
J. Cryptol. (2011) 24: 517–544
DOI: 10.1007/s00145-010-9069-7

Impossibility Results for Universal Composability
in Public-Key Models and with Fixed Inputs∗

Dafna Kidron and Yehuda Lindell
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel

dafna.kidron@gmail.com; lindell@cs.biu.ac.il

Communicated by Ivan Damgård

Received 11 October 2007 and revised 10 May 2010
Online publication 8 June 2010

Abstract. Universal composability and concurrent general composition consider a
setting where secure protocols are run concurrently with each other and with arbitrary
other possibly insecure protocols. Protocols that meet the definition of universal com-
posability are guaranteed to remain secure even when run in this strongly adversarial
setting. In the case of an honest majority, or where there is a trusted setup phase of some
kind (like a common reference string or the key-registration public-key infrastructure
of Barak et al. in FOCS 2004), it has been shown that any functionality can be securely
computed in a universally composable way. On the negative side, it has also been shown
that in the plain model where there is no trusted setup at all, there are large classes of
functionalities which cannot be securely computed in a universally composable way
without an honest majority.

In this paper, we extend these impossibility results for universal composability. We
study a number of public-key models and show for which models the impossibility
results of universal composability hold and for which they do not. We also consider a
setting where the inputs to the protocols running in the network are fixed before any
execution begins. The majority of our results are negative and we show that the known
impossibility results for universal composability in the case of no honest majority ex-
tend to many other settings.

Key words. Universal composability, Impossibility results, Concurrent general com-
position, Public-key models.

1. Introduction

In the setting of secure multiparty computation, a set of parties with private inputs wish
to jointly compute some functionality of their inputs. Loosely speaking, the security
requirements of such a computation are that nothing is learned from the protocol other
than the output (privacy), and that the output is distributed according to the prescribed
functionality (correctness). More exactly, the result of an execution of a secure protocol

∗ This research was partially supported by the Israel Science Foundation (grant No. 781/07).

© International Association for Cryptologic Research 2010

mailto:dafna.kidron@gmail.com
mailto:lindell@cs.biu.ac.il

518 D. Kidron and Y. Lindell

must be like the result of an “ideal execution” with an incorruptible trusted party who
honestly computes the function for the parties (cf. [7] or [19, Sect. 7.1]). These security
requirements must hold in the face of a malicious adversary who controls some subset
of the parties and can arbitrarily deviate from the protocol instructions. Powerful fea-
sibility results have been shown for this problem in both the information-theoretic and
computational settings [6,15,20,32]. In the computational setting, it has been shown
that any multiparty probabilistic polynomial-time functionality can be securely com-
puted for any number of corrupted parties, assuming the existence of enhanced trapdoor
permutations [19,20,32].

Security Under Concurrent Composition The above-described feasibility results re-
late only to the stand-alone setting, where a single protocol is run in isolation. However,
in modern network settings, protocols must remain secure even when many protocol
executions take place concurrently and are being attacked in a coordinated manner. In-
formally speaking, a protocol is said to be secure under concurrent general composition
if it is secure when run many times concurrently, alongside other secure and insecure
protocols. The question of what can and cannot be securely computed in this strongly
adversarial setting has been the topic of much research over recent years. In this paper,
we focus on the framework of universal composability [8]; this framework presents a de-
finition of security with the important property that any protocol meeting the definition
is guaranteed to remain secure under concurrent general composition. Such protocols
are called UC-secure for short.

It has been shown that UC-secure protocols exist for essentially any functionality in
the case of an honest majority [8], or where there is a common reference string [13] or an
active key-registration functionality [2]. Thus, in these cases, the same broad feasibility
results of the stand-alone model hold (except that in the stand-alone model, neither an
honest majority nor a trusted setup phase is needed). When considering the case of
no honest majority and no trusted setup in the setting of universal composability, the
situation is completely different. Specifically, it has been shown that in such a setting,
large classes of functionalities cannot be UC realized [8,10,14,17]. Due to this, a search
has been initiated to find alternative models and definitions of security for this setting;
see, for example, [1,22,30,31].

Our Results—Public-Key Models In this paper, we extend the broad impossibility re-
sults of [14]. The UC impossibility results proven in [14] hold for the plain model
(where there is no trusted setup whatsoever) and for the case of no honest majority.
However, they do not consider the case that some basic public-key infrastructure may
be in place. This is especially serious because standard secure computation can only
really be carried out when there are authenticated channels (see [3] for a study of this
issue), and in practice such authenticated channels are implemented using a public-
key infrastructure. Thus, the actual impossibility results of [14] do not cover the most
interesting setting where a basic public-key infrastructure is used for obtaining authenti-
cated channels. The public-key infrastructure needed for obtaining authenticated chan-
nels was shown in [9] to be a basic bulletin-board functionality (i.e., this functionality
has the property that any party can register any key and no checks are carried out on
the registered key; the only guarantee is that a key that is retrieved for a certain party is

Impossibility Results for Universal Composability in Public-Key Models 519

indeed the same as what was registered). We call the ideal functionality that implements
this bulletin board the bulletin-board CA, denoted Fbbca. We use Fbbca as our starting
point and show that all of the impossibility results of [14] actually hold in the Fbbca-
hybrid model as well (i.e., impossibility carries over even when all parties have access
to the ideal functionality that implements Fbbca). That is, we prove the following:

Impossibility with only a bulletin-board CA. There exist large classes of deterministic
two-party functionalities that cannot be UC realized by any protocol, even in the Fbbca-
hybrid model.

Our proof works by showing that the main lemma of [14] can be adapted to hold
even when the parties are given access to the ideal functionality Fbbca. This lemma
shows that there exists a successful split adversarial strategy for every UC-secure two-
party protocol. Loosely speaking, this strategy means that it is possible for an adversary
to extract the honest party’s input and also bias the output that the honest party receives.
This clearly implies that many (if not most) functionalities cannot be UC realized. The
importance of this result is in showing that UC security is also impossible to achieve in
the realistic model where a public-key infrastructure is in place for obtaining authenti-
cated channels. We remark that impossibility holds even if Fbbca enforces all keys to be
unique.

Before proceeding to describe our other results, one remark is in order. In reality,
the Fbbca ideal functionality would typically be implemented using digital certificates
and a public key of one or more certificate authorities. Could we not just use the public
key of the CA as a common reference string and thereby construct UC-secure protocols
for any functionality using the result of [13]? We argue that this is not the case. This
is mainly due to the fact that the level of trust needed from an authority choosing a
common reference string is far higher than that needed from a CA. In order to see
this, observe that the party choosing the common reference string may be able to learn
all of the parties’ inputs over all executions by simply passively eavesdropping on the
communication. Indeed, a close look at protocols in this model demonstrates that this
is usually the case. In contrast, a CA who posts false keys for honest parties must carry
out an active attack in every protocol execution. Furthermore, even if it does so, it can
learn whatever a man-in-the-middle attacker can learn in an unauthenticated channels
setting, which is rather limited; see [3] for more discussion on this. We conclude that
although implementing Fbbca requires some trust, and this trust in reality also boils
down to some “string”, there is a fundamental difference between trusting a public key
that can be used for achieving authenticated channels and trusting a common reference
string. Thus, it would be highly desirable to have UC-secure protocols in the Fbbca-
hybrid model. Unfortunately, this is ruled out by the aforementioned result.

Having considered this basic CA functionality, we study stronger versions with the
aim of drawing the line between feasibility and impossibility, and of clarifying what
is needed to bypass the impossibility. In addition to the impossibility result described
above, we obtain the following informally stated results:

1. Feasibility for bulletin-board CA with independent keys: We consider a further
strengthening of the CA to one that prevents any party from retrieving a public key

520 D. Kidron and Y. Lindell

from the bulletin board before all parties have registered their keys. This assumes
that the registered keys are kept secret during registration. Note that this forces
the parties’ keys to be independent of each other because no party can see any
other party’s registered key before it registers its own. We show that UC secure
protocols can be constructed in this model. (In fact, this is very easy to achieve by
simply observing that it is possible to securely toss coins in this model.)

2. Impossibility for the bare public-key model: A popular public-key model that has
been used in a number of settings in cryptography is the “bare” public-key model.
In this model, the CA is the same as the bulletin-board CA except that all keys
must be registered before any execution of the secure protocol begins. We note
that there is no limitation on the arbitrary other protocols that may run during the
registration phase.1 In this case, we show that once again, the UC impossibility
results carry over. This is of special interest because this model has recently be
used to achieve stronger notions of non-malleable concurrent zero-knowledge [18,
29]. It seems that the aim of this direction is to eventually achieve UC security (or
equivalently, security under concurrent general composition) in this model. We
show that the security achieved in this model must fall short of UC security.

3. Feasibility for a strong bare public-key model: We observe that if the bare public-
key model is strengthened so that no protocols whatsoever are run during the reg-
istration phase, then it is possible to run a coin-tossing protocol that is secure in the
stand-alone model in order to construct a common reference string (and thereby
achieve UC security [13]). The reason that it suffices to consider the stand-alone
model for the coin-tossing is due to the fact that no protocols whatsoever are run
during this period. Thus this strengthening trivially enables UC security; unfortu-
nately, we view it as highly unrealistic.

4. Feasibility for active key registration by the CA: We analyze the key-registration
functionality used by [2] to achieve UC security and show where the proof of
impossibility fails with respect to the functionality. This highlights what properties
of the functionality are used to bypass the impossibility results.

In addition to the above, we study what happens when the CA may be partially corrupted
(if it is fully corrupted, then the UC impossibility results clearly hold, irrespective of
what the functionality does). We show the following:

1. Passive CA corruptions: we observe that if the CA functionality behaves in a
semi-honest way and reveals its internal state to the adversary (but otherwise acts
honestly), then UC security can be achieved. This follows immediately from the
fact that the CA can generate a uniformly distributed common reference string (in
which case there is no hidden internal state), and thus the protocol of [13] can be
used.

2. Indistinguishable malicious CA corruptions: we study what happens if the CA
behaves maliciously, yet generates messages that are indistinguishable from those

1 Typically, the bare public-key model was considered for self composition where the only protocol run-
ning is the secure one. Thus the issue of arbitrary other protocols was not raised. We interpret the bare public-
key model in the context of concurrent general composition in this way because we view it as a far more
realistic model. The interpretation whereby no protocol whatsoever is being run during the registration phase
is considered next (and we call it the “strong” bare public-key model).

Impossibility Results for Universal Composability in Public-Key Models 521

generated by an honest CA. We show that in this case the UC impossibility results
also hold, irrespective of how the CA is defined.

We believe that our results provide a comprehensive study of UC feasibility in public-
key models. It is our hope that they make sense out of the confusing myriad of public-
key models that are in the literature. (Of course, we do not claim to have covered all
possible public-key models, nor all that appear in the literature. Nevertheless, we hope
that given the results here, an analysis of other models is relatively simple.) Our results
are summarized in the following table:

The Model The Result Notes

Bulletin-board CA Impossibility holds Used by [9]
Bulletin-board with independent keys UC security achievable Generate a CRS and use [13]

Bare public-key model Impossibility holds A popular model
Strong bare public-key model UC security achievable Not a realistic model

Active key registration UC security achievable Result shown in [2]
Passive CA corruptions UC security achievable Generate a CRS and use [13]

Indistinguishable malicious CA corruptions Impossibility holds –

Concurrent General Composition with Fixed Inputs In addition to the above study on
UC security in public-key models we ask another question that relates to the possibility
of obtaining security under concurrent general composition. This question is concerned
with how the parties’ inputs are chosen. It has been shown that when the honest parties
chooses their inputs adaptively,2 then for a large class of functionalities (in fact, most
functionalities), security under concurrent self composition3 is equivalent to security
under concurrent general composition [27]. Therefore, all of the impossibility results
that hold for concurrent general composition also hold for concurrent self composition
with adaptively chosen inputs. This equivalence does not hold when the inputs are all
fixed ahead of time (i.e., where the honest parties receive a vector specifying the input
for each execution). The fact that there exist protocols that are secure under concurrent
self composition with fixed inputs but not with adaptively chosen inputs was demon-
strated in [23]. Later, this separation was shown to hold even for the zero-knowledge
functionality. That is, it has been shown that it is possible to construct zero-knowledge
protocols that are secure under concurrent self composition with arbitrary roles (mean-
ing that players can simultaneously be provers and verifiers), as long as the inputs are all
fixed before any execution begins [4]. We stress that such a construction is impossible
to achieve when inputs are adaptively chosen. Thus, it is strictly easier to achieve con-
current self composition with fixed inputs than it is to achieve with adaptively chosen
inputs. We ask the following question:

For what functionalities is it possible to construct protocols that remain se-
cure when run once concurrently together with an arbitrary other protocol,
and the inputs are fixed before any execution begins.

2 This adaptive choice of inputs means that the inputs used by honest parties may be determined as a
function of the outputs that they have already received in previous executions that have concluded. We stress
that it is always assumed that the adversary can chooses its inputs adaptively. The question of interest here is
with respect to the honest parties.

3 In the setting of concurrent self composition, a single protocol is run many times concurrently.

522 D. Kidron and Y. Lindell

We call this setting minimal concurrent general composition with fixed inputs (it is
minimal in the sense that there are only two protocol executions). We remark that it has
already been shown that when inputs may be adaptively chosen, broad impossibility
holds even if there are only two executions as above [26]. The novelty in the question
here is therefore the fact that the inputs are a priori fixed. We show the following:

Impossibility for fixed inputs. There exist large classes of deterministic two-party
functionalities that cannot be securely realized by any protocol under minimal con-
current general composition with fixed inputs.

We prove this theorem by defining a variant of the UC model where the environment
first writes the inputs to all parties, and only then does the execution begin. We then
show that security under minimal concurrent general composition with fixed inputs im-
plies this UC variant, and finally that all of the impossibility results of [14] hold for this
variant.

Subsequent Work The question of finding a “minimal” setup assumption for UC se-
curity has been studied recently in [16]. They show that it suffices to have a public-key
infrastructure where each party has “some knowledge” of a secret associated with their
public key. Their model differs from our bulletin-board and bare public-key models
in this addition of guaranteed knowledge of a secret. Thus, they manage to avoid the
possibility results with this assumption. Another work of relevance is that of [24] who
provide a general framework for modeling different setup assumptions for achieving
UC security.

2. Preliminaries

2.1. Brief Overview of Universal Composability

We present a very brief overview of how security is defined in the UC framework; see
[8] for further details. As in other general definitions (e.g., [5,7,21,28]), the security
requirements of a given task (i.e., the functionality expected from a protocol that carries
out the task) are captured via a set of instructions for a “trusted party” that obtains
the inputs of the participants and provides them with the desired outputs. Informally, a
protocol securely carries out a given task if running the protocol with a real adversary
amounts to “emulating” an ideal process in which the parties hand their inputs to a
trusted party who computes the appropriate functionality and hands their outputs back,
without any other interaction. We call the algorithm run by the trusted party the ideal
functionality, and describe the interaction in the ideal model to be between the parties and
the ideal functionality (with the understanding that what we really mean is the trusted
party running this functionality).

In order to prove the universal composition theorem, the notion of emulation in this
framework is considerably stronger than in previous ones. Traditionally, the model of
computation includes the parties running the protocol and an adversary A that con-
trols the communication channels and potentially corrupts parties. “Emulating an ideal

Impossibility Results for Universal Composability in Public-Key Models 523

process” means that for every adversary A there should exist an “ideal process adver-
sary”, or simulator, S such that the distribution over all parties’ inputs and outputs is
essentially the same in the ideal and real processes. In the UC framework, an additional
entity, called the environment Z , is introduced. The environment generates the inputs
to all parties, reads all outputs, and in addition interacts with the adversary in an arbi-
trary way throughout the computation. A protocol is said to UC realize a given ideal
functionality F if for any “real-life” adversary A that interacts with the protocol and
the environment there exists an “ideal-process adversary” S , such that no environment
Z can tell whether it is interacting with A and parties running the protocol, or with S
and parties that interact with F in the ideal process. In a sense, here Z serves as an
“interactive distinguisher” between a run of the protocol and the ideal process with ac-
cess to F . A bit more precisely, let REALπ,A,Z be the ensemble describing the output
of environment Z after interacting with parties running protocol π and with adversary
A. Similarly, let IDEALF ,S,Z be the ensemble describing the output of environment
Z after interacting in the ideal process with adversary S and parties that have access
to the ideal functionality F . We note that all entities run in time that is polynomial in
the security parameter, denoted by k. In addition, the environment receives an initial
input z, and security is required to hold for all such inputs (this makes the environment
a non-uniform machine). Security in the UC framework is formalized in the following
definition.

Definition 2.1. Let F be an ideal functionality and let π be a two-party protocol. We
say that π UC realizes F if for every adversary A there exists an ideal-process adversary
S such that for every environment Z , the ensembles IDEALF ,S,Z and REALπ,A,Z are
indistinguishable.

Variants of the UC Definition As with the results of [14], our results hold for all known
variants of the UC definition and are resilient to changes in definition of polynomial-
time, the order of activations and so on. Nevertheless, in order to write our proofs we
need to specify a model. We take the model where all messages are sent via the adver-
sary, including the messages that are sent between parties and the ideal functionalities.
In order to model private values that may be sent between the parties and functionalities,
we specify that these messages are composed of a public header and possibly private
contents (although in this work there will only be one functionality that has private con-
tents; all others are completely public). This convention was used in [13] (see [25, page
97]) and can be modeled in the regular UC framework (where messages are sent directly
and privately between honest parties and the ideal functionalities), by defining a canon-
ical form for the ideal functionality that always asks the adversary when to receive a
message and when to send it (and the query is based on sending the public header). We
remark that the adversary cannot modify messages sent between parties and the ideal
functionality. The question of whether it can or cannot modify messages sent between
honest parties is of no relevance here because we always consider the scenario where
there are two parties, one of which is corrupted. For a full detailed description of the
exact UC definition that we use here, see [25].

524 D. Kidron and Y. Lindell

Non-trivial Protocols and the Requirement to Generate Output As we have mentioned
above, in the variant of UC that we consider here, the ideal-process adversary can
choose when (if ever) to deliver messages that are sent between the parties and the
ideal functionality. Consequently, the definition provides no guarantee that a protocol
will ever generate output or “return” to the calling protocol. Rather, the definition con-
centrates on the security requirements in the case that the protocol generates output.

A corollary of the above fact is that a protocol that “hangs”, never sends any mes-
sages and never generates output, UC realizes any ideal functionality. However, such a
protocol is clearly not interesting. We therefore use the notion of a non-trivial protocol
[13]. Such a protocol has the property that if the real-life adversary delivers all messages
and does not corrupt any parties, then the ideal-process adversary also delivers all mes-
sages (and does not corrupt any parties). Thus, non-trivial protocols have the minimal
property that when all participants are honest (and the adversary does not prevent any
messages from being delivered), then all parties receive output. Again, as with [14], our
impossibility results are for non-trivial protocols only.

The UC Composition Theorem As mentioned, a universally composable protocol re-
mains secure under a very general composition operation. In particular, it maintains its
security even when run concurrently with other arbitrary protocols that are being run
by arbitrary sets of possibly different sets of parties, with possibly related inputs. Thus,
universally composable protocols can be used in modern networks, and security is guar-
anteed. It is therefore of great importance to understand what functions can and cannot
be UC realized under this definition; see [8] for more details.

2.2. The Impossibility Results of [14]

The impossibility results of [14] are obtained by proving a lemma that describes an
“attack” that is possible against any two-party UC-secure protocol that securely realizes
a deterministic function f . The lemma is then used to derive a series of impossibility
results for different classes of functions. The lemma refers to deterministic, polynomial-
time computable functions f : X × X → {0,1}∗ × {0,1}∗, where X ⊆ {0,1}∗ is an
arbitrary, possibly infinite, domain (for simplicity it is assumed that both parties’ inputs
are from the same domain, but this makes no difference). The functions considered have
two outputs, one for each party and are denoted f = (f1, f2) where f1 denotes the first
party’s output and f2 denotes the second party’s output.

Motivation The idea behind the main lemma of [14] is as follows. An ideal-model
simulator in the UC model works by interacting with an ideal functionality; namely, it
sends the functionality an input (in the name of the corrupted party) and receives back an
output. Since the simulated view of the corrupted party is required to be indistinguish-
able from its view in a real execution, it must hold that the input sent by the simulator
to the ideal functionality corresponds to the input that the corrupted party (implicitly)
uses. Furthermore, the corrupted party’s output from the protocol simulation must cor-
respond to the output received by the simulator from the ideal functionality. That is,
such a simulator must be able to “extract” the input used by the corrupted party, in
addition to causing the corrupted party to output a value that corresponds to the output
received by the simulator from the ideal functionality.

Impossibility Results for Universal Composability in Public-Key Models 525

The main point behind the lemma of [14] is the observation that in the plain model,
a malicious adversary in the real model can do “whatever” the simulator can do. Thus,
since the simulator can extract the adversary’s input, a real adversary can extract the
honest party’s input in a real execution (something that should not be possible in a
secure protocol). In other models of secure computation and when some trusted setup
assumptions are used, this attack cannot be carried out because the simulator typically
has some additional “power” that a malicious party does not. (In stand-alone secure
computation, this power is usually the ability to rewind the adversary, something that
cannot be done to a real party. In the UC model with setup assumptions like a common
reference string, this power is the ability to choose the string and make it not necessarily
uniform.)

Split Adversarial Strategies We describe the notion of a split adversarial strategy for
a corrupted P2 as used in [14]. In our results on impossibility results for public-key
models, we will prove exactly the same lemma except that we will show that it holds in
some public-key models (rather than in the plain model).

Intuitively, the adversarial strategy that is constructed for a malicious P2 is one that
consists of two separate machines: P a

2 and P b
2 . Entity P a

2 interacts with (the honest)
P1 and its aim is to “extract” the input used by the honest P1 (it actually does this
by running the ideal simulator for the protocol who, as we have mentioned, is able
to extract such inputs). In contrast, entity P b

2 emulates the ideal functionality for the
simulator that is run by P a

2 . Loosely speaking, P a
2 first “extracts” the input used by P1.

Entity P a
2 then hands this input to P b

2 , who computes the function output and hands
it back to P a

2 . Entity P a
2 then continues with the emulation, and causes P1 to output a

value that is consistent with the input that is chosen by P b
2 (this last step must also be

carried it in any ideal simulation, and so once again can also be achieved by an attack in
a real execution). The formal definition of this strategy appears below. We first present
the “structure” of the attack and then what it means to be “successful”.

Definition 2.2 (Split Adversarial Strategy). Let f : X × X → {0,1}∗ × {0,1}∗ be a
polynomial-time function where f1 and f2 denote the first and second outputs of f ,
respectively, and let πf be a protocol. Let X2 ⊆ X be a polynomial-size subset of
inputs (i.e., |X2| = poly(k), where k is the security parameter), and let x2 ∈ X2. Then,
a corrupted party P2 is said to run a split adversarial strategy if it consists of machines
P a

2 and P b
2 such that:

1. Upon input (X2, x2), party P2 internally gives the machine P b
2 the input pair

(X2, x2).
2. An execution between (an honest) P1 running Πf and P2 = (P a

2 ,P b
2) works as

follows:
(a) P a

2 interacts with P1 according to some specified strategy.
(b) At some stage of the execution P a

2 hands P b
2 a value x′

1.
(c) When P b

2 receives x′
1 from P a

2 , it computes y′
1 = f1(x

′
1, x

′
2) for some x′

2 ∈ X2

of its choice (chosen according to any efficient strategy).
(d) P b

2 hands P a
2 the value y′

1, and P a
2 continues interacting with P1.

526 D. Kidron and Y. Lindell

Informally speaking, a split adversarial strategy is said to be successful if the value
x′

1 procured by P a
2 is “equivalent to” (the honest) P1’s input x1 with respect to f2. That

is, the output of P2, when computed according to f2 and when P2 has input x′
2 ∈ X2,

is the same whether x1 or x′
1 is used. (Note that x′

1 may differ from x1 with respect to
P1’s output, but only the effect on P2’s output is considered.) Furthermore, P a

2 should
succeed in causing P1 to output the value y1 = f1(x1, x

′
2). That is, the output of P1

should be consistent with the value x′
2 chosen by P b

2 .

Definition 2.3 (Successful Strategies). Let f be a polynomial-time function and πf

a protocol, as in Definition 2.2. Furthermore, let k be the security parameter and let Z
be an environment who hands an input x1 ∈ X to P1 and a pair (X2, x2) to P2, where
X2 ⊆ X, |X2| = poly(k), and x2 ∈R X2. Then, a split adversarial strategy for a malicious
P2 is said to be successful if for every Z as above and every input z to Z , the following
two conditions hold in a real execution of P2 with Z and an honest P1:

1. The value x′
1 output by P a

2 in step (b) of Definition 2.2 is such that for every
x2 ∈ X2, f2(x

′
1, x2) = f2(x1, x2).

2. P1 outputs f1(x1, x
′
2), where x′

2 is the value chosen by P b
2 in step (c) of Defini-

tion 2.2.

It is proven in [14] that a successful split adversarial strategy exists for any protocol
that UC realizes a two-party function in the plain model.

3. UC-Security in Public-Key Models

In this section, we investigate the question of whether or not it is possible to achieve
UC-security when there is some type of public-key infrastructure (but there is no honest
majority). In its basic form, a public-key infrastructure is a type of “bulletin board”
where public keys are published (together with the identity of their owner) and can be
retrieved by all parties in a trusted way. (By trust here, we mean that we assume that an
adversary cannot modify published keys or tamper with a public-key while it is being
retrieved by an honest party.) One of the central questions that arises when considering
such an infrastructure is the role of the Certificate Authority (CA) who accepts keys and
posts them on the bulletin board. For example, we may consider a very basic public-
key model where the CA receives keys without any conditions and posts them, and we
may consider a public-key model where the CA requires the users to send the secret-
key that is associated with the public-key to be published. As we have discussed in the
introduction, we study a number of different models, most of which have appeared in
the literature in the past. For each model, we investigate the possibility of obtaining UC-
secure protocols in a hybrid model in which the CA is modeled by an ideal functionality.
Our proofs of impossibility are achieved by reproving the main lemma of [14] in the
different models.

3.1. Bulletin-Board Certificate Authority (CA)

We prove broad impossibility results for achieving UC security, even when the protocol
may use an ideal functionality that implements a basic bulletin-board CA. The func-
tionality that we define for this CA carries out no checks on the keys that are registered.

Impossibility Results for Universal Composability in Public-Key Models 527

Functionality Fbbca
Fbbca proceeds as follows, running with parties P1,P2, . . . and an adversary S :

• Register commands: Upon receiving a message (register, sid, v) from some party Pi , the
functionality checks that no pair (Pi , v

′) is already recorded. If this is the case, it records
the pair (Pi, v). Otherwise, it ignores the new message.

• Retrieve commands: Upon receiving a message (retrieve, sid,Pi) from some party Pj

or the adversary S , the functionality checks if some pair (Pi , v) is recorded. If yes, and v

is the recorded value, it sends (sid,Pi , v) to Pj (or S). Otherwise, it returns (sid,Pi ,⊥).

Fig. 1. The Bulletin-Board CA functionality.

The only limitation is that each party can register at most one key (this actually makes
no difference and our proofs carry through even if parties can register different keys
under different session identifiers or sub-session identifiers); see Fig. 1 for a formal
description of the functionality.

Note that Fbbca carries out no checks on the format of the key, and also does not
prevent parties from copying keys from other parties. Thus, this is arguably the most
basic and simple type of CA that one could imagine. Nevertheless, this does not mean
that it is useless. In fact, this is far from true as it suffices for obtaining authenticated
channels [9]. Recall that authenticated channels are almost always assumed for secure
protocols and thus an assumption like the existence of Fbbca is actually needed anytime
that secure protocols are to be used.

We prove that the split adversarial strategy lemma of [14] holds in the Fbbca-hybrid
model, thereby implying that all of the impossibility results of [14] for deterministic
functionalities hold also in this model; see Sect. 2.2 for the definition of a successful
split adversarial strategy and for the intuition behind the lemma.

Lemma 3.1. Let f be a polynomial-time two-party function, and let Ff be the two-
party ideal functionality that receives x1 from P1 and x2 from P2, and hands them
back their respective outputs f1(x1, x2) and f2(x1, x2). If Ff can be UC-realized in the
Fbbca-hybrid model by a non-trivial protocol πf ,4 then there exists a machine P a

2 such
that for every machine P b

2 of the form described in Definition 2.2, the split adversarial
strategy for P2 = (P a

2 ,P b
2) is successful, except with negligible probability.

Proof. The proof is similar to the proof of the analogous lemma in [14] with the
appropriate changes made due to the fact that now we are working in the Fbbca-hybrid
model rather than the plain model. As we have mentioned in Sect. 2.2 the basic idea
is that if Ff can be UC realized by a protocol πF , then this implies the existence of
an ideal-process adversary (or simulator) S that can extract the input used by A. (It
must be able to extract this input in order to send it to the ideal functionality.) The key
point in the proof is that S must essentially accomplish this extraction while running a
“straight-line black-box” simulation, meaning that it cannot rewind A and also has no

4 Recall that a non-trivial protocol is such that if the real model adversary corrupts no party and delivers
all messages, then so does the ideal model adversary. This rules out the trivial protocol that does not generate
output; see Sect. 2.1 for details.

528 D. Kidron and Y. Lindell

access to its code. Stated differently, S interacts with A just like real parties interact
in a protocol execution. We remark that technically, S is able to rewind A and inspect
its code. However, we will construct a specific A and Z for which these capabilities
are rendered useless. Now, if S can extract A’s input by interacting with it like in a
real execution, and if A behaves like an honest party (which will be the case, as will
be shown), then this means that S can extract an honest party’s input in an honest
interaction. The next step from this observation is that S can actually be used by an
adversary to extract an honest party’s input (thus S can be used to implement the role
of P a

2 in a split adversarial strategy). We also must relate to the fact that in the Fbbca-
hybrid model, S has full control over the functionality and so can modify values that are
registered and so on. This is in contrast to A in a real execution that has no control over
the functionality. Nevertheless, we will show that the operations of the functionality are
so basic that this does not provide any real advantage to S (essentially, Z can verify
that it is running in a world with a proper Fbbca functionality and so can prevent S from
gaining any advantage). The proof works by considering three scenarios:

1. Scenario 1—an Fbbca-hybrid scenario with a corrupted P1: In this scenario, we
consider a specific real-world adversary A who has corrupted P1, a specific envi-
ronment Z , and an execution of the protocol πf in the Fbbca-hybrid model with
an honest P2.

2. Scenario 2—an ideal-world scenario with a corrupted P1: In this scenario, we
consider an ideal execution with the same Z and with the ideal-world adver-
sary/simulator S that is guaranteed to exist for A and πf . (Again here, P1 is
corrupted and P2 is honest.)

3. Scenario 3—an Fbbca-hybrid scenario with a corrupted P2: In this scenario, we
consider a new real adversary A′ who has corrupted P2 and carries out a split
adversarial strategy against an honest P1.

The proof works by showing that certain properties hold in each of the scenarios. We
proceed to the formal proof. Assume that the functionality Ff can be securely realized
by a non-trivial protocol πf . This implies that for every Fbbca-hybrid adversary A there
exist an ideal-process adversary/simulator S such that no environment Z can distinguish
between an execution of the ideal process with S and Ff and an execution of the Fbbca-
hybrid protocol πf with A. We begin by defining a specific Fbbca-hybrid world scenario
with a specific adversary A and environment Z .

Scenario 1—the First Fbbca-Hybrid Scenario The scenario consists of an environment
Z and adversary A, and honest parties P1 and P2. In this scenario, P1 is corrupted (and
thus controlled by A) and P2 is honest. Note that the protocol πf is run in the Fbbca-
hybrid model. This means that each party communicates with the ideal bulletin-board
CA functionality during the execution of the protocol. We describe each entity’s strategy
separately:

• A’s strategy: A controls party P1 who does nothing except to respond to specific
requests of A, as follows. When P1 receives a message (register, sid, v) from A, it
sends the message (register, sid, v) to Fbbca. (Note that A cannot send this message
for P1 and so P1 must do it itself.) In addition, A mediates between Z and the
Fbbca functionality. Specifically, when Z sends a message (register, sid, v) to A,

Impossibility Results for Universal Composability in Public-Key Models 529

adversary A forwards this message to P1 to forward to Fbbca. Likewise, when Z
sends a message (retrieve, sid,P) to A for some party P , adversary A forwards
this message to the Fbbca functionality. When A receives the response (sid,P , v)

from Fbbca it forwards this response to Z . Finally, A acts as a bridge between
Z and P2, delivering all messages from Z to P2 (except for register and retrieve
messages), and delivering all message from P2 to Z (that P2 sent to P1).

• Z ’s strategy: Z chooses inputs for the parties: x1 for P1 and x2 for P2, where
x2 ∈R X2 is randomly chosen, and X2 is a polynomial-size set of inputs chosen by
Z . The environment Z writes x2 on P2’s input tape and keeps x1 to itself.

Next, Z plays the role of the honest P1 on input x1. That is, Z runs the hon-
est P1’s protocol instructions on input x1 and the incoming messages that it re-
ceives from A. When instructed by the protocol πf to perform a key registration
of some key v, Z sends (register, sid, v) to A. When instructed by the protocol to
retrieve a party P ’s key, Z sends (retrieve, sid,P) to A. Upon receiving the answer
(sid,P , v) from A, it continues with the protocol and relates to the answer as if it
was received directly from Fbbca. (We stress that Z cannot interact directly with
Fbbca in the UC model. Therefore, it must work through an intermediary.)

Z determines its output at the end of the protocol execution in the following way.
First, it carries out consistency checks with respect to registered and retrieved keys.
That is, Z outputs 0 if one of the following events occur during the execution:

1. Z asked to retrieve P1’s key but received a key that does not equal the one
that Z registered previously (or a key is retrieved but Z never registered one).

2. Z asked to retrieve the key of some party P more than once and received
different keys in the different requests.

If the above checks pass, then Z looks at the local output that it received for P1
and reads P2’s output tape. (Recall that Z plays P1 so it receives some output from
the protocol. We call this output the local-P1 output.) Z outputs 1 if and only if the
local-P1 output equals f1(x1, x2) and P2’s output equals f2(x1, x2).

We have the following claim:

Claim 3.2. In the Fbbca-hybrid world described in scenario number 1, the environ-
ment Z outputs 1 with probability that is negligibly close to 1.

Proof. Observe that an execution of πf with the above Z and A looks exactly like an
execution between two honest parties P1 and P2 upon inputs x1 and x2, respectively.
This is due to the fact that Z plays the honest P1 and the adversary A honestly relays
all messages between Z and P2 and Z and Fbbca (where these latter messages are sent
via P1 because only it can register keys for its identity). It follows that since πf is a
non-trivial protocol, both parties receive output. In the case of honest P1 and P2, these
outputs are f1(x1, x2) and f2(x1, x2), respectively, except with negligible probability
(otherwise, an environment would be able to distinguish the real and ideal models when
no party is corrupted). Since all consistency checks by Z pass in this scenario (because
A always “behaves well”), it follows that Z outputs 1 except with negligible probabil-
ity. �

530 D. Kidron and Y. Lindell

Scenario 2—the Ideal World with Ff In this scenario, we have the same environment
Z as above, dummy parties P1 and P2 (where P1 is corrupted), and the ideal adver-
sary/simulator that is guaranteed to exist by the security of the protocol πf ; denote this
adversary by S . The strategy of S is not determined by us. Nevertheless, we prove that
the following properties must hold:

1. Property 1: If Z sends a message (retrieve, sid,P1) to S and it previously sent a
(register, sid, v) message, then the value vs in S ’s response equals v. Otherwise,
if no register message was sent, it holds that vs = ⊥.

2. Property 2: If Z sends a message (retrieve, sid,P2) to S and it has previously
received a response (sid,P2, v) for v �= ⊥, then the value vs in S ’s response equals
v.

The fact that these properties hold follow from the inspection of Z ’s consistency checks.
Specifically, if with non-negligible probability one of the properties does not hold, then
Z will output 0 with non-negligible probability in the ideal execution. Since Z outputs
1 except with negligible probability in the Fbbca-hybrid execution, this implies that Z
distinguishes the Fbbca-hybrid and ideal executions, in contradiction to the security of
the protocol. (The above essentially proves that although S plays Fbbca in this execution
and so can theoretically do anything it wishes, it is actually very limited in what it can
do.) We are now ready to prove the following claim.

Claim 3.3. In the ideal execution, S must send Ff an input x′
1 for which it holds that

for every x2 ∈ X2, f2(x1, x2) = f2(x
′
1, x2), except with negligible probability. Further-

more, Z ’s local-P1 output equals f1(x1, x2) except with negligible probability.

Proof. Assume by contradiction that with non-negligible probability S sends an input
x′

1 to Ff such that for some x̃2 ∈ X2 it holds that f2(x
′
1, x̃2) �= f2(x1, x̃2). This implies

that if P2 has input x̃2, it will output f2(x
′
1, x̃2) �= f2(x1, x̃2). By the specification of Z ,

when this occurs Z outputs 0. In order to analyze the probability that P2’s input equals
x̃2, recall that X2 is of polynomial size and P2’s input is uniformly chosen from X2.
Furthermore, the probability that S sends this “bad” x′

1 is independent of the choice
of x2 for P2 (because S has no information about x2 when it sends x′

1). Therefore, the
probability that Z outputs 0 is at least 1/|X2| times the probability that S outputs the
bad x′

1 (which we have already said is non-negligible). Thus, Z outputs 0 in the ideal
process with non-negligible probability. This contradicts the security of πf because as
we have already seen, Z outputs 0 in an Fbbca-hybrid execution with at most negligible
probability.

Regarding the “furthermore” part of the claim, this follows directly from the fact that
if Z ’s local-P1 output does not equal f1(x1, x2) then it outputs 0. �

We remark that the above proof does not use the properties that we proved regarding
S and the register/retrieve messages. These properties will be used below.

Scenario 3—the Second Fbbca-Hybrid Scenario As with the first scenario, here we
also consider an Fbbca-hybrid execution of πf . However, here P1 is honest while P2 is
corrupted (in contrast to scenario 1). We describe a split adversarial strategy for P2 that

Impossibility Results for Universal Composability in Public-Key Models 531

uses S in this scenario, and then show that it is successful. We begin by describing P a
2

(we will not refer to an adversary A′ since (P a
2 ,P b

2) is the adversary here). Machine P a
2

internally invokes the simulator S and emulates an ideal process execution of S with
Ff and the above Z , while actually running an Fbbca-hybrid execution of πf with P1.
It works as follows:

1. When P1 sends (register, sid, v) to Fbbca, machine P a
2 delivers the message to

Fbbca and internally hands the message to S as if it was received from Z . (Recall
that the ideal messages sent between the honest parties and ideal functionalities
are sent via the adversary, and so P a

2 receives these messages.) When P1 sends
a (retrieve, sid,P1) request to Fbbca, P a

2 hands it to S and delivers the response
when S sends the message (sid,P1, v) that is intended as a reply to Z .

2. When P1 sends a (retrieve, sid,P2) to Fbbca, P a
2 internally hands this message

to S , as if S received it from Z . When S outputs the response (sid,P2, vs), P a
2

checks if there is a recorded tuple (sid,P2, v) where v = vs (i.e., P a
2 checks if vs

was already registered for this sid). If no such tuple exists P a
2 sends the message

(register, sid, vs) to Fbbca, and only then delivers the retrieve request of P1. (In
addition, P a

2 records the tuple (sid,P2, vs) internally.)
3. Every message that P a

2 receives from the honest P1 in the execution of πf , it
forwards to S as if S received it from Z .

4. Every message (other than responses to retrieve requests) that S sends to Z in the
emulation, P a

2 forwards to P1 in the real execution.
5. When S outputs a value x′

1 that it intends to send to Ff , entity P a
2 hands it to P b

2 .
Then, when P b

2 hands it back a value y′
1 it passes this to S as if it was received

from Ff and continues the emulation as above. (Recall that y′
1 is computed by

P b
2 choosing some x′

2 ∈ X2 of its choice and then computing y′
1 = f1(x

′
1, x

′
2); see

Definition 2.2.)

We now show that the distribution of messages received and sent by S and P1 in this
Fbbca-hybrid execution with P2 = (P a

2 ,P b
2) is statistically close to the distribution of

messages received and sent by S and Z in scenario 2. We focus first on the messages
that relate to the Fbbca functionality:

1. When P1 sends a (register, sid, v) message to Fbbca, machine P a
2 gives the mes-

sage to S before actually forwarding it to the functionality. Likewise, in scenario
2, S receives the same message from Z .

2. When P1 sends a (retrieve, sid,P2) message to Fbbca, machine P a
2 first gives

the message to S , just as in scenario 2. Furthermore, in scenario 3, P1 receives
(sid,P2, vs) in response from Fbbca, where vs is chosen by S . This is exactly the
same as what happens in scenario 2.

3. When P1 sends duplicate retrieve messages with the same sid in scenario 3, P a
2

does not perform another registration of vs since the value is already registered
inside Fbbca. As a result, P1 receives the same vs from Fbbca in both requests.
Nevertheless, by property 2 described above in scenario 2, S returns the same
value in scenario 2 (except with negligible probability).

4. When P1 sends (retrieve, sid,P1) to Fbbca in scenario 3, S receives this message
from P a

2 . In scenario 2, S receives the same message from Z . Now, in scenario

532 D. Kidron and Y. Lindell

3, P1 receives the retrieved value from Fbbca and S cannot modify its value (this
value was previously registered by P1). Nevertheless, by property 1 described
above in scenario 2, S returns the same value in scenario 2 (except with negligible
probability).

Finally, we observe that since Z plays the honest P1 strategy with input x1, the distri-
bution over the messages that it interchanges with S in scenario 2 is statistically close
to the distribution over the messages that P1 interchanges with S via P a

2 in scenario 3
(the only difference is due to the negligible probability that properties 1 and 2 may not
hold). We conclude that up until the point that P a

2 hands x′
1 to P b

2 , the distributions in
the two scenarios are statistically close. Therefore, the distribution over the value x′

1 that
P a

2 hands to P b
2 in scenario 3 is statistically close to the distribution over the value x′

1
that S sends to Ff in scenario 2. This implies that P2 = (P a

2 ,P b
2) is a successful split

adversarial strategy with respect to requirement (1) of Definition 2.3 (see Sect. 2.2).
It remains to show that P2 is also a successful split adversarial strategy with respect to

requirement (2) of Definition 2.3. This can be shown in exactly the same way as in [14].
Namely, by Claim 3.3, we have that Z ’s local-P1 output must equal f1(x1, x2) ex-
cept with negligible probability. Now, assume by contradiction that with non-negligible
probability P1 outputs a value ỹ1 that does not equal f1(x1, x

′
2) in scenario 3. Recall

that P b
2 hands P a

2 the value y′
1 that is computed by first choosing x′

2 following an ar-
bitrary (polynomial-time) strategy of its choice, and then computing y′

1 = f1(x
′
1, x

′
2).

Now, modify P b
2 to a machine P̃ b

2 who chooses x′
2 uniformly from X2. Since X2 is of

polynomial-size, it follows that with probability 1/poly(n), the value x′
2 chosen by P̃ b

2
equals that chosen by P b

2 . Thus, if P1 outputs ỹ1 �= f1(x1, x
′
2) with non-negligible prob-

ability with P b
2 then it will also output ỹ1 �= f1(x1, x

′
2) with non-negligible probability

in the modified scenario with P̃ b
2 . However, now notice that in this modified scenario,

the value x′
2 is chosen in exactly the same way as Z chooses it in scenario 2 (namely,

it is chosen uniformly from X2). Furthermore, the value y′
1 handed to P a

2 by P b
2 in

scenario 3 is distributed exactly like the value that S receives from Ff in scenario 2
(because the ideal functionality received x′

1 from S and x2 from the honest P2 and x2 is
distributed exactly like x′

2). Now, as we have mentioned, Z outputs 0 if its local-P1 out-
put is different from f1(x1, x2) (which has exactly the same distribution as f1(x1, x

′
2)).

We therefore conclude that P1 must also output f1(x1, x
′
2) in scenario 3, except with

negligible probability (here we again apply the fact that the distribution over all mes-
sages seen in the two scenarios are statistically close). Thus, P2 = (P a

2 ,P b
2) is also a

successful split adversarial strategy with respect to requirement (2) of Definition 2.3.
This completes the proof of the Lemma 3.1. �

Extension to Unique Keys The above proof can be extended in a straightforward way
to the case that the bulletin-board functionality Fbbca ensures that all public keys are
unique. This is due to the fact that after Z registers its own key it can retrieve P2’s key
and check that it is different from its own. Thus, such a strengthening of Fbbca is not
helpful for constructing UC secure protocols.

Impossibility Results for Universal Composability in Public-Key Models 533

3.2. Bulletin-Board CA with Independent Keys

We now further strengthen the public-key model and require that all the public keys
be independent of one another. This is achieved by requiring that all parties complete
registration before any retrieval requests are made. Of course, we also require that the
adversary not see the public-keys before all registration has finished. Technically, this is
achieved by defining the public-key to be part of the “private contents” of the messages
sent between the honest parties and ideal functionality. The functionality is denoted
Findca (for independent-key CA) and is defined in Fig. 2.

We have the following theorem:

Theorem 3.4. Assume that enhanced trapdoor permutations and dense cryptosystems
exist. Then, for any multi-party ideal functionality F , there exists a non-trivial protocol
π that UC realizes F in the Findca-hybrid model in the presence of malicious, static
adversaries, and for any number of corruptions.

The theorem is proven by showing how the common reference string functionality
Fcrs with a uniformly distributed string can be UC realized in the Findca-hybrid model.
We then apply the results of [13] that show that any functionality can be UC realized
in the Fcrs-hybrid model. (We remark that the above theorem can also be stated for
adaptive adversaries. We state the static version for the sake of simplicity.)

For the sake of completeness, we present the Fcrs functionality in Fig. 3. We note that
the functionality is fixed with a given polynomial, mandating the length of the reference
string. We prove the following:

Claim 3.5. The Fcrs functionality can be UC realized in the Findca-hybrid model, for
any number of corrupted parties.

Proof. The proof of this claim is straightforward and follows from the simple obser-
vation that in the Findca-hybrid model it is possible to carry out perfect coin-tossing.

Functionality Findca
Findca initializes a variable allow to 1 and proceeds as follows, running with parties P1,P2, . . .

and an adversary S :

• Register commands: Upon receiving a message (register, sid, v) from some party Pi , the
functionality checks that allow = 1 and that Pi has not already registered a key v′. If the
checks pass, then it records the pair (Pi , v). Otherwise, it ignores the new message. (The
public-header of the register command consists of (register, sid) and the private contents
consists of v.)

• Retrieve commands: Upon receiving a message (retrieve, sid,Pi) from some party Pj

or the adversary S , the functionality checks if some pair (Pi , v) is recorded. If yes, and v

is the recorded value, it sets allow = 0 and sends (sid,Pi , v) to Pj (or S). Otherwise, it
returns (sid,Pi ,⊥). (The entire retrieve command can be placed in the public header.)

Fig. 2. The Independent-Key CA functionality.

534 D. Kidron and Y. Lindell

Functionality Fcrs
Fcrs proceeds as follows, running with parties P1,P2, . . . and an adversary S :

• Upon receiving a message (crs, sid) from some party Pi , the functionality checks if a pair
(sid, r) has been recorded. If yes, it returns (crs, sid, r) to Pi . Otherwise, it chooses a
uniformly distributed r (of a given length), records (sid, r) and returns (crs, sid, r) to Pi .

Fig. 3. The uniformly distributed common reference string functionality.

Namely, all parties register uniformly distributed strings (of a given length). Once a
party has registered its string, it sends a message saying that it has done so to all others.
When a party receives messages from all others that they have registered, it retrieves
all the strings and defines the common reference string to be the exclusive-or of all the
strings. (We stress that the party checks that all parties have indeed registered keys.
If not, it aborts.) Clearly, the result is uniformly distributed because the adversary does
not know any of the honest parties’ registered strings when the corrupted parties register
their strings. �

We conclude by commenting on where the proof of Lemma 3.1 fails in this setting.
This can be seen by noting that in scenario 2, Z must register its public-key via S . Thus,
S essentially learns P1’s key before it needs to register its own. This is in contrast to
scenario 3 where the key registered by P1 is secret until P2 registers its own key.

3.3. The Bare Public-Key Model

The bare public-key model, as introduced by [12], has the property that parties can
only register public keys before the protocol executions begin. Typically, this model has
been considered for concurrent self composition where the secure protocol is the only
protocol running. There are two ways of interpreting this in the setting of concurrent
general composition. An interpretation leading to a more realistic model is one that
states that the only limitation is that the public keys are registered before the secure
protocol begins. In particular, other protocols may be running during the key registra-
tion phase. (Stated differently, the requirement that the public keys all be registered
before the secure protocol begins is one that is local to the secure protocol, and is not
a global network requirement.) We remark that this model is very realistic because it is
possible to set a date where the secure protocol begins running and to close key regis-
tration before this time. A second interpretation is that no protocols may run during the
key registration phase. We view this as highly unrealistic, but nevertheless study it in
Sect. 3.4.

We remark that the bare public-key model has been used in a number of papers in or-
der to bypass lower bounds and impossibility results. For example, it was used by [12]
(and many later works) in order to construct constant-round resettable zero-knowledge
protocols (something that is impossible in the plain model). Recently, it has been used
to achieve stronger notions of concurrent non-malleable zero-knowledge [18,29].5 Our

5 We remark that [18] call their model the “authenticated public-key model”. Nevertheless, this is the same
as the bare public-key model that was considered previously and is considered here.

Impossibility Results for Universal Composability in Public-Key Models 535

Functionality Fbpk
Fbpk initializes a variable allow to 1 and proceeds as follows, running with parties P1,P2, . . .

and an adversary S :

• Register commands: Upon receiving a message (register, sid, v) from some party Pi ,
the functionality checks that allow = 1 and that Pi has not already registered a key v′. If
the checks pass, then it records the pair (Pi , v). Otherwise, it ignores the new message.

• Retrieve commands: Upon receiving a message (retrieve, sid,Pi) from some party Pj

or the adversary S , the functionality checks if some pair (Pi , v) is recorded. If yes, and v

is the recorded value, it sends (sid,Pi , v) to Pj (or S). Otherwise, it returns (sid,Pi ,⊥).
• Halt registration commands: Upon receiving a message (HaltRegistration, sid) from any

party Pi or the adversary S , the functionality sets allow = 0.

Fig. 4. The bare public-key model functionality.

results here show that it is impossible to further strengthen these results to achieve proto-
cols that are UC-secure (or equivalently, secure under concurrent general composition).

We define the bare-public key functionality in Fig. 4. The functionality has an internal
Boolean flag, called allow, which is set to 0 once one of the parties sends the message
HaltRegistration. This step represents the end of the registration phase and from this
point on, the functionality rejects any registration request from any party. We allow any
party to call HaltRegistration to ensure that no honest party begins running the secure
protocol before the registration phase is halted. We stress that as with all the CA func-
tionalities we have seen so far, with the exception of Findca, the public keys are not
secret during the registration phase. (If this were the case, then Fbpk would just be a
special case of Findca.)

We have the following lemma:

Lemma 3.6. Let f be a polynomial-time two-party function, and let Ff be the two-
party ideal functionality that receives x1 from P1 and x2 from P2, and hands them back
their respective outputs f1(x1, x2) and f2(x1, x2). If Ff can be UC-realized in the Fbpk-
hybrid model by a non-trivial protocol πf , then there exists a machine P a

2 such that for
every machine P b

2 of the form described in Definition 2.2, the split adversarial strategy
for P2 = (P a

2 ,P b
2) is successful, except with negligible probability.

Proof. Without loss of generality, we focus on canonical secure protocols that begin
with the following steps (the instructions are stated for party Pi and are the same for all
parties):

1. Party Pi chooses a public-key vi (according to the protocol instructions) and sends
(register, sid, vi) to Fbpk.

2. For each j �= i, party Pi sends (retrieve, sid,Pj) to Fbpk and saves the retrieved
key. If it receives back a tuple (sid,Pj ,⊥), as would be the case if Pj has not yet
registered a key, then it continues trying to retrieve the key.

3. After retrieving all the parties’ keys, Pi sends (HaltRegistration, sid) and begins
the secure protocol execution.

536 D. Kidron and Y. Lindell

4. Whenever Pi is instructed to retrieve a key within the secure protocol, it takes the
appropriate key that was previously stored.

Our focus on canonical protocols is without loss of generality because under the as-
sumption that all key registration takes place before the protocol executions begin, noth-
ing is lost by having the parties retrieve all keys before the protocol begins.

Once we are given that the secure protocol is as above, the proof of the lemma here is
almost identical to that Lemma 3.1. The only important observation relates to scenario
3. Recall that the corrupted P2 does not run the canonical protocol described above, but
rather works as in Lemma 3.1. In particular, the strategy of machine P a

2 within P2 is
such that when P1 first asks to retrieve P2’s key, P a

2 sends this request to S who returns
a key vs . Party P2 registers this key vs with the CA functionality and only then delivers
the retrieve request from P1 to the functionality. In principle, this is a problem in the bare
public-key model because the key vs is chosen later (and may depend on the protocol
messages). Nevertheless, observe that this registration of vs only takes place in the first
retrieve request. In contrast, in all later retrieve requests P2 does nothing but deliver the
retrieve requests and responses between P1 and the functionality. Now, in the canonical
protocol form, P1 retrieves P2’s key before sending a HaltRegistration message. This
ensures that the first retrieval of P2’s key is carried out during the registration phase,
and thus P a

2 can still register the key vs that S chooses. �

3.4. A Strong Bare Public-Key Model

As we have mentioned, it is possible to consider an even stronger bare public-key model
in which it is guaranteed that no protocols whatsoever are executing during the key
registration phase. This can be formally modeled in the UC framework by having a
period where Z cannot interact with A. In this case, it is easy to see that UC secu-
rity can be achieved by just having all parties run a single coin-tossing protocol that
is secure in the stand-alone model (since no other protocols are running, the protocol
runs “stand-alone”). The result of the coin-tossing is then taken as a common reference
string, thereby allowing the use of [13] to UC-realize any functionality. We personally
do not find this setting very interesting because it seems highly unrealistic to expect that
there be a sterile period where no protocols whatsoever are executed.

Of course, the proof of Lemma 3.1 in this case is due to the fact that Z cannot register
the public key in scenarios 1 and 2. Thus, the key must be chosen by A (or S), giving
S an advantage.

3.5. Active Key Registration by the CA

All of the public-key models that we have seen above have the property that the CA
is passive in that it merely accepts keys (albeit while invoking certain checks). In this
section, we consider the key registration functionality introduced by [2] that plays a
more active role.

In [2], it has been shown that essentially any functionality can be UC-realized in
the F f

kr-hybrid model, for any number of corrupted parties. Thus, clearly an analogue
to Lemma 3.1 cannot be proven for this model. Our aim in this section is therefore to
explain where the proof of Lemma 3.1 fails when considering the F f

kr functionality. This

Impossibility Results for Universal Composability in Public-Key Models 537

Functionality F f
kr

F f
kr is parameterized by a function f and a security parameter n. It initializes a set R of strings

to be empty at the first activation and then proceeds as follows, running with parties P1,P2, . . .

and an adversary S :

• Register commands: Upon receiving a message (register, sid) from some party Pi (that
is either corrupted or uncorrupted), the functionality sends (register, sid,Pi) to S and
receives a value p′ back. Then, if p′ ∈ R, it sets p = p′. Otherwise, it chooses a random
string r ∈R {0,1}n, sets p = f (r) and adds p to R. Finally, it records the pair (Pi , f (r))

and sends (registered, sid,p) to Pi and S .
• Register by a corrupted party: Upon receiving a message (register, sid, r) from a cor-

rupted party Pi , the functionality records (Pi , f (r)). In this case, f (r) is not added to
R.

• Retrieve commands: Upon receiving a message (retrieve, sid,Pi) from some party Pj ,
the functionality sends a message (retrieve, sid,Pi ,Pj) to S and obtains a value p back
from S . If (Pi ,p) is recorded, then the functionality returns (sid,Pi ,p) to Pj . Else, it
returns (sid,Pi ,⊥) to Pj .

Fig. 5. The key registration functionality of [2].

highlights the crucial property of the F f

kr functionality that enables the construction of
protocols and thus can be useful when attempting to design other CA functionalities
that can be used for constructing UC-secure protocols.

Failure of Lemma 3.1 in the F f

kr-Hybrid Model In the second scenario of Lemma 3.1,

the simulator S plays the role of the CA functionality F f

kr. In particular, this means
that it determines the value r to be used in computing a new key f (r). The main issue
that arises here is that, depending on the choice of the function f , it may not be pos-
sible for Z to distinguish the case that a key p is correctly formed (i.e., by choosing
r and computing f (r)) from the case that is not correctly formed. Indeed, in the con-
struction by [2], they utilize the fact that keys can be generated in alternate ways that
all look indistinguishable from the defined generation f (r). Of course, this is crucial
when moving to scenario 3 because party P2 cannot choose the keys as it wishes and
so cannot emulate scenario 2 while in scenario 3. The conclusion is that in order to
overcome these impossibility results, a CA functionality is needed that breaks the sym-
metry between the capabilities of the ideal simulator S when “playing the role” of the
functionality and a true corrupted party who interacts with the actual functionality.

3.6. CA Corruptions and UC Security

In this section, we investigate the possibility of obtaining UC secure protocols even
when the CA may be corrupted. Of course, this is of interest only for public-key models
for which it is possible to achieve UC security (without corruptions). Thus, for example,
this is of interest in the Fcrs, F f

kr and Findca models. We also note that if full malicious
corruptions are allowed, then there is no difference between the public-key model and
the plain model (the functionality can be viewed as a regular party). Thus, UC security

538 D. Kidron and Y. Lindell

can clearly not be realized in such a case. We therefore consider weaker corruptions.
We will state out results for general CA functionalities and not specific ones; see below.

3.6.1. Passive (Semi-Honest) CA Corruptions

We say that a CA functionality is passively corrupted if the adversary has access to
the internal state of the functionality, but the functionality continues to act according to
its specification. (Thus, the adversary has malicious corruptions of regular parties but
only semi-honest corruptions of the CA functionality.) We show that there exists a CA
functionality that enables the construction of UC secure protocols even under passive
corruptions. The functionality is the common-reference string functionality Fcrs defined
with a uniformly distributed string, as in Fig. 3. We have the following theorem:

Theorem 3.7. Assume that enhanced trapdoor permutations and dense cryptosystems
exist. Then, for any multi-party ideal functionality F , there exists a non-trivial protocol
π that UC realizes F in the Fcrs-hybrid model in the presence of malicious, static adver-
saries, and for any number of corruptions. This holds even when the Fcrs functionality
is run by a party that is corrupted in a semi-honest fashion.

The proof of the theorem follows from the fact that UC secure protocols can be
achieved in the uniformly distributed Fcrs, as shown in [13]. This is due to the fact
that when the common reference string is uniformly distributed, the functionality has
no additional internal state. Thus, the semi-honest corruption provides no advantage to
the adversary.

There is one important point to note regarding the above. Namely, in order to prove
security in this model (where the adversary has access to the internal state of Fcrs) it
must be the case that the common reference string is generated truly randomly and not
pseudorandomly. Formally, this is achieved by having Fcrs simply output random bits
taken directly from its random tape. This is needed because the UC simulator must be
able to choose the random tape as it wishes (typically so that it includes some type of
trapdoor), and if Fcrs takes a smaller part of its random tape and applies a pseudorandom
generator, the simulator will not be able to do this. Note that in practice, this means that a
(semi) trusted party who provides the Fcrs service must generate the common reference
string using a pure hardware method. In particular, it cannot take a small random seed
and apply a pseudorandom generator.

3.6.2. Indistinguishable Malicious CA Corruptions

An indistinguishable malicious corruption of the CA entity means that the adversary has
full control over the CA, with the limitation that the distribution over the messages pro-
duced by the corrupted CA is indistinguishable from the distribution over the messages
produced by an honest CA. Stated differently, the CA behaves in an honest-looking
manner; see [11].6 We show that Lemma 3.1 holds also in this scenario.

6 We note that [11] differentiates between global honest-looking behavior and local honest-looking behav-
ior. In the setting of two-party computation where one party is corrupted, this makes no difference.

Impossibility Results for Universal Composability in Public-Key Models 539

Lemma 3.8. Let f be a polynomial-time two-party function, and let Ff be the two-
party ideal functionality that receives x1 from P1 and x2 from P2, and hands them
back their respective outputs f1(x1, x2) and f2(x1, x2). If Ff can be UC-realized in the
Fbbca-hybrid model by a non-trivial protocol πf , then there exists a machine P a

2 such
that for every machine P b

2 of the form described in Definition 2.2, the split adversarial
strategy for P2 = (P a

2 ,P b
2) is successful, except with negligible probability. This holds

even if Fbbca is only honest-looking, as defined in [11].

Proof. Once again, the proof is very similar to the proof of Lemma 3.1. Recall that
in scenario 3, party P2 is corrupted and internally runs the code of the simulator S that
is guaranteed to exist in scenario 2. In scenario 3, P2 emulates the ideal process with
Z for S , while interacting with a real honest party P2. The central point here is that
since the CA is also corrupted, the adversarial P2 can determine the messages that the
CA sends to P1 in scenario 3, and make them be exactly the CA functionality messages
that S sends to Z in scenario 2 (recall that in scenario 2, S plays the role of the CA
functionality).

The only additional point to prove is that in scenario 2, the messages generated by the
ideal adversary S when it plays the role of the CA functionality are indistinguishable
from the messages that the real honest CA functionality generates (even when viewed
together with the entire transcript). However, this is derived from the basic UC defin-
ition that guarantees that the environment outputs 1 with at most negligible difference
between the real and ideal models. More specifically, if it were true that these messages
of S are distinguishable, then there exists an appropriate polynomial-time distinguisher
D that distinguishes them. Now, all that needs to be done is to modify Z so that at the
end of the execution it runs D on the transcript and outputs whatever D outputs. This
implies that Z also distinguishes, in contradiction to the assumed security of the pro-
tocol. Given this, Z can be modified back to the way it was and the proof continues as
before. �

4. Universal Composability with Fixed Inputs

An interesting question that arises in the setting of concurrent composition is how in-
puts are chosen. As we have mentioned in the introduction, when honest parties choose
their inputs adaptively (as a function of previous outputs), concurrent self composition
is equivalent to concurrent general composition [27]. Therefore, all of the impossibility
results that hold for concurrent general composition also hold for concurrent self com-
position with adaptively chosen inputs. In contrast, when the honest parties’ inputs are
all fixed ahead of time, there exist functionalities that can be securely computed under
concurrent self composition but not under concurrent general composition [4,23,26].

In this section, we ask whether or not an analogous situation holds for concurrent
general composition. That is, is it possible to achieve concurrent general composition
with fixed inputs in cases that it is impossible where the inputs may be chosen adap-
tively? To be more exact, we investigate for which functions f it is possible to construct
a secure protocol πf for the functionality Ff (as defined above) such that π remains
secure when run concurrently with a single other protocol π ′, and when the inputs to
πf and π ′ are fixed before either execution begins.

540 D. Kidron and Y. Lindell

Defining Concurrent General Composition with Fixed Inputs We define the real and
hybrid models exactly as in [26] with the exception that we denote the vector of inputs
for πf by xπf

and for π ′ by xπ ′ , and we fix these inputs at the onset.7 We denote
by REALπf ,π ′,A(n, xπf

, xπ ′ , z) a real concurrent execution of protocols πf and π ′ with
adversary A, where n is the security parameter, xπf

is the vector of inputs for the parties
in πf , xπ ′ is the vector of inputs for the parties in π ′, and z is the auxiliary input for

the adversary. Likewise, we denote by HYBRID
Ff

π ′,S (n, xπf
, xπ ′ , z) an execution of the

protocol π ′ together with an ideal call to Ff that takes the place of the real execution
of πf ; the inputs are the same as above. Intuitively, πf is secure in this setting if the
output distributions of the REAL and HYBRID executions are indistinguishable. We call
this minimal concurrent general composition because only two protocol executions take
place. We have the following formal definition:

Definition 4.1. Let πf be a polynomial-time protocol and let Ff be an ideal function-
ality. Then, πf securely realizes Ff under minimal concurrent general composition
with fixed inputs if for every polynomial-time protocol π ′ and every probabilistic non-
uniform polynomial-time real-model adversary A for the concurrent executions of πf

and π ′, there exists a probabilistic non-uniform polynomial-time hybrid-model adver-
sary S such that for all xπf

, xπ ′ ∈ ({0,1}∗)m and z ∈ {0,1}∗:

{
HYBRID

Ff

π ′,S (n, xπf
, xπ ′ , z)

}
n∈N

c≡ {
REALπf ,π ′,A(n, xπf

, xπ ′ , z)
}
n∈N

where
c≡ denotes computational indistinguishability.

In order to prove our results, we introduce a restricted UC model where the environ-
ment first writes the inputs to all parties’ input tapes and only once it has finished do the
parties begin executing the protocol. Everything else remains the same and so it is pos-
sible to define this modification as a restriction on the environments considered if one
wishes. A protocol π that UC realizes a functionality F in this model is said to securely
realize F in the UC model with fixed inputs. We first prove the following lemma:

Lemma 4.2. Let πf be a polynomial-time protocol and Ff a functionality. If πf se-
curely realizes Ff under minimal concurrent general composition with fixed inputs,
then πf securely realizes Ff in the UC model with fixed inputs.

Proof Sketch. This is proven in almost exactly the same way as the main theorem
in [26]. Recall that πf is the secure protocol and π ′ an arbitrary other protocol. Then,
in [26] it is shown that the second protocol π ′ can essentially be used to emulate the
behavior of the environment Z in the UC model. This is achieved by π ′ defining des-
ignated parties PZ and PA, where PA is corrupted and PZ is not. The party PZ runs
the internal code of an environment Z from the UC setting and PA does the same for a
UC adversary A. Party PZ sends inputs to the parties (instead of writing them directly

7 In [26], there is a distinction between arbitrary and fixed sets of parties. Here we focus on arbitrary sets
of parties only, although the analogous results there can be carried through here.

Impossibility Results for Universal Composability in Public-Key Models 541

on their input tapes as Z would), receives back their outputs (instead of reading them
directly from their tapes like Z would), and interacts with PA in the same way that Z
interacts with A. Party PA behaves similarly for the UC-adversary A. The other honest
parties in π ′ are simply instructed to receive values from PZ and use them as inputs for
the ideal functionality Ff (in the ideal model) or in the protocol πf (in the real model).
They then send their outputs back to PZ when they finish. Finally, PZ outputs the same
bit that Z would output given its view. The crucial point is that it is possible to set up the
protocol π ′ so that when it is run together with Ff the output of PZ is distributed iden-
tically to the output of Z in an ideal execution of Ff in the UC model. Furthermore, if
π ′ is run together with πf , then the output of PZ is distributed identically to the output
of Z in a real execution of πf in the UC model. The conclusion is therefore that if πf

is not UC secure, then it is also not secure under concurrent general composition. (This
is because when run with π ′ the outputs in the REAL and HYBRID distributions will
be distinguishable. In particular, PZ outputs 1 with probability that is non-negligibly
different in both.)

The proof here is almost the same with the exception being how the parties’ inputs to
πf are chosen. In [26], these are sent by the party PZ playing Z in π ′ (and PZ chooses
them by internally running Z on its auxiliary input z). However, here the inputs must
be a priori fixed. In order to do this, first observe that since we are in the UC model
with fixed inputs, the environment writes the inputs to the honest parties before any in-
teraction takes place. Thus, by using an averaging argument it is easy to see that if the
environment distinguishes the REAL and IDEAL executions with non-negligible prob-
ability in the UC model with fixed inputs, then there exists a vector of inputs xπf

for
which the environment distinguishes the REAL and IDEAL with non-negligible proba-
bility. (Note that the environment may choose the inputs as a function of its auxiliary
input z and its random coins. Thus, the averaging argument is needed to fix a specific
input vector. Note also that this works only because Z determines the parties’ inputs
based on its auxiliary input and own random tape only; in particular, the inputs are de-
termined independently of the honest parties’ random tapes.) Next, party PZ ’s input in
π ′ is set to the value z and random-tape for Z that results in the environment writing
xπf

. Furthermore, all the parties’ inputs in πf are set to xπf
. When the inputs are set

in this way, the execution in the setting of concurrent general composition perfectly
emulates the setting of the UC model with fixed inputs (when Z has the appropriate z

and random tape). More specifically, the output of PZ in a REAL execution of πf with
π ′ will be distributed exactly like the output of the environment Z in a real execution
in the UC model with fixed inputs (when Z has the appropriate z and random tape).
Likewise, the output in a HYBRID execution of π ′ with Ff will be exactly like an ideal
execution in the UC model with fixed inputs. Thus, PZ will distinguish the REAL and
HYBRID models with the same probability that Z distinguishes the REAL and IDEAL

executions in the UC model with fixed inputs. We conclude that if πf is not secure in
the UC model with fixed inputs then it is not secure under minimal concurrent general
composition with fixed inputs. This implies the lemma. �

We note that the above lemma holds as long as the order of quantifiers between S and
Z can be switched (as is the case with the definition of universal composability in the
latest version of [8]). Otherwise, minimal concurrent general composition only implies

542 D. Kidron and Y. Lindell

a weaker form of universal composability. In any case, the known impossibility results
all hold for this weaker form and so for our purposes here there is no difference; see [26]
for more discussion on this (note that the issues that arise here and in [26] in this respect
are exactly the same).

We are now ready to prove our impossibility results, and we begin once again with
an analogue to Lemma 3.1.

Lemma 4.3. Let f be a polynomial-time two-party function, and let Ff be the two-
party ideal functionality that receives x1 from P1 and x2 from P2, and hands them back
their respective outputs f1(x1, x2) and f2(x1, x2). If Ff can be securely realized in the
UC model with fixed inputs by a non-trivial protocol πf (in the plain model or in the
Fbbca, Fukca or Fbpk-hybrid models), then there exists a machine P a

2 such that for every
machine P b

2 of the form described in Definition 2.2, the split adversarial strategy for
P2 = (P a

2 ,P b
2) is successful, except with negligible probability.

Proof. Note that in the proof of Lemma 3.1, the environment Z chooses the inputs for
P1 and P2 at the onset. Thus, in the UC model with fixed inputs the entire proof goes
through without change. (One small technicality is that the actual P1 should not receive
x1 since this is the input used by Z who plays P1. Thus, x2 can be written to P2’s input
tape at the onset, and Z can write the all-zero string to P1’s input tape. In this way, x1
is kept secret by Z who uses it in its computation.) �

Next, we use the following observation:

All of the impossibility results of [14] that use successful split adversarial
strategies hold even for the UC model with fixed inputs.

Note that unlike the impossibility results from Sect. 3, we need the above observation
because the impossibility results of [14] were proven for the standard UC model, and not
for the variant with fixed inputs. Combining Lemmas 4.2 and 4.3 with this observation,
we conclude that there exist large classes of functionalities for which it is impossible to
achieve minimal concurrent general composition with fixed inputs.

We stress that this impossibility result is extremely strong. It is not possible to achieve
concurrent general composition even when only two protocol executions take place and
even when the inputs to these executions are a priori fixed.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments.

References

[1] B. Barak, A. Sahai, How to play almost any mental game over the net—concurrent composition via
super-polynomial simulation, in 46th FOCS (2005), pp. 543–552

[2] B. Barak, R. Canetti, J. Nielsen, R. Pass, Universally composable protocols with relaxed set-up assump-
tions, in 45th FOCS (2004), pp. 186–195

Impossibility Results for Universal Composability in Public-Key Models 543

[3] B. Barak, R. Canetti, Y. Lindell, R. Pass, T. Rabin, Secure computation without authentication, in
CRYPTO 2005. LNCS, vol. 3621 (Springer, Berlin, 2005), pp. 361–377

[4] B. Barak, M. Prabhakaran, A. Sahai, Concurrent non-malleable zero-knowledge, in 47th FOCS (2006),
pp. 345–354

[5] D. Beaver, Foundations of secure interactive computing, in CRYPTO’91. LNCS, vol. 576 (Springer,
Berlin, 1991), pp. 377–391

[6] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant
distributed computation, in 20th STOC (1988), pp. 1–10

[7] R. Canetti, Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202
(2000)

[8] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in 42nd
FOCS (2001), pp. 136–145

[9] R. Canetti, Universally composable signature, certification, and authentication, in 17th Computer Secu-
rity Foundations Workshop (2004), pp. 219–235

[10] R. Canetti, M. Fischlin, Universally composable commitments, in CRYPTO 2001. LNCS, vol. 2139
(Springer, Berlin, 2001), pp. 19–40

[11] R. Canetti, R. Ostrovsky, Secure computation with honest-looking parties: What if nobody is truly
honest? in 31st STOC (1999), pp. 255–264

[12] R. Canetti, O. Goldreich, S. Goldwasser, S. Micali, Resettable zero-knowledge, in 32nd STOC (2000),
pp. 235–244

[13] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Universally composable two-party and multi-party com-
putation, in 34th STOC (2002), pp. 494–503

[14] R. Canetti, E. Kushilevitz, Y. Lindell, On the limitations of universal composable two-party computation
without set-up assumptions. J. Cryptol. 19(2), 135–167 (2006)

[15] D. Chaum, C. Crépeau, I. Damgård, Multi-party unconditionally secure protocols, in 20th STOC (1988),
pp. 11–19

[16] I. Damgård, J.B. Nielsen, C. Orlandi, On the necessary and sufficient assumptions for UC computation,
in 7th TCC. LNCS, vol. 5978 (Springer, Berlin, 2010), pp. 109–127

[17] A. Datta, A. Derek, J.C. Mitchell, A. Ramanathan, A. Scedrov, Games and the impossibility of realizable
ideal functionality, in 3rd TCC. LNCS, vol. 3876 (Springer, Berlin, 2006), pp. 360–379

[18] Y. Deng, G.D. Crescenzo, D. Lin, Concurrently non-malleable zero knowledge in the authenticated
public-key model. Cryptology ePrint Archive, Report #2006/314, 2006

[19] O. Goldreich, Foundations of Cryptography: Volume 2—Basic Applications (Cambridge University
Press, Cambridge, 2004)

[20] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game—A completeness theorem for
protocols with honest majority, in 19th STOC (1987), pp. 218–229

[21] S. Goldwasser, L. Levin, Fair computation of general functions in presence of immoral majority, in
CRYPTO’90. LNCS, vol. 537 (Springer, Berlin, 1990), pp. 77–93

[22] Y. Kalai, Y. Lindell, M. Prabhakaran, Concurrent general composition of secure protocols in the timing
model, in 37th STOC (2005), pp. 644–653

[23] E. Kushilevitz, Y. Lindell, T. Rabin, Information-theoretically secure protocols and security under com-
position, in 38th STOC (2006), pp. 109–118

[24] H. Lin, R. Pass, M. Venkitasubramaniam, A unified framework for concurrent security: Universal com-
posability from stand-alone non-malleability, in 41st STOC (2009), pp. 179–188

[25] Y. Lindell, Composition of Secure Multi-Party Protocols—A Comprehensive Study, LNCS, vol. 2815
(Springer, Berlin, 2003)

[26] Y. Lindell, General composition and universal composability in secure multi-party computation, in 44th
FOCS (2003), pp. 394–403

[27] Y. Lindell, Lower bounds for concurrent self composition, in 1st Theory of Cryptography Conference
(TCC). LNCS, vol. 2951 (Springer, Berlin, 2004), pp. 203–222

[28] S. Micali, P. Rogaway, Secure computation. Unpublished manuscript, 1992. Preliminary version in
CRYPTO’91, LNCS, vol. 576 (Springer, Berlin, 1991), pp. 392–404

[29] R. Ostrovsky, G. Persiano, I. Visconti, Concurrent non-malleable witness indistinguishability and its
applications. Cryptology ePrint Archive, Report #2006/256, 2006

544 D. Kidron and Y. Lindell

[30] R. Pass, Simulation in quasi-polynomial time, and its application to protocol composition, in Eurocrypt
2003. LNCS, vol. 2656 (Springer, Berlin, 2003), pp. 160–176

[31] M. Prabhakaran, A. Sahai, New notions of security: Universal composability without trusted setup, in
36th STOC (2004), pp. 242–251

[32] A. Yao, How to generate and exchange secrets, in 27th FOCS (1986), pp. 162–167

	Impossibility Results for Universal Composability in Public-Key Models and with Fixed Inputsa1
	Abstract
	Introduction
	Security Under Concurrent Composition
	Our Results-Public-Key Models
	Concurrent General Composition with Fixed Inputs
	Subsequent Work

	Preliminaries
	Brief Overview of Universal Composability
	Variants of the UC Definition
	Non-trivial Protocols and the Requirement to Generate Output
	The UC Composition Theorem

	The Impossibility Results of CKL
	Motivation
	Split Adversarial Strategies

	UC-Security in Public-Key Models
	Bulletin-Board Certificate Authority (CA)
	Scenario 1-the First Fbbca-Hybrid Scenario
	Scenario 2-the Ideal World with Ff
	Scenario 3-the Second Fbbca-Hybrid Scenario
	Extension to Unique Keys

	Bulletin-Board CA with Independent Keys
	The Bare Public-Key Model
	A Strong Bare Public-Key Model
	Active Key Registration by the CA
	Failure of Lemma 3.1 in the Ffkr-Hybrid Model

	CA Corruptions and UC Security
	Passive (Semi-Honest) CA Corruptions
	Indistinguishable Malicious CA Corruptions

	Universal Composability with Fixed Inputs
	Defining Concurrent General Composition with Fixed Inputs

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

