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Abstract. The EnRUPT hash functions were proposed by O’Neil, Nohl and Henzen
as candidates for the SHA-3 competition, organised by NIST. The proposal contains
seven concrete hash functions, each with a different digest length. We present a prac-
tical collision attack on each of these seven EnRUPT variants. The time complexity
of our attack varies from 236 to 240 round computations, depending on the EnRUPT
variant, and the memory requirements are negligible. We demonstrate that our attack is
practical by giving an actual collision example for EnRUPT-256.
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1. Introduction

Cryptographic hash functions are important cryptographic primitives that are employed
in a vast number of applications, such as digital signatures and commitment schemes.
They are expected to possess several security properties, one of which is collision resis-
tance. Informally, collision resistance means that it should be hard to find two distinct
messages m �= m′ that hash to the same value, i.e. h(m) = h(m′).

Many popular hash functions, such as MD5, SHA-1 and SHA-2 share some common
design principles. The recent advances in the cryptanalysis of these hash functions have
raised serious concerns regarding their long-term security. This motivates the design
of new hash functions, based on different design strategies. The National Institute of
Standards and Technology (NIST) has decided to hold a public competition, the SHA-3
competition, to develop a new cryptographic hash function standard [6].
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The EnRUPT hash functions were proposed by O’Neil, Nohl and Henzen [7] as can-
didates in this SHA-3 competition. The proposal contains seven concrete EnRUPT vari-
ants, each with a different digest length. Khovratovich et al. [4] presented a theoretical
preimage attack on EnRUPT, with a time complexity of 2480 and requiring about 2384

memory elements.
In this paper, we analyse EnRUPT and show that none of the proposed EnRUPT

variants is collision resistant. We present a practical collision attack requiring only 236

to 240 EnRUPT round computations, depending on the EnRUPT variant. This is sig-
nificantly less than the approximately 2n/2 hash computations required for a generic
collision attack on an n-bit hash function, based on the birthday paradox.

The structure of this paper is as follows. A short description of EnRUPT is given
in Sect. 2. Section 3 introduces the basic strategy used to find collisions for EnRUPT,
which is based on the work on SHA by Chabaud and Joux [2] and Rijmen and Os-
wald [11]. Sections 4, 5 and 6 apply this basic attack strategy to EnRUPT, step by step.
Our results, including an example collision for EnRUPT-256, are presented in Sect. 7.
Finally, Sect. 8 concludes.

2. Description of EnRUPT

In this section, we give a short description of the seven EnRUPT variants that were
proposed as SHA-3 candidates [7]. All share the same structure and use the same round
function. The only differences lie in the parameters used. Table 1 gives the values of
these parameters for each EnRUPT variant.

2.1. The EnRUPT Hash Functions

The structure shared by all EnRUPT hash functions can be split into four phases: pre-
processing, message processing, finalisation and output. Figure 1 contains a description
of the EnRUPT hash functions in pseudocode.

In the preprocessing phase (lines 2–4) the input message is padded to be a multiple
of w bits, where w is the word size. Depending on the EnRUPT variant, the word size
w is 32 or 64 bits, see Table 1. The padded message is then split into an integer number
of w-bit words mi .

Table 1. EnRUPT Parameters.

EnRUPT Digest Word Parallelisation Security Number of
variant length size level parameter state words

h w P s H

EnRUPT-128 128 bits 32 bits 2 4 8
EnRUPT-160 160 bits 32 bits 2 4 10
EnRUPT-192 192 bits 32 bits 2 4 12
EnRUPT-224 224 bits 64 bits 2 4 8
EnRUPT-256 256 bits 64 bits 2 4 8
EnRUPT-384 384 bits 64 bits 2 4 12
EnRUPT-512 512 bits 64 bits 2 4 16
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1: function EnRUPT (M)
2: /* Preprocessing */
3: m0, . . . ,mt ← M‖1‖0w−(|M|+1 mod w) s.t. ∀i,0 ≤ i ≤ t : |mi | = w

4: d0, . . . , dP−1, x0, . . . , xH−1, r ← 0, . . . ,0
5: /* Message processing */
6: for i = 0 to n do
7: 〈d, x, r〉 ← round(〈d, x, r〉 ,mi)

8: end for
9: /* Finalisation */

10: 〈d, x, r〉 ← round(〈d, x, r〉 ,uintw(|M|))
11: for i = 1 to H do
12: 〈d, x, r〉 ← round(〈d, x, r〉 ,0)

13: end for
14: /* Output */
15: for i = 0 to h/w − 1 do
16: 〈d, x, r〉 ← round(〈d, x, r〉 ,0)

17: oi ← d0
18: end for
19: return o0‖ · · · ‖oh/w−1
20: end function

Fig. 1. The EnRUPT hash function.

The internal state of EnRUPT consists of several w-bit words: H state words xi , P

‘delta accumulators’ di , and a round counter r . All of these are initialised to zero. The
parameter P is equal to 2 for all seven EnRUPT variants. The value of H depends on
the digest length, as indicated in Table 1.

Then, in the message processing phase (lines 5–8), the round function is called once
for each w-bit padded message word mi . Each call to the round function updates the
internal state 〈d, x, r〉. A detailed description of the EnRUPT round function is given in
the next section, Sect. 2.2.

After all message words have been processed, a finalisation is performed (lines 9–13).
The EnRUPT round function is called once with the length of the (unpadded) message,
represented as a w-bit unsigned integer.1 Then, H blank rounds, i.e. calls to the round
function with a zero message word input, are performed.

Finally, in the output phase (lines 14–18), the message digest is generated one w-bit
word at a time. The EnRUPT round function is called h/w times and, after each call,
the content of the ‘delta accumulator’ d0 is output.

2.2. The EnRUPT Round Function

The EnRUPT round function is based entirely on a number of simple operations on
words of w bits, such as bit shifts, bit rotations, exclusive OR and addition modulo 2w .
Figure 2 gives a description of the EnRUPT round function in pseudocode. The round
function consists of s · P identical steps, where s and P are parameters of the hash
function. As indicated in Table 1, s = 4 and P = 2 for all seven proposed EnRUPT
variants. Thus, the EnRUPT round function consists of eight steps.

1 Note that the EnRUPT specification [7] only states that the message length should be included, not
how this is to be done exactly. The EnRUPT reference implementation uses one w-bit word for the message
length, which implies that the EnRUPT variants for which w = 32 can only handle up to 232 − 1 bits in this
implementation. Note that the results presented in this paper are independent of the details of the padding.
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1: function round (〈d, x, r〉 ,m)
2: for i = 0 to s · P − 1 do /* An iteration of this loop is a “step” */
3: /* Compute indices */
4: α ← r + (i + 1 mod P) mod H

5: β ← r + i + 2P mod H

6: γ ← r + i + P mod H

7: ξ ← r + i mod H

8: /* Compute intermediate f */
9: e ← (

(xα � 1) ⊕ xβ ⊕ di mod P ⊕ uintw(r + i)
)
≫ w/4

10: f ← (e � 3) � e /* Multiplication with 9 modulo 2w */
11: /* Update state */
12: xγ ← xγ ⊕ f

13: di mod P ← di mod P ⊕ xξ ⊕ f

14: end for
15: r ← r + s · P
16: dP−1 ← dP−1 ⊕ m /* Message word injection */
17: return 〈d, x, r〉
18: end function

Fig. 2. The EnRUPT round function.

In each step, several words of the state are selected (lines 4–7) and combined into
an intermediate value f (lines 9–10). Note that line 10 could equally be described as a
multiplication with 9 modulo 2w . The intermediate value f is then used to update one
state word, xγ , and one ‘delta accumulator’, di mod P (lines 12–13).

After all steps have been performed, the round counter is incremented by the number
of steps that were carried out, i.e. s · P (line 15). Finally, the input message word m is
injected into one word of the internal state, the ‘delta accumulator’ dP−1 (line 16).

3. Basic Attack Strategy

This section gives an overview of the linearization method for finding collision differ-
ential characteristics for a hash function, which we use to attack EnRUPT in this work.
This method was introduced by Chabaud and Joux [2], who applied it to SHA-0 and
simplified variants thereof. Later, it was extended further and applied to SHA-1 by Rij-
men and Oswald [11].

A Linear Hash Function Consider a hypothetical hash function that consists only of
linear operations over GF(2). When the input messages are restricted to a certain length,
each output bit can be written as an affine function of the input bits. The difference in
each output bit is given by a linear function of the differences in the input bits, as the
constants (if any) cancel out. A message difference that leads to a collision can be found
by equating the output differences to zero, and solving the resulting system of linear
equations over GF(2), for instance using Gauss elimination. Any pair of messages with
this difference will result in a collision.

Linearising a Nonlinear Hash Function Actual cryptographic hash functions contain
(also) nonlinear components, so this method no longer applies. However, we may still
be able to approximate the nonlinear components by linear ones and construct a linear
approximation of the entire hash function. For our purpose, a good linear approximation
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λ(x) of a nonlinear function γ (x) is such that its differential behaviour is close to that
of γ (x). More formally, the equation

γ (x ⊕ Δ) ⊕ γ (x) = λ(x ⊕ Δ) ⊕ λ(x) = λ(Δ) (1)

should hold for a relatively large fraction of values x. For instance, an addition modulo
2w could be approximated by a simple XOR operation, i.e. ignoring the carries.

Finding Collisions A differential characteristic consists of a message difference and a
list of the differences in all (relevant) intermediate values. For the linear approximation,
it is easy to find a differential characteristic that leads to a collision with probability one.
But for the actual hash function, this probability will be (much) lower.

If the differential behaviour of all the nonlinear components corresponds to that of
the linear approximations they were replaced with, i.e. if (1) holds simultaneously for
each nonlinear component, we say that the differential characteristic is followed. In this
case, the message pair under consideration will not only collide for the linearised hash
function, but also for the original, nonlinear hash function. Such a message pair is called
a conforming message pair.

Hence, a procedure for finding a collision for the nonlinear hash function could be to
find a differential characteristic leading to collisions for a linearised variant of the hash
function. Then, a message pair conforming to the differential characteristic is searched.
In order to lower the complexity of the attack, it is important to maximise the probability
that the differential characteristic is followed, i.e. we need to find a good differential
characteristic.

4. Linearising EnRUPT

We now apply this general strategy to EnRUPT. Recall the description of the EnRUPT
round function in Fig. 2. Note that only the modular addition in line 10 is not linear
over GF(2). Indeed, the computation of the indices in lines 4–7 and the update of the
round counter in line 15 do not depend on the message being hashed and can thus be
precomputed. The same holds for the inclusion of the round counter in line 9, which
can be seen as an XOR with a constant. The other operations are all linear over GF(2).

Replacing the modular addition in line 10 with an XOR operation yields a linearised
round function, which we refer to as the EnRUPTl round function. The EnRUPTl hash
function, i.e. the hash function built on this linearised round function, also consists
solely of GF(2)-linear components.

5. The Collision Search

During the collision search phase, many collisions for EnRUPTl are constructed, and
a collision for EnRUPT is searched among them. Since only the modular additions
(line 10 of Fig. 2) were approximated by XOR, these are the only places where the
propagation of differences could differ between EnRUPT-L and EnRUPT. Instead of
checking for a collision at the output, we can immediately check if the difference at the
output of each modular addition, i.e. the difference �f in the intermediate value f , still
matches the differential characteristic.
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5.1. An Observation on EnRUPT

We now make an important observation on the structure of the EnRUPT hash function.
It is possible to find a conforming message pair for a given differential characteristic
one round at a time.

Consider the message word mi , which is injected into the ‘delta accumulator’ dP−1
at the end of round i. In the first (P −1) steps of the next round, dP−1 is not used, so mi

can not influence the behaviour of the modular additions in these steps. Starting from
the P th step of round (i + 1), however, mi does have an influence.

We can search for a value for mi such that the differential characteristic is followed
up to and including the first (P − 1) steps of round (i + 2). Starting with the P th step
of round (i + 2), the next message word, mi+1 also influences the modular additions.
Thus, we can keep mi fixed, and use the new freedom available in mi+1 to ensure that
the differential characteristic is also followed for the next s · P steps.

This drastically reduces the expected number of trials required to find a collision. Let
pi denote the probability that the differential characteristic is followed in a block of
s · P consecutive steps, starting at the P th step of a round. Because we can construct a
conforming message pair one word at a time, the expected number of trials is

∑
i 1/pi

rather than
∏

i 1/pi . In other words, the complexities associated with each block of s ·P
steps should be added together, rather than multiplied. This possibility was ignored in
the security analysis of EnRUPT [7], leading to the incorrect conclusion that attacks
based on linearization do not apply.

5.2. Accelerating the Collision Search

A simple optimisation can be made to the collision search, which allows us to ignore
the probability associated with one step in each round. This optimisation is analogous
to Wang’s ‘single message modification’, which was first introduced in the context of
MD5 and other hash functions of the MD4-family [13].

Consider the P th step of a round. In this step, the ‘delta accumulator’ dP−1, to which
a new message word m was XORed at the end of the previous round, is used for the first
time. More precisely, it is used in line 9 of Fig. 2 to compute the intermediate value e.
Note, however, that these computations can be inverted. We can choose the value of e,
and compute backwards to find what the message word m should be to arrive at this
value of e:

m = dP−1 ⊕ d
prev
P−1

= (e ≪ w/4) ⊕ (xα � 1) ⊕ xβ ⊕ uintw(r + P − 1) ⊕ d
prev
P−1. (2)

Here, d
prev
P−1 is the (known) value of dP−1 in the previous round, just before the message

word m was added to it.
The values of e which ensure that the difference propagation of the modular addition

in line 10 of Fig. 2 corresponds to that of its linear approximation can be efficiently
enumerated as follows. Consider a binary tree representing all possible values for e.
Each layer of the tree determines one more bit of e, starting from the least significant
bit. This tree is walked in a depth-first fashion, backtracking as soon as the difference
propagation is not as desired. Indeed, the difference propagation in the lower bits does
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not depend on the more significant bits, so this backtracking strategy effectively skips
over all bad values for e.

Thus, rather than randomly picking values for m, we can efficiently sample good
values for e in this step, and compute backwards to find the corresponding m. This
ensures that the first modular addition affected by a message word m will always exhibit
the desired propagation of differences. Thus, the P th step of every round can be ignored
in the estimation of the complexity of the attack.

6. Finding Good Differential Characteristics

The key to lowering the attack complexity is to find a good differential characteristic, i.e.
a characteristic which is likely to be followed for the nonlinear hash function. A generic
approach to this problem, based on finding low weight codewords in a linear code, was
proposed by Rijmen and Oswald [11] and extended by Pramstaller et al. [10]. In this
section, we show how to apply this approach to EnRUPT.

6.1. Coding Theory

As observed by Rijmen and Oswald [11], all of the differential characteristics leading
to a collision for the linearised hash function can be seen as the codewords of a linear
code.

Consider the EnRUPT-L hash function with a h-bit output length, and the message
input restricted to messages of t message words. Since it is affine over GF(2), it is
possible to express the difference in the output as a linear function of the difference in
the input message m:

[�o]1×h = [�m]1×tw · [O]tw×h. (3)

As the modular additions, or rather the multiplications with 9, in the EnRUPT round
function are approximated, we are also interested in the differences that enter each of
these operations. For EnRUPT restricted to t message blocks, there are t · s · P such
operations in total. Hence, we can combine the input differences to these operations in
a 1 × tsPw bit vector �e. Again, for the linear approximation, �e is simply a linear
function of the message difference �m:

[�e]1×tsPw = [�m]1×tw · [E]tw×tsPw. (4)

Putting this together results in a linear code described by the following generator matrix

G = [Itw×tw|Etw×tsPw|Otw×h]. (5)

Each codeword contains a message difference, the input differences to all approximated
modular additions, and finally the output difference.

Thus, each codeword is in fact a differential characteristic for EnRUPT-L, and all dif-
ferential characteristics for EnRUPT-L are codewords of this code. To restrict ourselves
to collision differentials, i.e. differential characteristics ending in a zero output differ-
ence, we can use Gauss elimination to force the h rightmost columns of the generator
matrix G to zero.
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It is well known that the differential behaviour of modular addition can be well ap-
proximated by that of XOR when the Hamming weight of the input difference, ignoring
the most significant bit, is small [2,5,10,11]. As the input differences to the modular
additions are part of the codewords, we will attempt to find a codeword with a low
Hamming weight in this part of the codeword.

6.2. Low Weight Codewords

To find low weight codewords, we used a simple and straightforward algorithm that is
based on the assumption that a codeword of very low weight exists in the code. For
our purposes, this is a reasonable assumption, as only a very low weight codeword will
lead to an attack faster than a generic attack. The algorithm is related to the algorithm
of Canteaut and Chabaud [1] and the algorithm used to find low weight codewords for
linearised SHA-1 by Pramstaller et al. [10].

Let G be the generator matrix of the linear code as in (5). We randomly select a
set I of (appropriate) columns of the generator matrix G and force them to zero using
Gauss elimination, until only d rows remain, where d is a parameter of the algorithm.
Then, the remaining space of 2d codewords is searched exhaustively. This procedure
is repeated until a codeword of sufficiently low weight is encountered. By replacing
only the ‘oldest’ column(s) in I , instead of restarting from the beginning every time, the
algorithm can be implemented efficiently in practice.

If a codeword of very low weight exists in the code, it is likely that all of the columns
in the randomly constructed set I will coincide with zeroes in the codeword, which
implies that the codeword will be found in the exhaustive search phase. In the case
of the codes originating from the seven linearised EnRUPT variants we consider, this
algorithm finds a codeword of very low weight in a matter of minutes on a PC. Repeated
runs of the algorithm always find the same codewords, so it is reasonable to assume that
these are indeed the best codewords we can find.

6.3. Estimating the Attack Complexity

Actually, the weight of a codeword is only a heuristic for the attack complexity resulting
from the corresponding differential. Codewords with a lower weight are expected to
result in a lower attack complexity, but we can easily enhance our algorithm to optimise
the actual attack complexity, rather than just a crude heuristic.

The Differential Probability The probability that a differential characteristic is fol-
lowed, is determined by the differences that are input to each of the multiplications
with 9 (line 10 in Fig. 2), which were approximated using XOR operations. Denote
by DP×9(Δ) the probability that the propagation of differences through this nonlinear
operation coincides with that of its linear approximation:

DP×9(Δ) = Pr
x

[
(x × 9) ⊕ ((x ⊕ Δ) × 9) = Δ ⊕ (Δ � 3)

]
. (6)

The differential probability of modular addition was studied by Lipmaa and Moriai [5].
Applying their results to this situation, and taking into account that the three least sig-
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nificant bits of (x � 3) are always zero, we find the following estimate for DP×9(Δ):

DP×9(Δ) ≈ 2−wt((Δ∨(Δ�3))∧0111···111000b). (7)

Even though this estimate ignores the dependency between x and (x � 3), this confirms
the intuition that a difference Δ with a low Hamming weight (ignoring the most signif-
icant bit and the three least significant bits) results in a large probability DP×9(Δ). We
used this as a heuristic to find a good differential characteristic: we want to minimise the
Hamming weight of the relevant parts of the differences that are input to the modular
additions. In other words, we want to find a low weight codeword of the aforementioned
linear code, where only the bits that impact DP×9(Δ) are counted.

Exact Computation of the Differential Probability Computing the exact value of
DP×9(Δ) for any given difference Δ can be done by counting all the values x for which
the difference propagation is as predicted by the linear approximation. We now show
how this can be done in an efficient way. While this is very useful for evaluating the
precise attack complexity, it lacks the clear intuition we can gather from (7).

For w-bit words, the definition of DP×9(Δ) given in (6) can be restated as

DP×9(Δ) = #{x ∈ {0,1}w | (x × 9) ⊕ ((x ⊕ Δ) × 9) = Δ ⊕ (Δ � 3)}
2w

. (8)

Now, consider how the computation of y = (x × 9) = x ⊕ (x � 3) is performed at the
bit level. Let xi denote the ith bit of x, where x0 is the least significant bit. Then the
following equations can be derived:

{
yi = xi ⊕ xi−3 ⊕ ci,

ci+1 = maj(xi, xi−3, ci).
(9)

Here, the bits ci represent the carry bits in the modular addition. By definition, the first
carry bit c0 is zero. The majority function maj(·) is defined by

maj(a, b, c) = ab ⊕ bc ⊕ ac. (10)

Let �xi be the XOR difference in the ith bit of x, and similar for other differences.
Then, we find

{
�yi = �xi ⊕ �xi−3 ⊕ �ci,

�ci+1 = maj(xi, xi−3, ci) ⊕ maj(xi ⊕ �xi, xi−3 ⊕ �xi−3, ci ⊕ �ci).
(11)

Since the output difference of the multiplication is approximated by �x ⊕ (�x � 3),
it follows from the first equation of (11) that we require �ci = 0 for 0 ≤ i < w. Note
that only the knowledge of xi , xi−3 and ci is required to evaluate (11) when the input
difference �x is fixed, and the carry bits have no difference.

Hence, this can be represented efficiently in a trellis where the computations relating
to one bit slice are represented by one segment in the trellis. Each node in the trellis
represents, for a certain bit position, the values of the input carry ci and the values of
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Fig. 3. Trellis segments used in the calculation of DP×9.

the three most recent bits, xi−1, xi−2 and xi−3. Since the differences in x are fixed a
priori, and we do not allow differences in the carry, it is possible to compute the arcs
in the segment as for each value of the bit xi , the next node can be computed. Indeed,
the next node is identified by ci+1, which can be computed from (9) and xi , xi−1 and
xi−2. Note, however, that, except for the most significant bit, we require �ci+1 = 0 for
our approximation to hold. This can be checked using (11), and only arcs satisfying
this condition are kept. The full trellis is the concatenation of segments out of the four
possibilities shown in Fig. 3. The input difference �x, which is fixed, determines which
segments are used. Note that the trellis segment for the most significant bit contains
all arcs regardless of �x, as the condition prohibiting an output carry differences is no
longer required there.

For each value of x for which no carry differences occur, there is a path in the trellis
starting at the node 〈0,0,0,0〉 at the input of least significant bit slice, which we refer to
as the source node, and ending at one of the nodes at the output of the most significant
bit slice, the goal nodes. Hence, we can evaluate (8) by simply counting the number of
such paths. This can be done using an algorithm that bears similarity to the Viterbi al-
gorithm [12] and is an example of dynamic programming. Let f (N) denote the number
of paths from the source node to a node N . It is straightforward to see that this is equal
to

f (N) =
∑

arc(X,N)

f (X), (12)

where arc(X,N) denotes that there is an arc from node X to node N . For the source
node S, we initialise f (S) = 1. Then the recurrence (12) can be used to evaluate the
number of paths to all nodes in the trellis. Finally, the sum of the number of paths to
each of the goal nodes allows to compute DP×9 using (8).
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Computing the Attack Complexity Let pr,i be the differential probability associated
with the modular addition in step i of round r of the differential characteristic. Recall
the observation made in Sect. 5.1, i.e. finding a conforming message pair can be done
one round at a time, or rather one message word at a time, as this does not coincide
precisely with the round boundaries. Taking this into account, the complexity of finding
the j th word of a conforming message pair can thus be computed as

Cj =
(

sP−1∏

i=P−1

1

pj+1,i

)(
P−2∏

i=0

1

pj+2,i

)

. (13)

Due to the acceleration technique presented in Sect. 5.2, we are guaranteed that the
differential behaviour of the modular addition in step P − 1 of each round will be as
desired. Thus, we can set pr,P−1 = 1. With the default EnRUPT parameters (P = 2 and
s = 4, see Table 1), this then becomes

Cj = 1

pj+1,2
· 1

pj+1,3
· 1

pj+1,4
· 1

pj+1,5
· 1

pj+1,6
· 1

pj+1,7
· 1

pj+2,0
. (14)

Finally, as was explained in Sect. 5.1, note that each message word can be found inde-
pendently of the previous ones, due to the newly available degrees of freedom in each
message word. Hence, the overall attack complexity can simply be computed as the sum
of these round complexities:

Ctot =
t∑

j=0

Cj . (15)

Note that, given a differential characteristic, it is easy to compute the associated at-
tack complexity. Hence, when searching for a good differential characteristic using the
algorithm described in Sect. 6.2, we can use the actual attack complexity instead of the
weight of the codeword. The algorithm still implicitly uses the weight of a codeword as
a heuristic, but now attempts to optimise the actual attack complexity directly.

7. Results and Discussion

We constructed differential characteristics for each of the seven EnRUPT variants in the
EnRUPT SHA-3 proposal [7]. Table 2 lists the attack complexity and the length of the
best characteristic we found for each variant. For the sake of clarity, the key parameters
of each EnRUPT variant are repeated from Table 1. Recall that we fixed the length of the
characteristic a priori. Note, however, that nothing prevents our search algorithm from
proposing a shorter characteristic, padded with rounds without any difference, which we
also observed in practice. We experimented with (much) longer maximum characteristic
lengths, but found no better long characteristics.

The time complexities vary from 236 to 240 round computations, depending on the
EnRUPT variant, which is remarkable. It means that the collision resistance in absolute
terms of each of these EnRUPT variants is more or less the same, regardless of the digest
length. Relative to the expected collision resistance of approximately 2n/2 for an n-bit
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Table 2. Summary of our attacks. Only the best attack is listed for each EnRUPT variant.

EnRUPT Word State Estimated Length of
variant size w size H time complexity differential

[bits] [words] [EnRUPT rounds] [message words]

EnRUPT-128 32 8 236.04 6
EnRUPT-160 32 10 237.78 7
EnRUPT-192 32 12 238.33 8
EnRUPT-224 64 8 237.02 6
EnRUPT-256 64 8 237.02 6
EnRUPT-384 64 12 239.63 8
EnRUPT-512 64 16 238.46 10

hash function, however, the (relative) collision resistance of EnRUPT is much worse for
the variants with a longer digest length than for those with a shorter digest length.

Tables 3, 4, 5, 6, 7, 8 list our differential characteristics for each of the seven EnRUPT
variants. Note that the same characteristic applies to EnRUPT-224 and EnRUPT-256
(Table 6) as both functions share the same parameter settings, see Table 1.

The format of these tables is as follows. Each line in the table corresponds to one step
of the EnRUPT round function. The difference in the input (�e) and the output (�f ) of
the multiplication with 9 in that step is indicated. Also, the message word differences
are shown at the end of each round. Note that the word size is 32 bits for some EnRUPT
variants, and 64 bits for others. The table also includes the differential probabilities of
each step, which were used to compute the attack complexity. A star (‘	’) indicates that
the differential probability can be ignored in that step because of the technique presented
in Sect. 5.2. The product of the step probabilities is given for eight consecutive steps.
Note that these do not coincide with the rounds, as was discussed in Sect. 6.3.

A collision example for EnRUPT-256, obtained using the characteristic from Table 6,
is given in Table 9. This example was computed on a cluster of AMD Opteron 250
processors running at 2.4 GHz. The total computational effort was 237 CPU-days. This
is roughly 1000 times what one would expect if one were to count just the time spent do-
ing EnRUPT rounds using an optimised implementation of EnRUPT. This discrepancy
is explained by a lack of optimisation of the implementation of the attack algorithm, a
simple but somewhat wasteful approach to parallelisation, and a considerable amount of
redundant work due to a bug in the initial attack implementation. However, such prac-
tical issues are to be expected in a first implementation, and we opted to balance the
programming effort and CPU time, rather than pursuing the fastest possible implemen-
tation.

Discussion In response to these collision attacks, the designers of EnRUPT proposed
to double the s parameter to 8, or to increase it even further to be equal to the H -
parameter, see Table 1 [8,9]. As a consequence of this, the number of steps between two
message word injections is at least doubled. Experiments with these EnRUPT variants
indicate that this tweak seems to be effective at stopping the attacks described in this
paper. For EnRUPT-256 with s = 6, we were still able to find a differential with an
associated attack complexity of about 2110 EnRUPT rounds, which is still below the
birthday bound. For higher values of the s parameter, all the differential characteristics
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Table 3. Differential characteristic for EnRUPT-128.

Round Step �e → �f DP×9 Totals

Inject message word difference �m−1 = 00000800x

0 0 00000000x → 00000000x 2−0.00 2−0.00

1 00000008x → 00000048x 	

2 90000000x → 10000000x 2−0.85

3 48000008x → 08000048x 2−3.85

4 90000000x → 10000000x 2−0.85

5 48280008x → 09680048x 2−6.92

6 9002d000x → 10145000x 2−6.43

7 00296808x → 01622848x 2−10.39

Inject message word difference �m0 = 00228000x

1 0 9002d000x → 10145000x 2−6.43 2−35.72

1 00296800x → 01622800x 	

2 9002d000x → 10145000x 2−6.43

3 48280000x → 09680000x 2−4.92

4 9002d000x → 10145000x 2−6.43

5 00080000x → 00480000x 2−1.85

6 90024000x → 10104000x 2−3.69

7 48092000x → 08402000x 2−5.71

Inject message word difference �m1 = 00228800x

2 0 90024000x → 10104000x 2−3.69 2−32.73

1 00084800x → 004a0800x 	

2 90024000x → 10104000x 2−3.69

3 48096800x → 08422800x 2−8.45

4 90024000x → 10104000x 2−3.69

5 00200000x → 01200000x 2−1.85

6 90000000x → 10000000x 2−0.85

7 48200000x → 09200000x 2−3.26

Inject message word difference �m2 = 00020800x

3 0 90000000x → 10000000x 2−0.85 2−22.65

1 00292000x → 01602000x 	

2 90009000x → 10041000x 2−3.70

3 48296800x → 09622800x 2−9.68

4 90009000x → 10041000x 2−3.70

5 00084800x → 004a0800x 2−4.59

6 90009000x → 10041000x 2−3.70

7 48080000x → 08480000x 2−3.71

Inject message word difference �m3 = 00020000x

4 0 90009000x → 10041000x 2−3.70 2−32.76

1 00080008x → 00480048x 	

2 00000000x → 00000000x 2−0.00

3 00080008x → 00480048x 2−3.85

4 00000000x → 00000000x 2−0.00

5 48084808x → 084a0848x 2−8.47

6 00000000x → 00000000x 2−0.00

7 48084808x → 084a0848x 2−8.47
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Table 3. (Continued.)

Round Step �e → �f DP×9 Totals

Inject message word difference �m4 = 00020000x

5 0 00000000x → 00000000x 2−0.00 2−20.79

1 00000000x → 00000000x 	

.

.

.
.
.
. →

.

.

.
.
.
.

7 00000000x → 00000000x 2−0.00 2−0.00

Table 4. Differential characteristic for EnRUPT-160.

Round Step �e → �f DP×9 Totals

Inject message word difference �m−1 = 00000400x

0 0 00000000x → 00000000x 2−0.00 2−0.00

1 00000004x → 00000024x 	

2 48000000x → 08000000x 2−1.85

3 24000004x → 04000024x 2−2.85

4 48000000x → 08000000x 2−1.85

5 24140004x → 04b40024x 2−5.92

6 48016800x → 080a2800x 2−7.43

7 2414b404x → 04b11424x 2−10.70

Inject message word difference �m0 = 00114000x

1 0 48016800x → 080a2800x 2−7.43 2−38.04

1 0014b400x → 00b11400x 	

2 00016800x → 000a2800x 2−5.59

3 2414b400x → 04b11400x 2−9.68

4 48016800x → 080a2800x 2−7.43

5 24000000x → 04000000x 2−1.85

6 48000000x → 08000000x 2−1.85

7 0000b400x → 00051400x 2−5.59

Inject message word difference �m1 = 00114400x

2 0 48016800x → 080a2800x 2−7.43 2−39.41

1 0004b400x → 00211400x 	

2 48012000x → 08082000x 2−4.69

3 00042400x → 00250400x 2−4.59

4 00012000x → 00082000x 2−2.85

5 24042400x → 04250400x 2−6.45

6 48012000x → 08082000x 2−4.69

7 24042400x → 04250400x 2−6.45

Inject message word difference �m2 = 00000000x

3 0 48004800x → 08020800x 2−4.70 2−34.42

1 0010b400x → 00951400x 	

2 48004800x → 08020800x 2−4.70

3 00100000x → 00900000x 2−1.85

4 48000000x → 08000000x 2−1.85

5 0014b400x → 00b11400x 2−8.36
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Table 4. (Continued.)

Round Step �e → �f DP×9 Totals

6 00004800x → 00020800x 2−2.85

7 2414b400x → 04b11400x 2−9.68

Inject message word difference �m3 = 00010400x

4 0 48004800x → 08020800x 2−4.70 2−33.99

1 24002400x → 04010400x 	

2 48004800x → 08020800x 2−4.70

3 00002400x → 00010400x 2−2.85

4 48004800x → 08020800x 2−4.70

5 00042400x → 00250400x 2−4.59

6 48004800x → 08020800x 2−4.70

7 00042400x → 00250400x 2−4.59

Inject message word difference �m4 = 00010000x

5 0 00000000x → 00000000x 2−0.00 2−26.12

1 24042404x → 04250424x 	

2 00000000x → 00000000x 2−0.00

3 00040004x → 00240024x 2−2.85

4 00000000x → 00000000x 2−0.00

5 24042404x → 04250424x 2−7.47

6 00000000x → 00000000x 2−0.00

7 24042404x → 04250424x 2−7.47

Inject message word difference �m5 = 00010000x

6 0 00000000x → 00000000x 2−0.00 2−17.79

1 00000000x → 00000000x 	

.

.

.
.
.
. →

.

.

.
.
.
.

7 00000000x → 00000000x 2−0.00 2−0.00

Table 5. Differential characteristic for EnRUPT-192.

Round Step �e → �f DP×9 Totals

Inject message word difference �m−1 = 00000800x

0 0 00000000x → 00000000x 2−0.00 2−0.00

1 00000008x → 00000048x 	

2 90000000x → 10000000x 2−0.85

3 48000008x → 08000048x 2−3.85

4 90000000x → 10000000x 2−0.85

5 48280008x → 09680048x 2−6.92

6 9002d000x → 10145000x 2−6.43

7 48296808x → 09622848x 2−11.70

Inject message word difference �m0 = 00228000x

1 0 9002d000x → 10145000x 2−6.43 2−37.03

1 48296800x → 09622800x 	

2 0002d000x → 00145000x 2−5.58

3 48296800x → 09622800x 2−9.68
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Table 5. (Continued.)

Round Step �e → �f DP×9 Totals

4 0002d000x → 00145000x 2−5.58

5 48016800x → 080a2800x 2−7.43

6 90000000x → 10000000x 2−0.85

7 48016800x → 080a2800x 2−7.43

Inject message word difference �m1 = 00228800x

2 0 90000000x → 10000000x 2−0.85 2−37.41

1 00016800x → 000a2800x 	

2 9002d000x → 10145000x 2−6.43

3 00016800x → 000a2800x 2−5.59

4 9002d000x → 10145000x 2−6.43

5 48080000x → 08480000x 2−3.71

6 00024000x → 00104000x 2−2.85

7 48084800x → 084a0800x 2−6.45

Inject message word difference �m2 = 00000000x

3 0 00024000x → 00104000x 2−2.85 2−34.30

1 48092000x → 08402000x 	

2 90009000x → 10041000x 2−3.70

3 48092000x → 08402000x 2−5.71

4 90009000x → 10041000x 2−3.70

5 00212000x → 01282000x 2−4.58

6 90009000x → 10041000x 2−3.70

7 00200000x → 01200000x 2−1.85

Inject message word difference �m3 = 00000000x

4 0 90009000x → 10041000x 2−3.70 2−26.93

1 48296800x → 09622800x 	

2 00009000x → 00041000x 2−2.85

3 48292000x → 09602000x 2−6.92

4 00009000x → 00041000x 2−2.85

5 48000000x → 08000000x 2−1.85

6 90009000x → 10041000x 2−3.70

7 48004800x → 08020800x 2−4.70

Inject message word difference �m4 = 00020800x

5 0 90009000x → 10041000x 2−3.70 2−26.56

1 00000000x → 00000000x 	

2 90009000x → 10041000x 2−3.70

3 00004800x → 00020800x 2−2.85

4 90009000x → 10041000x 2−3.70

5 48080000x → 08480000x 2−3.71

6 00000000x → 00000000x 2−0.00

7 48080000x → 08480000x 2−3.71

Inject message word difference �m5 = 00020000x

6 0 00000000x → 00000000x 2−0.00 2−17.66

1 48084808x → 084a0848x 	

2 00000000x → 00000000x 2−0.00
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Table 5. (Continued.)

Round Step �e → �f DP×9 Totals

3 00080008x → 00480048x 2−3.85

4 00000000x → 00000000x 2−0.00

5 48084808x → 084a0848x 2−8.47

6 00000000x → 00000000x 2−0.00

7 48084808x → 084a0848x 2−8.47

Inject message word difference �m6 = 00020000x

7 0 00000000x → 00000000x 2−0.00 2−20.79

1 00000000x → 00000000x 	

.

.

.
.
.
. →

.

.

.
.
.
.

7 00000000x → 00000000x 2−0.00 2−0.00

Table 6. Differential characteristic for EnRUPT-224 or EnRUPT-256.

Round Step �e → �f DP×9 Totals

Inject message word difference �m−1 = 0000000008000000x

0 0 0000000000000000x → 0000000000000000x 2−0.00 2−0.00

1 0000000000000800x → 0000000000004800x 	

2 9000000000000000x → 1000000000000000x 2−0.85

3 4800000000000800x → 0800000000004800x 2−3.70

4 9000000000000000x → 1000000000000000x 2−0.85

5 4800280000000800x → 0801680000004800x 2−7.28

6 90000002d0000000x → 1000001450000000x 2−6.43

7 0000280168000800x → 0001680a28004800x 2−11.02

Inject message word difference �m0 = 0000002280000000x

1 0 90000002d0000000x → 1000001450000000x 2−6.43 2−36.56

1 0000280168000000x → 0001680a28000000x 	

2 90000002d0000000x → 1000001450000000x 2−6.43

3 4800280000000000x → 0801680000000000x 2−5.43

4 90000002d0000000x → 1000001450000000x 2−6.43

5 0000080000000000x → 0000480000000000x 2−1.85

6 9000000240000000x → 1000001040000000x 2−3.70

7 4800080120000000x → 0800480820000000x 2−6.54

Inject message word difference �m1 = 0000002288000000x

2 0 9000000240000000x → 1000001040000000x 2−3.70 2−34.08

1 0000080048000000x → 0000480208000000x 	

2 9000000240000000x → 1000001040000000x 2−3.70

3 4800080168000000x → 0800480a28000000x 2−9.28

4 9000000240000000x → 1000001040000000x 2−3.70

5 0000200000000000x → 0001200000000000x 2−1.85

6 9000000000000000x → 1000000000000000x 2−0.85

7 4800200000000000x → 0801200000000000x 2−3.70
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Table 6. (Continued.)

Round Step �e → �f DP×9 Totals

Inject message word difference �m2 = 0000000208000000x

3 0 9000000000000000x → 1000000000000000x 2−0.85 2−23.91

1 0000280120000000x → 0001680820000000x 	

2 9000000090000000x → 1000000410000000x 2−3.70

3 4800280168000000x → 0801680a28000000x 2−11.02

4 9000000090000000x → 1000000410000000x 2−3.70

5 0000080048000000x → 0000480208000000x 2−4.70

6 9000000090000000x → 1000000410000000x 2−3.70

7 4800080000000000x → 0800480000000000x 2−3.70

Inject message word difference �m3 = 0000000200000000x

4 0 9000000090000000x → 1000000410000000x 2−3.70 2−34.19

1 0000080000000800x → 0000480000004800x 	

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000080000000800x → 0000480000004800x 2−3.70

4 0000000000000000x → 0000000000000000x 2−0.00

5 4800080048000800x → 0800480208004800x 2−8.39

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080048000800x → 0800480208004800x 2−8.39

Inject message word difference �m4 = 0000000200000000x

5 0 0000000000000000x → 0000000000000000x 2−0.00 2−20.49

1 0000000000000000x → 0000000000000000x 	

.

.

.
.
.
. →

.

.

.
.
.
.

7 0000000000000000x → 0000000000000000x 2−0.00 2−0.00

Table 7. Differential characteristic for EnRUPT-384.

Round Step �e → �f DP×9 Totals

Inject message word difference �m−1 = 0000000008000000x

0 0 0000000000000000x → 0000000000000000x 2−0.00 2−0.00

1 0000000000000800x → 0000000000004800x 	

2 9000000000000000x → 1000000000000000x 2−0.85

3 4800000000000800x → 0800000000004800x 2−3.70

4 9000000000000000x → 1000000000000000x 2−0.85

5 4800280000000800x → 0801680000004800x 2−7.28

6 90000002d0000000x → 1000001450000000x 2−6.43

7 4800280168000800x → 0801680a28004800x 2−12.87

Inject message word difference �m0 = 0000002280000000x

1 0 90000002d0000000x → 1000001450000000x 2−6.43 2−38.41

1 4800280168000000x → 0801680a28000000x 	

2 00000002d0000000x → 0000001450000000x 2−5.58

3 4800280168000000x → 0801680a28000000x 2−11.02

4 00000002d0000000x → 0000001450000000x 2−5.58

5 4800000168000000x → 0800000a28000000x 2−7.43
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Table 7. (Continued.)

Round Step �e → �f DP×9 Totals

6 9000000000000000x → 1000000000000000x 2−0.85

7 4800000168000000x → 0800000a28000000x 2−7.43

Inject message word difference �m1 = 0000002288000000x

2 0 9000000000000000x → 1000000000000000x 2−0.85 2−38.75

1 0000000168000000x → 0000000a28000000x 	

2 90000002d0000000x → 1000001450000000x 2−6.43

3 0000000168000000x → 0000000a28000000x 2−5.58

4 90000002d0000000x → 1000001450000000x 2−6.43

5 4800080000000000x → 0800480000000000x 2−3.70

6 0000000240000000x → 0000001040000000x 2−2.85

7 4800080048000000x → 0800480208000000x 2−6.54

Inject message word difference �m2 = 0000000000000000x

3 0 0000000240000000x → 0000001040000000x 2−2.85 2−34.39

1 4800080120000000x → 0800480820000000x 	

2 9000000090000000x → 1000000410000000x 2−3.70

3 4800080120000000x → 0800480820000000x 2−6.54

4 9000000090000000x → 1000000410000000x 2−3.70

5 0000200120000000x → 0001200820000000x 2−4.70

6 9000000090000000x → 1000000410000000x 2−3.70

7 0000200000000000x → 0001200000000000x 2−1.85

Inject message word difference �m3 = 0000000000000000x

4 0 9000000090000000x → 1000000410000000x 2−3.70 2−27.87

1 4800280168000000x → 0801680a28000000x 	

2 0000000090000000x → 0000000410000000x 2−2.85

3 4800280120000000x → 0801680820000000x 2−8.28

4 0000000090000000x → 0000000410000000x 2−2.85

5 4800000000000000x → 0800000000000000x 2−1.85

6 9000000090000000x → 1000000410000000x 2−3.70

7 4800000048000000x → 0800000208000000x 2−4.70

Inject message word difference �m4 = 0000000208000000x

5 0 9000000090000000x → 1000000410000000x 2−3.70 2−27.91

1 0000000000000000x → 0000000000000000x 	

2 9000000090000000x → 1000000410000000x 2−3.70

3 0000000048000000x → 0000000208000000x 2−2.85

4 9000000090000000x → 1000000410000000x 2−3.70

5 4800080000000000x → 0800480000000000x 2−3.70

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080000000000x → 0800480000000000x 2−3.70

Inject message word difference �m5 = 0000000200000000x

6 0 0000000000000000x → 0000000000000000x 2−0.00 2−17.63

1 4800080048000800x → 0800480208004800x 	

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000080000000800x → 0000480000004800x 2−3.70

4 0000000000000000x → 0000000000000000x 2−0.00
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Table 7. (Continued.)

Round Step �e → �f DP×9 Totals

5 4800080048000800x → 0800480208004800x 2−8.39

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080048000800x → 0800480208004800x 2−8.39

Inject message word difference �m6 = 0000000200000000x

7 0 0000000000000000x → 0000000000000000x 2−0.00 2−20.49

1 0000000000000000x → 0000000000000000x 	

.

.

.
.
.
. →

.

.

.
.
.
.

7 0000000000000000x → 0000000000000000x 2−0.00 2−0.00

Table 8. Differential characteristic for EnRUPT-512 (part 1).

Round Step �e → �f DP×9 Totals

Inject message word difference �m−1 = 0000000008000000x

0 0 0000000000000000x → 0000000000000000x 2−0.00 2−0.00

1 0000000000000800x → 0000000000004800x 	

2 9000000000000000x → 1000000000000000x 2−0.85

3 4800000000000800x → 0800000000004800x 2−3.70

4 9000000000000000x → 1000000000000000x 2−0.85

5 4800280000000800x → 0801680000004800x 2−7.28

6 90000002d0000000x → 1000001450000000x 2−6.43

7 4800280168000800x → 0801680a28004800x 2−12.87

Inject message word difference �m0 = 0000002280000000x

1 0 90000002d0000000x → 1000001450000000x 2−6.43 2−38.41

1 4800280168000000x → 0801680a28000000x 	

2 00000002d0000000x → 0000001450000000x 2−5.58

3 0000280168000000x → 0001680a28000000x 2−9.17

4 00000002d0000000x → 0000001450000000x 2−5.58

5 0000000168000000x → 0000000a28000000x 2−5.58

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800000000000000x → 0800000000000000x 2−1.85

Inject message word difference �m1 = 0000002288000000x

2 0 0000000000000000x → 0000000000000000x 2−0.00 2−27.77

1 4800000000000000x → 0800000000000000x 	

2 9000000000000000x → 1000000000000000x 2−0.85

3 4800000168000000x → 0800000a28000000x 2−7.43

4 9000000000000000x → 1000000000000000x 2−0.85

5 0000000168000000x → 0000000a28000000x 2−5.58

6 90000002d0000000x → 1000001450000000x 2−6.43

7 0000000168000000x → 0000000a28000000x 2−5.58

Inject message word difference �m2 = 0000000000000000x

3 0 90000002d0000000x → 1000001450000000x 2−6.43 2−33.16

1 4800000000000000x → 0800000000000000x 	

2 00000002d0000000x → 0000001450000000x 2−5.58
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Table 8. (Continued.)

Round Step �e → �f DP×9 Totals

3 0000000000000000x → 0000000000000000x 2−0.00

4 00000002d0000000x → 0000001450000000x 2−5.58

5 0000080168000000x → 0000480a28000000x 2−7.43

6 0000000090000000x → 0000000410000000x 2−2.85

7 4800080048000000x → 0800480208000000x 2−6.54

Inject message word difference �m3 = 0000000000000000x

4 0 0000000090000000x → 0000000410000000x 2−2.85 2−30.84

1 4800080048000000x → 0800480208000000x 	

2 9000000090000000x → 1000000410000000x 2−3.70

3 4800080120000000x → 0800480820000000x 2−6.54

4 9000000090000000x → 1000000410000000x 2−3.70

5 0000200120000000x → 0001200820000000x 2−4.70

6 9000000090000000x → 1000000410000000x 2−3.70

7 0000200048000000x → 0001200208000000x 2−4.70

Inject message word difference �m4 = 0000000000000000x

5 0 9000000090000000x → 1000000410000000x 2−3.70 2−30.72

1 4800280120000000x → 0801680820000000x 	

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000280120000000x → 0001680820000000x 2−6.43

4 0000000000000000x → 0000000000000000x 2−0.00

5 0000000048000000x → 0000000208000000x 2−2.85

6 0000000090000000x → 0000000410000000x 2−2.85

7 4800000048000000x → 0800000208000000x 2−4.70

Inject message word difference �m5 = 0000000000000000x

6 0 0000000090000000x → 0000000410000000x 2−2.85 2−19.67

1 4800000000000000x → 0800000000000000x 	

2 9000000090000000x → 1000000410000000x 2−3.70

3 4800000048000000x → 0800000208000000x 2−4.70

4 9000000090000000x → 1000000410000000x 2−3.70

5 0000000000000000x → 0000000000000000x 2−0.00

6 9000000090000000x → 1000000410000000x 2−3.70

7 0000000000000000x → 0000000000000000x 2−0.00

Inject message word difference �m6 = 0000000208000000x

7 0 9000000090000000x → 1000000410000000x 2−3.70 2−19.48

1 4800000048000000x → 0800000208000000x 	

2 0000000000000000x → 0000000000000000x 2−0.00

3 0000000048000000x → 0000000208000000x 2−2.85

4 0000000000000000x → 0000000000000000x 2−0.00

5 0000080048000000x → 0000480208000000x 2−4.70

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080000000000x → 0800480000000000x 2−3.70

Inject message word difference �m7 = 0000000200000000x

8 0 0000000000000000x → 0000000000000000x 2−0.00 2−11.24

1 4800080048000800x → 0800480208004800x 	

2 0000000000000000x → 0000000000000000x 2−0.00
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Table 8. (Continued.)

Round Step �e → �f DP×9 Totals

3 0000080000000800x → 0000480000004800x 2−3.70

4 0000000000000000x → 0000000000000000x 2−0.00

5 4800080048000800x → 0800480208004800x 2−8.39

6 0000000000000000x → 0000000000000000x 2−0.00

7 4800080048000800x → 0800480208004800x 2−8.39

Inject message word difference �m8 = 0000000200000000x

9 0 0000000000000000x → 0000000000000000x 2−0.00 2−20.49

1 0000000000000000x → 0000000000000000x 	

.

.

.
.
.
. →

.

.

.
.
.
.

7 0000000000000000x → 0000000000000000x 2−0.00 2−0.00

Table 9. A collision example for EnRUPT-256.

M 13x c8x 4bx 45x 62x 70x 17x 6ex

04x f9x 31x 7ex c3x 6cx e7x d3x

e1x 21x 78x 6ax 34x 74x 11x 19x

7fx 64x a3x c9x 40x 07x 75x 76x

a1x 4fx 90x 86x fdx c7x 33x 4ax

41x 3ax 76x 91x 96x 06x 2cx a1x

M ′ 13x c8x 4bx 45x 6ax 70x 17x 6ex

04x f9x 31x 5cx 43x 6cx e7x d3x

e1x 21x 78x 48x bcx 74x 11x 19x

7fx 64x a3x cbx 48x 07x 75x 76x

a1x 4fx 90x 84x fdx c7x 33x 4ax

41x 3ax 76x 93x 96x 06x 2cx a1x

EnRUPT-256(M) = bdx 67x 51x 7cx a6x c0x 41x 20x

EnRUPT-256(M ′) = 82x e0x 3bx 74x 5fx fcx 4ax 64x

e9x f0x 92x c2x 58x c3x 98x b8x

44x 9ax fex cbx 7fx c8x 6fx 72x

we could find would result in attack complexities that are far beyond than the birthday
bound, and thus should not be considered to be real attacks.

Note that the failure of this heuristic attack method for s = 8 or s = H does not
preclude the possibility of attacks based on linearization. Our experiments only show
that it is unlikely that the particular attack method used in this work can be applied
directly to EnRUPT with s ≥ 8.

8. Conclusion

We presented collision attacks on all seven variants of the EnRUPT hash function [7]
that were proposed as candidates to the NIST SHA-3 competition [6]. The attacks re-
quire negligible memory and have time complexities ranging from 236 to 240 EnRUPT
round computations, depending on the EnRUPT variant. The practicality of the attacks
has been demonstrated with an example collision for EnRUPT-256.
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