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Abstract. We show that, assuming the existence of collision-resistant hash functions,
every language in NP has a constant-round public-coin zero-knowledge argument that
remains secure under unbounded parallel composition (a.k.a. parallel zero knowledge.)
Our protocol is a variant of Barak’s zero-knowledge argument (FOCS 2001), and has
a non-black-box simulator. This result stands in sharp contrast with the recent result
by Pass, Tseng and Wikstrom (Crypto 2010) showing that only languages in BPP have
public-coin parallel zero-knowledge arguments with black-box simulators.

Key words. Zero-knowledge, Parallel composition, Non-black-box simulation.

1. Introduction

Zero-knowledge (ZK) interactive protocols [9] are paradoxical constructs that allow one
player P (called the prover) to convince another player V (called the verifier) of the va-
lidity of a mathematical statement x € L, while providing zero additional knowledge
to the verifier. A fundamental question regarding zero-knowledge protocols is whether
their composition remains zero-knowledge. Three basic notions of compositions are
sequential composition [9,12], parallel composition [5,7] and concurrent composition
[4,5]. In a sequential composition, the players sequentially run many instances of a

* R. Pass’s work is supported in part by a Alfred P. Sloan Fellowship, Microsoft New Faculty Fellowship,
NSF CAREER Award CCF-0746990, AFOSR Award FA9550-08-1-0197, BSF Grant 2006317.

 A. Rosen’s work is supported in part by BSF grant No. 2006317.

f W.-LD. Tseng’s work is supported in part by a NSF graduate research fellowship.

© International Association for Cryptologic Research 2011


mailto:rafael@cs.cornell.edu
mailto:alon.rosen@idc.ac.il
mailto:wdtseng@cs.cornell.edu

2 R. Pass, A. Rosen, and W.-L.D. Tseng

zero-knowledge protocol, one after the other. In a parallel composition, the instances
instead proceed in parallel, at the same pace. Finally, in a concurrent composition, mes-
sages from different instances of the protocol may be arbitrarily interleaved. While the
definition of ZK is closed under sequential composition [12], this no longer holds for
parallel composition [7]. However, there are zero-knowledge protocols for all of NP that
have been demonstrated to be secure under both parallel and concurrent composition
[5,6,15,20,21].

Whereas the original ZK protocols of [3,9,13] are public-coin—i.e., the verifier’s
messages are its random coin-tosses—all of the aforementioned parallel or concurrent
ZK protocols use private coins. Recently, Pass, Tseng and Wikstrom [19] show that this
is no coincidence—only languages in BPP have public-coin black-box parallel ZK pro-
tocols (that is, protocols that remain ZK under parallel composition). This leaves open
the question of whether non-black-box simulation techniques can be used to bypass this
impossibility result.

In this paper we resolve this question. Namely, we show the existence of a public-
coin parallel ZK argument for NP, relying on non-black-box simulation techniques.
Our protocol only requires a constant-number of rounds and is based on the existence
of collision-resistant hash functions.

Theorem 1. Assume the existence of collision-resistant hash functions. Then there
exists a constant-round public-coin parallel zero-knowledge argument for NP.

Our protocol is a variant of Barak’s [1] non-black-box zero-knowledge argument
for NP. We mention that Barak’s original protocol already handles a notion of bounded-
concurrent composition; that is, it remains secure under an a priori bounded number
of concurrent execution. In contrast, our protocol handles an unbounded number of
executions, but only if it is parallel composition (as opposed to concurrent composition).

Why Study Unbounded Parallel Composition A standard motivation for studying par-
allel composition of zero-knowledge proofs is to be able to prove multiple statements
without increasing the number of communication rounds. At first sight, having a proto-
col that is secure under bounded parallel composition (just as Barak’s original protocol)
seems to suffice in such a scenario: Since the protocol designer knows a bound b on the
number of statements to be proved, we may simply use a zero-knowledge protocol that
is secure under b-bounded parallel composition. However, the communication (and/or
computational) complexity of the protocol may depend on the bound b—indeed, in
Barak’s protocol, the communication complexity of the protocol grows linearly with b.
On the other hand, if we have a protocol that remains secure under unbounded parallel
composition, this inefficiency disappears.!

Additionally, we hope that insights gained from studying the simpler case of paral-
lel composition will be helpful in studying the more complicated case of concurrent
composition. Indeed, a beautiful example of when results about parallel composition

! Furthermore, note that we if managed to construct a protocol where the communication and computa-
tional complexity depends only logarithmically on the bound b, then this protocol can easily be turned into
a protocol that remains secure under unbounded composition: simply set b = 2", where n is the security
parameter.
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can be translated into results about concurrent composition can be found in Goldreich’s
work [11].

Main Technique Let us briefly recall the idea behind Barak’s protocol (following a
slight variant of this protocol due to [18]). Roughly speaking, for language L and com-
mon input x € {0, 1}", the prover P and verifier V proceed in two stages. In Stage 1,
P starts by sending a computationally binding commitment c € {0, 1}" to 0; V follows

by sending a uniformly random “challenge” r & {0, 1}?". In Stage 2, P shows (using
a witness-indistinguishable argument of knowledge) that either there exists a “short”
string s € {0, 1}"" such that ¢ is a commitment to a program [T such that I7(s) = r, or
x € L. Soundness follows from the fact that even if a malicious prover P* tries to com-
mit to some program [7 (instead of committing to 0), with high probability, the string
r sent by V will be different from I7(s) for every string s € {0, 1}". To prove ZK, con-
sider the non-black-box simulator that commits to the code of the malicious verifier V*;
note that by definition IT(c) = V*(¢) = r, and the simulator can use s = ¢ as a “fake”
witness in the final proof.

Now, let us consider parallel composition. That is, we need to simulate the view of
a verifier that starts m = poly(n) parallel executions of the protocol. The above sim-
ulator no longer works in this setting: the problem is that the verifier’s code is now a
function of all the commitments ¢ =cy, ..., ¢;; sent in the different executions. (Note
that if we increase the length of r, and therefore the allowed length of s, we can handle
a bounded number of execution, by simply letting s = ¢.) To get around this problem,
we change the proof in the last stage as follows. Instead of proving the existence of a
string s such that I7(s) = r, we show the existence of a seed s € {0, 1}"* for a pseu-
dorandom function f, and an index i € {0, 1}1032”, such that IT; (¢) = r, where ¢; is a
commitment to I7 using fs(i) as randomness, and I7; (x) is the “projection” of IT onto
the ith “coordinate”—i.e., the output of /7 in the ith parallel execution. To construct the
zero-knowledge simulator, we start by picking a seed s, compute commitments c¢; to I7
using f;(i) as randomness, and use s and i as a “fake-witness” to simulate Stage 2 in
execution i.

2. Preliminaries

Let N denote the set of positive integers, and [r] denote the set {1,2, ..., n}. We assume
familiarity with interactive protocols.

2.1. Computational Indistinguishability

The following definition of computational indistinguishability originates in the seminal
paper of Goldwasser and Micali [8]. Let X be a countable set of strings. A probability
ensemble indexed by X is a sequence of random variables indexed by X. Namely, any
element of A = {A,}ycx is a random variable indexed by X.

Definition 1 (Indistinguishability). Let X and Y be countable sets. Two ensembles
{Ax y}xex,yer and {By y}xex, yey are said to be computationally indistinguishable
over x € X, if for every probabilistic machine D (the distinguisher) whose running



4 R. Pass, A. Rosen, and W.-L.D. Tseng

time is polynomial in its first input, there exists a negligible function v(-) so that for
everyx e X,ye/Y:

[Pr[D(x,y, Ax,y) = 1] = Pr[D(x, y, By y) = 1]| < v(Ix])

(In the above expression, D is simply given a sample from Ay y and By y, respectively.)
Note that indistinguishability applies to every index of the ensembles, even though only
the size of x is used as the asymptotic measure.

2.2. Zero-Knowledge

An interactive proof is said to be zero-knowledge if it yields nothing beyond the validity
of the statement being proved [9]. In an interactive protocol (P, V), the view of the
verifier in an interaction consists of the common input x, followed by its random tape
and the sequence of prover messages that it receives. For any adversarial verifier V*, let
Viewy« (P, V*(z))(x) be the random variable that denotes V*’s view in an interaction
with the honest prover P, when V* is given auxiliary input z and both parties are given
common input x.

Definition 2 (Zero-Knowledge). An interactive protocol (P, V) for language L is
zero-knowledge if for every PPT adversarial verifier V*, there exists a PPT simulator
S such that the following ensembles are computationally indistinguishable over x € L:

{VieWV*<P’ V*(Z)>(x)}xeL,ze{0,l}* ~{S(x, Z)}xeL,ze{O,l}*

In this work we consider the setting of parallel composition. An m-session parallel
adversarial verifier V* is PPT machine that, on common input x and auxiliary input
Z, interacts with m(]x|) independent sessions of P in parallel. While V* must schedule
the messages of different sessions in parallel, V* may choose to abort in some sessions
and continue the protocol in other sessions.

Definition 3 (Parallel Zero-Knowledge). An interactive protocol (P, V') for language
L is parallel zero-knowledge if for every polynomial m and every PPT m-session
parallel adversarial verifier V*, there exists a PPT simulator S such that the following
ensembles are computationally indistinguishable over x € L:

{Viewy(P, V*(Z)>(x)}xeL,ze{0,1}* ~{S(x, Z)}xeL,ze{O,l}*

2.3. Witness Indistinguishability

An interactive protocol is witness indistinguishable (W) [5] if the verifier’s view is
“independent” of the witness used by the prover for proving the statement. In this con-
text, we focus on languages L € NP with a corresponding witness relation Ry,. Namely,
we consider interactions in which on common input x the prover is given a witness in
R, (x). For any adversarial verifier V*, let Viewy« (P (w), V (z))(x) be the random vari-
able that denotes V*’s view in an interaction with P, when V* is given auxiliary input
z, P is given witness w, and both parties are given common input x.
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Definition 4 (Witness Indistinguishability). An interactive protocol (P, V) for L € NP
is witness indistinguishable for R if for every PPT adversarial verifier V*, and for
every two sequences {w}c }xer and {w)zc}xeL, such that wi, w)zc € Ry (x) foreveryx € L,
the following ensembles are computationally indistinguishable over x € L:

{VieWV*<P(wi)’ V*(Z)>(x)}xeL,ze{0,l}* ~ {VieWV*<P(w§)v V*(Z)>(x)}x€L,z€{0,l}*

2.4. Universal Arguments

Universal arguments (introduced in [2] and closely related to CS-proofs [16]) are used
in order to provide “efficient” proofs to statements of the form y = (M, x, t), where y
is considered to be a true statement if M is a non-deterministic machine that accepts
x within ¢ steps. The corresponding language and witness relation are denoted L;; and
Ry, respectively, where the pair (M, x,t), w) is in Ry, if M (viewed here as a two-
input deterministic machine) accepts the pair (x, w) within ¢ steps. Notice that every
language in NP is linear-time reducible to L;,. Thus, a proof system for Ly, allows us to
handle all NP-statements. In fact, a proof system for Ly, enables us to handle languages
that are presumably “beyond” NP, as the language L;; is NE-complete (hence the name
universal arguments).

Definition 5 (Universal Argument). A pair of interactive Turing machines (P, V) is
called a universal argument system if it satisfies the following properties:

e Efficient verification: There exists a polynomial p such that for any y = (M, x, t),
the total time spent by the (probabilistic) verifier strategy V', on common input y,
is at most p(]y|). In particular, all messages exchanged in the protocol have length
smaller than p(]y]).

e Completeness by a relatively efficient prover: For every ((M, x, t), w) in Ry,

Pr[(P(w), V)M, x,1)=1] =1

Furthermore, there exists a polynomial g such that the total time spent by P (w), on
common input (M, x, t), is at most g (T (x, w)) < g(¢t), where Ty (x, w) denotes
the running time of M on input (x, w).

e Computational Soundness: For every polynomial-size circuit family {P},cn, and
every triplet (M, x,t) € {0, 1} \ Ly,

Pr[(PF, V)M, x,1)=1] < v(n)

where v(-) is a negligible function.

e Weak proof of knowledge: For every positive polynomial p there exists a positive
polynomial p’ and a probabilistic polynomial-time oracle machine E such that
the following holds: for every polynomial-size circuit family {P},cn, and every
sufficiently long y = (M, x, 1) € {0, 1}* if Pr[(P}, V)(y) = 11> 1/p(|y|) then

1

Pr[3w = w1, ... w, € Ry(y) st Vi € [t], B (v, i) =w;] > ———
p'yD

2 Furthermore, every language in NEXP is polynomial-time (but not linear-time) reducible to Ly;.
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where Ry (y) &ef {w:(y,w) € Ry} and Ef;(~, -) denotes the function defined by
fixing the random tape of E to equal r, and providing the resulting E, with oracle
accessto P.

2.5. Commitment Schemes

Commitment protocols allow a sender to commit itself to a value while keeping it se-
cret from the receiver; this property is called hiding. At a later time, the commitment
can only be opened to a single value as determined during the commitment protocol;
this property is called binding. Commitment schemes come in two different flavors,
statistically binding and statistically hiding; we only make use of statistically binding
commitments in this paper. Below we sketch the properties of a statistically binding
commitment; full definitions can be found in [10].

In statistically binding commitments, the binding property holds against unbounded
adversaries, while the hiding property only holds against computationally bounded
(non-uniform) adversaries. The statistical-binding property asserts that, with over-
whelming probability over the randomness of the receiver, the transcript of the inter-
action fully determines the value committed to by the sender. The computational-hiding
property guarantees that the commitments to any two different values are computation-
ally indistinguishable.

Non-interactive statistically binding commitment schemes can be constructed using
any one-to-one one-way function (see Sect. 4.4.1 of [10]). Allowing some minimal
interaction (in which the receiver first sends a single random initialization message),
statistically binding commitment schemes can be obtained from any one-way function
[14,17].

3. A Non-black-box Public-Coin Parallel ZK Argument

3.1. The Protocol

Our non-black-box public-coin parallel zero-knowledge argument is similar to the non-
black-box public-coin bounded-concurrent zero-knowledge argument of Barak [1]. Our
argument PARALLELZKARG is described in Fig. 1 which utilizes an additional rela-
tion Rg defined in Fig. 2. PARALLELZKARG is constant round, and can be based on
collision-resistant hash functions. Intuitively, the zero-knowledge simulator will use a
witness of the relation Rg as a trapdoor.

In our construction, ¢ denotes a vector, and ¢_; denotes the same vector with the ith
element removed (i.e., ¢_1 is one shorter than ¢); {H,}, denotes a family of collision-
resistant hash functions indexed by integer n; { fs}; denotes a family of pseudorandom
functions indexed by s € {0, 1}*; and, Com(x; ) denotes a statistically binding commit-
ment of x using randomness r. We also make use of a witness-indistinguishable univer-
sal argument of knowledge, WI UARG [2], because the relation R is quasi-polynomial
time (n'°2") instead of polynomial time.

Simplifying Assumptions We remark that the relation presented in Fig. 2 is slightly
oversimplified and only works when {H,}, is collision resistant against “slightly”
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PROTOCOL PARALLELZKARG

Common Input: An instance x of a language L € NP with witness relation Ry.
Stage One:

V — P:Send h < 'H,.
P — V:Send ¢ = Com(0").

V — P:Send r & {0, 1)
Stage Two:
P < V: AWIUARG (Pya, Vua) proving the OR of the following statements:

1. 3w e {0, 1}PYID gt Ry (x, w) =1.
2. 31, m,i,s,h,c)st.Rs({h,c,r), II,m,i,s, h,c))=1.

Fig. 1. A public-coin non-black-box parallel zero-knowledge protocol.

Instance: A triplet (h, c,r) € H, x {0, 1} x {0, 1}3".

Witness: (I1,m,i,s, h,c): A program IT € {0, 1}*, an integer m, an index i € [m],
a seed s, a m-vector of hash functions h = (hy, ..., h,,) € H)', and a m-vector of
commitments ¢ = (¢, ..., Cp).

Relation: Rs((h,c,r), {II,m,i,s,c, h)) =1 if and only if:

1. ie[m],|s|<n

2. (c)=r=(r1,...,ry) €{0, 1™ within n'°¢" steps, and r; = r.

3. h=h,',C=C,'.

4. For j € [m] wehave c; = Com(m|lh;(h_;)||h;(IT); fs(j)). (Inthe descrip-
tion of Ry, when we require c; = Com(m||hj(h_;)||h;(I); fs(j)), it is
possible to replace & (h_;) with & ;(h) (i.e., hashing the description of all
the hash functions, including # ;). For the sake of minimality, we choose to
keep hj(h_;) instead.)

Fig. 2. Rg, an NP relation that extend Barak’s construction [1] for parallel repetitions.

super-polynomially sized circuits. To make it work assuming collision resistance against
polynomially sized circuits, one should use a “good” error-correcting code ECC (i.e.,
with constant distance and with polynomial-time encoding and decoding), and replace
the commitments Com(m ||k ;(h—;)||h;(IT); fs(j)) with

Com(m | h;(ECC(h_j))|h;j(ECCUD)); f;()))

(see [2]). We also assume that Com is a one-message commitment scheme. Such
schemes can be constructed based on any one-to-one one-way function. At the cost
of a small complication, the one-message scheme could have been replaced by the
2-message commitment scheme of [17], which can be based on any one-way func-
tion [14].
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3.2. Completeness and Soundness

PARALLELZKARG is clearly complete; an honest prover can use the real witness to
complete the Stage Two argument. The soundness of PARALLELZK ARG follows from
the same ideas as Barak’s non-black-box zero-knowledge protocol.

Lemma 2. PARALLELZKARG has negligible soundness error against polynomial-
time bounded provers.

Proof. The main idea is that any deterministic program IT produces only one output
for any given input. When the prover commits to c, it can no longer change the program
IT, m or h because Com is statistically binding and H,, is collision resistant. Since we
use a pseudorandom function to determine the randomness of the commitments, the
value of I1(c) would only depend on i and s. Since there are m = poly(n) values of
i and 2" values of s, IT(c) may take on at most poly(n)2" values after the commit-
ment ¢ is fixed. On the other hand, the verifier chooses r € {0, 1}3” randomly after the
prover fixes c. Therefore, the probability that there exists some i and s so that the ith
component of IT(c) is r is less than poly(n)2" /23" < 27" and is negligible.

We now prove the lemma formally. Suppose the contrary that some efficient cheating
prover P* breaks soundness of PARALLELZKARG with polynomial probability on an
infinite sequence of inputs {x,},, x, € {0, 1} \ L. Using P*, we construct an adversary
A that acts either as a collision finder for H,,, or a cheating committer for Com.

A runs P* internally. On input 1”7, A starts by receiving a random h < H,, and
presents & to P* as the first message of PARALLELZKARG; P* responds by gener-
ating a commitment c. The following step is then repeated twice: A sends a random
challenge r € {0, 1}3" to P*, and uses the witness extractor of the Stage Two UARG
on P* to extract a (potentially quasi-polynomial-length) witness of the relation Rg (we
cannot extract a witness w € Ry (x) since x ¢ L). Because P* breaks soundness with
noticeable probability, A succeeds in extracting two witnesses, (I, m,i,s, ¢, h) and
(7', m’,i’,s’, ¢, h'), to the statements (h, c,r) and {h, c,r’) (where r and ' are in-
dependent and uniform in {0, 1}*"), also with noticeable probability. We split into two
cases:

Casel: IT#M" orm#“m orh_; #h’_,,.
By the definition of Rg, we have

¢ = ¢ = Com(m||h(h—_p) | h(1T); fs(0))
= ¢y = Com(m' [n(h_;)) | (IT"); fy(i"))

If IT # IT', then either A has found a collision to & (if A(IT) = h(IT')), or A
has broken the binding property of Com (by decommitting ¢ to two different
strings, -||2(IT) and -||h(IT")). These conclusions hold in the same manner if
m#m'orh_j #h’_,.
Case2: [T=I"andm=m"andh_;=h' ;.
In this case, given the first witness (I, m, i, s, ¢, h), the value of IT'(c');’ is
fixed modulo the value of i’ € [m] and s’ € {0, 1}"; that is, IT’(¢");» can take
on at most m - 2" values. However, 7’ € {0, 1}*" is chosen independently from
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the first witness. Therefore IT'(¢’); = r’ (required for this case to occur) is
possible with probability at most m - 2" /23" < 27",

Therefore we conclude that except with exponentially small probability (when Case 2
occurs), A either finds a collision for 4, or breaks the binding property of Com. This
gives the desired contradiction. (]

3.3. Zero Knowledge

Given a m-session parallel adversarial verifier V*, we construct a (non-black-box)
zero-knowledge simulator S = Sy+ as follows. On input x and auxiliary input z,
S = Sy=(x, z) first picks a random s € {0, 1}" to fix the pseudorandom function f;,
and starts a straight-line simulation of V*’s view. During the simulation, V* starts
by opening m sessions of PARALLELZKARG and sending hash functions A; in ses-
sion i. S is expected to respond in session i with some commitment c;, after which
V* responds with a string r;. The crux of the simulation is for S to commit to a pro-
gram [T such that I1(c¢) = r (including the case where some components of r are
aborts). But V* is just such a program. Therefore, S sets IT to V*(x,z), and sets
ci = Com(m|\h;(h_p)|lh;(IT); fs(i)). By construction, we now have for each session
i, {hi,ci,ri), (II,m,i,s,c, h)) € Rg; this is because the messages r = (rq, ..., ;) are
indeed what V* outputs given c. These witnesses allow S to complete the Stage Two
arguments. After the simulation ends, S outputs the view of V* during the simulation.
Clearly S runs in polynomial time. The following lemma establishes zero-knowledge.

Lemma 3. The following ensembles are computationally indistinguishable over
neN:

{Sy=(x, Z)}xeL,ze{O,l}* ~ {Viewy:(P, V*(Z)>(x)}xeL,ze{o,1}*

Proof. We use a simple hybrid argument.

Let S} be a simulator that is given a witness w for x € L. §j proceeds as S but instead
uses w to complete the Stage Two argument. By the witness-indistinguishable property
of the Stage Two argument (and recall that witness indistinguishability is preserved
under parallel repetition [5]), the output of S(x) and S;(x) are indistinguishable.

Let S> be the same simulator as S; except that S, uses fresh randomness for the com-
mitments ci, ..., ¢p. Since S; chooses s uniformly, f; is a pseudorandom function, and
both S and §; are efficient, the output of S;(x) and S>(x) are indistinguishable. (For-
mally, this step can be further split into m hybrids; the ith hybrid uses fresh randomness
in the first i parallel sessions, and uses pseudorandomness in the other sessions.)

Let S3 be the same simulator as S except that S3 commits to 07 in the commitments
c1, ..., Cn. By the computational-hiding property of Com, the output of S>(x) and S3(x)
are indistinguishable. (Formally, this step can be further split into m hybrids; the ith
hybrid commits to 0" in the first i parallel sessions, and commits following the strategy
of S in the other sessions.)

But S3 is identical to the honest prover, i.e., the output of S3(x) is identical to the
view of V*. Therefore, we have shown that the output of S is computationally indistin-
guishable from the view of V*. O
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Remark. Our simulation technique breaks down in the case of concurrent zero-
knowledge, where the adversarial verifier V* is allowed to arbitrarily schedule and
intertwine messages among multiple sessions. In particular, after the prover sends its
first message ¢ for some session i, if V* nests messages from other sessions, and uses
these additional messages to generate its response r in session i, then it is no longer the
case that V* on input just ¢ would produce r.
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