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Abstract. We introduce a computational problem of distinguishing between two
specific quantum states as a new cryptographic problem to design a quantum crypto-
graphic scheme that is “secure” against any polynomial-time quantum adversary. Our
problem, QSCDff, is to distinguish between two types of random coset states with a
hidden permutation over the symmetric group of finite degree. This naturally gener-
alizes the commonly-used distinction problem between two probability distributions
in computational cryptography. As our major contribution, we show that QSCDff has
three properties of cryptographic interest: (i) QSCDff has a trapdoor; (ii) the average-
case hardness of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is
computationally at least as hard as the graph automorphism problem in the worst case.
These cryptographic properties enable us to construct a quantum public-key cryptosys-
tem which is likely to withstand any chosen plaintext attack of a polynomial-time quan-
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tum adversary. We further discuss a generalization of QSCDff, called QSCDcyc, and
introduce a multi-bit encryption scheme that relies on similar cryptographic properties
of QSCDcyc.

Key words. Quantum cryptography, Computational indistinguishability, Trapdoor,
Worst-case/average-case equivalence, Graph automorphism problem, Quantum public-
key cryptosystem.

1. Introduction

In 1976, Diffie and Hellman [17] first used a computationally intractable problem to de-
sign a key exchange protocol. Computational cryptography has since become an impor-
tant field of extensive study. A number of practical cryptographic systems (e.g., public-
key cryptosystems (PKCs), bit commitment schemes (BCSs), pseudorandom genera-
tors, and digital signature schemes) have been proposed under popular intractability
assumptions, such as the hardness of the integer factorization problem (IFP) and the
discrete logarithm problem (DLP), for which no efficient classical algorithm has been
found. Using the power of quantum computation, however, we can efficiently solve
various number-theoretic problems, including IFP (and thus, the quadratic residuos-
ity problem) [56], DLP (and also the Diffie–Hellman problem) [11,33,56], and the
principal ideal problem [24] (see also [16,55]). This indicates that a quantum adver-
sary (i.e., an adversary who operates a quantum computer) can easily break any cryp-
tosystems whose security proofs rely on the computational hardness of those prob-
lems.

In order to deal with such a powerful quantum adversary, a new area of cryptogra-
phy, the so-called quantum cryptography, has emerged in the past quarter century. In
1984, Bennett and Brassard [8] first proposed a quantum key distribution scheme, in
which a party can securely send a secret key to another party through a quantum com-
munication channel. Its unconditional security was later proven by Mayers [40] (and
more sophisticated proofs were given by, e.g., Shor and Preskill [57] and Renner [51]).
Against our early hope, quantum mechanics cannot make all cryptographic schemes
information-theoretically secure since, for instance, as Mayers [39] and Lo and Chau
[37] independently demonstrated, no quantum BCS can be both unconditionally con-
cealing and binding. Therefore, “computational” approaches are still important and also
viable in quantum cryptography. Along this line of study, a number of quantum crypto-
graphic properties have been discussed from complexity-theoretic viewpoints [1,13–15,
18,48].

In fact, a quantum computer is capable of breaking the RSA cryptosystem and
many other well-known classical cryptosystems. It is therefore imperative to discover
computationally-hard problems from which we can construct a quantum cryptosystem
that is secure against any polynomial-time quantum adversary. For instance, the subset
sum (knapsack) problem and the shortest vector problem are used as bases of knapsack-
based cryptosystems [29,48] as well as lattice-based cryptosystems [4,49,52]. Since
we do not know whether these problems withstand any attack by quantum adversaries,
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we need to continue searching for better intractable problems that can guard their as-
sociated quantum cryptosystems against any computationally-bounded quantum adver-
sary.

This paper naturally generalizes a notion of the computational indistinguishability
between two probability distributions [9,20,60] to that between two quantum states.
In particular, we present a distinction problem, called QSCDff (quantum state com-
putational distinction with fully flipped permutations), between specific ensembles of
quantum states. It turns out that QSCDff enjoys useful cryptographic properties as a
building block of a secure quantum cryptosystem. Henceforth, N denotes the set of all
non-negative integers.

Definition 1.1. The advantage of a polynomial-time quantum algorithm A that dis-
tinguishes between two ensembles {ρ0(l)}l∈N and {ρ1(l)}l∈N of quantum states is the
function δA(l) defined as:

δA(l) =
∣
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for two l-qubit quantum states ρ0(l) and ρ1(l), where the subscript A of the probability
means that any output of A is determined by measuring the final state of A in the stan-
dard computational basis. We say that two ensembles {ρ0(l)}l∈N and {ρ1(l)}l∈N are com-
putationally indistinguishable if the advantage δA(l) is negligible for any polynomial-
time quantum algorithm A; namely, for any polynomial p, any polynomial-time quan-
tum algorithm A, and any sufficiently large number l, it holds that δA(l) < 1/p(l).
The distinction problem between {ρ0(l)}l∈N and {ρ1(l)}l∈N is said to be solvable with
non-negligible advantage if these ensembles are not computationally indistinguishable,
that is, there exist a polynomial-time quantum algorithm A and a polynomial p such
that
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for infinitely many numbers l.

Let N = {n ∈ N : n is even and n/2 is odd} = {n ∈ N : n ≡ 2 (mod 4)}. The problem
QSCDff asks whether an adversary can distinguish between two sequences of identical
copies of ρ+

π (n) and of ρ−
π (n), where n is a length parameter in N and π is unknown

to the adversary. For each n ∈ N , let Sn denote the symmetric group of degree n and let
Kn = {π ∈ Sn : π2 = id and ∀i ∈ {1, . . . , n}[π(i) �= i]}, where id stands for the identity
permutation. We say a permutation is odd if it can be expressed by an odd number of
transpositions, and even otherwise. Denote by sgn the sign function of permutations, de-
fined as sgn(π) = 0 if π is even and sgn(π) = 0 if π is odd. Notice that, for each n ∈ N ,
sgn(π) = 1 for every π ∈ Kn (i.e., π ∈ Kn is an odd permutation) since π consists of
n/2 disjoint transpositions; in other words, it holds that π = (i1 i2)(i3 i4) · · · (in−1 in)

for n distinct numbers i1, . . . , in in {1, . . . , n}. This simple fact will be used for certain
properties of QSCDff.
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Definition 1.2. For each π ∈ Kn, let ρ+
π (n) and ρ−

π (n) be two quantum states defined
by

ρ+
π (n) = 1

2n!
∑

σ∈Sn

(|σ 〉 + |σπ〉)(〈σ | + 〈σπ |) and

ρ−
π (n) = 1

2n!
∑

σ∈Sn

(|σ 〉 − |σπ〉)(〈σ | − 〈σπ |).

The problem QSCDff is the distinction problem between two quantum states ρ+
π (n)⊗k(n)

and ρ−
π (n)⊗k(n) for each parameter n in N , where k is a polynomial. For each fixed

polynomial k, we use the succinct notation k-QSCDff instead.

To simplify our notation, we often drop the parameter n whenever it is clear from
the context. For instance, we write ρ+⊗k

π instead of ρ+
π (n)⊗k(n). More generally, k-

QSCDff can be defined for any integer-valued function k. Note that Definition 1.2 uses
the parameter n to express the “length” of the quantum states instead of the parameter
l of Definition 1.1. Speaking of polynomial-time indistinguishability, however, there
is essentially no difference between n and l because ρ+

π and ρ−
π can be expressed by

O(n logn) qubits and k(n) is a polynomial in n. In this paper, the parameter n serves as
a unit of the computational complexity of our target problem and it is often referred to
as the security parameter in a cryptographic context.

1.1. Our Contributions

This paper presents three properties of QSCDff and their direct implications toward
building a secure quantum cryptographic scheme. These properties are summarized as
follows: (i) QSCDff has a trapdoor; namely, we can efficiently distinguish between ρ+

π

and ρ−
π if π ∈ Kn is known; (ii) The average-case hardness of QSCDff over a randomly

chosen permutation π ∈ Kn coincides with its worst-case hardness; (iii) QSCDff is com-
putationally at least as hard in the worst case as the graph automorphism problem (GA),
where GA is the graph-theoretical problem defined as:

GRAPH AUTOMORPHISM PROBLEM (GA):
input: an undirected graph G = (V ,E), where V is a set of nodes and E is
a set of edges;
output: YES if G has a non-trivial automorphism, and NO otherwise.

Since there is no known efficient algorithmic solution for GA, the third property sug-
gests that QSCDff should be difficult to solve in polynomial time. We are also able to
show, without any assumption, that no time-unbounded quantum algorithm can solve
o(n logn)-QSCDff. Making use of the aforementioned three cryptographic properties,
we can design a computationally-secure quantum PKC whose security relies on the
worst-case hardness of GA. The following subsection will discuss in depth numerous
advantages of using QSCDff as a basis of secure quantum cryptosystems.

As a further generalization of QSCDff, we present another distinction problem
QSCDcyc which satisfies the following cryptographic properties: (i) it has a trapdoor and
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(ii) its average-case hardness coincides with the worst-case hardness. This new problem
becomes a basis for another public-key cryptosystem that can encrypt messages longer
than those encrypted by the encryption scheme based on QSCDff.

1.2. Comparison Between Our Work and Previous Work

In a large volume of the existing literature, computational-complexity aspects of quan-
tum states have been spotlighted in connection to quantum cryptography. In the con-
text of quantum zero-knowledge proofs, for instance, the notion of statistical distin-
guishability between two quantum states was investigated by Watrous [59] and also by
Kobayashi [34]. They proved that certain problems of statistical distinction between
two quantum states are promise-complete for quantum zero-knowledge proof systems.
Concerning the computational complexity of quantum-state generation, Aharonov and
Ta-Shma [2] studied its direct connection to quantum adiabatic computing as well as
statistical zero-knowledge proofs. In a similar vein, our distinction problem QSCDff is
also rooted in computational complexity theory.

In the remaining of this subsection, we briefly discuss various advantages of using
QSCDff as a basis of quantum cryptosystems by comparing it with the underlying prob-
lems of existing cryptosystems.

Average-Case Hardness Versus Worst-Case Hardness For any given problem, its ef-
ficient solvability on average does not, in general, guarantee that the problem should
be solved efficiently even in the worst case. Consider the following property of crypto-
graphic problems: the average-case hardness of the problem is “equivalent” to its worst-
case hardness under a certain type of polynomial-time reduction. Since the worst-case
hardness of the problem is much more desirable, this average-case/worst-case property
certainly increases our confidence in the security of the cryptographic scheme. Unfor-
tunately, few cryptographic problems are known to enjoy this property.

In the literature, there are two major categories of worst-case/average-case reduc-
tions. The first category involves a strong reduction, which transforms an arbitrary in-
stance of length n to a random instance of the same length n or rather length polyno-
mial in n. With this strong reduction, Ajtai [3] found a remarkable connection between
average-case hardness and worst-case hardness of certain variants of the so-called short-
est vector problem (SVP). He gave an efficient reduction from a problem of approxi-
mating the shortest vector of a given n-dimensional lattice in the worst case to another
problem of approximating the shortest vector of a random lattice within a larger approx-
imation factor. Later, Micciancio and Regev [41] established a much better average-
case/worst-case connection with respect to the approximation of SVP.

Unlike the first one, the second category is represented by a weak reduction of Tompa
and Woll [58], where the reduction is randomized only over a certain portion of all the
instances. A typical example is DLP, which can be randomly reduced to itself by a
reduction that maps instances not to all instances of the same length but rather to all
instances of the same underlying group. Concerning DLP, it is not known whether an
efficient reduction exists from DLP with the worst-case prime to DLP with a random
prime. By Shor’s algorithm [56], we can efficiently solve DLP and the inverting problem
of the RSA function, which have worst-case/average-case reductions of the second cat-
egory. The graph isomorphism problem (GI) and the aforementioned GA—well-known
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graph-theoretical problems—also satisfy weak worst-case/average-case reductions [58]
although there is no known cryptosystem whose security relies on their hardness; see
[10] and references therein for more information on worst-case/average-case reductions.

In this paper, we show that QSCDff has a worst-case/average-case reduction of the
first category. Unlike the reduction of DLP, our reduction depends only on the size of
each instance. In fact, our distinction problem QSCDff is the first cryptographic problem
having a worst-case/average-case reduction of the first category; namely, the worst case
of the problem can be reduced to the average case of the same problem. Our reduction
is similar in flavor to the reductions used for the aforementioned lattice problems. In
the case of the approximation of SVP, however, an approximation problem of SVP can
be reduced randomly only to another approximation problem with a worse parameter.
Note that, on a quantum computer, no efficient solution is currently known for QSCDff.

Computational Hardness of Underlying Computational Problems The hidden sub-
group problem (HSP) has played a central role in various discussions on the strengths
and limitations of quantum computation. The aforementioned IFP and DLP can be re-
duced to special cases of HSP on Abelian groups (AHSP). Kitaev [33] showed how to
solve AHSP efficiently; in particular, he gave a polynomial-time algorithm that performs
the quantum Fourier transformation over Abelian groups, which is a generalization of
the quantum Fourier transformation used in, e.g., Shor’s algorithm [56]. To solve HSP
on non-Abelian groups, a simple application of currently known techniques may not be
sufficient despite of the existence of an efficient quantum algorithm for AHSP. Notice
that over certain specific non-Abelian groups HSP was already solved in [6,19,22,26,
36,43,50]. Another important variant of HSP is HSP on the dihedral groups (DHSP).
Regev [50] demonstrated a quantum reduction from the unique shortest vector prob-
lem (uSVP) to a slightly different variant of DHSP, where uSVP can serve as a basis
of lattice-based PKCs defined in [4,49]. A subexponential-time quantum algorithm for
DHSP was found by Kuperberg [36]. Although these results do not immediately give a
desired subexponential-time quantum algorithm for uSVP, it could eventually lead us to
design the desired algorithm.

Our problem QSCDff is closely related to another variant: HSP on the symmetric
groups (SHSP), which appears to be much more difficult to solve than the aforemen-
tioned variants of HSP do. Note that no known subexponential-time quantum algorithm
exists for SHSP. Recently, Hallgren, Russell, and Ta-Shma [26] introduced a distinction
problem, similar to QSCDff, between certain two quantum states to discuss the compu-
tational intractability of SHSP by a “natural” extension of Shor’s algorithm [56]. In this
paper, we refer to their distinction problem as DIST. An efficient solution to DIST gives
rise to an efficient quantum algorithm for a certain special case of SHSP. To solve DIST,
as they showed, we require exponentially many trials of the so-called weak Fourier sam-
pling that works on a single copy of the quantum states. In other words, exponentially
many copies are needed in total as far as the weak Fourier sampling is used.

This result was improved by Grigni, Schulman, Vazirani, and Vazirani [22], who
proved that exponentially many copies are necessary even if we use a powerful method,
known as strong Fourier sampling, along with a random choice of the bases of the repre-
sentations of the symmetric group Sn. Concerning the computational hardness of SHSP,
Kempe and Shalev [32] further expanded the results of [22,26] with quantum Fourier
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sampling methods. Moore, Russell, and Schulman [44], on the contrary, demonstrated
that, regardless of the method (such as the above quantum Fourier sampling methods),
any time-unbounded quantum algorithm working on a single copy needs exp(Ω(n))

trials to solve DIST. Even for the case of two copies, Moore and Russell [42] argued
that any time-unbounded quantum algorithm that simultaneously works over two copies
requires exp(Ω(

√
n/ logn)) trials at best. Their results were further improved by Hall-

gren, Moore, Rötteler, Russell, and Sen [25], who proved that no time-unbounded quan-
tum algorithm solves DIST even if it simultaneously works over o(n logn) copies. In
this paper, we show that the distinction problem DIST is, in fact, polynomial-time re-
ducible to QSCDff. This immediately implies, from the above results, that no quantum
algorithm solves QSCDff using o(n logn) copies.

Even by supplying sufficiently many copies to an algorithm, there is no known
subexponential-time quantum algorithm that solves QSCDff, and thus finding such an
algorithm seems a daunting task. This situation indicates that our problem, QSCDff, is
much more suitable than, for example, uSVP for an underlying intractable problem to
build a secure cryptosystem. There is a similarity with the classical case of DLP over
different groups; namely, DLP over Z

∗
p (where p is a prime) is classically computable

in subexponential time whereas no known classical subexponential-time algorithm ex-
ists for DLP over certain groups in elliptic curve cryptography. From this reason, it is
generally believed that DLP over such groups is more reliable than DLP over Z

∗
p .

We prove that the computational complexity of QSCDff is lower-bounded by that
of GA. Well-known upper bounds of GA include NP ∩ co-AM [21,54], SPP [5], and
UAP [12]; however, GA is not known to sit in NP ∩ co-NP. Notice that, since most
cryptographic problems fall in NP ∩ co-NP, very few cryptographic systems are lower-
bounded by the worst-case hardness of problems outside of NP ∩ co-NP.

Quantum Computational Cryptography Apart from PKCs, quantum key distribution
gives a foundation to symmetric-key cryptology; for instance, the quantum key distribu-
tion scheme in [8] achieves unconditionally secure sharing of secret keys in symmetric-
key cryptosystems (SKCs) through an authenticated classical communication channel
and an insecure quantum communication channel. Undoubtedly, both SKCs and PKCs
have their own advantages and disadvantages. Compared with SKCs, PKCs require
fewer secret keys in a large-scale network; however, they often need certain intractabil-
ity assumptions for their security proofs and are typically vulnerable to, e.g., the man-in-
the-middle attack. As an immediate application of QSCDff, we propose a new compu-
tational quantum PKC whose security relies on the computational hardness of QSCDff.

Of many existing PKCs, few make their security proofs solely rely on the worst-
case hardness of their underlying problems, such as lattice-based PKCs (see, e.g.,
[52]). A quantum adversary is a powerful foe who can easily break many PKCs whose
underlying problems are number-theoretic because these problems can be efficiently
solved on a quantum computer. Based on a certain subset of the knapsack problem,
Okamoto, Tanaka, and Uchiyama [48] proposed a quantum PKC which withstands cer-
tain well-known quantum attacks. Our proposed quantum PKC also seems to fend off a
polynomial-time quantum adversary since we can reduce the problem GA to QSCDff,
where GA is not known to be solved efficiently on a quantum computer.
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1.3. Later Work

After the publication of the preliminary version [30] of this paper, the notion of
quantum-state indistinguishability and its associated quantum encryption schemes have
been further studied. Here are some of the recent results related to the topics of this
paper. Hayashi, Kawachi, and Kobayashi [27] showed that QSCDcyc satisfies the indis-
tinguishability property against time-unbounded quantum algorithms in such a way that
QSCDff does. In information-theoretical settings, Nikolopoulos [46] and Nikolopou-
los and Ioannou [47] proposed new quantum encryption schemes. Kawachi and Port-
mann [31] proved that, with respect to the ratio of message length and key size, any
quantum encryption scheme has no advantage over a classical one-time pad scheme if
we impose certain information-theoretically strong security requirement on the quantum
encryption scheme.

2. Cryptographic Properties of QSCDff

Through this section, we will show that QSCDff enjoys the following three crypto-
graphically useful properties: (i) a trapdoor, (ii) the equivalence between average-case
hardness and worst-case hardness under polynomial-time reductions, and (iii) a reduc-
tion from two computationally-hard problems to QSCDff. These properties will help us
to construct a quantum PKC in Sect. 3. We assume, throughout this paper, the reader’s
familiarity with the basics of quantum computation [45] and of finite group theory [53].

All the cryptographic properties of QSCDff are consequences of the following char-
acteristics of the set Kn of the hidden permutations. (i) Each permutation π ∈ Kn is of
order 2. This provides the trapdoor of QSCDff. (ii) For any π ∈ Kn, the conjugacy class
{τ−1πτ : τ ∈ Sn} of π is equal to Kn. This property enables us to prove the equiva-
lence between the worst-case hardness and average-case hardness of QSCDff. (iii) The
problem GA is (polynomial-time Turing) equivalent to its subproblem with the promise
that any given graph has either a unique non-trivial automorphism in Kn or none at all.
This equivalence relation is used to give a complexity-theoretic lower bound of QSCDff,
that is, the average-case hardness of QSCDff is lower-bounded by the worst-case hard-
ness of GA. To prove those properties, we introduce two new techniques: (i) a variant
of the so-called coset sampling method, which is widely used in various extensions of
Shor’s well-known algorithm (see, e.g., [50]), and (ii) a quantum version of the hybrid
argument, which is a powerful tool for many security reductions used in computational
cryptography.

Now, recall the two quantum states ρ+
π = 1

2n!
∑

σ∈Sn
(|σ 〉 + |σπ〉)(〈σ | + 〈σπ |) and

ρ−
π = 1

2n!
∑

σ∈Sn
(|σ 〉 − |σπ〉)(〈σ | − 〈σπ |) for a permutation π ∈ Kn. For convenience,

let ι(n) (or simply ι) denote the maximally mixed state 1
n!

∑

σ∈Sn
|σ 〉〈σ | over Sn, which

will appear later.

2.1. A Trapdoor

We start by proving that QSCDff has a trapdoor. To prove this claim, it suffices to
present an efficient distinguishing algorithm between ρ+

π and ρ−
π with an extra knowl-

edge of their hidden permutation π ∈ Kn.
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Theorem 2.1 (Distinguishing Algorithm). There exists a polynomial-time quantum al-
gorithm that, for any security parameter n ∈ N and for any hidden permutation π ∈ Kn,
distinguishes between ρ+

π (n) and ρ−
π (n) using π with probability 1.

Proof. Fix n ∈ N arbitrarily. Let χ be any given unknown quantum state which is
limited to either ρ+

π or ρ−
π . The desired distinguishing algorithm for χ works as follows:

(D1) Prepare two quantum registers. The first register holds a control bit and the
second register holds χ . Apply the Hadamard transformation H to the first
register. The state of the system now becomes

H |0〉〈0|H ⊗ χ.

(D2) Apply the Controlled-π operator Cπ to the both registers, where the opera-
tor Cπ behaves as Cπ |0〉|σ 〉 = |0〉|σ 〉 and Cπ |1〉|σ 〉 = |1〉|σπ〉 for any given
σ ∈ Sn. Since π2 = id for every π ∈ Kn, the state of the entire system can be
expressed as

1

n!
∑

σ∈Sn

∣
∣ψ+

π,σ

〉〈

ψ+
π,σ

∣
∣ if χ = ρ+

π , and
1

n!
∑

σ∈Sn

∣
∣ψ−

π,σ

〉〈

ψ−
π,σ

∣
∣ if χ = ρ−

π ,

where |ψ+
π,σ 〉 and |ψ−

π,σ 〉 are defined as

∣
∣ψ±

π,σ

〉 = Cπ

(
1

2
|0〉(|σ 〉 ± |σπ〉) + 1

2
|1〉(|σ 〉 ± |σπ〉)

)

= 1

2
|0〉(|σ 〉 ± |σπ〉) + 1

2
|1〉(|σπ〉 ± |σ 〉).

(D3) Apply the Hadamard transformation again to the first register. Since χ is either
ρ+

π or ρ−
π , the state of the entire system becomes either

(H ⊗ I )
∣
∣ψ+

π,σ

〉 = 1√
2
|0〉(|σ 〉 + |σπ〉) or

(H ⊗ I )
∣
∣ψ−

π,σ

〉 = 1√
2
|1〉(|σ 〉 − |σπ〉),

respectively. Measure the first register in the computational basis. If the mea-
sured result is 0, then output YES; otherwise, output NO.

It is clear that the above procedure gives the correct answer with probability 1. �

2.2. A Reduction from Worst Case to Average Case

We intend to reduce the worst-case hardness of QSCDff to its average-case hardness.
Such a reduction implies that QSCDff with a random permutation π is at least as hard
as QSCDff with the fixed permutation π ′ of the highest complexity. Since the converse
reduction is trivial, the average-case hardness of QSCDff is therefore polynomial-time
Turing equivalent to its worst-case hardness.
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Theorem 2.2. Let k be any polynomial and let A be a polynomial-time quantum al-
gorithm that solves k-QSCDff with non-negligible advantage for a uniformly random
π ∈ Kn; namely, there exists a polynomial p such that, for infinitely many security pa-
rameters n in N ,

∣
∣
∣ Pr
π,A

[

A
(

ρ+
π (n)⊗k(n)

) = 1
] − Pr

π,A

[

A
(

ρ−
π (n)⊗k(n)

) = 1
]
∣
∣
∣ >

1

p(n)
,

where π is chosen uniformly at random from Kn. Then, there exists a polynomial-time
quantum algorithm B that solves k-QSCDff with non-negligible advantage for any per-
mutation π ∈ Kn.

Proof. Fix an arbitrary parameter n ∈ N that satisfies the assumption of the theorem.
Assume that our input is either ρ+

π (n)⊗k(n) or ρ−
π (n)⊗k(n). For each i ∈ {1,2, . . . , k(n)},

let χi be the ith state of the given k(n) states. Clearly, χi is either ρ+
π or ρ−

π . From
the given average-case algorithm A, we build the desired worst-case algorithm B in the
following way:

(R1) Choose a permutation τ ∈ Sn uniformly at random.
(R2) Apply τ to each χi , where i ∈ {1, . . . , k(n)}, from the right. If χi = ρ+

π , then
we obtain the quantum state

χ ′
i = 1

2n!
∑

σ∈Sn

(|στ 〉 + ∣
∣σττ−1πτ

〉)(〈στ | + 〈

σττ−1πτ
∣
∣
)

= 1

2n!
∑

σ ′∈Sn

(∣
∣σ ′〉 + ∣

∣σ ′τ−1πτ
〉)(〈

σ ′∣∣ + 〈

σ ′τ−1πτ
∣
∣
)

.

When χi = ρ−
π , we instead obtain χ ′

i = 1
2n!

∑

σ ′∈Sn
(|σ ′〉 − |σ ′τ−1πτ 〉)(〈σ ′| −

〈σ ′τ−1πτ |).
(R3) Invoke the average-case quantum algorithm A on the input

⊗k
i=1 χ ′

i .
(R4) Output the outcome of A.

Let π ∈ Kn. Note that, for each τ ∈ Sn, τ−1πτ belongs to Kn. Moreover, for every
π ′ ∈ Kn, there exists a τ ∈ Sn satisfying τ−1πτ = π ′, from which it follows that the
conjugacy class {τ−1πτ : τ ∈ Sn} of π is equal to Kn. As shown below, the number of
all permutations τ ∈ Sn for which τ−1πτ = π ′ is independent of the choice of π ′ ∈ Kn.

Claim 1. For any permutations π,π ′,π ′′ ∈ Kn, |{τ ∈ Sn : τ−1πτ = π ′}| = |{τ ∈ Sn :
τ−1πτ = π ′′}|.

Proof. Define a map μτ : Kn → Kn as μτ (σ ) = τ−1στ and a set Tπ,π ′ := {μτ :
μτ (π) = π ′}. It is obvious that, by defining a group operation “ · ” as μτ · μτ ′(·) =
μτ (μτ ′(·)), Tπ,π becomes a subgroup of Sn := {μτ : τ ∈ Sn}. Therefore, Sn has a coset
decomposition with respect to its subgroup Tπ,π for any π ∈ Kn and each coset coin-
cides with Tπ,π ′ for a certain π ′. This shows that |Tπ,π ′ | = |Tπ,π ′′ | for every pair π ′,π ′′.
Since μτ and τ have a one-to-one correspondence, it follows that, for every π ′,π ′′,
|{τ ∈ Sn : τ−1πτ = π ′}| = |{τ ∈ Sn : τ−1πτ = π ′′}|. �
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The above-mentioned properties imply that τ−1πτ is indeed uniformly distributed
over Kn. Therefore, by feeding the input

⊗k
i=1 χ ′

i to the algorithm A, we can achieve
the desired non-negligible advantage of A. This completes the proof. �

2.3. Computational Hardness

The third property of QSCDff relates to the computational hardness of QSCDff. We want
to present two claims that witness its relative hardness against GA. First, we prove that
the computational complexity of QSCDff is lower-bounded by that of GA by construct-
ing an efficient reduction from GA to QSCDff. Second, we briefly discuss relationships
among QSCDff, SHSP, and DIST, and we then prove that QSCDff cannot be solved
from o(n logn) copies of input instances.

Now, we prove the first claim concerning the reducibility between GA and QSCDff.
Our reduction from GA to QSCDff consists of two parts: a reduction from GA to a
variant of GA, called UniqueGAff, and a reduction from UniqueGAff to QSCDff. To
describe the desired reduction, we formally introduce UniqueGAff. Earlier, Köbler,
Schöning, and Torán [35] introduced the following unique graph automorphism prob-
lem (UniqueGA).

UNIQUE GRAPH AUTOMORPHISM PROBLEM (UniqueGA):
input: an undirected graph G = (V ,E), where V is a set of nodes and E is
a set of edges;
promise: G has either a unique non-trivial automorphism or no non-trivial
automorphism;
output: YES if G has the non-trivial automorphism, and NO otherwise.

Note that this promise problem UniqueGA is called (1GA, GA) in [35]. The unique
graph automorphism with fully-flipped permutation (UniqueGAff) is a slight modifica-
tion of UniqueGA. Recall that N = {n′ ∈ N : n′ ≡ 2 (mod 4)}.

UNIQUE GRAPH AUTOMORPHISM WITH FULLY-FLIPPED PERMUTATION

(UniqueGAff):
input: an undirected graph G = (V ,E), where V is a set of nodes and E is
a set of edges;
promise: the number n = |V | of nodes is in N . Moreover, G has either a
unique non-trivial automorphism π ∈ Kn or no non-trivial automorphism;
output: YES if G has the non-trivial automorphism, and NO otherwise.

Note that every instance G of UniqueGAff is defined only when the number n of nodes
belongs to N .

Regarding UniqueGAff, we want to prove two helpful lemmas. The first lemma uses
a variant of the so-called coset sampling method, which has been widely used in many
generalizations of Shor’s algorithm. Recall that ι(n) = 1

n!
∑

σ∈Sn
|σ 〉〈σ | for each n ∈ N .

Lemma 2.3. There exists a polynomial-time quantum algorithm that, given an in-
stance G of UniqueGAff, generates a quantum state ρ+

π if G is a “YES” instance with
its unique non-trivial automorphism π , or generates ι if G is a “NO” instance.
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Proof. Let n ∈ N . Given an instance G of UniqueGAff, we first prepare the quan-
tum state 1√

n!
∑

σ∈Sn
|σ 〉|σ(G)〉, where σ(G) is the graph resulting from relabeling its

nodes according to each permutation σ . By discarding the second register, we can ob-
tain a quantum state χ in the first register. If G is a “YES” instance with the unique
non-trivial automorphism π , then this state χ equals ρ+

π since 1√
n!

∑

σ |σ 〉|σ(G)〉 =
1√
n!

∑

σ∈Sn/〈π〉(|σ 〉 + |σπ〉)|σ(G)〉. Otherwise, since σ(G) �= σ ′(G) for any distinct

σ,σ ′ ∈ Sn, χ equals ι = 1
n!

∑

σ∈Sn
|σ 〉〈σ |. �

The second lemma requires a variant of the coset sampling method as a technical tool.
The lemma in essence relies on the fact that the hidden π ∈ Kn is an odd permutation
for each n ∈ N since, as a special property of Kn, π can be expressed as a product of an
odd number of transpositions.

Lemma 2.4. There exists a polynomial-time quantum algorithm that, given an in-
stance G of UniqueGAff, generates a quantum state ρ−

π if G is a “YES” instance with
the unique non-trivial automorphism π or generates ι if G is a “NO” instance.

Proof. Let n ∈ N . Similar to the algorithm given in the proof of Lemma 2.3, we start
with the quantum state 1√

n!
∑

σ∈Sn
|σ 〉|σ(G)〉 in two registers. Compute the sign of each

permutation in the first register and then invert its phase only when the permutation is
odd. Consequently, we obtain the quantum state 1√

n!
∑

σ∈Sn
(−1)sgn(σ )|σ 〉|σ(G)〉. Re-

call that sgn(σ ) = 0 if σ is even, and sgn(σ ) = 1 otherwise. By discarding the second
register, we immediately obtain a certain quantum state, say, χ in the first register. Note
that, since π is odd, if σ is odd (even, resp.) then σπ is even (odd, resp.). Therefore, it
follows that χ = ρ−

π if G is a “YES” instance with the unique non-trivial automorphism
π , and χ = ι otherwise. �

We are now ready to present a polynomial-time reduction from GA to QSCDff. This
implies that QSCDff is computationally at least as hard as GA for infinitely-many input
lengths n (and thus in the worst-case).

Theorem 2.5. If there exist a polynomial k and a polynomial-time quantum algorithm
that solves k-QSCDff with non-negligible advantage, then there exists a polynomial-time
quantum algorithm that solves GA in the worst case for infinitely-many input lengths n.

Proof. We first show that GA is polynomial-time Turing equivalent to UniqueGAff.
Later, we give a polynomial-time Turing reduction from UniqueGAff to QSCDff. By
combining these two reductions, we can reduce GA to QSCDff. The reduction from
GA to UniqueGAff we define is similar to the one given by Köbler, Schöning, and
Torán [35], who presented a polynomial-time Turing reduction from GA to UniqueGA.
Their polynomial-time algorithm for GA makes queries to a given oracle that correctly
represents UniqueGA on the promised inputs. This algorithm works correctly because
all queries made by the algorithm satisfy the promise of UniqueGA, that is, every query
is a graph of even number of nodes with either a unique non-trivial automorphism
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without any fixed point or no non-trivial automorphism at all. By a slight modifica-
tion of their reduction, we can obtain a reduction from GA to UniqueGAff. Further-
more, it is also possible to make our length parameter n satisfy the specific equation
n = 2(2n′ + 1), where n′ ∈ N. As a result, we obtain the following lemma.

Lemma 2.6. UniqueGAff is polynomial-time Turing equivalent to GA.

In fact, a stronger statement than Lemma 2.6 holds. When a Turing reduction to a
promise problem makes only queries that satisfy the promise of the problem, this re-
duction is called smart [23]. The reduction from GA to UniqueGA given by Köbler,
Schöning, and Torán [35] is indeed smart, and therefore so is our reduction. For read-
ability, we postpone the proof of Lemma 2.6 until Appendix.

From Lemma 2.6, it suffices to construct a reduction from UniqueGAff to QSCDff.
Assume that there exist two polynomials k and p and also a polynomial-time quan-
tum algorithm A such that, for infinitely many n’s, A solves k-QSCDff with advantage
1/p(n). Let us fix an arbitrary n for which A solves k-QSCDff with advantage 1/p(n).
On a given instance G of UniqueGAff, we perform the following procedure:

(S1) Generate from G two sequences S+ = (χ+⊗k, . . . , χ+⊗k) and S− =
(χ−⊗k, . . . , χ−⊗k) of 8p2(n)n instances by running the generation algorithms
given in Lemmas 2.3 and 2.4, respectively.

(S2) Invoke A on each component in S+ and S− as an input. Let R+ =
(A(χ+⊗k), . . . , A(χ+⊗k)) and R− = (A(χ−⊗k), . . . , A(χ−⊗k)) be the result-
ing sequences of 8p2(n)n entries.

(S3) Output YES if the difference � between the number of 1’s in R+ and that in R−
is at least 4p(n)n; output NO otherwise.

Note that if G is a “YES” instance, then S+ and S− should have the form S+ =
(ρ+⊗k

π , . . . , ρ+⊗k
π ) and S− = (ρ−⊗k

π , . . . , ρ−⊗k
π ) of 8p2(n)n entries; otherwise, we have

S+ = S− = (ι⊗k, . . . , ι⊗k). Therefore, if G is a “YES” instance, the numbers of 1s in
R+ and in R− are highly likely different.

Finally, we estimate the difference �. Let X+ and X− be two random variables
respectively expressing the numbers of 1s in R+ and in R−. Assume that G is
a “YES” instance. Since A solves k-QSCDff with advantage 1/p(n), we have
|Pr[A(ρ+⊗k

π ) = 1] − Pr[A(ρ−⊗k
π ) = 1]| > 1/p(n). Next, we want to show that

Pr[|X+ − X−| > 4p(n)n] > 1 − 2e−n using the Höffding bounds, which are stated
below.

Lemma 2.7 (Höffding [28]). Let (X1, . . . ,Xm) be any sequence of independent
Bernoulli random variables on {0,1} such that Pr[Xi = 1] = p for any i ∈ {1, . . . ,m},
and let X be a random variable expressing the number of 1s in the sequence, i.e.,
X = ∑m

i=1 Xi . Then, for any 0 ≤ δ ≤ 1, it holds that

Pr
[

X > (p + δ)m
]

< e−2mδ2
and Pr

[

X < (p − δ)m
]

< e−2mδ2
.

For convenience, we define pL = max{Pr[A(ρ+⊗k
π ) = 1], Pr[A(ρ−⊗k

π ) = 1]} and
pS = min{Pr[A(ρ+⊗k

π ) = 1], Pr[A(ρ−⊗k
π ) = 1]}. From our assumption, we obtain
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pL − pS > 1/p(n). Note that R+ and R− are precisely two sequences of 8p2(n)n

independent Bernoulli random variables on {0,1} with probabilities pL and pS . We de-
note by XL (XS , resp.) the number of 1s in the sequence associated with pL (pS , resp.).
The Höffding bounds imply

Pr
[

XL < (pL − δ)m
]

< e−n and Pr
[

XS > (pS + δ)m
]

< e−n,

where m = 8p2(n)n and δ = 1/(4p(n)). Since pL − pS > 1/p(n), we obtain (pL −
pS − 2δ)m > 4p(n)n. From this inequality, it follows that

Pr
[∣
∣X+ − X−∣

∣ > 4p(n)n
] ≥ Pr

[∣
∣X+ − X−∣

∣ > (pL − pS − 2δ)m
]

≥ Pr
[

XL > (pL − δ)m ∧ XS < (pS + δ)m
]

.

Since XL and XS are independent, we obtain a lower bound:

Pr
[

XL > (pL − δ)m ∧ XS < (pS + δ)m
] ≥ (

1 − e−n
)2

> 1 − 2e−n,

from which we conclude that Pr[|X+ − X−| > 4p(n)n] > 1 − 2e−n.
Similarly, when G is a “NO” instance, we have Pr[|X+ −X−| < 4p(n)n] > 1−2e−n.

This guarantees that the above procedure solves UniqueGAff efficiently. �

As noted in Sect. 1, our distinction problem QSCDff has its roots in SHSP. A spe-
cial case of SHSP is known to be reducible to DIST, which is a problem of distin-
guishing between {ρ+

π (n)}n∈N and {ι(n)}n∈N . As Hallgren, Moore, Rötteler, Russell,
and Sen [25] demonstrated, solving DIST from o(n logn) identical copies is impossi-
ble even for a time-unbounded quantum algorithm. Now, we show a close relationship
between QSCDff and DIST.

Before stating our claim (Theorem 2.9), we present an algorithm that converts ρ+
π

to ρ−
π for each fixed π ∈ Kn. This algorithm is a key to the proof of the theorem and

further to the construction of a quantum PKC in the subsequent section.

Lemma 2.8 (Conversion Algorithm). There exists a polynomial-time quantum algo-
rithm that, with certainty, converts ρ+

π (n) into ρ−
π (n) and keeps ι(n) as it is for any

parameter n ∈ N and any hidden permutation π ∈ Kn.

Proof. Let n ∈ N be arbitrary. First, recall the definition of sgn(σ ): sgn(σ ) = 0 if σ is
even and sgn(σ ) = 1 otherwise. Let π ∈ Kn be any hidden permutation and consider its
corresponding quantum state ρ+

π . On input ρ+
π , our desired algorithm simply inverts its

phase according to the sign of the permutation. This is done by performing the following
transformation:

|σ 〉 + |σπ〉 �−→ (−1)sgn(σ )|σ 〉 + (−1)sgn(σπ)|σπ〉.
Note that determining the sign of a given permutation takes only time polynomial in n.
Since π is odd, sgn(σ ) and sgn(σπ) are different; thus, the above algorithm obviously
converts ρ+

π to ρ−
π . Moreover, the algorithm does not alter the quantum state ι. �
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The intractability result of DIST [25] stated above also holds for QSCDff. To prove
this claim, we want to show in Theorem 2.9 that DIST can be reduced to QSCDff in
polynomial time. As a result, no time-unbounded quantum algorithm can solve QSCDff
from o(n logn) copies. The proof of the theorem requires a quantum version of the
so-called hybrid argument used in computational cryptography.

Theorem 2.9. Let k be any polynomial. If there exists a quantum algorithm A such
that

∣
∣
∣Pr

A

[

A
(

ρ+
π (n)⊗k(n)

) = 1
] − Pr

A

[

A
(

ρ−
π (n)⊗k(n)

) = 1
]
∣
∣
∣ > ε(n)

for any security parameter n ∈ N , then there exists a quantum algorithm B such that,
for each n ∈ N ,

∣
∣
∣Pr

B

[

B
(

ρ+
π (n)⊗k(n)

) = 1
] − Pr

B

[

B
(

ι(n)⊗k(n)
) = 1

]
∣
∣
∣ >

ε(n)

4
.

Proof. Fix n ∈ N arbitrarily, and we hereafter omit this parameter n. Assume that a
quantum algorithm A distinguishes between ρ+⊗k

π and ρ−⊗k
π with advantage at least

ε(n). Let A′ be the algorithm that applies the conversion algorithm of Lemma 2.8 to a
given state χ (which is either ρ+⊗k

π or ι⊗k) and then feeds the resulting state χ ′ (either
ρ−⊗k

π or ι⊗k) to A. It thus follows that A′(ρ+⊗k
π ) = A(ρ−⊗k

π ) and A′(ι⊗k) = A(ι⊗k).
By the triangle inequality, we have
∣
∣
∣Pr

A

[

A
(

ρ+⊗k
π

) = 1
]−Pr

A

[

A
(

ι⊗k
) = 1

]
∣
∣
∣+

∣
∣
∣Pr

A′
[

A′(ρ+⊗k
π

) = 1
]−Pr

A′
[

A′(ι⊗k
) = 1

]
∣
∣
∣ > ε(n)

for any parameter n ∈ N . This inequality leads us to either

∣
∣
∣Pr

A

[

A
(

ρ+⊗k
π

) = 1
] − Pr

A

[

A
(

ι⊗k
) = 1

]
∣
∣
∣ >

ε(n)

2

or
∣
∣
∣Pr

A′
[

A′(ρ+⊗k
π

) = 1
] − Pr

A′
[

A′(ι⊗k
) = 1

]
∣
∣
∣ >

ε(n)

2
.

To complete the proof, we design the desired algorithm B as follows: first choose either
A or A′ at random and then simulate the chosen algorithm. It is easy to verify that B
distinguishes between ρ+⊗k

π and ι⊗k with the advantage of at least ε(n)/4. �

3. An Application to a Quantum Public-Key Cryptosystem

Section 2 has shown the three useful cryptographic properties of QSCDff. Founded on
these properties, we wish to construct a quantum PKC whose security is guaranteed by
the computational hardness of QSCDff (which can be further reduced to the hardness of
GA). As the first step, we give an efficient quantum algorithm that generates ρ+

π from π .

Lemma 3.1 (ρ+
π -Generation Algorithm). There exists a polynomial-time quantum al-

gorithm that, on input π ∈ Kn, generates the quantum state ρ+
π with probability 1.
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Proof. The desired generation algorithm, which is given below, uses two registers.
Here, we omit the proof of the correctness of the given algorithm because the correct-
ness is obvious from the description of the algorithm.

(G1) Prepare the state |0〉|id〉 in two quantum registers.
(G2) Apply the Hadamard transformation to the first register to obtain the state

1√
2
(|0〉 + |1〉)|id〉.

(G3) Perform the Controlled-π on the both registers, and we then obtain the state
1√
2
(|0〉|id〉 + |1〉|π〉).

(G4) Subtract 1 from the content of the first register only when the second register
contains π . This process gives rise to the state 1√

2
(|0〉|id〉 + |0〉|π〉).

(G5) Apply a uniformly random permutation σ to the content of the second register
from the left. The whole quantum system then becomes 1√

2
(|0〉|σ 〉+ |0〉|σπ〉).

(G6) Output the content of the second register, which produces the state ρ+
π with

probability 1.
�

Hereafter, we describe our quantum PKC and then give its security proof. For the
security proof, in particular, we need to clarify our model of adversary’s attack. Of all
attack models discussed in [7], we use a quantum analogue of the indistinguishability
against the chosen plaintext attack (IND-CPA). Our scenario is precisely as follows:

Suppose that large-scale quantum and classical networks connect a unique
network administrator, acting as a trusted third party, and numerous “ordi-
nary” network users, some of who might possibly be malicious against other
users. These parties are all capable of running polynomial-time quantum al-
gorithms. In particular, the administrator (say, Charlie) can communicate
with each network user via a secure, authenticated communication chan-
nel; namely, he can deliver to each individual user a piece of information
(both quantum and classical bits) correctly and securely through this chan-
nel. It is most likely that a financial reason could force ordinary users to
rely on cheap but insecure channels for daily person-to-person communi-
cation with other users. From such an insecure channel, a malicious party
(say, Eve) might wiretap the communication . To ensure user’s secure com-
munication, upon a request from a user (say, Bob) who wants to receive a
message from other users, Charlie generates a decryption (or private) key
π and sends it through the secure channel to Bob. Charlie also generates an
encryption (or public) key ρ+

π for anyone who wants to communicate with
Bob.
Now, suppose that an honest party, called Alice, wishes to send Bob a clas-
sical single-bit message securely. For this purpose, she first requests Charlie
for Bob’s encryption key ρ+

π . Using this key, she encrypts her secret mes-
sage into a quantum state ρ (either ρ+

π or ρ−
π ) as a ciphertext and then

sends it to Bob through an available insecure quantum channel. To eaves-
drop Alice’s secret message, Eve intercepts Alice’s ciphertext ρ. In addi-
tion, since Eve is also a legitimate network user, she can request numerous
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Fig. 1. Our public-key cryptosystem.

copies of the encryption key ρ+
π from Charlie (within a polynomial amount

of time). Finally, Eve attempts to learn the information involved with Alice’s
secret message by applying a certain polynomial-time quantum algorithm
to the ciphertext ρ as well as a polynomially many copies of the encryption
key ρ+

π obtained from Charlie as supplemental information.

In the case of classical chosen plaintext attack, all that Eve can collect are Alice’s
ciphertext and Bob’s encryption key. Our scenario is a natural generalization of this
classical case because Eve obtains only a quantum state representing Alice’s encrypted
message and copies of a quantum state serving as an encryption key.

Our scenario demands that the administrator should generate and distribute user’s
private and public keys. In a practical framework of classical PKCs, such a scenario
has been frequently used; for example, a governmental agency may be authorized as
a third party to handle those user’s keys. Note that Charlie’s distribution of decryption
keys is done through the secure channel only once at the key setup. With their own
single decryption keys, all the users can transmit their messages securely to others a
reasonably large number of times, even without any extra secret information shared
among them. To the contrary, SKCs require the users to share symmetric secret keys
between every pair of them. Thus, even under this scenario, we can enjoy advantages of
PKCs over SKCs that stem from the asymmetry of keys in many-to-many communica-
tion.

Now, we explain our quantum PKC protocol in detail. In our protocol, Alice trans-
mits a single-bit message to Bob using an O(n logn)-qubit-long encryption key. Our
protocol consists of three phases: key setup phase, key transmission phase, and mes-
sage transmission phase. Figure 1 illustrates our protocol.

The following is the step-by-step description of our quantum PKC protocol.

[Key setup phase]

(A1) Charlie generates Bob’s decryption key π uniformly at random from Kn, and
then sends it to Bob via a secure and authenticated channel.

[Key transmission phase]

(A2) Alice requests Bob’s encryption key from Charlie.
(A3) Using π , Charlie generates a copy of the encryption key ρ+

π .
(A4) Alice obtains a copy of the encryption key ρ+

π from Charlie.
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[Message transmission phase]

(A5) Alice encrypts 0 or 1 into ρ+
π or ρ−

π , respectively, and then sends this encrypted
message to Bob.

(A6) Bob decrypts Alice’s message using the decryption key π .

Step (A1) can be implemented as follows. Recall that π ∈ Kn consists of n/2 disjoint
transpositions. We first choose distinct two numbers i1 and i2 from {1,2, . . . , n} uni-
formly at random, and make a transposition (i1 i2). Next, choosing other distinct two
numbers i3 and i4 from {1,2, . . . , n} \ {i1, i2} uniformly at random, we make another
transposition (i3 i4). By repeating this process, n/2 disjoint transpositions are cho-
sen uniformly at random. From them, define π = (i1, i2) · · · (in/2−1, in/2). Step (A3)
is done by the ρ+

π -generation algorithm of Lemma 3.1. The conversion algorithm of
Lemma 2.8 implements Step (A5) since Alice sends Bob either the received state ρ+

π or
its converted state ρ−

π . Finally, the distinguishing algorithm of Theorem 2.1 implements
Step (A6).

The security proof of our PKC is done by reducing GA to Eve’s attacking strategy
during the message transmission phase. Our reduction is a simple modification of the
reduction given in Theorem 2.5.

Proposition 3.2. Let A be any polynomial-time quantum adversary who attacks our
quantum PKC during the message transmission phase. Assume that there exist two poly-
nomials p(n) and l(n) satisfying that

∣
∣
∣ Pr
π,A

[

A
(

ρ+
π ,ρ+⊗l(n)

π

) = 1
] − Pr

π,A

[

A
(

ρ−
π ,ρ+⊗l(n)

π

) = 1
]
∣
∣
∣ >

1

p(n)

for infinitely many parameters n ∈ N . Then, there exists a polynomial-time quantum
algorithm that solves GA for infinitely many input sizes n in the worst case with non-
negligible probability.

Proof. The proposition immediately follows from the proof of Theorem 2.5 by replac-
ing ρ+⊗k

π , ρ−⊗k
π , and ι⊗k in the proof with (ρ+

π ,ρ
+⊗l(n)
π ), (ρ−

π ,ρ
+⊗l(n)
π ), and (ι, ι⊗l(n)),

respectively. �

4. A Generalization of QSCDff

In our QSCDff-based quantum PKC, Alice encrypts a single-bit message using an
O(n logn)-qubit encryption key. We wish to show how to increase the size of Alice’s
encryption message and construct a multi-bit quantum PKC built upon a generalization
of QSCDff, called QSCDcyc (QSCD with cyclic permutations), which is a distinction
problem among multiple ensembles of quantum states. Recall that Definition 1.1 has
introduced the notion of computational indistinguishability between two ensembles of
quantum states. This notion can be naturally generalized as follows to multiple quantum
state ensembles.
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Definition 4.1. We say that m ensembles {ρ0(l)}l∈N, . . . , {ρm−1(l)}l∈N of quantum
states are computationally indistinguishable if, for any distinct pair i, j ∈ Zm, the ad-
vantage of distinguishing between the two ensembles {ρi(l)}l∈N and {ρj (l)}l∈N is neg-
ligible for any polynomial-time quantum algorithm A; namely, for any two ensem-
bles {ρi(l)}l∈N and {ρj (l)}l∈N, any polynomial p, any polynomial-time quantum algo-
rithm A, and any sufficiently large number l, it holds that

∣
∣
∣Pr

A

[

A
(

ρi(l)
) = 1

] − Pr
A

[

A
(

ρj (l)
) = 1

]
∣
∣
∣ <

1

p(l)
.

The distinction problem among the ensembles {ρ0(l)}l∈N, . . . , {ρm−1(l)}l∈N is said to be
solvable with non-negligible advantage if the ensembles are not computationally indis-
tinguishable, that is, there exist two ensembles {ρi(l)}l∈N and {ρj (l)}l∈N, a polynomial-
time quantum algorithm A, and a polynomial p such that

∣
∣
∣Pr

A

[

A
(

ρi(l)
) = 1

] − Pr
A

[

A
(

ρj (l)
) = 1

]
∣
∣
∣ >

1

p(l)

for infinitely many numbers l ∈ N.

We wish to define a specific distinction problem, denoted succinctly QSCDcyc, among
m ensembles of quantum states. First, we define a new hidden permutation, which will
be encoded into certain quantum states. For any fixed number n ∈ N, let us assume that
m ≥ 2 and m divides n. The new hidden permutation π consists of disjoint n/m cyclic
permutations of length m; in other words, π is of the form

π = (i0 i1 · · · im−1) · · · (in−m in−m+1 · · · in−1),

where i0, . . . , in−1 ∈ Zn and is �= it if s �= t for any pair (s, t). Such a permutation π

has the following two properties: (i) π has no fixed points (i.e., π(i) �= i for any i ∈ Zn)
and (ii) π is of order m (i.e., πm = id). For convenience, we denote by Km

n (⊆Sn) the
set of all such permutations.

With a help of the hidden permutation π , we can define the new quantum states |Φσ
π,s〉

as follows. For each σ ∈ Sn, π ∈ Km
n , and s ∈ Zm, let

∣
∣Φσ

π,s

〉 = 1√
m

m−1
∑

t=0

ωst
m

∣
∣σπt

〉

,

where ωm = e2πi/m. At last, the distinction problem QSCDcyc is defined in the follow-
ing way.

Definition 4.2. The problem QSCDcyc is a distinction problem among m ensembles

{ρ(0)
π (n)⊗k(n)}n∈N, . . . , {ρ(m−1)

π (n)⊗k(n)}n∈N of quantum states, where k is an arbitrary
polynomial and the notation ρ

(s)
π (n) denotes the mixed state 1

n!
∑

σ∈Sn
|Φσ

π,s〉〈Φσ
π,s |

for each π ∈ Km
n . When k is fixed, we use the notation k-QSCDcyc instead.
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Similar to the case of QSCDff, we also drop the parameter n wherever possible. Note
that QSCDff coincides with QSCDcyc with m = 2 and n is of the form 2(2n′ + 1) for a
certain number n′ ∈ N.

This new problem QSCDcyc also enjoys useful cryptographic properties. We first
present a trapdoor of QSCDcyc. In the case of QSCDff, because its trapdoor information
π is a permutation of order two, we encode only a single bit into the both quantum states
ρ+

π and ρ−
π . On the contrary, since QSCDcyc uses a permutation π of order m ≥ 2, it is

possible to encode logm bits into the m quantum states ρ
(0)
π , . . . , ρ

(m−1)
π .

Now, we present a generalized distinguishing algorithm working for ρ
(s)
π ’s.

Theorem 4.3 (Generalized Distinguishing Algorithm). There exists a polynomial-
time quantum algorithm that, for each n ∈ N, π ∈ Km

n , and s ∈ Zm, decrypts ρ
(s)
π (n)

to s with exponentially-small error probability.

Proof. Let χ be any given quantum state of the form ρ
(s)
π for a certain hidden per-

mutation π ∈ Km
n and also a certain hidden parameter s. Note that χ is a mixture of all

pure states |Φσ
π,s〉 over a randomly chosen σ ∈ Sn. It thus suffices to give a polynomial-

time quantum algorithm that decrypts |Φσ
π,s〉 to s for each fixed σ . Such an algorithm

can be given by conducting the following Generalized Controlled-π Test, which is a
straightforward generalization of the distinguishing algorithm given in the proof of The-
orem 2.1. To define this test, we first recall the quantum Fourier transformation Fm over
Zm as well as its inverse F−1

m : for any x ∈ Zm,

Fm|x〉 = 1√
m

∑

y∈Zm

ω
xy
m |y〉 and F−1

m |x〉 = 1√
m

∑

y∈Zm

ω
−xy
m |y〉.

The Generalized Controlled-π Test is described below.

[Generalized Controlled-π Test]

(D1′) Prepare two quantum registers. The first register holds a control string, initially
set to |0〉, and the second register holds the quantum state |Φσ

π,s〉. Apply the
inverse Fourier transformation F−1

m to the first register. Meanwhile, assume
that we can perform the Fourier transformation exactly. The entire system then
becomes

1√
m

m−1
∑

r=0

|r〉∣∣Φσ
π,s

〉 = 1

m

∑

r,t

ωst
m |r〉∣∣σπt

〉

.

(D2′) Apply π to the content of the second register r times from the right. The state
of the entire system evolves into

1

m

∑

r,t

ωst
m |r〉∣∣σπr+t mod m

〉

.
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(D3′) Apply the Fourier transformation Fm to the first register and we then obtain
the state

1

m

∑

r,t

1√
m

m−1
∑

r ′=0

ωrr ′
m

∣
∣r ′〉ωst

m

∣
∣σπr+t mod m

〉

= 1

m3/2

∑

r,r ′,t
ωst+rr ′

m

∣
∣r ′〉∣∣σπr+t mod m

〉

= 1

m3/2

∑

r,t

ωs(r+t)
m |s〉∣∣σπr+t mod m

〉

+ 1

m3/2

∑

r,t,r ′ �=s

ωst+rr ′
m

∣
∣r ′〉∣∣σπr+t mod m

〉

= 1√
m

∑

u

ωsu
m |s〉∣∣σπu

〉 + 1

m3/2

∑

r,u,r ′ �=s

ωsu+r(r ′−s)
m

∣
∣r ′〉∣∣σπu

〉

(u := r + t mod m)

= 1√
m

m−1
∑

u=0

ωsu
m |s〉∣∣σπu

〉 = |s〉∣∣Φσ
π,s

〉

(

since
∑

r

ωsu+r(r ′−s)
m = 0 for any u, s, r ′(�= s)

)

.

(D4′) Finally, measure the first register in the computational basis and output the
measured result s in Zm.

The error probability of the above algorithm depends only on the precision of the Fourier
transformation over Zm. As shown in [33], the quantum Fourier transformation can be
implemented with exponentially-small error probability by an application of the approx-
imated quantum Fourier transformation. Therefore, the theorem follows. �

Similar to QSCDff, the average-case hardness of QSCDcyc coincides with its worst-
case hardness.

Theorem 4.4. Let k be any polynomial. Assume that there exists a polynomial-time
quantum algorithm A that solves k-QSCDcyc with non-negligible advantage for a uni-
formly random permutation π ∈ Km

n ; namely, there exist two numbers s, s′ ∈ Zm and a
polynomial p such that, for infinitely many numbers n ∈ N,

∣
∣
∣ Pr
π,A

[

A
(

ρ(s)
π (n)⊗k(n)

) = 1
] − Pr

π,A

[

A
(

ρ(s′)
π (n)⊗k(n)

) = 1
]
∣
∣
∣ >

1

p(n)
,

where π is chosen uniformly at random from Km
n . Then, there exists a polynomial-time

quantum algorithm B that solves k-QSCDcyc with non-negligible advantage.

Proof. This proof follows an argument in the proof of Theorem 2.2. Here, we give
only a sketch of our desired algorithm B. Choose a uniformly random permutation
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τ ∈ Sn and then apply it to |Φσ
π,s〉 from the right. Now, we obtain the state

1√
m

m−1
∑

t=0

ωst
m

∣
∣σπtτ

〉 = 1√
m

m−1
∑

t=0

ωst
m

∣
∣σττ−1πtτ

〉 = 1√
m

m−1
∑

t=0

ωst
m

∣
∣στ

(

τ−1πτ
)t 〉

.

Note that ρ
(s)

τ−1πτ
(n) = 1

n!
∑

σ∈Sn
|Φστ

τ−1πτ,s
〉〈Φστ

τ−1πτ,s
| is an average-case instance of

QSCDcyc since τ−1πτ is distributed uniformly at random over Km
n . Finally, apply the

average-case algorithm A. �

We will exhibit a quantum algorithm that generates the quantum state ρ
(s)
π efficiently

from π and s. This generation algorithm will be used to generate encryption keys in our
QSCDcyc-based multi-bit quantum PKC.

Lemma 4.5 (ρ(s)
π -Generation Algorithm). There exists a polynomial-time quantum

algorithm that generates ρ
(s)
π for any s ∈ Zm and any π ∈ Km

n with exponentially-small
error probability.

Proof. The desired algorithm is a straightforward generalization of the ρ+
π -generation

algorithm given in the proof of Lemma 3.1. Using the approximated Fourier transforma-
tion [33] instead of the Hadamard transformation, we can efficiently approximate from
π the Fourier transformation Fπ over the cyclic group {id,π,π2, . . . , πm−1}, that is,

Fπ

∣
∣πs

〉 = 1√
m

m−1
∑

t=0

ωst
m

∣
∣πt

〉

,

by employing an argument similar to the proof of Lemma 3.1. Hence, we can perform
Fπ on |πs〉 with exponentially-small error probability.

Since the initial state |πs〉 can be easily generated from π , we immediately obtain
an efficient approximation of Fπ |πs〉. By applying a uniformly-random permutation
σ ∈ Sn to the resulting state from the left, the desired state ρ

(s)
π can be obtained with

exponentially-small error probability. �

Toward the end of this section, we present our multi-bit quantum PKC, based on
QSCDcyc.

[Key setup phase]

(A1′) As Bob’s decryption key, Charlie chooses an element π uniformly at random
from Kn and then sends it to Bob via a secure, authenticated channel.

[Key transmission phase]

(A2′) Alice requests Bob’s encryption key from Charlie.
(A3′) Charlie generates a copy of the encryption key (ρ

(0)
π , . . . , ρ

(m−1)
π ) from π and

sends it to Alice.
(A4′) Alice receives this copy of the encryption key from Charlie.
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[Message transmission phase]

(A5′) If her message is s ∈ Zm, Alice picks up ρ
(s)
π . She sends it to Bob as a cipher-

text.
(A6′) Bob decrypts Alice’s message using the decryption key π .

By choosing cycles one by one sequentially, we can perform Step (A1′). The ρ
(s)
π -

generation algorithm of Lemma 4.5 immediately implements Step (A3′). Alice can en-
crypt her message s simply by choosing ρ

(s)
π out of the series (ρ

(0)
π , . . . , ρ

(m−1)
π ). Finally,

the generalized distinguishing algorithm in Theorem 4.3 achieves Step (A6′).
As the final remark, we refer to a drawback of the above multi-bit encryption scheme.

A major drawback is that Charlie should send Alice all the series (ρ
(0)
π , . . . , ρ

(m−1)
π ) as

Bob’s encryption key simply because of the lack of a sophisticated converting algorithm
among different encryption keys without knowing the hidden decryption key π . This
QSCDcyc-based encryption scheme requires an O(mn logn)-qubit encryption key to
encrypt a logm-bit message whereas the QSCDff-based encryption scheme needs an
O(n logn)-qubit key per a 1-bit message. In a quick comparison, there seems to be no
advantage of the QSCDcyc-based scheme over the QSCDff-based scheme in terms of
the ratio between message length and encryption key length.

This drawback stems from the conversion algorithm, given in Lemma 2.8, used to
swap ρ+

π and ρ−
π in the QSCDff-based single-bit encryption scheme. This conversion

algorithm utilizes the “parity” of permutations σ and σπ to invert their phases with-
out using any information on π . More precisely, the algorithm implements the homo-
morphism f from Sn to {+1,−1} (∼=Z/2Z) satisfying that f (σ ) = +1 (−1, resp.)
if σ is even (odd, resp.). Unfortunately, the same algorithm fails for QSCDcyc be-
cause no homomorphism maps Sn to {1,ωm, . . . ,ωm−1

m } (∼=Z/mZ). This is shown as
follows. Let us assume, to the contrary, that there exists a homomorphism g map-
ping Sn to {1,ωm, . . . ,ωm−1

m }. The fundamental homomorphism theorem implies that
Sn/Ker(g) ∼= Z/mZ; namely, there exists an isomorphism from σ Ker(g) to g(σ ) for
every σ ∈ Sn. Note that Ker(g) is a normal subgroup in Sn. It is known that such a
normal subgroup in Sn equals either the trivial group {id} or the alternation group
An = {σ ∈ Sn : sgn(σ ) = 0} since An is a simple group for n ≥ 5 (see, e.g., Theo-
rem 3.2.1 in [53]). Apparently, there is neither isomorphism between {σAn : σ ∈ Sn}
and Z/mZ nor isomorphism between {σ : σ ∈ Sn} and Z/mZ if n > 4 and n ≥ m > 2.
This contradicts our assumption on g.

5. Concluding Remarks

We have shown that the computational distinction problem QSCDff satisfies quite use-
ful cryptographic properties which help us to design a quantum PKC whose security
is guaranteed by the computational intractability of GA. Although GA is reducible to
QSCDff in polynomial time, there seems to be a large gap between the hardness of GA
and that of QSCDff because, in the proof of Theorem 2.5, all combinatorial structures
of an input graph for GA are completely lost in constructing associated quantum states
for QSCDff and, from such states, it is impossible to recover the original graph. It is
therefore pressing to find a much better classical problem (for instance, the problems
of finding a centralizer or finding a normalizer [38]) that almost matches the compu-
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tational hardness of QSCDff. Since no fast quantum algorithm is known for QSCDff,
discovering such a fast algorithm for QSCDff may require new tools and novel proof
techniques in quantum complexity theory. Besides our quantum states {ρ+

π (n), ρ−
π (n)}

used in QSCDff, it is imperative to continue searching for other pairs of “simple” quan-
tum states whose computational indistinguishability is helpful to construct a more se-
cure cryptosystem.

Similar to QSCDff, QSCDcyc also owns useful cryptographic properties for which we
have built a multi-bit quantum PKC. Throughout our study, it is not yet clear how diffi-
cult QSCDcyc is and how secure our multi-bit quantum PKC truly is. If one successfully
proves that the worst-case hardness of QSCDcyc is lower-bounded by, e.g., the hardness
of GA, then our multi-bit quantum PKC might find a more practical use in return.
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Appendix A. A Reduction from GA to UniqueGAff

In this appendix, we prove Lemma 2.6, in which UniqueGAff is shown to be
polynomial-time Turing equivalent to GA. Earlier, Köbler, Schöning, and Torán [35]
established the polynomial-time Turing equivalence between GA and UniqueGA. We
first review their reduction and then explain how to modify it to obtain the desired re-
duction from GA to UniqueGAff. Note that the reduction from UniqueGAff to GA is
trivial since UniqueGAff is simply a special case of GA.

We begin with explaining our technical tool and notation necessary to describe the
reduction of [35]. Their reduction uses a technical tool called a label to distinguish
each node of a given graph G from the others. Given a graph G, let n be the number
of nodes in G. The label j attached to node i consists of two chains: one of which is
of length 2n + 3 connected to node i, and the other is of length j connected to the
n + 2-nd node of the first chain (see Fig. 2). Note that the total size of the label j is

Fig. 2. Label.
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2n + j + 3. Let G[i] denote the graph obtained from G by attaching the label 1 to the
node i. Similarly, G[i1,...,ij ] is defined as the graph with labels 1, . . . , j respectively
attached to nodes i1, . . . , ij . Note that any automorphism of G[i] maps the node i into
itself and that any label adds no new automorphism into this modified graph. Let Aut(G)

be the automorphism group of G and let Aut(G)[1,...,i] be the point-wise stabilizer of
{1, . . . , i} in Aut(G), namely, Aut(G)[1,...,i] = {σ ∈ Aut(G) : ∀j ∈ {1, . . . , i}[σ(j) = j ]}.

The following theorem was proven in [35]. For our later reference, we include its
proof here.

Theorem A.1 [35, Theorem 1.31]. GA is polynomial-time Turing reducible to
UniqueGA.

Proof. Let O be any set that correctly represents UniqueGA on all promised instances.
Using O as an oracle, the following algorithm solves GA in polynomial time. Let G be
any given instance of GA.

(U1) Repeat (U2)–(U3) for each i starting with n − 1 down to 1.
(U2) Repeat (U3) for each j ranging from i + 1 to n.
(U3) Invoke O with input graph G[1,...,i−1,i] ∪ G[1,...,i−1,j ]. If the outcome of O is

YES, output YES and halt.
(U4) Output NO.

If G is a “YES” instance, there is at least one non-trivial automorphism. Take
the largest number i ∈ {1, . . . , n} such that there exist a number j ∈ {1, . . . , n} and
a non-trivial automorphism π ∈ Aut(G)[1,...,i−1] for which π(i) = j and i �= j .
We want to claim that there is exactly one such non-trivial automorphism, i.e.,
Aut(G)[1,...,i−1] = {id,π}. This is seen as follows. First, note that Aut(G)[1,...,i−1]
is expressed as Aut(G)[1,...,i−1] = π1Aut(G)[1,...,i] + · · · + πdAut(G)[1,...,i]. For any
two distinct cosets πsAut(G)[1,...,i] and πtAut(G)[1,...,i] and for any two automor-
phisms σ ∈ πsAut(G)[1,...,i] and σ ′ ∈ πtAut(G)[1,...,i], it holds that σ(i) �= σ ′(i). Since
Aut(G)[1,...,i] = {id} by the definition of i, we obtain |πkAut(G)[1,...,i]| = 1 for any coset
πkAut(G)[1,...,i]. Furthermore, there exists the unique coset πAut(G)[1,...,i] satisfying
that σ(i) = j for any σ ∈ πAut(G)[1,...,i]. These facts imply that the non-trivial auto-
morphism π is unique. Note that the unique non-trivial automorphism interchanges two
subgraphs G[1,...,i−1,i] and G[1,...,i−1,j ]. Therefore, the above algorithm successfully
outputs YES at Step (U3).

On the contrary, if G is a “NO” instance, then for every distinct i and j , the mod-
ified graph has no non-trivial automorphism. Thus, the above algorithm correctly re-
jects G. �

Finally, we describe the reduction from GA to UniqueGAff by slightly modifying the
reduction given in the above proof.

Lemma A.2. GA is polynomial-time Turing reducible to UniqueGAff.

Proof. Recall the algorithm given in the proof of Theorem A.1. We only need to
change the number of nodes to invoke oracle UniqueGAff in (U3). To make such a
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change, we first modify the size of each label. Since the number m of all nodes of
G[1,...,i−1,i] ∪ G[1,...,i−1,j ] is even, if there is no k such that m = 2(2k + 1), then we
add one more node appropriately to the original labels. We then attach our modified
labels of length 2n+ i + 4 and 2n+ j + 4 to the nodes i and j , respectively. Obviously,
this modified graph satisfies the promise of UniqueGAff. Our algorithm therefore works
correctly for any instance of GA. �
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