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Abstract. We present a positive obfuscation result for a traditional cryptographic
functionality. This positive result stands in contrast to well-known impossibility results
(Barak et al. in Advances in Cryptology—CRYPTO’01, 2002), for general obfuscation
and recent impossibility and implausibility (Goldwasser and Kalai in 46th IEEE Sym-
posium on Foundations of Computer Science (FOCS), pp. 553–562, 2005) results for
obfuscation of many cryptographic functionalities.

Whereas other positive obfuscation results in the standard model apply to very sim-
ple point functions (Canetti in Advances in Cryptology—CRYPTO’97, 1997; Wee
in 37th ACM Symposium on Theory of Computing (STOC), pp. 523–532, 2005),
our obfuscation result applies to the significantly more complex and widely-used re-
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encryption functionality. This functionality takes a ciphertext for message m encrypted
under Alice’s public key and transforms it into a ciphertext for the same message m

under Bob’s public key.
To overcome impossibility results and to make our results meaningful for crypto-

graphic functionalities, our scheme satisfies a definition of obfuscation which incorpo-
rates more security-aware provisions.

Key words. Obfuscation, Re-encryption.

1. Introduction

A recent line of research in theoretical cryptography aims to understand whether it is
possible to obfuscate programs so that a program’s code becomes unintelligible while
its functionality remains unchanged. A general method for obfuscating programs would
lead to the solution of many open problems in cryptography.

Hada [14] was the first to explicitly consider the problem of obfuscation, and gave
negative results for obfuscating pseudo-random functions under a strong definition.
Later, Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and Yang [2] show that
for many notions of obfuscation, a general program obfuscator does not exist—i.e.,
they exhibit a class of circuits which cannot be obfuscated. A subsequent work of Gold-
wasser and Kalai [12] shows the impossibility and implausibility of obfuscating more
natural functionalities.

In spite of these negative results for general-purpose obfuscation, there are a few
positive obfuscation results for simple functionalities such as point functions. A point
function Ix returns 1 on input x and 0 on all other inputs. Canetti [7] shows that under a
very strong Diffie–Hellman assumption point functions can be obfuscated. Further work
of Canetti, Micciancio and Reingold [8], Wee [20] and Dodis and Smith [10] relaxes
the assumptions required for obfuscation and considers other (related) functionalities.
Despite these positive results, obfuscators for traditional cryptographic functionalities
(such as those that deal with encryption) have remained elusive.

Our Results In this work, we present an obfuscator for a difficult cryptographic task:

Main Theorem (Informal). Under standard bilinear complexity assumptions, there
exists a secure encryption scheme and an efficient program obfuscator for a family of
circuits implementing re-encryption.

A re-encryption program for Alice and Bob takes a ciphertext for a message m en-
crypted under Alice’s public key, and transforms it into a ciphertext (possibly of a
different form) for the same message m under Bob’s public key. Re-encryption pro-
grams have many practical applications such as the iTunes DRM system (albeit, with
symmetric keys [18]), secure distributed file servers [1] and secure email forward-
ing.

The straightforward method to implement re-encryption is to write a program P

which decrypts the input ciphertext using Alice’s secret key and then encrypts the result-
ing message with Bob’s public key. When P is run by Alice, this approach is reasonable.

In the practical applications noted above, however, the re-encryption program is ex-
ecuted by a third party. When this is the case, the straightforward implementation has
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serious security concerns since P ’s code may reveal Alice’s secret key to the third party.
A better solution is to use an obfuscator for the re-encryption program P . That is, the
third party is given an obfuscated program P ′ which computes the same function as P ,
but does not reveal anything more than the third party could learn from interaction with
a black-box oracle that computes P .

As we discuss later in Sect. 1.2, several re-encryption schemes have been proposed
before [1,3,4,9], but none of these prior works satisfy the strong obfuscation require-
ment informally stated above. Our main technical contribution is the construction of
a novel re-encryption scheme which meets this strong notion while remaining surpris-
ingly practical. In our construction, ciphertexts that are re-encrypted from Alice to Bob
change in format and cannot be further re-encrypted from Bob to Carol. This may be a
limitation in some scenarios, but it is nonetheless sufficient for several practical appli-
cations.

The obfuscator for re-encryption presented in this work sidesteps impossibility results
by considering the average-case security of randomized functionalities. Its security is
proven under an application-oriented definition of obfuscation based on a suggestion
of Pass [17]. This definition is more meaningful for cryptographic applications than
previous definitions of obfuscation.

1.1. Notion of Average-Case Secure Obfuscation

The work of [2] models an obfuscator as a compiler which takes a program (i.e., boolean
circuit) P and produces an equivalent program that satisfies the predicate black-box
property: any predicate that is computable from the obfuscated program should also be
computable from black-box access to the program (see Definition 2.1).

Composable Obfuscation Unfortunately, the predicate definition [2] and subsequent
work does not provide a meaningful security guarantee when the obfuscated program
is used as part of a larger cryptographic system.1 Intuitively, while the predicate black-
box property gives a quantifiable guarantee that some information (namely, predicates)
about the program is hidden by the obfuscated circuit, it does not guarantee that other
“non-black-box information” does not leak. Moreover, this leaked information might
compromise the security of a cryptographic scheme which uses the obfuscated circuit.
For instance, it is completely possible that an obfuscated program that produces dig-
ital signatures (e.g., a program for “signature delegation”) both meets the predicate
black-box definition and is unforgeable under black-box access to a signature oracle,
yet allows an adversary who has the obfuscated program code to forge a signature.2

1 See also the (independent) discussion in Hofheinz, Malone-Lee and Stam [15].
2 We do not know of any obfuscators for digital signatures satisfying the predicate black-box definition.

Suppose one exists and that we alter it slightly so that into the description of each obfuscated circuit is wired
a random message m together with its signature σ . The signature scheme is unforgeable under black-box
access to a signature oracle, but any adversary given the obfuscated circuit can clearly win the forgery game
by outputting (m,σ). It seems plausible, however, that this altered obfuscator would satisfy the predicate
black-box definition, since the simulator may also choose a random message and obtain a signature on it,
while the predicate’s input is independent of the randomness used in creating the obfuscation and therefore
the pair (m,σ).
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Since many potential applications of obfuscation use obfuscated circuits in larger
cryptographic schemes, the definition of obfuscation should guarantee that the security
of cryptographic schemes is preserved in the following sense:

If a cryptographic scheme is “secure” when the adversary is given black-
box access to a program, then it remains “secure” when the adversary is
given an obfuscated version of the program.

Such definitions were suggested independently by Pass [17] and (a slightly relaxed
variant) by Hofheinz, Malone-Lee and Stam [15]. We prove the security of our construc-
tion under a variant of these definitions. Informally, the guarantee we seek requires that
if there exists an adversary that uses the obfuscated program code to break the security
of a cryptographic scheme, then there also exists a black-box adversary that breaks the
scheme with similar probability using only black-box access to the program. Thus, if a
scheme is secure against adversaries with only black-box access, then it is also secure
against adversaries with access to obfuscated programs which implement the program.
The definition we use in this work gives the above guarantee for any cryptographic
scheme where a distinguisher with black-box access to the obfuscated functionality can
simulate the security game with the adversary. Semantically secure encryption and re-
encryption (defined in Sect. 4.3) are examples of such schemes.

Obfuscating Probabilistic Circuits It is not hard to see that deterministic functionali-
ties that are not (approximately) learnable cannot be obfuscated under the composable
definitions of obfuscation (see Sect. 2.2). In fact, composable definitions of obfuscation
from [2,20] and [15,17] are only achievable for learnable deterministic functions. An
important conceptual contribution of this work is showing that these impossibility re-
sults disappear when considering obfuscation of probabilistic functionalities—indeed,
the functionality we obfuscate in this paper is a complex non-learnable probabilistic
functionality. In addition, obfuscation of probabilistic circuits is important because most
interesting cryptographic functionalities are probabilistic. See Sect. 2.2 for a discussion.

Using Obfuscation to Build Cryptographic Schemes The construction of an obfus-
cated re-encryption scheme suggests that (secure) obfuscation can play an important
role in the design of cryptographic schemes. With secure obfuscation, the design of
such schemes proceeds in two stages:

1. Specify the functionality of a program (or program family), and prove security
of the cryptographic scheme against an adversary given black-box access to the
program.

2. Construct a secure obfuscator for the program (or program family).

The combination of these two steps guarantees security of the scheme against an adver-
sary that has full access to the obfuscated program. For our scheme, we show step (1)
in Theorem 4.5 and step (2) in Theorem 5.1. Note that the security of the obfuscator
(together with the scheme’s black-box security) could imply many desirable security
properties at once. In particular, the obfuscated programs are as secure against any “at-
tack” (i.e., a probabilistic experiment which can be run in polynomial time with oracle
access to the functionality) as a black-box would be. Thus the re-encryption scheme
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presented in this paper may prove to be more secure than known re-encryption schemes
which only have the semantic security property.

Average-Case Secure Obfuscation Our new definition only requires obfuscation for a
random circuit in a family of circuits. Goldwasser and Kalai [12] considered this re-
laxed requirement and observed that it remains meaningful for the many cryptographic
applications of obfuscation in which the circuit to be obfuscated is chosen at random. In
fact, variants of this relaxation were considered (implicitly and explicitly) in the works
of [7,8,10,14]. Normally the random choice of a circuit corresponds to the random se-
lection of cryptographic keys. In this work we use the notion of average-case secure
obfuscation: combining the more security-aware provisions suggested by [15,17] with
the average-case relaxation (and considering probabilistic circuits).

1.2. The Obfuscated Re-Encryption Scheme

Comparison with Prior Work Mambo and Okamoto [16] noted the prevalence of re-
encryption programs in practical applications and suggested efficiency improvements
over the decrypt-and-encrypt approach. Blaze, Bleumer, and Strauss introduced the no-
tion of proxy re-encryption [3,4] in which the re-encryption program is executed by a
third-party proxy. In their security notion, the proxy cannot decrypt the messages of
either Alice or Bob. The Blaze et al. construction is bidirectional (i.e., a program to
translate ciphertexts from Alice to Bob can also be used to translate from Bob to Alice)
and can be repeatedly applied (i.e., a ciphertext can be re-encrypted from Alice to Bob
to Carol, etc.). Ateniese, Fu, Green, and Hohenberger [1] presented a semantic-security
style definition for proxy re-encryption and designed the first unidirectional scheme, al-
though it can only be applied once. Ateniese et al. also built a secure distributed storage
system using their algorithms.

While these prior works are secure under specialized definitions, they cannot be con-
sidered as obfuscations for re-encryption since they leak subtle non-black-box informa-
tion. On the other hand, the re-encryption definitions of Ateniese et al. [1] provide some
security guarantee with respect to dependent auxiliary inputs, which we will not con-
sider in this work. For example, they show that even when Alice has the re-encryption
program from Alice to Bob, Bob’s semantic security still holds. Our definition does not
require this, but the scheme we present also has this property.

Overview of the Construction We now provide intuition behind our construction of
an obfuscator for re-encryption (see Sect. 4 for the full construction). In a series of
attempts, we develop a cryptosystem and an obfuscated re-encryption program which
translates ciphertexts under pk1 to ciphertexts under pk2. Our starting point is a suitable
public key cryptosystem.

Recall the semantically secure encryption scheme due to Boneh, Boyen, and
Shacham [5] as instantiated in a group G of prime order q equipped with a bilinear
map e : G × G → GT where the Decision Linear problem is hard (see Sect. 3.1). The
keys in this scheme are generated by selecting a random h

r← G and a, b
r← Zq , and set-

ting sk = (a, b,h) and pk = (ha,hb,h). To encrypt a message m ∈ G, select two random
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values r, s
r← Zq and output the ciphertext C = [har , hbs, hr+s ·m]. To decrypt a cipher-

text C = [W,X,Y ], compute the plaintext Y/(W 1/a ·X1/b). Let pk1 = (ga1 , gb1, g) and
pk2 = (ha2 , hb2 , h) be two public keys for this cryptosystem.

The basic (naive) re-encryption program from pk1 to pk2 contains (sk1,pk2). The
program simply decrypts the input using sk1 and encrypts the resulting message with
pk2. Clearly this program exposes both sk1 and the underlying plaintext to any third
party executing the re-encryption program.

As a first attempt to obfuscate the basic program, consider the re-encryption program
that contains Z1 = a2/a1 and Z2 = b2/b1 and re-encrypts the ciphertext [W,X,Y ] by
computing [WZ1,XZ2, Y ] for pk2. (In a different context, a similar approach was sug-
gested by Blaze et al. [4].) Unfortunately, this re-encryption program leaks non-black-
box information (i.e., does not satisfy the virtual black-box property in Definition 2.2).
For example, the program containing (Z1,Z2) which translates ciphertexts from Alice
to Bob can be transformed into a new program containing (Z−1

1 ,Z−1
2 ) which translates

ciphertexts from Bob to Alice—an operation which black-box access does not allow.
As a second attempt, consider the re-encryption program containing Z1 = ha2/a1

and Z2 = hb2/b1 . Alice, with sk1 = (a1, b1, g), can compute this program given Bob’s
public key pk2 = (ha2 , hb2 , h). (On a different cryptosystem, a similar approach was
suggested by Ateniese et al. [1].) The re-encryption program works as follows: on
input a ciphertext [W,X,Y ] = [ga1r , gb1s , gr+s · m] under pk1, output the ciphertext
[e(W,Z1), e(X,Z2), e(Y,h)] = [E,F,G] under pk2. To decrypt [E,F,G], the holder
of sk2 would first compute Q = G/(E1/a2 · F 1/b2) and then find and output the mes-
sage mi in the message space M such that e(mi, h) = Q. Of course, to ensure efficient
decryption, this limits the size of the message space M to be polynomial. Notice the
encryption scheme now supports two “forms” of ciphertexts—an original form and a
re-encrypted one, each containing elements from different groups. As a result, a re-
encrypted ciphertext cannot be further re-encrypted. The question, though, is whether
or not such a program is any closer to being an obfuscation.

To meet the definition of secure obfuscation (Definition 2.2), the output of an adver-
sary who is given the obfuscated program must be indistinguishable—even to a distin-
guisher with oracle access to the re-encryption program—from the output of a simula-
tor given only black-box access to the program. Unfortunately, in the second attempt,
knowledge of the public keys pk1 = (ga1 , gb1, g) and pk2 = (ha2 , hb2 , h) easily allows a
distinguisher to test whether a program containing (Z1,Z2) is a valid re-encryption pro-
gram for these keys by checking that e(ga1 ,Z1) = e(g,ha2) and e(gb1 ,Z2) = e(g,hb2).
We do not know how to construct a simulator that can output a program which passes
this test.

To bypass this problem, we design our re-encryption program to be a proba-
bilistic function of the keys. More specifically, consider the program containing
(ya2/a1 , yb2/b1, y) = (Z1,Z2,Z3) for a randomly selected y ∈ G. (In the context of
point function obfuscation, a similar approach was suggested by Canetti [7].) Alice can
still generate this re-encryption program using only Bob’s public key. The re-encryption
program becomes: on input [W,X,Y ] = [ga1r , gb1s , gr+s · m] under pk1, output the ci-
phertext under pk2 as [e(W,Z1), e(X,Z2), e(Y,Z3),Z3] = [E,F,G,H ]. Decryption
works as follows: first compute Q = G/(E1/a2 · F 1/b2) and then output message mi in
the message space M such that e(mi,H) = Q.
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This solution has one subtle problem because all ciphertexts produced by the obfus-
cated re-encryption program include H = y as the fourth component, whereas cipher-
texts produced by the decrypt-and-encrypt approach contain a fresh random value in
that position. Thus, the obfuscated program does not “preserve the functionality” of the
original one. This is easily fixed by having the obfuscated program re-randomize its
output by choosing z

r← Zq and outputting [Ez,F z,Gz,Hz]. (Note, it is not sufficient
that we choose y randomly, since this choice is only made once for all re-encrypted
ciphertexts, whereas z is chosen freshly for each re-encryption.)

Even this, however, falls short, because we do not know how to prove this construc-
tion is secure. In particular, since the distinguisher has access to a re-encryption oracle,
it can query the oracle on the values contained in the obfuscated program. Indeed, in the
above scheme, there is a specific property of valid obfuscated programs that a distin-
guisher can test for, and we do not know how to construct a simulator that also passes
this test. Precisely, this test is as follows. On input a program (Z1,Z2,Z3), the distin-
guisher queries his re-encryption oracle on the “ciphertext” [Z3,Z2,Z1] and obtains
the output [E,F,G,H ]. Then, if and only if E = G, the distinguisher guesses that
(Z1,Z2,Z3) is a valid obfuscated program. (A valid obfuscation will always pass this
test; the re-encryption program output by our simulator is comprised of three group
elements chosen uniformly at random and thus is unlikely to pass this test.)

In order to overcome this final hurdle, our next and final re-encryption program re-
randomizes the input ciphertext before applying the transformation above. If the public
key is (ga, gb, g) and the input ciphertext is C = [W,X,Y ], our re-encryption pro-
gram re-randomizes C by sampling r ′, s′ and computing the ciphertext [W · (ga)r

′
,X ·

(gb)s
′
, Y · gr ′+s′ ]. Finally, we are able to show this construction meets our obfuscation

definition under two reasonable complexity assumptions.
As a final point about our complexity assumptions, because our obfuscation definition

only requires average-case obfuscation, we do not have to make the strong complexity
assumptions necessary in the constructions of Canetti [7] and Wee [20], which can be
broken in quasi-polynomial time. Thus, our scheme simultaneously meets a strong the-
oretical definition while retaining the sensibility associated with standard assumptions.

Organization In Sect. 2, we present the definition of obfuscation and explain in more
detail how it captures both obfuscation and security for many cryptographic function-
alities. In Sect. 3, we introduce some notation and complexity assumptions. In Sect. 4,
we present our encryption scheme and a family of re-encryption circuits and finally, in
Sect. 5, we present our obfuscator for re-encryption circuits.

2. Definitions

Barak et al. [2] required that an obfuscator strip programs of non-black-box informa-
tion. They formalized this by requiring that any predicate computable from the obfus-
cated program is also computable from black-box access to it. Goldwasser and Kalai
[12] gave a stronger definition, guaranteeing security in the presence of (dependent and
independent) auxiliary input. A formal definition, which we call predicate black-box
obfuscation (or predicate obfuscation, for short), follows.
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By μ(k) we denote some negligible function, i.e., one such that, for all c > 0 and all
sufficiently large k, μ(k) < 1/kc. For a family C of polynomial-size circuits and for a
length parameter k, let Ck be the circuits in C with input length k; we write C = {Ck}
as shorthand for such a partition. For an Oracle Turing Machine M and a circuit C, let
MC(x) denote the machine M activated on an input x with an oracle to the function
computed by C.

Definition 2.1 (Predicate Obfuscation [2,12]). An efficient algorithm Obf is a predi-
cate obfuscator for the family C = {Ck}, if it satisfies the following properties:

• Preserving Functionality: There exists a negligible function μ(k), s.t. for all input
lengths k, for any C ∈ Ck :

Pr
[∃x ∈ {0,1}k : (Obf(C)

)
(x) �= C(x)

] ≤ μ(k).

The probability is taken over the random coins used by Obf.
• Polynomial Slowdown: There exists a polynomial p(k) such that for sufficiently

large input lengths n, for any C ∈ Ck , the obfuscator Obf only enlarges C by a
factor of p: |Obf(C)| ≤ p(|C|).

• Predicate Virtual Black-box: For every polynomial-sized adversary circuit A, there
exists a polynomial-size simulator circuit Sim and a negligible function μ(k), such
that for every input length n, for every C ∈ Ck , for every predicate π , for every
auxiliary input z ∈ {0,1}q(k):

∣∣Pr
[

A
(
Obf(C), z

) = π(C, z)
] − Pr

[
SimC

(
1k, z

) = π(C, z)
]∣∣ ≤ μ(k).

The probability is over the coins of the adversary, the simulator and the obfuscator.

As discussed in Sect. 1, the predicate black-box definition does not guarantee security
when obfuscated circuits are used in cryptographic settings. Following a definition sug-
gested by Pass [17] (and similarly to a definition suggested independently by Hofheinz
et al. [15]), we use a composable notion of obfuscation. Moreover, we particularly want
to focus on the average-case security of obfuscating probabilistic circuits.

Definition 2.2 (Average-Case Secure Obfuscation). An efficient algorithm Obf that
runs on input a (probabilistic) circuit and outputs a new (probabilistic) circuit, is an
average-case secure obfuscator for the family C = {Ck}, if it satisfies the following
properties:

• Preserving Functionality: “With overwhelming probability Obf(C) behaves almost
identically to C on all inputs”. There exists a negligible function μ(k), such that
for any input length k, for any C ∈ Ck :

Pr
coins of Obf

[∀x ∈ {0,1}k : Δ((
Obf(C)

)
(x),C(x)

) ≤ μ(k)
] ≥ 1 − μ(k).

The distributions (Obf(C))(x) and C(x) are taken over Obf(C)’s and C’s random
coins respectively. Δ denotes the statistical distance between distributions.3

3 Our construction of a re-encryption obfuscator perfectly preserves functionality, i.e. the output distribu-
tions of the original and obfuscated programs are identical.
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• Polynomial Slowdown: (identical to Definition 2.1)
• Average-Case Secure Virtual Black-Box: For any efficient adversary A, there ex-

ists an efficient simulator Sim and a negligible function μ(k), such that for every
efficient distinguisher D, for every input length k and for every polynomial-size
auxiliary input z:

∣∣∣∣∣
Pr

[
C ← Ck : DC

(
A

(
Obf(C), z

)
, z

) = 1
]

− Pr
[
C ← Ck : DC

(
SimC

(
1k, z

)
, z

) = 1
]

∣∣∣∣∣
≤ μ(k).

The probability is over the selection of a random circuit C from Ck , and the coins
of the distinguisher, the simulator, the oracle and the obfuscator. Note that entities
with black-box access to C cannot set C’s random tape.

For the last requirement, it is sufficient to require the existence of a simulator for the
simple adversary that just outputs its own input. This would give an equivalent definition
since any adversary’s code can be incorporated into the distinguisher; indeed, Hofheinz
et al. [15] take this approach (but present a slightly relaxed definition).

Discussion Intuitively, Definition 2.2 guarantees that any attack that an adversary can
mount using the obfuscated circuit can also be mounted by a simulator with oracle
access to the functionality. This definition differs from the predicate definition in several
ways. It considers obfuscation of a random circuit from a family, and furthermore, the
circuit families considered can be probabilistic (this allows us to side-step impossibility
results, see Sect. 2.2). We also follow [12] in requiring that the obfuscation be secure in
the presence of (independent) auxiliary input, where the auxiliary input is selected first,
and then a random circuit is chosen from the family. Note that the average-case secure
virtual black-box requirement of the above definition is incomparable to the predicate
black-box requirement of [2,12]; the latter is weaker in that it only requires that the
obfuscator hides predicates, but is stronger in that it provides the predicate distinguisher
with the actual program (whereas our definition only gives our predicate distinguisher
black-box access).

Finally, we emphasize that in this new definition there are two important sources
of randomness. The first source of randomness stems from the fact that the circuits
subject to obfuscation are probabilistic. The second, more subtle, source of randomness
is in the selection of a random circuit C from the family Ck . The average-case secure
virtual black-box requirement guarantees security when a circuit is selected from the
family by a specific distribution (i.e., the uniform distribution—one should think of this
as uniformly choosing random keys for a cryptographic scheme). The predicate black-
box definition, on the other hand, guarantees security for every circuit in the family, or
(equivalently) for every distribution on circuits. Other work [8,10] guarantees security
for a large class of distributions on circuits from a family, such as every distribution with
at least super-logarithmic min-entropy. The above notion of secure obfuscation can be
generalized to give security against more general classes of distributions. For clarity, we
choose to present the less general definition above.
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Comparison with Hofheinz, Malone-Lee and Stam Hofheinz, Malone-Lee and Stam
[15] also seek a notion of obfuscation suitable for cryptographic applications; they in-
dependently suggested a similar definition of obfuscation. Their definition, however, is
slightly more relaxed in its virtual black-box requirement. In our terms, they require
that for every distinguisher D with oracle access, for every adversary A with obfuscated
program access, there exists a simulator Sim with oracle access such that D cannot dis-
tinguish between the outputs of the adversary A and the simulator Sim. The difference
between their definition and Definition 2.2 is that they allow the simulator to depend on
the distinguisher, whereas Definition 2.2 requires the existence of a “Universal Simula-
tor” that works for all distinguishers.

This relaxed definition is sufficient for the applications considered by Hofheinz et al.
Naturally, their negative results apply also to obfuscation under Definition 2.2. In fact,
their relaxed definition also suffices for proving the security of semantically secure re-
encryption schemes. Nonetheless, our work focuses on the construction of an explicit
obfuscator for a new functionality, and thus we work with the strongest definition that
we can prove our construction meets.

2.1. Meaningfulness for Security

This section serves as a discussion of the security guarantee provided by average-case
secure obfuscation. As mentioned in Sect. 1, the definition of obfuscation should be
composable in the following sense: “If a cryptographic scheme is secure when the ad-
versary is given black-box access to a program, then it remains secure when the adver-
sary is given the obfuscated program.” We claim that for several applications (including
indistinguishable-secure re-encryption), average-case secure obfuscation indeed gives
this guarantee.

Let C = {Cn} be a family of circuits and let ExptC(AC,1k) be a probabilistic binary
experiment relative to the circuit family C that involves an adversary A and a security
parameter 1k . In other words, the experiment is an algorithm that, when run on 1k , given
access to a randomly chosen oracle C ∈ Ck , and given the representation of an adversary
A that also makes calls to oracle C, eventually outputs either a zero or one. For example,
indistinguishable-secure encryption—and even the enhanced notion of such encryption
with access to a re-encryption oracle defined in Definition 4.3—is such an experiment
relative to an oracle that outputs the public key of the encryption scheme. For simplicity
of notation, we have not explicitly written the auxiliary input z that is also given to Expt
and the adversary A.

Theorem 2.3. Let C = {Ck} be a family of circuits. Let ExptC0 (AC,1k) and
ExptC1 (AC,1k) be two probabilistic experiments with respect to oracle C ∈ Ck , and
let Obf be a average-case secure obfuscator for the a family of circuits C. Suppose that
for all p.p.t. adversaries A, it holds that

{
C ← Ck; ExptC0

(
AC,1k

)}
k
≈ s

{
C ← Ck;ExptC1

(
AC,1k

)}
k
.

Then for all p.p.t. adversaries A′ that are also given an obfuscated version of circuit C

(and therefore implicitly have oracle access to C as well), it holds that
{
C ← Ck; ExptC0

(
A′(Obf(C)

)
,1k

)}
k
≈ s

{
C ← Ck;ExptC1

(
A′(Obf(C

)
),1k

)}
k
.
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Proof. By the average-case secure obfuscation property, it holds that for all p.p.t. ad-
versaries A′,

Pr
[
C ← Ck; ExptC0

(
A′(Obf(C)

)
,1k

) = 1
]

= Pr
[
C ← Ck; ExptC0

(
A′(SimC

)
,1k

) = 1
] ± μ(k)

for some negligible function μ. This follows syntactically because Expt0 can be viewed
as a distinguisher algorithm. Let AC be the adversary that first runs SimC , and then runs
A′ on the resulting output. Algorithm A can use its own oracle C to answer any oracle
queries that A′ makes. Thus, we have by definition that

Pr
[
C ← Ck; ExptC0

(
A′(SimC

)
,1k

) = 1
] = Pr

[
C ← Ck; ExptC0

(
AC,1k

) = 1
]
.

Using the hypothesis on Expt0 and Expt1 for any p.p.t. A, it follows that

Pr
[
C ← Ck; ExptC0

(
AC,1k

) = 1
] ± μ(k)

= Pr
[
C ← Ck; ExptC1

(
AC,1k

) = 1
] ± μ′(k)

= Pr
[
C ← Ck; ExptC1

(
A′(Obf(C)

)
,1k

) = 1
] ± μ′(k)

for some negligible function μ′. The second line follows by the definition of A and
establishes the theorem. �

Discussion of Theorem 2.3 In order to apply the notion of average-case obfuscation
(in the first line of the proof), it is important that the oracle given to the experiment is
the same as the obfuscated circuit given to the adversary. For example, this explains the
difficulty in constructing a CCA2-secure public key encryption scheme by obfuscating
a CCA2-secure private encryption scheme. The CCA2 experiment (and in particular,
the adversary) requires access to a decryption oracle. However, the obfuscated CCA2-
private encryption circuit would only provide encryption functionality. Because the ex-
periment circuit and the obfuscated one mismatch, this proof would not apply.4 This
was also observed by Hofheinz et al. [15].

Nonetheless, for primitives with security experiments that can be simulated with
access to a circuit oracle, Definition 2.2 does guarantee that for every adversary that
mounts an attack using an obfuscated circuit, there exists a black-box simulator that can
mount an attack with a similar success probability. Thus, if the scheme is secure against
an adversary with black-box access to a circuit C, it is also secure against an adversary
with an obfuscated version of C. It is important to note that the predicate definition of
obfuscation (i.e., Definition 2.1) would not let us make the above conclusion.

4 It is, however, possible to formulate a more delicate definition that considers giving the distinguisher
access to different oracles, such as a decryption oracle for CCA-security or a signing oracle for signatures.
In this work, we focus on oracles which we know how to implement via an obfuscated circuit. A public key
oracle is trivial to implement; the value can simply be encoded into the wiring of the circuit. We provide
a re-encryption obfuscator in this work. Unfortunately, it seems implausible that such obfuscators exist for
CCA-secure decryption or digital signatures [12].
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2.2. Obfuscating Probabilistic Programs

In this section we discuss an impossibility result for average-case secure obfuscation
of deterministic circuits, and explain how we side-step this impossibility by consider-
ing probabilistic circuits. Wee [20] observes that the only deterministic circuits that can
be obfuscated under strong composable notions of obfuscation are those that are (ex-
actly) learnable. A similar result also applies to obfuscating deterministic circuits under
Definition 2.2. To see this, we first define what it means for a family of circuits to be
learnable:

Definition 2.4 (Approximate Learnability, see Valiant [19]). A family of determinis-
tic circuits C = {Ck} is approximately learnable (on average) if there exists a learning
algorithm Ł that runs on input a polynomial function ε(k) and black-box access to a
random C ∈ Ck , and with all but negligible probability (over the selection of C and
the coins of L), outputs a circuit C′, such that Prr [C(r) �= C′(r)] < ε(k) where r is a
uniformly random input in {0,1}k . Furthermore, if L’s running time is polynomial in
(n, 1

ε(k)
) then we say that C is efficiently approximately learnable.

Now, following the intuition of Wee [20], we observe that any circuit family that is
obfuscatable under Definition 2.2 is also efficiently approximately learnable. This was
also observed independently by Hofheinz, Malone-Lee and Stam [15] and Pass [17].

Proposition 2.5. If a family of deterministic circuits C = {Ck} is obfuscatable under
Definition 2.2 (even inefficiently),5 then it is also efficiently approximately learnable.

Proof. Consider the “dummy” adversary Adv that simply outputs the obfuscated cir-
cuit Obf(C) it receives as input, and a distinguisher D (with black-box access to C ∈ Ck)
that on input a circuit C′ and auxiliary information z, generates O( k

ε(k)
) uniformly ran-

dom inputs, and outputs 1 if C′ and C agree on these inputs, and 0 otherwise.6

Because Obf preserves functionality, the above adversary Adv causes the above dis-
tinguisher D to output 1 with high probability (over the coins of Obf and D). To make
the distinguisher accept with similar probability, the simulator S for the empty adver-
sary must learn, from black-box access to C, a circuit that works (at the very least)
very similarly to C on random inputs. More formally, with all but negligible probability
(over the selection of C ∈ Cn and the simulator’s coins), the output distribution of S

with black-box access to C and the output distribution of C (on a random input) should
have statistical distance at most ε(n). Otherwise, D distinguishes between the outputs
of the adversary and the simulator with probability close to 1. Thus S is an efficient al-
gorithm for approximately learning the circuit family C. Finally, note that the simulator
S is an efficient learning algorithm regardless of whether or not the obfuscator Obf is
efficient. �

The above impossibility disappears when we consider probabilistic circuit families.
This is because the (efficient) distinguisher with black-box access to a probabilistic C

5 An “inefficient” obfuscator may run in time that is super-polynomial in the size of the circuit being
obfuscated.

6 Wee [20] considers different distinguishers that check different inputs.
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and non-black-box access to Obf(C) cannot necessarily distinguish whether the distri-
butions that C and Obf(C) output on a particular input are statistically close or far.
This is similar to the case of encryption (see Goldwasser and Micali [13]), where only
randomness can prevent an adversary from recognizing whether two ciphertexts are
encryptions of the same bit. Our obfuscation of re-encryption programs uses this ob-
servation. In fact, the re-encryption simulator we construct (for the empty adversary)
outputs a “dummy circuit” that has little to do with the circuit being obfuscated, but is
still indistinguishable from the true obfuscated circuit.

3. Algebraic Setting and Assumptions

Definition 3.1 (Computational and Statistical Indistinguishability). Two ensembles of
probability distributions {Xk}k∈N and {Yk}k∈N with index set N are said to be compu-
tationally indistinguishable if for every polynomial-size circuit family {Dk}k∈N, there
exists a negligible function μ such that

∣
∣Pr

[
x ← Xk : Dk(x) = 1

] − Pr
[
y ← Yk : Dk(y) = 1

]∣∣ < μ(k).

We denote such sets {Xk}k∈N

c≈ {Yk}k∈N. {Xk}k∈N and {Yk}k∈N are statistically indistin-
guishable if the above holds for every (not necessarily polynomial-size) circuit family

{Dk}k∈N. We denote such sets {Xk}k∈N

s≈ {Yk}k∈N.

A fact which we will later use is that computational indistinguishability for a single
bit implies statistical indistinguishability.

3.1. Bilinear Maps

Let BMsetup be an algorithm that, on input the security parameter 1k , outputs the para-
meters for a bilinear map as (q, g,G,GT , e), where G,GT are groups of prime order
q ∈ Θ(2k) and g is a generator of G. The efficient mapping e : G × G → GT is both
bilinear, i.e., for all h ∈ G and a, b ∈ Zq , e(ha,hb) = e(h,h)ab , and non-degenerate,
i.e., if g generates G, then e(g, g) �= 1. In such a group, observe that for all g,h ∈ G,
e(ga,hb) = e(g,h)ab and e(g,h)a = e(ga,h) = e(g,ha).

For simplicity, we present our solution using bilinear maps of the form e : G ×
G → GT . Our scheme can also be implemented in the more general setting where
e : G1 × G2 → GT and isomorphisms between G1 and G2 may not be efficiently com-
putable. In either case, there are known efficient bilinear and non-degenerate mappings;
see Galbraith, Paterson, and Smart [11] for more information on various implementation
options.

Complexity Assumptions We make the following complexity assumptions in bilinear
groups.

Assumption 3.2 (Strong Diffie Hellman Indistinguishability). Let G be a group of
order q where q is a k-bit prime, g

r← G and a, b, c, d
r← Zq . Then the following two
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distributions are computationally indistinguishable:

{
g,ga, gb, gc, gabc

}
k

c≈ {
g,ga, gb, gc, gd

}
k
.

Boneh, Sahai and Waters [6] previously proposed a similar assumption, called De-
cision 3-party Diffie–Hellman, where the above must hold in a prime subgroup of a
composite order bilinear group.

Assumption 3.3 (Decision Linear [5]). Let G be a group of order q where q is a
k-bit prime, f,g,h

r← G and a, b, c
r← Zq . Then the following two distributions are

computationally indistinguishable:

{
f,g,h,f a, gb,ha+b

}
k

c≈ {
f,g,h,f a, gb,hc

}
k
.

4. A Special Encryption Scheme and Re-Encryption Functionality

4.1. A Special Encryption Scheme �

In this section, we first recall the definition of an encryption scheme, and then describe
a special semantically secure encryption scheme and a re-encryption functionality for
which we later present a secure obfuscation scheme. For convenience of our notation,
the encryption algorithm supports two forms of ciphertexts and takes an additional input
β ∈ {0,1} to choose between them.

Definition 4.1 (Two-Format Encryption Algorithms). An encryption scheme
(KeyGen,Enc,Dec) with two different encryption formats for message space M =
{0,1}p(k), where p is a polynomial and 1k is the security parameter, is comprised of the
following algorithms:

• KeyGen(1k): the key generation algorithm takes in the security parameter 1k and
outputs a key pair (pk, sk).

• Enc(pk, β ∈ {0,1},m ∈ M): the encryption algorithm takes in a public key pk,
a format β , and a message m, and produces a ciphertext c.

• Dec(sk, c): the decryption algorithm takes in a secret key sk and a ciphertext c, and
outputs either a message m ∈ M or the error symbol ⊥.

Our special encryption scheme � is described in Fig. 1. For the first form, encryption
and decryption work as per the Boneh, Boyen, and Shacham [5] construction. For the
second form, the encryption and decryption are novel and relevant for re-encryption.
Note that this encryption system also requires the message space M to be a subset
of G whose size is a polynomial in k. As we argue in Lemma 4.4, larger messages
can be handled by standard block-by-block composition. Theorem 4.5 appearing below
establishes the semantic security of scheme �.

Lemma 4.2. The Encryption scheme � is perfectly complete.
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Common: For a security parameter 1k , let (q, g,G,GT , e) ← BMsetup(1k) be a
common parameter and let M ⊂ G where |M| = O(poly(k)) be the message
space.

KeyGen(1k, (q, g,G,GT , e)):

1. Randomly select a new generator h
r← G and random a, b

r← Zq .
2. Output pk = (ha,hb,h) and sk = (a, b,h).

Enc(pk, β,m):

1. Parse pk = (ha,hb,h).
2. Choose random r, s

r← Zq .
3. If β = 0, output the ciphertext [0, (ha)r , (hb)s, hr+s ·m, 0] ∈ Z×G

3 ×Z.
4. If β = 1, first choose a random element t

r← G, and then output the cipher-
text [1, e((ha)r , t), e((hb)s, t), e(hr+s · m, t), t] ∈ Z × G

3
T × G.

Dec(sk, [s,W,X,Y,Z]):

1. Parse sk = (a, b,h).
2. If s = 0, then output Y/(W 1/a · X1/b).
3. If s = 1, then

(a) Compute Q = Y/(W 1/a · X1/b).
(b) For each m ∈ M , test if e(m,Z) = Q. If so, output m and halt.

Fig. 1. Encryption scheme �.

Proof. When β = 0, this follows from the completeness property of the Boneh,
Boyen, and Shacham [5] scheme. When β = 1, on input [1,E,F,G,H ] (produced
by the honest encryption algorithm), the decryption algorithm first computes Q =

G

E1/a ·F 1/b . Notice that

Q = e(hr+s · m, H)

e((ha)r , H)1/a · e((hb)s, H)1/b

= e(hr+s · m, H)

e(hr , H) · e(hs, H)

= e(m,H).

The decryption algorithm loops over each (of the polynomially many) mi ∈ M and tests
whether e(mi,H) = Q and therefore always recovers m as required. �

4.2. Re-Encryption Functionality

Recall that obfuscation is with respect to a class of circuits. We now define a special
class of re-encryption circuits for the encryption scheme � which can be easily ana-
lyzed.

Let (pk1, sk1) and (pk2, sk2) be two keys pairs generated by running KeyGen on inde-
pendent random tapes. When given a ciphertext generated by algorithm Enc using pk1,
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a re-encryption circuit decrypts the ciphertext and then re-encrypts the resulting mes-
sage under a second public key pk2. For technical reasons, we also require the circuit to
produce the pairs of public keys for which it transforms ciphertexts. More formally, the
re-encryption functionality is as follows:

On input x, output

⎧
⎪⎨

⎪⎩

(pk1,pk2) if x = keys;
⊥ if Dec(sk1, x) = ⊥;
Enc(pk2,1,Dec(sk1, x)) otherwise.

That is, on special input keys, it outputs the ordered pair of public keys (pk1,pk2).
Any other input is considered to be a (first-form) ciphertext; it is decrypted using sk1
to produce either a message m or an indication that the input is ill-formed. In the latter
case, the output is ⊥. When the decryption is successful (resulting in a message m),
the output is the (second-form) ciphertext c ← Enc(pk2,1,m). Furthermore, we require
that the circuit encoding this functionality, Csk1,pk2

, allows the values pk1 and pk2 to be
read from the circuit description. This property is easy to achieve by adding a “data”
section to the circuit which does not affect the circuit’s output, but encodes a message,
with say, AND gates encoding a 1 and OR gates encoding a 0. We now define the family
of circuits:

Ck = {
Csk1,pk2

| (pk1, sk1) ← KeyGen
(
1k

)
, (pk2, sk2) ← KeyGen

(
1k

)}
.

4.3. Security for Re-Encryption

Recall from Sect. 2.1 that the goal of this work is to formalize and illustrate composable
obfuscation, where any system secure with respect to a black-box program retains its
security when the black-box access is replaced by access to an obfuscated program.
We now want to argue that the encryption scheme in Fig. 1 is secure with respect to a
black-box re-encryption program. We will later show a composable obfuscation for this
re-encryption program. These two results will allow us to conclude that the security of
the encryption scheme is not compromised by the release of an obfuscated program.

We generalize the standard notion of indistinguishability [13] for encryption schemes
by allowing the adversary to have access to a re-encryption oracle. In particular, the fol-
lowing definition captures the notion that “given a ciphertext y and black-box access to
a re-encryption circuit, an adversary does not learn any information about the plaintext
corresponding to y.”

Definition 4.3 (IND-security with Oracle Csk1,pk2 ). Let Γ = (KeyGen,Enc,Dec) be
a two-format encryption scheme for the message space M and let the random variable
INDb(Γ, A, k) where b ∈ {0,1}, A = (A1, A2) and k ∈ N denote the result of the fol-
lowing probabilistic experiment:

INDb(Γ, A, k)

(pk1, sk1) ← KeyGen
(
1k

)
, (pk2, sk2) ← KeyGen

(
1k

)
,

(m0,m1, i, β, z) ← ACsk1,pk2
1

(
1k

)
s.t. m0,m1 ∈ M ,

y ← Enc(pki , β,mb),

B ← ACsk1,pk2
2 (y, z),

Output B.
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Encryption scheme Γ is indistinguishable secure with oracle Csk1,pk2 if ∀ p.p.t. algo-
rithms A the following two ensembles are computationally indistinguishable:

{
IND0(Γ, A, k)

}
k

c≈ {
IND1(Γ, A, k)

}
k
.

When the added specificity of the oracle Csk1,pk2 is not needed, we may say that Γ is
indistinguishable secure with a re-encryption oracle.

For simplicity, we allow the adversary to pick the key pki under which the challenge
is encrypted and the form β of the encryption. By a standard hybrid argument, the above
definition is equivalent to one in which the adversary is given four encryptions of the
challenge message—one per key and form.

Larger Messages Our construction uses a messages spaces M such that |M| =
poly(k). The following lemma, however, shows that this property is not troublesome,
because a standard hybrid argument can be used to show that even single-bit schemes
can be used to produce schemes that handle larger message spaces.

Lemma 4.4. If there exists an encryption scheme Γ = (KeyGen,Enc,Dec) that is
IND-secure with a re-encryption oracle for security parameter 1k and message space
M = {0,1}c for some constant c, then there exists a scheme Γ ′ that is IND-secure with
a re-encryption oracle for message space M = {0,1}c·p(k) for any polynomial p.

Proof. The proof follows from a standard hybrid argument, and so it is only sketched
here. Let Γ ′ be the same as Γ except that Enc′ calls the Enc routine p(k) times to en-
crypt each group of c bits of the message independently, and Dec′ similarly decrypts the
ciphertext in a block-by-block fashion. The re-encryption oracle, Cpk′

1,sk′
2

also handles
c · p(k)-bit messages by working in a block-by-block manner.

Suppose Γ ′ was not indistinguishable secure with a re-encryption oracle. In
other words, there exists an efficient adversary algorithm A and distinguisher al-
gorithm D such that for infinitely many k, it holds that |Pr[D(IND0(Γ

′, A, k)) =
1]−Pr[D(IND1(Γ

′, A, k) = 1)]| > 1
kd for some constant d . Let us define an experiment

IND0,i (Γ
′, A, k) which is the same as IND0 with the exception that when the challenge

ciphertext is computed, it is not computed on m0, but rather on the ciphertext m0,i in
which the first i · c bits are from m0 and the remaining bits of the message come from
m1. Notice that IND0,p(k) = IND0 and IND0,0 = IND1. Thus there must exist some i such
that |Pr[D(IND0,i (Γ

′, A, k)) = 1] − Pr[D(IND0,i+1Γ
′, A, k) = 1]| > 1

kdp(k)
. From this

statement, it follows how A can be used to break the security of the c-bit scheme Γ . �

Theorem 4.5. The encryption scheme � (in Fig. 1) is an indistinguishable-secure
encryption scheme with oracle Csk1,pk2 under the Decision Linear assumption in G.

Proof. To show that scheme � meets security Definition 4.3, suppose adversary A =
(A1, A2) and distinguisher D has advantage ε in distinguishing IND0(�, A, k) from
IND1(�, A, k). Then, we construct an adversary A′ that decides the decision linear
problem with advantage ε/2 as follows. Let Γ = (h1, h2, h,hx

1, h
y

2,Q) be an instance
of the decision linear problem; A′ on input Γ works as follows:
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1. Sample a, b, c
r← Zq .

2. Set pk1 = (h1, h2, h) and pk2 = (hac
1 , hbc

2 , hc).
3. Sample v ∈ G and compute the values Z1 ← va,Z2 ← vb and Z3 ← v. Generate

circuit Rpk1,pk2,Z as per the description in Fig. 2 below.
4. Run A O

1 (1k) to produce a tuple (m0,m1, i, β, z).
When A queries its oracle on the tuple [s,W,X,Y,Z], respond as follows:

(a) Return ⊥ if s �= 0 or Z �= 0, or if W,X,Y �∈ G, etc.
(b) Otherwise, run Rpk1,pk2,Z on the tuple and return the result.

5. Sample a bit t
r← {0,1}.

6. Set y to be the ciphertext [0, hx
1, h

y

2,Q ·mt,0] if i = 0 and [0, (hx
1)ac, (h

y

2)bc,Qc ·
mt,0] if i = 1. Furthermore, if β = 1, and y = [0,W,X,Y,0], then choose a
random s ← G and recompute y as the tuple [1, e(W, s), e(X, s), e(Y, s), s].

7. Run B ← AO
2 (y, z) and respond to the oracle queries as above.

8. Run t ′ ← D(B) and output 1 if t ′ = t (i.e., guess that Γ is a DLA instance) and
otherwise output 0.

We argue that when Γ is a proper decision linear instance, A′ perfectly simulates
the experiment INDt . First, the distribution of keys created in step 1 and 2 is identical
to distribution of keys in the first line of INDt . The remaining lines of INDt are also
syntactically equivalent to the remaining lines of A′. The only remaining issue is to
argue that the responses generated by A′ to the oracle calls are identically distributed
to the responses made by Csk1,pk2

in the INDt experiment. This follows by Lemma 5.2
(below) and by the fact that all secret keys are distributed correctly and the re-encryption
values Z1,Z2,Z3 are computed correctly. When Γ is not a decision linear instance, then
the encryption y is independent of the message mt and so the probability that t ′ = t (and
therefore the probability that A′ outputs 1) is exactly 1/2.

Let Ein be the event that A′ outputs a 1 when the input Γ is a proper decision linear
instance and let Eout be the event that A′ outputs a 1 when the input is not an instance.
The theorem follows from the following two calculations:

Pr[Ein] = 1/2
(
Pr

[
D

(
IND1(�, A, k)

) = 1
] + Pr

[
D

(
IND0(�, A, k) = 0

)])

= 1/2
(
Pr

[
D

(
IND1(�, A, k)

) = 1
] + (

1 − Pr
[
D

(
IND0(�, A, k) = 1

)]))

= 1/2 + ε/2,

Pr[Eout] = 1/2. �

5. The Obfuscator for Re-Encryption

In Fig. 2, we describe an obfuscator Obf for the class of re-encryption circuits Ck relative
to the encryption scheme � defined in the previous section.

5.1. Main Result

Theorem 5.1. The obfuscator in Fig. 2 is an average-case secure obfuscator for the
circuit family Ck under the Strong Diffie–Hellman Indistinguishability and Decision
Linear assumptions in G.
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Algorithm Obf, on input a circuit Csk1,pk2 ∈ Ck ,

1. Reads sk1 = (a1, b1, g) and pk2 = (ha2 , hb2 , h) from the description of
Csk1,pk2 .

2. Selects a random integer z
r← Z

∗
q and computes the re-encryption tuple

(Z1,Z2,Z3) = ((ha2)z/a1 , (hb2)z/b1 , hz).
3. Constructs and outputs an obfuscated circuit Rpk1,pk2,Z that does the fol-

lowing:

– On input keys, output pk1 = (ga1 , gb1 , g) and pk2 = (ha2 , hb2 , h).
– On input a 5-tuple [0,W,X,Y,0] where W,X,Y ∈ G:

(a) Select input re-randomization values r, s
r← Z

∗
q .

(b) Re-randomize the input as W ′ ← W · (ga1)r , X′ ← X · (gb1)s , and
Y ′ ← Y · gr+s .

(c) Compute E ← e(W ′,Z1).
(d) Compute F ← e(X′,Z2).
(e) Compute G ← e(Y ′,Z3).
(f) Select an output re-randomization value y

r← Z
∗
q .

(g) Output the ciphertext [1, Ey, F y, Gy, Z
y

3 ].
– Otherwise return ⊥.

Fig. 2. Obfuscator Obf for Re-encryption circuits for �.

Proof. Let pk1 = (ga1 , gb1, g) and pk2 = (ha2 , hb2 , h) with matching secret keys
((a1, b1, g) and (a2, b2, h) respectively). The polynomial slowdown property follows
by inspection because the obfuscated circuit computes a few bilinear maps and expo-
nentiations. The theorem then follows from Lemmas 5.2 and 5.3.

Lemma 5.2 (Preserving Functionality). Consider any circuit Csk1,pk2 ∈ Ck and let
circuit Rpk1,pk2,Z ← Obf(Csk1,pk2

). On every possible input, the output distributions of
Csk1,pk2 and Rpk1,pk2,Z are identical.

Proof. We must consider three classes of inputs. First, for a properly formed encryp-
tion of any message m ∈ M , observe that

Enc(pk1,0,m) = [
0, ga1r , gb1s , gr+s · m, 0

]

for some r, s
r← Z

∗
q . When such a ciphertext is fed as input to R, the circuit outputs

[
1, e

(
ga1(r+r ′), ha2z/a1

)y
, e

(
gb1(s+s′), hb2z/b1

)y
, e

(
gr+s+r ′+s′ · m,hz

)y
, hyz

]

for randomly chosen r ′, s′, y r← Z
∗
q . Substituting r = r+r ′



, s = s+s′



, t = hyz, where 


is such that7 g
 = h, this 5-tuple can be rewritten as
[
1, e

(
g
·a1r , (hyz)a2/a1

)
, e

(
g
·b2s , (hyz)b2/b1

)
, e

(
g
·r+s · m,

(
hyz

))
, t

]

7 We do not need to compute 
 explicitly.
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which can be further simplified to

[
1, e

(
ha2r , t

)
, e

(
hb2s , t

)
, e

(
hr+s · m, t

)
, t

]

where r, s are uniformly random elements of Z
∗
q , and t is a uniformly distributed el-

ement of G. This tuple is identically distributed to the output of Enc(pk2,1,m). The
same holds for all m ∈ G \ M . For the input keys and ill-formed inputs, the outputs
are also identical. �

Virtual Blackbox In order to satisfy the virtual black-box property, it suffices to only
consider the “dummy” adversary which outputs the code of the obfuscated circuit
Obf(C). Thus, we must construct a simulator SimC(1k, z) such that for all distinguishers
DC which take as input an obfuscated circuit and auxiliary input z,

∣
∣Pr

[
DC

(
Obf(C), z

) = 1
] − Pr

[
DC

(
SimC(1k, z), z

) = 1
]∣∣ < μ(k)

where the probability is taken over the choice of C, and the random coins of Obf,D and
Sim.

Define the simulator SimC(1k, z) as follows:

1. Query the oracle C on keys to get pk1,pk2.

2. Sample Z′
1,Z

′
2,Z

′
3

r← G.
3. Create and output a circuit R′

pk1,pk2,Z
′ using the values (pk1,pk2,Z

′
1,Z

′
2,Z

′
3).

Notice that SimC produces a circuit which does not correctly compute the re-encryption
function. However, we now show that under appropriate complexity assumptions, no
p.p.t. distinguisher DC will notice.

Toward this goal, notice that the output of DC(Obf(C), z) is distributed identi-
cally to Nice(DC, k, z) and the output of DC(SimC(1k, z)) is distributed identically
to Junk(DC, k, z) where

Nice
(
DC,k, z

)
Junk

(
DC,k, z

)

q, G ← BMsetup
(
1k

)
q, G ← BMsetup

(
1k

)

g,h, r
r← G g,h, r

r← G

a1, a2, b1, b2
r← Zq a1, a2, b1, b2

r← Zq

pk1 ← (
ga1 , gb1, g

)
pk1 ← (

ga1 , gb1 , g
)

pk2 ← (
ha2 , hb2 , h

)
pk2 ← (

ha2 , hb2 , h
)

Z1 ← ra2/a1; Z2 ← rb2/b1 Z′
1,Z

′
2

r← G

b ← DC(pk1,pk2,Z1,Z2, r, z) b ← DC(pk1,pk2,Z
′
1,Z

′
2, r, z)

Output b, Output b.

In the above experiments, we write expt(DC, k, z) to mean that the distinguisher D has
oracle access to Csk1,pk2 for the keys sk1,pk2 chosen in the experiment. The virtual
blackbox property follows immediately from the following lemma. �
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Lemma 5.3. Under the Strong Diffie–Hellman Indistinguishability and Decision Lin-
ear assumptions in G, for all p.p.t. distinguishers D and auxiliary information z, the
following two distributions are statistically indistinguishable:8

{
Nice

(
DC,k, z

)}
k

and
{
Junk(DC, k, z)

}
k
.

The C in Lemma 5.3 is chosen at random as part of the experiment Nice or Junk,
respectively, and the coins of C are freshly and independently generated (i.e., not chosen
by D or based on z.)

Proof Outline We prove this lemma in a series of incremental steps. We begin with a
simple indistinguishability problem and incrementally add elements and provide access
to various oracles until the experiments are equivalent to their final form in Lemma 5.3.
Let us now start with a claim which relates the Strong Diffie–Hellman Indistinguisha-
bility (SDHI) problem to a simple indistinguishability problem. (In all of the following
experiments, we implicitly generate q, G ← BMsetup(1k) and omit the index k and
auxiliary input z when the context is clear.)

Proposition 5.4. Under the SDHI assumption, Nice(1)
k,z

c≈ Junk(1)
k,z where

Nice(1): Proceeds as Nice except that the output is
(
ga1, g,ha2 , h,Z1, r, z

)
,

Junk(1): Proceeds as Junk except that the output is
(
ga1 , g,ha2 , h,Z′

1, r, z
)
.

If there exists a distinguisher D which distinguishes Nice(1) from Junk(1) with advan-
tage ε, then there exists a distinguisher D′ which solves the SDHI problem with the
same advantage (in roughly the same time).

Proof. The algorithm D′(g, ga, gb, gc,Q, z) works as follows:

1. D′ chooses a random w
r← Zq .

2. D′ runs D(gw, (gb)w, ga, g,Q,gc, z) and echoes its output.

Consider a1 = 1/b, a2 = a and r = gc. Thus, if Q = gabc , then we have Q = rab =
ra2/a1 in which case the input to D is identically distributed to Nice(1). Otherwise, Q is
equal to rt for some random t and the input to D is identically distributed to Junk(1). �

We now extend Proposition 5.4 to include more input values.

Proposition 5.5. Under the SDHI assumption, Nice(2)
k,z

c≈ Junk(2)
k,z where

Nice(2): Same as Nice except that the output is (pk1,pk2,Z1,Z2, r, z),
Junk(2): Same as Junk except that the output is (pk1,pk2,Z

′
1,Z

′
2, r, z).

Proof. Consider the hybrid distribution T (2) which is the same as Nice(2) except that
Z′

2
r← G and the output is (pk1,pk2,Z1,Z

′
2, r, z). If Nice(2) and Junk(2) are distinguish-

able with advantage ε, then either Nice(2) and T (2) or T (2) and Junk(2) are distinguish-
able by algorithm D with advantage ε/2. Either case implies a distinguisher for Nice(1)

8 The statistical indistinguishability follows because both experiments output a single bit.
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from Junk(1). In the later case, this involves picking b1, b2 ∈ Zq to form public keys,
picking Z′

2 randomly, and using the input instance from Nice(1) (or Junk(1)) to simulate
the input distribution for D. The former case does the same, but swaps the role of ai

and bi . �

Toward the proof of our main theorem, we now extend Proposition. 5.5 by providing
the distinguisher with an oracle which returns a 5-tuple of random values which works
as follows. On input [0,W,X,Y,0], where W,X,Y ∈ G, R selects three random values
E,F,G

r← GT and a random value H
r← G and returns [1,E,F,G,H ]. Otherwise,

R returns ⊥. Intuitively, oracle R outputs only random values and thus should not help
any distinguisher.

Proposition 5.6. Under the SDHI assumption, and for any p.p.t. D, Nice(3)
k,z

s≈ Junk(3)
k,z

where

Nice(3): Same as Nice
(
DR, k, z

)
,

Junk(3): Same as Junk
(
DR, k, z

)
.

(That is, the distinguishers have oracle access to R and output a bit instead of a
tuple as in the (2)-experiments.)

Proof. The oracle R can be perfectly simulated without any auxiliary information.
Thus, for any DR , there exists another non-oracle distinguisher D′ (which internally
runs D while perfectly simulating R to D) whose output distribution is identical to D.

Applying Proposition 5.5, we thus have that for all distinguishers DR , Nice(2)
c≈ Junk(2)

which implies Nice(3)
s≈ Junk(3) (since the later experiment outputs a bit). �

We now consider the distinguisher with oracle access to the real re-encryption cir-
cuit C.

Proposition 5.7. For any p.p.t. distinguisher DC , let

α(k, z) = Pr
[
Nice

(
DC,k, z

) = 1
] − Pr

[
Junk

(
DC,k, z

) = 1
]
,

β(k, z) = Pr
[
Nice

(
DR, k, z

) = 1
] − Pr

[
Junk

(
DR, k, z

) = 1
]
.

There exists a p.p.t. algorithm A which distinguishes between the two distributions of
the decision linear problem with advantage at least 1

2 |(α(k, z) − β(k, z))|.

Proof. We take α = α(k, z) and β = β(k, z). The algorithm A takes as input, a deci-
sion linear instance Γ = (h1, h2, h,hx

1, h
y

2,Q) and auxiliary information z, and:

1. A samples a challenge bit c
r← {0,1} to pick whether to run Nice or Junk.

2. A samples integers a, b,u
r← Zq and group elements g,Z′

1,Z
′
2,Z

′
3

r← G.
3. A sets pk1 = (ga, gb, g) and pk2 = (h1, h2, h) and computes a valid re-encryption

tuple (Z1,Z2,Z3) by Z1 ← h
u/a

1 , Z2 ← h
u/b

2 , and Z3 ← hu.
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4. If c = 1, then A runs DO(pk1,pk2,Z1,Z2,Z3, z) where O is defined below.
If c = 0, then A runs DO(pk1,pk2,Z

′
1,Z

′
2,Z

′
3, z).

When D queries the oracle O on input [0,W,X,Y,0], A responds as follows:
(a) Sample input re-randomization values r, s, t

r← Zq .
(b) Re-randomize the input as W ′ ← W · gar , X′ ← X · gbs , and Y ′ ← Y · gr+s .
(c) Compute E ← e(W ′,Z1) · e(g,htx

1 ).
(d) Compute F ← e(X′,Z2) · e(g,h

ty

2 ).
(e) Compute G ← e(Y ′,Z3) · e(g,Qt ).
(f) Sample output re-randomization value 


r← Zq .
(g) Respond with the ciphertext [1,E
,F 
,G
,Z


3].
Whenever D queries its oracle on input keys, A responds with pk1 and pk2,

and on all other queries, A responds with ⊥.
5. Eventually D outputs c′ ∈ {0,1}. If c = c′, A outputs 1 (i.e., it guesses that Q =

hx+y ). Else if c �= c′, then A outputs 0 (i.e., it guesses that Q �= hx+y ).

Note that when A responds to queries made to O, it almost mimics the real obfuscated
program (C). The difference is that when computing (4)–(4), additional terms are multi-
plied with elements of the ciphertext. If Q = hx+y , i.e. the instance Γ instance is a deci-
sion linear tuple, then these operations simply contribute to additional re-randomization
of the ciphertext that does not change the ciphertext distribution. However, if Q is a ran-
dom value, i.e. Γ is not a decision linear instance, then these operations make E,F,G

a random 3-tuple that is also independent of Z3. This idea is the essential step in the
proof formalized in the two claims below.

Claim. When Q = hx+y (i.e. Γ is a decision linear instance), then Pr[A(Γ ) = 1] =
1
2 + α(k, z)/2.

Proof of Claim. When Q = hx+y , then A perfectly simulates NiceC or JunkC toward
the algorithm D. The key point is to recognize that (h1, h2, h) can be interpreted as a
randomly generated public key since h1, h2 can be rewritten as h1 = he1 and h2 = he2

for some (unknown) e1, e2. Since the re-encryption tuple Z1,Z2,Z3 is also a valid re-
encryption tuple for pk1 → pk2, the input parameters to D in step 4 are identically
distributed to the inputs to D in either experiment Nice or Junk. Moreover, the response
to an oracle query on keys is also identically distributed. All that remains is to show
that the responses A provides to oracle queries on [0,W,X,Y,0] are also identically
distributed. This last point follows by inspection because Q = hx+y and Z1,Z2,Z3 are
a valid re-encryption tuple. A simple probability analysis completes the result:

Pr
[

A(Γ ) = 1 | Γ ∈ DL
] = 1

2

(
Pr

[
Nice

(
DC

) = 1
] + Pr

[
Junk

(
DC

) = 0
])

= 1

2

(
Pr

[
Nice

(
DC

) = 1
] + 1 − Pr

[
Junk

(
DC

) = 1
])

= 1

2
+ Pr[Nice(DC) = 1] − Pr[Junk(DC) = 1]

2

= 1

2
+ α

2
. �
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Claim. If Q is randomly chosen value, then Pr[A(Γ ) = 1] = 1
2 + β(k, z)/2.

Proof of Claim. This proof is almost identical to the previous one. The only difference
is we must show that responses to the oracle queries return four randomly selected group
elements. Let us denote by ω,χ,γ, v the values such that W = gω,X = gχ , Y = gγ

and Q = hv , and by e1, e2 the values such that h1 = he1 and h2 = he2 . Observe that the
elements returned by the oracle are

E = [
e
(
W · gar , h

u/a

1

) · e
(
g,htx

1

)]
 = e(g,h)
e1[ωu/a+tx]+ru
e1,

F = [
e
(
X · gbs, h

u/b

2

) · e
(
g,h

ty

2

)]
 = e(g,h)
e2[χu/b+ty]+su
e2 ,

G = [
e
(
Y · gr+s , hu

) · e
(
g,Qt

)]
 = e(g,h)
[(γ+r+s)u]+tv
,

H = hu
.

Since r, s, t, 
 are fresh independently selected values, then E,F,G,H will also be
independent on every invocation of the oracle. This follows because each of E,F,G,H

can be viewed as either a generator of a group which has been raised to a random power,
or as an element of the group which has been multiplied by a random group element. �

To complete the proof of Proposition 5.7, notice that the two claims above imply that
when Γ is a decision linear instance, then A outputs 1 with probability 1

2 + α
2 , whereas

when Γ is not a decision linear instance A outputs 1 with probability 1
2 + β

2 . Thus, A
distinguishes the two distributions of the decision linear problem with advantage at least
1
2 |(α(k, z) − β(k, z))|. �

Proof of Lemma 5.3. By the decision linear assumption and Proposition 5.7, it fol-
lows that |α(k, z) − β(k, z)| is negligible. By Proposition 5.6, β(k, z) must be a negli-
gible function, and therefore, so too must α(k, z). This establishes the lemma. �

6. Conclusions

We presented a positive obfuscation result for a natural cryptographic functionality.
Our focus is on the re-encryption functionality, which takes a ciphertext for message
m encrypted under Alice’s public key and transforms it into a ciphertext for the same
message m under Bob’s public key.

We considered a definition of obfuscation for probabilistic circuits that focuses on
average-case security and provides a composable guarantee. In Theorem 2.3, we argued
that this last property captures the intuition that: If a cryptographic scheme is “secure”
when the adversary is given black-box access to a program, then it remains “secure”
when the adversary is given the obfuscated version of the program.

In Definition 4.3, we formalized what it means for an encryption algorithm to be
“secure” when the adversary is given black-box access to a re-encryption oracle. We
observe that this security experiment can be simulated in polynomial time using access
to the re-encryption oracle. We presented an encryption scheme in Fig. 1 and showed in
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Theorem 4.5 that is satisfies this definition. Finally, we presented a composable obfus-
cator for the re-encryption functionality in Fig. 2 and proved that it met Definition 2.2
in Theorem 5.1. Given Theorem 2.3, this collection of results allow us to conclude that:

Corollary 6.1. Under the Strong Diffie–Hellman Indistinguishability and Decision
Linear assumptions in G, the encryption scheme in Fig. 1 is indistinguishable secure
when oracle C is replaced by access to Obf(C) as defined in Fig. 2.

In several practical applications, it is desirable to replace black-box access to a pro-
gram with an obfuscation of the program in a manner that provably does not undermine
the security of other cryptographic systems in the environment. For one cryptographic
functionality, we have shown that this is possible.
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