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Abstract. We construct two efficient Identity-Based Encryption (IBE) systems that
admit selective-identity security reductions without random oracles in groups equipped
with a bilinear map. Selective-identity secure IBE is a slightly weaker security model
than the standard security model for IBE. In this model the adversary must commit
ahead of time to the identity that it intends to attack, whereas in an adaptive-identity
attack the adversary is allowed to choose this identity adaptively. Our first system—
BB1—is based on the well studied decisional bilinear Diffie–Hellman assumption,
and extends naturally to systems with hierarchical identities, or HIBE. Our second
system—BB2—is based on a stronger assumption which we call the Bilinear Diffie–
Hellman Inversion assumption and provides another approach to building IBE systems.

Our first system, BB1, is very versatile and well suited for practical applications:
the basic hierarchical construction can be efficiently secured against chosen-ciphertext
attacks, and further extended to support efficient non-interactive threshold decryption,
among others, all without using random oracles. Both systems, BB1 and BB2, can
be modified generically to provide “full” IBE security (i.e., against adaptive-identity
attacks), either using random oracles, or in the standard model at the expense of a
non-polynomial but easy-to-compensate security reduction.

Key words. Identity-based encryption, Selective-ID security, Adaptive-ID security,
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1. Introduction

Identity-Based Encryption (IBE) provides a public-key encryption mechanism where a
public key is an arbitrary string such as an email address or a telephone number. The
corresponding private key can only be generated by a Private-Key Generator (PKG)
who has knowledge of a master secret. In an IBE system, users authenticate themselves
to the PKG and obtain private keys corresponding to their identities. The identity-based
encryption concept was first proposed two decades ago [61] and several approaches
were subsequently suggested in a few precursor papers [49,67,68]. It is only a few
years ago, however, that a formal security model and a practical implementation were
proposed. Boneh and Franklin [13,14] define a security model for identity-based en-
cryption and give a construction based on the Bilinear Diffie–Hellman (BDH) problem.
Cocks [28] describes another construction using quadratic residues modulo a compos-
ite (see also [15,30]). Gentry et al. [39] give a construction using lattices. The security
of all these systems requires cryptographic hash functions that are modeled as random
oracles; i.e., these systems are only proven secure (under non-interactive assumptions)
in the random-oracle model [3]. A natural question is to devise a secure IBE system
without random oracles.

In the Boneh–Franklin security model the adversary can issue both adaptive chosen-
ciphertext queries and adaptive chosen-identity queries (i.e., the adversary can request
the private key for identities of its choice). Eventually, the adversary adaptively chooses
the identity it wishes to attack and asks for a semantic security challenge for this identity.
Canetti et al. [22,23] proposed a slightly weaker security model, called selective-identity
IBE. In this model the adversary must commit ahead of time (non-adaptively) to the
identity it intends to attack. The adversary can still issue adaptive chosen-ciphertext and
adaptive chosen-identity queries. Canetti et al. constructed a provably secure IBE in
this weaker model without the random-oracle model. However, their construction views
identities as bit strings, causing their system to require a bilinear map computation for
every bit in the identity.

We construct two efficient IBE systems that are provably secure in the selective-
identity sense without the random oracle model. In both systems, encryption requires no
bilinear map computation and decryption requires at most two. Our first construction,
which has become known as BB1, is based on the Decision Bilinear Diffie–Hellman
(Decision-BDH) assumption. This construction extends to give an efficient selective-
identity secure Hierarchical IBE (HIBE) without random oracles. Hierarchical IBE was
defined in [42] and the first construction in the random oracle model was given by
Gentry and Silverberg [40]. Our efficient HIBE construction is related to the Gentry-
Silverberg system, but we are able to prove security without using random oracles.
Our second IBE construction, referred to as BB2, has comparable efficiency, but is
based on a non-standard assumption we call Decision Bilinear Diffie–Hellman Inver-
sion (Decision-BDHI). Roughly speaking, the assumption says that no efficient algo-
rithm can distinguish e(g, g)1/x from random, given g,gx, g(x2), . . . , g(xq) for some
specified value of the parameter q .

Canetti et al. [12,23] showed that any selective-identity, chosen-plaintext IBE gives a
chosen-ciphertext secure (CCA2) public key system. Consequently, both our IBE sys-
tems give efficient CCA2-secure public key systems without random oracles. Perfor-
mance of both CCA2-secure systems is close to the performance of the Cramer–Shoup



Efficient Selective Identity-Based Encryption Without Random Oracles 661

system [29] which is based on Decision Diffie–Hellman. Boneh and Katz [12,16] gave
a more efficient transformation from IBE to CCA2-security, which when applied to
our systems, gives CCA2-secure systems where encryption time is as efficient as the
Kurosawa–Desmedt [46] fast variant of Cramer–Shoup. Boyen, Mei, and Waters [20]
constructed an even more efficient CCA2-secure system that non-generically exploits
the structure of our IBE constructions.

In subsequent work [7] we extended our first IBE system (BB1) to obtain the first
“full” or adaptive-ID secure IBE construction with a polynomial-time security reduc-
tion in the standard model, albeit with a construction that was not practical. An impor-
tant result of Waters [69] enhances the BB1 framework into a practical fully secure IBE
construction. The BB2 system can be made fully secure in a similar way, as noticed
independently by Shen and Kiltz [45,62]. In Sect. 7 we observe that any selective-ID
secure IBE can be turned into an adaptive-ID secure IBE in the standard model, gener-
ically, but at the cost of a non-polynomial-time security reduction. One can however
compensate for the inefficient reduction by increasing the size of the groups used by the
system by a constant ratio. The transformation applied to BB1 and BB2 results in two
simple and fully secure IBE systems without random oracles.

For completeness, we also discuss a few simple ways in which random oracles can be
used to strengthen our constructions with respect to both adaptive-identity and chosen-
ciphertext security. When implemented intelligently using (asymmetric) pairings on
curves, both our constructions result in efficient adaptive-ID CCA2-secure IBE sys-
tems in the random-oracle model. The BB1 scheme in particular (being based on the
decision-BDH assumption) leads to a very practical IBE system.

2. Preliminaries

Before presenting our results we briefly review the definition of security for an IBE
system. We also review the definition of groups equipped with a bilinear map.

2.1. Selective Identity Secure IBE and HIBE Systems

Recall that an Identity-Based Encryption system (IBE) consists of four algorithms
[13,61]: Setup, Extract, Encrypt, Decrypt. The Setup algorithm generates system pa-
rameters, denoted by params, and a master key mk. The Extract algorithm uses the
master key to extract a private key corresponding to a given identity. The encryption
algorithm encrypts messages for a given identity (using the system parameters) and the
decryption algorithm decrypts ciphertexts using the private key.

In a Hierarchical IBE [40,42], identities are vectors, and there is a fifth algorithm
called Derive. A vector of dimension � represents an identity at depth � and a private
key for it can be generated using algorithm Extract, which requires the master key.
Algorithm Derive is used to delegate keys along the hierarchy. The algorithm takes as
input an identity ID = (I1, . . . , I�) at depth � and the private key dID|�−1 of the parent
identity ID|�−1 = (I1, . . . , I�−1) at depth � − 1 > 0. It outputs the private key dID for
identity ID. For convenience, we sometimes refer to the master key as the private key at
depth 0. We note that an IBE system is an HIBE where all identities are at depth 1. The
Setup algorithm in an HIBE scheme takes the maximum depth of the hierarchy as input.
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Delegation History Independence In all our HIBE constructions, algorithm Derive
outputs the same distribution of private keys as algorithm Extract. This property, called
delegation history independence, ensures that the private key of an identity ID at a cer-
tain depth u reveals no information about the delegation process used to derive that key.
For example, for an identity ID at level u > 3, a private key derived for ID from a level-1
key is sampled from the same distribution as a private key for ID derived from a level-
3 key. This property greatly simplifies the definition of HIBE security. We define this
property more precisely and discuss this issue further in Sect. 2.1.1.

Selective and Adaptive-ID Security The standard IBE security model of [13,14] de-
fines the indistinguishability of ciphertexts under an adaptive chosen-ciphertext and
chosen-identity attack (IND-ID-CCA2). An adaptive chosen-identity attack means that
the adversary is allowed to narrow in adaptively to the identity it wishes to target (i.e.,
the public key on which it will be challenged). A weaker notion of IBE security given
by Canetti, Halevi, and Katz [22,23] forces the adversary to announce ahead of time the
public key it will target, which is known as a selective-identity attack (IND-sID-CCA2).
We refer to such a system as a selective identity, chosen ciphertext secure IBE.

Security Game We define IBE and HIBE security under a selective-identity attack (for
a hierarchy of maximum depth �) using the following game between a challenger and
an adversary:

Init: The adversary outputs an identity ID∗ = (I∗1, . . . , I∗k) where it wishes to be chal-
lenged.

Setup: The challenger runs the Setup algorithm giving it the maximum depth � as input
(where � = 1 for IBE). It gives the adversary the resulting system parameters params.
It keeps the master key mk to itself.

Phase 1: The adversary issues queries q1, . . . , qm where the ith query qi is one of:

– Private-key extraction query on IDi , where IDi = (I1, . . . , Iu) for some 1 ≤ u ≤ �.
We require that IDi is not a prefix of ID∗, (i.e., it is not the case that u ≤ k

and Ii = I∗i for all i = 1, . . . , u). The challenger responds by running algorithm
Extract to obtain a private key di corresponding to the public key IDi . It sends
di to the adversary.

– Decryption query on a ciphertext Ci for an identity IDi (which may be equal
to ID∗ or a prefix of ID∗). To respond, the challenger runs algorithm Extract to
extract a private key d corresponding to IDi , and then runs algorithm Decrypt
to decrypt the ciphertext Ci using the private key d . It sends the result to the
adversary.

All queries may be made adaptively, that is, the adversary may ask qi with knowledge
of the challenger’s responses to q1, . . . , qi−1.

Challenge: Once the adversary decides that Phase 1 is over it outputs two equal
length plaintexts M0,M1 ∈ M on which it wishes to be challenged. The chal-
lenger picks a random bit b ∈ {0,1} and sets the challenge ciphertext to C =
Encrypt(params, ID∗,Mb). It sends C as the challenge to the adversary.

Phase 2: The adversary issues additional adaptive queries qm+1, . . . , qn where qi is one
of:
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– Private-key extraction query on IDi , where IDi is not a prefix of ID∗. The chal-
lenger responds as in Phase 1.

– Decryption query on Ci for IDi , where Ci �= C when IDi = ID∗ or some prefix
of ID∗. The challenger responds as in Phase 1.

Guess: Finally, the adversary outputs a guess b′ ∈ {0,1}. The adversary wins if b = b′.

We refer to such an adversary A as an IND-sID-CCA2 adversary. We define the ad-
vantage of the adversary A in attacking an HIBE scheme E = (Setup,Extract,Derive,
Encrypt,Decrypt), or an IBE scheme E = (Setup,Extract,Encrypt,Decrypt), as

AdvE ,A =
∣
∣
∣
∣
Pr[b = b′] − 1

2

∣
∣
∣
∣

The probability is over the random bits used by the challenger and the adversary.

Definition 2.1. We say that an IBE or HIBE system E is (t, qID, qC, ε)-selective-
identity, adaptive chosen-ciphertext secure if for any IND-sID-CCA2 adversary A that
runs in time t , makes at most qID chosen private-key queries, and at most qC cho-
sen decryption queries, we have AdvE ,A < ε. We abbreviate this by saying that E is
(t, qID, qC, ε)-IND-sID-CCA2 secure.

It is also customary to define the weaker notion of semantic security, or security
under chosen plaintext attack (CPA), where the adversary is forbidden from making
decryption queries. The adversary is still allowed to issue adaptive private-key queries.

Definition 2.2. We say that an IBE or HIBE system E is (t, qID, ε)-selective iden-
tity, chosen-plaintext secure if E is (t, qID,0, ε)-selective-identity, adaptive chosen-
ciphertext secure. For conciseness, we say that E is (t, qID, ε)-IND-sID-CPA secure.

Finally, we define the adaptive-identity counterparts to the above notions by removing
the Init phase from the attack game, and allowing the adversary to wait until the Chal-
lenge phase to announce the identity ID∗ it wishes to attack. The adversary is allowed
to make arbitrary private-key queries in Phase 1 and then choose an arbitrary target ID∗.
The only restriction is that he did not issue a private-key query for ID∗ or a prefix of ID∗
during phase 1. The resulting security notions are defined using the modified game as
in Definitions 2.1 and 2.2, and are denoted IND-ID-CCA2 and IND-ID-CPA respectively.

In the sequel, our main focus will be to construct (H)IBE systems in the selective
security model. We briefly discuss adaptive-ID security in Sect. 7. We also come back
to chosen-ciphertext security in Sect. 8 where we strengthen our systems against active
attacks.

2.1.1. Security with Respect to HIBE Key Delegation

Our description of HIBE security follows the definitions in [40,42] and the selective
variants in [22,23]. In this attack game, all private-key queries are answered using the
root master secret mk by running Extract(mk, ·). In reality, however, HIBE supports
delegation where the private-key for identity ID = (I1, . . . , Iu) can be derived from the
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private key of any parent identity such as (I1, . . . , Iu−1). Note that a key derived for ID
from the root key mk may be sampled from a different distribution than a key derived
for ID from a non-root key.

The security model presented in the previous section assumes that the system has
delegation history independence which means that all private keys, whether derived
from the root or derived by delegation, are sampled from the same distribution. Hence,
in the security game it suffices to respond to all private-key queries using the root master
secret. All the HIBE constructions in this paper have this property. More precisely,
delegation history independence is defined as follows.

Definition 2.3. We say that an HIBE system has delegation history independence if
for all outputs of the Setup algorithm and all tuples of identities (ID1, . . . , IDq) the dis-
tribution of private keys generated by Extract for these identities is the same as the
distribution produced by Derive for the same identities, no matter what valid parent
keys are given to Derive as input.

Shi and Waters [63] define a relaxed HIBE security model which does not require
delegation history independence. The security model is more complex since the adver-
sary gets to specify the exact delegation path used in answering every private key query,
as well as dependencies between private keys. Removing the requirement for delega-
tion history independence enables us to slightly simplify algorithm Derive in our HIBE
system. We revisit this issue in Sect. 4.4.

2.2. Bilinear Groups and Maps

We briefly review the necessary facts about bilinear maps or pairings and the groups
over which they are defined [44,50]. For a prime p, we denote the finite field of order
p by Zp . Wet let Z

∗
p denote the multiplicative group of order p − 1 consisting of the

elements in Zp \ {0}.
Let G and Ĝ be two (possibly distinct, but isomorphic) cyclic groups of large prime

order p. Let g ∈ G and ĝ ∈ Ĝ be respective generators of G and Ĝ. Let e : G× Ĝ → Gt

be a function that maps pairs of elements in (G, Ĝ) to elements of a group Gt , where
Gt has order p. The group operations in G, Ĝ, and Gt are written multiplicatively, with
identity elements denoted by 1. Further assume that:

– the map e is efficiently computable, and so are the group operations in G, Ĝ,
and Gt ;

– the map e is non-degenerate, in the sense that e(g, ĝ) �= 1;
– the map e is bilinear, meaning that ∀u ∈ G,∀v ∈ Ĝ,∀a, b ∈ Z, e(ua, vb) =

e(u, v)ab .

We say that (G, Ĝ) forms a bilinear group pair, and that e is a bilinear map from (G, Ĝ)

into Gt . Such bilinear maps are often called bilinear pairings, or pairings for short.

Symmetric Versus Asymmetric Pairings The above definition is general in the sense
that no special constraint is placed on G and Ĝ (other than having prime order p).
In a number of applications, however, it is important [59] to require that G and Ĝ be
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the same group (i.e. G = Ĝ); this leads to the notion of “symmetric” bilinear pairing
ê : G × G → Gt where both left and right inputs to the pairing live in the same group.
In the general case, G and Ĝ are distinct groups and the bilinear group pair (G, Ĝ) is
called “asymmetric”.

If a cryptographic scheme does not explicitly require the symmetry, it is usually ad-
vantageous to use asymmetric bilinear groups. The advantages include more compact
representations of group elements, a far broader choice of elliptic-curve implementa-
tions [32], and possibly even additional security properties [35]. Asymmetric pairings
have been used in signature schemes [8,11,17] to minimize the signature size, but, by
and large, the designers of encryption schemes have tended to prefer symmetric pair-
ings, favoring simplicity over generality. In this paper, we opt for the more general
asymmetric formulation. (To emulate the symmetric notation, the reader may disregard
all hats ˆ from the symbols.)

For concreteness, we shall suppose that the elements of G can be represented more
compactly than those of Ĝ, as happens frequently with asymmetric pairings.

Computable and Invertible Isomorphisms In some examples of bilinear group pairs
(G, Ĝ) there is an isomorphism φ : Ĝ → G that is easy to compute and easy to invert.
For example, when G = Ĝ the isomorphism φ is simply the identity function. In other
bilinear group pairs the isomorphism may be easy to compute, but hard to invert. In
other cases still, both φ and φ−1 may be hard to compute.

All the constructions in this paper are indifferent to this issue; it makes no difference
whether the isomorphism φ is easily computable or not. For this reason we will not refer
to φ in our algorithms and proofs, thus enabling us to make use of all known bilinear
group constructions.

Implementation Details We refer the reader to [35] for a more detailed description of
the various types of pairings, and to [2,14,31,32,52,56] for the construction of suitable
curves for their implementations. General algorithms for curve arithmetic including the
pairing may be found in [5,50].

3. Complexity Assumptions

We review the standard Bilinear Diffie–Hellman (BDH) assumption, and define the
Bilinear Diffie–Hellman Inversion (BDHI) assumption. Since these assumptions were
originally proposed in the symmetric setting, we restate them here under a natural gen-
eralization for asymmetric pairings.

3.1. Bilinear Diffie–Hellman Assumption

The BDH problem for a symmetric pairing e : G × G → Gt is stated as follows [13,44,
59]:

Given a tuple (g, ga, gb, gc) ∈ G
4 as input, output e(g, g)abc ∈ Gt .

We generalize the BDH problem to asymmetric bilinear groups, where G need not be
the same as Ĝ, by giving the adversary (g, ga, gc, ĝ, ĝa, ĝb) ∈ G

3 × Ĝ
3.
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Computational BDH. We say that an algorithm A has advantage AdvBDH
A = ε in solv-

ing the computational BDH problem in (G, Ĝ) if

Pr
[

A
(

g,ga, gc, ĝ, ĝa, ĝb
) = e(g, ĝ)abc

] ≥ ε

where the probability is over the random choice of exponents a, b, c in Zp , the ran-
dom choice of generators g of G and ĝ of Ĝ, and the random bits used by A. For
symmetric pairings (i.e. when G = Ĝ) we can simplify the assumption by choosing
g at random in G and setting ĝ = g. Then A is only given (g, ga, gb, gc) as input and
is asked to compute e(g, g)abc . As we shall see, our security proofs are oblivious to
how the generators g and ĝ are chosen in the assumption.

Decisional BDH. We similarly say that an algorithm B that outputs a bit γ ∈ {0,1} has
advantage AdvD-BDH

A = ε in solving the Decision-BDH problem in (G, Ĝ) if

∣
∣Pr

[

B
(

g,ga, gc, ĝ, ĝa, ĝb, e(g, ĝ)abc
) = 0

]− Pr
[

B
(

g,ga, gc, ĝ, ĝa, ĝb, T
) = 0

]∣
∣ ≥ ε

where the probability is over the random choice of generators g of G and ĝ of Ĝ,
the random choice of exponents a, b, c in Zp , the random choice of T ∈ Gt , and the
random bits used by B.

Hash BDH. We can also define a weaker version of the decisional assumption with the
help of a hash function. Let H be a family of hash functions H = {H : Gt → {0,1}m}
for some m ∈ Z>0. We say that an algorithm B that outputs a bit γ ∈ {0,1} has
advantage AdvHashBDH

A = ε in solving the Hash-BDH problem in (G, Ĝ) with respect
to H if

∣
∣Pr

[

B
(

H,g,ga, gc, ĝ, ĝa, ĝb,H
(

e(g, ĝ)abc
)) = 0

]

− Pr
[

B
(

H,g,ga, gc, ĝ, ĝa, ĝb, T
) = 0

]∣
∣ ≥ ε

where the probability is over the random choice of generators g of G and ĝ of Ĝ, the
random choice of exponents a, b, c in Zp , the random selection of the function H

from the family H, the random choice of T ∈ {0,1}m, and the random bits consumed
by B.

In the decisional BDH definition, we refer to the distribution (over G
3 × Ĝ

3 × Gt ) of
the 7-tuple in the true instance (on the left) as PBDH, and in the false instance (on the
right) as RBDH.

Definition 3.1. We say that the (t, ε)-(Decision-)BDH assumption holds in (G, Ĝ) if
no t-time algorithm has advantage at least ε in solving the (Decision-)BDH problem in
(G, Ĝ).

Similarly, we say that the (t, ε, H)-Hash-BDH assumption holds in (G, Ĝ) if no t-
time algorithm has advantage at least ε in solving the Hash-BDH problem in (G, Ĝ)

with respect to H.

Occasionally we omit the parameters and talk of the BDH, Decision-BDH, and Hash-
BDH assumptions. We remark that the Decision-BDH assumption in (G, Ĝ) implies
that the regular Decision Diffie–Hellman (DDH) assumption holds in Gt .
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For certain hash families H, the Decision-BDH assumption implies the Hash-BDH
assumption, and hence Hash-BDH is a weaker assumption. For example, a standard
application of the left-over hash lemma [43] shows that with an appropriate choice of
m and universal hash family H, the Decision-BDH assumption implies the Hash-BDH
assumption. For some groups G and Ĝ one can prove this implication using a fixed hash
function without resorting to the left-over hash lemma [27]. Either way we observe that
Hash-BDH is a weaker (more precisely, no stronger) assumption than Decision-BDH.

3.2. Bilinear Diffie–Hellman Inversion Assumption

The q-BDHI problem for a symmetric pairing e : G × G → Gt is stated as follows [6]:

Given a (q + 1)-tuple (g, gx, g(x2), . . . , g(xq )) ∈ (G)q+1 as input, output
e(g, g)1/x ∈ Gt .

We generalize it to asymmetric bilinear groups and define the complexity assumption
by providing a sequence of powers of the generator in one of the groups (arbitrarily
taken to be Ĝ).

Computational q-BDHI. An algorithm A has advantage AdvBDHI
q,A = ε in solving

q-BDHI in (G, Ĝ) if

Pr
[

A
(

g,gx, ĝ, ĝx, . . . , ĝ(xq )
) = e(g, ĝ)1/x

] ≥ ε

where the probability is over the random choice of generators g of G and ĝ of Ĝ, the
random choice of x ∈ Z

∗
p , and the random bits used by A. For symmetric pairings

(i.e. when G = Ĝ) we can simplify the assumption by choosing g at random in G and
setting ĝ = g. Then A is only given g,gx, g(x2), . . . , g(xq) as in [6].

Decisional q-BDHI. Similarly, we say that an algorithm B that outputs a bit γ ∈ {0,1}
has advantage AdvD-BDHI

q,A = ε in solving the q-Decision-BDHI problem in (G, Ĝ) if

∣
∣
∣
∣
∣
Pr

[

B
(

g,gx,

ĝ, ĝx, . . . , ĝ(xq ), e(g, ĝ)1/x

)

= 0

]

− Pr

[

B
(

g,gx,

ĝ, ĝx, . . . , ĝ(xq ), T

)

= 0

]∣
∣
∣
∣
∣
≥ ε

where the probability is over the random choice of generators g of G and ĝ of Ĝ, the
random choice of x ∈ Z

∗
p , the random choice of T ∈ Gt , and the random bits used

by B.
Hash q-BDHI. As before, we can relax the decisional assumption with the help of a

hash function family H = {H : Gt → {0,1}m} for some m ∈ Z>0. We say that an
algorithm B that outputs a bit γ ∈ {0,1} has advantage AdvHashBDHI

q,A = ε in solving

the q-Hash-BDHI problem in (G, Ĝ) with respect to H if
∣
∣
∣
∣
∣
Pr

[

B
(

H,g,gx,

ĝ, ĝx, . . . , ĝ(xq ),H(e(g, ĝ)1/x)

)

= 0

]

− Pr

[

B
(

H,g,gx,

ĝ, ĝx, . . . , ĝ(xq ), T

)

= 0

]∣
∣
∣
∣
∣
≥ ε
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where the probability is over the random choice of generators g of G and ĝ of Ĝ, the
random choice of x ∈ Z

∗
p , the random choice of T ∈ {0,1}m, the random choice of

function H ∈ H, and the random bits consumed by B.

In the decisional definition, we refer to the (q +4)-tuple distribution (over G
2 × Ĝ

q+1 ×
Gt ) in the true instance (on the left) as PBDHI, and in the false instance (on the right) as
RBDHI.

Definition 3.2. We say that the (t, q, ε)-(Decision-)BDHI assumption holds in (G, Ĝ)

if no t-time algorithm has advantage at least ε in solving the q-(Decision-)BDHI prob-
lem in (G, Ĝ).

We say that the (t, q, ε, H)-Hash-BDHI assumption holds in (G, Ĝ) if no t-time al-
gorithm has advantage at least ε in solving the q-Hash-BDHI problem in (G, Ĝ) with
respect to H.

Occasionally we drop the t and ε and refer to the q-BDHI and q-Decision-BDHI
assumptions. It is not known whether the q-BDHI assumption, for q > 1, is equivalent
to BDH. A closely related assumption called weak Diffie–Hellman was previously used
in [51]. (See also Appendix A.)

3.3. Asymptotic Formulation of the Assumptions

For completeness, we give an asymptotic formulation of the BDH and BDHI assump-
tions. Since here we are interested in asymptotic behavior, we need a bilinear group
generation algorithm G .

Definition 3.3. A bilinear group generator G is a Probabilistic Polynomial Time (PPT)
algorithm that, on input 1λ, outputs the description of groups G, Ĝ,Gt and a bilinear
map e : G × Ĝ → Gt , so that (G, Ĝ) form a bilinear group pair.

We now define the asymptotic BDH assumptions. In this setting, the various quanti-
ties denoted by ε in Sect. 3.1 become functions of the security parameter λ.

Definition 3.4. Let G be a bilinear group generator. We say that the BDH, Decision
BDH, and Hash BDH assumptions hold for G if, for every PPT algorithm A, the respec-
tive functions AdvBDH

A (λ), AdvD-BDH
A (λ), and AdvHashBDH

A (λ) are negligible functions
of λ.

We similarly define the asymptotic BDHI assumptions. As in the previous case, the
various ε from Sect. 3.2 become functions of λ. Notice that this includes the parame-
ter q .

Definition 3.5. Let G be a bilinear group generator. We say that the BDHI, Decision-
BDHI, and Hash-BDHI assumptions hold for G if, for every PPT algorithm A, and
every polynomial q ∈ Z[X], the respective functions AdvBDHI

q(λ),A(λ), AdvD-BDHI
q(λ),A (λ), and

AdvHashBDHI
q(λ),A (λ) are negligible functions of λ.
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It is easy to interpret our results asymptotically using Definition 3.3 and the asymp-
totic assumptions.

3.4. A Discussion of Our Asymmetric Formulation

Compared with the original, symmetric-pairing formulations of BDH [13] and BDHI
[6], the definitions we give here involve problem instances containing two more ele-
ments. This is because some of the elements must be given explicitly in each group G

and Ĝ, in accordance with our choice not to rely on the isomorphisms φ and φ−1 to be
or not to be efficiency computable.

The BDH problem in symmetric bilinear groups was to compute (or recognize, or
hash) e(g, g)abc given g,ga, gb, gc. In asymmetric groups, we seek to find e(g, ĝ)abc

given g,ga, gc, and ĝ, ĝa, ĝb . This is not the weakest possible generalization, since the
ath power is given in both groups. This repetition (which is unnecessary for symmetric
pairings since g = ĝ) is often needed in proofs using asymmetric pairings. We note that
one can easily verify that an input tuple is well formed by using the pairing to check
that (g, ĝ, ga, ĝa) is a valid Diffie–Hellman tuple.

4. BB1: Efficient IBE/HIBE from BDH Without Random Oracles

We construct an efficient HIBE system that is selective-identity chosen-plaintext secure
without random oracles based on the Decision-BDH assumption. In particular, this im-
plies an efficient selective-identity chosen-ciphertext secure HIBE based on Decision-
BDH without random oracles, from one of the transformations given in [12,20].

The challenge in building secure IBE and HIBE systems is that in the proof of se-
curity the simulator must answer private-key queries from the attacker. But this seems
paradoxical: if the simulator knows all private keys then the simulator learns nothing
new from the attacker. Fortunately, in the selective-security game the simulator needs to
have the private keys for all identities except for one: the challenge identity. In both our
systems, the simulator uses a specially crafted method for generating private keys that
enables it to generate keys for all identities, except for the challenge identity. Specifi-
cally, if one plugs the challenge identity into the simulator’s key generation algorithm
then the calculation results in a division by zero.

4.1. Core HIBE Construction

We are given a bilinear map e : G × Ĝ → Gt over a bilinear group pair (G, Ĝ) of prime
order p, with respective generators g ∈ G and ĝ ∈ Ĝ. The size of p is determined by
the security parameter.

For the time being we make two simplifying assumptions. First, we assume that pub-
lic keys (IDs) at depth k are vectors of elements in Z

∗
p . We write ID = (I1, . . . , Ik) ∈

(Z∗
p)k , where the j th component corresponds to the identity at level j . We later ex-

tend the construction to arbitrary public keys in {0,1}∗ by first hashing each component
Ij using a collision-resistant hash H : {0,1}∗ → Z

∗
p . In fact, we will show in Sect. 6

that for selective-ID security, a second-preimage-resistant hash is sufficient. Second, we
temporarily assume that the messages to be encrypted are encoded as elements of Gt .
We later relax this assumption in Sect. 4.3.

The BB1 HIBE system works as follows:
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Setup(�): To generate system parameters for an HIBE system of maximum depth �,
given bilinear groups (G, Ĝ) with generators (g, ĝ), the setup algorithm first selects
a random α ∈ Zp , and sets g1 = gα and ĝ1 = ĝα . It then picks � random numbers
δ1, . . . , δ� from Zp , and sets hi = gδi and ĥi = ĝδi for each i = 1, . . . , �. Finally, it
picks a random β ∈ Zp , sets ĝ0 = ĝαβ , and computes v = e(g, ĝ0) = e(g, ĝ)αβ . The
public parameters params and the master secret mk are given by

params = (g, g1, h1, . . . , h�, ĝ, ĝ1, ĥ1, . . . , ĥ�, v) ∈ G
2+� × Ĝ

2+� × Gt

mk = (ĝ0) ∈ Ĝ

Extract(mk, ID): To extract a private key dID for an identity ID = (I1, . . . , Ij ) ∈ (Z∗
p)j

of depth j ≤ �, the authority holding the master key chooses random r1, . . . , rj ∈ Zp

and outputs

dID =
(

ĝ0

j
∏

k=1

(ĝ
Ik
1 ĥk)

rk , ĝr1, . . . , ĝrj

)

∈ Ĝ
1+j (1)

Derive(dID|j−1, ID): The private key for ID can be generated hierarchically given a
private key for the parent identity ID|j−1 = (I1, . . . , Ij−1) ∈ (Z∗

p)j−1. Indeed, let

dID|j−1 = (d0, . . . , dj−1) ∈ Ĝ
j be the private key for ID|j−1. To generate dID, pick

random r1, . . . , rj ∈ Zp and output

dID =
(

d0 ·
j

∏

k=1

(ĝ
Ik
1 ĥk)

rk , d1 · ĝr1, . . . , dj−1 · ĝrj−1 , ĝrj

)

∈ Ĝ
1+j

Notice that this amounts to taking dID = (d0 · (ĝIj
1 ĥj )

rj , d1, . . . , dj−1, ĝ
rj ), which is

a valid key, and then randomizing it with the exponents r1, . . . , rj−1 to ensure that
the distribution of derived keys is the same as the distribution of keys generated by
Extract.

Encrypt(params, ID,M): To encrypt a message M ∈ Gt under the public key ID =
(I1, . . . , Ij ) ∈ (Z∗

p)j , pick a random s ∈ Zp and output

C = (

Mvs,gs,
(

g
I1
1 h1

)s
, . . . ,

(

g
Ij
1 hj

)s) ∈ Gt × G
1+j

Decrypt(dID,C): To decrypt a given ciphertext C = (A,B,C1, . . . ,Cj ) ∈ Gt × G
1+j

using the private key dID = (d0, d1, . . . , dj ) ∈ Ĝ
1+j , output

A ·
j

∏

k=1

e(Ck, dk)/e(B,d0) ∈ Gt

The system in consistent. Indeed, for a valid ciphertext encrypted under the identity
ID = (I1, . . . , Ij ) for which the private key dID is computed as in (1), we have

A ·
∏j

k=1 e(Ck, dk)

e(B,d0)
= A ·

∏j

k=1 e(g
Ik
1 hk, ĝ)srk

e(g, ĝ0)s
∏j

k=1 e(g, ĝ
Ik
1 ĥk)srk

= A · 1

vs
= M
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4.2. Security Reduction

We prove security of our HIBE system under the Decision-BDH assumption in (G, Ĝ)

in the standard model.

Theorem 4.1. Suppose the (t, ε)-Decision-BDH assumption holds in (G, Ĝ). Then
the previously defined “BB1” �-HIBE system is (t ′, qID, ε)-selective identity, chosen-
plaintext (IND-sID-CPA) secure for arbitrary � and qID, and all t ′ < t − Θ(�qID) ex-
pressed in the time unit of computing a general exponentiation in G or Ĝ.

Concretely, if A is a qID-IND-sID-CPA adversary for BB1 with advantage ε, then there
exists a Decision-BDH adversary B for (G, Ĝ) with the same advantage ε, and running
in approximately the same time as A.

Proof. Suppose A has advantage ε in attacking the HIBE system. We build an algo-
rithm B that solves the Decision-BDH problem in (G, Ĝ). Algorithm B is given as in-
put a random 7-tuple (g, ga, gc, ĝ, ĝa, ĝb, T ) that is either sampled from PBDH (where
T = e(g, ĝ)abc) or from RBDH (where T is uniform and independent in Gt ). Algorithm
B’s goal is to output 1 if T = e(g, ĝ)abc and 0 otherwise. Set g1 = ga, g3 = gc and sim-
ilarly ĝ1 = ĝa, ĝ2 = ĝb . Algorithm B works by interacting with A in a selective identity
game as follows:

Initialization. The selective-identity game begins with A first outputting an identity
ID∗ = (I∗1, . . . , I∗k) ∈ (Z∗

p)k of depth k ≤ �, that it intends to attack. If k < � then B
appends to ID∗ a suffix of � − k zeroes to make ID∗ a vector of length �; hence, from
here on ID∗ is assumed to be a vector in (Zp)� which we call the padded ID∗.

Setup. To generate the system parameters, algorithm B picks random α1, . . . , α� ∈ Zp

and defines hj = g
−I∗j
1 gαj ∈ G and ĥj = ĝ

−I∗j
1 ĝαj ∈ Ĝ for j = 1, . . . , �. It also cal-

culates v = e(g1, ĝ2) ∈ Gt . Algorithm B gives A the system parameters params =
(g, g1, h1, . . . , h�, ĝ, ĝ1, ĥ1, . . . , ĥ�, v). The corresponding master key, which is un-
known to B, is equal to ĝ0 = ĝab ∈ Ĝ.

Phase 1. Algorithm A issues up to qID private key queries to B, one at a time. Consider
a query for the private key corresponding to ID = (I1, . . . , Iu) ∈ (Z∗

p)u where u ≤ �.
The only restriction is that ID not be a prefix of ID∗ before we padded ID∗ with
zeroes. But since components of ID are restricted to Z

∗
p it follows that ID cannot

be a prefix of the padded ID∗. Hence, there must exist an index j ∈ {1, . . . , u} such
that Ij �= I∗j . To respond to the query, algorithm B first derives a private key for the
identity (I1, . . . , Ij ) from which it then constructs a private key for the requested
identity ID = (I1, . . . , Ij , . . . , Iu).
For the first step, B picks random elements r1, . . . , rj ∈ Zp and sets

d0 = ĝ

−αj

Ij −I∗
j

2

j
∏

n=1

(

ĝ
In
1 ĥn

)rn , d1 = ĝr1, . . . , dj−1 = ĝrj−1, dj = ĝ

−1
Ij −I∗

j

2 grj

(2)
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We claim that (d0, d1, . . . , dj ) is a correctly distributed and valid random private key
for the identity (I1, . . . , Ij ). To see this, let r̃j = rj −b/(Ij − I∗j ) in Zp . Then we have

ĝ

−αj

(Ij −I∗
j
)

2

(

ĝ
Ij
1 ĥj

)rj = ĝ

−bαj

(Ij −I∗
j
)
(

ĝ
a(Ij −I∗j )

ĝαj
)rj = ĝab

(

ĝ
a(Ij −I∗j )

ĝαj
)rj − b

Ij −I∗
j

= ĝ0
(

ĝ
Ij
1 ĥj

)r̃j

It follows that the private key (d0, d1, . . . , dj ) defined in (2) satisfies

d0 = ĝ0 ·
j−1
∏

n=1

(

ĝ
In
1 ĥn

)rn · (ĝIj
1 ĥj

)r̃j , d1 = ĝr1, . . . , dj−1 = ĝrj−1

dj = ĝr̃j

where the exponents r1, . . . , rj−1, r̃j are uniform and independent in Zp . This
matches the distribution of a private key generated by Extract. Hence, (d0, d1, . . . , dj )

is a valid private key for (I1, . . . , Ij ).
For the second step, algorithm B derives a private key for the requested ID =
(I1, . . . , Ij , . . . , Iu) by repeatedly applying the Derive procedure u − j times start-
ing from the private key (d0, d1, . . . , dj ) just constructed, and gives A the end result.
Note that this procedure will fail to produce a private key for any prefix of ID∗. Hence,
B can generate private keys for all identities, except for prefixes of ID∗, as required.

Challenge. When A decides that Phase 1 is over, it outputs two messages M0,M1 ∈ Gt

on which it wishes to be challenged. Algorithm B picks a random bit γ ∈ {0,1} and
responds with the challenge ciphertext C∗ = (Mγ T ,g3, g

α1
3 , . . . , g

αk

3 ). Since gαi =
g

I∗i
1 hi for all i, we have

C∗ = (

Mγ T,gc,
(

g
I∗1
1 h1

)c
, . . . ,

(

g
I∗k
1 hk

)c)

Hence, when T = e(g, ĝ)abc = e(g, ĝ0)
c = vc, i.e., when B’s input 7-tuple is sampled

from PBDH, then C∗ is a valid encryption of Mγ under the (unpadded) public key
(I∗1, . . . , I∗k) initially chosen by the adversary. On the other hand, when T is uniform
and independent in Gt , i.e., when B’s input 7-tuple is sampled from RBDH, then C∗
is independent of γ in the adversary’s view.

Phase 2. Algorithm A continues to adaptively issue queries not issued in Phase 1, up
to a total of qID queries. Algorithm B responds as before.

Guess. Finally, A outputs a guess γ ′ ∈ {0,1}. Algorithm B concludes its own game by
outputting a guess as follows. If γ = γ ′ then B outputs 1 meaning T = e(g, ĝ)abc .
Otherwise, it outputs 0 meaning T �= e(g, ĝ)abc .

When B’s input 7-tuple is sampled from PBDH (where T = e(g, ĝ)abc) then A’s
view of the simulation is identical to a real attack, and therefore A must satisfy
|Pr[γ = γ ′]− 1

2 | > ε. On the other hand, when B’s input 7-tuple is sampled from RBDH

(where T is uniform in Gt ) then A’s advantage is nil and thus Pr[γ = γ ′] = 1
2 . There-
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fore, with a, b, c uniform in Zp , and T uniform in Gt , we have

∣
∣Pr

[

B
(

g,ga, gc, ĝ, ĝa, ĝb, e(g, g)abc
) = 0

] − Pr
[

B
(

g,ga, gc, ĝ, ĝa, ĝb, T
) = 0

]∣
∣

≥
∣
∣
∣
∣

1

2
± ε − 1

2

∣
∣
∣
∣
= ε

as required. This completes the proof of Theorem 4.1. �

We note that even though the BDH assumptions stated in Sect. 3.1 required the group
generators g, ĝ to be random, our reduction does not rely on this property and works
for arbitrary generators. Indeed, the simulator B passes the given generators g, ĝ to
A without modification. Thus, our system remains secure under a “Decision-BDH”
assumption that might hold only for specific generators (g, ĝ), as long as B is given the
generators.

4.3. (H)IBE with Security from the Hash-BDH Assumption

In Theorem 4.1 we proved security of our system based on the Decision-BDH assump-
tion. Here we briefly observe that a simple variant of the BB1 system can be proven
secure under the weaker Hash-BDH assumption defined in Sect. 3.1.

Recall from Sect. 3.1 that Hash-BDH is defined with respect to a family of hash
functions H of the form H : Gt → {0,1}m for some m ∈ Z>0. To prove security under
Hash-BDH, we slightly modify the system to admit messages encoded as bit strings
M ∈ {0,1}m, and to hash the term vs during the encryption process and similarly during
decryption. For simplicity, we describe these modifications as they apply to the BB1-
IBE system; the modification to the BB1-HIBE is analogous.

Setup(1): To generate IBE system parameters, first, select a random α ∈ Zp , and set
g1 = gα and ĝ1 = ĝα . Next, select a random δ ∈ Zp and set h = gδ and ĥ = ĝδ .
Then, pick a random β ∈ Zp , set ĝ0 = ĝαβ , and compute v = e(g, ĝ0). Finally, pick
a random hash function H from H. The public parameters and the master key are
respectively given by params = (H,g,g1, h, v) and mk = ĝ0. (Without hierarchy,
ĝ, ĝ1, ĥ may be omitted from params.)

Extract(mk, ID): To extract a private key dID for an identity ID ∈ Z
∗
p , pick a random

r ∈ Zp and output dID = (ĝ0(ĝ
ID
1 ĥ)r , ĝr ).

Encrypt(params, ID,M): To encrypt a message M ∈ {0,1}m under the public key ID ∈
Z

∗
p , pick a random s ∈ Zp and output C = (M ⊕ H(vs), gs, (gID

1 h)s).
Decrypt(dID,C): To decrypt a given ciphertext C = (A,B,C1) using the private key

dID = (d0, d1), output A ⊕ H(e(B,d0)/e(C1, d1)) = M .

Theorem 4.1 can now be restated in terms of Hash-BDH as follows. The proof is
almost identical to the proof of Theorem 4.1.

Theorem 4.2. Suppose the (t, ε, H)-Hash-BDH assumption holds in (G, Ĝ). Then the
preceding “hashed-BB1” IBE system is (t ′, qID, ε)-selective identity, chosen-plaintext
(IND-sID-CPA) secure for arbitrary qID and ε, and any t ′ < t − Θ(�qID) expressed in
the time unit of exponentiation in G or Ĝ.
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A benefit of the Hash-BDH system over the Decision-BDH one is that the ciphertext
no longer contains any element of Gt , whose representation is potentially much larger
than the amount of information it can convey (for bilinear groups realized on elliptic
curves, the representation of elements of Ĝ and Gt without compression tends to be
much larger than that of G). In the Hash-BDH construction with � levels of hierarchy,
the ciphertext overhead amounts to � + 1 elements of G.

4.4. Relaxed Hierarchical Key Derivation

As already discussed in Sect. 2.1, we adopted a strong HIBE security model that requires
private keys to have the same distribution, regardless of how the keys were created. In
particular, it should be information-theoretically impossible to tell whether a private
key dID for an identity ID = (I1, . . . , I�) was derived from a parent private key dID|�−1 or
extracted independently from the master secret, even if the parent key is revealed.

For HIBE schemes such as BB1 where private keys are not deterministic, the preced-
ing requirement forces the hierarchical key derivation procedure to re-randomize fully
all key components that are passed from parent to child.

The BB1 hierarchical key derivation can be made slightly more efficient under the
weaker HIBE notion discussed in Sect. 2.1.1 that does not require independence of
the private keys from their derivation history. In this case, the BB1 HIBE supports the
following simplified derivation algorithm:

Derive′(dID|j−1, ID): To generate a functional (but incompletely re-randomized) pri-
vate key for a child identity ID = (I1, . . . , Ij ) ∈ (Z∗

p)j given a private key dID|j−1 =
(d0, . . . , dj−1) ∈ Ĝ

j for the parent identity ID|j−1 = (I1, . . . , Ij−1) ∈ (Z∗
p)j−1, pick a

random rj ∈ Zp and output

dID = (

d0 · ĝrj Ij
1 ĥ

rj
j , d1, . . . , dj−1, ĝ

rj
) ∈ Ĝ

1+j

We omit the formal security model and security reduction for this relaxed notion of
HIBE.

4.5. Efficiency Considerations

The BB1 (H)IBE system of Sect. 4.1 and its variant of Sect. 4.3 present a number of
opportunities for fast implementation, which we now explore.

Encryption We already noted that the Encrypt algorithm does not require any pairing
computation. Furthermore, since all exponentiations (and multi-exponentiations) in the
Encrypt algorithm use constant bases for a given set of public parameters params, these
exponentiations can be done very efficiently by using pre-computations. By segmenting
the exponents in W -bit windows, and by pre-computing the power gy·2k

for all W -bit
integers y = 0, . . . ,2W −1 and all k < logp such that W |k, one can implement an expo-
nentiation using only � 1

W
logp� group multiplications, compared with the usual W -bit

windowed exponentiation algorithm which requires about �W+1
W

logp� multiplications.
This observation results in much faster encryption than in Boneh–Franklin IBE, as well
as in non-IBE public-key systems based on discrete logarithm, such as ElGamal, where
(at least) one exponentiation base will vary from user to user.
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Decryption The main computational task of the Decrypt algorithm involves taking the
product of j + 1 pairings (or their inverses). We note that a product of j pairings can be
computed more efficiently than computing j individual pairings, with a product or ratio
of two pairings being almost as fast as a single pairing [60].

Private Key Extraction In the case of a non-hierarchical IBE system without se-
cret sharing, the Extract algorithm can be implemented very efficiently. The imple-
mentation makes use of the discrete logarithms α = dlogg(g1) and δ = dlogg(h) (or
δ1 = dlogg(h1)), which is accommodated by slightly modifying the Setup algorithm to
preserve the ephemeral exponents α and δ (or δ1) along with the master key g0 for fu-
ture use. Under these assumptions, the private key dID returned by Extract for a given
identity ID can be efficiently calculated as

dID = (

ĝ0(ĝ
ID
1 ĥ)r , ĝr

) = (

ĝαβ+r(αID+δ), ĝr
) = (

ĝ0 · ĝξ , ĝr
)

where ξ = r(αID + δ) ∈ Zp . Since ĝ0 is constant, the only variable quantities in the
right-most expression are the two powers ĝξ and ĝr respectively obtained by raising the
common fixed base ĝ to the known exponents ξ and r . Without pre-computation, the
cost of jointly computing both quantities slightly exceeds that of a single exponentiation
in Ĝ, which for the sake of comparison is also the cost of key generation in the Boneh–
Franklin IBE system. Furthermore, since here the base of exponentiation ĝ is fixed, pre-
computation techniques can be exploited to reduce further the total cost to a fraction
of that level. For example, using an exponentiation algorithm with W -bit windows,
the asymptotic amortized cost of key extraction is found to be about 2

W+1 that of the
Boneh–Franklin system, i.e., a threefold speedup using 5-bit windows.

5. BB2: Efficient IBE from BDHI Without Random Oracles

We construct a second efficient IBE system that is selective identity, chosen plaintext
secure without random oracles, based on the q-Decision-BDHI assumption defined in
Sect. 3.2. This gives a very different approach to constructing IBE systems. The main
benefit of this system is that decryption is slightly simpler than in the system of the
previous section. Encryption efficiency and ciphertext size are nominally the same; and
the public parameters are only three elements, as opposed to four in the previous system.
The price to pay is the reliance on a stronger assumption and a lack of flexibility (e.g.,
more complex hierarchies and no support for threshold key generation).

5.1. IBE Construction

We are given a bilinear map e : G × Ĝ → Gt over a bilinear group pair (G, Ĝ) of prime
order p, with respective generators g ∈ G and ĝ ∈ Ĝ. The size of p is determined by
the security parameter.

For now, we assume that the public keys (ID) are elements in Z
∗
p , although we later

show that arbitrary strings in {0,1}∗ can be used as identities by first hashing them
using a collision-resistant hash H : {0,1}∗ → Z

∗
p . We also assume that the messages to

be encrypted are represented as elements in Gt . The IBE system works as follows:
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Setup(1): To generate the IBE system parameters given a bilinear group pair (G, Ĝ)

with generators (g, ĝ), the setup algorithm first selects a random generator ĥ of Ĝ.
Next, the algorithm computes v = e(g, ĥ). It then selects random numbers x, y ∈ Z

∗
p ,

and defines X = gx and Y = gy . The public parameters params and the master secret
mk are given by

params = (g,X,Y, v) ∈ G
3 × Gt

mk = (x, y, ĥ) ∈ (Z∗
p)2 × Ĝ

Extract(mk, ID): To extract a private key for the public key ID ∈ Z
∗
p , pick a random

r ∈ Zp such that x + ry + ID �= 0 (mod p), compute K = ĥ1/(ID+x+ry), and output
the private key

dID = (r,K) ∈ Zp × Ĝ

Encrypt(params, ID,M): To encrypt a message M ∈ Gt under public key ID ∈ Z
∗
p , pick

a random s ∈ Z
∗
p and output the ciphertext

CT = (

Mvs,Y s,Xsgs·ID) ∈ Gt × G
2

Decrypt(dID,CT): To decrypt a ciphertext CT = (A,B,C) using the private key dID =
(r,K), output

A/e
(

BrC,K
) ∈ Gt

The system is consistent. Indeed, for a private key dID and a valid ciphertext encrypted
under a matching public key ID, we have

A

e(BrC,K)
= A

e(gs(ry+x+ID), ĥ1/(ID+x+ry))
= A

e(g, ĥ)s
= A

vs
= M

Size and Performance Provided that the same bilinear group pair (G, Ĝ) is used, ci-
phertext size and encryption time are similar to our first IBE system described earlier,
and supports the same pre-computation optimizations. Decryption requires one expo-
nentiation followed by one pairing computation, as opposed to a product (or ratio) of
two pairings in our earlier system, and is thus possibly slightly simpler. We note how-
ever that BB2 is not necessarily more efficient than BB1, as discussed in Sect. 5.3.

Hash-BDHI Construction The system above may be modified like our first system as
in Sect. 4.3, by requiring M ∈ {0,1}m and hashing the blinding factor vs using some
function H ∈ H = {H : Gt → {0,1}m} during encryption, and similarly during decryp-
tion. The security of the resulting system would then rely on the q-Hash-BDHI assump-
tion rather than q-Decision-BDHI. The modifications to the above construction, and to
the security proof below, are straightforward.

Hierarchies and Other Extensions The BB2 system can be generalized to support hi-
erarchies, delegation, and other features, but not as easily as the BB1 system. We refer
to [19] for details.
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5.2. Proving Security

We prove security of the above IBE scheme under the q-Decision-BDHI assumption
from Sect. 3.2.

Theorem 5.1. Suppose the (t, q, ε)-Decision-BDHI assumption holds in groups
(G, Ĝ) of size p. Then the “BB2 ” IBE system is (t ′, qID, ε)-selective-identity, chosen-
plaintext (IND-sID-CPA) secure for any qID < q , and any t ′ < t − Θ(q2) expressed in
the time unit of exponentiation in G or Ĝ.

Proof. Suppose an algorithm A has advantage ε in attacking the IBE system. We build
an algorithm B that uses A to solve the q-Decision-BDHI problem in (G, Ĝ). Algorithm
B is given as input a random (q + 4)-tuple (g, gα, ĝ, ĝα, ĝ(α2), . . . , ĝ(αq), T ) ∈ (G)2 ×
(Ĝ)q+1 ×Gt , that is either sampled from PBDHI (where T = e(g, ĝ)1/α) or from RBDHI
(where T is uniform and independent in Gt ). Algorithm B’s goal is to output 1 if T =
e(g, ĝ)1/α and 0 otherwise. Algorithm B works by interacting with A in a selective
identity game as follows:

Preparation. Algorithm B builds a generator ĥ ∈ Ĝ for which it knows q − 1 pairs of
the form (wi, ĥ

1/(α+wi)) for random w1, . . . ,wq−1 ∈ Z
∗
p . This is done as follows:

1. Pick random w1, . . . ,wq−1 ∈ Z
∗
p and τ ∈ Z

∗
p . Let f (z) be the polynomial

f (z) = τ
∏q−1

i=1 (z + wi). Expand the terms of f to get f (z) = ∑q−1
i=0 ciz

i . The
constant term c0 is non-zero.

2. Compute ĥ = ∏q−1
i=0 (ĝ(αi ))ci = ĝf (α). The random variable τ ensures that ĥ is

a random generator of Ĝ independent of other values.
3. Check that ĥ �= 1. If ĥ = 1 this would mean that wj = −α for some easily

identifiable wj , at which point B would be able to solve the challenge BDHI
problem directly. We thus assume that wj �= −α for all j = 1, . . . , q − 1.

4. Observe that it is easy for B to construct the pair (wi, ĥ
1/(α+wi)) for each i =

1, . . . , q − 1. To see this, write fi(z) = f (z)/(z+wi) = ∑q−2
j=0 dj z

j , and verify
that

ĥ1/(α+wi) = ĝfi (α) =
q−2
∏

j=0

(

ĝ(αj )
)dj

which is easily computed from the input tuple.
5. Set u = gα (the quantity gα is provided as part of the input tuple).

In addition, algorithm B computes

Th = T c0 · T0 where T0 =
q−1
∏

j=1

e
(

g, ĝcj αj−1) ∈ Gt

Observe that (T0)
α = ∏q−1

j=1 e(g, ĝcj αj
) = e(g, ĝf (α)−c0). Thus, if T = e(g, ĝ)1/α

then

Th = T c0 · T0 = e
(

g, ĝf (α)
)1/α = e(g, ĥ)1/α (3)
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On the contrary, if T is uniform in Gt , then so is Th. We will be using the values
g, ĥ, u,Th, and the pairs (wi, ĥ

1/(α+wi)) for i = 1, . . . , q − 1 throughout the simula-
tion.

Initialization. The selective identity game begins with A outputting the identity ID∗ ∈
Z

∗
p that it intends to attack.

Setup. To generate the system parameters, algorithm B does the following:

1. Pick random a, b ∈ Z
∗
p under the constraint that ab = ID∗.

2. Set X = u−ag−ab and Y = u. Observe that X = g−a(α+b) and Y = gα .
3. Compute v = e(g, ĥ).
4. Publish params = (g,X,Y, v) as the public parameters. These are valid para-

meters; in particular the quantity ĥ from which v is computed is uniformly
distributed in Ĝ \ {1}. Note also that X and Y are independent of ID∗ in the
adversary’s view.

We implicitly define x = −a(α+b) and y = α so that X = gx and Y = gy . Algorithm
B does not know the value of x or y, but does know the value of x + ay = −ab =
−ID∗.

Phase 1. The adversary A issues up to qID < q private key queries, one at a time.
Consider the ith query for the private key corresponding to public key IDi �= ID∗.
Algorithm B needs to respond with a private key (r, ĥ1/(IDi+x+ry)) for a uniformly
distributed r ∈ Zp \ { IDi+x

−y
}. Algorithm B responds to the query as follows:

1. Let (wi, ĥ
1/(α+wi)) be the ith pair constructed during the preparation step. De-

fine ĥi = ĥ1/(α+wi).
2. Algorithm B first constructs an r ∈ Zp satisfying (r − a)(α + wi) = IDi + x +

ry. To see how, let us substitute the expressions for x and y and rewrite the
equation as

(r − a)(α + wi) = IDi − a(α + b) + rα

After expanding, we see that the unknown α cancels from the equation, and we
get r = a + IDi−ab

wi
∈ Zp , which B can evaluate.

3. Now, (r, ĥ
1/(r−a)
i ) is a valid random private key for IDi for two reasons. First,

ĥ
1/(r−a)
i = (

ĥ1/(α+wi)
)1/(r−a) = ĥ1/(r−a)(α+wi) = ĥ1/(IDi+x+ry)

as required. Second, r is uniformly distributed among all elements in Zp for
which IDi + x + ry �= 0 and r �= a. This is true since wi is uniform in Zp \
{0,−α} and is currently independent of A’s view. Algorithm B gives A the
private key (r, ĥ

1/(r−a)
i ).

4. For completeness, we note that B can construct the private key for IDi such that
r = a as (r, ĥ1/(IDi−ID∗)). Hence, the randomizer r in the private key given to A
can be made uniform among all r ∈ Zp for which IDi + x + ry �= 0 as required.

We point out that this procedure will fail to produce the private key for IDi = ID∗
since in that case we get r = a in step (2) and therefore IDi + x + ry = 0. Hence, B
can generate private keys for all public keys except for ID∗.
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Challenge. The adversary A outputs two messages M0,M1 ∈ Gt . Algorithm B picks
a random bit γ ∈ {0,1} and a random ρ ∈ Z

∗
p . It responds with the ciphertext C∗ =

(A,B,C) = (Mγ · (Th)
ρ, gρ, g−aρ). Define s = ρ/α. On the one hand, if Th =

e(g, ĥ)1/α we have by (3) that

(Th)
ρ = e(g, ĥ)ρ/α = e(g, ĥ)s = vs

B = gρ = Yρ/α = Y s

C = g−aρ = g−aα(ρ/α) = g(x+ab)(ρ/α) = g(x+ID∗)(ρ/α) = Xsgs·ID∗

It follows that in this case C∗ is a valid encryption of Mγ under ID∗, with the uni-
formly distributed randomization value s = ρ/α ∈ Z

∗
p . On the other hand, when Th

is uniform in Gt , then, in the adversary’s view, C∗ is independent of the bit γ .
Phase 2. The adversary A issues additional private key queries, for a total of at most

qID < q . Algorithm B responds as in Phase 1.
Guess. Finally, A outputs a guess γ ′ ∈ {0,1}. If γ = γ ′ then B outputs 1, meaning

T = e(g, ĝ)1/α . Otherwise, it outputs 0, meaning T �= e(g, ĝ)1/α .

The reduction shows that when the input tuple is sampled from PBDHI (where T =
e(g, ĝ)1/α) then Th = e(g, ĥ)1/α in which case A must satisfy |Pr[γ = γ ′] − 1

2 | > ε.
On the other hand, when the input tuple is sampled from RBDHI (where T is uniform in
Gt ) then Th is uniform and independent in Gt in which case Pr[γ = γ ′] = 1

2 . Therefore,
for uniform generators g, ĝ, uniform α in Z

∗
p , and T uniform in Gt , we have

∣
∣
∣
∣
∣
Pr

[

B
(

g,gα,

ĝ, ĝα, . . . , ĝ(αq), e(g, ĝ)1/α

)

= 0

]

− Pr

[

B
(

g,gα,

ĝ, ĝα, . . . , ĝ(αq ), T

)

= 0

]∣
∣
∣
∣
∣

≥
∣
∣
∣
∣

1

2
± ε − 1

2

∣
∣
∣
∣
= ε

as required. This completes the proof of Theorem 5.1. �

The BB2-IBE system described in this section is related to an IBE construction due
to Sakai and Kasahara [58, Sect. 3.1]. Following our work [6], Chen and Cheng [25]
presented a security proof for the Sakai–Kasahara scheme in the random-oracle model.
Their proof is essentially a subset of the security proof given in Sect. 5.2, and is sim-
ilarly based on the q-BDHI assumption. In the system of Sakai and Kasahara, and its
adaptation by Chen and Cheng, the algorithm for generating user private keys is deter-
ministic. In the BB2 system, the identity-based key extraction is randomized and this
randomization is essential for the proof of security in the standard model.

5.3. Concrete Security Under Generic Attacks

The q-BDHI assumption used in the proof of BB2 is a more complicated assumption
than the decision BDH assumption used for BB1. To study the assumption we can an-
alyze its complexity in the generic group model [64]. The results from [8,9] imply that
a generic algorithm for the q-BDHI problem in a group of prime order p must take at
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least Ω( 3
√

p) time provided q3 ≤ p. When q3 > p no generic lower bound is known
for q-BDHI, and one should avoid using such large q . From here on we always assume
q3 ≤ p.

Interestingly, the best known algorithm for q-BDHI that works in all groups involves
computing discrete-log. Hence, the best generic upper bound for q-BDHI takes time
O(

√
p), showing a gap between the best known generic lower bound and the best known

generic upper bound.
For special cases, better generic algorithms for q-BDHI are known. When q divides

p − 1, Brown and Gallant [21] and independently Cheon [26] show that given group
elements g, gα , and g(αd) there is an algorithm than recovers α with O(

√
p/d + √

d)

exponentiations in G. Cheon [26] further shows that, when d|p + 1, then α can be
computed from g(αi), i = 0, . . . , d with O(

√
p/d + d) exponentiations in G.

These bounds show that for the largest allowable q , namely q3 ≈ p, when q|p±1 the
q-BDHI problem can be solved using a generic algorithm in O( 3

√
p) exponentiations,

matching the generic lower bound from [8,9]. For other groups it is still open whether
the generic lower bound or the algorithmic upper bound can be improved.

Security Implications These generic algorithms do not imply that systems based on
q-BDHI are in any way insecure. However, one should be careful when selecting the
size of G and Ĝ to meet a specific security requirement.

• A heuristic approach, allowing one to continue to rely on the discrete-log generic
hardness Ω(

√
p) to select the size of p, is to require that p − 1 and p + 1 have no

divisor d in the range log2 q < d ≤ q when q3 ≤ p.
• A more prudent approach is to select the size of p based on the q-BDHI generic

lower bound Ω( 3
√

p), regardless of the divisors of p − 1 and p + 1.

Security-wise, the first approach will guard against the specific algorithms discovered
in [21] and [26], whereas the second approach will remain secure against all generic at-
tacks, present and future, at the prescribed security level. Efficiency-wise, for a security
parameter �, the first approach requires a group of prime order p ≥ 22� with additional
constraints on the divisors of p − 1 and p + 1, whereas the second approach requires
a group order p ≥ 23� without such constraints. In a real implementation, these differ-
ences will likely not significantly affect the choice of elliptic curves hosting the bilinear
groups, because the requirement that |G| = |Ĝ| = |Gt | > 2Ω(�) is often dominated by
the requirement that discrete-log in the finite field containing Gt have security 2�. This
is especially true when using curves with embedding degree 2. Hence, requiring p ≥ 23�

instead of p ≥ 22� will only make the second approach 3
2 times slower due to the in-

crease in the size of the exponents.

6. Arbitrary Length Identities

Recall that the basic IBE and HIBE schemes described in the previous sections require
the identities or identity components to be integers in Z

∗
p . In this section we show how

to allow identities to be arbitrary strings using hashing, and in particular show how to
do this in the selective-identity model using universal one-way hash function families,
instead of collision resistance.
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6.1. Arbitrary Identities from Collision Resistance

A simple way to extend the BB1-HIBE of Sect. 4 to handle identities ID = (I1, . . . , I�)
with Ij ∈ {0,1}∗ (as opposed to Ij ∈ Z

∗
p) is to first hash each Ij using a collision-

resistant hash function H : {0,1}∗ → Z
∗
p prior to key generation and encryption. We

can similarly extend the BB2-IBE of Sect. 5 to handle arbitrary identities ID ∈ {0,1}∗.
A standard argument shows that if the underlying IBE of HIBE scheme is selective-
identity, chosen-plaintext (respectively, chosen-ciphertext) secure, then so is the scheme
with the additional hash function.

6.2. Arbitrary Identities from UOWHF Hashing

It is well known that collision-resistant hash functions can be constructed in groups
where the discrete-logarithm problem is hard; which is clearly the case under the present
assumptions. However, in practice, it is advantageous to use faster hash constructions
such as SHA-256, whose collision resistance is heuristic. It is natural to ask whether
our IBE systems can be extended to accept arbitrary length identities using a weaker
assumption than collision resistance. We observe that a universal one-way hash family
(UOWHF) of functions Hk : {0,1}∗ → I is sufficient to transform any selective-identity
secure IBE with a finite identity set I into one that accepts arbitrary identities of any
length in {0,1}∗.

Recall that a (t ′, ε′)-UOWHF [54] is a family of functions Hk : {0,1}∗ → I with
indices in K, such that, for any randomized algorithm (A1, A2) running in time t ′, it
holds that:

Pr
[

Hk(x) = Hk(x
′) : (x, σ )

R← A1, k
R← K, x′ R← A2(x, k, σ )

]

< ε′

The probability is taken over the random choice of k and the random coins used by
(A1, A2). For practical purposes, it is assumed that the index k ranges in a finite set K
and has a compact representation.

Let E be an IBE system that admits identities ID ∈ I . Suppose that H = {Hk} is a
(t, ε′)-UOWHF of functions Hk : {0,1}∗ → I indexed by k ∈ K. We construct a new
IBE system E ′ that takes arbitrary length identities ID ∈ {0,1}∗ as follows:

SetupE ′ runs SetupE to obtain params and mk, selects a random index k ∈ K, and re-
turns params′ = (params, k) as public parameters and mk as master secret.

ExtractE ′(params′,mk, ID′) returns dID′ ← ExtractE (params,mk,Hk(ID′)).
EncryptE ′(params′, ID′,M) returns EncryptE (params, ID,M) where ID = Hk(ID′).
DecryptE ′(params′, dID′ ,C) returns DecryptE (params, dID′ ,C).

The following theorem shows that E ′ is a selective-identity secure IBE system. This is
a consequence of the fact that in the selective security model the attacker must commit
to the challenge identity before seeing the public parameters, and in particular, before
seeing the hash function key k. Consequently, the attacker cannot cause a hash collision
with the challenge identity. The proof is immediate and is omitted.

Theorem 6.1. Let E be a (t, qID, ε)-selective-identity secure IBE system (IND-sID-
CPA) that admits identities ID ∈ I . Suppose that H = {Hk} is a (t, ε′)-UOWHF of func-
tions Hk : {0,1}∗ → I indexed by k ∈ K. Then, E ′ is a (t, qID, ε + ε′)-selective-identity
secure IBE system that admits identities ID′ ∈ {0,1}∗.
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We mention that the same transformation applies to HIBE systems in the selective-
identity security model. In this case the published random hash key k is used at all levels
in the hierarchy. The argument is otherwise identical.

6.3. Selective-Message Signature Schemes

For completeness, we note that each of our IBE systems, BB1 and BB2, gives a selec-
tively secure signature scheme (secure against adaptive chosen-message attacks) in the
standard model: view the identities as the messages, and use the key extraction as the
signing algorithm. Arbitrarily long messages can be signed by suitable use of hashing,
exactly as in the IBE case. By selectively secure signature [41], we mean that the adver-
sary is required to announce the message on which it intends to forge a signature, before
it is given a public key that must be statistically independent of the target message. This
is analogous to the selective-identity IBE security model.

For signatures, computational (rather than decisional) versions of the assumptions
are sufficient for the security reductions. In Sect. 7 we describe two techniques to turn
selective into adaptive-identity IBE. The same techniques can be used to turn selectively
secure signatures into existentially unforgeable signatures.

7. Fully Secure Identity Based Encryption

Until now we only discussed selective-identity security for IBE systems where the
adversary commits ahead of time to the identity ID∗ it wants to attack. In the “full”
adaptive-identity IBE semantic security model [13] (denoted IND-ID-CPA) and its
chosen-ciphertext counterpart (denoted IND-ID-CCA2), the attacker is allowed to choose
adaptively which identity to attack by specifying ID∗ in the challenge phase rather than
in the setup phase. Giving the adversary more power this way makes it harder to con-
struct adaptive-ID secure IBE systems, or full IBE for short.

We briefly show that any selective-ID secure IBE is also an adaptive-ID secure IBE,
but the reduction is not polynomial time. First, we note that the selective-identity se-
curity of an IBE system is not weakened if additional restrictions on the identities are
imposed (indeed, this only tightens the constraints on the adversary and relaxes those
on the simulator). Identities in the systems of Sects. 4 and 5 range natively over Z

∗
p ,

but by the preceding remark it is safe to restrict them to the set of integers {1, . . . ,2n}
for 2n < p, represented as binary strings of length n. As noted in Sect. 6.1, we can then
expand our IBE schemes to arbitrary identities in {0,1}∗ by first hashing identities using
a collision-resistant function with n-bit output, such as SHA-256 whose output is 256
bits. Hence, for an appropriately large p, taking n = 256 as the length of identities in
the underlying IBE is a natural choice.

7.1. From Selective Identity to Adaptive Identity

Let thus N be the number of allowed identities in the underlying IBE, where for example
N = 2256. The reduction from selective-identity IBE to adaptive-identity IBE introduces
a factor of N in the security parameters of the system, as described in Theorem 7.1
below. Consequently, if the IBE system has sufficiently high selective-identity security
(which requires using a bilinear group of sufficiently large size p) then the system is
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also a fully secure IBE with adequate security. This means that the selective-ID secure
IBE system of [22] as well as the two systems described earlier in this paper are fully
secure IBE systems in their own right, assuming we use a large enough group so that
the Decision-BDH and Decision-BDHI problems are sufficiently difficult. Extension
to arbitrary identities is done using collision-resistant hashing, in which case N must
be at least 2256. We note that collision resistance appears to be necessary to preserve
adaptive-identity security, contrarily to the case discussed in Sect. 6.2 where UOWHF
was enough to preserve selective-identity security.

Concretely, an immediate corollary of Theorem 7.1 below is that, using 256-bits iden-
tities and using a group where no t-time adversary can break Decision-BDH with ad-
vantage 2−384, the IBE system of Sect. 4 is a (t, qID,2−128)-adaptive-ID secure IBE for
any qID. The system can be expanded to arbitrary identities in {0,1}∗ by first hashing
identities using a collision-resistant hash function with a 256-bit output.

Theorem 7.1. Let E be a (t, qID, ε)-IND-sID-CPA (selective identity) secure IBE sys-
tem. Suppose E is restricted to admit N distinct identities. Then E is also a (t, qID,Nε)-
IND-ID-CPA (adaptive-identity) secure IBE.

Proof. Suppose algorithm A has advantage Nε in breaking the full security of the IBE
system. We build an algorithm B that has advantage ε in breaking selective-ID security
of the system. Algorithm B works as follows:

Init. B picks a random ID∗ ∈ {0,1}n and reveals it to the challenger as the identity that
it wishes to attack.

Setup. The challenger gives B the public parameters for an IBE system. B forwards
these parameters to A. Observe that, by definition of the selective-identity security
model, the public parameters generated by the challenger are distributed indepen-
dently of ID∗.

Phase 1. A issues private key queries. Consider the ith query for identity IDi . If IDi �=
ID∗, algorithm B forwards the query to its challenger. Since the query is valid (IDi �=
ID∗), the challenger responds with the private key for IDi which B then forwards
to A. Note that the challenger’s response is created using Extract and is therefore
independent of ID∗. Thus, the only information about ID∗ revealed by B’s response is
that ID∗ �= IDi .
In the unlikely event that IDi = ID∗, algorithm B cannot respond to this query. In this
case, B terminates the simulation, picks a random bit b′ ∈ {0,1}, and outputs b′ as its
guess for the challenger’s bit b in the challenge phase.

Challenge. Once phase 1 is over A outputs an identity ID∗
0 ∈ {0,1}n and two equal

length messages M0,M1. Algorithm B forwards M0,M1 to its challenger and re-
ceives back the challenge ciphertext C∗. We consider two cases:

1. If ID∗ �= ID∗
0 then algorithm B picks a random bit γ ′ ∈ {0,1}, outputs γ ′ as its

guess for γ , and terminates.
2. Otherwise, ID∗ = ID∗

0 in which case C∗ is a proper encryption of one of M0 or
M1 under ID∗

0 as expected by A. Algorithm B gives C∗ to A and continues to
Phase 2.
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Phase 2. A continues to issue private-key queries. B responds as before. Since now the
queries cannot equal ID∗ these queries cannot cause B to abort.

Output. Finally, A outputs its guess γ ′ ∈ {0,1} for γ . B outputs the same γ ′ as its
guess for γ .

Next, we analyze B’s advantage in guessing γ . Let q1 ≤ qID < N be the number of
distinct queries that A issued during phase 1. Let success1 denote the event that during
phase 1 A did not issue a query for ID∗. Then Pr[success1] = 1 − (q1/N) since for
any sequence of q1 queries from the adversary, the probability (over the choice of ID∗)
that ID∗ collides with one the queries is q1/N . Let success denote the event that both
success1 occurred and ID∗ = ID∗

0. Then

Pr[success] = Pr[success1] · Pr[ID∗ = ID∗
0|success1] =

(

1 − q1

N

)
1

N − q1
= 1

N

When event success happens, A’s view is identical to its view in a real attack game
and therefore |Pr[γ = γ ′|success]− 1

2 | ≥ Nε. Furthermore, by definition of B we have
Pr[γ = γ ′|success] = 1

2 . It follows that
∣
∣
∣
∣
Pr[γ = γ ′] − 1

2

∣
∣
∣
∣
=

∣
∣
∣
∣

(

Pr[γ = γ ′|success] · Pr[success])

+ (

Pr[γ = γ ′|success] · Pr[success]) − 1

2

∣
∣
∣
∣

=
∣
∣
∣
∣
Pr[γ = γ ′|success] · 1

N
+ 1

2
· N − 1

N
− 1

2

∣
∣
∣
∣

=
∣
∣
∣
∣
Pr[γ = γ ′|success] − 1

2

∣
∣
∣
∣
· 1

N
≥ ε

as required. This completes the proof of Theorem 7.1. �

The Hierarchical Case Theorem 7.1 has an immediate corollary for HIBE systems,
which follows from the same proof. Here, the loss factor N is the total number of iden-
tities throughout the hierarchy.

Corollary 7.2. Let E be a (t, qID, ε)-IND-sID-CPA (selective-identity) secure HIBE
system. Suppose E admits N distinct identities across the entire hierarchy. Then E is
also a (t, qID,Nε)-IND-ID-CPA (adaptive-identity) secure HIBE system.

In general N will grow exponentially with the depth of the hierarchy and therefore
Corollary 7.2 is most useful when the hierarchy is shallow or when the hierarchy is
sparsely populated.

Theorem 7.1 and Corollary 7.2 are tight. One can give a simple example of a system
that has 1/N security in the selective-ID model, but is insecure in the adaptive-ID set-
tings. For example, the Setup algorithm can include the private key of a random identity
in the public parameters. This will only help a selective attacker with probability 1/N ,
but will enable an adaptive attacker to win the security game with probability one [36].
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Fully Secure BB1 and BB2 in Practice A consequence of the preceding theorem and
corollary is that, with a judicious choice of parameters, one can turn any selective-
ID (H)IBE scheme (such as BB1 or BB2) into a very simple and reasonably efficient
(H)IBE system with full-fledged adaptive-ID security in the standard model.

Suppose that we seek a fully secure IND-ID-CPA IBE with security parameter
λ ∈ N, thus operating at security level 2λ, and accepting N = 2λ identities. To realize it,
one takes a selective IND-sID-CPA IBE at security level 22λ and restricts its allowable
identities to a set of size 22λ/2λ = 2λ, such as {0,1}λ. The reason why this works despite
the exponential security loss factor N = 2λ, is that such loss is exactly compensated by
doubling the IND-sID-CPA security parameter of the basic scheme (from λ to 2λ)—
which for all known bilinear groups increases the computational and representational
costs by constant factors, which we calculate below.

Cost of the Transformation Recall that, for a given family of curves, the time cost
T (p,n) of computing a pairing using Miller’s algorithms and its variations grows as:

T (p,n) = Θ
(

(logp) · (logn)2)

where p = |G| = |Ĝ| = |Gt | is the group order and n = |F| is the size of the finite field
extension in which the target group Gt is embedded. Preventing generic discrete-log
attacks in G and number-field-sieve attacks in F in fewer than 2λ elementary operations
simultaneously requires that:

2λ < Lp

(

1,
1

2

)

= 2( 1
2 +o(1))·(logp)

2λ < Ln

(
1

3
,

1

c

)

= 2( 1
c
+o(1))·(logn)

1
3 ·(log logn)

2
3

for some constant c. Asymptotically, this can be achieved by selecting bitsizes for p

and n according to the relations:

logp ≈ 2λ and logn ≈ Θ
(

λ3)

Comparing the complexity of a pairing computation (or, equivalently, that of a general
exponentiation in F with exponent in Zp) for security parameters λ1 = λ versus λ2 =
2λ, we see that logp must be doubled and logn must be multiplied by 8. Therefore,

T (p2, n2)/T (p1, n1) = 2 · 82 = 128

Likewise, depending on the group, the pairing, and the elliptic-curve family on which
it is realized, the representation size of elements in G, Ĝ, or Gt will grow by a factor
between

logp2/ logp1 = 2 and logn2/ logn1 = 8

In other words, operating BB1 and BB2 with full adaptive-ID security at security
level 2λ, requires a constant 128× more time, and a constant between 2× and 8× more
space, than operating the same scheme in basic selective-ID mode at the same security
level 2λ. This applies for all values of the (true, intended) security parameter λ.
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Limitations Even though the transformation above is sound and the resulting schemes
secure, the drawback of this method is that it introduces a large loss factor N in the secu-
rity reduction. To compensate we need to increase the security parameters and degrade
performance.

To avoid this issue, in [7] we constructed a fully secure IBE scheme based on BB1 and
whose security reduction only carried a polynomial loss factor of Õ(qID

2), as opposed
to N = 2λ in the generic transformation; however that construction was impractical and
mostly served as a proof of concept. Subsequently, Waters [69] constructed an elegant
and much more efficient adaptive-ID generalization of BB1 with a security reduction
bearing a loss factor of roughly O(qID). While that system has large public parame-
ters, more recent constructions are adaptive-ID secure with shorter public parameters
[37,70].

7.2. Fully Secure IBE Using Random Oracles

For completeness we note that a random oracle H can convert a selective-identity IBE
scheme E into an adaptively secure one by the process of hashing the identity ID with H

before using it. We denote the resulting system by EH . We assume that the base system
E does not use the random oracle H .

Theorem 7.3. Let H be a hash function H : {0,1}∗ → {0,1}n modeled as a random
oracle. Let E be a (t, qID, ε) selective-ID secure IBE that does not call H . Suppose
identities in E are n-bits long. Then EH is a (t, qID, ε′) adaptive-ID secure IBE (in the
random oracle model) for ε′ = qHε + (qH

2/2n) ≈ qHε, where qH such that qID ≤ qH <

2n/2 is the maximum number of oracle calls to H that the adversary can make (including
those needed to answer private key queries).

The proof is a straightforward adaptation of the proof of Theorem 7.1 and is omitted.
Note that any collision on the hash function enables the attacker to win the IBE security
game and is captured in the term qH

2/2n. We also point out that in the proof, the random
oracle is “programmed” at only one point.

A consequence of Theorems 7.1 and 7.3 is that, using a collision-resistant function
H : {0,1}∗ → {0,1}n for a properly chosen n satisfying 2256 ≤ 2n � p, the same hash
IBE scheme EH can be proven secure in both the standard model and the random-oracle
model. Specifically, the scheme features (t, qID,2nε)-full IBE security in the standard
model, which is boosted to (t, qID, qHε) when H is viewed as a random oracle.

Hierarchical Adaptive-Identity Security A hierarchical analogue to Theorem 7.3 can
be stated, but in the HIBE case it is necessary to apply the random-oracle conversion at
every level of the hierarchy, so that the total degradation factor for an identity at level �

is a product of � factors. To avoid hash collisions across levels, we compute the identity
ID for the underlying HIBE from the input identity ID′ = (I′1, . . . , I′�) as follows:

ID = (

I1 = H(I′1), I2 = H(I′1, I′2), . . . , I� = H(I′1, I′2, . . . , I ′
�)

)

For completeness, we state the following corollary.
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Corollary 7.4. Let E be a (t, qID, ε) selective-ID secure HIBE of maximum depth �.
Suppose identity components in E are n-bits long. Let H : {0,1}∗ → {0,1}n be a hash
function modeled as a random oracle. Then EH is a (t, qID, ε′) adaptive-ID secure HIBE
(in the random-oracle model) for ε′ = qH

�ε + (qH
2/2n), where qH such that qID ≤ qH <

2n/2 is the total number of oracle calls to H that the adversary can make (including
those needed to answer private key queries).

Note that security degrades exponentially in the hierarchy depth, so that only a log-
arithmic number of levels can be meaningfully allowed. For a long time all HIBE con-
structions in the adaptive-ID setting suffered from a similar problem. Recently, Gentry
and Halevi [38] and Waters [70] presented HIBE systems for hierarchies of polynomial
depth without restriction on the number of identities.

8. Adaptive Chosen Ciphertext Security

In this section, we turn to the orthogonal issue of hardening semantically secure systems
(against chosen plaintext attacks, denoted CPA) into ones that withstand adaptive chosen
ciphertext attacks (denoted CCA2 or CCA for short). We review a number of tight
reductions with and without random oracles.

8.1. Chosen Ciphertext Security in the Standard Model

Canetti, Halevi, and Katz [22, Sect. 2.2] describe a general method for converting a
selective-identity IBE that is chosen-plaintext secure into one that is chosen-ciphertext
secure. The method is based on [47,55,57]. Since it is generic, it applies to both of
our systems as well. In particular, the method can be used to render the IBE system
of Sect. 5 secure against chosen-ciphertext attacks. The result is an IND-sID-CCA2 se-
cure IBE without random oracles. However, the resulting system is inefficient since
the transformation from [22] relies on generic non-interactive zero-knowledge (NIZK)
constructions.

A much more efficient way of constructing a CCA2-secure IBE is to start from an
HIBE system such as that of Sect. 4. A method from Canetti, Halevi, and Katz [23]
works by appending a one-time signature to the ciphertext, which is encrypted to an
identity equal to the verification key. A variant due to Boneh and Katz [16] uses MAC
instead of signatures. A direct approach given by Boyen, Mei, and Waters [20] exploits
the structure of the BB1 ciphertext to avoid MACs and signatures altogether. All of
these methods can be used to build a selective identity, chosen ciphertext secure �-
HIBE system (or �-HIB-KEM) starting from the basic BB1 selective-identity, chosen-
plaintext secure (� + 1)-HIBE scheme of Sect. 4. This works for any � we choose, by
applying either of the [16,20,23] methods on the last element of the identity vector. In
particular, starting from a basic 2-level HIBE we obtain an efficient selective-identity,
chosen-ciphertext secure IBE without random oracles (which can then be rendered fully
secure as described in the previous section). We refer the reader to [12] and [20] for a
performance analysis of these new CCA2 systems, in comparison with previous systems
such as Cramer–Shoup [29] and Kurosawa–Desmedt [46].
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8.2. Chosen Ciphertext Security in the Random Oracle Model

In the random oracle model, the hybrid construction of Fujisaki and Okamoto [33] and
its tight variant [34] can be used to turn a semantically secure public-key system into a
CCA2-secure one by substituting a random oracle for its random coins; these construc-
tions also apply to our identity-based systems.

8.3. A Non-Interactive CCA2-Secure Threshold Public Key System

In the IBE system of Sect. 4 it is easy to distribute the master key among n parties so
that any t parties can be used to derive the private key for a given identity. When apply-
ing the technique of [23] to the resulting threshold IBE system, we obtain an efficient
CCA2-secure threshold public key system in the standard model. The full details are
provided in [10]. Alternatively, we can use the method of [20] to turn BB1 IBE specif-
ically into a threshold public-key KEM that is more efficient; the drawback is that the
functionality we obtain is (threshold) key encapsulation (of a random key) rather than
complete encryption (of any selected plaintext). These constructions resolve an open
problem posed by Shoup and Gennaro [65].

8.4. Labeled Encryption and Labeled IBE

A feature of encryption systems that is related to chosen ciphertext security, and is often
desirable when constructing larger protocols is that of labeled encryption [65]. Essen-
tially, in a labeled encryption system, the encryption algorithm takes an extra argument,
the label, which is a string in {0,1}∗, and so does the decryption algorithm. The idea
is that decryption should only succeed if the label given to the decryption algorithm
matches the one used to produce the ciphertext to decrypt. More precisely, the addi-
tional security property we require is that it be infeasible for a polynomially bounded
adversary to cause the decryption algorithm to decrypt a ciphertext that has been en-
crypted using a different label.

We observe that by using the identity as a label, IBE immediately gives us labeled en-
cryption. Furthermore, since many protocols that require labels admit simulation proofs
in which the label is known at the beginning, selective-ID security is sufficient for this
purpose. In general, by using the last component of an identity vector as label, we can
turn (� + 1)-HIBE into a labeled �-HIBE.

9. Conclusions

We constructed two IBE systems that are secure against selective-identity attacks in the
standard model, i.e., without using random oracles.

The first scheme, BB1, is based on the standard Decision (or hash) Bilinear Diffie–
Hellman (BDH) assumption. Since its introduction in 2004, the BB1 scheme has
evolved into a useful paradigm based on which many generalizations of identity-based
encryption have flourished. The second scheme, BB2, is based on the stronger Bilin-
ear Diffie–Hellman Inversion (BDHI) assumption. It is slightly more efficient in some
contexts and was extended to an HIBE and beyond in [19].
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Both our constructions can be transformed into efficient CCA2-secure public-key sys-
tems without random oracles that are almost as efficient as the Cramer–Shoup public-
key system. We also observed that any selective-ID secure IBE system implies a full
adaptive-ID secure IBE system. While the resulting security reduction is not polyno-
mial, the parameters can be adjusted so that the resulting system is fully secure in the
standard model. If one does tolerate the use of random oracles, then hashing identity
strings is sufficient to turn any selective-ID secure (H)IBE system into an adaptive-ID
secure one. Operated this way, the BB1 system is an efficient and highly practical IBE
system.

We conclude by noting that very recently two lattice-based IBE constructions were
also shown to secure without random oracles. Cash et al. [24] use a lattice analogue of
the “bit-by-bit” mechanism of Canetti et al. [23], while Agrawal et al. [1] use a lattice
analogue of the “all-at-once” mechanism of the BB1 system.
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Appendix A. DHI and Generalized Diffie–Hellman

In Sect. 3.2 we defined the q-BDHI problem in a bilinear group. A closely re-
lated problem is the q-Diffie–Hellman Inversion (q-DHI) problem: given a tuple
(g, gx, g(x2), . . . , g(xq )) ∈ G

q+1 as input, output g1/x ∈ G. Here, G need not be a bi-
linear group. Loosely speaking, the q-DHI assumption states that the q-DHI problem is
intractable in G. This assumption was previously used in [51] where it was called weak
Diffie–Hellman.

Many cryptographic constructions rely on the Generalized Diffie–Hellman assump-
tion (GenDH) for security [4,18,48,53,66]. In this section we show that the q-DHI
assumption implies the (q + 1)-Generalized Diffie–Hellman assumption. Thus, con-
structions that rely on Generalized Diffie–Hellman could instead rely on q-DHI which
appears to be a more natural complexity assumption, and is easier to state since the
problem description does not require an oracle.

We first review the GenDH assumption. The assumption says that, for a random gen-
erator g of G, given ga1 , . . . , gaq in G and given all the subset products g

∏

i∈S ai ∈ G for
all strict subsets S ⊂ {1, . . . , q}, it is hard to compute ga1···aq ∈ G. Since the number of
subset products is exponential in q , access to them is provided through an oracle. For
a vector �a = (a1, . . . , aq) ∈ Zp

q , define Og,�a to be an oracle that for any strict subset
S ⊂ {1, . . . , q} responds with

Og,�a(S) = g
∏

i∈S ai ∈ G

Define the advantage of algorithm A in solving the generalized Diffie–Hellman problem
to be the probability that A is able to compute ga1···aq given access to the oracle Og,�a(S).
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In other words,

AdvA,q = Pr
[

A Og,�a = ga1···aq : g ← G \ {1}, �a = (a1, . . . , aq) ← (Zp)q
]

Note that the oracle only answers queries for strict subsets of {1, . . . , q}.

Definition A.1. We say that G satisfies the (t, q, ε)-Generalized Diffie–Hellman as-
sumption if for all t-time algorithms A we have AdvA,q < ε.

Theorem A.2. Suppose the (t, q − 1, ε)-DHI assumption holds in G. Then the
(t, q, ε)-GenDH assumption also holds in G.

Proof. Suppose A is an algorithm that has advantage ε in solving the q-GenDH
problem. We construct an algorithm B that solves (q − 1)-DHI with the same advan-
tage ε. Algorithm B is given g,gx, g(x2), . . . , g(xq−1) ∈ G and its goal is to compute
g1/x ∈ G. Let h = g(xq−1) and y = x−1 ∈ Zp . Then the input to B can be re-written as

h,hy,h(y2), . . . , h(yq−1) ∈ G and B’s goal is to output h(yq) = g1/x .
Algorithm B first picks q random values c1, . . . , cq ∈ Zp . It then runs algorithm A

and simulates the oracle Oh,�a for A. The vector �a that B will use is �a = (y + c1, . . . ,

y + cq). Note that B does not know �a explicitly since B does not have y. When A
issues a query for Oh,�a(S) for some strict subset S ⊂ {1, . . . , q} algorithm B responds
as follows:

1. Define the polynomial f (z) = ∏

i∈S(z+ci) and expand the terms to obtain f (z) =
∑|S|

i=0 biz
i .

2. Compute t = ∏|S|
i=0(h

(yi ))bi = hf (y). Since |S| < q all the values h(yi) in the prod-
uct are known to B.

3. By construction we know that t = h
∏

i∈S(y+ci ). Algorithm B responds by setting
Oh,�a(S) = t .

The responses to all of the adversary’s oracle queries are consistent with the hidden
vector �a = (y + c1, . . . , y + cq). Therefore, eventually, A will output T = h

∏q
i=1(y+ci ).

Define the polynomial f (z) = ∏q

i=1(z + ci) and expand the terms to get f (z) = zq +
∑q−1

i=0 biz
i . To conclude, B outputs

T
/ q−1

∏

i=0

(

h(yi)
)bi = h(yq)

which is the required value. �

The same property as in Theorem A.2 also holds for the decision versions of the
DHI and GenDH problems. The q-DHI assumption is easier to state than the q-GenDH
assumption since there is no need for an oracle. When appropriate, constructions that
depend on GenDH for security could instead use the DHI assumption.
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