
J. Cryptol. (2012) 25: 484–527
DOI: 10.1007/s00145-011-9102-5

Programmable Hash Functions and Their Applications

Dennis Hofheinz
Institut für Kryptographie und Sicherheit, Karlsruhe Institute of Technology, Karlsruhe, Germany

Dennis.Hofheinz@kit.edu

Eike Kiltz
Fakultät für Mathematik, Ruhr-Universität Bochum, Bochum, Germany

eike.kiltz@rub.de

Communicated by Kenneth G. Paterson

Received 13 February 2010
Online publication 29 April 2011

Abstract. We introduce a new combinatorial primitive called programmable hash
functions (PHFs). PHFs can be used to program the output of a hash function such that
it contains solved or unsolved discrete logarithm instances with a certain probability.
This is a technique originally used for security proofs in the random oracle model. We
give a variety of standard model realizations of PHFs (with different parameters).

The programmability makes PHFs a suitable tool to obtain black-box proofs of cryp-
tographic protocols when considering adaptive attacks. We propose generic digital sig-
nature schemes from the strong RSA problem and from some hardness assumption
on bilinear maps that can be instantiated with any PHF. Our schemes offer various
improvements over known constructions. In particular, for a reasonable choice of pa-
rameters, we obtain short standard model digital signatures over bilinear maps.

Key words. Hash functions, Digital signatures, Standard model.

1. Introduction

1.1. Programmable Hash Functions

A group hash function is an efficiently computable function that maps binary strings
into a group G. We propose the concept of a programmable hash function which is a
keyed group hash function that can behave in two indistinguishable ways, depending
on how the key is generated. If the standard key generation algorithm is used, then the
hash function fulfills its normal functionality, i.e., it properly hashes its inputs into a
group G. The alternative (trapdoor) key generation algorithm outputs a key that is in-
distinguishable from the one output by the standard algorithm. It furthermore generates
some additional secret trapdoor information that depends on two (user-specified) gener-
ators g and h from the group. This trapdoor information makes it possible to relate the
output of the hash function H to g and h: for any input X, one obtains integers aX and

© International Association for Cryptologic Research 2011

mailto:Dennis.Hofheinz@kit.edu
mailto:eike.kiltz@rub.de

Programmable Hash Functions and Their Applications 485

bX such that the relation

H(X) = gaXhbX ∈ G (1)

holds. For the PHF to be (m,n)-programmable we require that for all choices of
X1, . . . ,Xm and Z1, . . . ,Zn such that for all i, j it is true that Xi �= Zj , it holds that
aXi

= 0 but aZj
�= 0, with significant probability:

Pr[aX1 = · · · = aXm = 0 ∧ aZ1, . . . , aZn �= 0] ≥ 1/poly . (2)

Hence parameter m controls the number of elements X for which we can hope to have
H(X) = hbX ; parameter n controls the number of elements Z for which we can hope to
have H(Z) = gaZhbZ for some aZ �= 0.

The concept becomes useful in groups with hard discrete logarithms and when the
trapdoor key generation algorithm does not know the discrete logarithm of h to the
basis g. It is then possible to program the hash function such that the hash images of
all possible choices X1, . . . ,Xm of m inputs do not depend on g (since aX = 0). At the
same time the hash images of all possible choices Z1, . . . ,Zn of n (different) inputs do
depend on g in a known way (since aZ �= 0).

Intuitively, this resembles a scenario we are often confronted with in “provable se-
curity”: for some of the hash outputs we know the discrete logarithm, and for some we
do not. This situation appears naturally during a reduction that involves an adaptive ad-
versary. Concretely, knowledge of the discrete logarithms of some hash queries can be
used to simulate, e.g., a signing oracle for an adversary (which would normally require
knowledge of a secret signing key). On the other hand, once the adversary produces,
e.g., a signature on its own, our hope is that this signature corresponds to a hash query
for which the we do not know the discrete logarithm. This way, the adversary has pro-
duced a piece of nontrivial secret information which can be used to break an underlying
computational assumption.

This way of “programming” a hash function is very popular in the context of random
oracles [5] (which, in a sense, are ideally programmable hash functions), and has been
used to derive proofs of the adaptive security of cryptosystems [6,12,14].

An (m,poly)-PHF is an (m,n)-PHF for all polynomials n. A (poly,m)-PHF is defined
the same way. Note that, using this notation, a random oracle implies a (poly,1)-PHF.

Instantiations As our central instantiation of a PHF we use the following function
which was originally introduced by Chaum et al. [23] as a collision-resistant hash func-
tion. The “multi-generator” hash function HMG : {0,1}� → G is defined as HMG(X) :=
h0

∏�
i=1 h

Xi

i , where the hi are public generators of the group and X = (X1, . . . ,X�).
After its discovery in [23] it was also used in other constructions (e.g., [7,19,24,65]), re-
lying on other useful properties beyond collision resistance. Specifically, in the analysis
of his identity-based encryption scheme, Waters [65] implicitly proved that, using our
notation, HMG is a (1,poly)-programmable hash function. Our main result concerning
instantiations of PHFs is a new analysis of HMG showing that it is also a (2,1)-PHF.
Furthermore, we can use our new techniques to prove better bounds on the (1,poly)-
programmability of HMG. Our analysis uses random-walk techniques and is different
from the one implicitly given in [65].

486 D. Hofheinz and E. Kiltz

Variations The concept of PHFs can be extended to randomized programmable hash
functions (RPHFs). A RPHF is like a PHF whose input takes an additional parameter,
the randomness. Our main constructions of a randomized hash functions are RHF and
RHL. They are both (1,1)-programmable and have short parameters. In some applica-
tions (e.g., for RSA signatures) we need a special type a PHF which we call bounded
PHF. Essentially, for bounded PHFs we need to know a certain upper bound on the |aX|
from (1), for all X.

1.2. Applications

Collision Resistant Hashing We aim to use PHFs as a tool to provide black-box proofs
for various cryptographic protocols. As a toy example let us sketch why, in prime-order
groups with hard discrete logarithms, any (1,1)-PHF implies collision-resistant hash-
ing. Setting up H using the trapdoor generation algorithm will remain unnoticed for
an adversary, but any collision H(X) = H(Z) with X �= Z gives rise to an equation
gaXhbX = H(X) = H(Z) = gaZhbZ with known exponents. Since the hash function is
(1,1)-programmable we have, with non-negligible probability, aX = 0 and aZ �= 0 (so
in particular aX �= aZ). This implies h = gaZ/(bX−bZ), revealing the discrete logarithm
of h to the base g. (Note that already the weaker condition aX �= aZ is sufficient to
imply collision resistance.)

Generic Bilinear Map Signatures We propose the following generic Bilinear Maps
signature scheme with respect to a group hash function H. The signature of a message
X is defined as the tuple

SIGBM[H] : sig = (
H(X)

1
x+s , s

) ∈ G × {0,1}η, (3)

where s is interpreted as a random η-bit integer, and x ∈ Z|G| is the secret key. The sig-
nature can be verified with the help of the public key g, gx and a bilinear map. This sig-
nature scheme can be seen as a generalization (resp. variation) of the schemes from [11,
21,57]. Our main theorem concerning the Bilinear Map signatures states that if, for some
m ≥ 1, H is an (m,1)-programmable hash function and the q-Strong Diffie–Hellman
(q-SDH) assumption [11] holds, then the above signature scheme is unforgeable against
chosen-message attacks [39]. Here, the parameter m controls the size η = η(m) of the
randomness s. For “80-bit security” and assuming the scheme establishes no more than
q = 230 signatures [6], we can choose η = 30 + 80/m such that η = 70 is sufficient
when using our (2,1)-PHF HMG. The total signature size amounts to 160 + 70 = 230
bits. (See below for details.)

Generic RSA Signatures We propose the following generic RSA signature scheme
with respect to a group hash function H. The signature of a message X is defined as the
tuple

SIGRSA[H] : sig = (
H(X)1/e, e

) ∈ ZN × {0,1}η, (4)

where e is a η bit prime. The eth root can be computed using the factorization of
N = pq which is contained in the secret key. Our main theorem concerning RSA
signatures states that if, for some m ≥ 1, H is an (m,1)-programmable hash function

Programmable Hash Functions and Their Applications 487

and the strong RSA assumption holds, then the above signature scheme is unforgeable
against chosen-message attacks. Again, the parameter m controls the size of the prime
as η ≈ 30 + 80/m. Furthermore, our generic constructions explain signature schemes
by Okamoto [57], Fischlin [33], variants of Zhu [66,67] and Camenisch and Lysyan-
skaya [21], and shed light why other proposals are not secure.

Other Applications BLS signatures [15] are an example of “full-domain hash” (FDH)
signature schemes [5]. Using the properties of a (m,1)-programmable hash function
one can give a black-box reduction from m-time unforgeability of SIGBLS to breaking
the CDH assumption. The same reduction also holds for all full-domain hash signa-
tures, for example also RSA-FDH. Consequently, with a (poly,1) PHF we obtain full
unforgeability of full-domain signature schemes. Similarly, the Boneh–Franklin IBE
scheme [13] can be proved secure under the Bilinear Diffie–Hellman assumption when
instantiated with a (poly,1)-PHF. Unfortunately, we do not know of any standard-model
instantiation of (poly,1)-PHFs. This fact may be not too surprising given the impossi-
bility results from [30].1

It is furthermore possible to reduce the security of Waters’ IBE and signature
scheme [65] to breaking the CDH assumption, when instantiated with a (1,poly)-
programmable hash function. This explains Waters’ specific analysis in our PHF frame-
work. Furthermore, our improved bound on the (1,poly)-programmability of HMG gives
a (slightly) tighter security reduction for Waters’ IBE and signature scheme.

1.3. A Conceptual Perspective

We would like underline the importance of programmable hash functions as a concept
for designing and analyzing cryptographic protocols in the Diffie–Hellman and RSA
setting. The central idea is that one can partition the output of a hash function into two
types of instances (cf. (1) and (2)) that can be treated differently by a security reduc-
tion. This is reminiscent to what proofs in the random oracle model usually do (e.g.,
[6,12,14]) and hence PHFs offer a simple and abstract framework for designing and
analyzing cryptographic protocols without explicitly relying on random oracles. More
importantly, a large body of cryptographic protocols with security in the standard model
are using—implicitly or explicitly—the partitioning trick that is formalized in PRFs. To
mention only a few examples, this ranges from collision-resistant hashing [7,23], dig-
ital signature schemes [11,65] (also in various flavors [8,46,57,61]), chosen-ciphertext
secure encryption [17,18,43,44,49], identity-based encryption [2,9,10,22,51] to sym-
metric authentication [53]. In fact, besides a number of specific proofs, there seem
to be only two generic techniques known to prove (Diffie–Hellman and RSA-based)
cryptographic protocols in the standard model: the partitioning trick as abstracted in
programmable hash functions and the recent dual system approach by Waters [64].

1 We remark that the impossibility results from [30] do not imply that (m,1)-programmable hash functions
do not exist since they only rule out the possibility of proving the security of FDH signatures based on any
assumption which is satisfied by random functions, thus it might still be possible to construct such objects
using, say homomorphic properties.

488 D. Hofheinz and E. Kiltz

1.4. Short Signatures

Our main new applications of PHFs are short signatures in the standard model. We
now discuss our results in more detail. We refer to [11,15] for applications of short
signatures.

The Birthday Paradox and Randomized Signatures A signature scheme SIGFisch by
Fischlin [33] (itself a variant of the RSA-based Cramer–Shoup signatures [28]) is de-
fined as follows. The signature for a message m is given by sig :=
(e, r, (h0h

r
1h

m+r mod 2�

2)1/e mod N), where e is a random η-bit prime and r is a ran-
dom � bit mask. The birthday paradox (for uniformly sampled primes) tells us that
after establishing q distinct Fischlin signatures, the probability that there exist two
signatures, (e, r1, y1) on m1 and (e, r2, y2) on m2, with the same prime e is roughly
q2η/2η. One can verify that in case of such a collision, (e,2r1 − r2,2y1 − y2) is a
valid signature on the “message” 2m1 − m2 (with constant probability). Hence, from
two Fischlin signatures w.r.t. the same randomness e a signature can be computed (and
hence the scheme can be broken). Usually, for “k bit security” one requires the adver-
sary’s success ratio (i.e., the forging probability of an adversary divided by its running
time) to be upper bounded by 2−k . For k = 80 and assuming the number of signature
queries is upper bounded by q = 230, the length of the prime must therefore be at least
η > 80 + 60 + 8 = 148 bits to immunize against this birthday attack. We remark that
for a different reason, Fischlin’ signatures even require η ≥ 160 bits.

Beyond the Birthday Paradox In fact, Fischlin’s signature scheme can be seen as our
generic RSA signatures scheme from (4), instantiated with a concrete (randomized)
(1,1)-PHF (RHF). In our notation, the programmability of the hash function is used at
the point where an adversary uses a given signature (e, y1) to create a forgery (e, y) with
the same prime e. A simulator in the security reduction has to be able to compute y1 =
H(X)1/e but must use y = H(Z)1/e to break the strong RSA challenge, i.e., to compute
g1/e′

and e′ > 1 from g. However, since the hash function is (1,1)-programmable we
can program H with g and h = ge such that, with some non-negligible probability,
H(X)1/e = hbX/e = gbX can be computed but H(Z)1/e = (gaZhbZ)1/e = gaZ/egbZ can
be used to break the strong RSA assumption since aZ �= 0.

Our central improvement consists of instantiating the generic RSA signature scheme
with an (m,1)-PHF to break the birthday bound. The observation is that such hash
functions can guarantee that after establishing up to m signatures with respect to the
same prime, forging is still impossible. In analogy to the above, with an (m,1)-PHF
the simulation is successful as long as there are at most m many signatures that use
the same prime as in the forgery. By the generalized birthday paradox we know that
after establishing q distinct generic RSA signatures the probability that there exists m

signatures with the same prime is roughly qm+1(
η
2η)m. Again, the success ratio has

to be bounded by 2−80 for q = 230 which means that SIGRSA[H] instantiated with a
(2,1)-PRF can have primes as small as η = 80 bits to be provably secure.2 The security
proof for the bilinear map scheme SIGBM[H] is similar. Due to the extended birthday

2 A remark in [33, Sect. 2.3] concerning a stateless signature variant that can be securely instantiated
with η = 80 bit primes turned out incorrect. Concretely, [33]-signatures are of the form (e,α, y) and satisfy

Programmable Hash Functions and Their Applications 489

Table 1. Recommended signature sizes of different schemes. The parameters are chosen to provide un-
forgeability with k = 80 bits security after revealing maximal q = 230 signatures. RSA signatures are
instantiated with a modulus of |N | = 1024 bits, bilinear maps signatures in asymmetric pairings with
|G| = logp = 160 bits. We assume without loss of generality that messages are of size � bits (otherwise,
we can apply a collision-resistant hash function first), where � must be in the order of 2k = 160 in order to
provide k bits of security. The efficiency column counts the dominant operations for signing. For Bilinear sig-
natures this counts the number of exponentiations, for RSA signatures k × Pη counts the number of random
η-bit primes that need to be generated. We remark that the Hohenberger–Waters scheme relies only on the

(non-strong) RSA assumption but its computational cost is incomparably higher.

Scheme Type Signature size Key size Efficiency

Boneh–Boyen [11] Bilinear |G| + |Zp | = 320 2|G| = 320 1 × Exp
Okamoto [57] (= SIGBM[RHL]) Bilinear |G| + |r| + |s| = 480 4|G| = 640 1 × Exp

Ours: SIGBM[HMG] Bilinear |G| + |s| = 230 (� + 2)|G| = 26k 1 × Exp

Hohenberger–Waters [45] RSA 2 × |ZN | = 2048 2 × |ZN | = 2048 160 × P1024
Cramer–Shoup [28] RSA 2 × |ZN | + |e| = 2208 3 × |ZN | + |e| = 3232 1 × P160
Fischlin [33] (= SIGRSA[RHF]) RSA |ZN | + |r| + |e| = 1344 4 × |ZN | = 4096 1 × P160
Ours: SIGRSA[HMG] RSA |ZN | + |e| = 1104 (� + 1)|ZN | = 164k 1 × P80

paradox (for uniform random strings), SIGBM[H] instantiated with a (2,1)-PRF only
needs η = 70 bits of randomness to be provably secure.

Instantiations Table 1 compares the signature sizes of our and known signatures as-
suming q = 230. For RSA signatures our scheme SIGRSA[HMG] offers a short alternative
to Fischlin’s signature scheme. More importantly, generating a random 80 bit prime will
be considerably faster than a 160 bit one. Concretely, since the complexity of finding
a random η-bit prime with error 2−k is O(kη4) we expect that, compared with the one
by Fischlin, the signing algorithm of new scheme SIGRSA[HMG] is roughly 16 times
faster. Our generic bilinear construction instantiated with the RPHF RHF explains the
signature scheme by Fischlin [33]; instantiated with the RPHF RHL it explains a variant
of the schemes by Zhu [66,67]3 and Camenisch and Lysyanskaya [21]. (Concretely, our
variant uses a modified randomness space, see Appendix B for details.) In our compar-
ison, we have also included the recent scheme of Hohenberger and Waters [45]. Their
scheme has the benefit of relying only on the (non-strong) RSA assumption and having

ye = xhα
1 h

α⊕H(m)
2 for public h1, h2, x. In this, e is a 160-bit prime, and α ∈ {0,1}160 is uniform. The

remark in [33, Sect. 2.3] suggests to instead use a signature (e,α, y) with ye = xhα
1 h

α⊕H1(m)

2 h
α⊕H2(m)

3 for
H(m) =: H1(M)||H2(M) and public h1, h2, h3, x. This has the advantage that e and α can be chosen of
size around 80 bits. It is claimed that the security proof of the original scheme can be adapted to this variant.
However, the proof crucially uses that there is no collision among the e values used during the signing process,
i.e., that no e occurs in more than one simulated signature. With 160-bit primes e, such a collision will occur
only with small probability; but with 80-bit primes e, the probability will be in the order of 1/240.

3 The security proof given in [67] does not seem to be correct. Concretely, Zhu’s signatures are of the

form (e,α, y) and satisfy ye = h0hα
1 h

H(m)
2 for public h0, h1, h2. In this, e is a random 2k-bit prime, and

α ∈ {0,1}� is uniform. However, in the security proof of a Type I adversary (for which e = ej ∈ {e1, . . . , eq }),
one needs to argue that the simulated randomness αj is uniformly distributed in {0,1}�. However, a close
inspection of the used random variables shows that this is not the case (given the view of the adversary). Our
variant SIGRSA[RHL], as well as the scheme by Camenisch and Lysyanskaya [21] use larger randomness
space to make the simulation work.

490 D. Hofheinz and E. Kiltz

a compact verification key. However, their scheme requires a large number of primality
tests and exponentiations during signing and verifying.

The main advantage of our bilinear maps scheme SIGBM[HMG] is its very compact
signatures of only 230 bits. This saves 90 bits compared to the short signatures scheme
from Boneh–Boyen [11] and is only 70 bits larger than the random oracle BLS signa-
tures. The signature scheme SIGBM[RHL] is exactly the one proposed by Okamoto [57]
(which was implicitly introduced in a group signature scheme [35]).

An obvious drawback of our constructions is the size of the public verification key
since it includes the group hash key K . For example, for HMG : {0,1}� → G, K con-
tains �+1 group elements, where � = 160. In the bilinear case, that makes a verification
key of 26k bits to be compared with 160 bits from [11]. While these short signatures
are mostly of theoretical interest and contribute to the problem of determining concrete
bounds on the size of standard-model signatures, we think that in certain applications
even a large public key is tolerable. In particular, our public-key sizes are still compara-
ble to the ones of recently proposed lattice-based signatures [17,22,38,54]. Furthermore,
even for signatures in the random oracle model, sometimes a relatively large verification
key is necessary [31].

We remark that our concrete security reductions for the two generic schemes are
not tight, i.e., the reductions roughly lose log(q/δ) bits of security (cf. Theorems 10
and 13). Strictly speaking, a non-tight reduction has to be penalized by having to choose
a larger group order. Even though this is usually not done in the literature [28,33], we
also consider concrete signature size when additionally taking the non-tight security
reduction into account. A rigorous comparison will be done in Sect. 7.

Related Signature Schemes Our generic bilinear map signature scheme belongs to the
class of “inversion-based” signature schemes originally proposed in [59] and first for-
mally analyzed in [11]. The signature scheme from [57] can be viewed as a special
case of our generic bilinear map signature scheme instantiated with a randomized PHF.
Other related standard-model schemes can be found in [16,37]. We stress that our sig-
natures derive from the above since the message does not appear in the denominator of
the exponent. Our generic RSA signature scheme builds on the early work by Cramer
and Shoup [28]. The signature schemes from [33] and variants of [21,66,67] can be
viewed as a special case of our generic bilinear map signature scheme instantiated with
a randomized PHF. Other standard-model RSA schemes are [20,26,29,36,40,48,56,60].
We remark that security proofs for strong RSA-based signature schemes are quite subtle
and several variants proposed in the literature contain flawed security proofs. As already
explained in Footnote 2, a variant by Fischlin [33, Sect. 2.3] cannot be proved secure.
Furthermore, the proof of a scheme proposed by Zhu [66,67] turned out to be incorrect
(see Footnote 3) but a close variant with slightly larger randomness space (i.e., {0,1}L
with L = � + k instead of L = �) can be proved secure using our framework.

1.5. Dedicated vs. Programmable Hash Functions

As argued before, random oracles [5] can be viewed as excellent programmable hash
functions. For common applications such as full-domain hash signatures or OAEP, one
usually instantiates the random oracle with a fixed, dedicated hash function (such as
SHA1 [62]), Therefore, one may ask the question if such concrete hash functions (when

Programmable Hash Functions and Their Applications 491

used as keyed hash functions) can serve as good programmable hash functions. More
concretely, is SHA1 an (m,n)-PRF for parameters m,n ≥ 1?

Even though it seems hard to actually disprove, our intuition says that this is very
likely not the case. In fact, one of the key design maxims of hash functions like SHA1
is to destroy all algebraic structure. In contrast, the definition of programmable hash
functions requires that there is a relation over an algebraic structure. (I.e., we require
that H(X) = gaXhbX over the group G.) In that sense programmable hash functions for-
malize an obvious weakness in the random oracle methodology: security proofs making
in the random oracle model often use a property of the hash function that is commonly
avoided by hash function’s designers. Therefore, we do not recommend to use dedicated
hash functions as a PHF.

1.6. Open Problems

We show that PHFs provide a useful primitive to obtain black-box proofs for certain
signature schemes. We leave it for future research to extend the application of PHFs to
other types of protocols. Another interesting direction is to find instantiations of PHFs
from different assumptions. For instance, the ideas in [2,17,22] seem conceptually close
to programmable hash functions in lattices.

We leave it as an open problem to prove or disprove the standard-model existence
of (poly,1)-PHFs. (Note that a positive result would imply a security proof for FDH
signatures like [6,15].) Moreover, we are asking for a concrete construction of a bounded
(m,1)-PHF for m > 2.4 For example, a (3,1)-PHF could be used to shrink the signature
size of SIGBM[H] to ≈ 215 bits; a bounded (5,1)-PHF would make it possible to shrink
the size of the prime in SIGRSA[H] to roughly η = 60 bits and make signing roughly as
efficient as RSA full-domain hash5 (with the drawback of a larger public key). Finally,
a (2,1) or (1,poly)-PHF with more compact parameters would have dramatic impact
on the practicability of our signature schemes or Waters’ IBE scheme [65].

2. Preliminaries

2.1. Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size.
If k ∈ N then 1k denotes the string of k ones. For n ∈ N, we write [n] shorthand for

{1, . . . , n}. If S is a set then s
$← S denotes the operation of picking an element s of S

uniformly at random. We write A(x, y, . . .) to indicate that A is an algorithm with inputs

x, y, . . . and by z
$← A(x, y, . . .) we denote the operation of running A with inputs

(x, y, . . .) and letting z be the output. With PPT we denote probabilistic polynomial

time. For random variables X and Y , we write X
γ≡ Y if their statistical distance is at

most γ .

4 We remark that an earlier version of this paper contained a generalization of RHF to a randomized
(m,1)-PHF for any m ≥ 2. However, for our applications it did not turn out to be useful. Since for m ≥ 2 it is
not sufficiently bounded (it is only 2�m-bounded), it does not lead to more efficient RSA-based signatures. In
the bilinear case, the instantiations with this RPHF are all less efficient than Boneh–Boyen signatures.

5 For η ≈ 60 a full exponentiation modulo a 1024-bit integer become roughly as expensive as finding a
random η-bit prime.

492 D. Hofheinz and E. Kiltz

2.2. Digital Signatures

A digital signature scheme SIG consists of three PPT algorithms. The key generation
algorithm inputs a security parameter (in unary representation) and generates a secret
signing and a public verification key. The signing algorithm inputs the signing key and
a message and returns a signature. The deterministic verification algorithm inputs the
verification key and returns accept or reject. We demand the usual correctness property.

We recall the definition for unforgeability against chosen-message attacks (UF-
CMA), played between a challenger and a forger F :

1. On input of the security parameter k, the challenger generates verification/signing
key, and gives the verification key to F ;

2. F makes a number of signing queries to the challenger; each such query is a
message mi ; the challenger signs mi , and sends the result sigi to F ;

3. F outputs a message m and a signature sig.

We say that forger F wins the game if sig is a valid signature on m and it has not queried
a signature on m before. Forger F (t, q, ε)-breaks the UF-CMA security of SIG if its
running time is bounded by t , it makes at most q signing queries, and the probability that
it wins the above game is bounded by ε. Finally, SIG is UF-CMA secure if no forger can
(t, q, ε)-break the UF-CMA security of SIG for polynomial t and q and non-negligible
ε (in the security parameter k).

2.3. Pairing Groups and the q-SDH Assumption

Our pairing schemes will be defined on families of bilinear groups (PGk)k∈N. A pairing
group PG = PGk = (G,GT ,p, ê, g) consist of a multiplicative cyclic group G of prime
order p, where 2k < p < 2k+1, a multiplicative cyclic group GT of the same order, a
generator g ∈ G, and a non-degenerate bilinear pairing ê: G × G → GT . See [11] for a
description of the properties of such pairings. We say an adversary A (t, ε)-breaks the
q-strong Diffie–Hellman (q-SDH) assumption if its running time is bounded by t and

Pr
[(

s, g
1

x+s
) $← A

(
g,gx, . . . , gxq)] ≥ ε,

where g is a uniform generator of G and x
$← Z

∗
p . We require that in PG the q-SDH [11]

assumption holds meaning that no adversary can (t, ε) break the q-SDH problem for a
polynomial t and non-negligible ε.

2.4. RSA Groups and the Strong RSA Assumption

Our RSA schemes will be defined on families of RSA groups (RGk)k∈N. A safe RSA
group RG = RGk = (P,Q) consists of two distinct safe primes P and Q of k/2 bits.
(A safe prime is a prime number of the form 2P ′ + 1, where P ′ is also a prime.) In
our later constructions, we will also use QRN , the cyclic group of quadratic residues
modulo an RSA number N = pq .

We say an adversary A (t, ε)-breaks the strong RSA assumption if its running time
is bounded by t and

Pr
[(

e > 1, z1/e
) $← A(N = PQ,z)

] ≥ ε,

Programmable Hash Functions and Their Applications 493

where z
$← ZN . We require that in RG the strong RSA assumption [3,34] holds meaning

that no adversary can (t, ε)-break the strong RSA problem for a polynomial t and non-
negligible ε.

3. Programmable Hash Functions

3.1. Definitions

A group family G = (Gk) is a family of cyclic groups Gk , indexed by the security pa-
rameter k ∈ N. When the reference to the security parameter k is clear, we will simply
write G instead of Gk . A group hash function H = (PHF.Gen,PHF.Eval) for a group
family G = (Gk) and with input length � = �(k) consists of two PPT algorithms. For

security parameter k ∈ N, a key K
$← PHF.Gen(1k) is generated by the key generation

algorithm PHF.Gen. This key K can then be used for the deterministic evaluation al-
gorithm PHF.Eval to evaluate H via y ← PHF.Eval(K,X) ∈ G for any X ∈ {0,1}�. We
write HK(X) = PHF.Eval(K,X).

Definition 1. A group hash function H is an (m,n, γ, δ)-programmable hash function
if there are PPT algorithms PHF.TrapGen (the trapdoor key generation algorithm) and
PHF.TrapEval (the deterministic trapdoor evaluation algorithm) such that the following
holds:

Syntactics: For g,h ∈ G, the trapdoor key generation (K ′, t) $←PHF.TrapGen(1k, g,h)

produces a key K ′ along with a trapdoor t . Moreover, (aX, bX)←PHF.TrapEval(t,X)

produces integers aX and bX for any X ∈ {0,1}�.
Correctness: We demand HK ′(X) = PHF.Eval(K ′,X) = gaXhbX for all generators

g,h ∈ G and all possible (K ′, t) $← PHF.TrapGen(1k, g,h), for all X ∈ {0,1}� and
the corresponding (aX, bX) ← PHF.TrapEval(t,X).

Statistically close trapdoor keys: For all generators g,h ∈ G and for K
$←PHF.Gen(1k)

and (K ′, t) $←PHF.TrapGen(1k, g,h), the keys K and K ′ are statistically γ -close:

K
γ≡ K ′.

Well-distributed logarithms: For all generators g,h ∈ G and all possible K ′ in the
range of (the first component of) PHF.TrapGen(1k, g,h), for all X1, . . . ,Xm,Z1, . . . ,

Zn ∈ {0,1}� such that Xi �= Zj for any i, j , and for the corresponding (aXi
, bXi

) ←
PHF.TrapEval(t,Xi) and (aZi

, bZi
) ← PHF.TrapEval(t,Zi), we have

Pr[aX1 = · · · = aXm = 0 ∧ aZ1, . . . , aZn �= 0] ≥ δ, (5)

where the probability is over the trapdoor t that was produced along with K ′.

We simply say that H is an (m,n)-programmable hash function if there is a negligible
γ and a noticeable δ such that H is (m,n, γ, δ)-programmable. Furthermore, we call
H (poly, n)-programmable if H is (q,n)-programmable for every polynomial q = q(k).
We say that H is (m,poly)-programmable (resp. (poly,poly)-programmable) if the ob-
vious holds.

494 D. Hofheinz and E. Kiltz

We remark that the requirement of the statistically close trapdoor keys is somewhat
reminiscent to the concept of “lossy trapdoor functions” [58]. Note that a group hash
function can be a (m,n)-programmable hash function for different parameters m,n with
different trapdoor key generation and trapdoor evaluation algorithms.

In our RSA application, the following additional definition will prove useful:

Definition 2. In the situation of Definition 1, we say that H is β-bounded (m,n, γ, δ)-
programmable if |aX| ≤ β(k) always.

3.2. Instantiations

As a first example, note that a (programmable) random oracle O (i.e., a random oracle
which we can completely control during a proof) is trivially a (c,poly) or (poly, c)-
programmable hash function, for any constant c > 0: given generators g and h, we
simply define the values O(Xi) and O(Zj) in dependence of the Xi and Zj as suitable
expressions gahb . (For example, by using Coron’s method [27]: the random oracle on
some input X is defined to be as O(X) := gΔX ·ãX · h(1−ΔX)b̃X , where ΔX is a random
biased coin with Pr[ΔX = 1] := 1/(2q(k)) and ãX and b̃X are uniform values from Z|G|.
Then (5) is fulfilled with probability (1 − 1/(2q(k)))q(k) · (1/(2q(k)))c ≥ 1/(4q(k))c ,
meaning O is a (poly, c)-programmable hash function.)

We will now give an example of a programmable hash function in the standard model.

Definition 3 (Multi-Generator PHF). Let G = (Gk) be a group family, and let � =
�(k) be a polynomial. Then, HMG = (PHF.Gen,PHF.Eval) is the following group hash
function:

– PHF.Gen(1k) returns a uniformly and independently sampled K = (h0, . . . , h�) ∈
G

�+1.
– PHF.Eval(K,X) parses K = (h0, . . . , h�) ∈ G

�+1 and X = (x1, . . . , x�) ∈ {0,1}�
computes and returns

HMG
K (X) = h0

�∏

i=1

h
xi

i .

Essentially this function was already used, with an objective similar to ours in mind,
in a construction from [65]. Here we provide a new use case and a useful abstraction of
this function; also, we shed light on the properties of this function from different angles
(i.e., for different values of m and n). In [65], it was implicitly proved that HMG is a
(1,poly)-PHF:

Theorem 4. For any fixed polynomial q = q(k) and group G with known order, the
function HMG is a (1, q)-programmable hash function with γ = 0 and δ = 1/8(� + 1)q .

The proof builds upon the fact that m = 1 and does not scale in the m-component. With
a completely different analysis, we can show that

Theorem 5. For any group G with known order, the function HMG is a (2,1)-
programmable hash function with γ = 0 and δ = Θ(1/�).

Programmable Hash Functions and Their Applications 495

Proof. We give only the intuition here and postpone the full (and somewhat technical)
proof to Appendix A.1. Consider the following algorithms:

– PHF.TrapGen(1k, g,h) sets a0 = −1 and chooses uniformly and independently
a1, . . . , a� ∈ {−1,0,1} and random group exponents6 b0, . . . , b�. It sets hi =
gai hbi for 0 ≤ i ≤ � and returns K = (h0, . . . , h�) and t = (a0, b0, . . . , a�, b�).

– PHF.TrapEval(t,X) parses X = (x1, . . . , x�) ∈ {0,1}� and returns a = a0 +∑�
i=1 aixi and b = b0 + ∑�

i=1 bixi .

It is clear that this fulfills the syntactic and correctness requirements of Definition 1.
Also, since the bi are chosen independently and uniformly, so are the hi , and the trap-
door keys indistinguishability requirement follows. It is more challenging to prove (5)
(for m = 2, n = 1), i.e., that for all strings X1,X2 and Z1 �∈ {X1,X2}, we have

Pr[aX1 = aX2 = 0 ∧ aZ1 �= 0] = Θ(1/�). (6)

We will only give an intuition here. First, note that the X1,X2,Z1 are independent of
the ai , since they are masked by the bi in hi = gai hbi . If we view X1 as a subset of [�]
(where we define i ∈ X1 iff the ith component x1i of X1 is 1), then the value

aX1 = a0 +
�∑

i=1

aix1i = −1 +
∑

i∈X1

ai

essentially7 constitutes a random walk of length |X1| + 1 ≤ � + 1. Theory says that it
is likely that this random walk ends up with an aX1 of small absolute value. That is,
for any d with |d| = O(

√
�), the probability that aX1 = d is Θ(1/

√
�). In particular, the

probability for aX1 = 0 is Θ(1/
√

�). Now if X1 and X2 were disjoint and there was no
a0 in the sum, then aX1 and aX2 would be independent and we would get aX1 = aX2 = 0
with probability Θ(1/�). But even if X1 ∩ X2 �= ∅, and taking into account a0, we can
conclude similarly by lower bounding the probability that aX1\X2 = aX2\X1 = −aX1∩X2 .

The additional requirement from (6) that aZ1 �= 0 is intuitively much more obvious,
but also much harder to formally prove. First, without loss of generality, we can as-
sume that Z1 ⊆ X1 ∪ X2, since otherwise, there is a “partial random walk” aZ1\(X1∪X2)

that contributes to aZ1 but is independent of aX1 and aX2 . Hence, even when already
assuming aX1 = aX2 = 0, aZ1 still is sufficiently randomized to take a non-zero value
with constant probability. Also, we can assume Z1 not to “split” X1 in the sense that
Z1 ∩ X1 ∈ {∅,X1} (similarly for X2). Otherwise, even assuming a fixed value of aX1 ,
there is still some uncertainty about aZ1∩X1 and hence about aZ1 (in which case with
some probability, aZ1 does not equal any fixed value). The remaining cases can be han-
dled with a similar “no-splitting” argument. However, note that the fixed “a0 = −1” in
the g-exponent of h0 is essential: without it, picking X1 and X2 disjoint and setting
Z1 = X1 ∪ X2 achieves aZ1 = aX1 + aX2 = 0. A full proof is given in Appendix A.1. �

6 If |G| is not known, this may only be possible approximately.
7 Usually, random walks are formalized as a sum of independent values ai ∈ {−1,1}; for us, it is more

convenient to assume ai ∈ {−1,0,1}. However, this does not change things significantly.

496 D. Hofheinz and E. Kiltz

Using techniques from the proof of Theorem 5, we can asymptotically improve the
bounds from Theorem 4 as follows (a proof can be found in Appendix A):

Theorem 6. For any fixed polynomial q = q(k) and group G with known order, the
function HMG is a (1, q)-programmable hash function with γ = 0 and δ = O(1

q
√

�
).

One may wonder whether the scalability of HMG with respect to m reaches further.
Unfortunately, it does not (the proof is in Appendix A):

Theorem 7. Assume � = �(k) ≥ 2. Say |G| is known and prime, and the discrete log-
arithm problem in G is hard. Then HMG is not (3,1)-programmable.

If the group order G is not known (as will be the case in our upcoming RSA-based sig-
nature scheme), then it may not even be possible to sample group exponents uniformly.
However, for the special case where G = QRN is the group of quadratic residues mod-
ulo N = pq for safe distinct primes p and q , we can approximate a uniform exponent
with a random element from ZN2 . (See, e.g., [28].) In this case, the statistical distance
between keys produced by PHF.Gen and those produced by PHF.TrapGen is smaller
than (� + 1)/N . We get the following theorem.

Theorem 8. For the group G = QRN of quadratic residues modulo N = pq for
safe distinct primes p and q , the function HMG is O(q2�)-bounded (1, q, (� + 1)/N,

1/8(� + 1)q)-programmable as well as O(q2�)-bounded (2,1, (� + 1)/N,O(1/�))-
programmable.

As is to be expected, one can show that also in case G = QRN , the function HMG is
not (3,1)-programmable.

3.3. Randomized Programmable Hash Functions (RPHFs)

In Appendix B we further generalize the notion of PHFs to randomized programmable
hash functions (RPHFs). Briefly, RPHFs are PHFs whose evaluation is randomized,
and where this randomness is added to the image (so that verification is possible). We
show how to adapt the PHF definition to the randomized case, in a way suitable for the
upcoming applications. We also give instantiations of RPHFs for parameters for which
we do not know how to instantiate PHFs.

4. Basic Applications of PHFs

4.1. Collision-Resistant Hashing

As a warm-up, we can show the natural result that any (non-trivially) programmable
hash function is collision resistant.

Theorem 9. Assume |G| is known and prime, and the discrete logarithm problem in
G is hard. Let H be a (1,1)-programmable hash function. Then H is collision resistant.

Programmable Hash Functions and Their Applications 497

Proof. Fix PPT algorithms PHF.TrapGen and PHF.TrapEval. To show H’s collision
resistance, assume an adversary A that outputs a collision with non-negligible probabil-

ity with keys K
$← PHF.Gen(1k). Now by the key closeness of Definition 1, A will also

do so with keys K ′ from (K ′, t) $← PHF.TrapGen(1k, g,h), for any g,h. Any collision
HK ′(X) = HK ′(X′) with X �= X′ gives rise to an equation

gahb = HK ′(X) = HK ′(X′) = ga′
hb′

,

where (a, b) ← PHF.TrapEval(t,X) and (a′, b′) ← PHF.TrapEval(t,X′). (5) states that
with non-negligible probability, we have a = 0 and a′ �= 0, in which case we can com-
pute dlogh(g) = (b − b′)/a′ mod |G|. �

Similarly (using Lemma 14), one can show that for a PHF for G = QRN , (1,1)-
programmability implies collision resistance under the strong RSA assumption. We
omit the details.

4.2. Other Applications

As already discussed in the introduction, PHFs have other applications.

– A (poly,1)-PHF is sufficient to instantiate the hash function used in full-domain
hash signatures like BLS signatures or RSA-FDH. A fair number of other protocols
(e.g., the Boneh/Frankin IBE scheme [13]) are based on the same “full-domain
hash” properties of the hash function. Unfortunately, we do not know if (poly,1)-
PHFs do exist, or not. Similarly, a (m,1)-PHF is sufficient to instantiate the hash
function used in full-domain hash signatures like BLS signatures or RSA-FDH and
show that they are secure m-time signatures.

– A (1,poly)-PHF is sufficient to instantiate the “hash function” used in Waters’
IBE and signature scheme [65]. In fact, the (1,poly)-PHF HMG is the original hash
function Waters used in his IBE scheme. Our new bound from Theorem 6 can be
used to improve the bound in the security reduction of Waters’ IBE and signature
scheme. We expect that the same improvements can be achieved for schemes based
on Waters’ IBE, e.g., [1,4,18,50,52].

5. Generic Signatures from Bilinear Maps

5.1. Construction

Let PG = (G,GT ,p = |G|, g, ê : G × G → GT) be a pairing group. Let n =
n(k) and η = η(k) be two arbitrary polynomials. Our signature scheme signs mes-
sages m ∈ {0,1}n using randomness s ∈ {0,1}η.8 Let a group hash function H =
(PHF.Gen,PHF.Eval) with inputs from {0,1}n and outputs from G be given. We are
ready to define our generic bilinear map signature scheme SIGBM[H].

8 For signing arbitrary bitstrings, a collision-resistant hash function CR : {0,1}∗ → {0,1}n can be applied
first. Due to the birthday paradox we choose n = 2k when k bits of security are actually desired.

498 D. Hofheinz and E. Kiltz

Key-Generation: Generate PG such that H can be used for the group G. Generate a key

for H via K
$← PHF.Gen(1k). Pick a random index x ∈ Z

∗
p and compute X = gx ∈ G.

Return the public verification key (PG,X,K) and the secret signing key x.
Signing: To sign m ∈ {0,1}n, pick a random η-bit integer s and compute y =

HK(m)
1

x+s ∈ G. The signature is the tuple (s, y) ∈ {0,1}η × G.
Verification: To verify that (s, y) ∈ {0,1}η ×G is a correct signature on a given message

m, check that s is of length η, and that

ê
(
y,X · gs

) = ê
(
HK(m),g

)
.

Theorem 10. Let H be an (m,1, γ, δ)-programmable hash function. Let F be a
(t, q, ε)-forger in the existential forgery under an adaptive chosen-message attack ex-
periment with SIGBM. Then there exists an adversary A that (t ′, ε′)-breaks the q-SDH
assumption with t ′ ≈ t and

ε ≤ q

δ
· ε′ + qm+1

2mη
+ q

p
+ γ.

We remark that the scheme can also be instantiated in asymmetric pairing groups
where the pairing is given by ê : G1 ×G2 → GT and G1 �= G2. We use MNT curves [55]
such that the element y ∈ G1 from the signature can be represented in 160 bits. (See
[11] for more details.) Also, in asymmetric pairings, verification can equivalently check
if ê(y,X) = ê(HK(m) · y−1/s, g). This way we avoid any expensive exponentiation
in G2 and verification time becomes roughly the same as in the Boneh–Boyen short
signatures [11]. It can be verified that the following proof also holds in asymmetric
pairing groups. (Note that the security assumption also has to be adapted to symmet-
ric q-SDH assumption which is given g1, g

x
1 , . . . , g

(xq)
1 , g2, g

x
2 , it is hard to find a pair

(c, g
1/(x+c)

1).)
An efficiency comparison of the scheme instantiated with the (2,1)-PHF HMG from

Definition 3 is done in Sect. 7.

5.2. Proof of Theorem 10

Let F be the adversary against the signature scheme. Throughout this proof, we assume
that H is a (m,1, γ, δ)-programmable hash function. Furthermore, we fix some notation.
Let mi be the ith query to the signing oracle and (si , yi) denote the answer. Let m and
(s, y) be the forgery output by the adversary. We introduce two types of forgers:

Type I: It always holds that s = si for some i.
Type II: It always holds that s �= si for all i.

By F1 (resp., F2) we denote the forger who runs F but then only outputs the forgery if
it is of type I (resp., type II). We now show that both types of forgers can be reduced to
the (q + 1)-SDH problem. Theorem 10 then follows by a standard hybrid argument.

Both reductions rely on a trick from [11] that given a q-SDH instance g̃, g̃x, . . . , g̃xq
,

one can efficiently compute g,gx , together with q random solved instances (g1/(x+si),

si). A new instance of the form (g1/(x+s), s) for s �∈ {s1, . . . , sq}, however, can be used

Programmable Hash Functions and Their Applications 499

to break the q-SDH assumption. For Type II forgers this idea can be applied more or less
directly. For Type I forgers it may happen that there is a m-collision in the simulated ran-
domness, i.e, we have s = si1 = · · · sim , and one has to use the properties of the (m,1)-
PHF to be able to simulate the maximal m signatures of the form (H(mij)

1/(x+s), s),
while using the forger’s output H(m)1/(x+s) to break the q-SDH assumption.

Type I Forgers

Lemma 11. Let F1 be a forger of type I that (t1, q, ε1)-breaks the existential unforge-
ability of SIGBM[H]. Then there exists an adversary A that (t ′, ε′)-breaks the q-SDH
assumption with t ′ ≈ t and

ε′ ≥ δ

q

(

ε1 − qm+1

2mη
− q

p
− γ

)

.

To prove the lemma we proceed in games. In the following, Xi denotes the probability
for the adversary to successfully forge a signature in Game i.

Game 0. Let F1 be a type I forger that (t1, q, ε1)-breaks the existential unforgeability
of SIGBM[H]. By definition, we have

Pr[X0] = ε1. (7)

Game 1. We now use the trapdoor key generation (K ′, t) $← PHF.TrapGen(1k, g,h)

for uniformly selected generators g,h ∈ G to generate a H-key for public verification
key of SIGBM[H]. By the programmability of H,

Pr[X1] ≥ Pr[X0] − γ. (8)

Game 2. Now we select the random values si used for answering signing queries
not upon each signing query, but at the beginning of the experiment. Since the si were
selected independently anyway, this change is only conceptual. Let E = ⋃q

i=1{si} be
the set of all si , and let Ei = E \ {si}. We also change the selection of the elements g,h

used during (K ′, t) $← PHF.TrapGen(1k, g,h) as follows. First, we uniformly choose
i∗ ∈ [q] and a generator g̃ ∈ G. Define E∗ = E \ {si∗} and E∗,i = E∗ \ {si}. Further,
define the polynomials p∗(η) = ∏

t∈E∗(η + t) and p(η) = ∏
t∈E(η + t) and note that

deg(p∗) ≤ q − 1 and deg(p) ≤ q . Hence the values g = g̃p∗(x), h = g̃p(x), and X =
gx = g̃xp∗(x) can be computed from g̃, g̃x, . . . , g̃xq

. Here the index x ∈ Z
∗
|G| is the secret

key of the scheme. We then set

g = g̃p∗(x) = g̃
∏

t∈E∗ (x+t), h = g̃p(x) = g̃
∏

t∈E(x+t).

Note that we can compute (x + si)th roots for i �= i∗ from g and for all i from h. Unless
we are in the unlucky case that g or h are not generators (which can only happens if
p(x) = 0) this change is purely conceptual:

Pr[X2] ≥ Pr[X1] − q

p
. (9)

500 D. Hofheinz and E. Kiltz

Observe also that i∗ is independent of the adversary’s view.

Game 3. In this game, we change the way signature requests from the adversary are
answered. First, observe that the way we modified the generation of g and h in Game 2
implies that for any i with si �= si∗ , we have

yi = HK ′(mi)
1

x+si = (
gami hbmi

) 1
x+si

= (
g̃ami

∏
t∈E∗ (x+t)g̃bmi

∏
t∈E(x+t)

) 1
x+si = g̃ami

∏
t∈E∗,i (x+t)g̃bmi

∏
t∈Ei (x+t) (10)

for (ami
, bmi

) ← PHF.TrapEval(t,mi). Hence for i �= i∗, we can generate the signature
(si , yi) without explicitly knowing the secret key x, but instead using the right-hand
side of (10) for computing yi . Obviously, this change in computing signatures is only
conceptual, and so

Pr[X3] = Pr[X2]. (11)

Observe that i∗ is still independent of the adversary’s view.

Game 4. We now abort and raise event abortcoll if an si occurs more than m times, i.e.,
if there are pairwise distinct indices i1, . . . , im+1 with si1 = · · · = sim+1 . There are

(
q

m+1

)

such tuples (i1, . . . , im). For each tuple, the probability for si1 = · · · = sim+1 is 1/2mη

A union bound shows that an (m + 1)-wise collision occurs with probability at most

Pr[abortcoll] ≤
(

q

m + 1

)
1

2mη
≤ qm+1

2mη
.

Hence,

Pr[X4] ≥ Pr[X3] − Pr[abortcoll] > Pr[X3] − qm+1

2mη
. (12)

Game 5. We now abort and raise event abortbad.s if the adversary returns an s ∈ E∗,
i.e., the adversary returns a forgery attempt (s, y) with s = si for some i, but s �= si∗ .
Since i∗ is independent from the adversary’s view, we have Pr[abortbad.s] ≤ 1 − 1/q for
any choice of the si , so we get

Pr[X5] = Pr[X4 ∧ ¬abortbad.s] ≥ 1

q
Pr[X4]. (13)

Game 6. We now abort and raise event abortbad.a if there is an index i with si = si∗
but ami

�= 0, or if am = 0 for the adversary’s forgery message. In other words, we raise
abortbad.a iff we do not have ami

= 0 for all i with si = si∗ and am �= 0. Since we have
limited the number of such i to m in Game 4, we can use the programmability of H. We
hence have Pr[abortbad.a] ≤ 1 − δ for any choice of the mi and si , so we get

Pr[X6] ≥ Pr[X5 ∧ ¬abortbad.a] ≥ δ · Pr[X5]. (14)

Programmable Hash Functions and Their Applications 501

Note that in Game 6, the experiment never really uses secret key x to generate signa-
tures: to generate the yi for si �= si∗ , we already use (10), which requires no x. But
if abortbad.a does not occur, then ami

= 0 whenever si = si∗ , so we can also use (10)
to sign without knowing x. On the other hand, if abortbad.a does occur, we must abort
anyway, so actually no signature is required.

This means that Game 6 does not use knowledge about the secret key x. On the
other hand, the adversary in Game 6 produces (whenever X6 happens, which implies
¬abortbad.a and ¬abortbad.s) during a forgery

y = HK ′(m)1/(x+s) = (
g̃am

∏
t∈E∗ (x+t)g̃bm

∏
t∈E(x+t)

) 1
x+s = g̃

amp∗(x)
x+s g̃bmp∗(x).

From y and its knowledge about h and the si , the experiment can derive

y′ =
(

y

gp∗(x)bm

)1/am

= g̃
p∗(x)
x+s .

Since gcd(η + s,p∗(η)) = 1 (where we interpret η + s and p∗(η) as polynomials in η),
we can write p∗(η)/(η + s) = p′(η) + q0/(η + s) for some polynomial p′(η) of degree
at most q − 2 and some q0 �= 0. Again, we can compute g′ = g̃p′(x). We finally obtain

y′′ = (y′/g′)1/q0 = (
g̃

p∗(x)
(x+s)

−p′(x))1/q0 = g̃
1

x+s .

This means that the from the experiment performed in Game 6, we can construct an
adversary A that (t ′, ε′)-breaks the q-SDH assumption. A’s running time t ′ is approx-
imately t plus a small number of exponentiations, and A is successful whenever X6
happens:

ε′ ≥ Pr[X6]. (15)

Putting (7–15) together yields Lemma 11.

Type II Forgers

Lemma 12. Let F2 be a forger of type II that (t2, q, ε2)-breaks the existential unforge-
ability of SIGBM[H]. Then there exists an adversary A that (t ′, ε′)-breaks the q-SDH
assumption and an adversary A∗ that (t ′′, ε′′)-breaks the discrete logarithm problem in
G such that t ′, t ′′ ≈ t2 and

ε′ + ε′′ ≥ δ · (ε2 − γ) .

Note that the discrete logarithm problem is at least as hard as the q-SDH problem, so
for Theorem 10, we can assume ε′ ≥ ε′′ without loss of generality.

For the proof, we again proceed in games. The proof is very similar to the proof for
type I forgers, so we will be brief where similarities occur.

Game 0. Let F2 be a type II forger that (t2, q, ε2)-breaks the existential unforgeability
of SIGBM[H]. By definition, we have

Pr[X0] = ε2. (16)

502 D. Hofheinz and E. Kiltz

Game 1. We now use the trapdoor key generation (K ′, t) $← PHF.TrapGen(1k, g,h)

for uniformly selected generators g,h ∈ G to generate a H-key for the public verification
key of SIGBM[H]. By the programmability of H,

Pr[X1] ≥ Pr[X0] − γ. (17)

Game 2. Now we select the used randomness si used for answering signing queries
at the beginning of the experiment and set E = ⋃q

i=1{si}. We select the elements g,h

passed to PHF.TrapGen(1k, g,h) as follows: We uniformly choose a generator g̃ ∈ G.
Define the polynomial p(η) = ∏

t∈E(η + t) and note that deg(p) ≤ q . Hence the values

g = g̃p(x) and X = gx = g̃xp(x) can be computed from g̃, g̃x, . . . , g̃xq+1
. We choose

c ∈ Z|G| uniformly and set

g = g̃p(x), h = g̃cp(x).

Note that we can compute (x + si)th roots from g and h for all i. These change is purely
conceptual:

Pr[X2] = Pr[X1]. (18)

Game 3. We answer all signature requests from the adversary as in Game 3 of the
proof of Lemma 11. That is, we use the way that g and h are chosen to avoid having to
compute the (x + si)th root. This change is only conceptual, and we have

Pr[X3] = Pr[X2]. (19)

Game 4. We now abort and raise event abortlog if am + c · bm = 0 mod |G| for the
adversary’s forged message m. Since we chose c as a uniform exponent and only pass
g and h = gc (but no further information about c) to adversary and PHF.TrapGen, these
algorithms break a discrete logarithm problem. In particular, we can construct a suitable
(t ′′, ε′′)-attacker A∗ on the discrete logarithm problem in G that takes gc as input and
computes c = −am/bm mod |G|. This adversary achieves

Pr[X4] ≥ Pr[X3 ∧ ¬abortlog] ≥ Pr[X3] − ε′′. (20)

Game 5. We now abort and raise event abortbad.a if am (obtained from
PHF.TrapEval(t,m)) is zero for the adversary’s forgery message m. The programmabil-
ity of H directly implies

Pr[X5] ≥ Pr[X4 ∧ ¬abortbad.a] ≥ δ · Pr[X4]. (21)

Now from Game 5, we can now construct an adversary A on the (q + 1)-SDH as-
sumption. A takes inputs g̃, g̃x, . . . , g̃xq+1

and simulates Game 5 with adversary F2.
A uses its inputs as if it was selected by the experiment; note that in Game 5, the secret
key x is not used anymore. Now whenever F2 outputs a forgery y with

y = (
gamhbm

) 1
x+s = (

g̃(am+c·bm)
∏

t∈E(x+t)
) 1

x+s .

Programmable Hash Functions and Their Applications 503

Since we have am + c · bm �= 0 mod |G|, we can compute a nontrivial root of the chal-
lenge g̃. Therefore, from

y′ = y
1

cam+dbm = g̃
p(x)
x+s

one can compute g̃1/(x+s), like in the proof of Lemma 11. Putting (16–21) together (and
using that δ ≤ 1) yields Lemma 12.

6. Generic Signatures from RSA

6.1. Construction

Let G = QRN be the group of quadratic residues modulo an RSA number N = PQ,
where P and Q are safe primes. Let n = n(k) and η = η(k) be two polynomials. Let a
group hash function H = (PHF.Gen,PHF.Eval) with inputs from {0,1}n and outputs
from G be given. We are ready to define our generic RSA-based signature scheme
SIGRSA[H]:
Key-Generation: Generate N = PQ for safe distinct primes P,Q ≥ 2η+2, such that H

can be used for the group G = QRN . K
$← PHF.Gen(1k). Return the public verifica-

tion key (N,K) and the secret signing key (P,Q).
Signing: To sign m ∈ {0,1}n, pick a random η-bit prime e and compute y = HK(m)1/e

mod N. The eth root can be computed using P and Q. The signature is the tuple
(e, y) ∈ {0,1}η × ZN .

Verification: To verify that (e, y) ∈ {0,1}η × ZN is a correct signature on a given mes-
sage m, check that e is odd and of length η, and that ye = H(m) mod N . It is not
necessary to check specifically that e is a prime.

Theorem 13. Let H be a β-bounded (m,1, γ, δ)-programmable hash function for
bound β ≤ 2η and m ≥ 1. Let F be a (t, q, ε)-forger in the existential forgery under
an adaptive chosen-message attack experiment with SIGRSA[H]. Then there exists an
adversary A that (t ′, ε′)-breaks the strong RSA assumption with t ′ ≈ t and

ε = Θ

(
q

δ
ε′

)

+ qm+1(η + 1)m

2mη−1
+ γ.

The proof is similar to the case of bilinear maps (Theorem 10).
Let us again consider the instantiation SIGRSA[HMG] for the (2,1)-PHF HMG. Plug-

ging in the values from Theorem 8 the reduction from Theorem 13 leads to ε =
Θ(q�ε′) + q3(η+1)2

22η−1 . As explained in the introduction, for q = 230 and k = 80 bits we
are now able to choose η ≈ 80 bit primes.

6.2. Proof of Theorem 13

We first state the following simple lemma due to [41].

Lemma 14. Given x, z ∈ Z∗
n, along with a, b ∈ Z, such that xa = zb , one can effi-

ciently compute x̃ ∈ Z∗
n such that x̃ = z

gcd(a,b)
a .

504 D. Hofheinz and E. Kiltz

To prove this lemma one can use the extended Euclidean algorithm to compute integers
f,g such that bf + ag = gcd(a, b). One can check that x̃ := xf zg satisfies the above
equation.

Now let F be the adversary against the signature scheme. Throughout this proof, we
assume that H is a (m,1, γ, δ)-programmable hash function. Furthermore, we fix some
notation. Let mi the ith query to the signing oracle an (ei, yi) denote the answer. Let m

and (e, y) be the forgery output by the adversary. We introduce two types of forgers:

Type I: It always holds that e = ei for some i.
Type II: It always holds that e �= ei for all i.

By F1 (resp., F2) we denote the forger who runs F but then only outputs the forgery if
it is of type I (resp., type II). We now show that both types of forgers can be reduced to
the strong RSA problem. Theorem 13 then follows by a standard hybrid argument.

Similar to the q-SDH case, both reductions rely on the standard trick [28] that given
an RSA instance N = pq and g̃ ∈ QRN , one can efficiently compute g ∈ QRN , together
with q random solved instances (g1/ei , ei), for random primes ei . A new instance of
the form (g1/e, e) for e �∈ {e1, . . . , eq}, however, can be used to break the strong RSA
assumption. For Type II forgers this idea can be applied more or less directly. For Type
I forgers it may happen that there is a m-collision in the simulated random primes, i.e.,
we have e = ei1 = · · · eim , and one has to use the properties of the (m,1)-PHF to be
able to simulate the maximal m signatures of the form (H(mij)

1/e, e), while using the
forger’s output H(m)1/e to break the strong RSA assumption.

Type I Forgers

Lemma 15. Let F1 be a forger of type I that (t1, q, ε1)-breaks the existential unforge-
ability of SIGRSA[H]. Then there exists an adversary A that (t ′, ε′)-breaks the strong
RSA assumption with t ′ ≈ t and

ε′ ≥ δ

q
·
(

ε1 − qm+1(η + 1)m

2mη−1
− γ

)

.

To prove the lemma we proceed in games.

Game 0. Let F1 be a type I forger that (t1, q, ε1)-breaks the existential unforgeability
of SIGRSA[H]. By definition, we have

Pr[X0] = ε1. (22)

Game 1. We now use the trapdoor key generation (K ′, t) $← PHF.TrapGen(1k, g,h)

for uniformly selected generators g,h ∈ QRN to generate a H-key for the public verifi-
cation key of SIGRSA[H]. By the programmability of H,

Pr[X1] ≥ Pr[X0] − γ. (23)

Game 2. Now we select the used primes ei used for answering signing queries not
upon each signing query, but at the beginning of the experiment. Since the ei were

Programmable Hash Functions and Their Applications 505

selected independently anyway, this change is only conceptual. Let E = ⋃q

i=1 ei be the
set of all ei , and let Ei = E \ {i}. We also change the selection of the elements g,h

used during (K ′, t) $← PHF.TrapGen(1k, g,h) as follows. First, we uniformly choose
i∗ ∈ [q] and generators g̃ ∈ Z

∗
N, h̃ ∈ QRN . We then set E∗ = E \ {ei∗}, E∗,i = E∗ \ {ei},

and

g = g̃2
∏

x∈E∗ x, h = h̃
∏

x∈E x.

Note that we can extract an ei th root for i �= i∗ from g and for all i from h. Unless none
of the ei divides |G|, the induced distribution on g and h is the same as in Game 1.
Since |G| = |QRN | = P ′Q′ for primes P ′ = (P − 1)/2 and Q′ = (Q − 1)/2, and we
assumed that P,Q ≥ 2η+2, however, we see that ei does not divide |G| (for all i)

Pr[X2] = Pr[X1]. (24)

Observe also that i∗ is independent of the adversary’s view.

Game 3. In this game, we change the way signature requests from the adversary are
answered. First, observe that the way we modified the generation of g and h in Game 2
implies that for any i with ei �= ei∗ , we see that yi can be written as

HK ′
(
mi

)1/ei = (
gami hbmi

)1/ei

= (
g̃2ami

∏
x∈E∗ xh̃bmi

∏
x∈E x

)1/ei = g̃2ami

∏
x∈E∗,i x h̃bmi

∏
x∈Ei x

for (ami
, bmi

) ← PHF.TrapEval(t,mi). Hence for i �= i∗, we can generate the signature
(ei, yi) without explicit exponent inversion, but instead using this alternative presen-
tation of yi . Obviously, this change in computing signatures is only conceptual, and
so

Pr[X3] = Pr[X2]. (25)

Observe that i∗ is still independent of the adversary’s view.

Game 4. We now abort and raise event abortcoll if an ei occurs more than m times, i.e.,
if there are pairwise distinct indices i1, . . . , im+1 with ei1 = · · · = eim+1 . There are

(
q

m+1

)

such tuples (i1, . . . , im). For each tuple, the probability for ei1 = · · · = eim+1 is 1/P m,
where P denotes the number of primes9 of length η. Since P > 2η/3(η + 1) log 2 (see,
e.g., [63, Theorem 5.7]), a union bound shows that an (m + 1)-wise collision occurs
with probability at most

Pr[abortcoll] ≤
(

q

m + 1

)(
3(η + 1) log 2

2η

)m

≤ qm+1(η + 1)m

2mη
· (3 log 2)m

(m + 1)! <
qm+1(η + 1)m

2mη−1
.

9 For simplicity, we assume a uniform distribution among all primes of length η.

506 D. Hofheinz and E. Kiltz

Hence,

Pr[X4] ≥ Pr[X3] − Pr[abortcoll] > Pr[X3] − qm+1(η + 1)m

2mη−1
. (26)

Game 5. We now abort and raise event abortbad.e if the adversary returns an e ∈ E∗,
i.e., the adversary returns a forgery attempt (e, y) with e = ei for some i, but e �= ei∗ .
Since i∗ is independent from the adversary’s view, we have Pr[abortbad.e] ≤ 1 − 1/q for
any choice of the ei , so we get

Pr[X5] = Pr[X4 ∧ ¬abortbad.e] ≥ 1

q
Pr[X4]. (27)

Game 6. We now abort and raise event abortbad.a if there is an index i with ei = ei∗
but ami

�= 0, or if am = 0 for the adversary’s forgery message. In other words, we raise
abortbad.a iff we do not have ami

= 0 for all i with ei = ei∗ and am �= 0. Since we have
limited the number of such i to m in Game 4, we can use the programmability of H. We
hence have Pr[abortbad.a] ≤ 1 − δ for any choice of the mi and ei , so we get

Pr[X6] ≥ Pr[X5 ∧ ¬abortbad.a] ≥ δ · Pr[X5]. (28)

Note that in Game 6, the experiment never really needs to invert exponents to generate
signatures: to generate the yi for ei �= ei∗ , we already use the method of Game 3, which
requires no inversion. But if abortbad.a does not occur, then ami

= 0 whenever ei = ei∗ ,
so we can also use that method to sign without inversion. On the other hand, if abortbad.a

does occur, we must abort anyway, so actually no signature is required.
This means that Game 6 does not use knowledge about the factorization of N . On the

other hand, the adversary in Game 6 produces (whenever X6 happens, which implies
¬abortbad.a and ¬abortbad.e) during a forgery

y = (
HK ′(m)

)1/e = (
g̃2am

∏
x∈E∗ xh̃bm

∏
x∈E x

)1/e = g̃
2am

∏
x∈E∗ x

e · h̃bm

∏
x∈E∗ x.

From y and its knowledge about h̃, and the ei , the experiment can derive

y′ = y

h̃bm

∏
x∈E∗ x

= g̃
2am

∏
x∈E∗ x

e .

We have gcd(2am

∏
x∈E∗ x, e) = 1 because e is larger than |am| by H’s boundedness, so

that Lemma 14 finally allows to obtain y′′ = g̃1/e . Since g̃ was chosen initially indepen-
dently and uniformly from Z

∗
N , this means that the from the experiment performed in

Game 6, we can construct an adversary A that (t ′, ε′)-breaks the strong RSA assump-
tion. A’s running time t ′ is approximately t plus a small number of exponentiations,
and A is successful whenever X6 happens:

ε′ ≥ Pr[X6]. (29)

Putting (22–29) together yields Lemma 15.

Programmable Hash Functions and Their Applications 507

Type II Forgers

Lemma 16. Let F2 be a forger of type II that (t1, q, ε1)-breaks the existential unforge-
ability of SIGRSA[H]. Then there exists an adversary A that (t ′, ε′)-breaks the strong
RSA assumption with t ′ ≈ t and

ε′ ≥ δ

2
· (ε2 − γ).

Again we proceed in games. The proof is very similar to the proof for type I forgers,
so we will be brief where similarities occur.

Game 0. Let F2 be a type II forger that (t2, q, ε2)-breaks the existential unforgeability
of SIGRSA[H]. By definition, we have

Pr[X0] = ε2. (30)

Game 1. We now use the trapdoor key generation (K ′, t) $← PHF.TrapGen(1k, g,h)

for uniformly selected generators g,h ∈ QRN to generate a H-key for public verification
key of SIGRSA[H]. By the programmability of H,

Pr[X1] ≥ Pr[X0] − γ. (31)

Game 2. Now we select the used primes ei used for answering signing queries at the
beginning of the experiment and set E = ⋃q

i=1 ei . We select the elements g,h passed to
PHF.TrapGen(1k, g,h) as follows: we choose g̃ ∈ Z

∗
N and c ∈ ZN2 uniformly and set

g = g̃2
∏

x∈E x, h = gc = g̃2c
∏

x∈E x.

Note that we can extract an ei th root from g and h for all i. These change is purely
conceptual:

Pr[X2] = Pr[X1]. (32)

Game 3. We answer all signature requests from the adversary as in Game 3 of the
proof of Lemma 15. That is, we use the way that g and h are chosen to avoid having to
invert exponents. This change is only conceptual, and we have

Pr[X3] = Pr[X2]. (33)

Game 4. We now abort and raise event abortbad.e if e divides am + c · bm over the
integers. Recall that |G| = |QRN | = p′q ′ for primes p′, q ′ with N = (2p′ +1)(2q ′ +1).
Recall also that c is chosen uniformly from ZN2 , so we can write c = c1 + c2|G| with
0 ≤ c1 < |G|. Note that c2 is statistically 1/N -close to being uniformly distributed over

{0, . . . , �N2−1
p′q ′ �} and independent of c1. However, the only information about c released

to the adversary and the PHF.TrapGen algorithm is h = gc and hence c1 = c mod |G|.

508 D. Hofheinz and E. Kiltz

We would like to find necessary conditions for abortbad.e. To this end, let d =
gcd(bm, e). We first claim that for abortbad.e, it is necessary that d �= e. For contra-
diction, assume d = e. Then e|bm by definition of d . Since |am| < e by H’s bounded-
ness, we also have e � |am + c · bm. Taken together this implies that e does not divide
am + c · bm, and hence we have ¬abortbad.e. Next, we show that for abortbad.e, we
need to have d|am. Again, assume d � |am for contradiction. Then, d|c · bm and d|e by
definition of d . Hence, e � |am + c · bm, and again ¬abortbad.e is implied.

So we can assume d �= e and d|am without loss of generality in our analysis of
abortbad.e. Then abortbad.e is equivalent to

am + c · bm = 0 mod e ⇔ am

d
+ (c1 + c2|G|)bm

d
= 0 mod

e

d

⇔ c2 = −|G|−1
(

am

d

(
bm

d

)−1

+ c1

)

,

which occurs with probability at most 1/3 + 1/N due to the distribution of c2. (Note
that |G| = p′q ′ is invertible modulo e/d since |p′|, |q ′| are prime and longer than e, and
bm/d is invertible by construction of d .) We get

Pr[X4] ≥ Pr[X3 ∧ ¬abortbad.e] ≥
(

2

3
− 1

N

)

Pr[X3] ≥ 1

2
· Pr[X3]. (34)

Game 5. We now abort and raise event abortbad.a if am (obtained from
PHF.TrapEval(t,m)) is zero for the adversary’s forgery message m. The programmabil-
ity of H directly implies

Pr[X5] ≥ Pr[X4 ∧ ¬abortbad.a] ≥ δPr[X4]. (35)

Now from Game 5, we can now construct an adversary A on the strong RSA assump-
tion. A takes inputs N and g̃ ∈ Z

∗
N and simulates Game 5 with adversary F2. A uses

g̃ as well as N just as if it was selected by the experiment; note that in Game 5, no
inversion of exponents is necessary anymore. Now whenever F2 outputs a forgery, this
implies in particular that no abortbad.e event was raised and we have

f := gcd(am + c · bm, e) = gcd

(

2(am + c · bm)
∏

x∈E

x, e

)

< e,

so that we can use Lemma 14 to compute g̃e/f from every successful forgery

y = (
gamhbm

)1/e = (
g̃2(am+c·bm)

∏
x∈E x

)1/e
.

Hence we can compute a nontrivial root of the challenge g̃ and thus break the strong
RSA assumption:

ε′ ≥ Pr[X5]. (36)

Putting (30–36) together yields Lemma 16 and completes the proof of Theorem 13.

Programmable Hash Functions and Their Applications 509

7. Signature Sizes

In this section we compute the concrete size of our bilinear maps signatures SIGBM[H]
when instantiated with the multi-generator PHF HMG and compare it to the size of
known schemes. A similar comparison can be made for our RSA signatures SIGRSA[H].
Here we only focus on signature sizes. Let us stress again that the key sizes of our sig-
nature schemes are considerably larger compared to other schemes.

7.1. Concrete Security

This subsection follows the concrete security approach by Bellare and Ristenpart [4],
which in turn builds upon the concrete success measure from [42].

For any adversary A running in time T(A) and gaining advantage ε we define the
success ratio of A to be SR(A) := ε/T(A). The ratio of A’s advantage to its running
time provides a measure of the efficiency of the adversary. Generally speaking, to resist
an adversary with success ration SR(A), a scheme should choose its security parameter
(bits of security) such that SR(A) ≤ 2−k (with respect to the best known attack).

Security of the q-DH Assumption We consider Cheon’s attacks against the q-DH as-
sumption [25] over groups of prime order p. The main result of [25] is that there exists
an adversary P such that

SR(P) = εP
T(P)

= T2(P) · q
p · T(P)

= Ω
(√

q/p
)
.

For our analysis we make the assumption that
√

q/p is the maximal success ratio of an
adversary against the q-DH problem, i.e., that

SR(B) ≤ √
q/p, (37)

for all possible adversaries B. (We note that SR(P) = Θ(
√

q/p) matches the generic
lower bounds from [11].)

Our Signature Scheme SIGBM[H] For our setting, we consider an uf-cma adversary
A against the signature scheme SIGBM[H] that makes q signing queries, runs in time
T(A), and has advantage ε. We can relate the success ratio of A to the success ration
of the adversary B against the q-DH problem from our reduction. Namely, applying
Theorem 10 we have

SR(A) ≤ 1

T(B)
·
(

q

δ
· ε′ + qm+1

2ηm

)

= q

δ
· SR(B) + qm+1

2ηm
· 1

T(B)
≤ q

δ
· SR(B) + qm

2ηm
.

(38)
We want that the signature scheme has k bit security, i.e., that SR(A) ≤ 2−k . Com-

bining this with (37) and (38) we obtain

SR(A) ≤ q

δ
· √q/p + qm

2ηm
≤ 2−k+1. (39)

510 D. Hofheinz and E. Kiltz

(To simplify the upcoming equations we only opt for k − 1 bit security.) We are inter-
ested in the minimal choice of the group order p and the (bit-)length η of the random-
ness such that the above equation holds. Clearly, (39) is satisfied if both,

η ≥ logq + k

m
(40)

and

logp ≥ 2k + 3 logq − 2 log δ (41)

hold.

The Signature Scheme by Boneh and Boyen The security reduction for Boneh/Boyen
signatures to the q-DH assumption is tight, i.e., SR(A) ≈ SR(B) ≤ √

p/q which, for k

bit security, again has to be bounded by 2−k . Therefore we need to chose p such that

logp ≥ 2k + 2 logq. (42)

Note the size of the randomness η in the Boneh/Boyen signatures is always fixed, i.e.,
η = logp.

7.2. Concrete Comparison

We make a comparison for k = 80 bits. For concreteness we consider the instantiation
SIGBM[HMG] for the hash function HMG from Definition 3. By Theorem 5 this is a the
(2,1)-PHF with δ = 1

c�
≈ 2−3 log k and γ = 0. We will perform two types of compar-

isons.

Ignoring Increase of the Group First, as is common in the literature [11,28,33], we
ignore the penalty imposed on the group size due to the non-tight reduction and Cheon’s
attack. That is, ignoring (41) and (42) we always chose logp = 2k bits, independent of
the number of signature queries an adversary can make. This is reasonable when one
views a security reduction as an asymptotic indicator of security. However, the bound
from (40) on the randomness η cannot be ignored since, as shown in the introduction,
this may lead to an actual attack on the signature scheme. The signatures of SIGBM[H]
consist of one group element plus η bit randomness, the signatures of SIGBB of one
group element plus randomness which consists of one element from Zp . On special
Bilinear Maps with the representation of one element in |G| takes exactly logp = 2k

bits [11], we obtain

∣
∣SIGBM[H]∣∣ = logp + η = 2k + logq + k

m
, |SIGBB| = 2 logp = 4k.

For different choices of k and q the resulting signature sizes are given in the top two
rows of Table 2. For example, for k = 80 bits security, it seems realistic to assume that
an adversary makes maximal q ∈ {220,230,240} signature queries.

Programmable Hash Functions and Their Applications 511

Table 2. Recommended signature sizes of different schemes. The top two rows give the sizes when ignoring
the increase of the group due to the non-tight generic bounds and the bottom two rows take the latter into

account.

Scheme Signature size
k = 80 k = 128 k = 256

q = 220 q = 230 q = 240 q = 232 q = 248 q = 264 q = 264 q = 296 q = 2128

Fixed group size
Boneh–Boyen [11] 320 320 320 512 512 512 1024 1024 1024
Ours: SIGBM[HMG] 220 230 240 352 368 384 704 736 768

Variable group size
Boneh–Boyen [11] 400 440 480 640 704 768 2304 2432 2560
Ours: SIGBM[HMG] 316 356 396 490 554 618 944 1072 1200

Taking the Increase of the Group Into Account We now compute the signature sizes
when also taking the increase of the underlying group size into account. Using (41) and
(40) for SIGBM[H] and (42) for SIGBB we obtain

∣
∣SIGBM[H]∣∣ = logp + η = k

(

2 + 1

m

)

+ 6 logk + 4 logq,

|SIGBB| = 2 logp = 4k + 4 logq.

For different choices of k and q the signature sizes are given in the bottom two rows of
Table 2.

Online/Offline Signature Generation We mention, however, that the Boneh–Boyen
signature has an interesting online/offline property. Namely, almost all of the compu-
tational work of signing can be outsourced into a precomputation phase. Later, when
the messages to be signed are known, using the precomputation results, signatures can
be prepared extremely efficiently. Our scheme SIGBM[H] does not seem to inherit this
property.

Acknowledgements

The authors would like to thank the anonymous reviewers for helpful suggestions. The
second author was funded by a Sofja Kovalevskaja Award of the Alexander von Hum-
boldt Foundation and the German Federal Ministry for Education and Research.

Appendix A. Proofs from Sect. 3

A.1. Random Walks and the Full Proof of Theorem 5

The goal of this section is to prove Theorem 5. As indicated, this requires some work;
in particular, we need some theory about random walks. For a thorough introduction,
we refer to [32,47]. Here, we will only use (variations of) some elementary results. For
self-containment, we give some basic proofs below.

512 D. Hofheinz and E. Kiltz

The first theorem summarizes some elementary facts about one-dimensional random
walks:

Theorem 17 (Random walks with {−1,1}-steps). Let μ ∈ N>0 and a′
1, . . . , a

′
μ ∈

{−1,1} be independently and uniformly distributed random variables. For i ∈ Z, let

p′
μ(i) := Pr

[
μ∑

j=1

a′
j = i

]

,

where the probability is over the a′
i . Then

p′
μ(i) = 0 if i �≡ μ mod 2, (A.1)

p′
μ(−i) = p′

μ(i) for i ∈ Z, (A.2)

p′
μ(i + 2) ≤ p′

μ(i) for i ∈ N0, i ≡ μ mod 2, (A.3)

p′
μ+2(0) < p′

μ(0). (A.4)

Furthermore, there exists Λ′ > 0 and, for every c > 0, also λ′
c > 0, such that for all i

with i ≡ μ mod 2 and |i| ≤ c
√

μ,

λ′
c ≤ p′

μ(i)
√

μ ≤ Λ′. (A.5)

Proof. (A.1) and (A.2) follow from the definition, and (A.3) is easiest seen by writing

p′
μ(i) = 2−μ

(
μ

(μ + i)/2

)

= 2−μ μ!
(μ/2 + i/2)!(μ/2 − i/2)!

(for i ∈ N0, i ≡ μ mod 2) for p′
μ(i) and p′

μ(i + 2) and subtracting them. (A.4) follows
by observing that

p′
μ+2(0) = p′

μ(−2) + 2p′
μ(0) + p′

μ(2)

4
(A.2)= p′

μ(2) + p′
μ(0)

2

(A.3)≤ p′
μ(0).

To see the upper bound in (A.5), we may assume i ≥ 0 because of (A.2). Note that

p′
μ(i)

(A.3)≤ p′
μ(i mod 2) = 2−μ

(
μ

�μ/2�
)

= 2−μ μ!
�μ/2�!�μ/2�!

(∗)= Θ(1/
√

μ),

where (∗) uses Stirling’s approximation. (Θ is asymptotic in μ.) For the lower bound,
m′ := �c√μ�, and m := m′ − ((μ − m′) mod 2), so m is the largest possible value for i

in (A.5). Now

Programmable Hash Functions and Their Applications 513

p′
μ(i)

(A.3)≥ p′
μ(m) = 2−μ

(
μ

(μ + m)/2

)

= 2−μ μ!
((μ + m)/2)!((μ − m)/2)!

(∗)= Θ

(√
μ

(μ + m)(μ − m)
· μ2μ

(μ + m)μ+m(μ − m)μ−m

)

= Θ

(√
√
√
√

1

μ
· 1

(1 − m2

μ2)μ−m
· 1

(1 + m
μ

)2m

)

≥ Θ

(
1√
μ

· 1

(1 + c√
μ
)2c

√
μ

)

= Θ

(
1√
μ

· e−2c2
)

= Θ

(
1√
μ

)

as desired, where (∗) denotes again Stirling’s approximation. �

However, for our purposes, it is more useful to allow zero-steps, since this avoids
(A.1).

Theorem 18 (Random walks with {−1,0,1}-steps). Let μ ∈ N>0 and a1, . . . , aμ ∈
{−1,0,1} be independently and uniformly distributed random variables. For i ∈ Z, let

pμ(i) := Pr

[
μ∑

j=1

aj = i

]

,

where the probability is over the ai . Then

pμ(−i) = pμ(i) for i ∈ Z, (A.6)

pμ(i + 1) ≤ pμ(i) for i ∈ N0. (A.7)

Furthermore, there exists Λ > 0 and, for every c > 0, also λc > 0, such that for all i

with |i| ≤ c
√

μ,

λc ≤ pμ(i)
√

μ ≤ Λ. (A.8)

Also,
λc

Λ
pμ(i1) ≤ pμ(i2) ≤ Λ

λc

pμ(i1) (A.9)

for arbitrary i1, i2 with |i1|, |i2| ≤ c
√

μ. Finally, for every c > 0, there exists �c > 0
independent of μ such that

Pr

[∣
∣
∣
∣
∣

μ∑

j=1

aj

∣
∣
∣
∣
∣
≤ c

√
μ

]

≥ �c. (A.10)

Proof. (A.6) follows from the definition. (A.7) can be seen by induction on μ. For
μ = 1, (A.7) is clear. Now assume (A.7) for μ and, for i ≥ 0, consider

pμ+1(i) = pμ(i − 1) + pμ(i) + pμ(i + 1)

3
≥ pμ(i) + pμ(i + 1) + pμ(i + 2)

3
= pμ+1(i + 1).

514 D. Hofheinz and E. Kiltz

This shows (A.7) for μ + 1, and hence in general. Next, we prove the upper bound in
(A.8). To this end, let n0 := |{j | aj = 0}| be the number of zeros among the aj . Clearly,
the expectation value of n0 is μ/3. Hence, using Hoeffding’s inequality, we first obtain

Pr[n0 ≥ μ/2] ≤ e−μ/18. (A.11)

We get

pμ(i)
(A.7)≤ pμ(0) = Pr

[∑

aj �=0

aj = 0

]

=
�μ/2�∑

i=0

Pr

[∑

aj �=0

aj = 0 | n0 = μ − 2i

]

Pr[n0 = μ − 2i]

=
�μ/2�∑

i=0

p′
2i (0)Pr[n0 = μ − 2i] (A.11)≤ e−μ/18 +

�μ/2�∑

i=�μ/4�
p′

2i (0)Pr[n0 = μ − 2i]

(A.4)≤ e−μ/18 +
�μ/2�∑

i=�μ/4�
p′

2�μ/4�(0)Pr[n0 = μ − 2i] ≤ e−μ/18 + p′
2�μ/4�(0)

(A.5)= Θ(1/
√

μ).

This provides an upper bound Λ on pμ(i)/
√

μ. To derive a lower bound, assume a fixed
c > 0, and write m := 2�c√μ/2� (i.e., m is the smallest even upper bound on c

√
μ).

We get

pμ(i)
(A.7)≥ pμ(m) = Pr

[∑

aj �=0

aj = m

]

=
�μ/2�∑

i=0

Pr

[∑

aj �=0

aj = m | n0 = μ − 2i

]

Pr[n0 = μ − 2i]

=
�μ/2�∑

i=0

p′
2i (m)Pr[n0 = μ − 2i] (A.11)≥ −e−μ/18

+
�μ/2�∑

i=�μ/4�
p′

2i (m)Pr[n0 = μ − 2i | n0 ≤ μ/2]

(A.5)≥ −e−μ/18 +
�μ/2�∑

i=�μ/4�

λd√
2i

Pr[n0 = μ − 2i | n0 ≤ μ/2] = Θ

(
λd√

2�μ/2�
)

= Θ
(
1/

√
μ

)
,

where d is a (asymptotic in μ) constant upper bound on m/
√

2�μ/4� = 2�c√μ/2�/√
2�μ/4�, so that we can use (A.5).

Programmable Hash Functions and Their Applications 515

Finally, (A.9) and (A.10) are immediate consequences of (A.8). �

We establish a small piece of notation: for a1, . . . , aμ ∈ {−1,0,1} and X ⊆ [μ], we
abbreviate

∑
i∈X ai with a(X). The following lemma is the “non-splitting” argument

already mentioned in the informal proof of Theorem 5.

Lemma 19. Let μ ∈ N>0 and a1, . . . , aμ ∈ {−1,0,1} be independently and uniformly
distributed random variables. Let ∅ � R � S ⊂ [μ]. Let c > 0 and t ∈ Z with |t | ≤
c
√|S| be arbitrary. Then

max
i

Pr
[
a(R) = i | a(S) = t

] ≤ 1

1 + λ1λc+1
Λ2

. (A.12)

Proof. Without loss of generality, assume t ≥ 0; the case t < 0 is symmetric. Fix
a value i∗ for i that maximizes the probability in (A.12). We first claim that we can
assume 0 ≤ i∗ ≤ t without loss of generality. To see this, consider

Pr
[
a(R) = i∗ | a(S) = t

] = Pr[a(R) = i∗ ∧ a(S) = t]
Pr[a(S) = t]

= Pr[a(R) = i∗ ∧ a(S \ R) = t − i∗]
Pr[a(S) = t]

= Pr[a(R) = i∗]Pr[a(S \ R) = t − i∗]
Pr[a(S) = t] . (A.13)

If i∗ < 0, then Pr[a(R) = i∗] ≤ Pr[a(R) = 0] and Pr[a(S \ R) = t − i∗] ≤
Pr[a(S \ R) = t − 0] by (A.7), so we can set i∗ = 0 as a value that maximizes (A.13).
Similarly, i∗ > t implied Pr[a(R) = i∗] ≤ Pr[a(R) = t] and Pr[a(S \ R) = t − i∗] ≤
Pr[a(S \ R) = t − t], so we can use i∗ = t instead. Hence, we can assume 0 ≤ i∗ ≤ t .
In fact, we may assume that

(a) i∗ ≤ c
√|R|, or

(b) t − i∗ ≤ c
√|S \ R|.

Namely, if neither (a) nor (b) were satisfied, we would have the contradiction

t = i∗ + (t − i∗) > c
√|R| + c

√|S \ R| > c
√|R| + |S \ R| = c

√|S| ≥ t.

If (a) holds, then i∗ + 1 ≤ c
√|R| + 1 ≤ (c + 1)

√|R|, so

Pr
[
a(R) = i∗ + 1

] = p|R|(i∗ + 1)
(A.9)≥ λc+1

Λ
p|R|(i∗) = λc+1

Λ
Pr

[
a(R) = i∗

]
. (A.14)

Furthermore,

Pr
[
a(S \ R) = t − (i∗ + 1)

] = p|S\R|
(
t − (i∗ + 1)

) ≥ λ1

Λ
p|S\R|(t − i∗)

= λ1

Λ
Pr

[
a(s \ R) = t − i∗

]
(A.15)

516 D. Hofheinz and E. Kiltz

either trivially by (A.7) (in case i∗ < t , and using that λ1 ≤ Λ), or by (A.9) (in case
i∗ = t , and using that then |t − i∗|, |t − (i∗ + 1)| ≤ 1 ≤ √|S \ R|). Combining (A.14)
and (A.15) yields

Pr
[
a(R) = i∗ + 1 ∧ a(S) = t

] ≥ λ1λc+1

Λ2
Pr

[
a(R) = i∗ ∧ a(S) = t

]
,

whence

max
i

Pr
[
a(R) = i | a(S) = t

]

= Pr[a(S) = t ∧ a(R) = i∗]
Pr[a(S) = t] ≤ Pr[a(S) = t ∧ a(R) = i∗]

Pr[a(R) ∈ {i∗, i∗ + 1} ∧ a(S) = t]
≤ Pr[a(S) = t ∧ a(R) = i∗]

Pr[a(R) = i∗ ∧ a(S) = t] + Pr[a(R) = i∗ + 1 ∧ a(S) = t] ≤ 1

1 + λ1λc+1
Λ2

,

which shows (A.12). The case (b) is symmetric. �

Lemma 20. Let μ ∈ N>0 and a1, . . . , aμ ∈ {−1,0,1} be independently and uniformly
distributed random variables. Assume fixed nonempty sets X,Y ⊆ [μ]. Define ΔX :=
X \ Y , ΔY := Y \ X, and ΔXY = X ∩ Y . Denote by SMALL the event that

a(ΔX), a(ΔY), a(ΔXY) ≤
√

min
{|ΔX|, |ΔY |, |ΔXY |} + 1.

Then

Pr
[
a(X) = a(Y) = 1 ∧ SMALL

] ≥ 2λ1λ2�1

μ
. (A.16)

Proof. Note that ΔX ∪ ΔY ∪ ΔXY = X ∪ Y , where the union on the left-hand side is
disjoint. First, we treat the case |ΔXY | ≥ |ΔX|, |ΔY |. In this case, we assume without
loss of generality |ΔX| ≥ |ΔY | and hence |ΔXY | ≥ |ΔX| ≥ |ΔY |. Let E denote the event
that |a(ΔY)| ≤ √|ΔY |, and let F denote the event that a(ΔX) = a(ΔY). We obtain

Pr[E] = Pr

[∣
∣
∣
∣

∑

j∈ΔY

aj

∣
∣
∣
∣ ≤ √|ΔY |

]
(A.10)≥ �1 (A.17)

and

Pr[F | E] ≥ min|i|≤|ΔY | Pr[a(ΔX) = i | E] (∗)= min|i|≤|ΔY | Pr[a(ΔX) = i]

= min|i|≤|ΔY |p|ΔX |(i)
(A.8)

|ΔY |≤|ΔX |≥ λ1√|ΔX| , (A.18)

where (∗) uses that E is independent of a(ΔX). Combining (A.17) and (A.18) gives

Pr[E ∧ F] = Pr[F | E]Pr[E] ≥ λ1�1/
√|ΔX|. (A.19)

Programmable Hash Functions and Their Applications 517

Now since E ∧ F implies a(X) = a(Y) as well as |a(ΔX)| = |a(ΔY)| ≤ √|ΔY | ≤√|ΔXY |,

Pr
[
a(X) = a(Y) = 1 | E ∧ F

] = Pr
[
a(ΔXY) = 1 − a(ΔX) | E ∧ F

]

≥ min
|i|≤√|ΔY |+1

Pr
[
a(ΔXY) = i | E ∧ F

]
(A.20)

(∗)= min
|i|≤√|ΔY |+1

Pr
[
a(ΔXY) = i

]

= min
|i|≤√|ΔY |+1

p|ΔXY |(i)
(A.8)√|ΔY |+1≤2

√|ΔXY |≥ λ2√|ΔXY | ,
(A.21)

where (∗) uses that E ∧F is independent of a(ΔXY). Now observe that a(X) = a(Y) =
1 ∧E ∧F implies |a(ΔX)| = |a(ΔY)| ≤ √|ΔY | along with |a(ΔXY)| = |1 − a(ΔY)| ≤√|ΔY | + 1. Hence, a(X) = a(Y) = 1 ∧ E ∧ F implies SMALL, and we obtain

Pr
[
a(X) = a(Y) = 1 ∧ SMALL

]

≥ Pr
[
a(X) = a(Y) = 1 ∧ E ∧ F

]

= Pr
[
a(X) = a(Y) = 1 | E ∧ F

]
Pr[E ∧ F] (A.19,A.21)≥ λ1λ2�1√|ΔX| · |ΔXY |

(∗)≥ 2λ1λ2�1

μ

as desired, where (∗) uses that |ΔX| + |ΔXY | = |X| ≤ μ and hence10 |ΔX| · |ΔXY | ≤
(μ/2)2.

The cases |ΔX| ≥ |ΔXY |, |ΔY | and |ΔY | ≥ |ΔXY |, |ΔX| can be treated analo-
gously. �

Lemma 21. In the situation of Lemma 20, let additionally Z ⊆ [μ], Z �= ∅,X,Y . Then

Pr
[
a(Z) �= 1 | a(X) = a(Y) = 1 ∧ SMALL

] ≥ λ1λ2

λ1λ2 + Λ2
. (A.22)

Proof. Let ZX := Z ∩ ΔX , ZY := Z ∩ ΔY , and ZXY := Z ∩ ΔXY . Write G shorthand
for the event a(X) = a(Y) = 1 ∧ SMALL.

Now first, if Z �= ZX ∪ ZY ∪ ZXY , then there is an index j ∈ Z \ (X ∪ Y), and hence

Pr
[
a(Z) �= 1 | G] = Pr

[
aj �= 1 − a

(
Z \ {j}) | G] ≥ min|i|≤1

Pr[aj �= i | G]
(∗)= min|i|≤1

Pr[aj �= i] = 2/3.

10 for a, b ∈ R, we have a2 − 2ab + b2 = (a − b)2 ≥ 0 ⇒ a2 + 2ab + b2 = (a + b)2 ≥ 4ab ⇒
((a + b)/2)2 ≥ ab

518 D. Hofheinz and E. Kiltz

Here, (∗) uses the fact that G and aj are independent. Since 0 < λc ≤ Λ for all c,
we have 2/3 ≥ 1/2 ≥ λ1λ2

λ1λ2+Λ2 , and (A.22) follows. Hence, we may assume that Z

completely decomposes into ZX , ZY , and ZXY .
Next, assume ZX �= ∅,ΔX , so ∅ � ZX � ΔX . Observe that for mutually exclusive

events Bi with Pr[∨i Bi] = 1, and arbitrary A, we have

Pr[A] =
∑

i

Pr[A ∧ Bi] =
∑

i

Pr[A | Bi]Pr[Bi]

≤ max
i

Pr[A | Bi]
∑

i

Pr[Bi] = max
i

Pr[A | Bi]. (A.23)

Since G implies |a(ΔX)| ≤ √|ΔX|, we obtain

Pr
[
a(Z) = 1 | G] (A.23)≤ max

|t |≤√|ΔX |
Pr

[
a(Z) = 1 | G ∧ a(ΔX) = t

]

(∗)= max
|t |≤√|ΔX |

i

Pr
[
a(ZX) = i | G ∧ a(ΔX) = t

]

(∗)= max
|t |≤√|ΔX |

i

Pr
[
a(ZX) = i | a(ΔX) = t

] (†)≤ 1

1 + λ1λ2
Λ2

which implies (A.22). Here, (∗) uses that G only depends on a(ΔX) (but not on the
individual aj for j ∈ ΔX), and (†) uses Lemma 19 with R = ZX , S = ΔX . Analogous
reasoning shows that this holds also when ZY �= ∅,ΔY and when ZXY �= ∅,ΔXY .

So far we have shown (A.22) unless all of the following conditions are fulfilled:
Z = ZX ∪ ZY ∪ ZXY , ZX ∈ {∅,ΔX}, ZY ∈ {∅,ΔY }, and ZXY ∈ {∅,ΔXY }. That leaves
only the following remaining possibilities:

– Z = X, or Z = Y , or Z = ∅: this cannot happen by assumption.
– Z = ΔX or Z = ΔY or Z = ΔXY : using Lemma 19 (e.g., in case Z = ΔX with

R = Z = ΔX and S = X) shows (A.22).
– Z = ΔX ∪ ΔY ∪ ΔXY = X ∪ Y : we can use Lemma 19 with R = X and S = Z =

X ∪ Y to show (A.22).
– Z = ΔX ∪ ΔY : in this case, a(X) = a(Y) = 1 would imply a(ΔX) + a(ΔXY) =

a(X) = a(Y) = a(ΔY) + a(ΔXY), whence a(ΔX) = a(ΔY). Thus a(Z) =
a(ΔX) + a(ΔY) = 2a(ΔX) �= 1 always, and Lemma 19 follows.

Summarizing, this shows (A.22) in general. �

Now we can combine Lemmas 20 and 21 to obtain

Theorem 22. Let μ ∈ N>0 and a1, . . . , aμ ∈ {−1,0,1} be independently and uni-
formly distributed random variables. Assume fixed nonempty sets X,Y,Z ⊆ [μ] with
Z �= X,Y . Then

Pr
[
a(X) = a(Y) = 1 �= a(Z)

] ≥ λ2
1λ

2
2�1

λ1λ2 + Λ2
· 1

μ
.

Programmable Hash Functions and Their Applications 519

This finally proves Theorem 5 if we just adapt notation: in the situation of the proof
sketch of Theorem 5 and Definition 1, set X = X1, Y = X2, Z = Z1, and μ = �, then
apply Theorem 22. (Note that at this point, we crucially use that we have hardwired
a0 := −1, so that, e.g., aX1 = a(X) − 1, and thus aX1 = 0 ⇔ a(X) = 1.)

A.2. Proof of Theorem 6

Proof. We use PHF.Gen and PHF.TrapGen algorithms similar to those from Theo-
rem 5. First, let J = J (k) be a positive function (we will optimize the choice of J later).
Then define

– PHF.TrapGen(1k, g,h) chooses uniformly and independently aij ∈ {−1,0,1} for
1 ≤ i ≤ � and 1 ≤ j ≤ J , as well as random group exponents b0, . . . , b�. It sets
ai = ∑J

j=1 aij and then h0 = g−1hb0 and hi = gai hbi for all i. It finally returns
K = (h0, . . . , h�) and t = (b0, a1, b1, . . . , a�, b�).

– PHF.TrapEval(t,X) parses X = (x1, . . . , x�) ∈ {0,1}� and returns a = −1 +∑�
i=1 aixi and b = b0 + ∑�

i=1 bixi .

The main difference to the functions from Theorem 5 is that the ai are not chosen from
{−1,0,1} but instead in turn as random walks of length J . Now adding r independent
random walks of length J just yields a random walk of length rJ . Hence, we obtain that
for all keys K ′, all X ∈ {0,1}�, and for the exponent aX output by PHF.TrapEval(t,X):

Θ
(
1/

√
�J

) ≤ Pr[aX = 0] ≤ Θ
(
1/

√
J

)
,

and with techniques from Appendix A.1, we obtain for all X,Y ∈ {0,1}� with X �= Y :

Pr[aZ = 0 | aX = 0] = Θ
(
1/

√
J

)

Hence for all X1,Z1, . . . ,Zq , we have

Pr[aX1 = 0 ∧ aZ1 , . . . , aZq �= 0] = Pr[aX1 = 0]Pr[aZ1, . . . , aZq �= 0 | aX1 = 0]

≥ Θ
(
1/

√
�J

)
(

1 −
q∑

i=1

Pr[aZi
= 0 | aX1 = 0]

)

≥ Θ
(
1/

√
�J

)(
1 − qΘ

(
1/

√
J

))
.

Setting J suitably in the order of q2 proves the theorem. �

A.3. Proof of Theorem 7

Proof. Fix PPT algorithms PHF.TrapGen and PHF.TrapEval and assume � = 2 with-
out loss of generality. Consider X1 = (1,1), X2 = (1,0), X3 = (0,0), and Z1 = (0,1).
Assume that K ′, t have been generated via PHF.TrapGen(1k, g,h) for uniform g,h ∈ G.
Define (aX, bX) for X ∈ {0,1}� as the result of PHF.TrapEval(t,X). Assume that

520 D. Hofheinz and E. Kiltz

aX1 = aX2 = aX3 = 0, which implies that

HMG
K ′ (X1) = h0h1h2 = hbX1 , HMG

K ′ (X2) = h0h1 = hbX2 ,

HMG
K ′ (X3) = h0 = hbX3 .

We will show now that aZ1 �= 0 allows to efficiently compute dlogh(g), which proves
the theorem. Namely, aZ1 �= 0 implies

gaZ1 hbZ1 = HMG
K ′ (Z1) = h0h2 = HMG

K ′ (X1) · HMG
K ′ (X3)

HMG
K ′ (X2)

.

Considering the discrete logarithms to base h yields

dlogh(g)aZ1 + bZ1 = bX1 − bX2 + bX3 mod |G|
and hence, whenever aZ1 �= 0 and |G| is known and prime, we can efficiently obtain
dlogh(g), solving the discrete logarithm problem for h and g. �

Appendix B. Randomized Programmable Hash Functions

B.1. Definitions

A randomized group hash function RH = (RPHF.Gen,RPHF.Eval) for a group fam-
ily G = (Gk) and with input length � = �(k) and randomness space R = (Rk) con-

sists of two PPT algorithms. For security parameter k ∈ N, a key K
$← RPHF.Gen(1k)

is generated by the key generation algorithm RPHF.Gen. This key K can then be
used for the deterministic evaluation algorithm RPHF.Eval to evaluate RH via y ←
RPHF.Eval(K,X; r) ∈ G for any X ∈ {0,1}� and r ∈ R. We write RHK(X; r) =
RPHF.Eval(K,X; r).

Definition 23. A randomized group hash function RH is an (m,n, γ, δ)-programmable
randomized hash function if there are PPT algorithms RPHF.TrapGen (the trapdoor
key generation algorithm), RPHF.TrapEval (the deterministic trapdoor evaluation al-
gorithm), and RPHF.TrapRand (the deterministic randomness generator) such that the
following holds:

Syntactics: For g,h ∈ G, the trapdoor key generation (K ′, t) $←
RPHF.TrapGen(1k, g,h) outputs a key K ′ and a trapdoor t . Trapdoor evaluation
(a(·), b(·)) ← RPHF.TrapEval(t,X) produces two deterministic polynomial-time
functions a(·) and b(·), for any X ∈ {0,1}�. Moreover, r ← RPHF.TrapRand(t,X, i)

produces an element r from R, for any X ∈ {0,1}� and index 1 ≤ i ≤ m.
Correctness: We demand RHK ′(X; r) = RPHF.Eval(K ′,X; r) = ga(r)hb(r) for all

g,h ∈ G and all possible (K ′, t) $← RPHF.TrapGen(1k, g,h), for all X ∈ {0,1}� and
1 ≤ i ≤ m, (a(·), b(·)) ← RPHF.TrapEval(t,X), and for r ← RPHF.TrapEval(t,X, i).

Statistically close trapdoor keys: For K
$← RPHF.Eval(1k) and (K ′, t) $←

RPHF.Eval(1k), the keys K and K ′ are statistically γ -close: K
γ≡ K ′.

Programmable Hash Functions and Their Applications 521

Close to uniform randomness: For all g,h ∈ G and all K ′ in the range of (the first com-
ponent of) RPHF.TrapGen(1k, g,h), for all X1, . . . ,Xm, and rXi

←
RPHF.TrapRand(t,Xi, i), the rXi

are distributed statistically γ -close to indepen-
dently uniform over R (over all possible t).

Well-distributed logarithms: For all g,h ∈ G and all K ′ in the range of (the first com-
ponent of) RPHF.TrapGen(1k, g,h), for all X1, . . . ,Xm,Z1, . . . ,Zn ∈ {0,1}� with
Xi �= Zj for any i, j , for all r̃1, . . . , r̃n ∈ R, and (aXi

(·), bXi
(·)) ←

RPHF.TrapEval(t,Xi), rXi
← RPHF.TrapRand(t,Xi, i) and (aZi

(·), bZi
(·)) ←

RPHF.TrapEval(t,Zi), we have

Pr
[
aX1(rX1) = · · · = aXm(rXm) = 0 ∧ aZ1(r̃1), . . . , aZn(r̃n) �= 0

] ≥ δ, (B.1)

where the probability is over the trapdoor t that was produced along with K ′. Here
Xi may depend on all Xj and rXj

for j < i, and the Z1, . . . ,Zn may depend on all
Xi and rXi

.

If γ is negligible and δ is noticeable, we simply call RH (m,n)-programmable.

We remark that RPHFs are a strict generalization of PHFs from Sect. 3. Furthermore,
it can be verified that our two applications of PHFs from Sect. 4 can also be securely
instantiated with RPHFs.

B.2. Construction

In the following we denote [x]2� := x mod 2�. The first randomized programmable hash
function is variant of a hash function implicitly used in a construction by Fischlin [33].

Definition 24. Let G = (Gk) be a group family, and let � = �(k) be a polynomial.
Then, RHF = (RPHF.Gen,RPHF.Eval) is the following group hash function with input
length � = �(k) and randomness space R = {0,1}�:

– RPHF.Gen(1k) returns a uniformly and independently sampled K = (h0, h1, h2) ∈
G

3.
– RPHF.Eval(K,X; r) parses K = (h0, h1, h2) ∈ G

3, X ∈ {0,1}�, r ∈ {0,1}�, com-
putes and returns

RHF
K(X; r) = h0h

r
1h

[r+X]2�

2 .

Theorem 25. For any group G with known order, RHF is a (1,1,0,1/2)-programma-
ble randomized hash function.

Proof. Consider the following algorithms:

– RPHF.TrapGen(1k, g,h) chooses uniformly and independently r1 ∈ {0,1}� and
random group exponents b0, b1, b2. It picks a random vector Δ = (Δ1,Δ2) ∈
{(1,0), (0,1)}. It sets h0 = g−r1hb0 , h1 = gΔ1hb1 , h2 = gΔ2hb2 . It returns K =
(h0, h1, h2) and t = (r1, b0, b1, b2,Δ).

– RPHF.TrapEval(t,X,1): It defines and returns the functions a(s) and b(s) as
a(s) = −r1 + Δ1s + Δ2[s + X]2� , b(s) = b0 + b1s + b2[s + X]2� .

522 D. Hofheinz and E. Kiltz

– RPHF.TrapRand(t,X,1): It computes and returns r = Δ1r1 + Δ2[r1 − X]2� .

Clearly, rX1 ← RPHF.TrapRand(t,X1,1) equals r1 which is uniform random, for any
K . We have to show that for all X1 �= Z1 ∈ {0,1}�, for all r̃1 ∈ R, and for the
corresponding (aX1(·), bX1(·), rX1) ← RPHF.TrapEval(t,X1,1) and (aZ1(·), bZ1(·)) ←
RPHF.TrapEval(t,Z1,⊥), we have

Pr
[
aX1(rX1) = 0 ∧ aZ1(r̃1) �= 0

] ≥ δ.

By construction we have

aX1(rX1) = −r1 + Δ1
(
Δ1r1 + Δ2[r1 + X1]2�

)

+ Δ2
(
Δ1r1 + Δ2

[[r1 + X1]2� − X1
]

2�

) = 0,

always, and independent of everything else. It leaves to consider Pr[aZ1(r̃1) �= 0]. We
distinguish between two cases. If r̃1 �= rX1 , then

Pr
[
aZ1(r̃1) �= 0

] ≥ Pr
[
aZ1(r̃1) �= 0 | Δ = (1,0)

]
Pr

[
Δ = (1,0)

]

= 1

2
Pr[−r1 + r̃1 �= 0] = 1

2
,

since Δ = (1,0) implies r̃1 = rX1 = r1. If r̃1 = rX1 , then

Pr
[
aZ1(r̃1) �= 0

] ≥ Pr
[
aZ1(r̃1) �= 0 | Δ = (0,1)

]
Pr

[
Δ = (0,1)

]

= 1

2
Pr

[−r1 + [Z1 + [
r1 − X1

]
2�]2� �= 0

] = 1

2
,

since Δ = (0,1) implies r̃1 = rX1 = [r1 − X1]2� . �

Again, the above theorem also generalizes to groups of unknown order.

Theorem 26. For the group G = QRN of quadratic residues modulo N = pq for
safe distinct primes p and q , the function RHF is a 2�-bounded (1,1,3/N,1/2)-
programmable randomized hash function.

Now if we just write things differently, we obtain the RPHF that was (implicitly) used
in Okamoto’s scheme from [57]. In particular, Okamoto’s scheme can be explained as
our bilinear signature scheme SIGBM[RH], instantiated with a suitable RPHF RHL over
a cyclic group. Formally:

Definition 27. Let G = (Gk) be a group family, where Gk is of order pk . We define
RHL = (RPHF.Gen,RPHF.Eval) as the following group hash function with randomness
space R = Zp(k):

– RPHF.Gen(1k) returns a uniformly and independently sampled K = (h′
0, h

′
1, h

′
2) ∈

G3.

Programmable Hash Functions and Their Applications 523

– RPHF.Eval(K,X; r) parses K = (h′
0, h

′
1, h

′
2) ∈ G

3, X ∈ Zp(k), r ∈ R, computes
and returns

RHL
K(X; r) = h′

0h
′
1
r
h′

2
X
.

The proof of the following theorem follows from the proof of Theorem 25 if we just set

h′
0 = h0, h′

1 = h1, h′
2 = h2h1

and replace the computation modulo 2� in the exponent by a computation modulo the
(known) group order |G|.

Theorem 28. For any group G with known order, RHL is a (1,1,0,1/2)-programma-
ble randomized hash function.

Again, the theorem also generalizes to groups |G| of unknown order where we have to
statistically approximate the group order. In fact, we can even work with a significantly
shorter randomness space:

Theorem 29. For the group G = QRN of quadratic residues modulo N = pq for
safe distinct primes p and q , the function RHL with randomness space R = {0,1}L
for L ≥ � + k is a 2L-bounded (1,1,3/N + 1/k,1/2)-programmable randomized hash
function.

We can prove Theorem 29 using a trapdoor key setup similar to the one for the case of
a known group order. Concretely, RPHF.TrapGen(1k, g,h) tosses a random coin Δ ∈
{0,1} and sets up

h′
0 = g−r1hb0 , h′

1 = ghb1 , h′
2 = gΔhb2 .

With this setup, we get in particular aX(r) = r +ΔX − r1. Hence, trapdoor randomness
generation returns r1 − ΔX. Because r1 ∈ {0,1}L for L = � + k and X ∈ {0,1}�, this
randomness value r1 − ΔX is statistically close to uniform even for Δ = 1.

In this way, we can explain the (implicit) RPHFs from the signature schemes of Ca-
menisch and Lysyanskaya [21] (with L = �+k+ log2 N) and a variant of Zhu [67] (with
slightly larger randomness space L = �+k). Observe, however, that these constructions
are not suitably bounded to achieve short signature schemes through Theorem 13. Recall
that Theorem 13 assumed bounded RPHFs to ensure that certain exponents are coprime
(so Lemma 14 can be used to extract a nontrivial root). In the schemes [21,67], a more
direct investigation shows that even with the used (not suitably bounded) RPHFs, this
coprimality holds with large probability.

We finally note that it is possible to generalize RHF, resp. RHL to an (m,1)-RPHF.
However, also this generalization is not sufficiently bounded in order to be useful to our
applications of short signatures (cf. also Footnote 4).

524 D. Hofheinz and E. Kiltz

References

[1] M. Abdalla, D. Catalano, A. Dent, J. Malone-Lee, G. Neven, N. Smart, Identity-based encryption gone
wild, in ICALP 2006: 33rd International Colloquium on Automata, Languages and Programming,
Part II, ed. by M. Bugliesi, B. Preneel, V. Sassone, I. Wegener, Venice, Italy, July 10–14, 2006. Lecture
Notes in Computer Science, vol. 4052 (Springer, Berlin, 2006), pp. 300–311

[2] S. Agrawal, D. Boneh, X. Boyen, Efficient lattice (H)IBE in the standard model, in Advances in
Cryptology—EUROCRYPT 2010, ed. by H. Gilbert, French Riviera, May 30–June 3, 2010. Lecture
Notes in Computer Science, vol. 6110 (Springer, Berlin, 2010), pp. 553–572

[3] N. Bari, B. Pfitzmann, Collision-free accumulators and fail-stop signature schemes without trees, in
Advances in Cryptology—EUROCRYPT’97, ed. by W. Fumy, Konstanz, Germany, May 11–15, 1997.
Lecture Notes in Computer Science, vol. 1233 (Springer, Berlin, 1997), pp. 480–494

[4] M. Bellare, T. Ristenpart, Simulation without the artificial abort: Simplified proof and improved concrete
security for Waters’ IBE scheme, in Advances in Cryptology—EUROCRYPT 2009, ed. by A. Joux,
Cologne, Germany, April 26–30, 2009. Lecture Notes in Computer Science, vol. 5479 (Springer, Berlin,
2009), pp. 407–424

[5] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in
ACM CCS 93: 1st Conference on Computer and Communications Security, ed. by V. Ashby, Fairfax,
Virginia, USA, November 3–5, 1993 (ACM, New York, 1993), pp. 62–73

[6] M. Bellare, P. Rogaway, The exact security of digital signatures: How to sign with RSA and Rabin, in
Advances in Cryptology—EUROCRYPT’96, ed. by U.M. Maurer, Saragossa, Spain, May 12–16, 1996.
Lecture Notes in Computer Science, vol. 1070 (Springer, Berlin, 1996), pp. 399–416

[7] M. Bellare, O. Goldreich, S. Goldwasser, Incremental cryptography: the case of hashing and signing,
in Advances in Cryptology—CRYPTO’94, ed. by Y. Desmedt, Santa Barbara, CA, USA, August 21–25,
1994. Lecture Notes in Computer Science, vol. 839 (Springer, Berlin, 1994), pp. 216–233

[8] O. Blazy, G. Fuchsbauer, D. Pointcheval, D. Vergnaud, Signatures on randomizable ciphertexts, in Pub-
lic Key Cryptography (2011)

[9] D. Boneh, X. Boyen, Efficient selective-ID secure identity based encryption without random oracles, in
Advances in Cryptology—EUROCRYPT 2004, ed. by C. Cachin, J. Camenisch, Interlaken, Switzerland,
May 2–6, 2004. Lecture Notes in Computer Science, vol. 3027 (Springer, Berlin, 2004), pp. 223–238

[10] D. Boneh, X. Boyen, Secure identity based encryption without random oracles, in Advances in
Cryptology—CRYPTO 2004, ed. by M. Franklin, Santa Barbara, CA, USA, August 15–19, 2004. Lec-
ture Notes in Computer Science, vol. 3152 (Springer, Berlin, 2004), pp. 443–459

[11] D. Boneh, X. Boyen, Short signatures without random oracles and the SDH assumption in bilinear
groups. J. Cryptol. 21(2), 149–177 (2008)

[12] D. Boneh, M.K. Franklin, Identity-based encryption from the Weil pairing, in Advances in Cryptology—
CRYPTO 2001, ed. by J. Kilian, Santa Barbara, CA, USA, August 19–23, 2001. Lecture Notes in Com-
puter Science, vol. 2139 (Springer, Berlin, 2001), pp. 213–229

[13] D. Boneh, M.K. Franklin, Identity based encryption from the Weil pairing. SIAM J. Comput. 32(3),
586–615 (2003)

[14] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, in Advances in Cryptology—
ASIACRYPT 2001, ed. by C. Boyd, Gold Coast, Australia, December 9–13, 2001. Lecture Notes in
Computer Science, vol. 2248 (Springer, Berlin, 2001), pp. 514–532

[15] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319
(2004)

[16] X. Boyen, General ad hoc encryption from exponent inversion IBE, in Advances in Cryptology—
EUROCRYPT 2007. Lecture Notes in Computer Science, vol. 4515 (Springer, Berlin, 2007), pp. 394–
411

[17] X. Boyen, Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and
more, in PKC 2010: 13th International Conference on Theory and Practice of Public Key Cryptogra-
phy, ed. by P.Q. Nguyen, D. Pointcheval, Paris, France, May 26–28, 2010. Lecture Notes in Computer
Science, vol. 6056 (Springer, Berlin, 2010), pp. 499–517

[18] X. Boyen, Q. Mei, B. Waters, Direct chosen ciphertext security from identity-based techniques, in ACM
CCS 05: 12th Conference on Computer and Communications Security, ed. by V. Atluri, C. Meadows,
A. Juels, Alexandria, Virginia, USA, November 7–11, 2005 (ACM, New York, 2005), pp. 320–329

Programmable Hash Functions and Their Applications 525

[19] S. Brands, An efficient off-line electronic cash system based on the representation problem. Report
CS-R9323, Centrum voor Wiskunde en Informatica, March 1993

[20] J. Camenisch, A. Lysyanskaya, A signature scheme with efficient protocols, in SCN 02: 3rd Interna-
tional Conference on Security in Communication Networks, ed. by S. Cimato, C. Galdi, G. Persiano,
Amalfi, Italy, September 12–13, 2002. Lecture Notes in Computer Science, vol. 2576 (Springer, Berlin,
2002), pp. 268–289

[21] J. Camenisch, A. Lysyanskaya, Signature schemes and anonymous credentials from bilinear maps, in
Advances in Cryptology—CRYPTO 2004, ed. by M. Franklin, Santa Barbara, CA, USA, August 15–19,
2004. Lecture Notes in Computer Science, vol. 3152 (Springer, Berlin, 2004), pp. 56–72

[22] D. Cash, D. Hofheinz, E. Kiltz, C. Peikert, Bonsai trees, or how to delegate a lattice basis, in Advances
in Cryptology—EUROCRYPT 2010, ed. by H. Gilbert, French Riviera, May 30–June 3, 2010. Lecture
Notes in Computer Science, vol. 6110 (Springer, Berlin, 2010), pp. 523–552

[23] D. Chaum, J.-H. Evertse, J. van de Graaf, An improved protocol for demonstrating possession of discrete
logarithms and some generalizations, in Advances in Cryptology—EUROCRYPT’87, ed. by D. Chaum,
W.L. Price, Amsterdam, The Netherlands, April 13–15, 1988. Lecture Notes in Computer Science,
vol. 304 (Springer, Berlin, 1988), pp. 127–141

[24] D. Chaum, E. van Heijst, B. Pfitzmann, Cryptographically strong undeniable signatures, unconditionally
secure for the signer, in Advances in Cryptology—CRYPTO’91, ed. by J. Feigenbaum, Santa Barbara,
CA, USA, August 11–15, 1992. Lecture Notes in Computer Science, vol. 576 (Springer, Berlin, 1992),
pp. 470–484

[25] J.H. Cheon, Security analysis of the strong Diffie-Hellman problem, in Advances in Cryptology—
EUROCRYPT 2006, ed. by S. Vaudenay, St. Petersburg, Russia, May 28–June 1, 2006. Lecture Notes
in Computer Science, vol. 4004 (Springer, Berlin, 2006), pp. 1–11

[26] B. Chevallier-Mames, M. Joye, A practical and tightly secure signature scheme without hash function,
in Topics in Cryptology—CT-RSA 2007, ed. by M. Abe, San Francisco, CA, USA, February 5–9, 2007.
Lecture Notes in Computer Science, vol. 4377 (Springer, Berlin, 2007), pp. 339–356

[27] J.-S. Coron, On the exact security of full domain hash, in Advances in Cryptology—CRYPTO 2000,
ed. by M. Bellare, Santa Barbara, CA, USA, August 20–24, 2000. Lecture Notes in Computer Science,
vol. 1880 (Springer, Berlin, 2000), pp. 229–235

[28] R. Cramer, V. Shoup, Signature schemes based on the strong RSA assumption. ACM Trans. Inf. Syst.
Secur. 3(3), 161–185 (2000)

[29] I. Damgård, M. Koprowski, Generic lower bounds for root extraction and signature schemes in gen-
eral groups, in Advances in Cryptology—EUROCRYPT 2002, ed. by L.R. Knudsen, Amsterdam, The
Netherlands, April 28–May 2, 2002. Lecture Notes in Computer Science, vol. 2332 (Springer, Berlin,
2002), pp. 256–271

[30] Y. Dodis, R. Oliveira, K. Pietrzak, On the generic insecurity of the full domain hash, in Advances in
Cryptology—CRYPTO 2005, ed. by V. Shoup, Santa Barbara, CA, USA, August 14–18, 2005. Lecture
Notes in Computer Science, vol. 3621 (Springer, Berlin, 2005), pp. 449–466

[31] U. Feige, A. Fiat, A. Shamir, Zero-knowledge proofs of identity. J. Cryptol. 1(2), 77–94 (1988)
[32] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. (Wiley, New York,

1968)
[33] M. Fischlin, The Cramer–Shoup strong-RSA signature scheme revisited, in PKC 2003: 6th Interna-

tional Workshop on Theory and Practice in Public Key Cryptography, ed. by Y. Desmedt, Miami, USA,
January 6–8, 2003. Lecture Notes in Computer Science, vol. 2567 (Springer, Berlin, 2003), pp. 116–129

[34] E. Fujisaki, T. Okamoto, Statistical zero knowledge protocols to prove modular polynomial relations, in
Advances in Cryptology—CRYPTO’97, ed. by B.S. Kaliski Jr., Santa Barbara, CA, USA, August 17–21,
1997. Lecture Notes in Computer Science, vol. 1294 (Springer, Berlin, 1997), pp. 16–30

[35] J. Furukawa, H. Imai, An efficient group signature scheme from bilinear maps, in ACISP 05: 10th Aus-
tralasian Conference on Information Security and Privacy, ed. by C. Boyd, J.M. González Nieto, Bris-
bane, Queensland, Australia, July 4–6, 2005. Lecture Notes in Computer Science, vol. 3574 (Springer,
Berlin, 2005), pp. 455–467

[36] R. Gennaro, S. Halevi, T. Rabin, Secure hash-and-sign signatures without the random oracle, in Ad-
vances in Cryptology—EUROCRYPT’99, ed. by J. Stern, Prague, Czech Republic, May 2–6, 1999.
Lecture Notes in Computer Science, vol. 1592 (Springer, Berlin, 1999), pp. 123–139

526 D. Hofheinz and E. Kiltz

[37] C. Gentry, Practical identity-based encryption without random oracles, in Advances in Cryptology—
EUROCRYPT 2006, ed. by S. Vaudenay, St. Petersburg, Russia, May 28–June 1, 2006. Lecture Notes
in Computer Science, vol. 4004 (Springer, Berlin, 2006), pp. 445–464

[38] C. Gentry, C. Peikert, V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic construc-
tions, in 40th Annual ACM Symposium on Theory of Computing, ed. by R.E. Ladner, C. Dwork, Victoria,
British Columbia, Canada, May 17–20, 2008 (ACM, New York, 2008), pp. 197–206

[39] S. Goldwasser, S. Micali, R.L. Rivest, A digital signature scheme secure against adaptive chosen-
message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

[40] J. Groth, Cryptography in subgroups of Zn , in TCC 2005: 2nd Theory of Cryptography Conference,
ed. by J. Kilian, Cambridge, MA, USA, February 10–12, 2005. Lecture Notes in Computer Science,
vol. 3378 (Springer, Berlin, 2005), pp. 50–65

[41] L.C. Guillou, J.-J. Quisquater, A practical zero-knowledge protocol fitted to security microprocessor
minimizing both transmission and memory, in Advances in Cryptology—EUROCRYPT’88, ed. by C.G.
Günther, Davos, Switzerland, May 25–27, 1988. Lecture Notes in Computer Science, vol. 330 (Springer,
Berlin, 1988), pp. 123–128

[42] J. Håstad, R. Impagliazzo, L.A. Levin, M. Luby, A pseudorandom generator from any one-way function.
SIAM J. Comput. 28(4), 1364–1396 (1999)

[43] D. Hofheinz, E. Kiltz, Secure hybrid encryption from weakened key encapsulation, in Advances in
Cryptology—CRYPTO 2007, ed. by A. Menezes, Santa Barbara, CA, USA, August 19–23, 2007. Lec-
ture Notes in Computer Science, vol. 4622 (Springer, Berlin, 2007), pp. 553–571

[44] D. Hofheinz, E. Kiltz, Practical chosen ciphertext secure encryption from factoring, in Advances in
Cryptology—EUROCRYPT 2009, ed. by A. Joux, Cologne, Germany, April 26–30, 2009. Lecture Notes
in Computer Science, vol. 5479 (Springer, Berlin, 2009), pp. 313–332

[45] S. Hohenberger, B. Waters, Short and stateless signatures from the RSA assumption, in Advances in
Cryptology—CRYPTO 2009, ed. by S. Halevi, Santa Barbara, CA, USA, August 16–20, 2009. Lecture
Notes in Computer Science, vol. 5677 (Springer, Berlin, 2009), pp. 654–670

[46] Q. Huang, D.S. Wong, New constructions of convertible undeniable signature schemes without random
oracles. Cryptology ePrint Archive, Report 2009/517 (2009). http://eprint.iacr.org/

[47] B.D. Hughes, Random Walks and Random Environments: Vol. 1: Random Walks (Oxford University
Press, London, 1995)

[48] M. Joye, How (not) to design strong-RSA signatures. Des. Codes Cryptogr. (2011)
[49] E. Kiltz, Chosen-ciphertext security from tag-based encryption, in TCC 2006: 3rd Theory of Cryptog-

raphy Conference, ed. by S. Halevi, T. Rabin, New York, NY, USA, March 4–7, 2006. Lecture Notes in
Computer Science, vol. 3876 (Springer, Berlin, 2006), pp. 581–600

[50] E. Kiltz, D. Galindo, Direct chosen-ciphertext secure identity-based key encapsulation without random
oracles, in ACISP 2006. Lecture Notes in Computer Science, vol. 4058 (Springer, Berlin, 2006), pp.
336–347

[51] E. Kiltz, D. Galindo, Direct chosen-ciphertext secure identity-based key encapsulation without random
oracles. Theor. Comput. Sci. 410(47–49), 5093–5111 (2009)

[52] E. Kiltz, Y. Vahlis, CCA2 secure IBE: Standard model efficiency through authenticated symmetric en-
cryption, in Topics in Cryptology—CT-RSA 2008, ed. by T. Malkin, San Francisco, CA, USA, April
7–11, 2008. Lecture Notes in Computer Science, vol. 4964 (Springer, Berlin, 2008), pp. 221–238

[53] E. Kiltz, K. Pietrzak, D. Cash, A. Jain, D. Venturi, Efficient authentication from hard learning problems,
in EUROCRYPT (2011)

[54] V. Lyubashevsky, D. Micciancio, Asymptotically efficient lattice-based digital signatures, in TCC 2008:
5th Theory of Cryptography Conference, ed. by R. Canetti, San Francisco, CA, USA, March 19–21,
2008. Lecture Notes in Computer Science, vol. 4948 (Springer, Berlin, 2008), pp. 37–54

[55] A. Miyaji, M. Nakabayashi, S. Takano, New explicit conditions of elliptic curve traces for FR-reduction.
IEICE Trans. Fundam. E84-A(5), 1234–1243 (2001)

[56] D. Naccache, D. Pointcheval, J. Stern, Twin signatures: An alternative to the hash-and-sign paradigm,
in ACM CCS 01: 8th Conference on Computer and Communications Security, Philadelphia, PA, USA,
November 5–8, 2001 (ACM, New York, 2001), pp. 20–27

[57] T. Okamoto, Efficient blind and partially blind signatures without random oracles, in TCC 2006: 3rd
Theory of Cryptography Conference, ed. by S. Halevi, T. Rabin, New York, NY, USA, March 4–7, 2006.
Lecture Notes in Computer Science, vol. 3876 (Springer, Berlin, 2006), pp. 80–99

http://eprint.iacr.org/

Programmable Hash Functions and Their Applications 527

[58] C. Peikert, B. Waters, Lossy trapdoor functions and their applications, in 40th Annual ACM Symposium
on Theory of Computing, ed. by R.E. Ladner, C. Dwork, Victoria, British Columbia, Canada, May 17–
20, 2008 (ACM, New York, 2008), pp. 187–196

[59] R. Sakai, K. Ohgishi, M. Kasahara, Cryptosystems based on pairing, in SCIS 2000, Okinawa, Japan,
January 2000

[60] S. Schäge, Tight proofs for signature schemes without random oracles, in EUROCRYPT (2011)
[61] S. Schäge, J. Schwenk, A CDH-based ring signature scheme with short signatures and public keys, in

FC 2010: 14th International Conference on Financial Cryptography and Data Security, ed. by R. Sion,
Tenerife, Canary Islands, Spain, January 25–28, 2010. Lecture Notes in Computer Science, vol. 6052
(Springer, Berlin, 2010), pp. 129–142

[62] Secure hash standard. National Institute of Standards and Technology, NIST FIPS PUB 180-1, U.S.
Department of Commerce, April 1995

[63] V. Shoup, A Computational Introduction to Number Theory and Algebra (Cambridge University Press,
Cambridge, 2005)

[64] B. Waters, Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions, in
Advances in Cryptology—CRYPTO 2009, ed. by S. Halevi, Santa Barbara, CA, USA, August 16–20,
2009. Lecture Notes in Computer Science, vol. 5677 (Springer, Berlin, 2009), pp. 619–636

[65] B.R. Waters, Efficient identity-based encryption without random oracles, in Advances in Cryptology—
EUROCRYPT 2005, ed. by R. Cramer, Aarhus, Denmark, May 22–26, 2005. Lecture Notes in Computer
Science, vol. 3494 (Springer, Berlin, 2005), pp. 114–127

[66] H. Zhu, New digital signature scheme attaining immunity to adaptive chosen-message attack. Chin. J.
Electron. 10(4), 484–486 (2001)

[67] H. Zhu, A formal proof of zhu’s signature scheme. Cryptology ePrint Archive, Report 2003/155 (2003).
http://eprint.iacr.org/

http://eprint.iacr.org/

	Programmable Hash Functions and Their Applications
	Abstract
	Introduction
	Programmable Hash Functions
	Instantiations
	Variations

	Applications
	Collision Resistant Hashing
	Generic Bilinear Map Signatures
	Generic RSA Signatures
	Other Applications

	A Conceptual Perspective
	Short Signatures
	The Birthday Paradox and Randomized Signatures
	Beyond the Birthday Paradox
	Instantiations
	Related Signature Schemes

	Dedicated vs. Programmable Hash Functions
	Open Problems

	Preliminaries
	Notation
	Digital Signatures
	Pairing Groups and the q-SDH Assumption
	RSA Groups and the Strong RSA Assumption

	Programmable Hash Functions
	Definitions
	Instantiations
	Randomized Programmable Hash Functions (RPHFs)

	Basic Applications of PHFs
	Collision-Resistant Hashing
	Other Applications

	Generic Signatures from Bilinear Maps
	Construction
	Proof of Theorem 10
	Type I Forgers
	Type II Forgers

	Generic Signatures from RSA
	Construction
	Proof of Theorem 13
	Type I Forgers
	Type II Forgers

	Signature Sizes
	Concrete Security
	Security of the q-DH Assumption
	Our Signature Scheme SIGBM[H]
	The Signature Scheme by Boneh and Boyen

	Concrete Comparison
	Ignoring Increase of the Group
	Taking the Increase of the Group Into Account
	Online/Offline Signature Generation

	Acknowledgements
	Appendix A. Proofs from Sect. 3
	Random Walks and the Full Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	Appendix B. Randomized Programmable Hash Functions
	Definitions
	Construction

	References

