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Abstract. In this paper, we introduce a new primitive called identity-based encryp-
tion with wildcards, or WIBE for short. It allows a sender to encrypt messages to a
whole range of receivers whose identities match a certain pattern. This pattern is de-
fined through a sequence of fixed strings and wildcards, where any string can take the
place of a wildcard in a matching identity. Our primitive can be applied to provide an
intuitive way to send encrypted email to groups of users in a corporate hierarchy. We
propose a full security notion and give efficient implementations meeting this notion
under different pairing-related assumptions, both in the random oracle model and in
the standard model.

Key words. Identity-based encryption, Wildcard, Pairings.

1. Introduction

The concept of identity-based cryptography was introduced by Shamir as early as in
1984 [25], and the same paper proposed an identity-based signature scheme. However,
it took nearly 20 years for an efficient identity-based encryption (IBE) scheme to be
proposed. In 2000 and 2001, respectively, Sakai, Ohgishi and Kasahara [24] and Boneh
and Franklin [8] proposed IBE schemes based on elliptic curve pairings. Also, in 2001
Cocks proposed a system based on the quadratic residuosity problem [13].

One of the main application areas proposed for IBE is that of email encryption. In this
scenario, given an email address, one can encrypt a message to the owner of the email
address without needing to obtain an authentic copy of the owner’s public key first. In
order to decrypt the email, the recipient must authenticate itself to a trusted authority
who generates a private key corresponding to the email address used to encrypt the
message.

1.1. Identity-Based Encryption with Wildcards

Our work is motivated by the fact that many email addresses correspond to groups of
users rather than single individuals. Consider the scenario where there is some kind of
organisational hierarchy. Take as an example an organisation called ECRYPT which
is divided into virtual labs, say AZTEC and STVL. In addition, these virtual labs are
further subdivided into working groups WG1, WG2 and WG3. Finally, each working
group may consist of many individual members. There are several extensions of the IBE
primitive to such a hierarchical setting (HIBE) [16,18]. The idea is that each level can
issue keys to users on the level below. For example, the owner of the ECRYPT key can
issue decryption keys for ECRYPT.AZTEC and ECRYPT.STVL.

Suppose that we wish to send an email to all the members of the AZTEC.WG1 work-
ing group, which includes the personal addresses

– ECRYPT.AZTEC.WG1.Nigel,
– ECRYPT.AZTEC.WG1.Dario,
– ECRYPT.AZTEC.WG1.John.

Given a standard HIBE, one would have to encrypt the message to each user individ-
ually. To address this limitation, we introduce the concept of identity-based encryption
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with wildcards (WIBE). The way in which decryption keys are issued is exactly as in a
standard HIBE scheme; what differs is encryption. Our primitive allows the encrypter
to replace any component of the recipient identity with a wildcard so that any identity
matching the pattern can decrypt. Denoting wildcards by *, in the example above the
encrypter would use the identity

– ECRYPT.AZTEC.WG1.*

to encrypt to all members of the AZTEC.WG1 group.
It is often suggested that identity strings should be appended with the date so as

to add timeliness to the message, and so try to mitigate the problems associated with
key revocation. Using our technique we can now encrypt to a group of users, with a
particular date, by encrypting to an identity of the form

– ECRYPT.AZTEC.WG1.*.22Oct2006

for example. Thus any individual in the group

– ECRYPT.AZTEC.WG1

with a decryption key for 22nd October 2006 will be able to decrypt.
As another example, take a hierarchy of email addresses at academic institutions of

the form

– name@department.university.edu,

i.e. the email address of John Smith working at the computer science department of
Some State University would be johnsmith@cs.ssu.edu. Using our primitive,
one can send encrypted email to everyone in the computer science department at Some
State University by encrypting to identity *@cs.ssu.edu, to everyone at SSU by
encrypting to *@*.ssu.edu, to all computer scientists at any institution by encrypting
to *@cs.*.edu, or to all system administrators in the university by encrypting to
sysadmin@*.ssu.edu.

1.2. Our Contributions

In this paper, we introduce the primitive of identity-based encryption with wildcards,
or a WIBE for short. We define appropriate security notions under chosen-plaintext and
chosen-ciphertext attack, and present the first instantiations of this primitive. In more
detail, we present the syntax and security notions in Sect. 3. To illustrate the relationship
between WIBEs and other identity-based primitives, we show how WIBE schemes can
be built from HIBE schemes and from fuzzy identity-based encryption schemes.

As is the case for most public-key and identity-based encryption schemes, the non-
hybrid WIBE schemes can only be used to encrypt relatively short messages, typically
about 160 bits. To encrypt longer messages, one will have to resort to hybrid techniques:
the sender uses the WIBE to encrypt a fresh symmetric key K and encrypts the actual
message under the key K . The basic construction has been used within the crypto-
graphic community for years, dating back to the work of Blum and Goldwasser in 1984
[6], but its security for the case of public-key encryption was not properly analysed until
the work of Cramer and Shoup [14]. One would intuitively expect these results to extend
to the case of WIBEs, which is indeed the case. We present the syntax for a WIB-KEM
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in Sect. 4, along with the composition theorem which proves that the combination of a
secure WIB-KEM and a secure DEM results in a secure WIBE scheme.

We also give several constructions for a WIBE scheme, classified according to
their security guarantees. We first present the Boneh–Boyen WIBE (BB-WIBE—see
Sect. 5.1) and the Boneh–Boyen–Goh WIBE (BBG-WIBE—see Sect. 5.2). These
schemes are IND-CPA secure in the selective identity model and do not require random
oracles to be proven secure, although we do require random oracles in order to prove
their security in the full (non-selective-identity) model (see Sect. 5.4). We also present
the Waters WIBE scheme (see Sect. 5.3) which is secure in the non-selective-identity
IND-CPA setting without random oracles.

The range of IND-CPA WIBE schemes available makes selection difficult. The Wa-
ters WIBE scheme has the best security guarantees, but the worst performance. In par-
ticular, the number of elements in the master public key depends upon the maximum
length of an identity, which is typically of the order of 160 bits. Hence, even with a
small number of levels, the size of the master public key can be prohibitive. Both the
BB-WIBE scheme and the BBG-WIBE scheme have better performance characteris-
tics, but their security (in the non-selective-identity model) depends on random oracles.
Furthermore, the BBG-WIBE scheme reduces to the less-studied L-BDHI assumption,
but has the best performance characteristics.

The construction of IND-CCA secure WIBE schemes is more difficult. We present
two generic transformations from an IND-CPA scheme into an IND-CCA scheme. The
first transformation is based on the Canetti–Halevi–Katz transform (see Sect. 6.1) which
builds an L-level IND-WID-CCA secure WIBE from an (L + 1)-level IND-WID-CPA
WIBE. The disadvantage of our construction compared to the original CHK transform
is that our construction always encrypts messages under patterns of length L + 1. This
often increases the space and time complexity of the scheme in practical situations (as
the worst performance characteristic are often obtained for “full-length” patterns). The
approach we present in this paper is different from the approach given in the ePrint
version of [1], which requires using 2L + 2 levels as opposed to L + 1. We thank the
anonymous referee for helping guide us to this improvement.

Our second transform is based on Dent’s construction of a KEM (see Sect. 6.2).
This converts a weakly secure (one-way) WIBE scheme into an IND-CCA secure WIB-
KEM, but requires the random oracle model in order to prove its security. We note
that one-way security is implied by IND-CPA security (for sufficiently large messages
spaces). Consequently, we can use any of the IND-CPA constructions given in Sect. 5
to build an IND-CCA secure scheme.

In [5], we also presented a WIB-KEM in the standard model based on the Kiltz–
Galindo HIB-KEM from [20]. Due to our improved CPA to CCA transform described
above, this is no longer as efficient as the transformed Waters WIBE, hence we do not
consider the Kiltz–Galindo WIB-KEM in this paper.

An overview of all the schemes we present is given in Table 1 and Table 2.

2. A Recap on Various Primitives

In this section, we recall basic notation and known results on different primitives that we
will be using throughout this paper. In particular, we will recall several constructions of
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Table 1. Efficiency comparison between our CPA-secure schemes. We compare the generic scheme of
Sect. 3.3, the Waters-WIBE scheme of Sect. 5.3, the BB-WIBE scheme of Sect. 5.1, the BBG-WIBE scheme
of Sect. 5.2, and the Waters-WIBE scheme of Sect. 5.3. The schemes are compared in terms of master number
of elements in the public key (|mpk|), number of elements in the user secret key (|d|), number of element in
the ciphertext (|C|), number of pairing operations required for decryption (Decrypt), the security assumption
under which the scheme is proved secure, and whether this proof is in the random oracle model or not. The
generic construction does not introduce any random oracles, but if the security proof of the HIBE scheme is
in the random oracle model, then the WIBE obviously inherits this property. L is the maximal hierarchy depth
and n is the bit length of an identity string. Figures are worst-case values, usually occurring for identities at

level L with all-wildcard ciphertexts.

Scheme |mpk| |d| |C| Decrypt Assumption RO

Generic |mpkHIBE| 2L · |dHIBE| |CHIBE| DecryptHIBE IND-HID-CPA HIBE No
BB-WIBE 2L + 3 L + 1 2L + 2 L + 1 BDDH Yes
BBG-WIBE L + 4 L + 2 L + 3 2 L-BDHI Yes
Waters-WIBE (n + 1)L + 3 L + 1 (n + 1)L + 2 L + 1 BDDH No

Table 2. Efficiency comparison between our CCA-secure schemes. The BB-WIBE scheme is the IND-
WID-CPA scheme given in 5.1; the BBG-WIBE scheme is the IND-WID-CPA scheme given in 5.2; the
Waters scheme is the IND-WID-CPA scheme given in 5.3. The OML(·) transformation refers to the (one
more level) generic CCA-secure construction of a CCA-secure WIBE from a CPA-secure WIBE presented
in Sect. 6.1. The OW(·) transformation is our random-oracle based construction of a WIB-KEM scheme
from a CPA-secure WIBE presented in Sect. 6.2. We compare the schemes in terms of number of elements
in the master public key (|mpk|), number of elements in the user secret key (|d|), number of elements in
the ciphertext (|C|), number of exponentiations required for key encapsulation (Encap), number of pairings
required for key decapsulation (Decap), and the dominant factor lost in the security reduction to the underlying
assumption. L is the maximal hierarchy depth and n is the bit length of an identity string. The values qH and
qK refer to the number of queries made by an adversary to the random oracle and key derivation oracle,

respectively.

Scheme |mpk| |d| |C| Encap Decap Security loss

OML(BB-WIBE) 2L + 5 L + 1 2L + 3 2L + 4 L + 2 qL+1
H

OW(BB-WIBE) 2L + 3 L + 1 2L + 2 2L + 2 L + 1 qL
H

OML(BBG-WIBE) L + 4 L + 1 L + 3 L + 3 2 qL+1
H

OW(BBG-WIBE) L + 4 L + 1 L + 3 L + 3 2 qL
H

OML(Waters) (n + 1)(L + 1) + 3 L + 1 (n + 1)L + 3 (n + 1)L + 3 L + 2 (2nqK)L+1

Hierarchical Identity-Based Encryption schemes (HIBEs) upon which out Wildcarded
Identity-Based Encryption schemes (WIBEs) are based.

2.1. Basic Notation

Let N = {0,1,2, . . .} be the set of natural numbers. Let ε be the empty string. If n ∈ N,
then {0,1}n denotes the set of n-bit strings and {0,1}∗ is the set of all finite bit strings.
If s = (s1, . . . , sn) is an ordered sequence of n elements of some set and 0 ≤ � ≤ n, then
s≤� is the ordered sequence consisting of the first � elements of s, i.e. s≤� = (s1, . . . , s�).
Furthermore, if ID is an n-bit string, then we set

[IDi] = {1 ≤ j ≤ n : the j th bit of IDi is one}.
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If S is a finite set, then y
$← S denotes the assignment to y of a randomly chosen

element of the set S. If A is a deterministic algorithm, then y ← A(x) denotes the
assignment to y of the output A when run on the input x. If A is a randomised algorithm,

then y
$← A(x) denotes the assignment to y of the output of A on the input x when the

algorithm is run with fresh random coins.

2.2. Hash Functions

A hash function is a family of maps Fk : I P → O P index by a keyspace K in which the
output space O P is finite. The input space I P may be finite or infinite. Additionally,
the key space may be empty or non-empty. There are many security properties that can
be ascribed to a hash function. We will only need to consider one security property at
this time (although we will introduce further security notions in later sections and may
model these hash functions as random oracles).

Definition 1. A (t, ε)-adversary A against the second pre-image resistance property of
a family of hash functions Fk : I P → O P with a finite input space I P is an algorithm
that runs in time at most t and has advantage at least ε, where the adversary’s advantage
is defined to be:

Pr
[
x �= y ∧ Fk(x) = Fk(y) : x $← I P ; k $← K;y $← A(k, x)

]
.

2.3. One-Time Signature Schemes

In order to amplify the security of a HIBE/WIBE (from IND-CPA security to IND-
CCA security), we will make use of a one-time signature scheme. A one-time signature
scheme is a triple of algorithms (SigGen,Sign,Verify). The key generation algorithm
SigGen outputs signing and verification keys (sk, vk) for the signature scheme. The
signing algorithm takes as input a signing key sk and a message m ∈ {0,1}∗, and outputs
a signature σ ∈ {0,1}∗. The verification algorithm takes as input a verification key vk, a
message m ∈ {0,1}∗ and a signature σ ∈ {0,1}∗, and outputs either 	 (indicating a valid
signature) or ⊥ (indicating an invalid signature). For correctness, we require that for all

key pairs (sk, vk), messages m ∈ {0,1}∗, and signatures σ
$← Sign(sk,m), we have that

Verify(vk,m,σ ) = 	 with probability one.
The security notion for a one-time unforgeable signature scheme is captured by the

following game played between an adversary A = (A1, A2) and a hypothetical chal-
lenger:

1. The challenger generates a key pair (sk∗, vk∗) $← SigGen.
2. The adversary runs A1 on input vk∗. The adversary outputs a message m∗ and

some state information state.
3. The challenger computes σ ∗ $← Sign(sk∗,m∗).
4. The adversary runs A2 on σ ∗ and state. The adversary outputs a message signature

pair (m,σ ).

The adversary wins the game if Verify(vk∗,m,σ ) = 	 and (m,σ ) �= (m∗, σ ∗). The ad-
versary’s advantage is defined to be Pr [ A wins ].
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Definition 2. A (t, ε)-adversary against the one-time unforgeability of the signature
scheme is an algorithm that runs in time t and has advantage at least ε in winning the
above game.

2.4. Bilinear Maps and Related Assumptions

Let G,GT be multiplicative groups of prime order p with an admissible map ê :
G × G → GT . By admissible we mean that the map is bilinear, non-degenerate and
efficiently computable. Bilinearity means that for all a, b ∈ Zp and all g ∈ G we have
ê(ga, gb) = ê(g, g)ab . By non-degenerate we mean that ê(g, g) = 1 if and only if g = 1.

In such a setting, we can define a number of computational problems. The first we
shall be interested in is called the bilinear decisional Diffie–Hellman (BDDH) problem
[19]: given a tuple (g, ga, gb, gc, T ), the problem is to decide whether T = ê(g, g)abc

or whether it is a random element of GT . More formally, we define the following game
between an adversary A and a challenger. The challenger first chooses a random gener-

ator g
$← G

∗, random integers a, b, c
$← Zp , a random element T

$← GT , and a random

bit β
$← {0,1}. If β = 1 it feeds A the tuple (g, ga, gb, gc, ê(g, g)abc) as input; if β = 0

it feeds A the tuple (g, ga, gb, gc, T ) as input. The adversary A must then output its
guess β ′ for β . The adversary has advantage ε in solving the BDDH problem if

∣∣Pr
[

A
(
g,ga, gb, gc, ê(g, g)abc

) = 1
] − Pr

[
A

(
g,ga, gb, gc, T

) = 1
]∣∣ ≥ ε,

where the probabilities are over the random choice of g, a, b, c, T and over the random
coins of A.

Definition 3. A (t, ε)-adversary A against the BDDH problem is an algorithm that
runs in time at most t and has advantage at least ε.

We note that throughout this paper we will assume that the time t of an adversary
includes its code size, in order to exclude trivial “lookup” adversaries.

A second problem we will use in our constructions is the �-bilinear Diffie–Hellman
Inversion (�-BDHI) problem [7,21]. The problem is to compute ê(g, g)1/α for random

g
$← G

∗ and α
$← Zp given g,gα, . . . , g(α�). The decisional variant of this problem is

to distinguish ê(g, g)1/α from a random element of GT . We say that adversary A has
advantage ε in solving the decisional �-BDHI problem if

∣∣Pr
[

A
(
g,gα, . . . , g(α�), ê(g, g)1/α

) = 1
] − Pr

[
A

(
g,gα, . . . , g(α�), T

) = 1
]∣∣ ≥ ε,

where the probability is over the random choice of g
$← G

∗, α
$← Zp , T

$← GT , and the
coins of A.

Definition 4. A (t, ε)-adversary against the decisional �-BDHI problem is an algo-
rithm that runs in time at most t and has advantage at least ε in the above game.

We note that the BDDH problem is a weaker assumption than the �-BDHI assump-
tion. Hence, all other things being equal schemes which are based on the BDDH as-
sumption are to be preferred to ones based on the �-BDHI assumption. However, our
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most efficient constructions are based on the �-BDHI assumption as opposed to the
BDDH assumption. As the two assumptions are very different in nature, it is hard to
compare precisely various schemes; indeed, the comparison would depend on the read-
ers view with respect to the interpretation of exact security results and the view of the
relative hardness of the two underlying problems.

2.5. Hierarchical Identity-Based Encryption

An identity-based encryption (IBE) scheme is a tuple of algorithms (Setup, KeyDer,
Encrypt, Decrypt) providing the following functionality. The trusted authority runs
Setup to generate a master key pair (mpk,msk). It publishes the master public key
mpk and keeps the master secret key msk private. When a user with identity ID
wishes to become part of the system, the trusted authority generates a decryption key

dID
$← KeyDer(msk, ID), and sends this key over a secure and authenticated channel

to the user. To send an encrypted message m to the user with identity ID, the sender

computes the ciphertext C
$← Encrypt(mpk, ID,m), which can be decrypted by the user

as m ← Decrypt(dID,C). We refer to [8] for details on the security definitions for IBE
schemes.

In this paper, we are more interested in the concept of Hierarchical Identity-Based
Encryption (HIBE) [16,18]. In a HIBE scheme, users are organised in a tree of depth L,
with the root being the master trusted authority. The identity of a user at level 0 ≤ � ≤ L

in the tree is given by a vector ID = (ID1, . . . , ID�) ∈ ({0,1}∗)�. A HIBE scheme is a tu-
ple of algorithms (Setup,KeyDer,Encrypt,Decrypt) providing the same functionality as
in an IBE scheme, except that a user ID = (ID1, . . . , ID�) at level � can use its own se-
cret key dID to generate a secret key for any of its children ID′ = (ID1, . . . , ID�, ID�+1)

via dID′
$← KeyDer(dID, ID�+1). Note that by iteratively applying the KeyDer algorithm,

user ID can derive secret keys for any of its descendants ID′ = (ID1, . . . , ID�+δ), δ ≥ 0.
We will occasionally use the overloaded notation

dID′
$← KeyDer

(
dID, (ID�+1, . . . , ID�+δ)

)

to denote this process. The secret key of the root identity at level 0 is dε ← msk. Encryp-
tion and decryption are the same as for IBE, but with vectors of bit strings as identities
instead of ordinary bit strings.

The security of a HIBE scheme is defined through the following IND-HID-CPA
game, played between an adversary A = (A1, A2) and a hypothetical challenger:

1. The challenger generates a master key pair (mpk,msk)
$← Setup.

2. The adversary runs A1 on mpk. The adversary is given access to a key derivation
oracle that, on input of an identity ID = (ID1, . . . , ID�), returns the secret key

dID
$← KeyDer(msk, ID) corresponding to that identity. The adversary outputs two

equal-length messages (m0,m1) and a challenge identity ID∗ = (ID∗
1, . . . , ID∗

�∗),
along with some state information state.

3. The challenger chooses a bit β
$← {0,1} and computes the ciphertext C∗ $←

Encrypt(mpk, ID∗,mβ).
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4. The adversary runs A2 on the input C∗ and the state information state. The adver-
sary is given access to a key derivation oracle as before. The adversary outputs a
bit β ′.

In most cases, we will suppress the state information passed between adversary algo-
rithms and simply assume that all necessary details are passed from one algorithm to
the next. The adversary wins the game if β = β ′ and it never queries the key derivation
oracle with any ancestor identity of ID∗, i.e. any identity ID = (ID∗

1, . . . , ID∗
�) where

� ≤ �∗. The adversary’s advantage is defined to be equal to |2 · Pr [ A wins ] − 1|.

Definition 5. A (t, qK, ε)-adversary against the IND-HID-CPA security of a HIBE
scheme is an algorithm that runs in time at most t , makes at most qK queries to the
key derivation oracle, and has advantage at least ε in winning the IND-HID-CPA game
described above.

The IND-HID-CCA security game is identical to the IND-HID-CPA security game
with the exception that in the IND-HID-CCA security game the adversary additionally
has access to a decryption oracle that, on input of a ciphertext C and an identity ID, re-
turns the decryption m ← Decrypt(KeyDer(msk, ID),C). The adversary wins the game
if β = β ′, it never queries the key derivation oracle with any ancestor identity of ID∗,
and it never queries the decryption oracle with the pair (C∗, ID∗) after the challenge
ciphertext is computed.

Definition 6. A (t, qK, qD, ε)-adversary against the IND-HID-CCA security of the
HIBE scheme is an algorithm that runs in time at most t , makes at most qK queries to
the key derivation oracle, makes at most qD queries to the decryption oracle, and has
advantage at least ε in winning the IND-HID-CCA game described above.

In a selective-identity (sID) attack [7], the adversary has to output the challenge iden-
tity ID∗ at the very beginning of the game, before even seeing the master public key. In
other words, the adversary is considered to be a triple (A0, A1, A2), where A0 simply
outputs the challenge identity (and some state information to be passed to A1). The def-
initions for IND-HID-CPA and IND-HID-CCA security are otherwise identical to those
above. In the random oracle model [2], all algorithms, as well as the adversary, have ac-
cess to a random oracle mapping arbitrary bit strings onto a range that possibly depends
on the master public key. All above security definitions then take an extra parameter qH

denoting the adversary’s maximum number of queries to the random oracle.
We now recap on the main efficient HIBE constructions in the literature, namely the

HIBE schemes of Waters (W-HIBE), Boneh–Boyen (BB-HIBE), and Boneh–Boyen–
Goh (BBG-HIBE).

2.6. The Boneh–Boyen HIBE

In this section, we present a variant of the HIBE scheme by Boneh and Boyen [7].
In this scheme, we assume that identities are vectors of elements of Zp—if necessary
this can be achieved by applying a collision-resistant hash function h : {0,1}∗ → Zp to
binary identities before applying the scheme. The scheme is described in Fig. 1. The
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp

h1 ← gα
1 ; h2 ← gα

2

ui,j
$← G for i = 1, . . . ,L, j = 0,1

mpk ← (g1, g2, h1, u1,0, . . . , uL,1)

msk ← h2
Return (mpk,msk)

Algorithm KeyDer(d(ID1,...,ID�), ID�+1):
Parse d(ID1,...,ID�) as (d0, . . . ,d�)

r�+1
$← Zp

d′
0 ← d0 · (u�+1,0 · uID�+1

�+1,1

)r�+1

d′
�+1 ← g

r�+1
1

Return (d′
0,d1, . . . ,d�,d′

�+1)

Algorithm Encrypt(mpk, ID,m):
Parse ID as (ID1, . . . , ID�)

r
$← Zp ; C1 ← gr

1
For i = 1, . . . , � do

C2,i ← (
ui,0 · uIDi

i,1

)r

C3 ← m · ê(h1, g2)r

Return (C1,C2,1, . . . ,C2,�,C3)

Algorithm Decrypt(d(ID1,...,ID�),C):
Parse d(ID1,...,IDl ) as (d0, . . . ,d�)

Parse C as (C1,C2,1, . . . ,C2,�,C3)

m′ ← C3 ·
∏�

i=1 ê(di ,C2,i )

ê(C1,d0)

Return m′

Fig. 1. The Boneh–Boyen HIBE scheme.

main difference between the original HIBE scheme of [7] and our variant above is that
our scheme uses a different value ui,1 for each level, while the original scheme uses
the same value u1 for all levels. Adding wildcard functionality to the original scheme
would require us to include ur

1 in the ciphertext, but this ruins security as it can be used
to change the identity for which a ciphertext is encrypted.

For completeness, we prove the security of this new HIBE scheme, despite its simi-
larities to scheme of Boneh and Boyen [7].

Theorem 1. If there exists a (t, qK, ε)-adversary against the IND-sHID-CPA security
of the BB-HIBE (with hierarchy depth L) then there exists a (t ′, ε′)-adversary against
the BDDH problem in G, where ε′ ≥ ε − qK/p and t ′ ≤ t + O(L · qK · texp) and texp is
the maximum time for an exponentiation in G and p is the order of G.

Proof. The present proof follows very closely the proof of security for the original
scheme in [7]. As before, we assume that there exist an adversary A = (A0, A1, A2)

that breaks the IND-sID-CPA-security of the BB-HIBE scheme and then we show how
to efficiently build another adversary B that, using A as a subroutine, manages to solve
the BDDH problem in G.

Algorithm B first receives as input a random tuple (g,A = ga,B = gb,C = gc,Z)

and its goal is to determine whether Z = ê(g, g)abc or ê(g, g)z for a random element
z in Zp . Algorithm B should output 1 if Z = ê(g, g)abc and 0 otherwise. Algorithm B
works as follows.

Initialisation. Algorithm B starts by running algorithm A0, which responds with
the challenge identity ID∗ = (ID∗

1, . . . , ID∗
�∗) where 0 ≤ �∗ ≤ L. If �∗ = L then B

sets ˜ID∗ ← ID∗. Otherwise, B randomly generates ID∗
�∗+1, . . . , ID∗

L

$← Zp and sets
˜ID∗ ← (ID∗

1, . . . , ID∗
L).
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Setup. To generate the systems parameters, B first sets g1 ← g, h1 ← A, and g2 ← B .

Algorithm B then chooses α1,0, . . . , αL,0, α1,1, . . . , αL,1
$← Z

∗
p at random and sets

ui,0 ← g
αi,0
1 · h

−ID∗
i αi,1

1 and ui,1 ← h
αi,1
1 for i = 1, . . . ,L. B defines the master pub-

lic key to be mpk ← (g1, h1, g2, u1,0, . . . , uL,0, u1,1, . . . , uL,1). Note that the corre-
sponding master secret key msk = ga

2 is unknown to B.

Phase 1. B runs A1 on input mpk. If A1 makes a key derivation oracle query on
ID = (ID1, . . . , ID�), where IDi ∈ Zp and � ≤ L then ID cannot be a prefix of ID∗.
Hence, if ID is a prefix of ˜ID∗ then A aborts; we let E be the event that this occurs.
Otherwise, let j be the smallest index such that IDj �= ˜ID∗

j . To reply to this query, B
first computes the key for identity ID′ = (ID1, . . . , IDj ) and then derive the key for
ID using the key derivation algorithm. To derive the key for identity ID′, B chooses

the values r1, . . . , rj
$← Zp at random and sets dID′ = (a0, a1, . . . , aj ) where

a0 ← g2

−αj,0
αj,1(IDj −ID∗

j
) ·

j∏

i=1

(
ui,0 · uIDi

i,1

)ri ,

ai ← g
ri
1 for i = 1, . . . , j − 1,

aj ← g2

−1
αj,1(IDj −ID∗

j
) · grj

1 .

Algorithm A1 terminates and outputs two equal-length messages (m0,m1).

Challenge. Algorithm B then chooses a random bit β
$← {0,1} and sends C∗ = (C,

Cα1,0 , . . . ,Cα�∗,0 ,mβ · Z) to A as the challenge ciphertext. Since ui,0 · u
ID∗

i

i,1 = g
αi,0
1

for all i, we have that

C∗ = (
gc

1,
(
u1,0 · uID∗

i

1,1

)c
, . . . ,

(
u�∗,0 · uID∗

�∗
�∗,1

)c
,mβ · Z)

.

As a result, when Z = ê(g, g)abc = ê(h1, g2)
c , C∗ is a valid encryption of message

mβ for the challenge identity ID∗ = (ID∗
1, . . . , ID∗

�∗). On the other hand, when Z =
ê(g, g)z for a random value z

$← Zp , then the challenge ciphertext is independent of
β from the view point of the adversary.

Phase 2. B runs A2 on the challenge ciphertext C∗. If A2 makes any key derivation
oracle queries, then they are answered as in Phase 1. A2 terminates and outputs a bit
β ′.

Output. If β = β ′ then B outputs 1, guessing that Z = ê(g, g)abc , otherwise B out-
puts 1.

Suppose E does not occur. Clearly, when Z = ê(g, g)abc , the view of A is identical
to its view in a real attack and, thus, the probability that b = b′ is exactly the probability
that A wins the IND-sHID-CPA game. On the other hand, when Z is a random group
element in GT , then the probability that b = b′ is exactly 1/2. Hence, if E does not
occur then A wins with probability ε. If E does occur, then the simulator fails; however,
for E to occur then A must submit a key extraction query for an identity ID where ID∗
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp

h1 ← gα
1 ; h2 ← gα

2

ui
$← G for i = 1, . . . ,L

mpk ← (g1, g2, h1, u0, . . . , uL)

d0 ← h2
For i = 1, . . . ,L + 1 do

di ← 1
msk ← (d0,d1, . . . ,dL,dL+1)

Return (mpk,msk)

Algorithm KeyDer(d(ID1,...,ID�), ID�+1):
Parse d(ID1,...,ID�) as (d0,d�+1, . . . ,dL,dL+1)

r�+1
$← Zp

d′
0 ← d0 · d

ID�+1
�+1 · (u0

∏�
i=1 u

IDi

i

)r�+1

For i = � + 2, . . . ,L do
d′
i
← di · ur�+1

i

d′
L+1 ← dL+1 · gr�+1

1
Return (d′

0,d′
�+2, . . . ,d′

L
,d′

L+1)

Algorithm Encrypt(mpk, ID,m):
Parse ID as (ID1, . . . , ID�)

r
$← Zp ; C1 ← gr

1

C2 ← (
u0

∏�
i=1 u

IDi

i

)r

C3 ← m · ê(h1, g2)r

Return (C1,C2,C3)

Algorithm Decrypt(d(ID1,...,ID�),C):
Parse d(ID1,...,ID�) as (d0,d�+1, . . . ,dL+1)

Parse C as (C1,C2,C3)

m′ ← C3 · ê(C2,dL+1)

ê(C1,d0)

Return m′

Fig. 2. The Boneh–Boyen–Goh HIBE scheme.

is a prefix of ID and ID is a prefix of ˜ID∗
. This implies that ID�∗+1 = ID∗

�∗+1 but,
since ID∗

�∗+1 is chosen at random and hidden from the execution of the attacker A, we
have that Pr [E ] ≤ qK/p. From the above, the result announced in Theorem 1 follows
immediately. �

2.7. The Boneh–Boyen–Goh Scheme

In this section, we present the HIBE scheme due to Boneh, Boyen and Goh [10], re-
ferred to as the BBG-HIBE scheme here. Again, we assume that identities are vectors
of elements of Zp . The scheme is described in Fig. 2.

The following theorem about the security of the scheme was proved in (the full ver-
sion of) [10].

Theorem 2. If there exists a (t, qK, ε)-adversary against the IND-sHID-CPA security
of the BBG-HIBE (with hierarchy depth L) then there exists a (t ′, ε′)-adversary against
the L-BDHI problem in G, where ε′ ≥ ε and t ′ ≤ t +O(L ·qK · texp) and texp is the time
for an exponentiation in G.

2.8. The Waters Scheme

Waters [27] argued that his IBE scheme can easily be modified into an L-level HIBE
scheme as per [7]. Here we explicitly present this construction, that we refer to as the
Waters-HIBE scheme. The scheme makes use of n-bit identities and is described in
Fig. 3. The scheme makes use of group elements (u1,0, . . . , uL,n) which are available
as part of the scheme’s public parameters. These group elements define a series of hash
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp

h1 ← gα
1 ; h2 ← gα

2

ui,j
$← G for i = 1, . . . ,L; j = 0, . . . , n

mpk ← (g1, g2, h1, u1,0, . . . , uL,n)

msk ← h2
Return (mpk,msk)

Algorithm KeyDer(d(ID1,...,ID�), ID�+1):
Parse d(ID1,...,ID�) as (d0, . . . ,d�)

r�+1
$← Zp

d′
0 ← d0 · F�+1(ID�+1)r�+1

d′
�+1 ← g

r�+1
1

Return (d′
0,d1, . . . ,d�,d′

�+1)

Algorithm Encrypt(mpk, ID,m):
Parse ID as (ID1, . . . , ID�)

r
$← Zp ; C1 ← gr

1
For i = 1, . . . , � do

C2,i ← Fi(IDi )
r

C3 ← m · ê(h1, g2)r

Return (C1,C2,1, . . . ,C2,�,C3)

Algorithm Decrypt(d(ID1,...,ID�),C):
Parse d(ID1,...,ID�) as (d0, . . . ,d�)

Parse C as (C1,C2,1, . . . ,C2,�,C3)

m′ ← C3 ·
∏�

i=1 ê(di ,C2,i )

ê(C1,d0)

Return m′

Fig. 3. The Waters HIBE scheme.

functions (F1, . . . ,FL) where

Fi(IDi ) = ui,0

∏

j∈[IDi ]
ui,j .

Waters [27] informally states that the above HIBE scheme is IND-HID-CPA secure
under the BDDH assumption, in the sense that if there exists a (t, qK, ε)-adversary
against the HIBE, then there exists an algorithm solving the BDDH problem with ad-
vantage ε′ = O((n · qK)Lε). We shall assume in what follows that the Waters HIBE
scheme is indeed IND-HID-CPA secure. However, the reader should be aware that any
security results we state for schemes derived from the Water HIBE scheme are conjec-
tural relative to the above assumption.

2.9. Hierarchical Identity-Based Key Encapsulation

One efficient paradigm for producing HIBE schemes is to the hybrid KEM-DEM con-
struction. In the public key setting, this was first formally investigated by Cramer and
Shoup [14] and extended to the identity-based setting by Bentahar et al. [3]. A hybrid
construction consists of an asymmetric KEM and a symmetric DEM.

A hierarchical identity-based KEM (HIB-KEM) consists of four algorithms (Setup,
KeyDer, Encap, Decap). The setup algorithm Setup and key derivation algorithm
KeyDer have the same syntax as for a HIBE scheme. The encapsulation algorithm
Encap takes as input a master public key mpk and an identity ID = (ID1, . . . , ID�) with
0 ≤ � ≤ L; it outputs a symmetric key K ∈ {0,1}λ and an encapsulation C. The decap-
sulation algorithm Decap takes as input a private key dID and an encapsulation C, and
outputs either a symmetric key K ∈ {0,1}λ or the error symbol ⊥.

The security models for a HIB-KEM is similar to those of a HIBE scheme. The
IND-HID-CCA game for a HIB-KEM, played between an attacker A = (A1, A2) and a
challenger, is defined as follows:
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1. The challenger generates a master key pair (mpk,msk)
$← Setup.

2. The adversary runs A1 on mpk. The adversary is given access to a key derivation
oracle that, on input of an identity ID = (ID1, . . . , ID�), returns the secret key

dID
$← KeyDer(msk, ID) corresponding to that identity. The adversary is also given

access to a decryption oracle that will, on input of an identity ID = (ID1, . . . , ID�)

and a ciphertext C, return Decap(KeyDer(msk, ID),C). The adversary outputs a
challenge identity ID∗ = (ID∗

1, . . . , ID∗
�∗) and some state information state.

3. The challenger chooses a bit β
$← {0,1}, computes the encapsulation (C∗,K0)

$←
Encap(mpk, ID∗) and chooses a random key K1

$← {0,1}λ.
4. The adversary runs A2 on the input (C∗,Kβ) and the state information state.

The adversary is given access to a key derivation oracle and decryption oracle as
before. The adversary outputs a bit β ′.

The adversary wins the game if β = β ′, it never queries the key derivation oracle with
any ancestor identity of ID∗, and if it does not query the decryption oracle on the pair
(ID∗,C∗) after it receives the challenge ciphertext. As usual, the adversary’s advantage
is defined to be equal to |2 · Pr [ A wins ] − 1|.

Definition 7. A (t, qK, qD, ε)-adversary against the IND-HID-CCA security of the
HIB-KEM is an algorithm that runs in time at most t , makes at most qK queries to
the key derivation oracle, makes at most qD queries to the decryption oracle, and has
advantage at least ε in winning the IND-HID-CCA game described above.

Again, if the random oracle model [2] is used in the analysis of a scheme, then the
above security definitions take an extra parameter qH as input. This parameter denotes
the adversary’s maximum number of queries to the random oracle.

A DEM is a pair of deterministic algorithms (Enc,Dec). The encryption algorithm
Enc takes as input a symmetric key K ∈ {0,1}λ and a message m of arbitrary length,
and outputs a ciphertext C ← Dec(K,C). The decryption algorithm Dec takes as input
a symmetric key K ∈ {0,1}λ and a ciphertext C, and returns either a message m or
the error symbol ⊥. The DEM must satisfy the following soundness property: for all
K ∈ {0,1}λ and for all m ∈ {0,1}∗, we have that Dec(K,Enc(K,m)) = m.

The only security model which will concern us for DEMs is the (one-time) IND-CCA
security game, which is played between an adversary A = (A1, A2) and a challenger:

1. The challenger generates a key K
$← {0,1}λ.

2. The adversary runs A1. The adversary outputs two equal-length messages
(m0,m1) and some state information state.

3. The challenger chooses a bit β
$← {0,1} and computes the ciphertext C∗ ←

Enc(K,mβ).
4. The adversary runs A2 on input C∗ and the state information state. The adversary

may query a decryption oracle which will, on input of a ciphertext C �= C∗, return
Dec(K,C). The adversary outputs a bit β ′.

The adversary wins if β = β ′ and its advantage is defined to be |2 · Pr [ A wins ] − 1|.
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Definition 8. A (t, qD, ε)-adversary against the (one-time) IND-CCA security of the
DEM is an algorithm that runs in time at most t , makes at most qD decryption oracle
queries, and has advantage at least ε in winning the IND-CCA game described above.

A HIB-KEM and a DEM can be “glued” together to form a complete HIBE scheme.
Further details can be found in [3].

2.10. The Canetti–Halevi–Katz Transform

We shall, in one of our constructions of a CCA WIBE scheme, make use of the
techniques behind the Canetti–Halevi–Katz transform [11]. To aid the reader we
recap on this here. This is a transform to turn a weakly secure (IND-sID-CPA)
IBE scheme into a fully secure (IND-CCA) public key encryption scheme. We let
(Setup,KeyDer,Encrypt,Decrypt) denote the key-generation, extraction, encryption,
and decryption algorithms of the IBE scheme, and (Setup′,Encrypt′,Decrypt′) denote
the key-generation, encryption, and decryption algorithms of the derived public key
scheme. The transform also makes use of a one-time signature scheme, defined by a
tuple of algorithms (SigGen,Sign,Verify).

The algorithm Setup′ is defined to be equal to Setup, i.e. public/private key of
the PKE scheme is the master public/private keys, (mpk,msk), of the IBE scheme.
Algorithm Encrypt′ is defined as follows: First, a key-pair (sk, vk) for the one-time
signature scheme is created by calling SigGen; then the message is encrypted via
Encrypt(mpk, vk,m) with respect to the “identity” vk to produce c. The resulting ci-
phertext c is then signed with sk to produce σ = Sign(sk, c). The tuple (vk, c, σ ) is the
ciphertext for our PKE.

To decrypt the recipient first verifies σ is a valid signature on c with respect to the
verification key vk, by calling Verify(vk, c, σ ). If it is then the function KeyDer is called
with respect to the “identity” vk, using private key of the PKE (i.e. msk). Then the
ciphertext can be decrypted using the algorithm Decrypt.

3. Wildcard Identity-Based Encryption

3.1. Syntax

Identity-based encryption with wildcards (WIBE) schemes are essentially a generalisa-
tion of HIBE schemes where at the time of encryption, the sender can decide to make the
ciphertext decryptable by a whole range of users whose identities match a certain pat-
tern. Such a pattern is described by a vector P = (P1, . . . ,P�) ∈ ({0,1}∗ ∪ {*})�, where
* is a special wildcard symbol. We say that identity ID = (ID1, . . . , ID�′) matches P ,
denoted ID ∈* P , if and only if �′ ≤ � and for all i = 1, . . . , �′ we have that IDi = Pi

or Pi = *. Note that under this definition, any ancestor of a matching identity is also a
matching identity. This is reasonable for our purposes because any ancestor can derive
the secret key of a matching descendant identity anyway.

If P = (P1, . . . ,P�) is a pattern, then we define W(P) to be the set of wildcard
positions in P , i.e.

W(P) = {1 ≤ i ≤ � : Pi = *} .
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Formally, a WIBE scheme is a tuple of algorithms (Setup,KeyDer,Encrypt,Decrypt)
providing the following functionality. The Setup and KeyDer algorithms behave exactly
as those of a HIBE scheme. To create a ciphertext of a message m ∈ {0,1}∗ intended for

all identities matching pattern P , the sender computes C
$← Encrypt(mpk,P ,m). Any

of the intended recipients ID ∈* P can decrypt the ciphertext using its own decryption
key as m ← Decrypt(dID,C).

Note that we implicitly assume that the pattern P used to encrypt the message is
included within the ciphertext. This is because any parent of the pattern should be able
to decrypt the message, and hence the parent will need to be able to fill in the non-
wildcarded entries in the pattern for decryption. For example, suppose the pattern is
P = (ID1,*, ID3) and that the decryptor has identity ID = (ID1, ID2). Then by our
definition of a matching pattern we have ID ∈* P , and so the decryptor will need to
be informed of ID3 so as to be able to decrypt the ciphertext. Note that an anonymous
version of the definitions can be presented, but we do not consider this further in this
paper for simplicity.

Correctness requires that for all key pairs (mpk,msk) output by Setup, all messages
m ∈ {0,1}∗, all 0 ≤ � ≤ L, all patterns P ∈ ({0,1}∗ ∪ {*})�, and all identities ID ∈* P ,
we have

Decrypt
(
KeyDer(msk, ID),Encrypt(mpk,P ,m)

) = m

with probability one.

3.2. Security Notions

We define the security of WIBE schemes analogously to that of HIBE schemes, but with
the adversary choosing a challenge pattern instead of an identity to which the challenge
ciphertext will be encrypted. To exclude trivial attacks, the adversary is not able to
query the key derivation oracle on any identity that matches the challenge pattern, nor
is it able to query the decryption oracle on the challenge ciphertext in combination with
any identity matching the challenge pattern.

More formally, the IND-WID-CPA security model is defined through the following
game, played between an adversary A = (A1, A2) and a challenger:

1. The challenger generates a master key pair (mpk,msk)
$← Setup.

2. The adversary runs A1 on mpk. The adversary is given access to a key derivation
oracle that, on input of an identity ID = (ID1, . . . , ID�), returns the secret key

dID
$← KeyDer(msk, ID) corresponding to that identity. The adversary outputs two

equal-length messages (m0,m1) and a challenge pattern P ∗, along with some state
information state.

3. The challenger chooses a bit β
$← {0,1} and computes the ciphertext C∗ $←

Encrypt(mpk,P ∗,mβ).
4. The adversary runs A2 on the input C∗ and the state information state. The adver-

sary is given access to a key derivation oracle as before. The adversary outputs a
bit β ′.

The adversary wins the game if β = β ′ and it never queries the decryption oracle on any
identity ID which matches the pattern P ∗, i.e. any identity ID ∈* P ∗. The adversary’s
advantage is defined as |2 · Pr [ A wins ] − 1|.
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Definition 9. A (t, qK, ε)-adversary against the IND-WID-CPA security of the WIBE
scheme is an algorithm that runs in time at most t , makes at most qK key derivation or-
acle queries, and has advantage at least ε in the IND-WID-CPA game described above.

In the IND-WID-CCA, the security model is identical to the IND-WID-CPA security
model with the exception that the adversary has access to a decryption oracle, which
will, on input of an identity ID and a ciphertext C, return Decrypt(KeyDer(msk, ID),C).
The adversary wins the game if β = β ′, it never queries the decryption oracle on any
identity ID ∈* P ∗, and the adversary does not query the decryption oracle the combi-
nation of any identity ID ∈* P ∗ and the ciphertext C∗. The adversary’s advantage is
defined as |2 · Pr [ A wins ] − 1|.

Definition 10. A (t, qK, qD, ε)-adversary against the IND-WID-CCA security of the
WIBE scheme is an algorithm that runs in time at most t , makes at most qK key deriva-
tion oracle queries, makes at most qD decryption oracle queries, and has advantage at
least ε in the IND-WID-CCA game described above.

As for the case of HIBEs, we also define a weaker selective-identity (sWID) security
notion, in which the adversary commits to the challenge pattern at the beginning of
the game, before the master public key is made available. The notions of IND-sWID-
CPA and IND-sWID-CCA security are defined analogously to the above. In the random
oracle model, the additional parameter qH denotes the adversary’s maximum number of
queries to the random oracle, or the total number of queries to all random oracles when
it has access to multiple ones.

If the WIBE scheme has a finite message space M, then we may also define a one-
way notion for encryption security (OW-WID-CPA). This is formally defined via the
following game, played between an adversary A = (A1, A2) and a challenger:

1. The challenger generates a master key pair (mpk,msk)
$← Setup.

2. The adversary runs A1 on input mpk. The adversary is given access to a key deriva-
tion oracle as in the IND-WID-CPA game. The adversary outputs a challenge pat-
tern P ∗ and some state information state.

3. The challenger generates m
$← M and computes the ciphertext C∗ $←

Encrypt(mpk,P ∗,m).
4. The adversary runs A2 on the input C∗ and the state information state. The ad-

versary is given access to a key derivation oracle as before. It output a message
m′.

The adversary wins the game if m = m′ and the adversary never queries the key
derivation oracle on an identity ID ∈* P ∗. The adversary’s advantage is defined to be
|2 · Pr [ A wins ] − 1|.

Definition 11. A (t, qK, ε)-adversary against the OW-WID-CPA security of the WIBE
scheme is an algorithm that runs in time at most t , makes at most qK key derivation ora-
cle queries, and has advantage at least ε in winning the OW-WID-CPA game described
above.
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3.3. Constructing a WIBE from a HIBE

In order to clarify the relationship between HIBEs and WIBEs, we first point out a
generic construction of a WIBE scheme from any HIBE scheme. However, this WIBE
scheme has a secret key size that is exponential in the depth of the hierarchy tree. Let
“*” denote a dedicated bitstring that cannot occur as a user identity. Then the secret
key of a user with identity (ID1, . . . , ID�) in the WIBE scheme contains the 2� HIBE
secret keys of all patterns matching this identity. For example, the secret key of identity
(ID1, ID2) contains four HIBE secret keys, namely those corresponding to identities

(ID1, ID2), (“*”, ID2), (ID1, “*”), (“*”, “*”) .

To encrypt to a pattern (P1, . . . ,P�), one uses the HIBE scheme to encrypt to the identity
obtained by replacing each wildcard in the pattern with the “*” string, i.e. the identity
(ID1, . . . , ID�) where IDi = “*” if Pi = * and IDi = Pi otherwise. The final WIBE
ciphertext consists of the pattern and the HIBE ciphertext. Decryption is done by select-
ing the appropriate secret key from the list and using the decryption algorithm of the
HIBE scheme.

Theorem 3. If there exists a (t, qK, ε) attacker against the IND-WID-CPA security of
the WIBE scheme (with hierarchy depth L) then there exists a (t ′,2LqK, ε)-adversary
against the IND-HID-CPA security of the corresponding HIBE scheme, where t ′ ≤ t +
2LqKtK and tK is the time taken to compute a key derivation query. If there exists a
(t, qK, qD, ε) attacker against the IND-WID-CCA security of the WIBE scheme (with
hierarchy depth L) then there exists a (t ′,2LqK,qD, ε)-adversary against the IND-
HID-CCA security of the corresponding HIBE scheme, where t ′ ≤ t + 2LqKtK + qDtD ,
tK is the time taken to compute a key derivation query, and tD is the time taken to
compute a decryption query.

Notice that the appearance of the term 2L in the security reduction means that this
construction is only guaranteed to be secure when the number of levels grows poly-
logarithmically in the secure parameter. This restriction occurs in the security analysis
of all the HIBE schemes that we consider.

The efficiency of the WIBE scheme obtained with this construction is roughly the
same as that of the underlying HIBE scheme, but with the major disadvantage that the
size of the secret key is 2� times that of a secret key in the underlying HIBE scheme.
This is highly undesirable for many applications, especially since the secret key may
very well be kept on an expensive secure storage device. It is interesting to investigate
whether WIBE schemes exist with overhead polynomial in all parameters. We answer
this question in the affirmative here by presenting direct schemes with secret key size
linear in �. Unfortunately, for all of our schemes, this reduction in key size comes at
the cost of linear-size ciphertexts, while the generic scheme can achieve constant-size
ciphertexts when underlain by a HIBE with constant ciphertext size, e.g. that of [10].

3.4. The Relationship Between WIBEs and Generalized Identity-Based Encryption,
Fuzzy Identity-Based Encryption, and Attribute Based Encryption

As we have seen WIBEs are closely related to HIBEs. They are also related to a concept
called Generalised Identity-Based Encryption (GIBE) [9]. In a GIBE one has a set of
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policies P and a set of roles R. The roles are partially ordered so that a “higher” role
can delegate its abilities to a “lower” role. Whether a party can decrypt a ciphertext
depends on whether a predicate defined on the set P ×R evaluates to true. In particular,
a ciphertext is encrypted to a policy π ∈ P , and it can be decrypted by a role ρ if and
only if the predicate evaluated on (π,ρ) evaluates to true. It is easy to see that the roles
in a GIBE correspond to the identities in a WIBE, whilst the policies correspond to the
wildcarded patterns. Hence, a WIBE is a specific example of a GIBE. However, the
expressive nature of a GIBE being greater than that of a WIBE comes at a cost, in that
one can construct WIBE schemes which are more secure than the equivalent GIBE.

Another related primitive is fuzzy identity-based encryption (FIBE) [23], which al-
lows a ciphertext encrypted to identity ID to be decrypted by any identity ID′ that is
“close” to ID according to some metric. In the schemes of [23], an identity is a subset
containing n elements from a finite universe. Two identities ID and ID′ are considered
“close” if |ID ∩ ID′| ≥ d for some parameter d . A FIBE with n = 2L and d = L can be
used to construct a WIBE scheme (without hierarchical key derivation) by letting the
decryption key for identity (ID1, . . . , ID�) correspond to the decryption key for the set

{1‖ID1, . . . , �‖ID�, (� + 1)‖ε, . . . ,L‖ε,1‖“*”, . . . ,L‖“*”} .

Suppose that “⊥” is a unique string which cannot occur as a user identity and distinct
from “*”. One can encrypt to pattern P = (P1, . . . ,P�) by encrypting to the set

{1‖P ′
1, . . . , �‖P ′

�, (� + 1)‖ε, . . . ,L‖ε,1‖“⊥”, . . . ,L‖“⊥”},
where the P ′

i ← Pi if i /∈ W(P) and P ′
i ← “*” if i ∈ W(P). The dummy symbols “⊥”

are only used to ensure that the size of the encryption set is exactly 2L (as required by
the definition of the FIBE scheme). We stress that this construction does not give a full
WIBE scheme as it does not permit hierarchical key derivation. This also implies that
a “parent” identity cannot decrypt message sent to its “children” identities as it cannot
derive the key for the child.

Fuzzy-IBE, GIBEs, and WIBEs are themselves examples of a policy-based encryp-
tion mechanisms. In such systems, access to encrypted data is provided as long as the
recipient has a key (or set of keys) which correspond to some policy. The power of
identity-based mechanisms to enable policy-based access control to encrypted data was
realised very early on in the history of pairing-based IBE [26]. In recent years, this idea
has been formalised under the heading of Attribute Based Encryption.

In Attribute Based Encryption [23], or, more correctly, Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) [4,17], a recipient is issued keys corresponding to a num-
ber of credentials. An encryptor will encrypt a message under a policy, i.e. a set of
credentials which are required by any user who wishes to obtain access to the message.
Any recipient which has credential key which meet the policy statement has access to
the encrypted data. The defining characteristic of CP-ABE is that the policies are em-
bedded in the ciphertexts.

In the context of WIBEs, the policy is that the user should have a key (credential)
which matches the pattern. For a pattern such as (ID1,*, ID3) this can be interpreted
as having a credential for an identity with ID1 in the first position and an identity with
ID3 in the third position. However, a CP-ABE scheme would offer separate credentials
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(keys) for each position, whereas a WIBE compresses all of these credentials in a single
key. Hence, ABE is clearly a more powerful concept than a WIBE, as it allows more
expressive policies, but WIBE schemes are often simpler to construct.

4. Identity-Based Key Encapsulation with Wildcards

We can also define a notion of Identity-Based Key Encapsulation Mechanism with
Wildcards (WIB-KEM). A WIB-KEM consists of the following four algorithms
(Setup,KeyDer,Encap,Decap). The algorithms Setup and KeyDer are defined as in
the WIBE case. The encapsulation algorithm Encap takes the master public key mpk of
the system and a pattern P , and returns (C,K), where K ∈ {0,1}λ is a symmetric key
and C is an encapsulation of the key K . Again we assume that the encapsulation in-
cludes a public encoding of the pattern P under which the message has been encrypted.
Finally, the decapsulation algorithm Decap(mpk,dID,C) takes a private key dID and an
encapsulation C, and returns either a secret key K or the error symbol ⊥.

A WIB-KEM must satisfy the following soundness property: for all pairs (mpk,msk)
output by Setup, all 0 ≤ � ≤ L, all patterns P ∈ ({0,1}∗ ∪ {∗})�, and all identities
ID ∈* P , we have

Pr
[
K ′ = K : (C,K)

$← Encap(mpk,P );K ′ $← Decap(KeyDer(msk, ID),C)
] = 1.

The IND-WID game for WIB-KEMs is similar to both the IND-WIB game for
WIBEs and the IND-HIB game for HIB-KEMs. The IND-WIB-CCA game is played
between an adversary A = (A1, A2) and a challenger:

1. The challenger generates a master key pair (mpk,msk)
$← Setup.

2. The adversary runs A1 on mpk. The adversary is given access to a key derivation
oracle that, on input of an identity ID = (ID1, . . . , ID�), returns the secret key

dID
$← KeyDer(msk, ID) corresponding to that identity. The adversary is also given

access to a decryption oracle that will, on input of an identity ID = (ID1, . . . , ID�)

and a ciphertext C, return Decap(KeyDer(msk, ID),C). The adversary outputs a
challenge pattern P ∗ and some state information state.

3. The challenger chooses a bit β
$← {0,1}, computes the encapsulation (C∗,K0)

$←
Encap(mpk,P ∗) and chooses a random key K1

$← {0,1}λ.
4. The adversary runs A2 on the input (C∗,Kβ) and the state information state.

The adversary is given access to a key derivation oracle and decryption oracle as
before. The adversary outputs a bit β ′.

The adversary wins the game if β = β ′, it never queries the key derivation oracle on any
identity ID ∈* P ∗, and if it does not query the decryption oracle on the pair (ID,C∗)
for some ID ∈* P ∗ after it receives the challenge ciphertext. As usual, the adversary’s
advantage is defined to be equal to |2 · Pr [ A wins ] − 1|.

Another common form for writing the advantage of an IND-WID-CCA adversary for
a WIB-KEM is given by the following simple lemma.
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Lemma 1. If A is a (t, qK, qD, ε)-adversary against the IND-WID-CCA security of
the WIB-KEM and β , β ′ are as in the IND-WID-CCA security game, then

ε = ∣∣Pr
[
β ′ = 1 | β = 1

] − Pr
[
β ′ = 1 | β = 0

]∣∣.

Definition 12. A (t, qK, qD, ε)-adversary against the IND-WID-CCA security of a
HIB-KEM is an algorithm that runs in time t , makes at most qK queries to the key
derivation oracle, makes at most qD queries to the decryption oracle, and has advantage
at least ε in winning the IND-WID-CCA game described above.

We may combine a WIB-KEM (Setup,KeyDer,Encap,Decap) with a DEM
(Enc,Dec) (see Sect. 2.9) to form a complete WIBE scheme (Setup,KeyDer,Encrypt,
Decrypt), where the encryption and decryption algorithms are as follows:

– Encrypt(mpk,P ∗,m):

1. Compute (C1,K)
$← Encap(mpk,P ∗).

2. Compute C2 ← Enc(K,m).
3. Output the ciphertext C = (C1,C2).

– Decrypt(dID,C):

1. Parse C as (C1,C2).

2. Compute K
$← Decap(dID,C1). If K = ⊥ then output ⊥.

3. Compute m ← Dec(K,C2).
4. Output m.

Theorem 4. If there exists a (t, qK, qD, ε)-adversary A = (A1, A2) against IND-
WID-CCA security of the hybrid WIBE, then there is a (tB, qK, qD, εB)-adversary
B = (B1, B2) against the IND-WID-CCA security of the WIB-KEM and a (tB′ , qD, εB′)-
adversary B′ = (B′

1, B′
2) against the IND-CCA security of the DEM such that:

tB ≤ t + qDtDec + tEnc,

tB′ ≤ t + qD(tDec + tDecap + tKeyDer) + qKtKeyDer

+ tEncap + tSetup,

ε ≤ 2εB′ + εB,

where tEnc is the time to run the DEM’s Enc algorithm, tDec is the time to run the DEM’s
Dec algorithm, tSetup is the time to run the KEM’s Setup algorithm, tDecap is the time
to run the KEM’s Decap algorithm and tKeyDer is the time to run the KEM’s KeyDer
algorithm.

Proof. This proof mirrors the proofs of Cramer and Shoup [14] and Bentahar et al.
[3]. We prove this result in two stages. First, we change the nature of the security game.
Let Game 1 be the normal IND-WID-CCA game for the WIBE scheme. Let Game 2 be
the slight adaptation of the IND-WID-CCA game:
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1. The challenger generates a master key pair (mpk,msk)
$← Setup.

2. The adversary runs A1 on mpk. The adversary is given access to a key deriva-
tion oracle that, on input of an identity ID = (ID1, . . . , ID�), returns the secret

key dID
$← KeyDer(msk, ID) corresponding to that identity. The adversary is also

given access to a decryption oracle that, on input of an identity ID and a ciphertext
C, returns Decrypt(KeyDer(msk, ID),C). The adversary outputs two messages
(m0,m1) of equal length and a challenge pattern P ∗, along with some state in-
formation state.

3. The challenger chooses a bit β
$← {0,1} and a key K∗ $← {0,1}λ, then computes

the ciphertext (C∗
1 ,K)

$← Encap(mpk,P ∗) and C2 ← Enc(K∗,mβ). The chal-
lenge ciphertext is C∗ ← (C∗

1 ,C∗
2 ).

4. The adversary runs A2 on the input C∗ and the state information state. The adver-
sary is given access to a key derivation oracle as before. The adversary is also
given to a decryption oracle that, on input of an identity ID and a ciphertext
C = (C1,C2), returns

{
Decrypt(KeyDer(msk, ID),C) if ID �∈* P ∗ or C1 �= C∗

1 ,

Dec(K∗,C2) if ID ∈* P ∗ and C1 = C∗
1 .

The adversary outputs a bit β ′.

Note that the only two differences between the game and the IND-WID-CCA game are
that a random key is used to compute the challenge ciphertext and to decrypt certain
ciphertexts after the challenge ciphertext is issued.

We show that any change in the actions of A between Game 1 and Game 2 give rise
to an adversary B = (B1, B2) against the IND-WID-CCA security of the WIB-KEM.
We describe the algorithm B1 below:

1. B1 takes as input the master public key mpk.
2. B1 runs A1 on mpk. If A1 makes a key derivation oracle query, then B1 forwards

this query to its own oracle and returns the result. If A1 makes a decryption ora-
cle query on an identity ID and a ciphertext (C1,C2), the B1 forwards C1 to its
decapsulation oracle and receives a key K in return. B1 returns Dec(K,C2) to A.
A1 outputs a challenge pattern P ∗ and two equal-length messages (m0,m1).

3. B1 outputs the challenge pattern P ∗.

The challenger then computes a challenge encapsulation (C∗
1 ,K∗) where K∗ is either

the decapsulation of C∗
1 or a random key. The algorithm B2 runs as follows:

1. B2 takes as input the challenge encapsulation (C∗
1 ,K∗). B2 chooses a bit

β
$← {0,1} and computes the remainder of the challenge ciphertext C∗

2 ←
Enc(K∗,mβ).

2. B2 runs A2 on the challenge ciphertext C∗ = (C∗
1 ,C∗

2 ). If A2 makes a key deriva-
tion oracle query, then B2 forwards this query to its own oracle and returns the
result. If A2 makes a decryption oracle query on an identity ID ∈* P ∗ and a ci-
phertext (C∗

1 ,C2), then B2 returns Dec(K∗,C2) to A2. Otherwise, if A2 makes
a decryption oracle query on an identity ID and a ciphertext (C1,C2), then B2
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answers the query as before, by querying its own oracle to find the decapsulation
of C1 and decrypting C2 itself. A2 outputs a bit β ′.

3. If β = β ′ then B2 outputs 1; otherwise B2 outputs 0.

If K∗ is the decapsulation of C∗
1 then B simulates Game 1 for A; whereas if K∗ is a

random key then B simulates Game 2 for A. Thus we have,

∣∣Pr [A wins in Game 1] − Pr [A wins in Game 2]
∣∣ = εB

by virtue of Lemma 1.
However, the security of Game 2 depends only on the (one-time) IND-CCA security

of the DEM. We give an algorithm B′ = (B′
1, B′

2) reduces the security of the WIBE in
Game 2 to the security of the DEM. We describe the algorithm B′

1 below:

1. B′
1 computes (mpk,msk) ← Setup.

2. B′
1 runs A1 on mpk. If A1 makes a key derivation or decryption oracle query, then

B′
1 computes the correct answer using its knowledge of the master private key

msk. A1 outputs a challenge pattern P ∗ and two equal-length messages (m0,m1).
3. B′

1 outputs the messages (m0,m1).

The challenger chooses a bit β
$← {0,1} and computes the challenge encryption C∗

2
$←

Enc(K∗,mβ) using a randomly chosen (and hidden) key K∗ $← {0,1}λ. The algorithm
B′

2 runs as follows:

1. B′
2 takes C∗

2 as input. B′
2 computes the encapsulation (C∗

1 ,K)
$← Encap(mpk,P ∗)

and sets the challenge ciphertext C∗ ← (C∗
1 ,C∗

2 ).
2. B′

2 runs A2 on the input C∗. If A2 makes a key derivation oracle query, then B′
2 an-

swers it correctly using its knowledge of the master private key msk. If A2 makes
a decryption oracle query on an identity ID ∈* P ∗ and a ciphertext (C∗

1 ,C2) then
B′

2 computes the correct answer by querying its own decryption on C2 and return-
ing the result. Otherwise, if A2 makes a decryption oracle query on an identity ID
and a ciphertext C, then B′

2 computes the correct answer using its knowledge of
the master private key msk. A2 outputs a bit β ′.

3. B′
2 outputs the bit β ′.

B′ correctly simulates Game 2 for A. Furthermore, A wins in Game 2 if and only if
B wins the IND-CCA game for a DEM. Hence,

∣∣2 · Pr [A wins Game 2] − 1
∣∣ = εB′

and so we have that

ε = ∣∣2 · Pr [A wins Game 1] − 1
∣∣

≤ 2 · ∣∣Pr [A wins in Game 1] − Pr [A wins in Game 2]
∣∣

+ ∣∣2 · Pr [A wins in Game 2] − 1
∣∣

= 2εB + εB′ . �
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5. IND-WID-CPA Secure WIBEs

In this section, we propose several WIBE schemes which are IND-WID-CPA secure,
based on three existing HIBE schemes from the Boneh–Boyen family (BB-HIBE, BBG-
HIBE, Waters-HIBE). These three direct constructions all utilise a similar technique of
modifying a HIBE’s ciphertext generation to include some extra data related to each
wildcard. The security proof then reduces the security of the resulting WIBE to that of
the underlying HIBE. These schemes are all proven secure using the same “projection”
technique and so we only prove the security of one scheme (Waters-WIBE) relative to
the security of the underlying HIBE (in this case Waters-HIBE). Note, in that due to our
earlier comment on the lack of a full security proof for the Waters-HIBE, we obtain a
full security theorem only for the cases of the BB- and BBG-based WIBE’s.

Each of these three schemes is proven secure, relative to the underlying HIBE, in
the standard model; however, two of these schemes are only proven secure in the IND-
sWID-CPA model. We therefore give a generic transformation from an IND-sWID-
CPA secure scheme to an IND-WID-CPA secure scheme which uses the random oracle
model.

5.1. The Boneh–Boyen WIBE

Our first construction is based on the slight variant of the BB-HIBE [7] which we prove
secure in Sect. 2.6. As with the BB-HIBE scheme, the BB-WIBE makes use of identities
which are vectors of elements of Zp . The scheme is described in Fig. 4. Note that the
decryption algorithm can determine if i ∈ W(P) by checking whether C2,i contains one
group element or two.

The BB-WIBE can actually be seen as a close relative of the Waters-WIBE scheme
(see Sect. 5.3) with the hash function Fi(IDi ) being defined as

Fi(IDi ) = ui,0 · uIDi

i,1 .

Its security properties are different though since the BB-WIBE scheme can be proved se-
cure in the selective-identity model only. We reduce its security to that of the BB-HIBE
scheme, which in its turn is proved IND-sHID-CPA secure under the BDDH assump-
tion in Sect. 2.6. The proof of the theorem below is analogous to that of Theorem 7, and
hence omitted. One important difference with Theorem 7 is that the reduction from the
BB-HIBE scheme is tight: because we prove security in the selective-identity model,
we do not lose a factor 2L due to having to guess the challenge pattern upfront.

Theorem 5. If there exists a (t, qK, ε)-adversary against the IND-sWID-CPA security
of a BB-WIBE (with hierarchy depth L) then there exists a (t ′, q ′

K, ε′)-adversary against
the IND-sHID-CPA security of the BB-HIBE, where

t ′ ≤ t + 2L(1 + qK) · texp, q ′
K ≤ qK and ε′ ≥ ε,

where texp is the time required to compute an exponentiation in G.

In terms of efficiency, the BB-WIBE scheme easily outperforms the Waters-WIBE
scheme: the master public key contains 2L+3 group elements. Encryption to a recipient
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp

h1 ← gα
1 ; h2 ← gα

2

ui,j
$← G for i = 1, . . . ,L, j = 0,1

mpk ← (g1, g2, h1, u1,0, . . . , uL,1)

msk ← h2
Return (mpk,msk)

Algorithm KeyDer(d(ID1,...,ID�), ID�+1):
Parse d(ID1,...,ID�) as (d0, . . . ,d�)

r�+1
$← Zp

d′
0 ← d0 · (u�+1,0 · uID�+1

�+1,1

)r�+1

d′
�+1 ← g

r�+1
1

Return (d′
0,d1, . . . ,d�,d′

�+1)

Algorithm Encrypt(mpk,P,m):
Parse P as (P1, . . . ,P�)

r
$← Zp ; C1 ← gr

1
For i = 1, . . . , � do

If i /∈ W(P ) then C2,i ← (
ui,0 · uPi

i,1

)r

If i ∈ W(P ) then C2,i ← (ur
i,0, ur

i,1)

C3 ← m · ê(h1, g2)r

Return (P,C1,C2,1, . . . ,C2,�,C3)

Algorithm Decrypt(d(ID1,...,ID�),C):
Parse d(ID1,...,IDl ) as (d0, . . . ,d�)

Parse C as (P,C1,C2,1, . . . ,C2,�,C3)

For i = 1, . . . , � do
If i /∈ W(P ) then C′

2,i
← C2,i

If i ∈ W(P ) then
Parse C2,i as (v1, v2)

C′
2,i

← v1 · vIDi

2

m′ ← C3 ·
∏�

i=1 ê(di ,C
′
2,i )

ê(C1,d0)

Return m′

Fig. 4. The Boneh–Boyen WIBE scheme.

pattern of length � and w wildcards involves � + w + 2 (multi-)exponentiations and
produces ciphertexts containing �+w + 2 group elements, or 2L+ 2 group elements in
the worst case that � = w = L. Decryption requires the computation of � + 1 pairings,
just like the Waters-WIBE scheme. However, this scheme is outperformed by the BBG-
WIBE.

5.2. The Boneh–Boyen–Goh WIBE

Our second construction is based on the BBG-HIBE [10] (see Sect. 2.7). The BBG-
HIBE scheme has the advantage of constant-sized ciphertexts. Our BBG-WIBE scheme
does not have this advantage, but does have the advantage that a pattern with w wild-
cards leads to a ciphertext with w + 3 elements and is secure under the same decisional
L-BDHI problem as the BBG-HIBE. Again, identities are considered to be vectors of
elements of Zp and the scheme is given in Fig. 5.

The BBG-WIBE scheme is significantly more efficient than the Waters-WIBE and
BB-WIBE schemes in terms of decryption, and also offers more efficient encryption
and shorter ciphertexts when the recipient pattern contains few wildcards. More pre-
cisely, the master public key contains L + 4 group elements. Encryption to a recipient
pattern of length � with w wildcards involves w + 3 (multi-)exponentiations and w + 3
group elements in the ciphertext, or L + 3 of these in the worst case that � = w = L.
Decryption requires the computation of two pairings, as opposed to � + 1 of these for
the Waters-WIBE and BB-WIBE schemes.

Again, the proof of the following theorem is analogous to that of Theorem 7, and
hence omitted.
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp

h1 ← gα
1 ; h2 ← gα

2

ui
$← G for i = 1, . . . ,L

mpk ← (g1, g2, h1, u0, . . . , uL)

d0 ← h2
For i = 1, . . . ,L + 1 do

di ← 1
msk ← (d0,d1, . . . ,dL,dL+1)

Return (mpk,msk)

Algorithm KeyDer(d(ID1,...,ID�), ID�+1):
Parse d(ID1,...,ID�) as (d0,d�+1, . . . ,dL,dL+1)

r�+1
$← Zp

d′
0 ← d0 · d

ID�+1
�+1 · (u0

∏�
i=1 u

IDi

i

)r�+1

For i = � + 2, . . . ,L do
d′
i
← di · ur�+1

i

d′
L+1 ← dL+1 · gr�+1

1
Return (d′

0,d′
�+2, . . . ,d′

L
,d′

L+1)

Algorithm Encrypt(mpk,P ,m):
Parse P as (P1, . . . ,P�)

r
$← Zp ; C1 ← gr

1
C2 ← (

u0
∏�

i=1,i /∈W(P) u
Pi

i

)r

C3 ← m · ê(h1, g2)r

C4 ← (ur
i
)i∈W(P)

Return (P,C1,C2,C3,C4)

Algorithm Decrypt(d(ID1,...,ID�),C):
Parse d(ID1,...,ID�) as (d0,d�+1, . . . ,dL+1)

Parse C as (P,C1,C2,C3,C4)

Parse C4 as (vi)i∈W(P)

C′
2 ← C2

∏�
i=1,i∈W(P) v

IDi

i

m′ ← C3 · ê(C′
2,dL+1)

ê(C1,d0)

Return m′

Fig. 5. The Boneh–Boyen–Goh WIBE scheme.

Theorem 6. If there is a (t, qK, ε)-adversary against the IND-sWID-CPA security
of the BBG-WIBE (with hierarchy depth L) then there exists a (t ′, q ′

K, ε′)-adversary
against the IND-sHID-CPA security of the BBG-HIBE where

t ′ ≤ t − L(1 + 2qK) · texp, q ′
K ≤ qK, and ε′ ≥ ε,

where texp is the time it takes to perform an exponentiation in G.

5.3. The Waters WIBE

Our third construction is based on the Waters-HIBE [27] (see Sect. 2.8). As in the HIBE
scheme, the WIBE makes use of identities which are n-bit strings and a series of hash
functions (F1, . . . ,FL) where

Fi(IDi ) = ui,0

∏

j∈[IDi ]
ui,j .

The scheme is described in Fig. 6.
In terms of efficiency, the Waters-WIBE compares unfavourably with the BB-WIBE

and BBG-WIBE (but (conjecturally) provides stronger security guarantees in the stan-
dard model). The master public key of the Waters-WIBE scheme contains (n+ 1)L+ 3
group elements. Encrypting to a pattern of length � containing w wildcards comes at the
cost of � + nw + 2 exponentiations and � + nw + 2 group elements in the ciphertext;
in the worst case of � = w = L this means (n + 1)L + 2 exponentiations and group
elements. (The pairing ê(h1, g2) can be precomputed.) Decryption requires the compu-
tation of � + 1 pairings.
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Algorithm Setup:

g1, g2
$← G ; α

$← Zp

h1 ← gα
1 ; h2 ← gα

2

ui,j
$← G for i = 1, . . . ,L; j = 0, . . . , n

mpk ← (g1, g2, h1, u1,0, . . . , uL,n)

msk ← h2
Return (mpk,msk)

Algorithm KeyDer(d(ID1,...,ID�), ID�+1):
Parse d(ID1,...,ID�) as (d0, . . . ,d�)

r�+1
$← Zp

d′
0 ← d0 · F�+1(ID�+1)r�+1

d′
�+1 ← g

r�+1
1

Return (d′
0,d1, . . . ,d�,d′

�+1)

Algorithm Encrypt(mpk,P ,m):
Parse P as (P1, . . . ,P�)

r
$← Zp ; C1 ← gr

1
For i = 1 . . . � do

If i /∈ W(P ) then C2,i ← Fi(IDi )
r

If i ∈ W(P ) then C2,i ← (ur
i,0, . . . , ur

i,n
)

C3 ← m · ê(h1, g2)r

Return (P,C1,C2,1, . . . ,C2,�,C3)

Algorithm Decrypt(d(ID1,...,ID�),C):
Parse d(ID1,...,ID�) as (d0, . . . ,d�)

Parse C as (P,C1,C2,1, . . . ,C2,�,C3)

For i = 1, . . . , � do
If i /∈ W(P ) then C′

2,i
← C2,i

If i ∈ W(P ) then
Parse C2,i as (v0, . . . , vn)

C′
2,i

← v0
∏

i∈[IDi ] vi

m′ ← C3 ·
∏�

i=1 ê(di ,C
′
2,i )

ê(C1,d0)

Return m′

Fig. 6. The Waters WIBE scheme.

In terms of efficiency, the Waters-WIBE scheme performs well enough to be consid-
ered for use in practice, but definitely leaves room for improvement. The main problem
is the dependency of the scheme on n, the bit length of identity strings. In practice, one
would typically use the output of a collision-resistant hash function as identity strings,
so that n = 160 for a reasonable level of security. We note that the techniques of [12,22]
could be applied to trade a factor d in efficiency against the loss of a factor of 2Ld in
the tightness of the reduction.

We now prove the security of the Waters-WIBE, relative to the security of the Waters-
HIBE. This proof provides a template for the proofs of the security theorems for the BB
and BBG WIBE’s mentioned above. We reduce the security of the Waters-WIBE to
the security of the Waters-HIBE. The security of the latter scheme, as has already been
mentioned, is believed to reduce to the security of the BDDH problem (see Sect. 2.8).

Theorem 7. If there exists a (t, qK, ε)-adversary against the IND-WID-CPA security
of the Waters-WIBE scheme (with hierarchy depth L) then there exists a (t ′, q ′

K, ε′)-
adversary against the IND-HID-CPA security of the HIBE scheme, where

t ′ ≤ t + Ln(1 + qK) · texp, q ′
K ≤ qK and ε′ ≥ ε/2L,

and texp is the time it takes to perform an exponentiation in G.

Proof. Suppose there exists a (t, qK, ε)-adversary A = (A1, A2) against the IND-
WID-CPA security of the Waters-WIBE scheme. We construct an adversary B =
(B1, B2) against the IND-HID-CPA security of the Waters-HIBE.
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The intuitive idea behind the proof is that B guesses the levels in which the challenge
pattern contains wildcards. Any query that A makes is passed by B to its own oracles
after stripping out the levels corresponding to wildcards in the challenge pattern. To
this end, we construction a “projection” map π : {1, . . . ,L} → {1, . . . ,L}. Suppose that
P̄ ∗ ∈ {ε,*}L is B’s guess for the wildcard positions in the challenge pattern. Define P̄ ∗≤i

to be equal to the first i components of P̄ ∗ and define π as

π(i) =
{

0 if i ∈ W(P̄ ),

i − ∣∣W(P̄ ∗≤i )
∣∣ if i /∈ W(P̄ ).

B is an adversary against the Waters-HIBE scheme. We denote parameters associated
with the HIBE scheme using tildes. The algorithm B1 runs as follows:

1. B1 takes as input the master public key of the HIBE scheme ˜mpk = (g̃1, g̃2, h̃1,

ũ1,0, . . . , ũL,n).

2. B1 computes P̄ = (P̄1, . . . , P̄L)
$← {ε,*}L.

3. B1 computes the master public key mpk = (g1, g2, h1, u1,0, . . . , uL,n) as follows:

g1 ← g̃1 g2 ← g̃2 h1 ← h̃1,

ui,j ← ũπ(i),j if i /∈ W(P̄ ) and j = 1, . . . , n,

ui,j ← g
αi,j

1 if i ∈ W(P̄ ), j = 1, . . . , n and αi,j
$← Zp.

4. B1 runs A1 on mpk. If A1 makes a key derivation oracle on input ID =
(ID1, . . . , ID�) then B1 constructs an identity ˜ID = ( ˜ID1, . . . , ˜ID

�̃
) by setting

˜IDπ(i) ← IDi for each i ∈ W(P̄ ∗≤�). B1 queries its key derivation oracle on ˜ID
and receives (d̃0, . . . , d̃

�̃
). B1 reconstructs the decryption key dID = (d0, . . . ,d�)

for ID as:

d0 ← d̃0
∏

i∈W(P̄ ∗≤�)

(
ui,0

∏
j∈[IDi ] ui,j

)ri for ri
$← Zp,

di ← dπ(i) if i /∈ W(P̄ ∗≤�),

di ← g
ri
1 if i ∈ W(P̄ ∗≤�).

B1 returns the key dID to A1. A1 outputs two equal-length messages (m0,m1) and
a challenge pattern P ∗ = (P ∗

1 , . . . ,P ∗
�∗).

5. If P̄ ∗≤�∗ and P ∗ do not have wildcards in exactly the same positions, then B1

aborts. Otherwise, B1 computes a challenge identity ˜ID∗ = ( ˜ID∗
1, . . . ,

˜ID∗
�̃∗) by

setting ˜ID∗
i ← P ∗

i for all i /∈ W(P ∗). B1 outputs the challenge identity ˜ID∗
and

the two messages (m0,m1).

The challenger will now encrypt mβ under the identity ˜ID∗
using the Waters-HIBE (for

β
$← {0,1}). This results in a ciphertext C̃∗ = (C̃∗

1 , C̃∗
2,1, . . . , C̃

∗
2,�̃∗ , C̃

∗
3 ) which is input

to the algorithm B2 described below:
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1. B2 computes a challenge WIBE ciphertext C∗ = (P ∗,C∗
1 ,C∗

2,1, . . . ,C
∗
2,L,C∗

3 ) as
follows:

C∗
1 ← C̃∗

1 ,

C∗
2,i ← C̃∗

2,π(i)
if i /∈ W(P ∗),

C∗
2,i ← (C∗

1
αi,0, . . . ,C∗

1
αi,n) for i ∈ W(P ∗),

C∗
3 ← C̃∗

3 .

2. B2 runs A2 on the input C∗. If A2 makes a key derivation oracle query, then B2
answer its queries as before. A2 outputs a guess β ′.

3. B2 outputs β ′.
We make several observations about the adversary B. First, note that B cannot cor-

rectly guess the bit β ′ unless it correctly guesses the locations of the wildcards in the
challenge pattern. This happens with probability at least 1/2L. Second, we observe that
if B correctly guesses the position of the wildcards in the challenge ciphertext, then B
correctly simulates the key derivation oracle and challenge ciphertext for A. Further-
more, if B correctly guesses the position of the wildcards in the challenge ciphertext,
then any legal key derivation oracle query that A makes results in a legal key deriva-
tion oracle query made by B. This is because for any identity ID �∈* P ∗ there must
exist an index i such that P ∗

i �= * and IDi �= P ∗
i . Hence, the “projected” identity ˜ID has

˜IDπ(i) = IDi �= P ∗
i = ˜ID∗

π(i). Hence, if B correctly guesses the position of the wildcards
in the challenge ciphertext, then B wins if and only if A wins. This leads to the results
of the theorem. �

Note that the proof above loses a factor of 2L in the security reduction. This limits the
secure use of the scheme in practice to very small (logarithmic) hierarchy depths, but
this was already the case for the Waters-HIBE scheme, which loses a factor (nqK)L

in its reduction to the BDDH problem. Alternatively, if we only consider patterns
with a single sequence of consecutive wildcards, for example (ID1,*,*,*, ID5) or
(ID1,*,*), then we only lose a factor of L2 when reducing to the Waters-HIBE scheme.
If we consider the selective-identity notion, there is no need to guess the challenge pat-
tern, so we do not lose any tightness with respect to the Waters-HIBE scheme. In ad-
dition, the Waters-HIBE scheme would itself also have a tight security reduction to the
BDDH problem in the selective-identity notion.

5.4. Converting Selective-Identity Security to Full Security

As observed by Boneh and Boyen [7] for the case of IBE schemes and by Boneh, Boyen
and Goh [10] for the case of HIBE schemes, any HIBE scheme that is selective-identity
(IND-sHID) secure can be transformed into a HIBE scheme that is fully (IND-HID)
secure in the random oracle model. The transformation only works for small hierarchy
depths though, since the proof loses a factor O(qL

H ) in reduction tightness. We show
here that the same transformation works for the case of WIBE schemes at a similar cost
of a factor O(qL

H ) in reduction.
Let Π = (Setup,KeyDer,Encrypt,Decrypt) be a WIBE scheme with maximum hier-

archy depth L. We construct a WIBE scheme Π ′ = (Setup,KeyDer′,Encrypt′,Decrypt′)
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where KeyDer′,Encrypt′, and Decrypt′ are identical to KeyDer,Encrypt, and Decrypt
with the exception that the identity/pattern is input to a hash function before it is in-
put to the relevant algorithm. A pattern P = (P1, . . . ,P�) is transformed into a pattern
P ′ = (P ′

1, . . . ,P
′
�) where

P ′
i ←

{
Hi(Pi) if Pi �= *,

* otherwise,

where Hi : {0,1}∗ → I D (for 1 ≤ i ≤ L) are independent hash functions (modelled
as distinct random oracles) and I D is an appropriately sized subset of the allowable
identities for the original WIBE scheme.1

Theorem 8. In the random oracle model, suppose that there exists a (t, qK, qH , ε)-
adversary against the IND-WID-CPA security of Π ′ (with hierarchy depth L) then there
exists a (t ′, qK, ε′)-adversary against the IND-sWID-CPA security of Π , where t ′ ≤ t

and

ε′ ≥ ε

(L + 1)(qH + qKL + 1)L
− (qH + qKL + 1)2

|I D| .

Proof. Suppose there exists a (t, qK, qH , ε)-adversary A = (A1, A2) against the IND-
WID-CPA security of Π ′. We construct an IND-sWID-CPA adversary B = (B0, B1, B2)

against Π that uses A as a subroutine. The algorithm B0 runs as follows:

1. B0 chooses �̂∗ $← {0,1, . . . ,L} and ˆctr
$← {0,1, . . . , qH +qKL+1}. B0 computes

the challenge pattern P̂ ∗ ← (P̂ ∗
1 , . . . , P̂ ∗

�̂∗) where

P̂ ∗
i ←

{
* if ˆctr = 0,

ID if ˆctr �= 0 where ID
$← I D.

B0 outputs P̂ ∗.

The challenger now issues the master public key mpk to the adversary. Algorithm B1
run as follows:

1. B1 receives the master public key mpk.
2. B1 initialises a set of lists Ti to answer the random oracle queries for the hash

function Hi . These lists are initially empty. For each list, B1 initialises a counter
ctri ← 1.

3. B1 runs A1 on mpk. B1 answers A1’s oracle queries as follows:

– Suppose A1 queries the random oracle Hi on input ID. If Ti[ID] is defined,
then B1 returns Ti[ID]. Otherwise, if ctri = ˆctri , then B1 sets Ti[ID] ← P̂ ∗

i ,

else B1 sets Ti[ID] $← I D. In either case, B1 increments ctri by one and
returns Ti[ID].

1 These L independent random oracles (H1, . . . ,HL) can easily be constructed from a single random
oracle H , e.g. by setting Hi(·) = H([i]‖·) where [i] is a fixed-length representation of the integer i.
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– Suppose A1 queries the key derivation oracle on ID = (ID1, . . . , ID�). B1
computes the hashed identity ID′ = (ID′

1, . . . , ID′
�) where ID′

i ← Hi(IDi )

using the random oracle algorithm defined above. B1 queries its own key
derivation oracle on the input ID′ and returns to the result to A1.

A1 terminates by outputting a challenge pattern P ∗ = (P ∗
1 , . . . ,P ∗

�∗) and two
equal-length messages (m0,m1).

4. If �∗ �= �̂∗, if there exists i ∈ W(P̂ ∗) such that P ∗
i �= *, or if there exists 1 ≤ i ≤ �∗

such that i /∈ W(P̂ ∗) and Hi(P
∗
i ) �= P̂ ∗

i , then B1 aborts.
5. B1 outputs the two messages (m0,m1).

The challenger computes the challenge ciphertext C∗ (which is the encryption of mβ

for some randomly chosen β
$← {0,1}). This value is input to algorithm B2 which runs

as follows:

1. B2 runs A2 on the input C∗. If A2 makes any oracle query, then they are answered
as above. A2 outputs a bit β ′.

2. B2 outputs β ′.

B wins the IND-sWID-CPA game if (1) A wins the IND-WID-CPA game; (2) B
does not abort because the challenge pattern it outputs is incorrect; (3) A does not
force B to make an illegal key derivation oracle query. The idea is that the counters
ˆctri are B’s guess as to which oracle query will define the challenge patterns (where a

counter values of ˆctri = 0 means that position is a wildcard). We require that for each
of the hash oracles provides no collisions—i.e. for each ID �= ID′ we have Hi(ID) �=
Hi(ID′). Since such a collision could only occur by accident, the probability is bounded
by (qH + qKL + 1)2/|I D| as there exists at most qH + qKL + 1 entries in all the lists.
We exclude the possibility this occurs by losing an additive factor of (qH +qKL)2/|I D|
in the security reduction.

Furthermore, we require that the algorithm B correctly identifies the pattern that A
outputs. Since the values are chosen at random, we have that �̂∗ = �∗ with probability
1/(L+1) and that the ˆctri value will be correct with probability 1/(qH +qKL+1). If B
correctly guesses these values and there are no hash collisions, then A will never force
B to make an illegal key derivation query. Hence, the result of the theorem holds. �

The above theorem is easily seen to extend to the case of converting an IND-sWID-
CCA scheme into an IND-WID-CCA scheme, with an appropriate alteration of the error
term in the advantage statement; to take into account the number of decryption oracle
queries. Indeed, adversary B is modified so that when it obtains a decryption query it
first hashes the identities to produce a decryption query suitable for A. Such a simulation
will fail if and only if the hashed identity is equivalent to the challenge identity for A,
but this would imply a collision in the random oracle.

6. IND-WID-CCA Secure WIBEs

In this section, we present constructions for IND-WID-CCA secure WIBEs. We present
one generic transform from an IND-WID-CPA WIBE into an IND-WID-CCA WIBE
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Algorithm Encrypt′(mpk,P,m):

(sk, vk)
$← SigGen

P ′ ← Encode(P, vk)

C′ $← Encrypt(mpk,P ′,m)

σ
$← Sign(sk, (P,C′))

C ← (vk,C′, σ )

Return C

Algorithm Decrypt′(dID,C):
Parse C as (vk,C′, σ )

If Verify(vk,C′, σ ) = ⊥ then return ⊥
For i equals 1 to |P | − |ID|

If P|ID|+i �= * then ID′
i
← P|ID|+i

If P|ID|+i = * then ID′
i
← 1k

For i equals 1 to L − |P |
ID′|P |−|ID|+i

← −
ID′

L−|ID|+1 ← vk

d
$← KeyDer(dID, ID′)

m ← Decrypt(d,C)

Return m

Fig. 7. The Canetti–Halevi–Katz transform.

based on the Canetti–Halevi–Katz transform [11] and a generic random-oracle-based
transform from an OW-WID-CPA WIBE into an IND-WID-CCA WIB-KEM based on
a transform of Dent [15].

6.1. The Canetti–Halevi–Katz Transform

In this section, we construct a variant of the Canetti–Halevi–Katz transform [11] to
convert an IND-WID-CPA secure WIBE with hierarchy depth L+ 1 into an IND-WID-
CCA secure WIBE with hierarchy depth L, using a one-time signature scheme (see
Sect. 2.3).

In order to complete this transform, we will make liberal use of an “encoding” func-
tion Encode. We will need to restrict the space of allowable identities. We assume that
“−” represents some fixed, public-known allowable identity for the CPA scheme; we
will deliberately exclude “−” from the space of allowable identities in the CCA scheme.
We assume that 1k is an allowable identity in the CCA scheme. We then encode a pattern
P = (P1, . . . ,P�) and a verification key vk as the L + 1 level identity:

Encode(P, vk) = (P1, . . . ,P�,−, . . . ,−, vk) .

We define a similar map for identities (interpreted as patterns without wildcards).
Given an IND-WID-CPA WIBE scheme Π = (Setup,KeyDer,Encrypt,Decrypt)

with hierarchy depth L+ 1, we define an IND-WID-CCA WIBE Π ′ = (Setup,KeyDer,
Encrypt′,Decrypt′) with hierarchy depth L. This scheme is described in Fig. 7. The en-
cryption algorithm now produces ciphertexts which are (a) encrypted under the pattern

Encode(P, vk) for a randomly generated (sk, vk)
$← SigGen, and (b) signed using sk.

The decryption algorithm checks the signature and (if correct) decrypts the ciphertext
using a key for an identity which matches Encode(P, vk) (using the valid identity 1k in
place of wildcards).

Theorem 9. Suppose that there exists a (t, qK, qD, ε)-adversary against the IND-
WID-CCA security of the WIBE Π ′ then there exists a (tw, qK + qD, εw)-adversary
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against the IND-WID-CPA security of Π and a (ts , εs)-adversary against the one-time
unforgeability of the signature scheme, where

tw ≤ t + tSigGen + tSign + qD(tVerify + tDecrypt),

ts ≤ t + tSetup + tEncrypt + qK · tKeyDer + qD · tDecrypt,

ε ≥ εw + 2εs,

where tALG is the time to execute the algorithm ALG.

Proof. The proof closely follows that of [11]. Let A be an IND-WID-CCA adver-
sary against the scheme Π ′. Suppose P ∗ is the challenge pattern that A chooses and
(vk∗,C∗, σ ∗) is the challenge ciphertext that A receives during an execution of the at-
tack game. Let FORGE be the event that at some point during its execution A queries
the decryption oracle on an identity ID ∈* P ∗ and a ciphertext of the form (vk∗,C,σ )

such that the algorithm Verify(vk∗,C,σ ) returns 	. Then we have that A’s advantage is
∣∣2 · Pr [A wins] − 1/2

∣∣ ≤ ∣∣2 · Pr [A wins | ¬FORGE] − 1
∣∣ + 2 · Pr [FORGE] .

Claim. Pr[FORGE] ≤ εs .

We describe an algorithm B = (B1, B2) which breaks the one-time unforgeability of
the signature scheme if the event FORGE occurs. The algorithm B1 runs as follows:

1. B1 receives vk∗ as input.

2. B1 generates a master key pair (mpk,msk)
$← Setup.

3. B1 runs A1 on mpk. If A1 makes a decryption or key derivation oracle query, then
B1 answers it using its knowledge of the master private key msk. B1 outputs a
challenge pattern P ∗ and two equal-length messages (m0,m1).

4. If A1 submitted a decryption oracle query (vk∗,C,σ ) for which Verify(vk∗, C,
σ) = 	, then B1 chooses a ciphertext C∗ �= C and returns C∗. This is known as
the error event.

5. Otherwise, B1 chooses β
$← {0,1}, computes C∗ $← Encrypt(mpk, Encode(P ∗,

vk∗), mβ) and returns C∗.

The challenger then computes a signature σ ∗ on the “message” C∗. This is input to the
algorithm B2 described as follows:

1. B2 receives σ ∗ as input.
2. If the error event occurred during the first phase, then B2 outputs (C,σ ).
3. Otherwise B2 runs A2 on the input (vk∗,C∗, σ ∗). If A2 makes a key derivation or

decryption oracle query, then B2 answers them using its knowledge of the master
private key msk. B2 outputs a bit β ′.

4. If A2 submitted a decryption oracle query (vk∗, C, σ) for which Verify(vk∗, C,
σ) = 	, then B2 outputs (C,σ ). Otherwise B2 outputs the error symbol ⊥.

Algorithm B is designed to output a valid forgery if the event FORGE occurs. If A1
makes a valid decryption oracle query on (vk∗,C,σ ), then the error event occurs, and
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B trivially wins. If A2 makes a valid decryption oracle query on (vk∗,C,σ ), then, since
A2 is forbidden from making a decryption oracle query on (vk∗,C∗, σ ∗), B wins after
A finishes its execution. Hence, we have εs = Pr [ FORGE ].

Claim. |2 · Pr[A wins | ¬FORGE] − 1| ≤ εw .

We describe an algorithm B′ = (B′
1, B′

2) which breaks the IND-WID-CPA security of
the WIBE scheme Π whenever A wins and FORGE did not occur. Algorithm B′

1 runs
as follows:

1. B′
1 receives a master public key mpk as input.

2. B′
1 generates (vk∗, sk∗) $← SigGen.

3. B′
1 run A1 on mpk. If A1 makes a key derivation oracle query on identity ID, then

B1 makes a key derivation oracle query on ID and returns the result. If A1 makes
a decryption oracle query on identity ID and ciphertext (vk,C,σ ), then B′

1 returns
⊥ if vk = vk∗ or if Verify(vk,C,σ ) = ⊥. Otherwise, B′

1 computes the extension
identity ID′ required so that ID‖ID′ matches the pattern Encode(P, vk) as in the
decryption algorithm, queries the key extraction algorithm on ID‖ID′ to obtain
a decryption key d and returns Decrypt(d,C). A1 outputs a pattern P ∗ and two
equal-length messages (m0,m1).

4. B′
1 returns the challenge pattern Encode(P ∗, vk∗) and the messages (m0,m1).

The challenger will pick a random β
$← {0,1} and computes the ciphertext

C∗ $← Encrypt
(
mpk,Encode(P ∗, vk∗),mβ

)
.

This ciphertext is input to the algorithm B′
2 below:

1. B′
2 receives the ciphertext C. B′

2 computes σ ∗ $← Sign(sk∗,C∗).
2. B′

2 runs A2 on the ciphertext (vk∗,C∗, σ ∗). All oracle queries are answered in
exactly the same way as in the first phase. A2 outputs a bit β ′.

3. B′
2 outputs β ′.

It is clear that as long as B′ does not make an illegal key derivation oracle query, then
B′ wins if and only if A wins (assuming that FORGE does not occur). B′ may make
key derivation oracle queries in response to A making a key derivation oracle query
or a decryption oracle query. If A makes a decryption oracle query on an identity ID
and ciphertext (vk,C,σ ) then B′ makes a key derivation query on Encode(ID‖ID′, vk);
however, Encode(ID‖ID′, vk) �∈* Encode(P ∗, vk∗) as both encodings are (L + 1)-bits
long and vk �= vk∗ since FORGE does not occur. Furthermore, if A makes a key deriva-
tion oracle query on an identity ID then, by definition, we have ID �∈* P ∗. We need to
show that ID �∈* Encode(P ∗, vk∗). This is true as:

– if |ID| > |P ∗| then ID and Encode(P ∗, vk∗) do not agree at level |P ∗| + 1 (where
Encode(P ∗, vk∗) is defined to be “−” and ID cannot be defined to be “−” since it
was excluded from the message space);

– if |ID| ≤ |P ∗| then ID �∈* Encode(P ∗, vk∗) as Encode(P ∗, vk∗)i = P ∗
i for levels

1 ≤ i ≤ |ID| and ID �∈* P ∗.
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Hence, A never forces B′ to make an illegal key derivation oracle query and so B′ wins
whenever A. Thus,

∣∣2 · Pr [A wins | ¬FORGE] − 1
∣∣ ≤ εw.

A combination of the two claims gives the theorem. �

Applying the Transformation to Waters-WIBE We may optimise the CHK transform
in the particular case of the Wates-WIBE scheme describe in Sect. 5.3. In particular,
there is no implicit functional reason why we have to fix the encoded identity using
“−” strings, as it is possible to determine a key for which the (L + 1)th level is fixed to
vk while leaving lower levels undetermined. In particular, we obtain the scheme given
in Fig. 8 which is IND-CCA secure and has depth L. We assume (for simplicity) that
verification keys vk are n-bits long.

6.2. The Dent KEM Transform

One approaching to building systems secure against adaptive chosen ciphertext attacks
is to transform a weakly-secure (OW-WID-CPA) WIBE scheme into a strongly-secure
(IND-WID-CCA) WIB-KEM scheme. This obviously gives rise to an IND-WID-CCA
WIBE scheme when combined with a suitably secure DEM (see Sects. 2.9 and 4). We
apply an analogue of the transformation of Dent [15].

Suppose Π = (Setup,KeyDer,Encrypt,Decrypt) be an OW-WID-CPA WIBE scheme
(see Sect. 3.2) with a finite message space M. We assume that the Encrypt algorithm
uses random values taken from a set R. We can write Encrypt as a deterministic algo-

rithm C ← Encrypt(mpk,P ,m; r) where r
$← R. We require that the scheme satisfies a

notion of randomness called γ -uniformity.

Definition 13. A WIBE scheme Π is γ -uniform if for all master public keys mpk that
could be output by the key generation algorithm, for all patterns P , for all messages m

and ciphertexts C, we have

Pr
[
Encrypt(mpk,P ,m; r) = C

] ≤ γ,

where the probability is taken over the choice of the randomness r used in the encryption
function.

The only difficulty in applying the method of Dent [15] is that we must re-encrypt
the recovered message as an integrity check. In the WIBE setting, this means we must
know the pattern under which the message was originally encrypted. Recall that the set
W(C) = {i ∈ Z : Pi = *} of the pattern P used to encrypt the message, along with the
length � of the pattern, is easily derived from the ciphertext. We use this information
to give an algorithm P, which on input (ID,C), where C is a ciphertext and ID =
(ID1, . . . , ID�), returns the pattern P = (P1, . . . ,P�) where

Pi =
{
* if i ∈ W(C),

idi if i /∈ W(C).
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Algorithm Encap(mpk,P ):
m ← M
r ← H1(P,m)

C ← Encrypt(mpk,P,m; r)
K ← H2(m)

Return (C,K)

Algorithm Decap(dID,C):
m ← Decrypt(dID,C)

P ← P(ID,C)

r ← H1(P,m)

C′ ← Encrypt(mpk,P,m; r)
If C = C′ then return m

Otherwise return ⊥
Fig. 9. The Dent transform.

We transform the WIBE scheme Π = (Setup,KeyDer,Encrypt,Decrypt) with a finite
message space M and hierarchy depth L into a WIB-KEM scheme Π ′ = (Setup,

KeyDer,Encap,Decap) using two hash functions:

H1 : ({0,1}n ∩ {*})∗ × {0,1}∗ → R

and

H2 : {0,1}∗ → {0,1}λ.
The complete scheme is given in Fig. 9.

Theorem 10. Suppose that there exists a (t, qK, qD,qH , ε)-adversary, in the random
oracle model, against the IND-WID-CCA security of the WIB-KEM Π ′ then there exists
a (t ′, qK, ε′)-adversary against the OW-WID-CPA security of the WIBE Π , where

ε′ ≥ ε − qD(|M|−1 + γ )

qH + qD

,

t ′ ≤ t + qH tEncrypt,

where tEncrypt is the time taken to perform an encryption, Π has finite message space
M, and Π is γ -uniform.

Proof. Suppose there exists a (t, qK, qD,qH , ε)-adversary A = (A1, A2) against the
IND-WID-CCA security of the WIB-KEM in the random oracle model. We construct an
adversary B = (B1, B2) against the OW-WID-CPA security of the WIBE. The algorithm
B1 runs as follows:

1. B1 receives a master public key mpk.
2. B1 initialises three lists T1, E1, and T2 which are initially set to be empty.
3. B1 runs A1 on mpk. B1 answers A1’s oracle queries as follows:

– Suppose A1 queries the H1-oracle on input (P,m). If T1[P,m] is defined,

B1 returns T1[P,m]. Otherwise, B1 chooses r
$← R, sets T1[P,m] ← r , sets

E1[P,m] ← Encrypt(mpk,P ,m; r), and returns r .
– Suppose A1 queries the H2-oracle on input r . If T2[r] is defined, B1 returns

T2[r]. Otherwise, B1 chooses K
$← {0,1}λ, sets T2[r] ← K , and returns K .

– Suppose A1 queries the key derivation oracle on the input ID. B1 forwards
this request to its own key derivation oracle and returns the result.
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– Suppose A1 queries the decryption oracle on the identity ID and the ci-
phertext C. B1 searches the list T1 for an entry C = E1[P,m] where P =
P(ID,C). If no such entry exists, then B1 returns ⊥. Otherwise, B1 computes
K ← H2(m) as above and returns K .

The adversary outputs a challenge pattern P ∗.
4. B1 outputs the challenge pattern P ∗.

The challenger then computes a challenge encryption C∗ $← Encrypt(mpk,P ∗,m∗; r∗)
for m∗ $← M and r∗ $← R. This ciphertext is input to the algorithm B2:

1. B2 receives C∗.

2. B2 generates K∗ $← {0,1}λ.
3. B2 runs A2 on the input (C∗,K∗). If A2 queries any oracle, then B2 answers these

queries as before. A2 outputs a bit β ′.
4. B2 randomly chooses a defined entry for one of the hash functions, either T1[P,m]

or T2[m], and outputs m.

The basic strategy of this security proof is to take advantage of the fact that the only
way that A can determine if C∗ is an encapsulation of K∗ is to query the H2-oracle
on m∗. However, we first have to show that the simulated hash function, key derivation,
and decryption oracles are consistent with the real IND-WID-CCA game.

The simulated key derivation oracle is perfect, as is the hash function oracle, with
the exception that the hash function oracle fails to respond to correctly to an H1-oracle
query on (P ∗,m∗) or a H2-oracle query on m∗. However, the decryption oracle is more
problematic. There are two types of error event that can occur with the decryption ora-
cle:

– The decryption oracle will respond incorrectly if A1 queries the oracle on an iden-
tity ID ∈* P ∗ and the ciphertext C∗. However, since m∗ is information theoreti-
cally hidden from A1, this occurs with probability at most 1/|M|.

– The decryption oracle will respond incorrectly if A queries the decryption oracle
on an identity ID and a ciphertext C for which T1[P,m] is undefined, where P ←
P(ID,C) and m ← Decrypt(dID,C), but for which

C = Encrypt(mpk,P(ID,C),m;T1[P,m])
where T1[P,m] is randomly chosen at the end of the game if it is not defined later
by an adversarial query. Since T1[P,m] is randomly chosen and Π is γ -uniform,
we have that this occurs with probability γ .

We have that the probability that either of these events occurs is therefore bounded by
qD(|M|−1 + γ ). Assuming none of these events occur, we have that the simulation is
perfect unless A1 makes a query which defines the hash function values T1[P ∗,m∗]
or T2[m∗]. Since A cannot determine whether K∗ is the correct key for C∗ without
querying the H2-oracle on m∗, we have that this event will occur with probability at
least ε − qD(|M|−1 + γ ). However, if this event occurs, then B will win the OW-WID-
CPA with probability at least 1/(qH + qD) (as there exists at most qH + qD entries on
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T1 and T2). Hence, B wins with probability at least

ε′ ≥ ε − qD(|M|−1 + γ )

qH + qD

which gives the theorem. �
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