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Abstract. KeeLoq is a lightweight block cipher with a 32-bit block size and a 64-bit
key. Despite its short key size, it is used in remote keyless entry systems and other
wireless authentication applications. For example, there are indications that authenti-
cation protocols based on KeeLoq are used, or were used by various car manufacturers
in anti-theft mechanisms. This paper presents a practical key recovery attack against
KeeLoq that requires 216 known plaintexts and has a time complexity of 244.5 KeeLoq
encryptions. It is based on the principle of slide attacks and a novel approach to meet-
in-the-middle attacks.

We investigated the way KeeLoq is intended to be used in practice and conclude
that our attack can be used to subvert the security of real systems. In some scenarios
the adversary may even reveal the master secret used in an entire class of devices from
attacking a single device. Our attack has been fully implemented. We have built a de-
vice that can obtain the data required for the attack in less than 100 minutes, and our
software experiments show that, given the data, the key can be found in 7.8 days of
calculations on 64 CPU cores.

Key words. KeeLoq, Cryptanalysis, Block ciphers, Slide attacks, Meet-in-the-
middle attacks.

1. Introduction

The KeeLoq technology [21] by Microchip Technology Inc. includes the KeeLoq block
cipher and several authentication protocols built on top of it. The KeeLoq block cipher
allows for very low cost and power efficient hardware implementations. This property
has undoubtedly contributed to the popularity of the cipher in various wireless authen-
tication applications. There are indications that multiple car manufacturers use, or have
used KeeLoq to protect their cars against theft [8–11,13–15]. According to some re-
searchers [16,19,26], KeeLoq is also used in garage door openers. We verified these
claims to the best of our ability, but no manufacturer seems eager to publicly disclose
which algorithms are used. These claims seem reasonable, though, given the applica-
tion areas for which KeeLoq is marketed by Microchip Inc., such as “vehicle alarm
arming and disarming” and “home garage and gate door openers” [21]. The datasheet
of the HCS410 KeeLoq transponder describes it as being “ideally suited to keyless entry
systems, primarily for vehicles and home garage door openers” [22].

1.1. Previous Work

Despite its design in the 80’s, the first cryptanalysis of KeeLoq was only published by
Bogdanov [8] in February 2007. This attack is based on the slide technique and a linear
approximation of the non-linear Boolean function used in KeeLoq. The attack has a time
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complexity of 252 KeeLoq encryptions and requires 16 GB of storage. It also requires
the entire codebook, i.e., 232 known plaintexts.

Courtois, Bard and Wagner [11,13] apply algebraic techniques to cryptanalyse
KeeLoq. Although a direct algebraic attack fails for the full cipher, they reported vari-
ous successful slide-algebraic attacks. For example, they claim that an algebraic attack
can recover the key when given a slid pair in 2.9 seconds on average. As there is no way
to ensure or identify the existence of a slid pair in the data sample, the attack is simply
repeated 232 times, once for each pair generated from 216 known plaintexts. They also
describe attacks requiring the entire codebook, which exploit certain assumptions with
respect to fixed points of the internal state. The fastest of these requires 227 KeeLoq
encryptions (given the data set) and has an estimated success probability of 44% [13].
Courtois, Bard and Bogdanov show further extensions requiring the entire codebook
in [14].

In [9,10], Bogdanov published an updated version of his original attack. A refined
complexity analysis yields a slightly smaller time complexity, i.e., 250.6 KeeLoq encryp-
tions while still requiring the entire codebook. This paper also includes an improvement
using the work of Courtois and Bard [11] on the cycle structure of the cipher. We note
that the time complexity of the attack using the cycle structure given in [9,10] is based
on an assumption from an earlier version of [11], that a random word can be read from
16 GB of memory with a latency of only one clock cycle. This is very unrealistic in a
real machine, so the actual time complexity is probably much higher. In a later version
of [11], this assumption on the memory latency was changed to be 16 clock cycles.
In [15], Courtois exploits the self-similarity of KeeLoq to yield an optimised exhaustive
key search attack. Finally, the Ph.D. thesis of Bard [2] contains more details on several
of these attacks.

Given that KeeLoq is a cipher that is widely used in practice, side-channel analysis is
also a viable option for attacking chips that implement KeeLoq. In [16,26], differential
power analysis (DPA) and differential electromagnetic analysis (DEMA) were applied
to several implementations of KeeLoq. It was shown that actual implementations of
KeeLoq are not at all resistant to side-channel attacks, and can be broken using only
10–1000 measurement traces. Simple power analysis (SPA) was shown to be effective
against an embedded software implementation of KeeLoq in [19].

1.2. Our Contribution

Our practical attack is based on slide attacks as well. However, unlike other attacks, we
combine it with a novel meet-in-the-middle attack. The optimised version of the attack
uses 216 known plaintexts and has a time complexity of 244.5 KeeLoq encryptions. We
have implemented our attack and the total running time is roughly 500 days. As the
attack is fully parallelisable, given x CPU cores, the total running time is only 500/x

days. A variant which requires 216 chosen plaintexts needs only 218/x days on x CPU
cores. For example, for 10 000 euro, one can obtain at least 50 dual core computers,
which will take about two days to find the key. Another, probably even cheaper, though
illegal option would be to rent a botnet to carry out the computations.

Microchip Inc. specifies two protocols using KeeLoq: the “Code Hopping” and the
“Identify Friend or Foe (IFF)” protocol [22]. In practice, the latter protocol, a simple
challenge-response protocol, is the most interesting target to acquire the data that are
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Table 1. An overview of attacks on KeeLoq.

Attack type Complexity Reference
Data Time Memory

Time-memory trade-off 2 CP 242.7 ≈100 TB [18]
Exhaustive search 2 CP 256 16 GB [15]
Slide/algebraic 216 KP 265.4 ? [11,13]
Slide/algebraic 216 KP 251.4 ? [11,13]
Slide/guess-and-determine 232 KP 252 16 GB [8]
Slide/guess-and-determine 232 KP 250.6 16 GB [9,10]
Slide/algebraic 232 KP 240 ? [14]
Slide/cycle structure 232 KP 239.4 16.5 GB [11]
Slide/cycle/guess-and-det.a 232 KP (237) 16.5 GB [9]
Slide/fixed points 232 KP 227 >16 GB [13]
Side-channel analysis (DPA) 10–1000 traces – – [16,26]
Side-channel analysis (SPA) 1 measurement – – [19]

Slide/meet-in-the-middle 216 KP 245.0 ≈2 MB Sect. 3.3
Slide/meet-in-the-middle 216 KP 244.5 ≈3 MB Sect. 3.4
Slide/meet-in-the-middle 216 CP 244.5 ≈2 MB Sect. 3.5

Time-memory-data trade-off 68 CP, 34 RK 239.3 ≈10 TB [5]

Related key 66 ACP, 34 RK≫ Negligible Negligible Sect. 3.6
Related key 512 CP, 2 RK≫ 232 Negligible Sect. 3.6
Related key/slide/MitM 217 CP, 2 RK⊕ 241.9 ≈16 MB Sect. 3.6

Time complexities are expressed in full KeeLoq encryptions (528 rounds).
KP: known plaintexts; CP: chosen plaintexts; ACP: adaptive chosen plaintexts.
RK≫: related keys (by rotation); RK⊕: related keys (flip LSB).
aThe time complexity for this attack is based on very unrealistic memory latency assumptions and hence will
be much higher in practice.

necessary to mount the attack. Because the challenges are not authenticated in any way,
an adversary can obtain as many chosen plaintext/ciphertext pairs as needed from a
transponder (e.g., a car key) implementing this protocol. Depending on the transponder,
it takes about 65 or 98 minutes to gather 216 plaintext/ciphertext pairs. In addition to the
computation phase of the attack, we have also built hardware that is capable of gathering
the required data.

Finally, as was previously noted by Bogdanov [9,10], we show that one of the two
suggested key derivation algorithms is blatantly flawed, as it allows an adversary to
reconstruct many secret keys once a single secret key has been exposed.

Table 1 presents an overview of the known attacks on KeeLoq, including ours. In
order to make comparisons possible, we have converted all time complexities to the
number of KeeLoq encryptions needed for the attack.1

The structure of this paper is as follows. In Sect. 2, we describe the KeeLoq block
cipher and how it is intended to be used in practice. Our attacks are described in Sect. 3,
including some related key attacks that are more of theoretical interest in Sect. 3.6. In

1 We list slightly better complexities for the attacks from [11,13] because we used a more realistic conver-
sion factor from CPU clocks to KeeLoq rounds (i.e., 12 rather than four CPU cycles per KeeLoq round).
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Fig. 1. The ith KeeLoq encryption cycle.

Sect. 4 we discuss implementation aspects of the attack and experimental results and in
Sect. 5 we show the relevance of our attacks in practice. Finally, in Sect. 6 we conclude.

2. Description and Usage of KeeLoq

In this section, we give a short description of the KeeLoq block cipher, and discuss two
protocols built on it, “KeeLoq Hopping Codes” and “KeeLoq Identify Friend or Foe
(IFF)”. The descriptions given here are based on the information in [23].

2.1. The KeeLoq Block Cipher

The KeeLoq block cipher has a 32-bit block size and a 64-bit key. It consists of 528
identical rounds each using one bit of the key. A round is equivalent to an iteration of a
non-linear feedback shift register (NLFSR), as shown in Fig. 1.

More specifically, let Y (i) = (y
(i)
31 , . . . , y

(i)
0 ) ∈ {0,1}32 be the input to round i

(0 ≤ i < 528) and let K = (k63, . . . , k0) ∈ {0,1}64 be the key. The input to round 0
is the plaintext: Y (0) = P . The ciphertext is the output after 528 rounds: C = Y (528).
The round function can be described as follows (see Fig. 1):

ϕ(i) = NLF
(
y

(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

) ⊕ y
(i)
16 ⊕ y

(i)
0 ⊕ ki mod 64,

Y (i+1) = (
ϕ(i), y

(i)
31 , . . . , y

(i)
1

)
.

(1)

The non-linear function NLF is a Boolean function of five variables with output vector
3A5C742Ex—i.e., NLF(i) is the ith bit of this hexadecimal constant, where bit 0 is
the least significant bit. We can also represent the non-linear function in its algebraic
normal form (ANF):

NLF(x4, x3, x2, x1, x0) = x4x3x2 ⊕ x4x3x1 ⊕ x4x2x0 ⊕ x4x1x0

⊕ x4x2 ⊕ x4x0 ⊕ x3x2 ⊕ x3x0 ⊕ x2x1 ⊕ x1x0

⊕ x1 ⊕ x0. (2)
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Decryption uses the inverse round function, where i now ranges from 528 down to 1.

θ(i) = NLF
(
y

(i)
30 , y

(i)
25 , y

(i)
19 , y

(i)
8 , y

(i)
0

) ⊕ y
(i)
15 ⊕ y

(i)
31 ⊕ ki−1 mod 64,

Y (i−1) = (
y

(i)
30 , . . . , y

(i)
0 , θ(i)

)
.

(3)

There used to be some ambiguity about the correct position of the taps. Our description
agrees with the “official” documentation [8,9,13,23]. Additionally, we have used test
vectors generated by an actual HSC410 chip [22], manufactured by Microchip Inc., to
verify that our description and implementation of KeeLoq are indeed correct. Finally,
we note that our attacks are unaffected by this difference.

2.2. Protocols Built on KeeLoq

A device like the HCS410 by Microchip Technology Inc. [22] supports two authenti-
cation protocols based on KeeLoq: “KeeLoq Hopping Codes” and “KeeLoq Identify
Friend or Foe (IFF)”. The former uses a 16-bit secret counter, synchronised between
both parties. In order to authenticate, the encoder (e.g., a car key) increments the counter
and sends the encrypted counter value to the decoder (e.g., the car), which verifies if the
received ciphertext is correct. In practice, this protocol would be initiated by a button
press of the car owner.

The second protocol, “KeeLoq Identify Friend or Foe (IFF)” [22], is a simple
challenge-response protocol. The decoder (e.g., the car) sends a 32-bit challenge. The
transponder (e.g., the car key) uses the challenge as a plaintext, encrypts it with the
KeeLoq block cipher2 under the shared secret key, and replies with the ciphertext. This
protocol is executed without any user interaction whenever the transponder receives
power and an activation signal via inductive coupling from a nearby decoder. Hence,
no battery or button presses are required. It could for instance be used in vehicle im-
mobilisers by placing the decoder near the ignition. Inserting the car key in the ignition
would place the transponder within range of the decoder. The latter would then activate
the transponder and execute the protocol, all completely transparent to the user. The car
would then either disarm the immobiliser or activate the alarm, depending on whether
the authentication was successful.

Of course both protocols can be used together in a single device, thereby saving
costs. For example, the HCS410 chip [22] supports this combined mode of operation,
possibly using the same secret key for both protocols, depending on the configuration
options used.

3. Our Attacks on KeeLoq

This section describes our attacks on KeeLoq. We combine a slide attack with a novel
meet-in-the-middle approach to recover the key from a slid pair. First we explain some
preliminaries that are used in the attacks. Then, we proceed to the description of the

2 This corresponds to what is called the “HOP algorithm” in [22]. The other option, the so-called “IFF
algorithm”, uses a reduced version of KeeLoq with 272 rounds instead of 528. Our attacks are also applicable
to this variant, without any change.
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Fig. 2. A slide attack.

attack scenario using known plaintexts and a generalisation thereof. Finally, we show
how chosen plaintexts can be used to improve the attack. Section 3.6 explores related
key attacks on KeeLoq that are more of theoretical interest.

3.1. The Slide Property

Slide attacks were introduced by Biryukov and Wagner [6] in 1999. The typical candi-
date for a slide attack is a block cipher consisting of a potentially very large number of
iterations of an identical key dependent permutation F . In other words, the subkeys are
repeated and therefore the susceptible cipher can be written as

C = F
(
F

(
. . . F (P )

))

︸ ︷︷ ︸
r

= F r(P ). (4)

The permutation F(·) does not necessarily have to coincide with the rounds of the ci-
pher, i.e., F might combine several rounds of the cipher.

A slide attack aims at exploiting such a periodic structure to reduce the strength of
the entire cipher to the strength of F . Thus, it is independent of the number of rounds of
the cipher. To accomplish this, a so-called slid pair is needed. This is a pair of plaintexts
that satisfies the slide property

P2 = F(P1). (5)

We depict such a slid pair in Fig. 2. For a slid pair, the corresponding ciphertexts also
satisfy the slide property, i.e., C2 = F(C1). By repeatedly encrypting this slid pair, we
can generate as many slid pairs as needed [7,17]. As each slid pair gives us a pair of
corresponding inputs and outputs of the key dependent permutation F , it can be used to
mount an attack against F .

KeeLoq has 528 identical rounds, each using one bit of the 64-bit key. After 64 rounds
the key is repeated. So in the case of KeeLoq, F is defined as 64 rounds. However,
because the number of rounds in the cipher is not an integer multiple of 64, a straight-
forward slide attack [6] is not possible. A solution to this problem is to guess the 16
least significant bits of the key and use this to strip off the final 16 rounds. Then, a slide
attack can be applied to the remaining 512 rounds [8,11,13].

In order to get a slid pair, 216 known plaintexts are used. As the block size of KeeLoq
is 32 bits, we expect that a random set of 216 plaintexts contains a slid pair due to the
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Fig. 3. The notation used in the attack.

birthday paradox.3 Determining which pair is a slid pair is done by the attack itself.
Simply put, the attack is attempted with every pair. If it succeeds, the pair is very likely
a slid pair, otherwise it is not.

3.2. Determining Key Bits

If two intermediate states of the KeeLoq cipher, separated by 32 rounds (or less) are
known, all the key bits used in these rounds can easily be recovered. This was first
described by Bogdanov [8], who refers to it as the “linear step” of his attack.

Let Y (i) = (y
(i)
31 , . . . , y

(i)
0 ) and Y (i+t) = (y

(i+t)
31 , . . . , y

(i+t)
0 ) be the two known states;

t ≤ 32. If we encrypt Y (i) by one round, the newly generated bit is

ϕ(i) = NLF
(
y

(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

) ⊕ y
(i)
16 ⊕ y

(i)
0 ⊕ ki mod 64. (6)

Because of the non-linear feedback shift register structure of the round function and
since t ≤ 32, the bit ϕ(i) is equal to y

(i+t)
32−t , which is one of the bits of Y (i+t) and thus

known. Hence

ki mod 64 = NLF
(
y

(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

) ⊕ y
(i)
16 ⊕ y

(i)
0 ⊕ y

(i+t)
32−t . (7)

By repeating this t times, all t key bits can be recovered. The amount of computations
that need to be carried out is equivalent to t rounds of KeeLoq. This simple step will
prove to be very useful in our attack.

3.3. Basic Attack Scenario

We now describe the basic attack scenario, which uses 216 known plaintexts. For clarity,
the notation used is shown in Fig. 3 and a pseudocode overview is given in Fig. 4. We
denote 16 rounds of KeeLoq by g

k̂
, where k̂ denotes the 16 key bits used in these rounds.

The 64-bit key k is split into four equal parts: k = (k̂3, k̂2, k̂1, k̂0), where k̂0 contains the
16 least significant key bits.

As already mentioned in Sect. 3.1, the first step of the attack is to guess k̂0—the
16 least significant bits of the key. This enables us to partially encrypt each of the 216

plaintexts by 16 rounds (Pi to P +
i ) and partially decrypt each of the 216 ciphertexts

by 16 rounds (Cj to C−
j ). Encrypting P +

i by 16 more rounds yields P ++
i . Similarly,

decrypting Pj by 16 rounds yields P −
j (see Fig. 3).

3 The probability that a set of 216 random plaintexts contains at least one slid pair is 1 − (1 − 2−32)232 ≈
0.63. Hence, the attack has a success probability of about 63%. With not much higher data complexity, higher
success rates can be achieved.



144 W. Aerts et al.

1: for all k̂0 ∈ {0,1}16 do
2: for all plaintexts Pi,0 ≤ i < 216 do
3: Partially encrypt Pi to P +

i .
4: Partially decrypt Ci to C−

i .
5: end for
6: for all lsb16(P

−
j ) ∈ {0,1}16 do

7: for all plaintexts Pj ,0 ≤ j < 216 do
8: Determine the key bits k̂3.
9: Partially decrypt C−

j to C−−
j .

10: Save the tuple 〈P −
j ,C−−

j , k̂3〉 in a table.
11: end for
12: for all plaintexts Pi,0 ≤ i < 216 do
13: Determine the key bits k̂1.
14: Partially encrypt Ci to C+

i .
15: for all collisions msb16(C

+
i ) = lsb16(C

−−
j ) in the table do

16: Determine the key bits k̂2 from P ++
i and P −

j .

17: Determine the key bits k̂′
2 from C+

i and C−−
j .

18: if k̂2 = k̂′
2 then

19: Encrypt two known plaintexts with the key k = (k̂3, k̂2, k̂1, k̂0).
20: if the correct ciphertexts are found then
21: return success (the key is k)
22: end if
23: end if
24: end for
25: end for
26: end for
27: end for
28: return failure (i.e., there was no slid pair)

Fig. 4. The attack algorithm.

Observation 1. Let Xi and Xi+t be two KeeLoq states separated by t rounds, t < 32.
Then, we have msb32−t (Xi) = lsb32−t (Xi+t ), i.e., the 32 − t most significant bits of Xi

are equal to the 32 − t least significant bits of Xi+t .

Proof. Note from the description of KeeLoq in Sect. 2 that, for a single round of
KeeLoq, we see that msb31(Xi) = lsb31(Xi+1). Indeed, the 31 most significant bits of
the state are merely shifted down over one bit position. Similarly, t rounds shift the most
significant bits of the state down over t bit positions. Hence, if t < 32, msb32−t (Xi) =
lsb32−t (Xi+t ) holds. �

If Pi and Pj form a slid pair, it follows from this observation that msb16(P
++
i ) =

lsb16(P
−
j ), since the states P ++

i and P −
j are separated by 16 rounds.



A Practical Attack on KeeLoq 145

The next step in the attack is to apply a meet-in-the-middle approach. We guess the
16-bit value lsb16(P

−
j ). For each plaintext Pj we can then determine k̂3 using the al-

gorithm described in Sect. 3.2. Indeed, as the other bits of P −
j are determined by Pj ,

we know all of P −
j when given the plaintext. There is always exactly one solution per

plaintext. Using this part of the key, we can now partially decrypt C−
j to C−−

j . This

result is saved in a hash table indexed by the 16-bit value lsb16(C
−−
j ). Each record in

the hash table holds a tuple consisting of P −
j , C−−

j and the 16 key bits k̂3.
Now we do something similar from the other side. For each plaintext we use the

algorithm from Sect. 3.2 to determine k̂1. Again this can be done because we know
all of P ++

i , and there is exactly one solution per plaintext. Knowing k̂1, we partially
encrypt Ci to C+

i .
Note that if Pi and Pj are indeed a slid pair their partial encryptions and decryptions

(under the correct key) must “meet in the middle”. More specifically, it must hold that
msb16(C

+
i ) = lsb16(C

−−
j ). So, we look for a record in the hash table for which such a

collision occurs. Because the hash table is indexed by lsb16(C
−−
j ) this can be done very

efficiently. A slid pair produces a collision, provided the guesses for k̂0 and lsb16(P
−
j )

are correct. Therefore, we are guaranteed that all slid pairs are found at some point. Of
course, a collision does not guarantee that the pair is actually a slid pair.

Finally, we check each candidate slid pair found. We determine the remaining key
bits k̂2 from P ++

i and P −
j and similarly k̂′

2 from C+
i and C−−

j . If k̂2 and k̂′
2 are not

equal, the candidate pair is not a slid pair. Note that we can determine the key bits one
by one and stop as soon as there is a disagreement. This slightly reduces the complexity
of the attack.

If k̂2 = k̂′
2, we have found a pair of plaintexts and a key with the property that encrypt-

ing Pi by 64 rounds gives Pj and encrypting Ci by 64 rounds gives Cj . This is what is
expected from a slid pair. It is however possible that the recovered key is not the correct
key, so we can verify it by a trial encryption of one of the known plaintexts. Even if a
wrong key is suggested during the attack, and discarded by the trial encryption, we are
still guaranteed to find the correct key eventually, provided there is at least one slid pair
among the given plaintexts.

Complexity Analysis The complexity of the attack can be derived from the attack al-
gorithm given in Fig. 4. Using one round of KeeLoq as a unit, the time complexity of
the attack can be expressed as

216(32 · 216 + 216(32 · 216 + 216(32 + Ncoll · V )
))

, (8)

when Ncoll denotes the expected number of collisions for a single guess of k̂0, lsb16(P
−
j )

and a given plaintext Pi , and V denotes the average cost of verifying one collision, i.e.,
checking if it leads to a candidate key and if this key is correct. This follows directly
from the description of the attack. As the hash table has 216 entries and a collision is
equivalent to a 16-bit condition, Ncoll = 1. In the verification step, we can determine
one bit at a time and stop as soon as there is a disagreement, which happens with prob-
ability 1/2. Only when there is no disagreement after 16 key bits, we do two full trial
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encryptions to check the recovered key. Of course the second trial encryption is only
useful if the first one gave the expected result. Hence, due to this early abort technique,
the average cost of verifying one collision is

V = 2 ·
15∑

i=0

2−i + 2−16 · (528 + 528 · 2−32) ≈ 4. (9)

Thus the overall complexity of the attack is 254.0 KeeLoq rounds, which amounts to
245.0 full KeeLoq encryptions.

As mentioned before, the data complexity of the attack is 216 known plaintexts. The
storage requirements are very modest. The attack stores the plaintext/ciphertext pairs,
216 values for P +

i and C−
i , and a hash table with 216 records of 80 bits each. This

amounts to a bit over 2 MB of RAM.

3.4. A Generalisation of the Attack

The attack presented in the previous section can be generalised by varying the number
of rounds to partially encrypt/decrypt in each step of the attack. We denote by tp the
number of rounds to partially encrypt from the plaintext side (left on Fig. 3) and by
tc the number of rounds to partially decrypt from the ciphertext side (right on Fig. 3).
More specifically, encrypting P +

i by tp rounds yields P ++
i , encrypting Ci by tp rounds

yields C+
i . On the ciphertext side, P −

j is obtained by decrypting Pj by tc rounds and

C−−
j by decrypting C−

j by tc rounds. Also, the partial keys k̂0 through k̂3 are adapted
accordingly to contain the appropriate key bits.

Let to denote the number of bits that, provided Pi and Pj form a slid pair, overlap
between P ++

i and P −
j . As P ++

i and P −
j are separated by 48 − tp − tc rounds, we have

to = 32 − (48 − tp − tc) = tp + tc − 16. The to least significant bits of P −
j are denoted

by lsbto (P
−
j ) and the to most significant bits of P ++

i are denoted by msbto (P
++
i ).

Depending on the choices for the parameters tp and tc , the attack scenario has to be
modified slightly. If tc < to, not all plaintexts necessarily yield a solution for a given
lsbto (P

−
j ) when determining k̂3 = (k63, . . . , k64−tc ) because to − tc of the guessed bits

overlap with plaintext bits. Similarly, if tc > to, each plaintext is expected to offer mul-
tiple solutions because tc − to extra bits have to be guessed before all of P −

j is known.
From the other side, similar observations can be made.

In Sect. 3.3, the parameters were tp = tc = 16 which results in to = 16. It is clear that
the choice of these parameters influences both the time and memory complexity of the
attack.

Complexity Analysis The generalisation leads to a slightly more complex formula for
expressing the time complexity of the attack. Because of the duality between guessing
extra bits and filtering due to overlapping bits, all cases can be expressed in a single
formula, which is a generalisation of (8) (i.e., with tp = tc = 16, it reduces to (8)):

216(32 · 216 + 2to
(
2tc · 216+tc−to + 216+tp−to (2tp + Ncoll · V )

))
. (10)
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In the generalised case, finding a collision is equivalent to finding an entry in a table of
216+tc−to elements that satisfies a to bit condition, so Ncoll = 216+tc−to/2to . Verifying a
collision now requires an average effort of

V = 2 ·
47−tp−tc∑

i=0

2−i + 2tp+tc−48 · (528 + 528 · 2−32). (11)

KeeLoq rounds. Simplification yields that the total complexity is approximately

2tc · 232+tc + 2tp · 232+tp + 4 · 280−tp−tc . (12)

The optimum is found when tp = tc = 15 and thus to = 14, where the complexity re-
duces to 253.524 KeeLoq rounds or 244.5 full KeeLoq encryptions.

The memory requirements in the generalised case can also easily be evaluated. As
before, 216 plaintext/ciphertext pairs and 216 values for P +

i and C−
i are stored. The

hash table now has 216+tp−to entries of 64 + tp bits each. For tp = tc = 15, the required
memory is still less than 3 MB.

3.5. A Chosen Plaintext Attack

Using chosen plaintexts instead of known plaintexts, the attack can be improved. Con-
sider the generalised attack from Sect. 3.4 in the case where tc < to (which is equivalent
to tp > 16). In this case, the to − tc least significant bits of the plaintext Pj are bits
(to, . . . , tc + 1) of P −

j . Hence, choosing the 216 plaintexts in such a way that these

to − tc least significant bits are equal to some constant, only 2tc guesses for lsbto (P
−
j )

have to be made at the beginning of the meet-in-the-middle step, instead of 2to .

Complexity Analysis The time complexity of the chosen plaintext attack, in KeeLoq
rounds, can be expressed as

216(32 · 216 + 2min(tc,to)
(
2tc · 2max(16,16+tc−to) + 216+tp−to (2tp + Ncoll · V )

))
. (13)

The expected number of collisions is Ncoll = 2max(16,16+tc−to)/2to . The verification cost,
V , is given by (11). Note that, when tc > to, this reduces to the known plaintext case,
see (10). Indeed, only when tc < to, the chosen plaintexts can be used to accelerate
the attack. After simplification and removal of negligible terms, the time complexity
becomes

2tc · 232+tc + 2tp · 2min(48,32+tp) + 4 · 280−tp−tc . (14)

The optimum is found when tp = 20, tc = 13 and thus to = 17, where the attack has
a time complexity of 253.5 KeeLoq rounds or 244.5 full KeeLoq encryptions. It is clear
that the (theoretical) advantage over the known plaintext attack from Sect. 3.4 is not
significant. However, as is discussed in Sect. 4, the chosen plaintext variant can provide
a significant gain in our practical implementation, because the verification cost V turns
out to be higher there.

The memory complexity is about 2 MB as in Sect. 3.3 because the size of the hash
table is the same. The data complexity remains at 216 plaintext/ciphertext pairs, but note
that we now require chosen plaintexts instead of known plaintexts.
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Fig. 5. A related key attack using keys related by rotation.

3.6. Related Key Attacks on KeeLoq

Related key attacks [3] exploit the relations between the encryption processes under
different but related keys. In this section we present two related key attacks on KeeLoq.
The first attack is a very efficient attack using pairs of keys related by rotation. The
second attack is an improvement of the attack presented in Sect. 3.3 using pairs of keys
related by flipping the least significant bit of the key.

A Related Key Attack Using Keys Related by Rotation The first attack exploits the
extremely simple way in which the key is mixed into the state during encryption.

Denote a full encryption of a plaintext P by KeeLoq with the key K by EK(P ),
and encryption through a single round with the subkey bit k by fk(P ). Consider a pair
(K,K ′) of related keys, such that K ′ = (K ≫ 1). If for a pair (P,P ′) of plaintexts we
have P ′ = fk0(P ), where k0 is the LSB of K , then EK ′(P ′) = fk16(EK(P )). Indeed, in
this case the encryption of P ′ under the key K ′ is equal to the encryption of P under K

shifted by one round (see Fig. 5). This property, which is clearly easy to check, can be
used to retrieve two bits of the secret key K .

Consider a plaintext P . We note that there are only two possible values of fk0(P ), i.e.,
1||(P 	 1) and 0||(P 	 1). Hence, we ask for the encryption of P under the key K and
for the encryption of the two plaintexts P ′

0 = 0||(P 	 1) and P ′
1 = 1||(P 	 1) under

the related key K ′, and check whether the ciphertexts satisfy the relation EK ′(P ′) =
fk16(EK(P )). This check is immediate, since EK(P ) and fk16(EK(P )) have 31 bits in
common. Exactly one of the candidates (P ′

0 or P ′
1) is expected to satisfy the relation.

This pair satisfies also the relation P ′ = fk0(P ). Actually, we note that it sufficient to
test only one of the two candidates (P ′

0 or P ′
1) as if one of them fails, then it is necessarily

the other value (and the probability that both of them would seem correct by chance is
negligible).

At this stage, since P ′ and P are known, we can infer the value of k0 immediately
from the update rule of KeeLoq, using the relation P ′ = fk0(P ). Similarly, we can
retrieve the value of k16 from the relation EK ′(P ′) = fk16(EK(P )). Hence, using only
three chosen plaintexts encrypted under two related keys, we can retrieve two key bits
with a negligible time complexity.

In order to retrieve additional key bits, we repeat the procedure described above with
the pair of related keys (K ′,K ′′ = (K ′ ≫ 1)) and one of the plaintexts P ′

0 or P ′
1 exam-

ined in the first stage. As a result, we require the encryption of two additional chosen
plaintexts (under the key K ′′), and get two additional key bits: k′

0 and k′
16, which are

equal to k1 and k17.
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We can repeat this procedure 16 times to get bits k0, . . . , k31 of the secret key.
Then, the procedure can be repeated with the 16 related keys of the form (K ≫ 32),

(K ≫ 33), . . . , (K ≫ 47) to retrieve the remaining 32 key bits. The attack then re-
quires 66 plaintexts encrypted under 34 related keys (two plaintexts under each of 32
keys, and a single plaintext under the two remaining keys), and a negligible time com-
plexity.

An option to reduce the required amount of plaintexts and related keys in exchange
for a higher time complexity, is to switch to an exhaustive key search after a suitable
number of key bits has been determined. For example, if 32 key bits remain to be found,
a brute force search can be conducted in several hours on a PC, or even much less on
FPGAs.

Another variant of the attack, requiring fewer related keys, is the following. De-
note the encryption of a plaintext P through r rounds of KeeLoq with the key k =
(k0, . . . , kr−1) by f r

k (P ). Consider a pair of related keys of the form (K,K ′ = K ≫ r).
If a pair of plaintexts (P,P ′) satisfies P ′ = f r

k (P ), then the corresponding cipher-
texts satisfy EK ′(P ′) = f r

k′(EK(P )), where k′ = (k16, . . . , k16+r−1). Since EK(P ) and
f r

k′(EK(P )) have 32 − r bits in common, this property is easy to check.
However, as r increases, it becomes more and more difficult to detect P ′ such that

P ′ = f r
k (P ) because there are 2r candidates for P ′. Checking all these candidate pairs

increases the time complexity of the attack. The data complexity increases as well.
A naive approach requires 1 + 2r plaintexts: one P and all 2r candidates for P ′. But
using structures, this data complexity can be improved to 21+r/2. Consider two struc-
tures of 2r/2 plaintexts each. In the first structure, S1, the 32 − r most significant bits
of each plaintext are equal to some constant C and the other bits are arbitrary. In the
second structure, S2, the 32 − r least significant bits of each plaintext are equal to the
same constant C and the other bits are arbitrary. By birthday paradox arguments on the
2r possible pairs (P,P ′) such that P ∈ S1 and P ′ ∈ S2 we expect one pair for which
P ′ = f r

k (P ), and this pair can be used for the attack.
In the attack, we go over the 2r possible pairs and check whether the colliding bits

of the relation EK ′(P ′) = f r
k′(EK(P )) are satisfied. If r ≤ 16, this check discards im-

mediately most of the wrong pairs. After finding the right pair, 2r bits of the key can be
found using the algorithm presented in Sect. 3.2.

By choosing different values of r , we can get several variants of the attack:

1. Using r = 16, we can recover 32 key bits, and then the rest of the key can be
recovered using exhaustive key search. The data complexity of the attack is 512
chosen plaintexts encrypted under two related keys (256 plaintexts under each
key), and the time complexity is 232 KeeLoq encryptions.

2. Using r = 8 twice (for the pairs (K,K ≫ 8), and (K ≫ 8,K ≫ 16)) we re-
trieve 32 key bits, and exhaustively search the remaining bits. The data complexity
of the attack is 64 adaptive chosen plaintexts encrypted under three related keys
(16 plaintexts under two keys, and 32 plaintexts under the third key), and the time
complexity is 232 KeeLoq encryptions.

3. Using r = 8 four times (for the pairs (K,K ≫ 8), (K ≫ 8,K ≫ 16),
(K ≫ 32,K ≫ 40), and (K ≫ 40,K ≫ 48)) we can retrieve the full key.
The data complexity of the attack is 128 adaptive chosen plaintexts encrypted un-
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der six related keys (16 plaintexts under four keys, and 32 plaintexts under two
keys), and the time complexity is negligible.

Other variants are also possible, and provide a trade-off between the number of chosen
plaintexts and the number of related keys.

Improved Slide/Meet-in-the-Middle Attack Using Related Keys Using a related key
approach, we can improve the attack presented in Sect. 3.5. Denote the encryption of a
plaintext P through 64 rounds of KeeLoq under the key K by gK(P ). Denote by e0 the
least significant bit of a word. We observe that if two related keys (K,K ′) satisfy K ′ =
K ⊕ e0, i.e., they differ in the least significant bit, and two plaintexts (P,P ′) satisfy
P ′ = P ⊕ e0, then we have gK(P ) = gK ′(P ′). Indeed, in the first round of encryption
the key difference and the data difference cancel each other. As a result, after the first
round the intermediate values in both encryptions are equal, and the key difference is not
mixed into the data until the 65th round. Thus, the intermediate values after 64 rounds
are equal in both encryptions.

Now, recall that in Sect. 3.1, the pair (Pi,Pj ) is called a slid pair if it satisfies Pj =
gK(Pi). The attack searches among 232 candidates for a slid pair, and then the key can
be easily retrieved. Note that by the observation above, if (Pi,Pj ) is a slid pair with
respect to K , then the pair (Pi ⊕ e0,Pj ) is a slid pair with respect to K ′ = K ⊕ e0,
and thus EK ′(Pj ) = g(K ′≫16)(EK ′(Pi ⊕ e0)). This additional slid pair can be used to
improve the check of candidate slid pairs, and thus to reduce the time complexity of the
attack.

Indeed, during the verification phase, each additional slid pair gives us an additional
way to determine each key bit from k̂2. If Pi and Pj are a slid pair under the original
key K , then Pi ⊕ e0 and Pj must also be a slid pair under the related key K ′. Thus, if
at any point the different ways to determine bits from k̂2 disagree, we can conclude that
Pi and Pj are not a slid pair. In this way, the related keys allow us to detect sooner that
a plaintext pair is not a slid pair, saving time.

In this case, (13) can be rewritten as

216(48 · 216 + 2min(tc,to)
(
3tc · 2max(16,16+tc−to) + 216+tp−to (3tp + Ncoll · V )

))
. (15)

The expected number of collisions becomes Ncoll = 2max(16,16+tc−to)/22to . Verifying a
collision now costs on average V KeeLoq rounds, where

V =
47−tp−tc∑

i=0

(
2 · 2−2i + 2−2i−1) + 22tp+2tc−96 · (528 + 528 · 2−32) ≈ 3.33. (16)

Simplification yields the following

3tc · 232+tc + 3tp · 248 + 3.33 · 296−2tp−2tc . (17)

The optimum is situated at tp = tc = 12 where the time complexity of the attack is 250.9

KeeLoq rounds, or 241.9 full KeeLoq encryptions.
The plaintexts are chosen such that for each plaintext Pi the set of 216 chosen plain-

texts also contains Pi ⊕ e0. This can be accomplished easily: pick 215 31-bit values Xi

at random, and let P2i = Xi ||0 and P2i+1 = Xi ||1. Then, the total data complexity is
217 chosen plaintexts encrypted under two related keys (216 plaintexts under each key).
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Table 2. Complexity of related key attacks.

Number
of keys

Complexity Optimal tp , tc
Data Time

1 216.0 CP 244.5 tp = 20, tc = 13
2 217.0 CP 241.9 tp = tc = 12
3 217.6 CP 240.8 tp = tc = 11
4 218.0 CP 240.4 tp = 10, tc = 11 or vice versa
5 218.3 CP 240.0 tp = tc = 10
6 218.6 CP 240.0 tp = 10, tc = 10
7 218.8 CP 239.9 tp = 9, tc = 10 or vice versa
8 219.0 CP 240.0 tp = 9, tc = 10 or vice versa

Time complexities are expressed in full KeeLoq encryptions (528 rounds).
CP: chosen plaintexts.

The time complexity is 241.9 KeeLoq encryptions and the memory complexity is about
16 MB.

One can extend the attack by using more related key relations, for example by consid-
ering the key K ′′ = K ⊕ e1 as well. This can even further reduce the time complexity, in
exchange for increased data complexity. One can see that, in general, by using k keys,
the time complexity becomes

216(16(k + 1) · 216 + 2min(tc,to)
(
(k + 1)tc · 2max(16,16+tc−to)

+216+tp−to
(
(k + 1)tp + Ncoll · V

)))
. (18)

The expected number of collisions is Ncoll = 2min(16,16+tc−to)/2k·to . Due to the addi-
tional possibilities for filtering, the verification cost, V , is now given by

V =
47−tp−tc∑

i=0

2−k·i
(

1 +
k−1∑

j=0

2−j

)

+ 2k(tp+tc−48) · (528 + 528 · 2−32) (19)

≈
(

1

1 − 2−k

)(
1 + 2−k − 1

2−1 − 1

)
= 2 + 2k

2k − 1
. (20)

Hence the time complexity in KeeLoq rounds is given by the following simplified ex-
pression:

tc(k + 1) · 232+tc + tp(k + 1) · 2min(48,32+tp) +
(

2 + 2k

2k − 1

)
· 264−k(tp+tc−16). (21)

As long as k ≤ 17, it is still possible to choose the plaintexts in a clever way, as before,
such that for each Pi , the set of 216 plaintexts also contains Pi ⊕ e0, . . . ,Pi ⊕ ek−2.
Hence, the data complexity is k · 216 chosen plaintexts encrypted under k related keys
(216 plaintexts under each key). We list in Table 2 the obtained time complexities (and
optimal values) for various number of keys.
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4. Implementation Aspects

We have fully implemented and tested our attacks on KeeLoq that were described in
Sects. 3.3, 3.4 and 3.5. In this section, we discuss certain practical aspects of our attack
implementation and give our experimental results.

4.1. An Implementation of KeeLoq

To verify the accuracy and correctness of the description of KeeLoq found in [23], we
built a software implementation of the KeeLoq block cipher and the various key deriva-
tion methods, based on [23]. Then, we used an actual HCS410 chip [22] to generate test
vectors. Finally, we checked these test vectors against our software implementation.
The fact that all test vectors matched indicates that the information gathered from [23]
indeed gives a correct description of the workings of the KeeLoq system, and that our
software implementation is correct.

4.2. Implementing the Attack

The attacks were implemented in the C language, using assembly for critical sections
of the code. The overall structure of the implementation is identical to the pseudocode
in Fig. 4. Our implementation is parametrised as described in Sect. 3.4.

Data Structure In line 10 of Fig. 4, tuples of the form 〈P −
j ,C−−

j , k̂3〉 are saved in
a table. This table is read again in line 15, where all tuples having a particular value
for lsbto (C

−−
j ) are searched. This usage pattern motivated our decision to use a simple

hash table as the data structure for the table. The tuples are indexed by the value of
lsbto (C

−−
j ), which allows one to perform the lookups in line 15 using a single memory

access per lookup. Singly linked lists are used to accommodate for the possibility that
there are multiple tuples in the table having the same value for lsbto (C

−−
j ). This does

not increase the required number of memory accesses per table lookup.

Bitslicing Note that large parts of the attack algorithm in Fig. 4 can be performed
in parallel. In particular, lines 3–4, 8–9 and 13–14 can be performed in parallel for
each of the plaintexts. Because these parts of the attack algorithm can be parallelised
efficiently, the collision verification phase (lines 15–24) becomes more expensive in
comparison. Hence, the optimal parameters for our implementation differ slightly from
the theoretical ones given earlier. For the known plaintext attack from Sect. 3.4, the
optimal parameters for our implementation were found to be tp = tc = 16. This means
that, at least in our implementation, the best attack is the basic attack from Sect. 3.3. For
the chosen plaintext attack of Sect. 3.5, the optimal parameters are tp = 22 and tc = 13.

In practice, we perform 128 partial KeeLoq encryptions or decryptions in parallel
using a technique called bitslicing. This technique was first introduced by Biham [4] as
a method for speeding up software implementations of DES. The basic idea is to treat
a machine word as a vector of bits, i.e., a case of “Single Instruction Multiple Data”
(SIMD). The operations we want to perform are then implemented using elementary
Boolean operations. We used the SSE instruction set to operate on words of 128 bits.
Each bit of these vectors corresponds to a different encryption, hence we process 128
encryptions (or decryptions) in parallel.
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1: x1 ← x1 ⊕ x3 5: x3 ← x3 ⊕ x2 9: x3 ← x3 ⊕ t

2: x0 ← x0 ⊕ x2 6: x0 ← x0 ∨ x1 10: x3 ← x3 ∧ x4
3: x1 ← x1 ⊕ x0 7: x0 ← x0 ⊕ x3 11: x4 ← ¬x4 ∧ x0
4: t ← x0 8: x3 ← ¬x3 ∧ x1 12: x3 ← x3 ∨ x4

Fig. 6. Bitsliced implementation of the KeeLoq non-linear function NLF(x4, x3, x2, x1, x0). The output is
placed in x3, and t is a temporary variable. Each line corresponds to a single instruction in the SSE instruction
set.

Most of the KeeLoq cipher can be transformed into a bitsliced implementation easily.
We focus on the non-linear function NLF, see Sect. 2. A search for an efficient bitsliced
implementation of the NLF function was performed, using an algorithm similar to the
one proposed by Osvik [25]. Figure 6 shows the resulting implementation of the NLF
function. Each line corresponds to a single instruction in the SSE instruction set. Note
that the PANDN instruction allows to perform the operation x ← ¬x ∧ y in a single
instruction.

Prefetching When implemented in a naive way, attacks based on the meet-in-the-
middle technique suffer from the high latency of memory lookups when the tables grow
beyond the size of the available cache memory. In the attack algorithm as shown in
Fig. 4, the table lookups are performed in line 15. Note that, to a large extent, these
lookups can be predicted. As explained above, we perform a block of partial encryp-
tions and decryptions simultaneously. Hence, we immediately know many—128 in our
case—table lookups that will be made next by the attack algorithm.

Prefetching allows us to instruct the processor to move specific data from the main
memory to the cache memory, which can be accessed much faster. This technique does
not eliminate the latency of a memory lookup, but it allows the processor to perform
useful computations, while data that will be used in the near future are being fetched
from memory. This drastically increases the throughput when compared to a straight-
forward approach, where most time would be spent waiting for data to arrive.

4.3. Experimental Results

If we give the correct values for the 16 least significant key bits, the known plaintext
attack completes in 10.97 minutes on average.4 The chosen plaintext attack needs just
4.79 minutes to complete the same task.5 This corresponds to 499.22 CPU days resp.
217.82 CPU days (9.49 · 1016 CPU cycles resp. 4.14 · 1016 CPU cycles) for the entire
attack. The large difference between both attacks can be explained by considering the
impact of V , the cost of the verification step, on the time complexity of the attack. If V

increases, and tp and tc are adapted as needed because their optimal values may change,
the time complexity of the known plaintext attack increases much faster than the time
complexity of the chosen plaintext attack does. Hence, even though their theoretical
time complexities are the same, the chosen plaintext attack performs much better in our
practical implementation because V is higher than the theoretical value.

4 We performed 500 experiments. The average running time was 658.15 s and the standard deviation was
1.69 s.

5 We performed 500 experiments. The average running time was 287.17 s and the standard deviation was
0.55 s.
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We did not stop either of the attacks once a slid pair and the correct key were found,
so we essentially tested the worst-case behaviour of the attack. This also explains the
very small standard deviations of the measured running times. The machine used is an
AMD Athlon 64 X2 4200+ at 2.2 GHz with 1 GB of RAM (only one of the two CPU
cores was used) running Linux 2.6.17. The C code was compiled with gcc version 4.1.2
(using the -O3 optimiser flag).

The known plaintext attack performs over 288 times faster than the fastest attack
with the same data complexity from [11,13], although the actual increase in speed is
probably slightly smaller due to the difference in the machines used. Courtois, Bard and
Wagner used (a single core of) a 1.66 GHz Intel Centrino Duo microprocessor [12].
The chosen plaintext attack performs more than 661 times faster, but this comparison
is not very fair because chosen plaintexts are used. We note that the practicality of our
results should also be compared with exhaustive key search due to the small key size.
For the price of about 10 000 euro, one can obtain a COPACOBANA machine [20] with
120 FPGAs which is estimated to take about 1000 days to find a single 64-bit KeeLoq
key.6 Using our attack and 50 dual core computers (which can be obtained for roughly
the same price), a KeeLoq key can be found in only two days.

5. Practical Applicability of the Attacks

This section investigates to which extent our attacks on KeeLoq, that were introduced in
Sect. 3, can be applied to real systems using KeeLoq. In particular, we focus on how to
gather the data required for the attack, and we discuss the impact of the key derivation
schemes used in KeeLoq.

5.1. Gathering Data

One might wonder if it is possible to gather 216 known, or even chosen plaintexts
from a practical KeeLoq authentication system. As mentioned in Sect. 2.2, a device
like the HCS410 by Microchip Technology Inc. [22] supports two authentication pro-
tocols based on KeeLoq: “KeeLoq Hopping Codes” and “KeeLoq Identify Friend or
Foe (IFF)”. As the initial value of the counter used in “KeeLoq Hopping Codes” is not
known, it is not easy to acquire known plaintexts from this protocol apart from trying all
possible initial counter values. Also, since only 216 plaintexts are ever used, knowing
this sequence of 216 ciphertexts suffices to break the system, i.e., to be able to always
send the correct hopping code, as this sequence is simply repeated.

The second protocol, “KeeLoq Identify Friend or Foe (IFF)” [22], is more appropri-
ate for our attack. It is executed without any user interaction as soon as the transponder
comes within the range of a decoder and is sent an activation signal. The challenges
sent by the decoder are not authenticated in any way. Because of this, an adversary can
build a rogue decoder which can be used to gather as many plaintext/ciphertext pairs as
needed. The plaintexts can be fully chosen by the adversary, so acquiring chosen plain-
texts is no more difficult than just known plaintexts. The only requirement is that the

6 The estimate was done by adapting the 17 days (worst case) required for finding a 56-bit DES key, taking
into consideration the longer key size, the fact that more KeeLoq implementations fit on each FPGA, but in
exchange take more clocks to test a key.
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rogue decoder can be placed within the range of the victim’s transponder for a certain
amount of time. From the timings given in [22], we can conclude that one authentica-
tion completes within 60 ms or 90 ms on average, depending on the baud rate used. This
translates into a required time of 65 or 98 minutes to gather the 216 plaintext/ciphertext
pairs. As these numbers are based on the maximum delay allowed by the specifica-
tion [22], a real chip may respond faster, as our experiments confirm. No data are given
with respect to the operational range in [22], because this depends on the circuit built
around the HCS410 chip. However, one can expect the range to be short, likely not more
than about ten centimetres.

5.2. Key Derivation

The impact of the attack becomes even larger when considering the method used to
establish the secret keys, as was previously noted by Bogdanov [9]. To simplify key
management, the shared secret keys are derived from a 64-bit master secret (the man-
ufacturer’s code), a serial number and optionally a seed value [9,23,24]. The manufac-
turer’s code is supposed to be constant for a large number of products (e.g., an entire
series from a certain manufacturer) and the serial number of a transponder chip is pub-
lic, i.e., it can easily be read out from the chip. The seed value is only used in the case
of so-called “Secure Learning”, and can also be obtained from a chip with relative ease
[9,23,24]. The other option, “Normal Learning”, does not use a seed value.

In both types of key derivation mechanisms, a 64-bit identifier is constructed, which
contains the serial number, the (optional) seed and some fixed padding. Then, the se-
cret key is derived from this identifier and the master secret using one of two possible
methods. The first method simply uses XOR to combine the identifier and the master
key. The consequence of this is that once a single key is known, together with the cor-
responding serial number and the (optional) seed value, the master secret can be found
very easily.

The second method is based on decryption with the KeeLoq block cipher. The iden-
tifier is split into two 32-bit halves which are decrypted using the KeeLoq block cipher,
and concatenated again to form the 64-bit secret key. The master secret is used as the
decryption key. Although much stronger than the first method, the master secret can
still be found using a brute force search. Evidently, once the master secret is known, so
are all the keys that were derived from it, and the security of the entire system is com-
promised. Thus, it is a much more interesting target than a single secret key. This may
convince an adversary to legitimately obtain a car key, for the sole purpose of recovering
the master key from its secret key.

5.3. An Actual Transceiver

We have constructed a transceiver for KeeLoq for the purposes of validating the last
aspect of the attack—the actual communications with the transponder. The transceiver
is based on a Xilinx Virtex II FPGA, and we verified the ability to gather 216 pairs of
a chosen query and the corresponding reply. For details on the transceiver, we refer to
Appendix E of [1].

We used queries of 32-bit long, starting from the all zero sequence, 00000000x ,
and we increased the challenge by one until 0000FFFFx was probed. We used the
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slower encoding method, which results in a maximal transmission time of 38.4 ms per
challenge (for the all 1’s challenge, FFFFFFFFx ).

Our transceiver also took care of decoding the signals sent back from the transponder.
Again, using the slower encoding method, the maximal time for transmitting a reply is
19.2 ms, resulting in a total running time of the query process (along with the required
pauses and opcode transmission) of 94.8 ms. Hence, in the slower method of commu-
nications, collecting 216 pairs can be finished in less than 91 min.

6. Conclusion

In this paper we have presented a slide and meet-in-the middle attack on the KeeLoq
block cipher which requires 216 known plaintexts and has a time complexity of 244.5

KeeLoq encryptions, and a variant using 216 chosen plaintexts with the same theoretical
time complexity.

We have fully implemented and tested both attacks. When given 16 key bits, the
known plaintext attack completes successfully in 10.97 minutes. Due to implementation
details, the chosen plaintext attack requires only 4.79 minutes when given 16 key bits.
To the best of our knowledge, this is the fastest known attack on the KeeLoq block
cipher.

Finally, we have shown that our attack can be used to attack real systems using
KeeLoq due to the way it is intended to be used in practice. Moreover, one of the two
suggested ways to derive individual KeeLoq keys from a master secret is extremely
weak, with potentially serious consequences for the overall security of systems built
using the KeeLoq algorithm.
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