leakage model and the noisy leakage model, which was formalized by Naor and Segev
[55] and later refined by Dodis et al. [18, Definition 7.2]. Noisy leakage (also known
as entropy-bounded leakage) is a realistic generalization of length-bounded leakage, in
which the leakage is not necessarily of bounded length, and it is only guaranteed that
the secret key still has some min-entropy even given the leakage. This settles an open
problem posed by Naor and Segev (see Sect. 8 for a more elaborated discussion).

1.2. Related Work

Various constructions of leakage-resilient signature schemes have been proposed so far.
In this section we describe the different leakage models and discuss the security guar-

3 Such schemes can only be used to sign a single message (or, more generally, some a priori bound ¢ on
the number of messages).
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antees that are satisfied by these constructions. In what follows we denote by L the
bit-length of the signing key.

The Limited-Complexity Leakage Model ~Some of the initial works in leakage-resilient
cryptography concentrated on specific and limited forms of leakage. Ishai et al. [40]
showed how to securely implement any efficiently computable function in the presence
of an adversary who can probe the values of a constant number of wires. Faust et al. [25]
demonstrated a related construction allowing leakage functions with bounded output,
belonging to a low complexity class, such as AC?. Unfortunately, to accommodate such
generality in the underlying function, constructions of this type so far handled only
weak forms of leakage, which seem rather far from capturing many known side-channel
attacks.

The “Only Computation Leaks” Model Micali and Reyzin [54] introduced a model in
which the complexity of leakage functions is unrestricted, the overall amount of leak-
age is unbounded, but leakage is assumed to only occur on values currently accessed
during a computation. Explicitly, in each step of computation, the adversary can adap-
tively select a polynomial-time leakage function f with bounded output to be applied
to current active values. Values are active in a computation step if they are accessed by
the cryptographic system; all other values stored in memory but not accessed during the
time-step are assumed to be leak-free for the step. This model lends itself to techniques
that split a computation into two halves, maintaining only one half as active in any given
time-step, as proposed by Dziembowski and Pietrzak [23,59] within the construction of
leakage-resilient stream ciphers.

Faust et al. [24] constructed a stateful, tree-based signature scheme in the “only com-
putation leaks” model based on any 3-time secure signature scheme. Their construction
can handle £/3 bits of leakage per signature, where the underlying scheme is resilient to
£ bits of leakage overall. Implementing this with currently known constructions for the
underlying scheme (see [3,43]) yields leakage resilience approaching L /36 bits, based
on one-way functions.

Goldwasser and Rothblum [31] recently presented a way to compile any crypto-
graphic algorithm into one that resists leakage bounded by a constant fraction of the
secret key size in the “only computation leaks” model, based on the DDH assumption
and the existence of a simple secure hardware component. Using different techniques,
Juma and Vahlis [42] showed how to encapsulate a secret key and compute on it in a
leakage-resilient fashion within the “only computation leaks” model using fully homo-
morphic encryption and leak-free hardware tokens.

The “only computation leaks” paradigm is powerful in the sense that it allows any
efficiently computable leakage functions, and a large amount of overall leakage. How-
ever, it rests on the assumption that values not immediately being used in computation
are completely leak-free, which is not always valid. Specifically, this model does not
capture known attacks in which inactive values in memory are still vulnerable, such as
the cold-boot attacks of Halderman et al. [35] (see also the improvements of Heninger
and Shacham [37]), or measurements which can detect the physical processes used to
maintain values in memory.
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The Bounded-Leakage Model 1In the bounded-leakage model, as discussed above, sig-
nature schemes resilient to leakage depending only on the signing key have been con-
structed in the random-oracle model [3] and in the standard model (i.e., without random
oracles) [43], handling leakage of up to (1 — o(1))L bits (see also the work of Dodis et
al. [19] that focuses on efficient instantiations of such schemes).

Many-time signature schemes resistant to leakage from the entire secret state have
been constructed only in the random-oracle model. Alwen et al. [3] and Katz and
Vaikuntanathan [43] presented a scheme using the Fiat-Shamir transform [26] with
any second-preimage resistant function. Both works concurrently proposed the same
scheme, but leakage of randomness was only analyzed in the latter [43]. Due to the use
of the Fiat—Shamir transform, the construction is only resilient to leakage approaching
length L /2. A more efficient version, allowing the same amount of leakage, was given
by Dodis et al. [19].

The only existing constructions of fully leakage-resistant signatures in the standard
model are a pair of one-time signature schemes due to Katz and Vaikuntanathan [43].
Their first scheme is based on the existence of any one-way function, and is resilient
to any leakage of length less than L /4 bits. The second is based on specific number-
theoretic assumptions, and is resilient to any leakage of length less than L /2 bits. Both
schemes extend to 7-time schemes with leakage less than & (L /t). Since these schemes
have a deterministic signing algorithm, the secret state of the signer consists only of
the secret key, and thus full leakage resilience simply reduces to the weaker notion of
resilience against key leakage.

The Continual-Leakage Model Notions of leakage-resilient signatures were naturally
extended to the continual-leakage setting by Dodis et al. [18] and Brakerski et al. [15],
as described above. Dodis et al. [18] presented two signature schemes in the continual-
leakage model by using their abstracted concept of a continual leakage-resilient one-
way relation together with known schemes from the bounded-leakage model. The first
scheme is a modified version of the scheme of Katz and Vaikuntanathan [43], and is re-
silient to leakage only from the signing key. Their second scheme uses the Fiat—Shamir
transform in the random-oracle model, and allows up to L/2 bits of leakage in each
round from the entire current secret state of the signer.

Brakerski et al. [15] also presented two signature schemes in this model. The first
scheme is based on the one of Katz and Vaikuntanathan [43] as in [18], and is resilient
to leakage only from the signing key. The second scheme is in the random-oracle model,
and is secure against leakage from the entire secret state of the signer. The amount of
leakage that can be tolerated is (1/2 —o(1))L bits per key update based on the decisional
linear assumption (this was later improved by Tauman Kalai et al. [63] to (1 — o(1))L
bits), and (1 — o(1))L bits based on the SXDH assumption. In their scheme, each sig-
nature leaks information regarding the secret key, regardless of whether the adversary
makes leakage queries. This continual leakage of information through signature queries
means the signing key must be refreshed after every few invocation of the signing al-
gorithm. Thus, the construction does not yield a scheme in the bounded-leakage model,
where refreshing is not part of the typical functionality of a signature scheme, and is
less efficient in the continual-leakage model.

Subsequent to the present work, Garg et al. [28] showed that the adaptively secure
UC NIZKs of Groth et al. [33] possess leakage-resilient properties, which in turn yield
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leakage-resilient signature schemes in both the bounded- and continual-leakage models.
Their construction additionally relies on (and inherits the leakage-resilient properties of)
any underlying leakage-resilient one-way relation. The scheme also remains secure in
the noisy leakage model of Naor and Segev [55].

1.3. Overview of Our Approach

In this section we present an overview of our approach for constructing fully leakage-
resilient signature schemes. We focus here on our construction in the bounded-leakage
model, as it already emphasizes the main ideas underlying our approach, and we re-
fer the reader to Sect. 7 for an overview of our construction in the continual-leakage
model. We begin by describing more clearly the notion of a fully leakage-resilient sig-
nature scheme in the bounded-leakage model. Then, we briefly describe the leakage-
resilient signature scheme of Katz and Vaikuntanathan [43], which serves as our starting
point, and explain the main challenges in constructing fully leakage-resilient signature
schemes. The main part of this overview then focuses on our construction.

Modeling Fully Leakage-Resilient Signature Schemes A signature scheme is fully
leakage-resilient in the bounded-leakage model if it is existentially unforgeable against
an adversary that can obtain both signatures on any message of her choice, and bounded
leakage information on all intermediate values used by the signer throughout the life-
time of the system.

This is formalized by considering an experiment that involves a signer and an adver-
sary. First, the signer invokes the key-generation algorithm and obtains a verification
key vk and a signing key sk. At this point, a value state is initialized to contain the
random coins that were used by the key-generation algorithm. The adversary is given
the verification key vk and can adaptively submit two types of query: signing queries,
and leakage queries. A signing query consists of a message m, and is answered by in-
voking the signing algorithm with the signing key and the message. Following each
such query, the random coins that were used by the signing algorithm are added to the
state. A leakage query consists of a leakage function f, and is answered by applying
f to the value state. The leakage functions have to be efficiently computable, and the
sum of their output lengths has to be upper bounded by a predetermined parameter A.
The adversary is successful if she outputs a pair (m*, 0*), where m* is a message with
which she did not issue a signing query, and o * is a valid signature on m™* with respect
to vk. We refer the reader to Sect. 3 for a formal definition.

The Katz—Vaikuntanathan Scheme The Katz—Vaikuntanathan signature scheme [43]
relies on a second-preimage resistant (SPR) function F : {0, 1}*™ — {0, 1}*™ (for
some «(n) < u(n)), a CPA-secure public-key encryption scheme, and a (unbounded
simulation-sound) NIZK proof system.* The signing key is a random x € {0, 1}#(",

4 A function F is second-preimage resistant if, given a random input x it is hard to find x’ # x such that
F(x") = F(x). See Definition 2.2 in Sect. 2. We note that when F is only assumed to be a one-way function,
the scheme may not always be resilient to leakage, but it is nevertheless existentially unforgeable under an
adaptive chosen-message attack. In this case the scheme can be viewed as a variant of the Bellare-Goldwasser
signature scheme [6].
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and the verification key is a triplet (y = F(x), pk, crs), where pk is a public key for
the encryption scheme, and crs is a common-reference string for the proof system. A
signature on a message m consists of a ciphertext ¢ which is an encryption of m||x
using pk, and a proof that the ciphertext ¢ is indeed an encryption of m||x’, for some
x eFl(y)>

This scheme is leakage resilient in the bounded-leakage model. That is, it satisfies the
weaker variant of the above notion of security, where the leakage is allowed to depend
on the signing key only. The security of the scheme is based on three main properties:

1. A typical verification key has many possible secret keys. Specifically, the set
F~1(y) is of size roughly 21—«

2. The “real” signatures of the scheme are computationally indistinguishable from
“fake” signatures, which are statistically independent of the signing key. This
follows from the semantic security of the encryption scheme and from the zero
knowledge of the proof system. Specifically, a “fake” signature on a message m
can be produced by encrypting m||0", and then using the NIZK simulator to gen-
erate the proof.

3. Given the decryption key corresponding to pk, any valid forgery produced by
the adversary can be used to extract a preimage x” of y. This follows from the
soundness of the proof system, which guarantees that the adversary’s forgery is a
“real” signature® and therefore the corresponding ciphertext can be decrypted to a
valid preimage x'.

These three properties are used to prove the security of the scheme as follows. As-
sume there is an adversary that breaks the scheme. Then, given a random pre-image x
of y, we can run this adversary and (by the third property) extract some valid preim-
age x’ from the adversary’s signing forgery with a reasonable probability. This would
break second-preimage resistance of F as long as we can argue that x’ # x. To do so,
we use the second property to replace “real signatures” with “fake signatures” without
affecting the probability of recovering some valid preimage x’. But now, the signing
queries do not reveal any additional information regarding x, given y. So the only cor-
related information on x that the adversary sees is the value y = F(x) of size x(n) and
the leakage of size A. Therefore, if A < u(n) — k(n) — w(log(n)), then the adversary
has (information-theoretically) super-logarithmic uncertainty about the value of x and
hence the probability of extracting x’ = x from her forgery is negligible.

The Main Challenges The security proof of the Katz—Vaikuntanathan scheme relies on
the argument that, given many signatures of chosen messages and X bits of leakage from
the signing key x, the value x is still hard to guess by the adversary. However, when the
leakage may depend also on the randomness used by the signing algorithm, this is no
longer true, and in fact the scheme is insecure in general. The main problem is that, in
the above argument, we crucially used the ability to switch “real” signatures for “fake”

5 Katz and Vaikuntanathan show that it is actually possible to encrypt only x (instead of m||x), and include
m as a label in the statement that is proved using the NIZK proof system. However, for making this informal
description more intuitive, we consider here an encryption of both m and x.

6 In fact, a stronger notion called simulation-soundness is required, because the adversary gets to see
several fake proofs before generating her signature.
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signatures. This step, in turn, relied on the security of the encryption scheme and the
zero-knowledge property of the proofs. However, we cannot rely on these properties if
the adversary can also leak on the random coins of the encryption scheme and the proof
system! Consider, for example, an instantiation of the scheme with a CPA-secure en-
cryption scheme defined as Enc i (m||x) = (Enc;k (s), PRG(s) @ (m]|x)), where Enc’ is
a CPA-secure encryption scheme, and PRG is a pseudorandom generator that is applied
on a random seed s. Leaking the seed s, whose length may be arbitrarily shorter than A,
completely reveals the signing key x. A similar instantiation for the proof system can
be shown to have a similar effect when the leakage may depend on the randomness used
by the prover.’

Our Approach A natural observation is that the above problems can be avoided if the
“real” and “fake” signatures cannot be distinguished even given the random coins used
to generate them. Remember that fake signatures are statistically independent of the se-
cret key x, while real signatures allow us to extract some preimage using an appropriate
trapdoor (decryption key).

The first idea toward achieving the above is to replace the (unbounded simulation-
sound) NIZK proof system with a statistical non-interactive witness-indistinguishable
(SNIWI) argument system. On one hand we relax the (unbounded simulation-sound)
zero-knowledge property to witness indistinguishability, and on the other hand we re-
quire that proofs generated using different witnesses are statistically indistinguishable
from each other. In particular, this guarantees that even a correctly generated proof is sta-
tistically independent of the witness (in our case the signing key x) used to generate it.

The harder part lies in getting an encryption scheme where the ciphertexts are inde-
pendent of the message (in our case, the signing key x) that they encrypt. In particular,
this clearly contradicts the decryptability of a ciphertext. We could imagine using known
lossy encryption schemes, where the encryption key pk can be generated in one of two
indistinguishable modes: “injective” mode which allows for decryptability, and “lossy”
mode where ciphertexts statistically hide the message. But remember that we need to
satisfy the following two properties simultaneously: (1) the ability to answer the ad-
versary’s signing queries with fake signatures that reveal no information regarding x,
(2) the ability to extract a witness x” from the adversary’s forgery. By setting the pk
to be in either injective or lossy mode, we can achieve either property, but not at the
same time! The main tool used in resolving this conflict is to design a partitioned-lossy
encryption scheme, where the encryption of some messages is lossy while that of others
is injective.

A Selectively Unforgeable Signature Scheme For the reader’s intuition, we first show
how to achieve a weaker notion of signature security that we refer to as selective un-
forgeability under a chosen-message attack. For this notion, we assume the adversary
specifies the message m™* on which she plans to forge a signature in advance, before
receiving the verification key. The signing queries and leakage are still adaptive.

7 Note that even a leakage function with only one output bit can be easily used to distinguish an encryption
of m||x from an encryption of m||0", or to distinguish the prover of the proof system from the simulator of
the proof system. Thus, technically speaking, it seems that at no point in time during the various experiments
of the security proof it is possible to change the way signing queries are answered.
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To achieve this notion of security, we introduce the concept of an all-lossy-but-
one (ALBO) public-key encryption scheme. This is a tag-based public-key encryption
scheme, where the encryption procedure takes as input a tag ¢ in addition to the mes-
sage. The key-generation procedure takes as input a special tag t* and produces a key
pair (pk, sk) such that encrypting under the tag t* allows for efficient decryption with
sk, but encryption under any other tag ¢ # t* statistically hides the encrypted message.
We call t* the injective tag, and any other tag a lossy tag.® The only computational
requirement is that the public key hides the injective tag t* that was used for its genera-
tion.

We now modify the Katz—Vaikuntanathan signature scheme by using an ALBO en-
cryption scheme instead of a standard CPA-secure scheme. To sign m, we encrypt (only)
the signing key x under the tag t = m. We use a SNIWI argument system instead of a
simulation-sound NIZK to generate the proof. To argue security, we note that since the
adversary’s forgery message m™ is chosen ahead of time, we can generate the encryp-
tion key pk such that r* = m* is the only injective tag, without affecting the adversary’s
ability to forge—this change is indistinguishable even given full view of the signing key
x and randomness of signing. Now we are in a situation where all the signing queries for
m # m* yield signatures which are statistically independent of the signing key x, while
the forgery can be used to extract some preimage x’. Therefore, we can argue as before:
the bounded leakage on the secret key x and randomness of signing is short enough
that x must have entropy left given this leakage, and therefore the outcome x’ = x is
unlikely.

The Full Scheme So far we described our approach as leading to the rather weak notion
of selective unforgeability under a chosen-message attack. Our actual scheme is fully
leakage-resilient according to the stronger notion that was discussed in the beginning of
this section (i.e., where the adversary is allowed to adaptively choose m™ after seing vk
and responses to all signing and leakage queries).

We note that, in the random-oracle model, there is a simple generic transformation
from selective security to full security by signing the output of the random oracle applied
to the message. Alternatively, in the standard model, there is a simple transformation
with exponential security loss by simply “guessing” the forgery: this can yield fully
secure schemes under some exponential hardness assumptions by using complexity-
leveraging. Lastly, there is a completely generic transformation due to [14] (abstracting
a non-generic approach of [38]) by hashing the message with a chameleon hash func-
tion [49] and signing each prefix of the hash separately. Unfortunately, this results in
long signatures. All of these generic techniques also work in the setting of full-leakage
resilience. We present an alternative that does not suffer from the above disadvantages.

For our actual scheme, we follow the approach of Boneh and Boyen [9] for transform-
ing selectively secure identity-based encryption schemes into fully secure ones using an
admissible hash function (see Sect. 2.6). This relies on a slightly more refined “parti-
tioning strategy” than the “all-but-one” strategy used for the selectively secure scheme.
In particular, we introduce the notion of a ‘R-lossy public-key encryption scheme. This

8 We note that our notion is the opposite of the notion of an all-but-one lossy trapdoor function [58], where
there is one lossy tag and all the other tags are injective.
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is a generalization of an ALBO encryption scheme where the set of possible tags is par-
titioned into injective tags and lossy tags according to a relation R (in particular, there
may be more than one injective tag). The main idea of this approach is to ensure that,
with a non-negligible probability, all of the adversary’s signing queries will fall into the
“lossy” partition, while the forgery falls into the “injective” partition.

Comparison to [52] An alternate way to view our combination of a SNIWI paired
with a partitioned lossy encryption is as a tag-based proof system that is partitioned to be
extractable for some tags and statistically witness indistinguishable for others. Our main
result shows how to build fully leakage-resilient signatures from such a proof system.
The work of [52] can be seen as an alternate instantiation of this strategy which relies on
Groth—Sahai NIZKs [34]. These NIZKs are either statistically witness indistinguishable
or extractable depending on the choice of the CRS. In the construction of [52], the actual
CRS for each use of the Groth—Sahai NIZK is derived from the tag in a clever way (using
the Waters hash [64]) so as to give an alternate method for partitioning lossy/extractable
tags.

1.4. Paper Organization

In Sect. 2 we introduce some preliminaries and notation. Section 3 contains a discus-
sion of the models of leakage resilience considered in this paper. In Sect. 4 we define
and construct R-lossy public-key encryption schemes, a tool used in our constructions.
Section 5 contains the construction and security proof of our signature scheme in the
bounded-leakage model. In Sect. 6 we present a specific instantiation of our scheme
based on the decisional linear assumption. In Sect. 7 we extend our scheme to the
continual-leakage model. Finally, in Sect. 8 we discuss several concluding remarks and
open problems.

2. Preliminaries

In this section we present some basic notions, definitions, and tools that are used in our
constructions.

2.1. Statistical Distance, Min-Entropy, and Average Min-Entropy

The statistical distance between two random variables X and Y over a finite domain £2
is defined as SD(X,Y) = % Zweg |Pr[X = w] — Pr[Y = w]|. We say that two variables
are e-close, and write X =%, Y, if their statistical distance is at most €. The min-entropy
of a random variable X is Hoo (X) = — log(max, Pr[X = x]). Dodis et al. [21] formal-
ized the notion of average min-entropy that captures the remaining unpredictability of
arandom variable X conditioned on the value of a random variable Y, which is defined
as follows:

Ao (X]Y) = — log(Eyy[2 HeXIY=0]).

The following bound on average min-entropy was proved in [21]:
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Lemma 2.1 ([21]). For any random variables X, Y and Z, if Y has at most 2* possible
values then

Heo(X]Y, Z) = Hoo(X|Z) — 1.

2.2. The DDH, SXDH, and d-Linear Assumptions

Let GroupGen be a probabilistic polynomial-time algorithm that takes as input a secu-
rity parameter 1", and outputs a triplet (G, p, g) where G is a group of order p that is
generated by g € G, and p is an n-bit prime number. In addition, let BilinearGroupGen
be a probabilistic polynomial-time algorithm that takes a security parameter 1" as in-
put and outputs a 5-tuple (G, Gr, p, g, ¢), where G and Gt are groups of order p, the
group G is generated by g, and ¢ : G x G — G is a bilinear map.

The Decisional Diffie—Hellman Assumption The decisional Diffie-Hellman (DDH)
assumption is that the ensembles {(G, g1, g2, g1, &5)}uen and {(G, g1, g2, g? , ggz)}neN
are computationally indistinguishable, where (G, p, g) < GroupGen(1"), and the ele-
ments g, g2 € G and r, ry, 2 € Z), are chosen independently and uniformly at random.

The d-Linear Assumption Boneh, Boyen, and Shacham [10] introduced the decisional
linear assumption, intended to take the place of DDH in groups where DDH is easy
(specifically, in bilinear groups). They showed that the hardness of DDH implies the
hardness of the decisional linear assumption, but at least in generic groups (see, for ex-
ample, [41,62]), the decisional linear assumption remains hard even if DDH is easy. The
DDH and the decisional linear assumptions naturally generalize to the family of (deci-
sional) d-linear assumptions [45,61], where for every d > 1 the d-linear assumption is
that the ensembles

d
r rd Z;= ri
{(Gogrv. 8a.8a+1.8)" . 84 85T ) nen
r rq Fd+1
{(G g1, 8a, 8av1. 81 - 8 8551 Y eny:
are computationally indistinguishable, where (G, p, g) < GroupGen(1"), and the ele-
ments g1, ...,84+1 € Gandry,...,rqgy1 € Z), are chosen independently and uniformly
at random.

Note that DDH is the 1-linear assumption, and that decisional linear assumption is
the 2-linear assumption. These assumptions are progressively weaker: the hardness of
d-linear implies the hardness of (d 4 1)-linear, but in generic groups (d + 1)-linear
remains hard even if d-linear is easy.

The SXDH Assumption Some parts of our construction will rely on bilinear groups
containing a pairing ¢ : G| x Gy — Gg3. In this case, the DDH (1-linear) assump-
tion can only hold for some asymmetric pairings where the groups G, G, are different
from each other and there is no efficient homomorphism between them. In other words,
when dealing with bilinear group, the DDH assumption is a strong assumption which
may only hold in restricted settings. We therefore use the pairing-terminology, calling it
SXDH (symmetric external DDH) to distinguish from the non-pairing setting (we refer
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the reader to [4], for example, for more details). On the other hand, the weaker d-linear
assumptions for d > 2 are believed to hold for most cryptographically used bilinear
groups. Therefore, when using bilinear groups, it is preferable to build schemes under
the decisional linear assumption, or higher values of d > 2.

2.3. Second-Preimage Resistance

A family of efficiently computable functions is a pair of polynomial-time algorithms
(KeyGen, F), where KeyGen is a probabilistic algorithm that on input 1” outputs a
description s € {0, 1}* of a function F(s,-) : {0, 1}*™ — {0, 1}*™_ Such a family is
second-preimage resistant (SPR) if given a randomly chosen input x € {0, 1}*" and a
description of a randomly chosen function s <— KeyGen(1"), it is computationally in-
feasible to find an input x” € {0, 1}#0" such that x’ # x and F(s, x) = F(s, x’). This is
a weakening of the notion of a family of universal one-way hash functions introduced
by Naor and Yung [56], in which the input x is allowed to be chosen in an adversarial
manner (but still independent of the function description s).

Definition 2.2 (Second-Preimage Resistance). A family F = (KeyGen,F) of ef-
ficiently computable functions is second-preimage resistant if for any probabilistic
polynomial-time algorithm A is holds that
N , s < KeyGen(1"), x < {0, 1}4™
Pr|:Fs(x)_Fs(x)/\x #X ¥ < A(s. x) <v(n),

for some negligible function v(n), where the probability is taken over the choice of
x < {0, 1}*™ and over the internal randomness of KeyGen and A.

In addition, we say that 7 = (KeyGen, F) is a family of public-coin second-preimage
resistant functions, if it satisfies Definition 2.2 even when the algorithm A takes as input
also the internal randomness that was used by KeyGen(1”) for sampling the function.
We refer the reader to [39] for more details of public-coin hash functions.

For any integer functions p(n) and « (n) that are polynomially related, the existence
of universal one-way hash functions (and therefore also of second-preimage resistant
functions) with domain {0, 1}*® and range {0, 1} is known to be equivalent to that
of one-way functions [60]. As noted by Katz and Vaikuntanathan [43], standard con-
structions of universal one-way hash functions are public coin. In practice, such public-
coin functions can be constructed rather easily from various number-theoretic assump-
tions. For example, if the discrete log problem is hard in some group G of prime order p,
is second-preimage resistant (and even collision resistant), where g1, ..., gr € G are
chosen uniformly and independently at random by the key-generation algorithm.

We note that for public-coin SPR functions, there is actually no need for an ex-
plicit key-generation algorithm. Without loss of generality one can define a single func-
tion F).(x) = (r, Fy(x)), where s = KeyGen(1"; r), and this is also SPR with the same
amount of “lossiness” as the family F.
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2.4. Statistical Non-Interactive Witness-Indistinguishable Argument Systems

A non-interactive argument system for a language L with witness relation Ry, is a triplet
of algorithms (CRSGen, P, V), where CRSGen is an algorithm generating a common
reference string crs, and P and V are the prover and verifier algorithms, respectively.
The prover takes as input a triplet (crs, x, w), where (x, w) € Ry, and outputs a proof
7. The verifier takes as input a triplet (crs, x, w) and either accepts or rejects. In this
paper we consider a setting where all three algorithms run in probabilistic polynomial
time. The two requirements of an argument system are completeness and soundness
with respect to efficient cheating provers. Informally, for every (x, w) € Ry the prover
generates proofs that are always accepted by the verifier, and for every x ¢ L any effi-
cient cheating prover has only a negligible probability of convincing the verifier to ac-
cept. An argument system is called statistical witness indistinguishable if for any x € L
and any two witnesses wg # wj such that (x, wy), (x, wi) € Rr, the proofs generated
by P(crs, x, wg) and P(crs, x, wy) are statistically indistinguishable given the common
reference string.

Definition 2.3 (SNIWI Argument System). A statistical non-interactive witness-
indistinguishable argument system for a language L with witness relation Ry is a triplet
of probabilistic polynomial-time algorithms (CRSGen, P, V) such that the following
properties hold:

1. Perfect completeness: For every (x, w) € Ry we have
Pr[V(crs, x, P(crs, x, w)) = 1] =1,

where crs <— CRSGen(1"), and the probability is taken over the internal random-
ness of CRSGen, P, and V.
2. Adaptive soundness: For every probabilistic polynomial-time prover P* we have

Pr[V(ers, x,m) =1 Ax & L | crs <= CRSGen(1"), (x, ) < P*(1", crs)| < v(n),

for some negligible function v (n).
3. Statistical witness indistinguishability: There exists a probabilistic polynomial-
time algorithm CRSGeny; such that:

e The distributions {CRSGen(1")} and {CRSGeny (1)} are computationally
indistinguishable.

e For any triplet (x, wg, wy) such that (x, wp) € Ry and (x, wi) € Ry, the dis-
tributions {crs, P(crs, x, wo)} and {crs, P(crs, x, w1)} are statistically indis-
tinguishable, when crs <— CRSGeny(1").

For our construction we are interested in SNIWI argument systems for NP. Such an
argument system is implied by the construction of Groth, Ostrovsky and Sahai [33]
that satisfies the stronger notion of a perfect non-interactive zero-knowledge argument
system. Their construction can be based on the hardness of either the decisional sub-
group problem [12] or the decisional linear problem [10]. As pointed out by Groth et al.
we note that in their linear-based construction the algorithm CRSGen admits oblivious
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sampling (specifically, the distribution of the common reference string is statistically
close to the uniform distribution), which is a technical property that is required for our
construction in the bounded-leakage model.

2.5. Lossy Public-Key Encryption

A lossy public-key encryption scheme is a public-key encryption scheme in which pub-
lic keys can be generated in two modes that are computationally indistinguishable: an
injective mode in which ciphertexts can be decrypted using a corresponding secret key,
and a lossy mode in which ciphertexts statistically hide the encrypted messages. Lossy
public-key encryption was recently found useful for various applications (see, for ex-
ample, [7,48,57]), and its existence was shown to be equivalent to 2-move statistical
semi-honest oblivious transfer via rather simple and efficient black-box reductions [36].
In particular, this implies that it can be realized based also on any other primitive that is
known to imply such oblivious transfer protocols, including in particular homomorphic
encryption, 2-move private information retrieval, and lossy trapdoor functions. Thus,
lossy public-key encryption schemes can be constructed based on the hardness of var-
ious number-theoretic problems, such as Decisional Diffie—Hellman (and, more gen-
erally, decisional d-linear), quadratic residuosity, composite residuosity, learning with
errors, and more.

Definition 2.4 (Lossy PKE). A lossy public-key encryption scheme is a 4-tuple of
probabilistic polynomial-time algorithms (KeyGen,, KeyGen|, Enc, Dec) such that:

1. Lossy key generation: KeyGeny(1") outputs a public key pk.

2. Injective key generation: KeyGen;(1™) outputs a secret key sk and a public key
pk.

3. Lossiness under lossy keys: For every public key pk produced by KeyGeng(1"),
and for every two messages mg, mp € {0, l}l("), the statistical distance between
the distributions Enc (mo) and Encpy (m1) is negligible in n.

4. Decryption under injective keys: For every message m € {0, 1}*™ we have

Pr[Decg (Encp(m)) =m] > 1 —v(n),

for some negligible function v(n), where (sk, pk) <— KeyGen;(1"), and the prob-
ability is taken over the internal randomness of KeyGen;, Enc and Dec.

5. Indistinguishability of injective and lossy public keys: The two ensembles {pk :
pk < KeyGeny(1")},en and {pk : (sk, pk) <— KeyGen;(1")},en are computa-
tionally indistinguishable.

For our application we need to be able to obliviously sample public descriptions that
are computationally indistinguishable from those produced by KeyGen, and KeyGen;.
Specifically, we require that the public descriptions that are produced by KeyGeny
and KeyGen; are computationally indistinguishable from the uniform distribution. This
holds, for example, in the construction of Peikert et al. [57] (based on the DDH
assumption—see also [7]), and in the constructions resulting from the lossy trapdoor
functions of Peikert and Waters [58] (based on the DDH and LWE assumptions) and of
Freeman et al. [27] (based on the d-linear assumption).
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2.6. Admissible Hash Functions

The concept of an admissible hash function was first defined by Boneh and Boyen [9] to
convert a natural selectively secure identity-based encryption scheme into a fully secure
one. In this paper we use such hash functions in a similar manner to convert a selectively
secure signature scheme (where the adversary declares the message to be forged ahead
of time, before receiving the verification key) into a fully secure one. The main idea
of an admissible hash function is that it allows the reduction in the proof of security
to secretly partition the message space into two subsets, which we will label as red (R)
and blue (B), such that there is a noticeable probability that all of the messages in the
adversary’s signing queries will be in the blue set, but the forgery will be on a message
in the red set. This is useful if the simulator can efficiently answer signing queries in
the blue set, yet break some hard problem given a valid forgery on a message from the
red set. Our exposition and definition of admissible hash function follow that of Cash,
Hofheinz, Kiltz, and Peikert [16].

For K € {0,1, L}*™  we define the function Fx : {0, 1}*"™ — {R, B} which “col-
ors” the space {0, 1}7?" of tags in the following way:

{R ifVie(l,....,t)} : Ki=vyjor K; = L
Fr(y):= .
B otherwise.

For any u = u(n) < tv(n), we let K, , denote the uniform distribution over
{0, 1, L}*™ conditioned on exactly u positions having L values. (Note that if K is
chosen from C, ,, then the map Fg (-) colors exactly 2* values red.) We would like to
pick a distribution /C,, ,, for choosing K so that there is a noticeable probability for any
set of tags yo, ..., yq of yo being colored “red” and all other tags being colored “blue”.
Unfortunately, this cannot happen if we allow all tags. Instead, we will need to rely on
a special hash function the maps messages x to tags y.

Let H = {H, }neN be a hash-function ensemble, where each H € 'H,, is a polynomial-
time computable function H : {0, 1}* — {0,1}7™_ For each H € H,, we define
the function Fx g : {0, 1}* — {R, B}, which “colors” the space {0, 1}* according to
Fg n(x) = Fx(H(x)).

Definition 2.5 (Admissible Hash Function [9,16]). We say that H is an admissible
hash-function ensemble if for every H € H there exists a set bady of string-tuples such
that the following two properties hold:

e For every probabilistic polynomial-time algorithm .4 there exists a negligible func-
tion v(n) satisfying

Pr[(xo, .o xg) €bady | H < H,, (xo, ..., Xq) <—A(1”, H)] <v(n).

e For every polynomial g = g(n) there is a polynomial p = p(n) and an efficiently
computable u = u(n) such that, for every H € H, and (xo, ..., xs) ¢ bady with
x0 & {x1,..., x4}, we have

Pr |F =RAF =--.=F =B|> .
K(_K”[ k. H (X0) K. H(X1) k.1(xg) =B] > o)
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We note that for the application to identity-based encryption [9,16] the bad sets bad
are required to be efficiently recognizable, but this is not required for our application. In
addition, we say that H is a public-coin admissible hash-function ensemble, if it satisfies
Definition 2.5 even when the algorithm A takes as input also the internal randomness
that was used by KeyGen(1") for sampling the function.

The work of Boneh and Boyen [9] shows how to construct admissible hash functions
from collision-resistant hash functions. Moreover, if the underlying collision-resistant
hash functions are public coin, then so are the resulting admissible hash functions. As
already mentioned in Sect. 2.3, public-coin collision-resistant hash functions can be
constructed rather easily from various number-theoretic assumptions.

3. Modeling Leakage-Resilient Signature Schemes

A signature scheme is a triplet (KeyGen, Sign, Verify) of probabilistic polynomial-time
algorithms with syntax:

e (vk, sk) <— KeyGen(1") outputs a verification key and signing key.
e o < Sign,; (m) signs a message m using the singing key sk.
o Verify,, (m, o) € {0, 1} outputs a bit deciding whether o is a valid signature for m.

We require perfect correctness, which states that for any valid key pair (vk, sk) output
by KeyGen and any message m € {0, 1}* we have Verify,, (m, Signg,(m)) = 1.

We now define fully leakage-resilient signature security in the two different mod-
els: the bounded-leakage model (see Sect. 3.1) and the continual-leakage model (see
Sect. 3.2).

3.1. The Bounded-Leakage Model

A signature scheme is fully leakage-resilient (FLR) in the bounded-leakage model if it
is existentially unforgeable against an adversary that can obtain both signatures on any
message of her choice, and bounded leakage information on all intermediate values used
by the key-generation algorithm and the signer throughout the lifetime of the system. To
model this, we define a variable state which includes all secret state used by the system
so far. Initially, we set state to be the random coins of the KeyGen algorithm (note that
we do not need to explicitly add sk to the state, since it can be easily computed from
it by any leakage function). On each signing query made by the adversary, we append
the random coins of the signing algorithm to the state. The adversary can leak arbitrary
information regarding state as long as the amount is overall-bounded.

Definition 3.1 (FLR Security—Bounded Leakage). A signature scheme /T = (KeyGen,
Sign, Verify) is A-fully leakage-resilient in the bounded-leakage model if for any prob-

abilistic polynomial-time adversary .A we see that Pr[Success)I‘.;ikR (n)] is negligible in

n, where the event Success’}; ;7 (n) is defined via the following experiment:

1. Sample r < {0, 1}*, compute (vk, sk) = KeyGen(1"; r), and set state = {r}.
2. The adversary A receives as input the pair (17, vk), and can adaptively query a
signing oracle and a leakage oracle that are defined as follows:
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e Signing queries. The signing oracle receives as input a message m;, samples
ri < {0, 1}*, and then computes o; < Sign,, (m;; r;). It updates state :=
state U {r;} and outputs o;.

e Leakage queries. The leakage oracle receives as input a description of an ef-
ficiently computable function f; : {0, 1}* — {0, 1}*7, and outputs f i (state).
We call A the output length of the jth leakage function.

3. The adversary A outputs a pair (m*, o*).

4. Successy; ;7 (n) denotes the event in which:

o Verify, (m*,0*) = 1.
e m™ was not queried to the signing oracle.
e The sum of output lengths of all leakage functions is at most A (7).

3.2. The Continual-Leakage Model

In the continual-leakage model, a signature scheme also includes an additional “key-
refresh algorithm” sk’ <— Refresh ,x (sk), which the signer can use at any point in time
to refresh his signing key. Each new signing key sk’ produced by the key-refresh al-
gorithm is functionally equivalent to the original key. We imagine a setting where the
signer periodically updates her signing key, while the adversary is continuously leaking
information regarding the state of the system. We model this with as an attack which
consists of arbitrarily many leakage epochs, during each of which the adversary can
learn an additional A bits of information regarding the current state of the system. In the
beginning of the first epoch, the set state consists of just the signing key sk produced by
key-generation algorithm. During each epoch, the adversary can adaptively issue sign-
ing queries, where the randomness of signing algorithm is appended to the set state, and
leakage queries for up to X bits of information about the state. At any point in time the
adversary can move to the next epoch by issuing a key-refresh query, which results in
the set state being reset’ to sk < Refresh pk(sk). Notice that, since there is no bound
on the number of epochs, there is also no bound on the overall amount of leakage the
adversary can learn during the attack game.

Definition 3.2 (CFLR Security—Continual Leakage). A signature scheme IT =
(KeyGen, Refresh, Sign, Verify) is A-fully leakage-resilient in the continual-leakage
model (CFLR) if for any probabilistic polynomial-time adversary A we find that
Pr[Success}; %R (n)] is negligible in n, where the event 3uccesngjLR(n) is defined

via the following experiment:

1. Sample (vk, sk) < KeyGen(1"), and set state := {sk} and L = 0.
2. The adversary A receives as input the pair (1", vk), and can adaptively issue the
following types of queries:

e Signing queries. The signing oracle receives as input a message m;, samples
ri < {0, 1}*, and then computes o; < Signg; (m;; r;). It updates state :=
state U {r;} and outputs o;.

9 The necessary requirement that the state is reset models the ability of the honest parties to erase/overwrite
their prior signing key and the randomness used in prior executions during a key refresh.
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e Leakage queries. The leakage oracle receives as input a description of an
efficiently computable function f; : {0,1}* — {0, W I L+ Aj < A(n)
then it outputs f;(state), and updates L := L + A ;. Otherwise it outputs L.

e Key-refresh queries. On a key-refresh query, the challenger samples random-
ness r and the signing key is refreshed by sampling sk’ <— Refresh i (sk; r)
and setting sk := sk’. In addition, we reset state := {sk} and L :=0.

3. The adversary A outputs a pair (m*, o*).
A-FLR

4. Successy; 1" (n) denotes the event in which:
o Verify,, (m*,0*) = 1.
e m™ was never queried to the signing oracle.

We also define a stronger variant of the definition that provides leakage-of-refreshing
security, by modifying the challenger so that, during a key-refresh query, it sets state :=
sk||r to include the new secret key sk and the randomness r used during the refreshing.

Note that our definition for the continual-leakage model does not consider leakage
of the randomness used by the key-generation algorithm.!® As shown in [15] and [18],
any scheme that satisfies the basic definition (without leakage on key-generation or re-
freshing) with some super-logarithmic A(n), is also generically secure if an additional
O (log(n)) bits are leaked about the randomness of key-generation and each of the key-
refresh executions. However, it seems that protecting against leakage during key gener-
ations (and to a lesser degree, during refreshing) is less crucial then protecting against
leakage during the signing operations, since the former may be conducted “off-line” in
a controlled environment, while the latter occur during the normal everyday execution
of the scheme.

4. R-Lossy Public-Key Encryption

In this section we introduce the notion of an R-lossy public-key encryption scheme.
Informally, such a scheme is a tag-based public-key encryption scheme where the set
of possible tags is partitioned into two subsets: injective tags, and lossy tags. When a
message is encrypted under an injective tag, the resulting ciphertext can be correctly
decrypted using the secret key. On the other hand, when encrypted under a lossy tag,
the ciphertext statistically hides the message. The partitioning of the tags in defined
by a binary relation R € K x 7: the key-generation algorithm receives as input an
initialization value K € K and this partitions the set tags 7 so that r € 7 is injective if
and only if (K, t) € R. More, formally, we require that the relation R C I x 7 consists
of a sequence of efficiently (in n) recognizable sub-relations R, € K, x 7.

The only computational requirement of an R-lossy public-key encryption scheme
is that the public key of the encryption scheme hides the initialization value K. That
is, public keys produced by different initialization values are computationally indistin-
guishable.

10 This is in contrast to our bounded-leakage definition, which does consider such leakage.
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Definition 4.1 (R-Lossy PKE). Let R € KL x 7 be an efficiently computable bi-
nary relation. An R-lossy public-key encryption scheme is a triplet of probabilistic
polynomial-time algorithms (KeyGen, Enc, Dec) such that:

1. Key generation: For any initialization value K € X, the algorithm KeyGen(1", K)
outputs a secret key sk and a public key pk.

2. Decryption under injective tags: For any initialization value K € K,, and tag t €
7, such that (K, 1) € R, and for any message m € {0, I}K(”), we have

Pr[Deczk(Enc;k(m)) =m]>1—v(n),

for some negligible function v(n), where (sk, pk) <— KeyGen(1”, K), and the
probability is taken over the internal randomness of KeyGen, Enc and Dec.

3. Lossiness under lossy tags: For any initialization value K € K, and tag ¢ € 7, such
that (K,t) ¢ R,, for every pair (sk, pk) of keys produced by KeyGen(1", K),
and for every two messages mg, m1 € {0, 1}¢®™ | the distributions Enc;k (mg) and
Enc; «(m1) are statistically indistinguishable.

4. Indistinguishability of initialization values: For every sequence {(K,, K})}neN
such that K, K,, € K, the two ensembles {pk : (sk, pk) < KeyGen(1", K,)}neN
and {pk : (sk, pk) < KeyGen(1", K, )},en are computationally indistinguish-
able.

As with the other primitives that are used in our construction, we need to be able
to obliviously sample public keys in a way that is computationally indistinguishable
from those produced by KeyGen(1”,-). Specifically, we require that there exists a
sequence of initialization values {K,},en such that the ensemble {pk : (sk, pk) <
KeyGen(1”, K;,)},en is computationally indistinguishable from the uniform distribu-
tion over {0, 1}*. Note that by the indistinguishability of initialization values property
defined above, this in fact holds for every sequence {K} },¢N.

For our constructions of fully leakage-resilient signature schemes we consider two
relations: the equality relation RE?, and the more general “bit-matching” relation REM
that is defined below.

The Relation REQ  The relation RE? is the equality relation for binary tags of length
t(n) bits. Thatis, K, = 7, = {0, 1}*™, and (K, 1) € REQif and only if K = ¢. An RE®-
lossy encryption is just an all-but-one-lossy (ALBO) public-key encryption scheme, a
primitive discussed in the introduction. In this case there is one injective tag, corre-
sponding to the value of K used during initialization, and all the other tags are lossy.

The Relation RBY The bit-matching relation RBM is a generalization of equality,
which allows for more complex partitions. For IC, = {0, 1, 1y 7 =10, 1}°™ de-
fine (K,1) € RBM C K, x 7, if and only if for every i € {1,...,7(n)} we have K; =1
or K; = 1. Thatis, given some fixed initialization value K, the set of injective tags ¢ are
exactly those whose bits match K in all positions i for which K; # L. Notice that, if K
does not contain any _L symbols, then there is a single injective tag t = K and all other
tags are lossy. Therefore RBM-lossy encryption is a strict generalization of RFQ-lossy
encryption.
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In our signature scheme construction, the RBM-lossy encryption will be used in com-
bination with an admissible hash function (discussed in Sect. 2.6). The admissible hash
function gives us a way to map messages to encryption tags such that, with high proba-
bility over an appropriate distribution of K, all signing queries map to lossy tags while
the forgery maps to an injective tag.

Constructions We propose two constructions of REM-lossy public-key encryption
schemes.!! Our first construction is rather generic and is based on any lossy public-
key encryption scheme (recall Sect. 2.5). In turn, this implies RBM-lossy public-key
encryption schemes can be based on a variety of number-theoretic assumptions. Our
second construction is based on a specific number-theoretic assumption (the DDH as-
sumption)'? and is significantly more efficient than our generic construction.

4.1. A Generic Construction of RBM-Lossy PKE from Lossy PKE

Let IT = (KeyGen,, KeyGen;, Enc, Dec) be any lossy public-key encryption scheme.
The key-generation algorithm of our RBM-lossy public-key encryption scheme samples
7(n) pairs of public keys of the scheme I7. Each such pair is of one out of three possible
types according to the symbols of the initialization value K € {0, 1, L}7® . For every
iefl,...,t(m)}, if K; =0 then the ith pair consists of a lossy key and an injective
key, if K; = 1 then the ith pair consists of an injective and a lossy key (i.e., the order
is reversed), and if K; = L then ith pair consists of two injective keys.'> A message is
encrypted under a tag ¢ € {0, 1}*™ by using a 7 (n)-out-of-7 (1) (information-theoretic)
secret-sharing scheme to share the message, and then encrypting the ith share using
one of the keys from the ith pair of keys according to the ith bit of . More formally,
consider the following encryption scheme I7' = (KeyGen’, Enc’, Dec'):

e Key generation: On input 1" and an initialization value K = Ki---K¢(n) €
0,1, L}*™ for every 1 <i < t(n) the algorithm KeyGen’ produces a pair
((ski 0, pki0), (ski 1, pki 1)) as follows:

— If K; =0 then it samples (sk; o, pki.o) < KeyGen|(1"), pk; 1 < KeyGeny(1"),
and sets sk; 1 = L.

— If K; =1 then it samples pk;o < KeyGeny(1"), and (ski 1, pki1) <«
KeyGen; (1"), and sets sk; o = L.

— If K; = L then it samples (sk; o, pkio) < KeyGen(1") and (sk; 1, pki1) <
KeyGen, (1").

It then outputs the pair (sk, pk) defined as

sk = (K, {(Ski,()a Ski,l)};inl))’

pk = ({(pki,o. I’ki,l)}:inl))-

1 We note that rather strai ghtforward variants of these constructions yield REQ—lossy public-key encryp-
tion schemes.

12 Our construction easily generalizes to rely on the d-linear assumption for any d > 1.

13 Observe that if the underlying lossy encryption scheme allows oblivious sampling of public keys, then
so does our construction.
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e Encryption: On input a public key pk of the above form, atag t =11 - -t;(n) €
{0, 1}*™ and a message m € {0, 134 the algorithm Enc’ uses a 7 (n)-out-of-7 (1)
(information-theoretic) secret-sharing scheme to compute shares (1, ..., n¢@))
of m, and outputs a ciphertext ¢ defined as

c= (Encl’kl,tl (myp),..., Enc[’kr(n),t,(n) (mf(n))).

e Decryption: On input a secret key sk of the above form, a tag t =11 ---t;(y) €
{0, 1}’(") and a ciphertext ¢ = (cy, ..., cz(n)), the algorithm Dec’ proceeds as fol-
lows. If (K, 1) ¢ RBM (i.e., 1 is a lossy tag) then it outputs L. Otherwise (i.e., ¢ is
an injective tag), for every 1 <i < t(n) it computes m; = Decyy; . (¢i), and uses
the reconstruction procedure of the secret sharing scheme to output the message m
corresponding to the shares (my, ..., m@)).

Theorem 4.2. If IT = (KeyGen(, KeyGen, Enc, Dec) is a lossy public-key encryp-
tion scheme, then IT' = (KeyGen', Enc’, Dec’) is an R®M-lossy public-key encryption
scheme.

Proof. Indistinguishability of initialization values follows directly from the indistin-
guishability of lossy and injective public keys of the underlying lossy encryption scheme
via a straightforward hybrid argument. The correctness of the decryption algorithm un-
der injective tags follows from the fact that when encrypting a message under an injec-
tive tag ¢ (i.e., for every i € {1, ..., t(n)} we have K; = L or K; =t;), each share of
the message is encrypted under an injective public key of the underlying lossy encryp-
tion scheme. Lossiness of encryption under lossy tags follows from the fact that when
encrypting a message under any lossy tag ¢ (i.e., there exists some i € {1,...,7(n)}
for which K; # 1 and K; # t;), at least one of the shares is encrypted using a lossy
public key. This guarantees that the ciphertext corresponding to this share is statistically
indistinguishable from an encryption of any other share under the same lossy public
key. Thus, the t(n)-out-of-t(n) (information-theoretic) secret-sharing scheme implies
that encryptions of any two messages under any lossy tag are statistically indistinguish-
able. |

4.2. A More Efficient Construction of RPM-Lossy PKE Based on DDH

We now present a specific DDH-based scheme with better efficiency than the generic
construction from Sect. 4.1. In this scheme, the public key still consists of t(n) pairs,
where 7(n) is the length of the tags, but each ciphertext consists of only two group
elements. This scheme satisfies the requirements of Definition 4.1 with overwhelm-
ing probability over the internal randomness of the key-generation algorithm (oblivious
sampling of public keys is always guaranteed), which will be sufficient for the secu-
rity of our constructions in this paper. We refer to a scheme that satisfies this slightly
weaker guarantee as an almost-always R-lossy public-key encryption scheme. Consider
the following encryption scheme ITppy = (KeyGenppy, EncppH, Decpph):

e Key generation: On input 1" and an initialization value K = Kj---K¢(n) €
{0,1, 1}7™ | the algorithm KeyGenppy samples (G, p, g) < GroupGen(1"), to-
gether with a uniformly distributed element & <— G. Then, for every 1 <i < t(n)
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it samples ;. 0, Bi,0. @i,1, Bi,1 < Zp uniformly and independently at random, and
continues as follows:

— If K; =0 then it sets ;0 = Bi.0-

— If K; =1 thenitsets a; 1 = Bi 1.

— If K; = 1L thenitsets a; 0 = B0 and o1 = Bi 1.

Finally, for every 1 <i < t(n) and b € {0, 1} it sets (u; p, v;,p) = (g%, hPiv), and
outputs the pair (sk, pk) defined as

sk = (K. {(@i0. Bi,0): (i1, B} I),

pk = (g.h, {(ui0,vi0), (i1, Ui,l)};inl))-

e Encryption: On input a public key pk of the above form, a tag t =11 -+ -t;(n) €
{0, 1}’(”) and a message m € G, the algorithm Encppy chooses r,r’ € Zp uni-
formly and independently at random, computes

T(n) T(n) ) )
Ur = l_[ Uit UV = l—[ Vit;» cl = g’hr , = (Mt)r(vt)r -m,
i=1 i=1

and outputs the ciphertext (c1, ¢2).

e Decryption: On input a secret key sk of the above form, a tag t =11 -t;(y) €
{0, 1}’(") and a ciphertext ¢ = (cy, ¢2), the algorithm Decppy proceeds as follows.
If (K,t) ¢ RBM (ie., ¢ is a lossy tag) then it outputs L. Otherwise (i.e., ¢ is an
injective tag), it outputs the message m defined as

Ziinl) i )71

m:cz-(c]

Theorem 4.3. Assuming the hardness of the DDH problem, then I1Tppn = (KeyGenppy,
EncppH, Decppr) is an almost-always RBM-lossy public-key encryption scheme for tags
of length t(n) <logp — w(logn).

Proof. Indistinguishability of initialization values follows directly from the hardness
of the DDH problem and a standard hybrid argument. In addition, (perfect) correctness
of the decryption algorithm under injective tags follows from the fact that for any injec-
tive tag t =11 ---ty(y) (ie., foreveryi € {l,...,t(n)} we have K; =1 or K; =1t;) we
have «; ; = Bi, forevery i € {1,..., t(n)}. Therefore, for any ciphertext (c1, c2) that
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is produced by encrypting a message m under an injective tag ¢ we have

7(n) ) -
C2.(CIZ:1 10(1!,) = (u) (v)" I’}’l(( rpr )Z, 1 ’fz) 1

T(n) r/t(n) r’ ()
(e () v

T(n) T(n -

(l_[ ga,,l> <U 5, ,[) ~((grh’ )Z, 1%, Il) 1
T(n) T(n ) .
(Hga”) (U ) m- (g7 )~
=

7(n)

_ grhr’)z,-;"l L ((grhr )Z, [ iy )

Finally, we prove that lossiness under lossy tags holds with probability at least
1 — 27 /p over the internal randomness of the key-generation algorithm. Fix an
initialization value K € {0, 1, L}*™, and a lossy tag ¢ € {0, 1}*™ (i.e., there ex-
ists some i € {1,...,7(n)} for which K; # 1 and K; # t;). Then, there exists some
iell,...,t(n)} for which the values «;;, and B;; are uniformly and independently
chosen, and therefore the values u; and v, as defined by the encryption algorithm are
independently and uniformly distributed in G. Thus, with probability 1 — 1/p, we see
that (g, h, u;, v¢) is not a DDH tuple (i.e., logg (us) # logy, (vy)). In this case, the ele-

ments g"h" "and (u)" (v)" " are also independently and uniformly distributed in G over
the choice of r and r’ (see, for example, [57, Lemma 4]). This implies that a ciphertext
(c1, ¢2) encrypted under a lossy tag ¢ carries no information on the message. This holds
for any specific lossy tag ¢, and therefore a union bound guarantees that this holds for
all lossy tags with probability at least 1 — 27" /p. ]

5. A Signature Scheme in the Bounded-Leakage Model

In this section we present a fully leakage-resilient signature scheme in the bounded-
leakage model (see Definition 3.1). We use the following primitives in a generic manner:

e Let F = (KeyGengpg, F) be a family of public-coin second-preimage resistant
functions Fy(+) : {0, 1}*( — {0, 1}¥™ for some « (n) < u(n) (see Sect. 2.3).

e Let H be a public-coin admissible hash function ensemble (see Sect. 2.6).

o Let £ = (KeyGengsu, Enc, Dec) be an RBM-lossy public-key encryption scheme
(see Sect. 4).

e Let IT = (CRSGen, P, V) be a SNIWI argument system for the language

L={(s,y, pk,t,C):3Ix, 05t C = Enc;k(x; ) and Fy(x) = y}

(see Sect. 2.4).
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We assume that the distribution of public keys and common-reference strings produced
by the algorithms KeyGenpem and CRSGen, respectively, are computationally indis-
tinguishable from the uniform distribution over the appropriate domains.'* Define the
signature scheme S = (KeyGen, Sign, Verify):

e Key generation: On input 1", the algorithm KeyGen samples a uniformly dis-
tributed x <— {0, 1}#(" a function description s <— KeyGengpg (1) from the SPR
family, and computes y = F;(x). Then, it samples a description of an admissible
hash function H < H,,, and samples pk < {0, 1}* and crs < {0, 1}* to be used as
a public key for the RBM-lossy encryption scheme and a common-reference string
for the SNIWI argument system, respectively. It outputs the signing key sk = x
and the verification key vk = (s, y, H, pk, crs).

e Signing: On input message m, the algorithm Sign computes an encryption C =
Ench(m) (x; w) of x under the tag H (m) using fresh randomness . Then, it invokes
the prover of the argument system to obtain a proof = <« P(crs, (s, y, pk, H(m),
C), (x, )), and outputs the signature (C, ).

e Verifying: On input message m and signature ¢ = (C, ), the algorithm Verify
invokes the verifier of the argument system and outputs 1 if and only if
V(cers, (s, y, pk, Hm),C), ) =1.

Theorem 5.1. Assuming the existence of the schemes F, H, € and IT with properties
described above, the scheme S = (KeyGen, Sign, Verify) is A-fully leakage-resilient in
the bounded-leakage model for any A = u(n) — k(n) — w(logn). The relative leakage
is given by L/|sk| ~ (1 —k(n)/u(n)) = (1 — o(1)) for an appropriate choice of k (n) =
o(u(n)).

Before turning to the formal proof of Theorem 5.1 we first provide a high-level out-
line of the main ideas. Suppose there is an adversary who breaks the security of the
scheme. We can then use the adversary to break the security of the SPR function as
follows. Choose a random crs for the SNIWI argument honestly, and a (pk, sk) pair
for RBM-lossy public-key encryption using an initialization value K sampled from an
appropriate distribution (dictated by the admissible hash function, depending on the
number of signing queries the adversary makes). Given a random challenge x from the
SPR challenger, we embed y = F(x), crs, pk into the verification key and then run the
forging adversary, using x to answer all its signing/leakage queries. If the adversary’s
forgery is on a message m™ that corresponds to an injective tag of the encryption scheme,
then we use sk to decrypt a (hopefully second preimage) x’ from the adversary’s forged
signature. We argue that, with polynomial probability, we do recover a second preimage
x" # x, using the following steps:

e Using the partitioning argument of Boneh—Boyen [9], there is a noticeable prob-
ability that the all of the adversary’s signing queries correspond to “lossy” tags
while the forgery corresponds to an “injective” tag. Here we rely on the property
that the initialization value K is hidden by the public-key. We call an execution
where the above occurs a “good execution.”

14 More generally, we just require “oblivious” sampling, but we will assume uniform distribution for
simplicity. See Sect. 2.
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e In a good execution, the adversary’s forgery can be decrypted to a valid preimage
x" € F~1(y), by the soundness of the SNIWI argument.

¢ Information-theoretically, the probability of x’ = x in a good execution is negligi-
ble, since the adversary just does not have enough information regarding x. That
is, the signature-query responses are independent of x, and the leakage-query re-
sponses and the verification key y are too short. This is formalized with an entropy
argument.

In terms of efficiency, in Sect. 6 we present a specific efficient instantiation of the
scheme based on the linear assumption. In particular, the signature will consist of a
constant number of group elements. However, our verification keys are rather large,
consisting of £2(n) group elements.

Proof of Theorem 5.1. Fix a probabilistic polynomial-time adversary .4, and let
q = g (n) be a polynomial upper bound on the number of signing queries made by .4 in
any execution. Without loss of generality we assume that .4 always submits g signing
queries, and we denote them by my, ..., m,. Let K, , be the distribution from Defini-
tion 2.5 for the appropriate setting of u = u(n) corresponding to g. The proof consists
of a sequence of experiments. We analyze several events within the context of these
experiments; events with the same name but different subscript are defined analogously,
but within the context of the experiment indicated by the subscript. (]

Experiment 0. This is the original experiment in the definition of A-fully leakage-
resilience, as described in Sect. 3. Note that the initial state is state = {x, ry, 7y, pk, crs},
where r; and ry denote the randomness used to generate s and H, respectively. In this
experiment we also sample K < /C, ,, but this value is not used by the challenger in
any way.

Let Forge be the event that the signature (C*, 7*) produced by A at the conclusion
of Experiment O is valid, and that m™ # m; for every i € {1,..., g}. In addition, let
CorrectHashg be the event that all signature queries mj, ..., m, made by A during the
course of Experiment O fall into the set of “Blue” tags defined by K, while the forged
message m™* falls into the set of “Red” tags. That is, in the notation of Sect. 2.6, we have
Fx.n(mi)=---=Fg g(my) =Band Fgx g(m*) =R.

Claim 5.2. There exists a polynomial p(n) such that
Pr[Forgey A CorrectHashg] > Pr[Forgeyl/p(n) — negl(n).

Proof. Using the notation of Definition 2.5, let Bad be the event (m*, my, ..., my) €
bady. Then Definition 2.5 clearly implies that Pr[Bad] < negl(n). Let p(-) be as in
Definition 2.5. Then

Pr[Forgey A CorrectHashg] > Pr[Forge, A CorrectHashy A —Bad]
> Pr[Forge; A —Bad] Pr[CorrectHash( | Forgey A —Bad]
> (Pr[Forgeg] — negl(n))/p(n) (5.1)
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where (5.1) follows by the definition of admissible hash functions, and since the choice
of K in this experiment is independent of the events Forge, and Bad. (]

Experiment 1. Modify Experiment O as follows. The key-generation algorithm does
not sample pk for encryption obliviously. Instead, it uses the value K and sam-
ples (pk,skg) < KeyGengem (1", K). Note that from the adversary’s point of view
the initial state remains state = {x, ry,ry, pk, crs}. Define the events Forge; and
CorrectHash; analogously to Experiment 0.

Claim 5.3. Pr[Forge; A CorrectHash] > Pr[Forge,y A CorrectHashg] — negl(n).

Proof. This follows by the “indistinguishability of initialization values” property of
the RBM-lossy public-key encryption scheme. That is, even if the choice of K is known
to the adversary, it is impossible to distinguish between the case where pk is chosen
obliviously (Experiment 0) and where it is chosen using the initialization value K (Ex-
periment 1). Since the occurrence of the events Forge, CorrectHash can be easily com-
puted by the attacker using its view in the experiments and the choice of K, the prob-
abilities of these events cannot change more than negligibly between Experiments 0
and 1. O

Define the event Extract; to be the event that Forge; and CorrectHash; hold and, in
addition, the signature o* = (C*, 7*) on the message m* produced by A at the conclu-

sion of Experiment 1 is such that x’ = Decg(i_m*)(C*) satisfies Fg(x') = y.

Claim 5.4. Pr[Extract;] > Pr[Forge; A CorrectHash;] — negl(n).

Proof. Follows by the adaptive soundness of the SNIWI argument. That is, when
Forge; A CorrectHash; occurs but Extract; does not, the proof 7* is that of a false
statement. U

Define the event SameExtract; to be the event that Extract; occurs and that x’ = x,
where x’ = Decg(g" ) (C*) is the extracted value and x is the secret-key used by the

challenger.
Claim 5.5. Pr[SameExtract|] > Pr[Extract;] — negl(n).

Proof. Follows by the second pre-image resistance (SPR) of (KeyGen, F). That is, if
the probability of Extract; A =SameExtract; occurring is noticeable, than we can break
the SPR-security by using the SPR-challenge (s, x) to run Experiment 1 and recovering
x’ # x such that Fg(x) = Fs(x’) from the adversary’s forgery (with noticeable probabil-
ity). (|

Experiment 2. Modify how the crs of the SNIWI argument system is generated, by
using the procedure CRSGenw;(1") (see Definition 2.3) instead of obliviously sam-
pling the crs (which corresponds to CRSGen(1")).
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Claim 5.6. Pr[SameExtracty] > Pr[SameExtract;] — negl(n).

Proof. Follows by the computational indistinguishability of the distributions
CRSGen(1") and CRSGenwy(1"). O

We now want to show that, in Experiment 2, the only information that the adversary
learns about the secret-key x is from the leakage-queries, while the signature queries do
not (statistically) reveal additional information. To do so, we introduce Experiments 3—
6. From now on, all of our arguments will be solely information-theoretic, and hence
we do not mind that the following experiments will no longer be efficient.

Experiment 3. Modify Experiment 2 by changing the response of the signing ora-
cle. For any 01phertext plaintext pair (C, z), define RandH(m)(C z) to be the weighted
distribution {r : C = EncH(m)(z r)} of random values which give C as an encryption
of z. When responding to a signing query m, the oracle first generates an encryption
C= EncH( )(x rg) as in the previous experiments. It then samples a new value for the
randomness rg < RandH(m)(C, x) and uses this value in the place of rg in the state

update process and as the witness for the proof . Explicitly, the output signature is
(C, ), where

C= EncH(m)(x rE), m=P(crs, (s, y, pk, Hm), C), (x,rg); rx),
and the state is updated as state < state U {r, r,}.

Note that, in the description of Experiment 3, the challenger is no longer efficient.
However, the distribution of this modified experiment is identical to the original; this
step merely introduces the randomness r} as a function of C and x, as opposed to
viewing the ciphertext C as a function of x and r}. Therefore we get the following
claim.

Claim 5.7. Pr[SameExtract;] = Pr[SameExtract;].

Experiment 4. Again modify the response of the signing oracle, this time replacing
the encryption C of x in each signature with a new encryption C’ of a uniformly chosen
preimage x’ of y under Fy(-). Explicitly, for each signature query m,

1. Choose x’ uniformly at random subject to Fy(x") =
2. Sample rg < {0, 1}* and compute C’ < EncH('")(x rE).

3. Sample r < RandH(m)(C’, x). Note this is with respect to the original x, and if

RandH(m)(C !, x) = then the experiment terminates.
4, Sample rz < {0, 1}* and compute 7" = P(crs, (s, y, pk, H(m), C"), (x,r); rz).
5. Output the signature (C’, '), where

C' = Enc’l'fk(x’; rE), 7 = P(Crs, (s, y, pk, H(m), C’), (x, r%); r;,),

and update state < state U {r}, ry}.
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Claim 5.8. Pr[SameExtracts] > Pr[SameExtractz] — negl(n).

Proof. Define View; be the view of A in Experiment i, consisting of its random coins
and observed values of the verification key, queried signatures, and leakage values.

Let C < EnC;Ik(m" )(x) and C’ < Enc;Ik(m" )(x"). Recall that CorrectHashs implies the
adversary’s signature queries m; correspond to lossy tags for the REM-lossy scheme.
Thus, for each i the distributions (pk, C) and (pk, C’) are statistically indistinguishable,
say 8 close. In particular, this also implies Randffk(m") (C, x) # ¢ with overwhelming
probability. This indistinguishability remains true even if the value of x is known.

The remainder of the adversary’s view is composed of the verification key, the
proofs mr; from the queried signatures, and the leakage-function evaluations Leakage =
Uj fj(state;). The verification key vk = (s, y, H, pk,crs) can be computed purely
as a function of x and randomness. And, in Experiments 3 and 4, the proofs ;
and leakage values are computed as a function of vk, x, independent randomness 7,
and r7;, which in turn is selected as a function of x and the corresponding cipher-
text C or C’. For each i the joint distribution (x, C, vk, 7;, Leakage) must then be
8-close to that of (x, C’, vk, 7;, Leakage). If the adversary makes ¢ = poly(n) signa-
ture queries, we will then have (x, Views) ~; (x, Views). Hence, Pr[SameExtract;] <
Pr[SameExtracty] + ¢4. U

Experiment 5. Modify the response of the signing oracle by performing Steps 1-4
as in Experiment 4, then continuing as follows. Analogous to the distribution that was
defined above for sampling r}. for the RBM._lossy public-key encryption scheme, let
Randgy ) (7, x, rg) be the weighted distribution {r : m = P(crs, (s, y, pk, H(m), C),
(x,rg);r)}.

5. Sample r}, < Randy ) (', x, r}).
6. Output the signature (C’, ’), where
C"=Ency, (x';rE), 7' =P(crs, (s, y, pk, H(m),C'), (x,r): )

as before, but update state < state U {r, r;} using r; .

Again, the distributions of Experiments 4 and 5 are identical and hence we get the
following:

Claim 5.9. Pr[SameExtracts] = Pr[SameExtracty].

Experiment 6. Modify the response of the signing oracle by replacing the proof with
one using witness (x, rg) instead of (x, r%;). Explicitly, perform Steps 1-3 as in Exper-
iment 3, then continue as follows.

4. Sample r; < {0, 1}* and compute 7" = P(crs, (s, y, pk, H(m), C"), (x', rg); rz).
5. Sample r}, < Randy ) (", x, r). If Randg ) (", x, r) = ¥, the experiment
terminates.
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6. Output the signature (C’, "), where
C' =Enchy (x;rg), 7" =P(ers, (s, y, pk, H(m), C'), (X', rg); rx),
and update state < state U {r}, .. }.
Claim 5.10. Pr[SameExtracts] > Pr[SameExtracts] — negl(n).

Proof. The proof is analogous to that of Claim 5.8. Specifically, let
n' <« P(crs, (s, y, pk, H(m), C'), (x,rg); rx)
7" <« P(crs, (s, y, pk, H(m), C'), (x', rg); rz),

then by the statistical witness indistinguishability of the argument system, the distribu-
tions of 7" and 7" are §-close for some negligible §, even if x is known. In particular,
this implies Rand ) (", x, ;) # @ with overwhelming probability. Since the leak-
age is computed on r/, which is selected as a function of the proof and x, the joint
distributions of

(x, vk,C', 7', Leakage(x, n/)) A (x, vk,C', 7", Leakage(x, n”))

must be §-close. Thus, if the adversary makes g signature queries, we will have
(x, Views) ~245 (x, Views), and so Views ~4s Views. O

As a final step in the proof, we show that x still possesses high average min-entropy
conditioned on the view of A within Experiment 6.

Claim 5.11.  Hoo (x|Viewg) > pu(n) — k (n) — A.

Proof. We consider how the average min-entropy of x decreases as the experiment
progresses. At the beginning of the experiment (i.e., before the adversary submits any
queries), the view of the adversary consists of the verification key vk and its own ran-
dom coins RandCoins. The experiment proceeds with a series of queries made by A
to the leakage and signing oracles. Let Viewéj ) denote the view of the adversary within

Experiment 6 after j such queries (thus Viewéo) = vk||RandCoins, where || denotes

concatenation). _ _
For each leakage query f; with a A;-bit output, we have Vieng ) = Viewé’ _1)|| fi

(state), and therefore Lemma 2.1 guarantees that ﬁoo (x |Viewéj )) > ﬁoo (x |Viewéj _1)) —

A j. For each signature query with a message m ;, we have Viewé’) = Viewé’_l) [lmllo;.

First, note that the message m  is chosen by the adversary as a function of Vieng -b,
Second, note that in Experiment 6, each signature o; is computed as a function

of y which is independent of x given Viewéj -b, Therefore, the pair (m;,o;) does

not reduce the average min-entropy of x given Viewéj . That is, Hoo (x|Viewéj )) =

I~{oo (x |Viewéj _1)). Thus, at the conclusion of Experiment 6 we have

Hoo (x| Views) > Hoo (Viewéo)) - Z)“j > Hoo (x|vk, RandCoins) — A.
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Now, the random coins RandCoins of the adversary are independent of x, and
the same holds for all components of the verification key vk except y = Fs(x).
This means Hoo (x|vk, RandCoins) = Hqo (x|F (x)). Finally, since Fy(-) : {0, 1}4® —
{0, 1} we have }~Ioo(x|Fs (x)) = u(n) — k(n) by Lemma 2.1. Hence, it follows that
Hoo (x|Views) > Hoo (x[F; (x) — & = pu(n) — k(n) — A, O

Combining Claims 5.2-5.10 above, if Pr[Forge,] is non-negligible then
Pr[SameExtractc] is also non-negligible. That is, in Experiment 6, A is able to pro-
duce a valid signature (C*,7*) for which x = Decg((Em*)(C*) with non-negligible
probability. But such a signature uniquely determines the value of x. By Claim
5ALif A < u(n) — k(n) — w(logn), then x still has super-logarithmic average min-
entropy given the view of .4 in Experiment 6, which means this is not possible even
for a computationally unbounded A. Explicitly, from the definition of average min-
entropy, Pr{SameExtractg] < 2~ #(W—xm=%) < p=w(ogn) — negl(n). Therefore, the
event Forge, occurs with only a negligible probability, and this concludes the proof
of Theorem 5.1. U

6. An Efficient Instantiation Based on the Linear Assumption

In this section we show that our construction, which is based on generic cryptographic
primitives, can be instantiated based on specific number-theoretic assumptions to yield
a rather efficient scheme. That is, we demonstrate that our approach is not only of theo-
retical interest (due to the argument system for general NP languages), but may also be
of practical interest. We follow the approach of Dodis et al. [19] who presented rather
efficient instantiations of the leakage-resilient signature scheme of Katz and Vaikun-
tanathan [43] using the proof system of Groth and Sahai [34]. For our scheme, this
means that all of its building blocks have to be instantiated efficiently, and expressed
in a form such that the resulting NP language fits the proof system of Groth and Sahai.
Here we present an instantiation based on the linear assumption, and we note that an
additional instantiation can be based on the seemingly less standard SXDH assumption
as in [19]. In what follows we present linear-based instantiations of a family of SPR
functions, and of an RBM-lossy public-key encryption scheme. We then briefly describe
the proof system of Groth and Sahai [34] that we use as a SNIWI argument system.

We note that our construction can be instantiated with any public-coin admissible
hash function ensemble. As discussed in Sect. 2.6, such functions can be constructed
based on public-coin collision-resistant hash functions, which in turn can be constructed
based on the discrete log assumption in some group G of prime order p (which follows
from the linear assumption).

6.1. A Linear-Based Family of SPR Functions

The following family F = (KeyGen, F) of functions is based on the SPR relation of
Dodis et al. [19, Appendix C.2.1].

e Key generation: On input 1" the algorithm KeyGen begins by sampling (G, Gr, p,
g.e) < BilinearGroupGen(1"). Then, it samples s = (A1, ..., hgw), h}, ..., h;c(n))

<« G yniformly at random to be used as a public description of a function
F(s,-) Gk Gzr.
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e FEvaluation: On input a public description s of the above form and an input
(81, ..., 8m) € Gk | the algorithm F outputs

k(n) k(n)
F(s, (81, -0 8kim)) = (He(hi, gi), [ e(ni, g,-)>.

i=1 i=1

The following theorem establishes the SPR-security of these functions. The proof is
essentially identical to the security proof of the SPR relation of Dodis et al. [19, Claim
C.2], and is therefore omitted.

Theorem 6.1. Assuming the hardness of the decisional linear problem, then F =
(KeyGen, F) is a family of SPR functions.

6.2. A Linear-Based RBM-Lossy Public-Key Encryption Scheme

We present a natural generalization of the scheme described in Sect. 4.2. Consider the
following encryption scheme I}, = (KeyGeny;,, Encin, Deciin):

e Key generation: On input 1" and an initialization value K = Ky--- K¢() €
{0, 1, L}*®™, the algorithm KeyGen,,, samples (G, p, g) < GroupGen(1"), to-
gether with three independently and uniformly chosen elements g, g2, g3 < G.
Then, for every 1 <i < t(n) it samples «; 0, Bi 0, ¥i,0, %1, Bi,1, ¥i,1 < Zp uni-
formly and independently at random, and continues as follows:

— If K; =0thenitsets y;1 = ;1 + Bi1.

— If K; =1 thenitsets y;,0 = ;0 + Bi.o.

— If K; =1 thenitsets yjo=a;0+ Bioand ;1 =1+ Bi1-

Finally, for every 1 <i < t(n) and b € {0, 1} it sets (u; , vi,p, wi,p) = (g7, g’;’*”,
g;/i'b), and outputs the pair (sk, pk) defined as

sk = (K., {(ai,0. Bi.0): (ai,l,ﬂi,l)};inl))a
pk = (g1, 82, g3, { (w0, vi,0, wi,0), (i1, i1, wi,l)};:ll))-
e Encryption: On input a public key pk of the above form, atag t =11 ---t;(n) €
{0, 1}*™ and a message m € G, the algorithm Encyi, chooses r,r’,r" € Z, uni-
formly and independently at random, computes

7(n) 7(n) T(n)

Uur = 1_[ Uit;s Uy = 1_[ Vit;» Wy = 1_[ Wi t; »
i=1 i=1 i=1

" / " ' "
c1=g183 » =885 c3 = (u)" (vp)" (wy)" - m,

and outputs the ciphertext (cy, c2, ¢3).

e Decryption: On input a secret key sk of the above form, atag t =t t;(y) €
{0,1)*™ and a ciphertext ¢ = (c1, 2, ¢3), the algorithm Decyj, proceeds as fol-
lows. If (K, t) ¢ REM (ie., tisa lossy tag) then it outputs L. Otherwise (i.e., ¢ is
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an injective tag), it outputs the message m defined as

Z,i’? i1y Zfi".) ﬂi,t,- -1
m=cs- (c1 c5 ) .

Theorem 6.2. Assuming the hardness of the decisional linear problem, then Il i, =
(KeyGeny i, Enciin, DecLin) is an almost-always RBM-lossy public-key encryption
scheme for tags of length t(n) <logp — w(logn).

Proof. Indistinguishability of initialization values follows directly from the hardness
of the decisional linear problem and a standard hybrid argument. In addition, (perfect)
correctness of the decryption algorithm under injective tags follows from the fact that
for any injective tag t =11 - --tr(y) (i-e., for every i € {1,...,t(n)} we have K; # 1;)
we have y; , = o, + By, for every i € {1,..., 7(n)}. Therefore, for any ciphertext
(c1, ¢2, c3) that is produced by encrypting a message m under an injective tag ¢t we have

Z;Tinl) Qi 1; erinl) Bii\—1
c3 - (e c )

/ " " ™. oo HON T
=) (v)" (w)" -m-((g] &5 )Z':‘ i (gh g4 )Z’:‘ ﬁ”t’) :

7(n) T rt(n) ) r
- (1_[ MiJi) <l_[ vi,ti) (1_[ wi’”)
i=1 i=1 i=1

’“Z,-I;n])ai,t,- "/Z,-Tgl])ﬁi,ti r”Zfﬁ?(ai,tﬁﬂi,r,-) -1
-m - (g 82 83 )

"Z,r:? iy r Zfi”.) ﬂi,r,- r” Z,Tg? Vi
(81 82 83 )

le-inl) Ai1; "/Z,-I;nl) Bii; r’ Z,Finl)(ai.ti +Bi;)\—1
m- (g & &3 )

=m.

Finally, we prove that lossiness under lossy tags holds with probability at least
1 —2°™ /p over the internal randomness of the key-generation algorithm. Fix an
initialization value K € {0, 1, L}*?, and a lossy tag ¢ € {0, 1}*™ (i.e., there exists
some i € {1,...,t(n)} for which K; = t;). Then, there exists some i € {1,...,t(n)}
for which the values «; ;;, Bi s, and y;;, are uniformly and independently chosen, and
therefore the values u;, v;, and w; as defined by the encryption algorithm are inde-
pendently and uniformly distributed in G. Thus, with probability 1 — 1/p, we find
that (g1, g2, &3, U, Vs, ;) is not an instance of the linear problem (i.e., logg3 (wy) #
log,, (ur) +log,, (w;)). In this case, the triplet (g} g} ., g5 &5 , (ur)" (v)" (wy)"") is uni-
formly distributed in G3 over the choice of r, ', and r” (this is a natural generalization
of [57, Lemma 4]). This implies that a ciphertext (c1, ¢z, c3) encrypted under a lossy
tag t carries no information on the message. This holds for any specific lossy tag ¢, and

therefore a union bound guarantees that this holds for all lossy tags with probability at
least 1 — 27" /p. O
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6.3. A Linear-Based SNIWI Argument System

In this section we briefly review the proof system of Groth and Sahai [34] for proving
that a system of equations is satisfiable. We mainly follow the exposition of Dodis et
al. [19], and refer the reader to [34] for more details. We note that in the Groth—Sahai
proof system, there are two computationally indistinguishable methods for generating
the common reference string: one (called real) that yields perfect soundness, and an-
other (called simulated) that yields perfect witness indistinguishability. By using the
simulated common reference string we can thus use their system as a SNIWI argument
system. We consider here the cases of one-sided multi-exponentiation equations and
one-sided pairing-product equations, as these are the cases that arise from our linear-
based constructions in Appendices 6.1 and 6.2.

The CRS-Generation Algorithm On input 1" the algorithm CRSGen samples
(G, Gr, p, g, e) < BilinearGroupGen(1"), together with three independently and uni-
formly distributed elements ug, 11, u» < G, and sets

up = (uo,ui, 1),
Uz = (ug, 1, uz).

Then, it samples iig < G\ and i < Yl independently and uniformly at random, where
U= (@™ u,ub):a, B € Z,). It outputs crs = (i, i1, iia, ).

Dealing with One-Sided Multi-Exponentiation Equations For every equation of the
form

k
ngii = g()v
i=1

where go, g1, ..., g € G are constants, and x1, ..., xx € Zj are variables (i.e., the x;’s
are the satisfying assignment), the prover begins by committing to each of the y;’s. The
o)
. . - >y > 1 -
commitment to each y; € Zj, is defined as y; = uX H?:l uj’ , where t; = (tl.(l), tl.(z)) <«
Zf, is sampled uniformly at random. Then, the prover computes the group elements pi
and p; that are defined as

Lo
Dj =1_[gi’ ., Jj=172
i=1
In turn, the verifier accepts if and only if for every such equation we have

k 2
[1EGi e =EGi, g0 [ EGij. p),

i=1 j=l1

where E : G® x G — G3. is defined as E((ag,a1,22),8) = (e(ao, B),
e(ag, B), e(aa, B)). Note that for a set of r such equations with a witness of size k,
the proof consists of 3k + 2r group elements.
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Dealing with One-Sided Pairing-Product Equations For every equation of the form

k
He(hi, xj)=T,
i=1
where hy,...,h; € Gand T € Gr are constants, and x1, ..., x; € G are variables (i.e.,
the x;’s are the satisfying assignment), the prover begins by committing to each of the

- ()
x;’s. The commitment to each x; € G is defined as §; = (x;, 1, 1) H?:o u;’ , Where

5; = (si(o), si(l) , si(2)) <~ Zf, is sampled uniformly at random, and vector multiplication
is defined component-wise. Then, the prover computes the group elements pg, p1, and
p2 that are defined as

oo
pi=[In' . i=0.1.2.
i=1

In turn, the verifier accepts if and only if for every such equation we have

k 2
[TEGR:.8) =@ L) Ew).ii.
i=1

J=0

where E : G x G — (G?} is defined as E(«, (Bo, B1, B2)) = (e(w, Bo), e, B1),
e(a, B2)). Note that for a set of » such equations with a witness of size k, the proof
consists of 3(k + r) group elements.

7. A Signature Scheme in the Continual-Leakage Model

In this section, we extend our approach to the continual-leakage model. In order to do
this, in Sect. 7.1 we first introduce an alternative and more general measure of leakage
called “entropy leakage.” Instead of measuring leakage in terms of the output length of
a leakage function, we look at the entropy loss that such a function causes to a random
input. In Sect. 7.2, we offer a generalized explanation of our scheme in the bounded-
leakage model as a construction of leakage-resilient signatures from leakage-resilient
one-way functions (LR-OWF). This explanation is only meant to build intuition for our
construction in the continual setting, and hence the exposition will be rather informal.
Finally, in Sect. 7.3, we show that our construction generalizes to constructing fully
leakage-resilient signatures in the continual-leakage model from continuous-leakage-
resilient one-way relations (in the entropy leakage sense), whose instantiations were
given in [15,18,20,50,63].

7.1. Entropy Leakage

So far, we have measured the amount of leakage that the adversary learns from a func-
tion f via the output length of f. We call this length-bounded leakage. However, this
is not the most general way of measuring leakage. As an alternative, we could con-
sider measuring the amount of leakage via the entropy loss to the input of f, given the
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output of f. In particular, we want our definitions to allow long leakage as long as it
does not reveal too much useful information. The idea of measuring the entropy loss
of a leakage function is due to Naor and Segev [55], but our definition is closer to that
of Dodis et al. [18]. In particular, we measure the amount of information leaked by a
function f : {0, 1}* — {0, 1}* in terms of the amount of entropy that it reduces from a
uniformly distributed random variable. As shown in [18], this definition has some nice
composability properties.

Definition 7.1 (A-Entropy Leaky Functions). A (possibly randomized) efficiently
computable function f : {0, 1}* — {0, 1}* is A-entropy leaky if there exists some (pos-
sibly inefficiently computable) function f” such that:

e Forall x € {0, 1}*, Jx) f'(x) (over the randomness of f and f”).
e For all integers n > 1, Hoo (U, | f/(Uyp)) > n — A, where U, is the uniform distri-
bution over {0, 1}".

Notice that any function f : {0, 1}* — {0, 1}* with A-bit output is clearly A-entropy
leaky. However, there are also functions which are A-entropy leaky but whose output
lengths can be arbitrarily long. Therefore, resilience to A bits of entropy leakage is a
seemingly stronger notion of security than resilience to A bits of length-bounded leakage
(see also the discussion in Sect. 8). Also notice that a function f which is A-entropy
leaky may not, on its own, satisfy ﬁoo(U,, | f(Up)) = n — A. For example, consider a
function f which just output x with probability n~1°¢" and otherwise outputs 1. Then
this function is 0-leaky according to our definition since it is statistically close to the
function f’ that always outputs 1 and INJOO(UH | f'(Uy)) = n. However, for the function
f itself, we only have ﬁoo(Un | f(Up)) < logz(n).

The main reason is for our definition of “entropy leaky” functions is that it turns out
to be more robust in some scenarios. In particular, it allows us to prove the leakage-
resilient security of a signature scheme from the leakage-resilient one-way function,
which we do next.

7.2. A Generalized Explanation: FLR Signatures from LR-OWF's

Recall that our original signature scheme is based on a second-preimage resistant (SPR)
function (KeyGen, F). The verification key contains an image y = F;(x) of the secret
key, and each signature is essentially a proof that the signer knows a preimage of y
under F. The important property of the SPR family is that one can easily evaluate Fg(x)
given x (to generate the verification key), but an adversary cannot extract a preimage
of y, even given “leakage” information on x learned via leakage and signature queries
during the security experiment. It turns out this is the only property we need. In what
follows, we abstract out the role of the SPR family in our construction to something
satisfying the more general notion of a leakage-resilient one-way function, for a class
of leakage that captures these oracle responses. As this section is only meant to provide
intuition, the discussion will be somewhat informal.

LR One-Way Functions We define the notion of a leakage-resilient one-way function
(LR-OWF) F in the following way. Given the image y = F(x) of a random value x in
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the domain, together with A bits of leakage on x, it is computationally hard to produce
any preimage x’ of y under F. We can define this notion with respect to either length-
bounded leakage or entropy-bounded leakage (which is more general).

Definition 7.2 (LR-OWF). A collection (KeyGen, F) is a A-leakage-resilient one-
way function (LR-OWF) with respect to entropy-bounded leakage (respectively, length-
bounded leakage) if for any probabilistic polynomial-time algorithm A4 and efficiently
computable function g which is A-entropy leaky (respectively, has A-bit outputs) there
exists a negligible function v(-) such that

Pr[F(x) = y | s < KeyGen(1"), x < {0, 1}*),
y=Fe(x), x" < A(s, y. g(0))] < v(m).

It is easy to show (as done in [19], generalizing the ideas of [3,43]) that a second-
preimage resistant (SPR) function with p(rn)-bit inputs and « (n)-bit outputs is also a A-
leakage-resilient one-way function for A(n) = u(n) — « (n) — w(logn). Essentially, this
is because a random x has entropy even given y = F;(x) and some A bits of leakage on
x. Therefore, if there exists an algorithm that is able to produce an x’ such that Fy(x’) =
y given only this information, then with noticeable probability x” # x, and we can use
this adversary to break the second-preimage resistance. For the above argument, it does
not matter if we consider entropy-bounded or length-bounded leakage. Therefore, we
get the following observation.

Observation 7.3. An second-preimage resistant function (KeyGen, F) with (n)-bit
inputs and k (n)-bit outputs is a LR-OWF with respect to A(n)-entropy-bounded leakage,
where A(n) = u(n) — k(n) — w(logn).

FLR Signatures from LR-OWFs We now informally explain our signature scheme
from the bounded-leakage model (Sect. 5) in a slightly more general manner. Recall
that our construction was based on an SPR function (KeyGen, F), where y = F;(x)
was in the verification key and x was the secret key. To sign a message m, we used a
RBM._lossy encryption scheme to encrypt x under label H (m) and proved that the ci-
phertext is formed correctly using a SNIWI argument system. In general, we do not
need (KeyGen, F) to be an SPR function, but rather any LR-OWF with respect to A-
entropy-bounded leakage.

Observation 7.4. The construction from Sect. 5 is a A-FLR signature scheme in the
bounded-leakage model, when instantiated with any LR-OWF with respect to \-entropy-
bounded leakage.

The original proof of security (Theorem 5.1) extends naturally to this more general
case. To give the main intuition, let us look at the proof. Once we move from Experi-
ment 0 to Experiment 1, there is a good chance of all the signing queries being “lossy”
and the forgery still decrypting to some x* with Fy(x*) = Fs(x) = y, where y is in the
verification key and x is in the secret key. The main idea of the rest of the proof is
that, if this is the case, then the entire view of the adversary (the leakage-queries and
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the signing queries) does not reduce the entropy of x significantly. Therefore, we can
think of the view of the adversary as being “entropy-bounded” leakage (but not “length-
bounded” leakage, since we do not know how to efficiently compress it). A successful
forgery in this setting means the adversary only receives entropy-bounded leakage on
x but still manages to produce (an encryption of) some pre-image x*, thus breaking
one-way security.

Although the above generalization does not seem significant at first, this view of our
basic construction will make it easier to extend to the setting of continuous leakage,
which we will do in the next section.

7.3. Extension to Continuous Leakage

We begin by generalizing the concept of a leakage-resilient one-way function to the con-
tinual leakage setting, following [18]. First, we relax the requirement that x is uniformly
random and y = F(x) is a deterministic function of x. Instead, we define a one-way
relation (KeyGen, R), where the KeyGen algorithm generates pairs (y, x) € R simulta-
neously using internal randomness. The security property is similar to that of a one-way
function: given a randomly generated y and leakage on x, it should be hard to find x’
such that (y, x") € R.!> One can keep in mind an example where x and y are a secret
key and public key for a cryptographic system, and (y, x) € R when x is a proper secret
key corresponding to y.

Second, we add an algorithm Refresh that allows us to refresh the secret x. That
is, if (y,x) € R and x’ < Refresh(x) then (y, x") € R. The main goal of the refresh
algorithm is to allow for continual leakage on the secret key. The user starts off with a
key xo produced by the key-generation algorithm and periodically updates it by running
x; < Refresh(x;_1). The adversary can continually receive partial leakage on every
version x; of the key that the user ever creates (so that the total amount of leakage
learned is unbounded). Nevertheless, at no point in this process should the adversary be
able to come up with some x’ such that (y, x’) € R.

Third, we consider “entropy-bounded” rather than “length-bounded” leakage. The
formal definition appears below.

Definition 7.5 (CLR-OWR: Similar to [18]). A continuous-leakage-resilient one-way
relation (CLR-OWR) consists of three poly-time procedures (KeyGen, Refresh, R) with
syntax:

e Key Generation: KeyGen(1") outputs a public key y and a secret key x.

e Key Refreshing: Refresh, (x) outputs a refreshed secret key x’.

e Relation Testing: R(y, x) outputs 1 if and only if the pair (y, x) is “valid” and
satisfies the relation.

We say that the relation is continuous-leakage-resilient (CLR) with respect to A-entropy-
bounded leakage if it satisfies the following properties:

15 In the leak-free setting, any one-way relation (KeyGen, R) can easily be turned into a one-way function
y = KeyGen(r) mapping the random coins of KeyGen to the value y it produces. In the setting of leakage,
this transformation no longer holds since leakage on r gives more information than leakage on x.
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Correctness: For any polynomial ¢ = g(n), if we sample (y,x) < KeyGen(1"),
x1 < Refreshy (x), ..., x, < Refreshy (x,_1), then, with overwhelming probability,
R(yv-x):R(yﬂxl):.:R(yaxq): l'

Security: For any PPT adversary A, we have Pr[.A wins ] < negl(n) in the following
game:

e The challenger chooses (y, x) < KeyGen(1") and gives y to A.

e The adversary A runs for arbitrarily many leakage rounds i = 1,2, ....In each
round i, the adversary chooses a leakage function f; : {0, 1}* — {0, 1}* and
learns f;(x;). The next-round secret key is sampled as x;;1 < Refreshy (x;; r;)
with fresh randomness r;.

e The adversary wins if at some point it produces a value x* such that R(y, x*) =1
and each of the leakage functions f; are A-entropy leaky.

We say that the relation also satisfies a stronger leakage-of-refreshing security if se-
curity holds for a modification of the above game where the attacker learns leakage
fi(xi; ri—1) on the secret key x; and the randomness ;1 used during the refreshing.

The results of [15,18] show how to construct CLR-OWR under the linear assumption
in bilinear groups. The leakage rate was later improved by the work of [63]. These works
mostly consider leakage in between refreshing, although they can also be shown to allow
some small amount (logarithmic in the security parameter) leakage on the randomness
of the refreshing process itself. This issue was later improved on by the works of [20,
50] which allow a constant fraction of the key and the randomness of refreshing to leak.
Although the main definitions in all of these works are with respect to length-bounded
leakage, they easily extend to entropy leakage. We state the results of those works as
follows:

Claim 7.6 ([20,63]). For any polynomial ).(-) and any constant € > 0, there exist A(n)-
CLR-OWR schemes where the relative leakage (ratio of leakage to secret key size) is
M/|sk| = (1 — €) under the linear assumption in bilinear groups. Under the same as-
sumption and for any polynomial \.(-), there also exist .(n)-CLR-OWR with the stronger
“leakage-of-refreshing security”, where, for some constant ¢ > 0, the relative leakage
is M/|sk| > c.

Given a CLR-OWR (KeyGengyg, Refresh, R), we can naturally generalize our con-
struction of signatures from Sect. 5. Namely, the CLR-OWR will take the place of the
second-preimage resistant function in the original construction, analogous to the use of
the bounded-leakage-resilient one-way function in the scheme described in the previous
subsection. Explicitly, let (KeyGengsu, Enc, Dec) be an RBM-lossy public-key encryp-
tion scheme, and let (CRSGen, P, V) be a SNIWI argument system for the language

L={(s.y, pk,t,C):Ix, w5t C = Encl,; (x; @) and R(y, x) = 1}.

Consider the following signature scheme (KeyGen, Refresh, Sign, Verify):

e Key Generation: Sample (pk,-) < KeyGenpew (1), (v, x) < KeyGengygr(1™)
and crs <— CRSGen(1"). Output vk = (crs, pk, y) and sk = x.
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e Key Refreshing: Use the Refresh procedure of the CLR-OWR to compute x’ <
Refresh, (x).

e Signing: On input message m, the algorithm Sign computes an encryption
C = Enc;f’k(x;a)) of x under the tag m using fresh randomness w. Then, it
invokes the prover of the SNIWI argument system to obtain a proof m <«
P(crs, (v, pk,m, C), (x, w)), and outputs the signature (C, 7).

e Verifying: On input message m and signature o = (C, ), the algorithm Verify
invokes the verifier of the SNIWI argument system and outputs 1 if and only if
V(ers, (y, pk,m,C), ) =1.

Theorem 7.7. Assume that, in the above construction, the relation is a (A(n) + 1)-
CLR-OWR, the encryption is RBM-lossy, and the argument system is a SNIWI. Then the
above signature scheme is A(n)-fully leakage-resilient in the continual leakage model.
If the relation has leakage-of-refreshing security, then so does the resulting signature
scheme.

Proof of Theorem 7.7. The structure of the proof is essentially identical to the proof
of Theorem 5.1. We will refer to the prior proof liberally, with a focus on the main
differences. Assume that an adversary A breaks the signature security with a noticeable
probability. We define Experiment O to be the continual fully leakage-resilient security
game for signatures (see Definition 3.2) and Experiment 1 to be the modified game
where the RBM-lossy encryption scheme is initialized with an initialization value K <«
ICu.n for an appropriate u corresponding to the number of signature queries ¢ that the
attacker makes. This mirrors Experiments 0 and 1 in the proof of Theorem 5.1, and the
same proof shows that these experiments are indistinguishable. We can define the event
Extract; to occur when:

e All of the signing queries fall into the “blue”/lossy set and the forgery message
falls into the “red”/injective set as defined by the initialization value K. (This cor-
responds to the event CorrectHash; defined in the proof of Theorem 5.1.)

e The ciphertext portion of the forgery decrypts to a valid x* for which R(y, x*) = 1.

As in the proof of Theorem 5.1 (specifically, Claim 5.4), the event Extract; occurs with
a noticeable probability. We now show how to use an adversary .4 from Experiment 1
to break the security of the CLR-OWR. Our reduction 3 samples the crs of the SNIWI
argument system and the public/secret key (pk, sk) of the encryption scheme, as in Ex-
periment 1. Recall that the adversary A expects to run in many epochs (periods between
issuing a key-refresh query). The view of A during each epoch i consists of his random
coins together with the signing queries and leakage queries issued during that epoch.
The main idea is that the reduction B can simulate this view for .4 by learning a single
leakage function g; on the secret key x; of the CLR-OWR in each epoch. The selection
of g; (described below) will ensure that:

1. The simulation perfectly matches Experiment 1. In particular, the event Extract;
occurs with a non-negligible probability.

2. If the event Extract; occurs, then every function g; queried by B is at most (A + 1)-
entropy leaky.
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When the event Extract; occurs, then 3 can decrypt the ciphertext portion of A’s forgery
to some correct x* such that R(y,x*) = 1, and win the CLR-OWR security game.
Therefore the above two requirements ensure that this occurs with a non-negligible
probability, which leads to a contradiction.

We are left to describe how 3 chooses the leakage functions so as to satisfy conditions
(1) and (2). In epoch i, the function g; : {0, 1}* — {0, 1}* includes, in its description,
the entire view (including the random coins) of the adversary A up to the start of epoch
i, along with the verification key vk = (crs, pk, y) of the signature scheme. The function
gi (x;) first checks whether R(y, x;) = 1 and, if not, returns a 0. Otherwise, it internally
runs the code of A for that epoch, and uses the current secret key x; (and internal random
coins) to answer the leakage queries and the signing queries. The output of g; consists
of all the answers to the various queries asked by .4 during the epoch.

It is easy to see that this leakage can be used by B to (perfectly) simulate the epoch
to A, so we satisfy requirement (1). For requirement (2), note that the output length
of g; is long (possibly much longer than the secret key), since it includes the queried
signatures. However, when the event Extract; occurs, all the signing queries correspond
to lossy tags of the encryption scheme, and hence do not reveal information regarding
x. In particular, we can define an (inefficient) leakage function g; so that (for fixed
x), &i(x) ~ gi(x) are statistically close, and the signature portion of g’ (x) perfectly
hides x given y. This function g precisely corresponds to the (inefficiently) gener-
ated responses to signature and leakage queries within Experiment 5 of the proof of
Theorem 5.1.

As shown in the proof of Theorem 5.1, the only entropy loss induced by this g; on
x given y is due to the output corresponding to A’s leakage queries, and not to the
signature queries. Of course, for a uniformly random x, we also learn if R(y,x) =
1, which can reveal up to one additional bit of entropy. Therefore, since .A’s leakage
queries were limited to being A-entropy leaky, when Extract; occurs, the function g; is
(A 4+ 1)-entropy leaky, proving (2). O

7.4. Comparison to the Scheme of Brakerski et al. [15]

Our construction in the continual-leakage model shares some similarities with the
scheme presented by Brakerski et al. [15] in the random-oracle model. But, as we now
discuss, the two are conceptually quite different. A signature in the Brakerski et al.
scheme is composed of two parts: a form of “encryption” of the signing key using lossy
trapdoor functions (LTDFs), and a short non-interactive argument that the encryption
is formed correctly. The “encryption” portion of their signature is formed by applying
message-dependent branches of a LTDF to secret shares of the signing key. Brakerski
et al. prove that if the signing key is updated every few signatures, then this signature
scheme satisfies a weak notion of unforgeability, where the adversary is required to
specify the target forgery message prior to learning the verification key. They then use
two known transformations (see [38,49]) to convert the scheme into one that is unforge-
able in the more standard sense.

In the Brakerski et al. scheme, each signature leaks information regarding the signing
key regardless of whether the adversary makes leakage queries. Each LTDF encryp-
tion as presented reveals an amount of information equal to the lossy parameter of the
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LTDF. In addition, each non-interactive proof is treated entirely as leakage—i.e., reveal-
ing information on the signing key equal to its full length. This framework of leaking
information in each signature has some unfortunate consequences. In order to keep the
amount of leakage per signature small enough to maintain security, their construction
requires short-length proofs, which are only known to exist within the random-oracle
model [5,44,53]. In addition, since each signature reveals new information on the cur-
rent signing key, the signer must update the signing key after every couple signatures,
even if no side-channel leakage occurs. This means their construction does not yield a
scheme in the bounded-leakage model where key refreshing is not a standard part of
the model, and that execution within the continual-leakage model is rather inefficient.
Requiring frequent key refreshes thus puts a strong restriction on the model, as the key-
refreshing operation must be performed in a secure, nearly leakage-free environment.

Using the generic signature transformations to go from weak unforgeability to stan-
dard unforgeability also induces a drop in the efficiency of their scheme. For instance,
one transformation requires signing each prefix of the original message, thus growing
the overall signature size by a factor of the message length [38].

Our construction avoids these practical issues through two main technical differences.
First, our combination of R-lossy encryption with a SNIWI argument system (in the
standard model) yields signatures which statistically reveals no information about the
signing key (see the related discussion in Sect. 8). Second, we are able to bypass the
generic signature transformations in an efficient fashion by extending the technique of
admissible hash functions [9]. Essentially, the two transformations used by Brakerski
et al. are replaced by simply hashing the message with a special hash function before
signing. Using these new techniques, we are able to construct a scheme that is more effi-
cient, no longer relies on the random-oracle model, and can withstand a greater fraction
of leakage ((1 — o(1))L as opposed to (1/2 — o(1))L based on the linear assumption).

8. Concluding Remarks and Open Problems

Deterministic Leakage-Resilient Signatures  An alternative approach for constructing
fully leakage-resilient signature schemes is constructing a signature scheme that is re-
silient to leakage from the signing key, and has a deterministic signing algorithm (this
is indeed the idea underlying the fully leakage-resilient one-time signature schemes
of Katz and Vaikuntanathan [43]). In general, the signing algorithm of any signature
scheme can be made deterministic by using as its random coins the output of a pseu-
dorandom function applied to the message. This requires, however, that the signing key
will include also the key of the pseudorandom function, and therefore it is not clear that
such a transformation can preserve leakage resilience.

Length-Bounded Leakage vs. Entropy-Bounded Leakage In some scenarios it is not
always possible to assume that the total amount of leakage is upper bounded by A bits,
where A is less than the length of the secret key. This motivated the approach of Naor
and Segev [55] (later refined by Dodis et al. [18, Definition 7.2]) who considered the
more general notion of noisy leakage (also known as entropy-bounded leakage—see
Sect. 7.1), in which the leakage is not necessarily of bounded length, but is guaranteed to
reduce the average min-entropy of the secret key by at most A. Although our schemes are
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secure with respect to length-bounded leakage, they are in fact insecure with respect to
entropy-bounded leakage. This seems to be the first separation between length-bounded
and entropy-bounded leakage, and settles an open problem posed by Naor and Segev.

Specifically, in our schemes the public key for the RBM-lossy encryption scheme is
sampled obliviously as a uniformly random string pk € {0, 1}*. For our specific con-
structions based on the DDH or linear assumptions (see Sects. 4.2 and 6.2), this can
be easily seen to imply that with an overwhelming probability all possible tags for the
RBM._lossy scheme are lossy. An analysis almost identical to that presented in the secu-
rity proofs of our schemes then shows that a leakage function that simply outputs a sig-
nature on any message m* is a valid leakage function with respect to entropy-bounded
leakage (yet clearly invalid with respect to length-bounded leakage).

Modeling Hard-to-Invert Leakage for Signature Schemes So far signature schemes
were considered with respect to leakage with an information-theoretic guarantee: even
after seeing the leakage, the signing key still has a certain amount of min-entropy. In the
setting of public-key encryption a more general model was formalized by only assuming
that the decryption key cannot be efficiently recovered given the leakage (see [13,17,22,
32] and the references therein). For signature schemes, however, due to the interaction
between the adversary and the signer, it is not clear how to meaningfully formalize
such an attack model. It would be interesting to formalize hard-to-invert leakage for
signature schemes (especially when any intermediate value may leak, and not only the
signing key), and to construct schemes that are leakage resilient in such a model.
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