
J. Cryptol. (2010) 23: 457–476
DOI: 10.1007/s00145-009-9047-0

Discrete Logarithm Problems with Auxiliary Inputs∗

Jung Hee Cheon
ISaC and Dept. of Mathematics, Seoul National University, Seoul, Korea

jhcheon@snu.ac.kr

Communicated by Phong Q. Nguen

Received 10 April 2008 and revised 20 May 2009
Online publication 11 December 2009

Abstract. Let g be an element of prime order p in an abelian group, and let α ∈ Zp .

We show that if g,gα , and gαd
are given for a positive divisor d of p − 1, the se-

cret key α can be computed deterministically in O(
√

p/d + √
d) exponentiations by

using O(max{√p/d,
√

d}) storage. If gαi
(i = 0,1,2, . . . ,2d) is given for a positive

divisor d of p + 1, α can be computed in O(
√

p/d + d) exponentiations by using
O(max{√p/d,

√
d}) storage. We also propose space-efficient but probabilistic algo-

rithms for the same problem, which have the same computational complexities with
the deterministic algorithm.

As applications of the proposed algorithms, we show that the strong Diffie–Hellman

problem and related problems with public gα, . . . , gαd
have computational complexity

up to O(
√

d/ logp) less than the generic algorithm complexity of the discrete log-
arithm problem when p − 1 (resp. p + 1) has a divisor d ≤ p1/2 (resp. d ≤ p1/3).
Under the same conditions for d, the algorithm is also applicable to recovering the se-
cret key in O(

√
p/d · logp) for Boldyreva’s blind signature scheme and the textbook

ElGamal scheme when d signature or decryption queries are allowed.

Key words. Discrete logarithm, Auxiliary inputs, Baby-step giant-step, Pollard’s
kangaroo algorithm, Strong Diffie–Hellman, ElGamal encryption, Blind signature

1. Introduction

Let g be an element of an abelian group G of order p, and let α ∈ Zp . By d auxiliary

inputs we mean a set of values {gα, . . . , gαd }. Then a discrete logarithm problem (DLP)
with auxiliary inputs is the problem that involves the determination of α when gαi

(i = 0,1,2, . . . , d) as well as g,gα are given. For other DL-related problems, we may
define their variants with auxiliary inputs similarly. For example, the �-Strong Diffie–

Hellman (�-SDH) problem [3,5] involves the determination of g
1

c+α for some c if
g,gα, . . . , gα�

are given. Such additional information may weaken the problem; how-

∗ The preliminary version of this paper appeared in the Proceedings of Eurocrypt 2006, Lecture Notes in
Computer Science 4004, Springer-Verlag [15].

© International Association for Cryptologic Research 2009

mailto:jhcheon@snu.ac.kr


458 J.H. Cheon

ever, this problem and its variants such as Bilinear Diffie–Hellman Inversion (BDHI)
problem [3] and the Bilinear Diffie–Hellman Exponent (BDHE) problem [9] are widely
applied due to its flexibility when designing cryptosystems.

In this paper, we propose an algorithm for the DLP with auxiliary inputs. Suppose
that g,gα, gαd ∈ G are given for a divisor d of p − 1. Let α = ζ k0+((p−1)/d)k1 for
0 ≤ k0 <

p−1
d

and 0 ≤ k1 < d for a primitive element ζ of Z
∗
p . The proposed algorithm

computes k0 and k1 satisfying αd = (ζ d)k0 and αζ−k0 = (ζ (p−1)/d)k1 . Since we do not
know α itself, k0 is determined by checking the equality gαd = gζdk0 for all k0, or more
efficiently gαd

gζ−du = gζdmv
for all integers u,v with 0 ≤ u,v ≤ m := �(p − 1)/d�

in the style of baby-step and giant-step algorithm. Once k0 is obtained, it is used to
determine k1 through a similar method.

This technique can be generalized to the case where p + 1 has a divisor d and
gα, . . . , gα2d

are given. To deal with such a case, we first determine two nonconstant ra-
tional functions f1, f2 ∈ Zp[x] such that f1(α)+f2(α)θ is an element of the (p+1)th-
order subgroup H of Zp[θ ]∗ � F

∗
p2 , where θ is a root of X2 − a for a quadratic non-

residue a ∈ Z
∗
p . The algorithm is similar to the above, except that we use the fact that

x1 + y1θ = x2 + y2θ in H if and only if gx1 = gx2 and gy1 = gy2 .
The proposed algorithms require O(max{√p/d,

√
d}) storage and O(

√
p/d + √

d)

exponentiations if g,gα and gαd
are given for a positive divisor d of p − 1 or

O(
√

p/d + d) exponentiations (under the Extended Riemann Hypothesis (ERH)) if
gαi

(i = 0,1,2, . . . ,2d) is given for a positive divisor d of p + 1. We further propose
space-efficient algorithms for the DLP with auxiliary inputs, which are variants of Pol-
lard’s kangaroo algorithms [30] and have the same computational complexities as the
deterministic algorithms above.

The proposed algorithms directly imply that the strong Diffie–Hellman problem
and related problems with d auxiliary inputs can be solved in O(

√
p/d + √

d) (or
O(

√
p/d + d)) when p − 1 (resp. p + 1) has a divisor d ≤ p1/2 (resp. d ≤ p1/3). These

complexities are up to a factor O(
√

d/ logp) less than the lower bound Ω(
√

p) of pre-
viously known generic algorithms for the DLP [28,36]. Surprisingly, it matches the pre-
viously known lower bound of these problems in the generic bilinear-group model [4,
12] when d is less than p1/3. We remark that our result could be considered as a re-
minder that, when designing a cryptographic scheme and making parameter selections,
it is important not to take lower bounds given by security proofs lightly: if a lower bound
given by the security proof is lower than expected, this might actually be a warning that
a matching attack exists and may be found later.

Under the same conditions given for d , the algorithm is also applicable for re-
covering the secret key in O(

√
p/d · logp) for Boldyreva’s blind signature scheme

when d signature queries are allowed. Similar results hold for the textbook ElGamal
scheme [18] when a decryption oracle is available, and for the conference keying pro-
tocol by Burmester and Desmedt [14] when key issuing oracles are available to the
attacker.

In order to investigate the practicality of the proposed algorithm, we analyze some
well-known elliptic curve parameters and show that either p − 1 or p + 1 has certain
small divisors for the largest prime divisor p of the order of each elliptic curve in [8,
23,32,34]. Furthermore, we show that for any 0 < τ < 1, the probability that a prime



Discrete Logarithm Problems with Auxiliary Inputs 459

p is such that p − 1 or p + 1 has no divisor in (e(logp)τ /3,p1/3] decreases to zero as
p increases to infinity. That is, for all but negligible proportion of primes p, p − 1 and
p + 1 have a divisor of size appropriate for our algorithm.

Related Works After the author published the preliminary version [15] of this paper,
he learned that a similar result to Theorem 1 (the case that p − 1 has a divisor of proper
size) was developed independently by Brown and Gallant [13]. They used it to study the
static Diffie–Hellman problem and analyze some DLP-based protocols including basic
ElGamal encryption, Chaum and van Antwerpen’s undeniable signature scheme, and
Ford and Kaliski’s key retrieval scheme. A speed-up method of the proposed algorithms
using a precomputed table was proposed by Kozaki, Kutsuma, and Matsuo [24]. Using
their method, our algorithm can be performed in O(

√
p/d +√

d) (resp. O(
√

p/d +d))
group operations in G, rather than exponentiations in G, for the case that d|p − 1 (resp.
d|p + 1). Satoh generalized our algorithm into more general d using an embedding to
GL(k,Zp) [33]. His algorithm for k = 1,2 implies ours. However, it is not efficient in
the case k > 2.

Organization This paper is organized as follows: In Sect. 2, we propose algorithms
for the DL problems with auxiliary inputs and analyze their complexities. In Sect. 3,
we propose space-efficient versions of our algorithms. In Sect. 4, we introduce several
applications of the proposed algorithms including SDH related problems. In Sect. 5,
we analyze well-known elliptic curve parameters in order to verify whether or not our
algorithms are applicable for the elliptic curve parameters, and we obtain the asymptotic
distribution of primes resistant to the proposed attack. In Sect. 6, we conclude this paper.

2. The Proposed Algorithm

The following notation is used throughout this paper:

Zp The finite field {0,1 . . . , p − 1} of prime p elements
Z

∗
p The multiplicative subgroup Zp \ {0} of Zp

a mod z The smallest nonnegative integer congruent modulo z

φ(·) The Euler totient function
G An abelian group (written multiplicatively) of order p wherein the equality

of two elements is verified more efficiently than a multiplication in G

MulG The cost of one multiplication in G

InvG The cost of one inversion in G

ExpG(n) The cost of one exponentiation of an element in G by a positive integer
less than n

CompG The cost to determine if two elements of G are identical including writing
and reading an element of G

The Discrete Logarithm Problem (DLP) in G is defined as follows: For a given in-
put (g, gα) ∈ G2, compute α ∈ Zp . In this section, we consider the DL problem with

auxiliary inputs such as gαi
for some integer i.



460 J.H. Cheon

2.1. p − 1 Cases

Lemma 1. Let G be an abelian group of prime order p with generator g. Suppose
that a generator ζ of Z

∗
p and a positive divisor d of p − 1 are given. If g, g1 := gα and

gd := gαd
are given, α can be computed in time

2

(⌈√
p − 1

d

⌉
+ ⌈√

d
⌉)

· (ExpG(p) + logp · CompG

) + (
5 + o(1)

) · ExpZp
(p)

by using storage for max{�√(p − 1)/d�, �√d�} elements of G.

Proof. Since α ∈ Z
∗
p , there must exist nonnegative integers k0 <

p−1
d

and k1 < d such
that

α = ζ k0+k1((p−1)/d).

Let ζ̂ := ζ d . Then αd = ζ̂ k0 . If we take m = �
√

p−1
d

� and m̂ = 	p−1
md


 (m̂ ≤ m), k0

can be expressed in a unique manner as k0 = u + mv, where 0 ≤ u < m and 0 ≤ v ≤ m̂.
This implies that

(αd)ζ̂−u = ζ̂ mv

or equivalently

g
ζ̂−u

d = gζ̂mv

. (1)

We construct a lookup table (baby-steps) which contains all the pairs (g
ζ̂−u

d , u) for

0 ≤ u < m, and we sort the table by the first component. We compute gζ̂mv
for each 0 ≤

v ≤ m̂ (giant-steps) and compare with the lookup table in order to identify coincidences.
Note that the terms in both sides of (1) can be computed by repeated exponentiations
by either ζ̂−1 or ζ̂ m. Thus, we can determine a pair of (u, v) that satisfies (1) in 2m ·
(ExpG(p) + logp · CompG) + 2 · ExpZp

(p) by using storage for m elements of G.

Now we apply a similar method to find a nonnegative integer k1 < d from αζ−k0 =
ζ

p−1
d

k1 . Let ζ̌ = ζ
p−1

d . Then, there exist nonnegative integers u′, v′ such that

(
αζ−k0

)
ζ̌−u′ = ζ̌ m′v′

(0 ≤ u′ < m′, 0 ≤ v′ ≤ m̂′), (2)

where m′ := �√d� and m̂′ := 	 d
m′ 
. Equation (2) is equivalent to

(
g

ζ−k0

1

)ζ̌−u′
= gζ̌m′v′

. (3)

Using the same method described above, we can find integers u′ and v′ that satisfy (3)
in 2m′ · (ExpG(p) + logp · CompG) + (3 + o(1))ExpZp

(p) by using storage for m′
elements of G. �



Discrete Logarithm Problems with Auxiliary Inputs 461

We require a generator of Z
∗
p for our attacks. Since Z

∗
p is a cyclic group with φ(p−1)

generators, a random element in Z
∗
p is a generator [26, p. 162] with probability

φ(p − 1)

(p − 1)
>

1

6 log log(p − 1)
,

which is sufficiently large. However, the best-known deterministic algorithm [42] for
determining a generator of Z

∗
p requires p1/4+o(1) when the factorization of p − 1 is

known. Since the integer factorization is performed with constant probability of success
deterministically in O(p1/4) (by heuristic analysis) with using Pollard’s rho algorithm,
a generator of Z

∗
p is computed in p1/4+o(1) [38]. Therefore, since we assumed that ExpG

dominates CompG, we can conclude that the computation of the discrete logarithm with
d auxiliary inputs requires a deterministic running time given by O(

√
(p − 1)/d+√

d) ·
ExpG(p). It proves the following theorem. We note that a similar result to the following
theorem was developed independently by Brown and Gallant [13].

Theorem 1. Let G be an abelian group of prime order p with generator g. Suppose
that d is a positive divisor of p − 1. If g, g1 := gα and gd := gαd

are given, α can be
computed deterministically in time

O

(√
p − 1

d
+ √

d

)
· ExpG(p)

by using storage for max{�√(p − 1)/d�, �√d�} elements of G.

If p−1 is factorized into a product of small prime divisors d1, . . . , dt and gα(p−1)/di is
known for each i, we obtain a very efficient algorithm for computing α as the following
corollary.

Corollary 1. Let G be an abelian group of prime order p with generator g. Suppose
that a factorization of p − 1 is given as p − 1 = d1d2 · · ·dt for pairwise relatively prime
di ’s. If g and g(p−1)/di

:= gα(p−1)/di for 1 ≤ i ≤ t are given, α can be computed in
time

O

(
t∑

i=1

√
di

)
· ExpG(p)

by using storage for max1≤i≤t�√di� elements of G.

Proof. Let α = ζ k for a generator ζ of Z
∗
p and ζi := ζ (p−1)/di be an element of order

di in Z
∗
p . Since (α(p−1)/di )di = 1 and ζi generates all the di th roots of unity, there must

be a unique nonnegative integer ki less than di that satisfies α(p−1)/di = ζ
ki

i , which is
equivalent to

g(p−1)/di
= gζ

ki
i .



462 J.H. Cheon

That is,

(g(p−1)/di
)ζ

−ui
i = gζ

�√di �vi
i for 0 ≤ ui, vi <

⌈√
di

⌉
.

By using the baby-step giant-step algorithm, we can compute ki in �√di� ExpG(p)

by using storage for O(
√

di) G elements. Since k satisfies k ≡ ki mod di , we can
compute k by performing the above step for 1 ≤ i ≤ t and by using the Chinese Re-
mainder Theorem. The total complexity is O(

∑t
i=1

√
di) ExpG(p) when using storage

for max1≤i≤t�√di� G elements. Finally, ζi can be computed in O(
√

di) for each i. This
completes the proof. �

2.2. p + 1 Cases

In this subsection, we consider the case that d is a divisor of p + 1 and gα, . . . , gα2d
are

given.
Let a be a quadratic nonresidue of Zp . If we denote by θ a root of X2 − a in an

algebraically closed field of Zp , then Zp[θ ] ∼= Zp[X]/(X2 − a) is a finite field of order
p2 and θp = −θ . We first determine two nonconstant rational functions f1, f2 ∈ Zp[x]
such that β := f1(α) + f2(α)θ is an element of the (p + 1)th-order subgroup H of

Zp[θ ]∗. Then we choose a generator ζ of H and let β = ζ k0+k1
p+1

d for 0 ≤ k0 <
p+1

d

and 0 ≤ k1 < d .
First, we compute k0 with ζ̂ k0 = βd for ζ̂ = ζ d . It is done by checking the equality

βd ζ̂−mv = ζ̂ u

for all integers u,v with 0 ≤ u,v ≤ m := �p+1
d

� as in the baby-step and giant-step
method. Since we do not know the powers of β themselves, the equality is checked by
using the fact that x1 + y1θ = x2 + y2θ in H if and only if gx1 = gx2 and gy1 = gy2 .
Once k is obtained, we apply a similar method to find k in the baby-step giant-step style
from

βζ−k0 = ζ ((p+1)/d)k1 .

Finally, α is computed by solving the equation f1(α) + f2(α)θ = ζ k0+k1((p+1)/d).

Lemma 2. Let G be an abelian group of prime order p with generator g. Suppose
that a positive divisor d of p + 1 and a generator of Zp[θ ] are given, where θ is a root

of X2 − a for a quadratic nonresidue element a of Zp . If gi := gαi
for i = 1,2, . . . ,2d

is given, α can be computed in time

(3d + 6m + 6m′ + 6) · ExpG(p) + (3d + 2m + 2m′ + 2) · MulG + 4 · ExpZp
(p)

+ (7d + 8m + 8m′)MulZp
+ 3d · InvZp

+ 2(m + m′) logp · CompG

by using storage for max{√(p + 1)/d,
√

d} elements of G, where m = �
√

p+1
d

� and

m′ = �√d�.



Discrete Logarithm Problems with Auxiliary Inputs 463

Proof. Let H be the subgroup of order p+1 of Fp[θ ]∗ with generator ζ , which can be
obtained by raising the (p − 1)-st power to a generator of Fp[θ ]∗, and let β = β0 + β1θ

for β0 = (1+aα2)/(1−aα2) ∈ Fp and β1 = 2α/(1−aα2) ∈ Fp . We have β ∈ H since

βp+1 = β · βp = (β0 + β1θ)
(
β0 + β1θ

p
) = β2

0 − aβ2
1 = 1. (4)

Hence there exist nonnegative integers k0 <
p+1

d
and k1 < d such that β =

ζ k0+k1((p+1)/d).
Let ζ̂ := ζ d . Then we have βd = ζ̂ k0 . For convenience, we denote ζ̂ i = si + tiθ for

some si , ti ∈ Zp , where the index i is defined modulo p+1
d

. Further we denote

βd = (1 + αθ)2d

(1 − aα2)d
= P1(α) + P2(α)θ

P3(α)
(5)

for

P1(x) =
d∑

i=0

(
2d

2i

)
aix2i , P2(x) =

d−1∑
i=0

(
2d

2i + 1

)
aix2i+1, and

P3(x) =
d∑

i=0

(
d

i

)
(−a)ix2i in Zp[x],

where the first equality comes from 1 + aα2 + 2αθ = (1 + αθ)2.
Then, there must exist u and v such that

βd ζ̂−u = ζ̂ mv (0 ≤ u < m, 0 ≤ v ≤ m̂), (6)

where m := �
√

p+1
d

� and m̂ := 	p+1
md


 ≤ m. Equation (6) is equivalent to

(
P1(α)s−u + aP2(α)t−u

) + (
P1(α)t−u + P2(α)s−u

)
θ = P3(α)(smv + tmvθ).

We construct a lookup table (baby-steps) which contains all the triples
(gP1(α)s−u+aP2(α)t−u, gP1(α)t−u+P2(α)s−u, u) for all 0 ≤ u < m, and we sort the table by
first component. We compute (gP3(α)smv , gP3(α)tmv ) for each 0 ≤ v ≤ m̂ (giant-steps)
and refer to the lookup table in order to find a unique pair (u, v) that satisfies (6). Then,
k = u + mv. The detailed procedure is listed as follows:

Step 1: Compute ζ̂ = ζ d and ζ̂−1 in 2 · ExpZp
(p)

Step 2: Compute (s−u, t−u) and (smv, tmv) for 0 ≤ u < m and 0 ≤ v ≤ m̂ in 8m ·
MulZp

Step 3: Compute ai mod p,
(2d

2i

)
mod p,

( 2d
2i+1

)
mod p, and

(
d
i

)
mod p for 1 ≤ i ≤

d , in order to obtain the coefficients of P1,P2,P3 ∈ Zp[x], in 7d · MulZp
+

3d · InvZp
.

Step 4: Compute gP1(α), gP2(α) and gP3(α) from g,g1, . . . , g2d in (3d + 2) ·
(ExpG(p) + MulG).



464 J.H. Cheon

Step 5: Compute si - or ti -powers of gPj (α) for some necessary i and j to form a
table and perform the comparisons in m · (6ExpG(p) + 2MulG) + 2m logp ·
CompG.

It requires storage for max{�√(p + 1)/d�, �√d�} elements of G.
Now we apply a similar method to find a nonnegative integer k1 < d from βζ−k0 =

ζ
p+1

d
k1 . Let ζ̌ = ζ

p+1
d . Then, there must exist nonnegative integers u′, v′ such that

βζ−k0 ζ̌−u′ = ζ̌ m′v′
(0 ≤ u′ < m′, 0 ≤ v′ ≤ m̂′), (7)

where m′ := �√d� and m̂′ := 	 d
m′ 
. We denote ζ−k0 ζ̌−i = s′

i + t ′i θ and ζ̌ m′i =
s′′
i + t ′′i θ for some s′

i , t
′
i , s

′′
i , t ′′i ∈ Zp , where the index i is defined modulo d . Then (7) is

equivalent to

((
1 + aα2)s′

u′ + 2aαt ′u′
) + ((

1 + aα2)t ′u′ + 2αs′
u′

)
θ = (

1 − aα2)(s′′
v′ + t ′′v′θ

)
. (8)

We construct a lookup table that contains all the triples

(
g

(1+aα2)s′
u′+2aα′tu′ , g(1+aα2)t ′

u′+2αs′
u′ , u

)

for all 0 ≤ u′ < m′ and sort the table by the first component. Then, compute

(g
(1−aα2)s′′

v′ , g(1−aα2)t ′′
v′ ) for each 0 ≤ v′ < m̂′ in order to find a pair (u′, v′) that sat-

isfies (2). The detailed procedure is listed as follows:

Step 1: Compute ζ k0 and ζ−1 in 2 · ExpZp
(p).

Step 2: Compute (s′
u′ , t ′u′) and (s′′

v′ , t ′′v′) for 0 ≤ u′ < m′ and 0 ≤ v′ ≤ m̂′ in (m + m̂) ·
MulH or equivalently 8m′ · MulZp

.

Step 3: Compute g(1+aα2), g2aα , g1−aα2
and then compute their powers by appro-

priate s′, t ′, s′′, or t ′′ to form a table and perform comparisons. This can be
performed in (3 + 6m′) · ExpG(p) + 2m · MulG + (2m′ logp) · CompG.

It requires storage for m′ elements of G.
Finally, α = β1

β0+1 can be computed from β = β0 + β1θ with one additional division
or exponentiation in G. This completes the proof. �

The previous lemma requires a quadratic nonresidue element of Fp , which is easy to
obtain since a half of elements of F

∗
p are quadratic nonresidues and quadratic residu-

osity is easily checked by raising a power of (p − 1)/2 to the element. Moreover, it is
known [2,37] that the least positive integer that is not a quadratic residue modulo p is
at most 2 logp so that we can take a quadratic nonresidue in most 2 logp steps. Cur-
rently, the best-known deterministic algorithm [35] for determining a generator of F

∗
p2

requires p1/2+o(1) when the factorization of p2 − 1 is known. However, assuming the
Extended Riemann-Hypothesis (ERH), this can be performed by O((logp)O(1)) [35].
Assuming that a comparison operation is faster than an exponentiation, we have the
following theorem.



Discrete Logarithm Problems with Auxiliary Inputs 465

Theorem 2. Let G be an abelian group of prime order p with generator g. Suppose
that a positive divisor d of p + 1 and gi := gαi

for i = 1,2, . . . ,2d are given. Then, α

can be computed deterministically in time

O

(√
p + 1

d
+ d

)
· ExpG(p) + O(d + logp) · MulZp

by using storage for max{
√

p+1
d

,
√

d} elements of G, assuming the ERH.

Note that if d ≤ p1/3, then Theorem 2 states that the secret key can be computed in
O(

√
p/d)) exponentiations by using O(

√
p/d) storage.

Remark 1. We may compare our proof with the proof of the equivalence between the
DLP and DHP in some circumstances [16,25]. While the latter assumes that Diffie–
Hellman oracles DH(gx, gy) = gxy are accessible, for the situations in our study, the
Diffie–Hellman oracle can be used only when x is fixed and y = x� for some small �.
This restriction becomes an obstacle when we attempt to generalize the proposed algo-
rithm to the case that d divides pk − 1 for k > 2 or the order of an (hyper)elliptic curve
over Fp as in [16,25]. Satoh generalized our algorithm to the case that d is a divisor of
Φk(p) by using an embedding of Zp into GL(k,Zp), where Φk is the kth cyclotomic
polynomial [33]. His algorithm for k = 1,2 includes our algorithms. However, it is not
efficient for k > 2.

3. Probabilistic Algorithms

In this section, we propose a variant of Pollard’s kangaroo algorithm [30,31] for DLP
with auxiliary inputs.

First, we introduce Pollard’s kangaroo algorithm. Let E be an abelian group of
order n, and let ζ, ξ ∈ E. Suppose that ξ = ζ x for a ≤ x ≤ b with a, b ∈ Z. Let
S = {gs1, . . . , gsr } be a set of jumps, where the si ’s are small integers with mean size
≈ √

b − a, and let ν : E → {1, . . . , r} be a fixed random function. We define a random
walk

F : E → E, y �→ yζ s(y),

where s : E → Z with s(y) = sν(y). The tame kangaroo starts from ζ c for some known
integer c and follows the path

t0 = ζ c, ti+1 = F(ti) (i ≥ 0). (9)

The wild kangaroo starts from ξ and follows the path

w0 = ξ, wi+1 = F(wi) (i ≥ 0). (10)

If ti or wi satisfies some condition for distinguished points, it is compared with the list
of distinguished points and, if there is no match, stored in the list with its travel length



466 J.H. Cheon

∑i
j=0 s(tj ) or

∑i
j=0 s(wj ). If a match is found between two kangaroos, say, ti′ = wi ,

then we can compute

x ≡ c +
i−1∑
j=0

s(tj ) −
i′−1∑
j=0

s(wj ) mod n.

If no match is found until the predetermined length of travels, another wild kangaroo is
launched with ξζ c′

for small c′. When appropriate parameters are chosen, the expected
number of operations is approximately 2

√
b − a + 1/Θ , where Θ is the proportion of

distinguished points in a cyclic group generated by ζ .

3.1. p − 1 Cases

Let us apply this for the DLP with auxiliary inputs. Let G be an abelian group of prime
order p, and let g,gα, gαd ∈ G be given for a positive divisor d of p − 1. Let ζ be
a primitive element of F

∗
p , and let E be the cyclic group generated by ζ̂ = ζ d . We

apply Pollard’s kangaroo algorithm for ζ̂ and α̂ = αd ∈ E to obtain 0 ≤ k0 <
p−1

d
with

α̂ = ζ̂ k0 .
Since we do not know α̂, we cannot launch a wild kangaroo. Hence we need to modify

the algorithm: We define ν̄ : gE := {gh|h ∈ E} → {1, . . . , r} be a fixed random function
and

ν : E → {1, . . . , r}; h �→ ν̄
(
gh

)
.

Note that ν runs through all functions from E to {1, . . . , r} when ν̄ runs through all
functions from gE to {1, . . . , r} since a function E → gE;x �→ gx is bijective. The
index function s and the random walk is defined as above.

For a wild kangaroo, we have gw0 = gα̂ and gwi+1 is computed from gwi as (gwi )ζ
s(wi )

for i ≥ 0. The path of a tame kangaroo is computed in a similar manner. Since gwi = gvj

in G is equivalent to wi ≡ vj mod p, we can find a match in the list of distinguished
points in the same running time with the original Pollard’s kangaroo in E. If ζ si is
precomputed, each jump requires one exponentiation in G. Hence the discrete logarithm
k0 = log

ζ̂
α̂ is computed approximately in (2

√
(p − 1)/d + 1/Θ) exponentiations in G

with storage O(Θ
√

(p − 1)/d).
Let α = ζ k for 0 ≤ k < p − 1. Then there exists a nonnegative integer k1 < d such

that k = k0 + k1
p−1

d
. If we let ζ̌ = ζ (p−1)/d and α̌ = αζ−k0 , we have α̌ = ζ̌ k1 . We apply

the above algorithm again for ζ̌ and α̌ to obtain k1, which requires approximately 2
√

d

exponentiations in G.
Therefore the proposed algorithm computes α approximately in

O
(√

(p − 1)/d + √
d + Θ−1)

exponentiations in G with storage O(Θ · max{√(p − 1)/d,
√

d}).
3.2. p + 1 Cases

Let us consider the case that d is a divisor of p + 1 and g,gα, . . . , gα2d
are given.

As in Lemma 2, suppose that a is a quadratic nonresidue in Zp and θ is a root of



Discrete Logarithm Problems with Auxiliary Inputs 467

X2 − a. Let ζ be an element of order (p + 1) in Zp[θ ], and let E be the cyclic group
generated by ζ̂ = ζ (d+1)/d . We define

ν : E → {1, . . . , r}; h1 + h2θ �→ ν̄
(
gh1, gh2

)
,

where ν̄ : gE := {(gh1, gh2)|h1 + h2θ ∈ E} → {1, . . . , r} is a fixed random function.
The index function s and the random walk is defined as above.

We take

β := 1 + aα2

1 − aα2
+ 2α

1 − aα2
θ, β̂ := βd = P1(α) + P2(α)θ

P3(α)
∈ E,

for three polynomials P1,P2,P3 of degree ≤ 2d . Let β = ζ k for 0 ≤ k < p + 1. Then
there exist 0 ≤ k0 <

p+1
d

and 0 ≤ k1 < d such that k = k0 + k1
p+1

d
. First, we compute

k0 satisfying β̂ = ζ̂ k0 .
Take wi as in the (10) starting from w0 = β̂ . Let us denote by wi = w′

i + w′′
i θ for

w′
i ,w

′′
i ∈ Fp and W ′

i = gP3(α)w′
i and W ′′

i = gP3(α)w′′
i . First, we compute

W ′
0 = gP1(α), W ′′

0 = gP2(α).

If we denote ζ̂ s(wi) = Ui + Viθ for Ui,Vi ∈ Fp , then we have

wi+1 = (
w′

i + w′′
i θ

)
(Ui + Viθ) = (

w′
iUi − aw′′

i Vi

) + (
w′

iVi + w′′
i Ui

)
θ.

Hence we can compute

W ′
i+1 = (

W ′
i

)Ui
(
W ′′

i

)−aVi , W ′′
i+1 = (

W ′
i

)Vi
(
W ′′

i

)Ui .

The path of a tame kangaroo is computed in a similar manner starting from t0 = ζ̂ c

for some integer c. Then each jump requires four exponentiations, and so the discrete
logarithm k0 of βd to the base ζ̂ is computed approximately in (8

√
(p + 1)/d + 4(d +

o(1)) + Θ−1) exponentiations in G with storage O(Θ
√

(p + 1)/d).
Once k0 is obtained, we take ζ̌ = ζ (p+1)/d and ξ̌ = βζ

−k0
0 so that ξ̌ = ζ̌ k1 . Then we

can obtain k1 in a similar manner with approximately 8
√

d exponentiations in G.
Therefore the proposed algorithm computes α approximately in

O
(√

(p + 1)/d + d + Θ−1)

exponentiations in G with storage O(Θ · max{√(p + 1)/d,
√

d}).

4. Applications

4.1. Strong Diffie–Hellman Problems and Their Variants

Many cryptosystems are designed on the basis of the DL problem; however, in most
of these systems, their security is equivalent to a weaker variant of the DL problem
rather than the DL problem itself. Two of the most popular weaker variants are given as
follows:



468 J.H. Cheon

The Computational Diffie–Hellman (CDH) Problem. For a given input (g,gx,gy) ∈
G3, compute gxy ∈ G.

The Decisional Diffie–Hellman (DDH) Problem. For a given input (g, gx, gy, gz) ∈
G4, decide whether z = xy in Zp .

Recently, some weakened variants of the CDH problem have been introduced, and
they are being used to construct cryptosystems with various functionalities or to prove
some cryptosystem’s security without random oracles. One characteristic of such prob-
lems is to disclose g,gx, . . . , gx�

for the secret key x and some integer �. Thus our
attacks is applicable to these problems. We introduce such problems.

The �-weak Diffie–Hellman (�-wDH) Problem. For a given input (g, gx, . . . , gx�
) ∈

G�+1, compute g1/x ∈ G. This problem was introduced by Mitsunari, Sakai, and Kasa-
hara for a traitor tracing scheme [27]. It is called also the �-Diffie–Hellman Inversion
(�-DHI) problem [4].

Another class of problems are defined on a group with bilinear maps. We further
assume that we have an efficiently computable bilinear map e : G × G → GT for a
cyclic group GT of order p.

The �-Strong Diffie–Hellman (�-SDH) Problem. For a given input (g,gx, . . . ,gx�
) ∈

G�+1, compute a pair (c, g1/(x+c)) ∈ Zp × G for a freely selected value c ∈ Zp \ {−x}.
This problem was first introduced by Boneh and Boyen for the construction of a short
signature scheme, which is provably secure in the standard model (without random
oracles) [4], and it was used later for a short group signature scheme [7].

The �-Bilinear Diffie–Hellman Inversion (�-BDHI) Problem. For a given input
(g, gx, . . . , gx�

) ∈ G�+1, compute e(g, g)1/x ∈ GT . This problem was introduced by
Boneh and Boyen for the construction of an identity-based encryption that is secure in
the standard model [3]. It is also used to construct verifiable random functions [17] and
a hierarchical identity-based encryption scheme with constant size ciphertext [9].

The �-Bilinear Diffie–Hellman Exponent (�-BDHE) Problem. For a given input
(g, gx, . . . , gx�−1

, gx�+1
, . . . , gx2�

) ∈ G2�+1, compute e(g, g)x
� ∈ G′. This problem was

introduced by Boneh, Boyen, and Goh [9] for the initial construction of a hierarchical
identity-based encryption scheme with constant size ciphertext, and it was used later
for a public-key broadcast encryption scheme with constant size transmission over-
head [10]. A blind and partially blind signature was proposed by Okamoto [29] based
on both �-BDHE and �-BDHI.

A more general (and slightly weaker) version of the SDH problem was introduced
in [5]. It is defined on a bilinear group pair (G1,G2), on which there exist a group
GT and a nondegenerate bilinear map e : G1 × G2 → GT such that the group order
p = |G1| = |G2| = |GT | is prime, and the pairing e and the group operations in G1,



Discrete Logarithm Problems with Auxiliary Inputs 469

G2, and GT are all efficiently computable [5,20]. The problem is stated as follows:
For a given input (g1, g

x
1 , . . . , gx�

1 , g2, g
x
2 ) ∈ G�+1

1 × G2
2, compute a pair (c, g

1/(x+c)

1 ) ∈
Zp × G1 for a freely selected value c ∈ Zp \ {−x}. In this situation, our algorithm can

be applied to compute x from (g1, g
x
1 , . . . , gx�

1 ) ∈ G�+1
1 or (h,hx, . . . , hx�+1

) ∈ G�+2
T

for h = e(g1, g2), which gives a pair (c, g
1

x+c

1 ) for any c ∈ Zp .
Recently, Jao, and Yoshida [22,43] applied the proposed attack to recover the secret

key of the Boneh–Boyen signature scheme [4] using the d signature queries. Since the
reduction takes only at most O(d2) exponentiations in G, the security of the scheme is
equivalent to the SDH problem for small d ≤ p1/5.

4.2. Blind Signature Scheme Based on the GDH Assumption

A Gap–Diffie–Hellman (GDH) group is an abelian group in which there exists a poly-
nomial time algorithm for solving the decisional Diffie–Hellman problem and it is as-
sumed that no polynomial-time algorithm exists for solving the computation Diffie–
Hellman problem.

Boldyreva proposed a blind signature scheme on a Gap–Diffie–Hellman group [11].
The scheme is as follows: Let G be a GDH group of prime order p and g a generator
of G. Let H : {0,1}∗ → G be a full domain hash function [8]. A signer has a private
key x ∈ Zp and the corresponding public key y = gx . In order to blindly sign a message
M ∈ {0,1}∗, a user selects a random k ∈ Z

∗
p , computes M ′ = H(M)gk , and sends it to

the signer. The signer computes σ ′ = (M ′)x and sends it back to the user. Then the user
computes the signature σ = σ ′/yk(= H(M)x) of the message M .

This scheme is shown to be secure against one-more forgery under chosen message
attacks in the random oracle model [11], that is the standard security notion for blind
signature schemes. However, since the signer does not have any information on the
message to be signed, we may use this blind signing phase as a Diffie–Hellman oracle
and hence reduce the security of this scheme under chosen message attacks: A chosen-
message attacker A takes a random γ1 ∈ Zp and requests a signature on the message

y · gγ1 . From the signature σ1 = (y · gγ1)x , A obtains g2 := gx2 = σ1/y
γ1 . Second, A

takes another random γ2 ∈ Zp and requests a signature on the message g2 · gγ2 . From

the signature σ2 = (g2 · gγ2)x , A obtains g3 := gx3 = σ2/y
γ2 . If � signature queries

are allowed, A repeats this procedure � times to obtain g1, g2, . . . , g�+1 (gi := gxi
).

By Theorems 1 and 2, if p − 1 has a divisor d ≤ min{� + 1,p1/2} or p + 1 has a
divisor d ≤ min{(� + 1)/2,p1/3}, the secret key x can be computed in O(

√
p/d). That

is, the security of the scheme is reduced by O(
√

d) in comparison to that of the GDH
assumption.

It must be noted that the attack does not imply that the security proof of the scheme is
wrong, but it implies that further quantitative analysis on security reduction is required.
In fact, the security proof of BLS signature schemes on which the Boldyreva’s blind
signature scheme is based shows that the advantage of an adversary can be increased by
qS , when qS signature queries are allowed [8].

This method is applicable in a similar manner to schemes which respond by its se-
cret key power for an unknown message. For example, the conference keying protocol
proposed by Burmester–Desmedt possesses this property [14].



470 J.H. Cheon

4.3. The Textbook ElGamal Encryption Scheme

We briefly introduce the textbook ElGamal encryption scheme in a generalized form:
Let G be an abelian group of prime order p and g a generator of G. Suppose that the
secret key and the public key of the recipient are x ∈ Zp and gx , respectively. In order
to encrypt a message m ∈ G, a sender selects a random k ∈ Zp and sends a cipher-
text (c1, c2) := (gk,m(gx)k) to the recipient. The recipient recovers the message m by
computing c2/c

x
1 .

The textbook ElGamal encryption scheme is not secure in many situations. If it is
used to encrypt a short message, for example, a secret key for symmetric ciphers, the
message can be recovered easily [6]. Also it is vulnerable to chosen ciphertext attacks
(Refer to the appendix in [1]). That is, for a given decryption oracle, any target ciphertext
can be decrypted without feeding itself to the decryption oracle. Here we show that the
decryption oracle enables not only a decryption of any target ciphertext without the
secret key but also a reduction of the complexity to compute the secret key in some
cases.

As mentioned in the previous subsection, first, a chosen ciphertext attacker A se-
lects random numbers k1, k2 ∈ Zp , requests a decryption of the ciphertext (c1, c2) :=
(yk, yk′

) to the decryption oracle, and obtains c2/c
x
1 = gxk′ · gx2k . Since A knows k, k′,

and gx , he can compute g2 := gx2
. By considering different random pairs (k, k′) and

replacing y by g2, A can obtain g3 := gx3
. By repeating this procedure � times, A can

obtain g1, g2, . . . , g� (gi := gxi
) when � decryption queries are allowed. By Theorems 1

and 2, if p−1 has a divisor d ≤ min{�,p1/2} or p+1 has a divisor d ≤ min{�/2,p1/3},
the secret key x can be computed in O(

√
p/d) group exponentiations.

Our attack gives yet another reason why the textbook ElGamal is not secure. Further-
more, although it is not so likely in practice, it gives a good lesson on the risk of sharing
the secret keys: if one uses the textbook ElGamal encryption scheme along with another
cryptosystem having the same secret key, the secret key can be revealed from the text-
book ElGamal encryption scheme, and hence the other system can also be insecure. For
more applications of our attacks, see Brown and Gallant [13].

5. Practicality of the Proposed Algorithm

In this section, we discuss the potential of the proposed algorithms. The algorithm in
Theorem 1 has complexity O(logp · (

√
(p − 1)/d + √

d)) for a divisor d of p − 1.
The complexity achieves the minimum value O(logp · p1/4) when d = O(p1/2). The
algorithm in Theorem 2 has complexity O(logp · (√(p − 1)/d + d)) for a divisor d of
p+1. The complexity achieves the minimum value O(logp ·p1/3) when d = O(p1/3).
Hence the d-SDH problem on an abelian group of order p can be solved up to O(logp ·
p1/4) (resp. O(logp · p1/3)) times faster than with generic DLP algorithms for large �

if p − 1 (resp. p + 1) has a divisor d = O(p1/2) (resp. d = O(p1/3)).
Now we give an example in which the security reduction of the base problem due to

our algorithm yields an attack of the system. We remark that not all the cryptosystems
based on d-SDH problems are vulnerable to our attacks. For example, we do not know
how to obtain several powers yαi

of some group element y from the Boneh–Boyen
ID-based encryption scheme [3].



Discrete Logarithm Problems with Auxiliary Inputs 471

Example 1. We consider a situation in which E+(F397) [8] is used for the broadcast
encryption scheme [10]. E+(F397) has a subgroup G with a 151-bit prime order p. Let
g be a generator of G, and α ∈ Zp be the system secret key. The scheme, assuming

n users, publishes g and gi := gαi
for 0 ≤ i ≤ 2n, i �= n. By using a nondegenerate

bilinear map e on G, we can compute e(g, g)α
i

for all nonnegative integers i ≤ 4n.
By using Pollard’s ρ algorithm [30,41], the secret key can be obtained in O(276) group
operations. However, if we apply the proposed algorithm, it is reduced to approximately
O(259) exponentiations or O(267) group operations for n = 232. Furthermore, n = 264,
as suggested in the file sharing application [10], though it is not so realistic in practice,
can reduce the complexity to O(242) exponentiations or O(250) group operations.

We remark that in order to give 280 security for the system with 264 users, it is rec-
ommended to consider the group with approximately a 220-bit prime order, unless p is
of a special form.

5.1. Practical Parameters

Most cryptosystems based on SDH-related problems utilize bilinear maps. For practice,
we investigate some known elliptic curve parameters and show that either p − 1 or
p + 1 has many small divisors for the largest prime divisor p of the order for each
elliptic curve in [8,23,32,34].

NIST Curves NIST suggested several elliptic curves for federal government use [32].
They consist of three categories: Pseudo-random curves over a prime field, a pseudo-
random curve over a binary field, and a Koblitz curve over a binary field. For all the
curves, the largest prime divisor p has the property that either p − 1 or p + 1 has
sufficient small divisors. We present some of the curves and the factorizations of their
orders:

– B-163: p − 1 = 2 · 53 · 383 · 21179 · (a 132 bit prime), which is a 163-bit integer.
– K-163: p −1 = 24 ·43 ·73 · (a 16-bit prime) · (an 18-bit prime) · (a 112-bit prime),

which is a 163-bit integer.
– P -192: p−1 = 24 ·5 ·2389 · (an 83-bit prime) · (a 92-bit prime), which is a 192-bit

integer.

For example, a security loss of the cryptosystem using P -192 is up to 8 bits when the
parameter � in the SDH problem is larger than 216.

Elliptic Curves with Embedding Degree 6 Boneh, Lynn, and Shacham suggested two
families of elliptic curves with embedding degree 6 for short signature schemes [8]:
E+ : y2 = x3 + 2x + 1 and E− : y2 = x3 + 2x − 1 over F3. We consider E+ or E−
over F3λ . We denote by p the largest prime factor of E±(F3λ).

– E+(F397): p − 1 = 2 · 349 · 24127552321 · 21523361 · 76801, which is a 151-bit
integer.

– E+(F3121): p − 1 = 2 · 3 · 112 · 683 · 6029 · (a 123-bit prime), which is a 155-bit
integer.



472 J.H. Cheon

Koblitz–Menezes Curves Koblitz and Menezes [23] suggested seven supersingular el-
liptic curve parameters for pairing-based cryptography. If we denote by p the order of
the group to be used in cryptosystems, either p + 1 or p − 1 has a divisor 2i for i ≥ 60
in all the cases except one. The exceptional case is for p = 2160 + 23 − 1. In this case,
however, p − 1 = 2 · 29 · 227 · 27059 · (a 37 bit prime) · (a 94-bit prime).

Elliptic Curves in MIRACL Library The MIRACL library [34] provides a sample
parameter for pairing-friendly elliptic curves. The order of the group is p = 2159 +
217 + 1. Then p − 1 has the following prime factorization: p − 1 = 217 · 5 · 569 ·
(a 27-bit prime) · (a 32-bit prime) · (a 32-bit prime) · (a 39-bit prime).

It is clear that our algorithm can be applied to all the examples above. We note that
our algorithm may be more plausible for pairing-friendly curves including Koblitz–
Menezes curves and MIRACL library curves, because these curves need to have some
special properties, such as an order of small Hamming weights or a small “T ” value for
efficient implementation of Weil or Tate pairing, and so it is more difficult to have the
order resistant against our attack.

5.2. Distribution of Primes Susceptible to the Proposed Attacks

Let H(x,y, z;A) be the number of integers n ≤ x in A having a divisor in (y, z]. Ford
showed in [19] that for any fixed integers a, b,λ with λ �= 0 and 0 ≤ a < b < 1,

H
(
x, xa, xb;Pλ

) = Ω

(
x

lnx

)
,

where Pλ := {p + λ |p is a prime}. In other words, there are Ω(x/ lnx) primes p ≤ x

such that p + λ has a prime divisor in (xa, xb]. For example, we observe that there is
a positive proportion of primes p such that p − 1 has a prime divisor in (x1/3, x1/2] or
p + 1 has a prime divisor in (x1/4, x1/3].

Conversely, we may ask how many primes can resist against the proposed attack. As
an application of the fundamental lemma of the combinatorial sieve, we show in the
following proposition that for any 0 < τ < 1, the probability of a prime p such that
p − 1 (resp. p + 1) has no divisor in (e(lnp)τ /3,p1/3] reduces to zero as p increases to
infinity.

Proposition 1. For any λ �= 0 and 0 < τ < 1,

#
{
prime p ≤ x|p − λ has no divisor in

(
e(lnp)τ /3,p1/3

]} = π(x) · O(
ln1−τ x

)
.

This proposition arises from the fundamental lemma of the combinatorial sieve [40,
Theorem 4, p. 60]. For the convenience of readers, we introduce it.

Lemma 3 [40, Theorem 4, p. 60]. Let A be a finite set of integers, and let P be the set
of prime numbers in [η, ξ ] with 2 ≤ η ≤ ξ and P (y) the product of all elements ≤ y in
P . Assume that there exists a nonnegative multiplicative function ω, some real number
X, and positive constants κ , C such that



Discrete Logarithm Problems with Auxiliary Inputs 473

(a) Rd := |{a ∈ A|a ≡ 0 mod d}| − Xω(d)/d,

(b)
∏

η≤p≤ξ (1 − ω(p)
p

)−1 < (
ln ξ
lnη

)κ(1 + C
lnη

).

Then we have, uniformly for A,X,y, and u ≥ 1,

S(A, P , y) = X
∏

p≤y,p∈P

(
1 − ω(p)

p

)(
1 + O

(
u−u/2)) + O

( ∑
d≤yu,d|P (y)

|Rd |
)

,

where S(A, P , y) = |{a ∈ A|gcd(a, P (y)) = 1}|.

Proof of Proposition 1. Let ω(d) = d/φ(d), 2 ≤ η2 ≤ ξ , and κ > 2. Then if ξ is
sufficiently large, we have

∏
η≤p≤ξ

(
1 − ω(p)

p

)−1

≤ 2
∏

η≤p≤ξ

(
1 − 1

p

)−1

≤ 2
ln ξ

lnη

(
1 + O

(
1

lnη

))(
1 + O

(
1

ln ξ

))−1

≤
(

ln ξ

lnη

)κ (
1 + O

(
1

lnη

))
,

where the second inequality comes from the Mertens formula [40, Theorem 11, p. 17].
Let x be a positive integer and ε > 0. If we consider A = {p + λ |p a prime ≤ x},

X = π(x), y = x1/3−ε , and u = 1, then the Bombieri–Vinogradov Theorem [40, p. 262]
states that for any constant B > 0, we have

∑
d≤y,d | P (y)

|Rd | ≤
∑
d≤y

∣∣∣∣π(x,−λ,d) − π(x)

φ(d)

∣∣∣∣ = O

(
x

(lnx)B

)
,

where π(x,−λ,d) = {p ≤ x|p is a prime, p ≡ −λ mod d}.
If we consider η = e(lnx)τ /3 (0 < τ < 1), ξ = y = x1/3−ε , and B = 2 in Lemma 3,

then we have

S
(

A, P , x1/3−ε
)
/π(x) = O

(
lnη

ln ξ

)
+ O

(
1

lnB−1 x

)
= O

(
lnτ−1 x

)
,

where S(A, P , x1/3−ε) is the number of primes p ≤ x such that p + λ has no divisor in
(e(lnx)τ /3, x1/3−ε].

Note that when (e(lnx)τ /3, x1/3−ε] ⊂ (e(lnp)τ /3,p1/3], p + λ has no divisor in
(e(lnx)τ /3, x1/3−ε] if it has no divisor in (e(lnp)τ /3,p1/3]. Hence, unless p > x or
p < x1−3ε , a prime p ≤ x such that p + λ has no divisor in (e(lnp)τ /3,p1/3] should
be in S(A, P , x1/3−ε). Hence the number of primes p ≤ x such that p + λ has no divi-
sor in (e(lnp)τ /3,p1/3] is

O
(
π(x) lnτ−1 x

) + O
(
π

(
x1−3ε

)) = (
π(x) lnτ−1 x

)
,

which proves the proposition. �



474 J.H. Cheon

5.3. Construction of Primes Resistant Against the Proposed Attack

It appears difficult to find a prime p such that both of p − 1 and p + 1 have no small di-
visor greater than (logp)2 (more precisely, than e(lnp)τ /3 for any 0 < τ < 1). The prime
number theorem [37] states that the probability that a positive integer p is a prime is
O(1/ logp) when p is sufficiently large. Given two small integers n1, n2, let us consider
a positive integer p that satisfies three conditions: (1) p is a prime, (2) (p − 1)/n1 is a
prime, and (3) (p + 1)/n2 is a prime. If the three conditions are independent, we may
expect that the probability is approximately O(1/ log3 p). However, we do not know
if the three conditions are independent, and hence obtaining a distribution of primes
resistant to the proposed attack must be a hard problem. However, parameters of prac-
tical sizes can be generated by random selection and testing. Some sample parameters
resistant to the proposed algorithms can be found in [39].

We may consider Gordon’s algorithm [21] to generate primes that can resist against
the proposed algorithms. Basically, the algorithm is to determine a prime of the form
p = 2(p

p2−2
1 mod p2)p1 − 1 + p1p2k, where p1 and p2 are primes of equal size, and

k is an integer. Then, we have p1|p + 1 and p2|p − 1. However, this algorithm usually
yields a prime p significantly larger than p1 and p2, and so there can be other small
divisors of p − 1 and p + 1. Hence this algorithm is not useful for our context.

6. Conclusion and Further Studies

In this paper, we proposed a novel algorithm to solve the DLP with auxiliary inputs more
efficiently: For given element g of prime order p in an abelian group and gαi

(0 ≤ i ≤ �),
the complexity to recover α ∈ Zp can be reduced by a factor of O(

√
d/ logp) as

compared to that of the DLP, where d is the largest divisor of p − 1 not exceeding
min{�,p1/2} or the largest divisor of p + 1 not exceeding min{�/2,p1/3}. This algo-
rithm can be used to attack any cryptographic scheme that admits an oracle returning a
power of its secret key upon an arbitrary input.

Hence, if a cryptographic scheme or protocol is based on a variant of �-SDH problems
or allows such an oracle by � times, it is recommended to increase the key size by log2 �-
bit, or use a prime p such that both of p + 1 and p − 1 have no small divisor greater
than (logp)2, or more generally to rely on the generic lower bounds as they apply for
the envisioned application to determine a safe key size.

It would be interesting to find an efficient generalization of the proposed algorithms
to a group of arbitrary prime order p, using GL(n,Fp), an extension field of Fp or an
(hyper-)elliptic curve over Fp as in [25,33].

Acknowledgement

The author expresses his gratitude to Igor Shparlinski for informing him how to get
the distribution of primes susceptible to the proposed attacks and to Brent Waters for
pointing out a mistake in the definition of the Strong Diffie–Hellman problem in the
preliminary version. He is also very grateful to Phong Nguyen and anonymous review-
ers for their sincere reviews and helpful suggestions. This work was supported by the
KOSEF grant funded by the Korea government (MEST) (No. R01-2008-000-11287-0,
No. 20090058574).



Discrete Logarithm Problems with Auxiliary Inputs 475

References

[1] M. Abdalla, M. Bellare, P. Rogaway, DHAES: An encryption scheme based on Diffie–Hellman problem.
IEEE P1363a Submission (1998). Available at http://grouper.ieee.org/groups/1363/addendum.html

[2] E. Bach, Explicit bounds for primality testing and related problems. Math. Comput. 55, 355–380 (1990)
[3] D. Boneh, X. Boyen, Efficient selective-ID secure identity-based encryption without random oracles, in

Proceedings of Eurocrypt 2004, LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 223–238
[4] D. Boneh, X. Boyen, Short signatures without random oracles, in Proceedings of Eurocrypt 2004,

LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 56–73
[5] D. Boneh, X. Boyen, Short signatures without random oracles and the SDH assumption in bilinear

groups. J. Cryptol. 21(3), 149–177 (2008)
[6] D. Boneh, A. Joux, P. Nguyen, Why textbook ElGamal and RSA encryption are insecure, in Proceedings

of Asiacrypt 2000, LNCS, vol. 1976 (Springer, Berlin, 2000), pp. 30–43
[7] D. Boneh, X. Boyen, H. Shacham, Short group signatures, in Proceedings of Crypto 2004, LNCS, vol.

3152 (Springer, Berlin, 2004), pp. 41–55
[8] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319

(2004). Extended abstract in proceedings of Asiacrypt 2001, LNCS, vol. 2248 (Springer, Berlin, 2001),
pp. 514–532

[9] D. Boneh, X. Boyen, E. Goh, Hierarchical identity based encryption with constant size ciphertext, in
Proceedings of Eurocrypt 2005, LNCS, vol. 3494 (Springer, Berlin, 2005), pp. 440–456. A full paper is
available in http://crypto.stanford.edu/~dabo/papers/shibe.pdf

[10] D. Boneh, C. Gentry, B. Waters, Collution resistant broadcast encryption with short ciphertexts and
private keys, in Proceedings of Crypto 2005, LNCS, vol. 3621 (Springer, Berlin, 2005), pp. 258–275

[11] A. Boldyreva, Threshold signatures, multisignatures and blind signatures based on the Gap–Diffie–
Hellman-group signature scheme, in Proceedings of Public Key Cryptography 2003, LNCS, vol. 2567
(Springer, Berlin, 2003), pp. 31–46

[12] X. Boyen, The uber-assumption family—a unified complexity framework for bilinear groups, in Pro-
ceedings of Pairing 2008, LNCS, vol. 5209 (Springer, Berlin, 2008), pp. 39–56

[13] D. Brown, R. Gallant, The static Diffie–Hellman problem. Available in http://eprint.iacr.org/2004/306
[14] M. Burmester, Y. Desmedt, A secure and efficient conference key distribution system (Extended Ab-

stract), in Proceedings of Eurocrypt 1994, LNCS, vol. 950 (Springer, Berlin, 1994), pp. 275–286
[15] J. Cheon, Security analysis of the strong Diffie–Hellman problem, in Proceedings of Eurocrypt 2006,

LNCS, vol. 4004 (Springer, Berlin, 2006), pp. 1–11
[16] B. den Boer, Diffie–Hellman is as strong as discrete log for certain primes, in Proceedings of Crypto ’88,

LNCS, vol. 403 (Springer, Berlin, 1989), pp. 530–539
[17] Y. Dodis, A. Yampolskiy, A verifiable random function with short proofs and keys, in Proceedings of

Public Key Cryptography 2005, LNCS, vol. 3386 (Springer, Berlin, 2005), pp. 416–431
[18] T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE

Trans. Inf. Theory 31(4), 469–472 (1985)
[19] K. Ford, The distribution of integers with a divisor in a given interval. Ann. Math. (2008, to appear)
[20] S. Galbraith, K. Paterson, N. Smart, Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–

3121 (2008)
[21] J. Gordon, Strong primes are easy to find, in Proceedings of Eurocrypt ’84 (Springer, Berlin, 1984), pp.

216–223
[22] D. Jao, K. Yoshida, Boneh–Boyen signatures and the strong Diffie-Hellman problem, in Proceedings of

Pairing (2009, to appear)
[23] N. Koblitz, A. Menezes, Pairing-based cryptography at high security levels, in Proceedings of IMA

Conference of Cryptography and Coding 2005, pp. 13–36
[24] S. Kozaki, T. Kutsuma, K. Matsuo, Remarks on Cheon’s algorithms for pairing-related problems, in

Proceedings of Pairing 2007, LNCS, vol. 4575 (Springer, Berlin, 2007), pp. 302–316
[25] U. Maurer, S. Wolf, The relationship between breaking the Diffie-Hellman protocol and computing

discrete logarithms. SIAM J. Comput. 28(5), 1689–1721 (1999)
[26] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography (CRC Press, Boca Ra-

ton, 1996)

http://grouper.ieee.org/groups/1363/addendum.html
http://crypto.stanford.edu/~dabo/papers/shibe.pdf
http://eprint.iacr.org/2004/306


476 J.H. Cheon

[27] S. Mitsunari, R. Sakai, M. Kasahara, A new traitor tracing. IEICE Trans. Fundam. E85-A(2), 481–484
(2002)

[28] V. Nechaev, Complexity of a deterministic algorithm for the discrete logarithm. Math. Zamet. 55, 91–
101 (1994). English translation in Math. Notes 55(2), 165–172 (1994)

[29] T. Okamoto, Efficient blind and partially blind signatures without random oracles, in Proceedings in
TCC 2006, LNCS, vol. 3876 (Springer, Berlin, 2006), pp. 80–99

[30] J. Pollard, Monte Carlo methods for index computation (modp). Math. Comput. 32, 918–924 (1978)
[31] J. Pollard, Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4), 437–447 (2000)
[32] Recommended Elliptic Curves for Federal Government Use, Available at http://csrc.nist.gov/

CryptoToolkit/dss/ecdsa/NISTReCur.pdf, 1999
[33] T. Satoh, On generalization of Cheon’s algorithms. Preprint, 2008
[34] M. Scott, Multiprecision Integer and Rational Arithmetic C/C++ Library. Available at http://indigo.

ie/~mscott/
[35] V. Shoup, Searching for primitive roots in finite fields. Math. Comput. 58, 369–380 (1992)
[36] V. Shoup, Lower bounds for discrete logarithms and related problems, in Proceedings of Eurocrypt ’97,

LNCS, vol. 1233 (Springer, Berlin, 1997), pp. 256–66
[37] V. Shoup, A Computational Introduction to Number Theory and Algebra (Cambridge University Press,

Cambridge, 2005)
[38] I. Shparlinski, On finding primitive roots in finite fields. Theor. Comput. Sci. 157, 273–275 (1996)
[39] D. Sun, Elliptic curves with the minimized security loss of the strong Diffie–Hellman problem,

Ph.D. Dissertation, Seoul National University, 2007. Available at http://library.snu.ac.kr/DetailView.
jsp?uid=4&cid=2857710

[40] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory (Cambridge University Press,
Cambridge, 1995)

[41] E. Teske, Speeding up Pollard’s rho method for computing discrete logarithms, in Proceedings of Algo-
rithmic Number Theory Symposium III, LNCS, vol. 1423 (Springer, Berlin, 1998), pp. 541–554

[42] Y. Wang, On the least primitive root of a prime. Sci. Sin. 10(1), 1–14 (1961)
[43] K. Yoshida, Boneh–Boyen signatures and the strong Diffie–Hellman problem, Master Thesis, University

of Waterloo, 2009. Available at http://uwspace.uwaterloo.ca/handle/10012/4219

http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf
http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf
http://indigo.ie/~mscott/
http://indigo.ie/~mscott/
http://library.snu.ac.kr/DetailView.jsp?uid=4&cid=2857710
http://library.snu.ac.kr/DetailView.jsp?uid=4&cid=2857710
http://uwspace.uwaterloo.ca/handle/10012/4219

	Discrete Logarithm Problems with Auxiliary Inputsthanks
	Abstract
	Introduction
	Related Works
	Organization

	The Proposed Algorithm
	p-1 Cases
	p+1 Cases

	Probabilistic Algorithms
	p-1 Cases
	p+1 Cases

	Applications
	Strong Diffie-Hellman Problems and Their Variants
	Blind Signature Scheme Based on the GDH Assumption
	The Textbook ElGamal Encryption Scheme

	Practicality of the Proposed Algorithm
	Practical Parameters
	NIST Curves
	Elliptic Curves with Embedding Degree 6
	Koblitz-Menezes Curves
	Elliptic Curves in MIRACL Library

	Distribution of Primes Susceptible to the Proposed Attacks
	Construction of Primes Resistant Against the Proposed Attack

	Conclusion and Further Studies
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


