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Abstract. Non-malleability protects against man-in-the middle attacks on crypto-
graphic protocols. Non-malleable commitment schemes, for example, assure that a
commitment of a message does not help to produce a commitment of a related mes-
sage. Here we present efficient constructions of such commitment schemes in the com-
mon reference string model, based on standard assumptions such as RSA, factoring or
discrete logarithm. Our protocols require only three rounds and a few modular expo-
nentiations, and provide statistical or even perfect secrecy of committed values.

We also discuss differences between the notion of non-malleable commitment
schemes used in previous works by Dolev, Dwork and Naor and by Di Crescenzo, Ishai
and Ostrovsky. The former definition requires that it is infeasible to find a commitment
such that there exists an encapsulated message which is related to another committed
value (non-malleability with respect to commitment). The second approach allows the
existence of such messages, but then it is hard to find them and to output them in the
opening phase (non-malleability with respect to opening). We note that our solutions
are of the second type.

Key words. Chinese remainder theorem, Commitment, Common reference string,
Non-malleability, Proof of knowledge, Trapdoor commitment

1. Introduction

Loosely speaking, a commitment scheme is non-malleable if one cannot transform the
commitment of another person’s secret into one of a related secret. Such non-malleable
schemes are, for example, important for auctions over the Internet: It is necessary that
one cannot generate a valid commitment of a bid b + 1 after seeing the commitment of
an unknown bid b of another participant. Unfortunately, this property is not achieved
by commitment schemes in general because ordinary schemes are only designated to
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hide the secret. Even worse, most known commitment schemes are, in fact, provably
malleable.

1.1. Chronology (Part I)

The concept of non-malleability has been introduced by Dolev et al. [18]. They present
a non-malleable public-key encryption scheme (based on any trapdoor permutation) and
a non-malleable commitment scheme with logarithmically many rounds based on any
one-way function. Yet, their solutions involve cumbersome non-interactive and inter-
active zero-knowledge proofs, respectively. Further non-malleable encryption schemes
with improved efficiency under various assumptions have appeared since then [3,4,13].

As for commitment protocols, Di Crescenzo et al. [16] present a non-interactive and
non-malleable commitment scheme based on any one-way function in the common ran-
dom string model. Though being non-interactive, their system is rather theoretical as
it applies an ordinary commitment scheme many times to non-malleably commit to a
single bit. Other non-malleable commitment protocols have been suggested after the
proceedings version of our paper [24] had been published; we review these schemes at
the end of this introduction.

1.2. Our Results

We present efficient perfectly- and statistically-secret non-malleable commitment
schemes based on standard assumptions, such as the RSA assumption or the hardness
of computing discrete logarithms. Our schemes are designed in the common reference
string (CRS) model (aka public parameter or auxiliary string model), where public para-
meters like a random prime p and generators of some subgroup of Z

∗
p are generated and

published by a trusted party. This model relies on a slightly stronger assumption than
the common random string model where the public data consist simply of a random
string. Yet, as in the example of discrete logarithms, the CRS model can sometimes be
formally reduced to the common random string model if we let the participants map the
random string via standard procedures to a prime and appropriate generators.

In our schemes, the sender commits to his message using an ordinary, possibly mal-
leable discrete-log- or RSA-based commitment scheme and performs an efficient three-
round witness-independent proof of knowledge, both times using the CRS. While the
straightforward solution of a standard proof of knowledge fails (because the adversary
may in addition to the commitment also transform the proof of knowledge), with the
help of the CRS we force the adversary to give her “own” proof of knowledge. That is,
the adversary cannot adapt the proof of the original sender. Similar ideas have also been
used in [18] where independency of the proofs comes from a sophisticated message
scheduling of the interactive commitment.

We also present a version of our commitment scheme which is based on the factoring
assumption. Yet, while discrete-log and RSA commitments support efficient proofs of
knowledge, similar proofs are not known to exist for commitments based on factoring.
Fortunately, we do not need proofs of knowledge to the full extent, but it suffices that
the proof is verifiable by the receiver only after the sender has decommitted and the
witness is revealed. We call such proofs a posteriori verifiable.

Based on the Chinese Remainder Theorem we then give efficient instantiations of a
posteriori verifiable proofs of knowledge. The resulting commitment scheme based on
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factoring thus comes with a potentially milder assumption than in the RSA case, yet
at the same time it achieves a technically weaker notion called ε-non-malleability. As a
positive side effect, our a posteriori verifiable proofs now allow to hash longer messages
before committing. In contrast to this, the discrete-log- and RSA-based non-malleable
schemes relying on well-known proofs of knowledge do not seem to support the hash-
and-commit paradigm in general.

1.3. On the Definition of Non-malleable Commitments

We also address definitional issues. According to the definition of Di Crescenzo et
al. [16], a scheme is non-malleable if the adversary cannot construct a commitment
from a given one, such that, after having seen the opening of the original commitment,
the adversary is able to correctly open her commitment with a related message. But the
definition of Dolev et al. [18] demands more: If there is a one-to-one correspondence
between the commitment and the message (say, if the commitment binds uncondition-
ally), then they define that such a scheme is non-malleable if one cannot even generate
a commitment of a related message.

We call schemes having the [18] property non-malleable with respect to commitment.
For these schemes to contradict non-malleability, it suffices to come up with a commit-
ment such that there exists a related opening. Schemes satisfying the definition of [16]
are called non-malleable with respect to decommitment or, for the sake of distinctive-
ness, with respect to opening. In this case, the adversary must also be able to open the
modified commitment correctly given the decommitment of the original commitment.
The scheme in [18] achieves the stronger notion, whereas we do not know if the scheme
in [16] is also non-malleable with respect to commitment.

A commitment scheme which is non-malleable in the strong sense is non-malleable
with respect to opening, too.1 We stress that the other direction does not hold, in general.
That is, given any statistically-secret commitment scheme which is secure with respect
to opening, we can devise a commitment scheme satisfying the weak notion, but not the
strong definition. Since our statistically-secret schemes based on standard assumptions
like RSA or discrete-log achieve non-malleability with respect to opening, this separates
both notions under any of these standard assumptions.

We believe that non-malleability with respect to opening is the appropriate notion
for perfectly- and statistically-secret schemes. The reason is that for such schemes vir-
tually any commitment can be opened with any message, in principle. Hence, finding
a commitment of a related message to a given commitment is easy: Any valid com-
mitment works with very high probability. Although there is at least one application
of non-malleable commitment schemes in the context of authenticated key-exchange
where non-malleability with respect to commitment is necessary [28], non-malleability
with respect to opening still seems to be adequate for most applications. For instance,
recall the example of Internet auctions. The commitments of the bids are collected and
then, after a deadline has passed, are requested to be opened. Any secret which is not

1 Although this seems to follow directly from the requirements, it depends on the subtleties of the defin-
itions. Indeed, compared to [18], we strengthen the requirements for non-malleability with respect to com-
mitment in order to imply the notion of non-malleability with respect to opening. The scheme in [18] also
satisfies our more stringent definition.
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correctly revealed is banned. Therefore, security with respect to opening suffices in this
setting.

1.4. Chronology (Part II)

Following the publication of the proceedings version of our work, several other non-
malleable commitment schemes have been proposed. Di Crescenzo et al. [17] present
more practical variants of the system in [16] relying on the RSA or discrete-log as-
sumption and the CRS model; see also [25] for further improvements of these protocols,
resulting in more efficient schemes than the ones here. Focusing on the case of multi-
ple commitments Damgård and Groth [14] derive further efficient non-interactive com-
mitment schemes in the CRS model; see also [26] for constructions of such reusable
commitments based on multi-trapdoor commitment schemes. All these protocols are
non-malleable with respect to opening.

While our protocols consists of three rounds, the aforementioned schemes all pro-
vide efficient non-interactive solutions. Yet, this comes at the price of reduced security.
First, all these protocols are not known to preserve non-malleability if the adversary is
additionally given some useful side information about the message for which it tries
to find a related commitment, e.g., if the message is used in other sub protocol execu-
tions. Second, the solutions merely achieve the weaker notion of ε-non-malleability. In
contrast, our DL-based and RSA-based commitment schemes are not subject to these
restrictions but, unlike the non-interactive solutions, do not support hashing of longer
messages before committing. Our factoring-based solution lies somewhere in between:
It allows upstream hashing, but merely achieves ε-non-malleability, yet tolerates a priori
knowledge of the adversary about the sender’s message.

In [17], it is also pointed out that secure public-key encryption is sufficient for non-
malleable commitments. Basically, the CRS contains a public key of a secure encryp-
tion scheme and in order to commit the sender encrypts the message and hands it to
the receiver. Hence, using potentially stronger assumptions like the decisional Diffie–
Hellman assumption and the encryption scheme in [13], or non-standard assumptions
like the random oracle methodology, one derives alternatives to the solutions here and in
[14,17,25,26]. Yet, the encryption-based approach provides only computational secrecy
and the latter may be insufficient in some settings, especially since knowledge of the
secret key to the public parameters enables to decrypt the message. Also, using random
oracles there is a simpler approach to construct non-malleable commitments. We sketch
this solution in Appendix A.

More non-malleable (but less efficient) commitment schemes in the broader context
of universally composable commitments have been constructed by Canetti and Fischlin
[8] and subsequently by Damgård and Nielsen [15] and Canetti et al. [11]. Also, Prab-
hakaran and Sahai [44] present quite efficient universally composable commitments
based on somewhat non-standard assumptions. Conversely, Liskov et al. [35] derive
more efficient commitment schemes by aiming at the weaker notion of mutually inde-
pendence. MacKenzie and Yang [36] discuss the relationship between non-malleable
commitments and so-called simulation-sound trapdoor commitments. Finally, let us re-
mark that, recently, Barak [1] gave the first (rather theoretical) constant-round non-
malleable commitment scheme in the plain model. Also, Pass and Rosen [42] recently
showed how to build concurrently executable non-malleable commitment schemes.
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1.5. Organization

The paper is organized as follows. In Sect. 2, we introduce basic notations and defi-
nitions of commitment schemes as well as the notions of non-malleability. Section 3
separates the notions of non-malleability with respect to commitment and opening. In
Sect. 4, we present efficient schemes in the CRS model based on the discrete-log as-
sumption, and, in Sect. 5, we turn to the RSA case. Finally, in Sect. 6, we show how to
use a posteriori verifiable proofs of knowledge to achieve non-malleable commitments
under the factoring assumption.

2. Preliminaries

Unless stated otherwise, all parties and algorithms are probabilistic polynomial-time.
Throughout this paper, we use the notion of uniform algorithms; all results transfer
to the non-uniform model of computation. A function δ(n) is said to be negligible if
δ(n) < 1/p(n) for every polynomial p(n) and sufficiently large n’s. A function δ(n)

is called overwhelming if 1 − δ(n) is negligible. A function is noticeable if it is not
negligible.

Two sequences (Xn)n∈N and (Yn)n∈N of random variables are called computationally
indistinguishable if for any probabilistic polynomial-time algorithm D the advantage
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is negligible, where Sn is the union of the supports of Xn and Yn.

2.1. Commitment Schemes

We give a rather informal definition of ordinary commitment schemes and focus on
the definition of non-malleability instead. For a formalization of regular commitments
we refer the reader to [27]. A commitment scheme is a two-phase interactive protocol
between two parties, the sender S holding a message m and a random string r , and the
receiver R.

In the first phase, called the commitment phase, S gives some information derived
from m,r to R such that, on the one hand, R does not gain any information about m,
and, on the other hand, S cannot later change his mind about m. We call the whole com-
munication in this phase the commitment of S . Of course, both parties should check (if
possible) that the values of the other party satisfy structural properties, e.g., that a value
belongs to a subgroup of Z

∗
p , and should reject immediately if not. In the following, we

do not mention such verification steps explicitly. We say that a commitment, i.e., the
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communication, is valid if the honest receiver does not reject during the commitment
phase.

In the decommitment stage, the sender communicates the message m and some evi-
dence showing the correctness of m to the receiver who verifies that these values match
the communication of the first phase. If the sender obeys the protocol description, then
the commitment is valid and R always accepts the decommitment. Usually, the sender’s
random string itself makes up the decommitment evidence, and for simplicity we adhere
to this in the rest of the paper. In particular, we assume that the decommitment phase is
non-interactive and consists of a single message from the sender to the receiver, reveal-
ing the message and the random coins.

There are two fundamental kinds of commitment schemes:

– A scheme is statistically-binding (and computationally-secret) if any arbitrarily
powerful malicious S ∗ cannot open a valid commitment ambiguously except with
negligible probability (over the coin tosses of R), and two commitments are com-
putationally indistinguishable for every probabilistic polynomial-time (possibly
malicious) R∗. If the binding property holds unconditionally and not only with
high probability, then we call the scheme unconditionally-binding.

– A scheme is (computationally-binding and) statistically-secret if it satisfies the
“dual” properties, that is, if the distribution of the commitments are statistically
close for any arbitrarily powerful R∗, and yet opening a valid commitment am-
biguously contradicts the hardness of some cryptographic assumption. If the distri-
bution of the commitments of any messages are identical, then a statistically-secret
schemes is called perfectly-secret.

Technically, there are also commitment schemes where binding and secrecy both hold
in a computational sense only. However, since one of the properties is usually attainable
in an information-theoretic sense we focus on the aforementioned types only.

2.2. Non-malleability

As mentioned in the introduction, different notions of non-malleability have been used
implicitly in the literature. To highlight the difference, we give a formal definition of
non-malleable commitment schemes, following the approach of [18].

Scenario

For non-interactive commitment schemes, all the adversary attacking the non-malle-
ability property can do is modify a given commitment. In the interactive case, though,
the adversary might gain advantage from the interaction. We adopt this worst-case sce-
nario and assume that the adversary interacts with the original sender, while at the same
time she is trying to commit to a related message to the original receiver.

A pictorial description of a so-called person-in-the-middle attack (PIM attack) on
an interactive protocol is given in Fig. 1. The adversary A intercepts the messages of
the sender S . Then A may modify the messages before passing them to the receiver
R and proceeds accordingly with the answers. In particular, A decides to whom she
sends the next message, i.e., to the sender or to the receiver. This is the setting where A
has full control over the parties R1 and S2 in two supposedly independent executions
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S A R
s1−−−−−−−−−−−−−−−−→ s∗

1−−−−−−−−−−−−−−−−→
r1←−−−−−−−−−−−−−−−−
s∗

2−−−−−−−−−−−−−−−−→
r2←−−−−−−−−−−−−−−−−

r∗
1←−−−−−−−−−−−−−−−−

s2−−−−−−−−−−−−−−−−→ . . .

Fig. 1. Person-in-the-middle attack on interactive protocols.

〈S1, R1〉(m), 〈S2, R2〉(m∗) of the same interactive protocol. Here and in the sequel, we
usually mark values sent by the adversary with an asterisk.

Apparently, the adversary can always commit to the same message by forwarding
the communication. In many applications, this can be prevented by letting the sender
append his identity to the committed message. The messages of the sender and the
adversary are taken from a space M. Abusing notations, we view M also as an efficiently
computable distribution, and write m ∈R M for a randomly drawn message according
to M.

The adversary is deemed to be successful if she commits to a related message, where
related messages are identified by the so-called interesting relations: A probabilistic
polynomial-time algorithm R taking inputs from M × M and returning a bit is called
an interesting relation if R(m,m) = 0 with probability 1 for all m ∈ M (to exclude
copying). Moreover, we let the interesting relation on the second argument accept the
undefined symbol ⊥, capturing the case that the adversary does not produce a valid
commitment or decommitment; in this case, we set m∗ = ⊥ and we demand R(m,⊥) =
0 with probability 1.

We assume that M generates the sender’s message m and also a value histm repre-
senting the a priori information the adversary has about m. For instance, histm could
represent an additional hash value of the sender’s message m, or information gathered
from other protocol executions where the sender uses m. The value histm may not be ef-
ficiently samplable, in general. Here, however, we simplify the description and attribute
histm to the efficient distribution M, admitting an easy way to also include information
about the sampling process of m into histm. For ease of notation, we then write both
m ∈R M and (m,histm) ∈R M.

Since we work in the CRS model, we extend the input of M and R by adversarial
parameters ADVPAR the adversary produces after having learned the parameters CRS

(generated before by a trusted third party). The value ADVPAR may, for example, in-
clude the public parameters CRS. The motivation for this is that it should be infeasible
for the adversary to find a suitable relation or distribution on the messages even if the
publicly available parameters are given. For the same reason, we base the relation R
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also on the side information histm which itself may now depend on ADVPAR through
the generation via M(ADVPAR).2 In summary, we denote the message space and distri-
bution as M(ADVPAR) and the relation by R(ADVPAR,histm, ·, ·).

Definition

The definition on non-malleable commitments follows the well-known idea of defining
secure encryption, namely, we will demand that, for any adversary A transforming the
sender’s commitment successfully, there should be an adversary A′ that finds a com-
mitment to a related message with almost the same probability as A but without the
sender’s help. All probabilities below are implicit functions of a security parameter, and
the probability space in each case is taken over the randomness of all algorithms.

We describe the attack in detail. First, the public string CRS are generated by a trusted
party according to a publicly known, efficiently samplable distribution (if a protocol
does not need public information then this step is skipped). On input CRS the adversary
A then picks the adversarial parameters ADVPAR for M and R.

The sender S is initialized with m ∈R M(ADVPAR). Now A, given histm, mounts a
PIM attack with S(m) and R. Let πcom(A,M,R) denote the probability that, at the
end of the commitment phase, the protocol execution between A and R constitutes
a valid commitment for some message m∗ satisfying R(ADVPAR,histm,m,m∗). Let
πopen(A,M,R) denote the probability that A is also able to successfully open the com-
mitment after S has decommitted (where S does not decommit before the adversary
finishes her commitment phase).

In a second experiment, a simulator A′ tries to commit to a related message without
the help of the sender. That is, A′ gets as input random parameters CRS, generates adver-
sarial parameters ADVPAR′ and then, given histm for some (m,histm) ∈R M(ADVPAR′),
it commits to R without interacting with S(m). Let π ′

com(A′,M,R) denote the probabil-
ity that this is a valid commitment to some related message m′ under parameter CRS with
respect to relation R(ADVPAR′,histm, ·, ·). By π ′

open(A′,M,R) we denote the probabil-
ity that A′ additionally reveals a correct decommitment. Equivalently, we may define
π ′

open(A′,M,R) as the probability that A′ simply outputs a related message (without
reference to a CRS, commitment and decommitment).

It is now tempting to define non-malleability with respect to commitment and
with respect to opening by comparing πcom(A,M,R), π ′

com(A′,M,R) as well as
πopen(A,M,R), π ′

open(A′,M,R) and asking for small differences. In the former case,
this would agree with the definition in [18], and in the latter case this would extend
it straightforwardly to non-malleability with respect to opening. But, surprisingly at
first, for non-malleability with respect to commitment we even oblige the simulator to
open its commitment and contrast πcom(A,M,R) with π ′

open(A′,M,R). The are two
reasons for this. First, otherwise any statistically-secret commitment protocol would
be non-malleable with respect to commitment because if the simulator merely outputs a
commitment of some fixed message this is also a commitment of a related message with

2 We do not include the actual common reference string in the distribution and the relation, as such a
definition appears to be unachievable in general (see [23] for a discussion about the case of non-malleable
encryption). Testifying to this, our schemes, for example, are not known to satisfy such a stronger notion.
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high probability. However, this would certainly contradict the intuition of non-malleable
systems.

The other reason is that, even in the case of statistically-binding schemes, we were
unable to show that the presumably stronger non-malleability notion à la [18] implies
the weaker one. With our approach here this trivially follows from the definition because
the requirements for the simulator in both cases are identical, while the adversary trying
to refute non-malleability with respect to commitment even faces a simpler task.

For sake of completeness, we include the original definition of Dolev et al. [18]
and call this non-malleability with respect to commitmentDDN, whereas we denote the
more stringent version by commitmentFF. We remark that the commitment scheme in
[18] also satisfies “our” notion of non-malleability with respect to commitment. Un-
less stated differently, throughout this paper we simply refer to the “FF” version by
non-malleability with respect to commitments.

Definition 1. A commitment scheme is called

(a) Non-malleable with respect to commitmentFF if for every adversary A there ex-
ists a simulator A′ such that for any message space M and any interesting relation
R the difference πcom(A,M,R) − π ′

open(A′,M,R) is negligible.3

(b) Non-malleable with respect to opening if for every adversary A there exists a
simulator A′ such that for any message space M and any interesting relation R
the difference πopen(A,M,R) − π ′

open(A′,M,R) is negligible.
(c) Non-malleable with respect to commitmentDDN if for every adversary A there ex-

ists a simulator A′ such that for any message space M and any interesting relation
R the difference πcom(A,M,R) − π ′

com(A′,M,R) is negligible.

If M and R are clear from the context we usually abbreviate the success probabilities
by πcom(A), π ′

com(A′), πopen(A), and π ′
open(A′), respectively.

Some remarks about the experiment of A′ follow. The simulator A′ does not have
the power to choose the string CRS for the commitment to R. This is so because the
simulator is obliged to produce a correct commitment to R under the same honestly
chosen public data CRS as the sender and the adversary. This rules out counterintuitive
solutions proving obviously transformable commitments non-malleable. For instance,
consider (a straightforward non-interactive version of) Naor’s bit commitment scheme
[39] where the public string consists of the string σ and the sender commits to 0 by
transmitting y = G(r) for the pseudorandom generator G, and y = G(r) ⊕ σ for a
1-commitment. Clearly, this scheme is malleable in an intuitive sense as the adversary
can always change y to y⊕σ in order to commit to the flipped bit. If we let the simulator
A′ prepare the public string in this case, A′ could set σ = G(r0) ⊕ G(r1) and send
y = G(r0) to the receiver R and would succeed in committing to a related message
without talking to the sender (because y can be opened both as 0 and 1). Hence, formally
the scheme would be non-malleable although it allows to transpose commitments.

3 Here we allow a very liberal definition of negligible functions: The function may also be negative at
some value n, in which case it is certainly less than 1/p(n) for any strictly positive polynomial p(·). In
our case, this means that the simulator does even better than the adversary and thus still reflects our idea of
non-malleability.
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Still, we allow A′ to pick its own string ADVPAR′ in the simulation, not necessarily
related to A’s selection ADVPAR. But since the relation R depends on these adversar-
ial parameters ADVPAR and ADVPAR′, it is clear that the relation can rule out signif-
icantly diverging choices of A′, and hence ADVPAR′ is likely to be indistinguishable
from ADVPAR.

Slightly relaxing the definition, we admit an expected polynomial-time simulator A′.
In fact, we are only able to prove our DLog- and RSA-based schemes non-malleable
with this deviation. The reason for this is that we apply proofs of knowledge, so in
order to make the success probability of A′ negligibly close to the adversary’s success
probability, we run a knowledge extractor taking expected polynomial-time. Following
the terminology in [18], we call such schemes with A′ running in expected polynomial-
time liberal non-malleable with respect to commitment and opening, respectively.

Alternatively, the authors of [18] also propose a definition of ε-non-malleability,
which says that for any given ε there is a strict polynomial-time simulator (polynomial
in the security parameter n and ε−1(n)) whose success probability is only ε-far from
the adversary’s probability. Indeed, we will use this definition of ε-non-malleability to
construct our factoring-based solution with the a posteriori verifiable proofs of knowl-
edge.

Consider a computationally-binding and perfectly-secret commitment scheme.
There, every valid commitment is correctly openable with every message (it is, however,
infeasible to find different messages that work). Thus, we believe that non-malleability
with respect to opening is the interesting property in this case. On the other hand, non-
malleability with respect to commitment is also a concern for statistically-binding com-
mitment schemes: with overwhelming probability there do not exist distinct messages
that allow to decommit correctly. This holds for any dishonest sender and, in particular,
for the person-in-the-middle adversary. We can therefore admit this negligible error and
still demand non-malleability with respect to commitment.

The Multi-party Setting

Our definition considers the setting of three parties. In the auction case, for instance,
usually more parties participate and the adversary’s intention may be to overbid only a
certain opponent to ensure that this person does not win. Hence, we may let A talk to
several senders S1, . . . , Spoly with (probably dependent) messages m1, . . . ,mpoly gen-
erated by M(ADVPAR) together with side information hist(m1, . . . ,mpoly). The relation
now takes ADVPAR, hist(m1, . . . ,mpoly) and poly+1 messages as input and it is re-
quired that the (poly+1)st message m∗ is different from any other message mi , and
that the relation is never satisfied if m∗ = ⊥. We remark that all our protocols remain
secure in this multi-sender setting.

A problem occurs if we let the adversary commit in several executions with R to mes-
sages m∗

1, . . . ,m
∗
poly and extend the relation accordingly, both in the single- or multi-

sender case. Dolev et al. [18] show that this scenario is not reducible to the single
case in general and suggest an alternative definition where the adversary is supposed
to announce a subset i1, . . . , ik of the executions with the receiver in the commitment
phase, inducing a set of messages m∗

i1
, . . . ,m∗

ik
for which she tries to be successful. In

[14], Damgård and Groth also discuss the issue of multiple senders and receivers for
non-malleable commitments and present non-interactive schemes for this multi-party
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setting. Resembling the “announcement trick” of [18] their result requires that the rela-
tion’s value does not change if some of the adversary’s messages equal ⊥.

However, the assumptions about the relation’s dependencies on dedicated decommit-
ments must be treated with care. In the auction case, for example, the adversary may
know beforehand that the sender commits to one out of, say, three values, each bid being
equally likely. In order to overbid the sender with the minimal amount, the adversary
commits to each of the three values incremented by 1. Later, the adversary only opens
the right choice correctly and refuses to decommit to the other two values (which are
set to ⊥). Then the adversary would always overbid the sender easily, but would still
not be considered successful according to the formal definition in [14]. Note that this
problem is inherent for the commitment scenario and success probabilities depending
on the validity of decommitments.

We return to the multi-party case at the end of Sect. 4.3 when discussing this issue
for our schemes.

3. On the Relationship of Non-malleability Notions

Clearly, non-malleability with respect to commitment implies non-malleability with re-
spect to opening and with respect to DDN. On the other hand, we show that (under
standard cryptographic assumptions) the converse does not hold in the CRS model. To
this end, we construct a bit commitment scheme that does not even achieve the DDN
notion, but is non-malleable with respect to opening.

To separate the notions we consider once more Naor’s bit commitment scheme [39]
in the CRS model. Let G be a pseudorandom generator expanding n bits random input
to 3n bits pseudorandom output. That is, the variables (Xn)n∈N and (Yn)n∈N are com-
putationally indistinguishable, where Xn equals G(r) for a random r ∈ {0,1}n and Yn

has the uniform distribution on {0,1}3n.
Let σ be a random 3n-bit string put into the public parameters. In order to commit

to a bit b in Naor’s protocol, the sender chooses a random r ∈ {0,1}n and transmits
y = G(r) for b = 0 or y = G(r)⊕σ if b = 1. The decommitment consists of (b, r). Not
only is this scheme computationally secret and statistically binding, it is also strongly
malleable, i.e., given a commitment y of a bit b one can always derive a commitment
of b ⊕ 1 by sending y ⊕ σ .

Next we construct an assembled commitment scheme (in the CRS model) which
consists of a combination of Naor’s scheme and an arbitrary statistically-secret system
Comsecret which is non-malleable with respect to opening. To commit to bit b, indepen-
dently execute the statistically-secret protocol and Naor’s scheme on b, either in parallel
or sequentially. Opening is done by decommitting for both schemes in parallel.

Obviously, this assembled scheme is computationally-secret and statistically-binding.
We show that this scheme only achieves the weaker non-malleability property. The in-
tuition is that the assembled scheme inherits non-malleability with respect to opening
from the statistically-secret protocol, and the strong malleability of Naor’s scheme (to-
gether with the fact that virtually any statistically-secret commitment is, in principle,
openable with any value) inhibits non-malleability with respect to commitment.
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Theorem 1. If there is a statistically-secret bit commitment scheme that is non-
malleable with respect to opening, then there exists a statistically-binding bit commit-
ment scheme in the CRS model that is non-malleable with respect to opening, but not
with respect to commitmentFF and not with respect to commitmentDDN.

Theorem 1 also holds for liberal non-malleable statistically-secret protocols in the
CRS model.

Proof. Since one-way functions exist if commitment schemes exist [32], and one-way
functions imply pseudorandom generators [31], Naor’s scheme and therefore the assem-
bled system above is realizable given the statistically-secret bit commitment scheme.

We first show that the assembled scheme is not non-malleable with respect to
commitmentDDN (and therefore not with respect to commitmentFF). Define the relation
R to consist of the pairs (b, b ⊕ 1) and the message space to be the uniform distribution
on {0,1}, i.e., both M and R are independent of the adversarial parameters. Let hist(b)

be empty.
Given access to a sender committing to an unknown random bit b ∈R {0,1} we run

a PIM attack and relay all messages between the receiver and the sender for Comsecret.
Additionally, we alter Naor’s part of the sender’s commitment to a commitment of b∗ =
b ⊕ 1 by the strong malleability property and forward it to the receiver (Fig. 2).

Since Comsecret is statistically-secret, with overwhelming probability that part of the
sender’s commitment can be opened as 0 and 1. Hence, with probability negligibly
close to 1 we are able to construct a valid commitment of b∗ = b ⊕ 1 for the assembled
scheme and to satisfy the relation R. On the other hand, any simulator not seeing the
commitment of the random bit b cannot output a commitment of b′ = b ⊕ 1 with proba-
bility exceeding 1/2 by more than a negligible amount (this negligible amount is due to
the binding error of Naor’s protocol). Thus, the assembled scheme is not non-malleable
with respect to commitmentDDN.

sender S adversary A receiver R

message b ∈ {0,1} public: σ

commitment phase:

execute Comsecret
←−−−−−−−−−−−−→ relay messages

←−−−−−−−−−−−−→ execute Comsecret

pick r ∈R {0,1}n
compute y := G(r)

set y := y ⊕ σ if b = 1
y−−−−−−→ y∗ := y ⊕ σ

y∗
−−−−−−→

Fig. 2. Malleability with respect to commitment of assembled scheme.
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The fact that the combined scheme is non-malleable with respect to opening follows
from the non-malleability of the statistically-secret system. Specifically, let A be an
adversary attacking the assembled system. We have to present a simulator that—“out of
the blue”—outputs a related message with essentially the same probability πopen(A) as
A for all M,R. In an intermediate step, we construct an adversary Asecret from A such
that Asecret attacks the non-malleability property of Comsecret.

Define the adversary Asecret that commits and decommits to a related message for the
protocol Comsecret as follows. Asecret mounts a PIM attack interacting with the sender
Ssecret and receiver Rsecret of Comsecret on (possibly empty) parameters CRSsecret. Asecret
also runs a virtual copy of A attacking the assembled scheme. Basically, Asecret uses A
to generate a related commitment and opening for Comsecret by adding the steps of
Naor’s scheme. For this, Asecret exploits the equivocal version of Naor’s scheme pre-
sented in [16]. Informally, such an equivocal commitment enables the sender to prepare
a dummy commitment which can be later opened with any value, yet this process is
indistinguishable from a true execution. This means, instead of letting σ be a random
string, we choose σ as G(r0) ⊕ G(r1) for random r0, r1 ∈ {0,1}n. Then, to commit
to a dummy value, send y = G(r0); to open it with 0 reveals r0 or transmits r1 for a
decommitment to 1.

Asecret emulates A by choosing σ = G(r0) ⊕ G(r1) and passing (CRSsecret, σ ) to
A. Adversary A returns parameters ADVPAR which Asecret uses in her attack on
Comsecret, too. This defines a distribution M(ADVPAR) on {0,1} as well as a relation
R(ADVPAR, ·, ·, ·) for both A’s and Asecret’s attack. Asecret next feeds all messages of
Ssecret and Rsecret of the execution of Comsecret into A and also forwards all replies of A.
Additionally, Asecret submits a dummy commitment y = G(r0) on behalf of the sender
to A in the simulation. Later, when Asecret learns Ssecret’s decommitment of bit b it for-
wards this decommitment to A and opens the dummy commitment y in A’s simulation
accordingly. Output the part of A’s opening for Comsecret and stop. See Fig. 3.

As for the analysis, first note that Asecret’s success probability producing a valid com-
mitment and decommitment of a related messages is negligibly close to πopen(A) for
any M,R. This follows from the fact that a fake σ is indistinguishable from a honestly
chosen one, i.e., otherwise it would be easy to derive a successful distinguisher contra-
dicting the pseudorandomness of G’s output.

More formally, assume that A’s success probability drops noticeably when run on a
fake string in the simulation (for some M,R). Then we construct a distinguisher for the
pseudorandom generator G as follows. We are given 1n and z ∈ {0,1}3n and are sup-
posed to tell whether z is truly random or has been derived by running G. Pick random
r ∈ {0,1}n and set σ = G(r)⊕z. Next, start A’s attack on the assembled scheme by pre-
senting (CRSsecret, σ ). Sample (b,hist(b)) according to the distribution M(ADVPAR) and
continue A’s attack by impersonating the honest parties in the execution of Comsecret.
Also, let the simulated sender commit in Naor’s protocol execution by sending y = G(r)

if b = 0 and z if b = 1. In the opening phase, decommit to this part by revealing (b, r).
Output 1 exactly if A succeeds, that is, if R(ADVPAR,hist(b), b, b∗) = 1 for a valid
opening of A to b∗.

Observe that if z is really random we output 1 with probability πopen(A), because the
distribution of the data in the simulation is the same as in an actual attack on the assem-
bled scheme. If z is pseudorandom then we output 1 with the probability that Asecret is
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Ssecret Asecret Rsecret

message b ∈ {0,1} public: CRSsecret

(a) commitment phase: run copy of A

pick r0, r1 ∈R {0,1}n
σ = G(r0) ⊕ G(r1)

Comsecret
←−−−−−−−−−−−−−−→ ←−−−−−−→ A ←−−−−−−→ ←−−−−−−−−−−−−−−→ Comsecret

G(r0) → A → y∗

(b) decommitment phase:

b, rsecret−−−−−−−→ (b, rsecret, rb) → A → (b∗, r∗
secret, r

∗)
b∗, r∗

secret−−−−−−−→

Fig. 3. Non-malleability with respect to opening of assembled scheme.

victorious. By assumption, this is noticeably smaller than πopen(A), and therefore we
distinguish random and pseudorandom inputs with noticeable advantage. This, however,
refutes the pseudorandomness of G.

Altogether, we have started with an arbitrary adversary A attacking the assembled
scheme, and derived an adversary Asecret that succeeds in attacking Comsecret for para-
meters CRSsecret virtually with the same probability that A succeeds in attacking the
assembled scheme on CRSsecret and truly random σ . By assumption about the non-
malleability of Comsecret, for Asecret there is a simulator A′

secret succeeding in outputting
a related message essentially with the same probability as Asecret. But then this algo-
rithm A′

secret is also an appropriate simulator for adversary A attacking the assembled
scheme. �

Applying our constructions in this paper we conclude:

Corollary 1. Under the discrete-log or RSA assumption, there is an interactive bit
commitment scheme in the CRS model that is liberal non-malleable with respect to
opening, but not with respect to commitmentFF and not with respect to commitmentDDN.

We finally remark that our separation shows that schemes which are non-malleable
with respect to opening do not necessarily fulfill the stronger definition per se. Yet, there
may still be general transformations lifting such schemes to the higher security level.
For example, a trivial transformation is to neglect the original scheme entirely and to
run the DDN protocol from scratch instead.
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4. Discrete-Log-Based Non-malleable Commitments

In this section, we introduce our discrete-log based commitment schemes which are
non-malleable with respect to opening; the RSA and factoring case are discussed in
Sects. 5 and 6, respectively.

In Sect. 4.1, we start with an instructive attempt to achieve non-malleability by stan-
dard proof-of-knowledge techniques. We show that this approach yields a scheme which
is only non-malleable with respect to opening in the presence of static adversaries, i.e.,
adversaries that try to find a commitment after passively observing a commitment be-
tween the original sender and receiver. In Sect. 4.2, we develop out of this our scheme
which is non-malleable against the stronger PIM adversaries. The formal proof of non-
malleability appears in Sect. 4.3.

4.1. Non-malleability with Respect to Static Adversaries

Consider Pedersen’s well-known discrete-log-based perfectly-secret scheme [43]. Let
Gq be a cyclic group of prime order q and g0, h0 two random generators of Gq . Assume
that computing the discrete logarithm logg0

h0 is intractable (e.g., if Gq is an appropriate
elliptic curve or subgroup of Z

∗
p). To commit to a message m ∈ Zq , choose r ∈R Zq and

set M := gm
0 hr

0. To open this commitment, reveal m and r . Obviously, the scheme is
perfectly-secret as M is uniformly distributed in Gq , independently of the message.
It is computationally-binding because opening a commitment with distinct messages
requires computing logg0

h0.
Unfortunately, Pedersen’s scheme is malleable: Given a commitment M of some mes-

sage m, an adversary obtains a commitment for m + 1 mod q by multiplying M with
g. Later, the adversary reveals m+ 1 mod q and r after learning the original decommit-
ment m,r . This holds even for static adversaries. Such adversaries do not try to inject
messages in executions, but rather learn a protocol execution of S and R—which they
cannot influence—and afterwards try to commit to a related message to R. In the case
of non-malleability with respect to opening, the adversary must also be able to open the
commitment after the sender has decommitted.

A possible fix that might come to one’s mind are proofs of knowledge showing
that the sender actually knows the message encapsulated in the commitment. For the
discrete-log case, such a proof of knowledge consists of the following steps [41]: The
sender transmits a commitment S := gs

0h
t
0 of a random value s ∈R Zq under random-

ness t ∈R Zq , the receiver replies with a random challenge c ∈R Zq and the sender
answers with y := s + cm mod q and z := t + cr mod q . The receiver finally checks
that SMc = g

y

0 hz
0.

If we add a proof of knowledge to Pedersen’s scheme we obtain a protocol which
is non-malleable with respect to opening against static adversaries. This follows from
the fact that any static adversary merely sees a commitment of an unknown message
before trying to find an appropriate commitment of a related message. Since the proof
of knowledge between S and R is already finished at this point, the static adversary
cannot rely on the help of S and transfer the proof of knowledge. We leave further
details to the reader and address the non-malleable protocol against PIM adversaries in
the next section instead.
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4.2. Non-malleability with Respect to PIM Adversaries

The technique of assimilating a proof of knowledge as in the previous section does not
thwart PIM attacks. Consider again the PIM adversary committing to m + 1 mod q by
multiplying M with g. First, this adversary forwards the sender’s commitment S for
the proof of knowledge to the receiver and hands the challenge c of the receiver to the
sender. Conclusively, she modifies the answer y, z of the sender to y∗ := y + c mod q

and z∗ := z. See Fig. 4. Clearly, this is a valid proof of knowledge for m + 1 mod q and
this PIM adversary successfully commits and later decommits to a related message.

Coin-flipping comes to the rescue. In a coin flipping protocol, one party commits to
a random value a, then the other party publishes a random value b, and finally, the first
party decommits to a. The result of this coin flipping protocol is set to c := a ⊕ b or,
in our case, to c := a + b mod q for a, b ∈ Zq . If at least one party is honest, then the
outcome c is uniformly distributed (if the commitment scheme is binding and secret).

The idea is now to let the challenge in our proof of knowledge be determined by such
a coin-flipping protocol. But if we also use Pedersen’s commitment scheme with the
public generators g0, h0 to commit to value a in this coin-flipping protocol, we do not

sender S adversary A receiver R

message m ∈ Zq public: Gq,g0, h0

(a) commitment phase:

choose r, s, t ∈R Zq

set M := gm
0 hr

0
set S := gs

0h
t
0

M,S−−−−−−→ S∗ := S

M∗ := gM
M∗, S∗

−−−−−−→ choose c ∈R Zq
c←−−−−−−

c∗ := c

c∗
←−−−−−−

y := s + c∗m (q)

z := t + c∗r (q)
y, z−−−−−−→ z∗ := z

y∗ := y + c (q)
y∗, z∗

−−−−−−→ verify that

S∗(M∗)c != g
y∗
0 hz∗

0

(b) decommitment phase:
m,r−−−−−−→ r∗ := r

m∗ := m + 1 (q)
m∗, r∗

−−−−−−→ verify that

M∗ != gm∗
0 hr∗

0

Fig. 4. PIM attack on Pedersen’s commitment scheme with proof of knowledge.
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Sender S Gq,g0, g1, h0, h1 Receiver R

message m ∈ Z
∗
q

(a) commitment phase:

choose a, r, s, t, u ∈R Zq

set M := gm
0 hr

0
set A := (g1M)ahu

1
set S := gs

0h
t
0

M,A,S−−−−−−−−−−−−−−→ choose b ∈R Zq

b←−−−−−−−−−−−−−−
set c := a + b mod q

set y := s + cm mod q

set z := t + cr mod q
a,u, y, z−−−−−−−−−−−−−−→ set c := a + b mod q

check A
!= (g1M)ahu

1

check SMc != g
y

0 hz
0

(b) decommitment phase:
m,r−−−−−−−−−−−−−−→ check M

!= gm
0 hr

0

Fig. 5. Discrete-log-based non-malleable commitment scheme.

achieve any progress: The adversary might be able to commit to a related a∗ and thus
bias the outcome of the coin-flipping to a suitable challenge c∗.

The solution is to apply Pedersen’s scheme in this sub-protocol with the commitment
M as one of the generators, together with an independent generator h1 instead of g0, h0;
for technical reasons, we rather use (g1M) and h1 for another generator g1. As we will
show, the coin-flipping in the proof of knowledge between A and R is based on genera-
tors g1M

∗ and h1 instead of g1M,h1 as in the sender’s proof of knowledge. Because the
adversary’s commitment M∗, even though possibly being related to M , is most likely
different from M (or else the adversary’s decommitment m∗, r∗ for M∗ together with
the original decommitment m,r for M would allow to compute the discrete logarithm
of h0 to g0), this prevents the adversary from adapting the sender’s and receiver’s values
and therefore from transferring the proof of knowledge. Details follow.

We describe the protocol given in Fig. 5 which combines the aforementioned ideas.
The public parameters are (a description of) a cyclic group Gq of prime order q and
four random generators g0, g1, h0, h1 of Gq . Basically, the sender S commits to his
message m ∈ Z

∗
q with Pedersen’s scheme4 by computing M = gm

0 hr
0 and proves by a

proof of knowledge (values S, c, y, z in Fig. 5) that she is aware of a valid opening of

4 Note that, as opposed to Pedersen’s scheme, we require that m �= 0; the technical reason is that in the
security proof we need to invert the message modulo q .
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the commitment. The challenge c in this proof of knowledge is determined by a coin-
flipping protocol with values A,a,u, b.

It is clear that our protocol is computationally-binding under the discrete-log as-
sumption, and perfectly-secret as the additional proof of knowledge for m is witness
independent (aka perfectly witness indistinguishable) [22], i.e., for any challenge c, the
transmitted values S,y, z are distributed independently of the actual message [41].

Proposition 1. The commitment scheme in Fig. 5 is perfectly-secret and, under the
discrete-log assumption, computationally-binding.

In the next section, we strictly prove that our scheme is indeed non-malleable. By
now, we already remarked that the non-malleability property of our scheme also relies
on the hardness of computing discrete logarithms. This dependency is not surprising.
After all, any adversary being able to compute discrete logarithms with noticeable prob-
ability also refutes the binding property of Pedersen’s scheme and can thus decommit
for any related message with this probability.

A rough idea why our protocol is non-malleable can be described as follows. Given
a commitment M of some unknown message m (together with a witness-independent
proof of knowledge described by S, c, y, z) with respect to parameters p,q,g0, h0, we
show how to employ the PIM adversary A to derive some information about m. Namely,
if we are able to learn the related message m∗ of the adversary by extracting it via her
“self-employed” proof of knowledge, then we know that m is related to m∗ for the
relation R. This, of course, contradicts the perfect-secrecy of the commitment M . We
remark that the formal proof of non-malleability requires to come up with a simulator
generating a related message without the help of the sender. However, as we will show,
the essential part of the simulator is made out of such an extraction procedure.

For details and further discussion we refer to the next section.

Theorem 2. Under the discrete-logarithm assumption, the scheme in Fig. 5 is a
perfectly-secret commitment scheme which is liberal non-malleable with respect to
opening.

It is worthwhile to point out that we cannot hash longer messages to Z
∗
q before ap-

plying our non-malleable commitment scheme because then we extract the hash value
and not the message m∗ itself. But this could be insufficient, since it might be impos-
sible to deduce anything about m via R(ADVPAR,histm,m,m∗) given solely the hash
value of m∗. The same disadvantage occurs in the RSA case. We stress that the schemes
in Sect. 6 with the a posteriori verifiable proofs of knowledge do not suffer from this
problem. There, one can first hash the message as the proof of knowledge operates on
the original message instead of the hash value.

4.3. Formal Proof of Non-malleability

We present the proof of non-malleability of the protocol in the previous section first
from a bird’s eye view and progressively fill in more details. The main part of the proof
consists of the construction of an extraction procedure that enables us to extract the
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adversary’s message related to the original message. We start with an outline of this
procedure, then analyze it with respect to restricted attacks and, subsequently, supple-
ment the remaining steps for full-fledged attacks. Finally, we discuss that the required
non-malleability simulator can be derived from the extraction procedure. At the end of
this section, we address the multi-party setting.

Outline of Extraction Procedure

In this outline here, we make some simplifications concerning the adversary: First, we
assume that the PIM adversary always catches up concerning the order of the transmis-
sions, i.e., sends her first message after learning the first message of S and answers to S
after having seen R’s response, etc. Second, let the adversary always successfully com-
mit and decommit to a related message, rather than with, say, small probability. Third,
we presume that M is independent of the adversarial parameters. All restrictions will be
removed in subsequent sections.

To learn the adversary’s message m∗ in the simplified case we use the proof of knowl-
edge in our commitment protocol. Intuitively, a proof of knowledge guarantees that the
prover knows the message, i.e., one can extract the message by running experiments
with the prover. Specifically, we inject values p,q,g0, h0,M,S, c, y, z into a simulated
PIM attack with A and impersonate S and R. Additionally, we choose g1 at random and
set h1 := (g1M)w for a random w ∈R Z

∗
q . We also compute random a0, u0 ∈R Zq and

insert g1, h1 and A := (g1M)a0h
u0
1 into the experiment with A. We start with the extrac-

tion procedure by committing to m,s, a0 via M,S,A on behalf of the sender. Then, by
the presumption about the order of the transmissions, the adversary sends M∗, S∗,A∗
(possibly by changing M,S,A and without knowing explicitly the corresponding values
m∗, r∗ etc.). See Fig. 6 on p. 551 for a pictorial description.

We play the rest of the commitment phase twice by rewinding it to the step where
the receiver chooses b and sends it to the adversary A. To distinguish the values in both
repetitions we append the number of the loop as subscript and write a1, a

∗
1 , a2, a

∗
2 , etc.

The first time, the adversary upon receiving b1 passes some b∗
1 to the (simulated)

sender S , and expects S to open the commitment for a and supplement the proof of
knowledge for M with respect to the challenge a1 +b∗

1 mod q . By the trapdoor property
of Pedersen’s commitment scheme [6], we are able to open A with any value for a1
since we know log(g1M) h1. That is, to decommit A with some a1 reveals a1 and u1 =
u0 + (a0 − a1)/ log(g1M) h1 mod q; it is easy to verify that indeed A = (g1M)a1h

u1
1 . In

particular, we choose a1 such that a1 +b∗
1 mod q equals the given value c. Hence, y and

z are proper values to complement the proof of knowledge for M . Finally, the adversary
answers with the decommitment a∗

1 , u∗
1 for A∗ and the rest of the proof of knowledge

for M∗ with respect to challenge a∗
1 + b1 mod q .

Now we rewind the execution and select another random challenge b2. The adversary
then decides upon her value b∗

2 (possibly different from her previous choice b∗
1) and

hands it to S . Again, we open A with a2 such that c = a2 + b∗
2 mod q . The adversary

finishes her commitment with a∗
2 , u∗

2 as opening for A∗ and the missing values for the
proof of knowledge.

The fundamental proof-of-knowledge paradigm [2,19,20] (together with the so-called
special soundness of Okamoto’s protocol [41]) says that we can extract the message
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m∗ if we learn two valid executions between A and R with the same commitment
M∗, S∗,A∗ but different challenges. Hence, if the adversary’s decommitments satisfy
a∗

1 = a∗
2 and we have b1 �= b2 (which happens with probability 1−1/q), then this yields

different challenges a∗
1 + b1, a∗

2 + b2 in the executions between A and R and we get to
know the message m∗.

We are therefore interested in the event that the adversary is able to “cheat” by pre-
senting different openings a∗

1 �= a∗
2 during the extraction procedure. Below, we prove

that the adversary cannot find different openings for commitment A∗ too often, else we
would derive a contradiction to the intractability of the discrete-log problem (Lemma 1).
Hence, under the discrete-log assumption this event hardly occurs, and we extract m∗
with sufficiently high probability. To be precise, we extract some message m′ and have
to show that this extracted message m′ is almost as likely related to the original mes-
sage as m∗ is. This again follows form the hardness of computing discrete logarithms
(Lemma 2).

Extraction with Respect to Restricted Attacks

We address a more formal approach to the extraction procedure, still considering a
slightly restricted attack. Namely, as in the outline, we too adopt the convention that
the adversary A does not “mix” the order of messages but rather catches up. We also
presume for simplicity that the message space M is independent of the adversarial para-
meters. Call this a restricted attack. We afterwards explain how to deal with full-fledged
attacks.

Before we jump into restricted attacks, we first remark that the history value histm
can be neglected for the analysis of the extraction procedure for both restricted and
full-fledged attacks. We omit mentioning it since we use only black-box simulations
to extract the adversary’s message in the commitment phase, hence, any value histm
given to A′ is simply forwarded to A in order to run the black-box simulation. Only the
conclusive construction of the non-malleability simulator from the extraction procedure
requires a more careful look at the history value.

Our aim is to extract the adversary’s message from her commitment within a negligi-
bly close bound to the adversary’s success probability πopen(A). To this end, we repeat
some basic facts about proofs of knowledge and knowledge extractors [2,19,20]; we
discuss them for the example of Okamoto’s discrete-log-based proof of knowledge (see
[41] or Sect. 4.1) for a given M = gm

0 hr
0.

The knowledge extractor interacting with the prover works in two phases. Namely,
it first generates a random conversation S, c, y, z by running the prover to obtain S, by
selecting c and by letting the prover answer with y, z to S, c. If this communication in
the initial run is invalid, then the extractor aborts. Otherwise it tries to extract at all costs.
That is, the extractor fixes this communication up to the challenge, and then loops (till
success) to seek another accepting conversation with the same communication prefix S.
This is done by rewinding the execution to the choice of the challenge and reselecting
other random challenges. Once the extractor has found another accepting execution for
challenge c′, it can extract if c �= c′, and otherwise it stops with a failure message.

We claim that the extractor runs in expected polynomial time and outputs a represen-
tation of M with respect to g0, h0 with probability at least π − 1/q . Here, π denotes the
probability that the prover makes the verifier accept, and 1/q is called the error of the
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protocol. This can been seen as follows. Fix an arbitrary pair M and S and the prover’s
coin tosses, and condition all subsequent probabilities on these data. Let p denote the
conditional probability (over the choice of the challenge) that the verifier accepts. Then
we enter the loop phase with probability at most p and then need at most 1

p
repetitions

on average to find another accepting execution, resulting in an expected polynomial
running time. Since M,S and the coin tosses are arbitrary, this also holds for randomly
chosen values. As for the success probability note that the extractor fails if the initial run
is invalid (with probability at most 1 − π ) or the second successful execution is for the
same challenge (with probability 1/q). Hence, the extractor succeeds with probability
at least π − 1/q .

Assume that we communicate with some party C which is going to commit to an
unknown message m ∈R M in Pedersen’s commitment scheme, augmented by a proof
of knowledge. Recall that our goal is to show that we can break the secrecy of this
commitment scheme with the help of the attacker on the non-malleability. We choose
a group Gq and two generators g0, h0 and send them to C . Party C selects r, s, t ∈R
Zq and sends M := gm

0 hr
0, S := gs

0h
t
0. We answer with a random challenge c ∈R Zq

and C returns y := s + cm, z := t + cr mod q . Finally, we check the correctness. Put
differently, we perform all the steps of the sender in our protocol except for the coin
flipping.

The aim of our extraction procedure now is to get the message m∗ of the PIM ad-
versary when the adversary faces C ’s commitment. For this, the extractor chooses addi-
tional generators g1, h1 by setting g1 := gv

0 and h1 := (g1M)w for random v,w ∈R Z
∗
q ,

and computes A := (g1M)a0h
u0
1 according to the protocol description for random

a0, u0 ∈R Zq .5 Then the extractor starts to emulate the PIM attack by pretending to
be S and R and with values Gq,g0, g1, h0, h1,M,S,A. Figure 6 shows a description.

Because of the assumption about the order of messages, the adversary commits to
M∗, S∗,A∗ after seeing M,S,A. Next, we use the same stop-or-extract technique as in
[2,19]. In our case, the rewind point (if we do rewind) is the step where the receiver
sends b. In each repetition, we send a random value bi ∈R Zq—the subscript denotes
the number i = 1,2, . . . of the loop—on behalf of the receiver and the adversary hands
some value b∗

i to the simulated sender. Knowing the trapdoor w = log(g1M) h1 we open
A with ai, ui = u0 + (a0 − ai)/w mod q such that ai + b∗

i equals the given value c,
and send the valid answer y, z to the challenge c in the proof of knowledge for M . The
adversary replies with a∗

i , u∗
i , y

∗
i , z∗

i to the receiver. Again, see Fig. 6.
An important modification of the knowledge extractor in comparison to the one in

[2,19] is that, once having entered the loop phase, not only does our extractor stop in
case of success, it also aborts with no output if in some repetitions i, j the adversary
both times successfully finishes the commitment phase—which includes a correct de-
commitment to the “coin-flipping commitment” A∗—but opens A∗ with distinct values
a∗
i �= a∗

j . We say that A counterfeits a coin if this happens. In this case, the extractor
fails to extract a message. We remark that we are only interested in the case that A
sends distinct openings of A∗ in accepting executions because the extractor only relies
on such executions. We call the derived procedure EXTRACT.

5 Clearly, the choice of the generators requires that M and therefore m and M are determined before the
adversary is presented CRS and selects ADVPAR.
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simulation of S adversary A simulation of R

given parameters:

Gq,g0, h0
M,S, c, y, z

additional parameters:

choose a0, u0 ∈R Zq, v,w ∈R Z
∗
q

set g1 := gv
0

set h1 := (g1M)w

set A := (g1M)a0h
u0
1

frozen simulation: Gq,g0, g1, h0, h1

M,A,S−−−−−−−−−→
M∗,A∗, S∗

−−−−−−−−−→

rewind point (loop i = 1,2, . . . ): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

choose bi ∈R Zq

bi←−−−−−−−−−
b∗
i←−−−−−−−−−

set ai := c − b∗
i mod q

set ui := u0 + (a0 − ai)/w mod q
ai, ui, y, z−−−−−−−−−→

a∗
i , u∗

i , y
∗
i , z∗

i−−−−−−−−−→

Fig. 6. Knowledge extraction.

Our first observation is that our knowledge extractor stops (either with success or
aborting prematurely) in expected polynomial-time. This follows as in [2,19] since our
extractor even has an additional abort requirement.

To analyze the success probability of our extractor, let π denote the probability of
A completing the commitment phase with R successfully in procedure EXTRACT. The
basic extraction paradigm says that we are able extract with probability π − 1/q −
ε(n), where ε(n) denotes the probability that A counterfeits a coin (n is the security
parameter). The reason for this is that, given A does not counterfeit, the adversary’s
openings a∗

i1
= a∗

i2
= · · · in the valid commitment conversations are all equal. But then

the values bij + a∗
ij

mod q for j = 1,2, . . . of challenges in the proof of knowledge
between A and R are independently distributed. Analogously to [2,19], it follows that
the extractor finds a message with probability π − 1/q − ε(n) in this case.
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Recall that we would like to guarantee that we extract with probability approximately
πopen(A). Obviously, π upper bounds πopen(A), and it would thus suffice to show that
ε(n) roughly equals π −πopen(A) or, put differently, that δ(n) := ε(n)−(π −πopen(A))

is negligible. One may think of the difference π − πopen(A) describing the probability
of executions in which A successfully commits but never finds a related, valid opening
(e.g., if A simply duplicates all messages of S in the commitment phase).

It remains to bound the probability δ(n). We will prove that δ(n) is negligible under
the discrete-log assumption.

Lemma 1. The probability that A counterfeits a coin in procedure EXTRACT is neg-
ligibly close to π − πopen(A).

We remark that the proof of this lemma makes use of two important aspects. On
the one hand, we exploit that the message space is fixed before the adversarial para-
meters are chosen. On the other hand, we apply the fact that we merely demand non-
malleability with respect to opening, i.e., that A also reveals a valid decommitment.

Proof. We show that if Lemma 1 does not hold this contradicts the intractability of
the discrete-log problem. We are given a group Gq , a generator g, and a random value
X ∈ Gq for which we are supposed to compute logg X. We show how to use A to do so
(in expected polynomial-time with noticeable probability, yielding a strict polynomial-
time algorithm with noticeable probability by standard truncation techniques).

Instead of using the commitment M of the third party C , we modify procedure EX-
TRACT into a procedure COUNTERFEIT. In this modified procedure COUNTERFEIT,
we instead run the knowledge extraction procedure incorporating the given values
Gq,g,X, but generate the same distribution as the extractor. That is, select a message
m ∈R M and v,w ∈R Z

∗
q , then set

g0 := g−1/mX, g1 := g, h0 := Xv, h1 := Xw,

and compute M,A,S, c, y, z according to the protocol description. W.l.o.g., assume that
X �= 1 and Xm �= g, else we already know the discrete-log of X. Then g0, g1, h0 and h1
are random generators of the subgroup Gq . Furthermore, g1M = ggm

0 hr
0 = Xm+rv and

thus log(g1M) h1 = (m + rv)/w mod q .
Next we emulate A on values Gq,g0, g1, h0, h1 and M,A,S by running the extrac-

tion procedure above—with the exception that this time we enter the rewind phase only
if the adversary successfully commits and also reveals a valid decommitment (m∗, r∗)
to a related message after learning our decommitment (m, r) in the initial execution.

Once we have entered the rewind phase, whenever the extractor is supposed to open
A to determine the challenge c in the loop, we also open the commitment so that the
coin flipping protocol always yields the same value c. This is possible as we know
log(g1M) h1 and are therefore able to open A ambiguously.

Unlike in the case of an actual extraction process, here we sometimes suspend before
looping although the adversary’s initial commitment is accepted (because we also stop
if the adversary’s decommitment in the initial execution is invalid or unrelated). This
restriction decreases the probability of A counterfeiting a coin at most by π −πopen(A).
We call runs in which A also opens correctly in the initial execution good.
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From A’s point of view, the communication in the commitment phase in proce-
dure COUNTERFEIT for a good run is identically distributed to the one in the origi-
nal procedure EXTRACT because the data Gq,g0, g1, h0, h1, M,A,S, c, y, z and the
ai, ui, bi ’s have the same distribution in both cases (i.e., the generators are random
in both cases, the values M,A,S, c, y, z have been computed according to the pro-
tocol description in both cases, the bi ’s are random both times, and the values ai, ui

are determined by the other values). Hence, given that A counterfeits with probability
ε(n) = π −πopen(A)+ δ(n) in the actual extraction procedure EXTRACT, A finds some
a∗
i �= a∗

j for two accepting executions i, j with probability at least δ(n) in a good run
in procedure COUNTERFEIT. By assumption, δ(n) is noticeable, so it suffices to prove
that if A counterfeits in a good run in COUNTERFEIT then we can compute the discrete
logarithm of X.

Let u∗
i , u

∗
j denote the corresponding portions of the decommitment to a∗

i and a∗
j for

A∗ in loops i and j in COUNTERFEIT. In a good run, we have obtained some m∗, r∗
satisfying the verification equation M∗ = gm∗

0 hr∗
0 from the adversary by revealing m,r

in place of the sender in the initial execution. Particularly, we have:

(g1M
∗)a∗

i h
u∗

i

1 = A∗ = (g1M
∗)a

∗
j h

u∗
j

1 ,

and therefore

h
(u∗

i −u∗
j )/(a∗

j −a∗
i )

1 = g1M
∗ = g1g

m∗
0 hr∗

0 = g1−m∗/mXm∗+r∗v.

Since h1 = Xw we can transform this into

g1−m∗/m = XΔ for Δ = w(u∗
i − u∗

j )/(a
∗
j − a∗

i ) − (m∗ + r∗v) mod q.

Observe that Δ is computable from the data that we have gathered so far. From m∗ �= m

we conclude that 1 − m∗/m �= 0 mod q , and therefore Δ �= 0 mod q has an inverse
modulo q . Thus the discrete logarithm of X to base g equals (1 − m∗/m)/Δ mod q . �

In summary, with probability πopen(A) − 1/q − δ(n)—which is negligibly close to
the adversary’s success probability—we extract some message m′ through procedure
EXTRACT. The final step is to show that indeed m′ equals the adversary’s decommit-
ment m∗ except with negligible probability (or, more precisely, that m′ is at least an
appropriate substitution for m∗ insofar as it also satisfies R often enough). Denote by
πopen(E ) the probability that the extraction procedure EXTRACT returns m′ that is re-
lated to m under R.

Lemma 2. The probabilities πopen(A) − 1/q − δ(n) and πopen(E ) are negligibly
close.

Again, this lemma relies on the fact that the message space is independent of the
adversarial parameters.

Proof. Similarly to Lemma 1, if this were not the case we could compute the discrete
logarithm of X to g in group Gq . Namely, modify procedure EXTRACT into procedure
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AMBOPEN by letting g0 := g and h0 := X and running the extraction procedure as
before, only this time compute M,S, c, y, z for yourself, in particular, sample m ∈R
M, r ∈R Zq and set M := gm

0 hr
0, and choose g1 at random and set h1 := (g1M)w for a

random w ∈R Z
∗
q .

In the initial run of the extraction procedure, if the adversary has finished the com-
mitment phase successfully, hand the decommitment of M to the adversary and try to
elicit the opening m∗, r∗ of M∗. If the adversary refuses to decommit to M∗ correctly,
then stop; else continue the extraction. According to Lemma 1, the extraction yields a
representation m′, r ′ of M∗ with probability πopen(A) − 1/q − δ(n). We are interested
in the probability that m′ also satisfies the relation.

Suppose that πopen(A)− 1/q − δ(n) and πopen(E ) have noticeable difference. In par-
ticular, we conclude that m′ �= m∗ with noticeable probability in procedure AMBOPEN.
But this implies that sufficiently often we obtain distinct representations (m∗, r∗),
(m′, r ′) of M∗. We are thus able to compute the discrete logarithm of h0 = X to base
g0 = g with noticeable probability. Hence, under the discrete logarithm assumption, the
probability that the extraction procedure returns m′ that stands in relation to the sender’s
message is negligibly close to πopen(A) − 1/q − δ(n). �

Thwarting Full-Fledged Attacks

Our first observation is that the order of the messages in the PIM attack does not violate
any of the discussions above. This is quite easy to see since any message on the sender’s
side can be predetermined at the outset of the knowledge extraction procedure (in terms
of a function over the protocol communication so far).

So the final step is to remove the assumption about the message space. We have used
three times the fact that M can be determined before the adversarial parameters are
presented to the adversary. First, we have set h1 equal to g1M , i.e., generated h1 after
seeing the commitment of m ∈R M in the extraction procedure. Second, in the proof
of Lemma 1, we have sampled m ∈R M and then incorporated it into the generators.
Third, Lemma 2 also requires to choose M before the adversary generates ADVPAR. In
any case, this boils down to selecting the parameters CRS before sampling m because
ADVPAR is a random variable depending on CRS only. Note that we do not change our
protocol, but only the extraction and simulation procedures.

In the knowledge extraction procedure EXTRACT, recall that we copy the commit-
ment M,S, c, y, z of party C into the extraction procedure and then set h1 := (g1M)w

for random w. To remove the dependency of a preselected message space, we modify
M,S before using it in the proof of knowledge. That is, one first selects a group Gq and
Mfake ∈R Gq . Then we present Gq,g0, h0, g1, h1 to the adversary, where g0, h0, g1 are
random generators and h1 := (g1Mfake)

w . This also determines M = M(ADVPAR) and
we invoke C on Gq,g0, h0 and M to obtain M,S, c, y, z. Instead of using M,S in the ex-
traction procedure, we run the knowledge extractor with Mfake and Sfake := S(MM−1

fake)
c

as well as c, y, z. Clearly, these values satisfy the verification equation SfakeM
c
fake =

g
y

0 hz
0. Moreover, they are identically distributed to honestly generated ones, and hence

the extractor achieves the same success probability. It is instructive to think of Mfake

and Sfake as re-randomized versions of M,S.
The solution for the problem in Lemma 1 (procedure COUNTERFEIT) is similar to the

previous case. There, we have chosen a group Gq and g0 := g−1/mX, g1 := g, h0 :=
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Xv and h1 := Xw . By this, we have possessed the discrete logarithm of h1 = Xw to
base g1M = g1g

m
0 hr

0 = X(m+rv). Instead, we now select Gq , choose a dummy message
m0 ∈R Z

∗
q and set g0 := g−1/m0X, g1 := g, h0 := (g−1/m0X)v and h1 := Xw and M :=

g
m0
0 . The values Gq,g0, g1, h0, h1 fix M = M(ADVPAR) and enable us to choose now

the genuine message m ∈R M. Since we know v = logg0
h0 we can find an appropriate

r with m + vr = m0. Thus, g1M = g1g
m
0 hr

0 = Xm+rv and, again, log(g1M) h1 = (m +
rv)/w. Except for the case that m+rv = 0 in Lemma 1, which happens with probability
1/q , this way of selecting the CRS is identical to the generation there.

We discuss that the proof carries over to the modification for Lemma 1. In the proof
of Lemma 1, we finally find Δ with g1−m∗/m = XΔ and are able to compute the discrete
logarithm of X to g since m∗ �= m. Here, we obtain the equation g1−(m∗+vr∗)/(m+vr) =
XΔ. If we had m∗ + vr∗ = m + vr with noticeable probability, then from m∗ �= m it
would follow that the adversary finds a different representation m∗, r∗ of M = gm

0 hr
0 to

base g0, h0 with noticeable probability. Specifically, defining another procedure, given
Gq,g0 := g,h0 := X select random g1, h1 and then sample a message m ∈R M(CRS).
Compute the commitment M = gm

0 hr
0 for a random r as well as the values S,A for

the proof of knowledge. Run only the initial commitment and decommitment phase of
Lemma 1. If the adversary sends b∗ for the coin-flipping sub-protocol in this initial run,
then open the commitment for A with the previously selected values a,u and evaluate
y, z for the proof of knowledge for S, c = a ⊕ b∗. Finally, reveal m,r to the adversary
to obtain m∗, r∗.

Note that we do not need to know the discrete logarithm of h1 to g1M here, since
we do not loop, but merely run the initial phase. By assumption, m∗ + r∗ logg0

h0 =
m+ r logg0

h0 with noticeable probability. This, in turn, yields the discrete logarithm of
h0 = X to g0 = g. Hence, under the discrete logarithm assumption, this happens with
negligible probability only, and, by analogy with Lemma 1, we therefore derive that the
probability of A counterfeiting a coin does not exceed π − πopen(A) noticeably.

Finally, to adapt Lemma 2, we need to show that extracting m′ different than m∗ is
infeasible, even if we have to publish the CRS ahead of the choice of M. Remember that
in Lemma 2 we have used the adversary to find distinct representations (m∗, r∗), (m′, r ′)
of M∗ and to compute the discrete logarithm of h0 = X to g0 = g in Gq . Here, given
Gq,g,X we make the following selection for random r, v,w ∈ Zq :

g0 := g, g1 := gv
0h−r

0 , h0 := X, h1 := gw
0 .

These parameters pin down M = M(ADVPAR). We sample m ∈R M and let M := gm
0 hr

0
for the preselected value r ; the values of the proof of knowledge are computed honestly.
It is easy to see that all values have the correct distribution (unless g1 = 1 or h1 = 1, in
which case we simply abort). Furthermore, we know the discrete logarithm w/(v + m)

of h1 with respect to g1M .
This completes the analysis of the extraction procedure with respect to full-fledged

attacks.

Extraction Implies Non-malleability

A general construction of a non-malleability simulator A′ from an extraction procedure
has already appeared in [18] (for the plain model, but it is straightforward to adapt it to
the CRS model, as done below). We briefly review the construction of A′ for our case.
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The non-malleability simulator A′ prepares the CRS as required for the extraction
procedure, invokes the adversary A to obtain ADVPAR and sets ADVPAR′ := ADVPAR.
Then the honest sender S is given a secret message m ∈R M(ADVPAR′) and A′ receives
histm (which is forwarded to A for the black-box simulation).

For the extraction procedure, A′ also has to prepare a commitment M of m together
with a proof of knowledge S, c, y, z, but without actually knowing the secret message m

of the sender. We let A′ simply take an arbitrary message m0 ∈ M(ADVPAR′) and com-
pute M,S, c, y, z from this message m0 instead. Since the commitment M is perfectly
secret and S, c, y, z are distributed independently of m0, these values are equivalent to
genuine values. This holds even if m0 does not match the a priori information histm the
adversary has about the sender’s message.6

Finally, the simulator A′ outputs the message it extracts from the PIM adversary. The
results about the extraction procedure in the previous sections show that the success
probability of A′ is at most negligibly smaller than the probability of the PIM adversary.
This completes the proof.

The Multi-party Case

It is not hard to see that non-malleability in the multiple-sender scenario follows from
the single-sender case for our protocols. Nevertheless, if we grant the adversary the
possibility to commit in several executions then we are not aware if our proof tech-
nique still works. For a weaker security notion we use the proposal from [18] that the
adversary announces some subset of indices i1, . . . , ik in the commitment phase. The
adversary is then called successful if she finds valid openings for these commitments
and if m∗

i1
, . . . ,m∗

ik
stand in relation to m. That is, we can view R as a restricted re-

lation R(ADVPAR,histm,m,m∗
i1
, . . . ,m∗

ik
). It follows straightforwardly that, if we let

the adversary in our case announce the subset after having sent all the commitments
M∗

1 , . . . ,M∗
poly, then our scheme becomes liberal non-malleable with respect to open-

ing in the multi-sender/multi-receiver setting.
Similarly, we can achieve non-malleability if we adopt the viewpoint of [14]. Sup-

pose R(ADVPAR,histm,m1, . . . ,mpoly,m
∗
1, . . . ,m

∗
poly∗) is 0 whenever some m∗

i = ⊥,
and presume further that the adversary first has to commit to each value by sending all
M∗

1 , . . . ,M∗
poly∗ before seeing any of the receiver’s challenges. Then our scheme is also

non-malleable with respect to opening in the multi-sender/multi-receiver setting.

5. Non-malleable Commitments Based on RSA

In this section, we present the protocols based on RSA. The basic ideas remain: Add a
proof of knowledge to a commitment of the message, where the challenge is determined
by a coin-flip sub protocol which involves the commitment of the message. Some slight
adjustments have to been done, though.

6 In fact, a slightly more sophisticated argument shows that it would even be imperceptible for the adver-
sary if the commitment scheme was only computationally-secret [18].
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5.1. RSA-Based Scheme

Let N be an RSA modulus, i.e., the product of two large primes. An RSA exponent
for N is an integer e which is co-prime to the Euler totient function ϕ(N) and satisfies
e �= 1 mod ϕ(N). The RSA assumption says that computing g1/e mod N for a random
g ∈R Z

∗
N is intractable.

The RSA-based non-malleable commitment scheme is built on the function (m, r) �→
gmre mod N for m ∈ Ze, r ∈ Z

∗
N and e prime [41]. A commitment of m ∈ Ze is given by

M := gmre mod N for a random r ∈R Z
∗
N . This commitment scheme is perfectly secret

(as taking eth powers is a permutation on Z
∗
N ) and computationally-binding, and it

supports an efficient three-round witness-independent proof of knowledge similar to the
discrete-log case. Furthermore, it also gives rise to a trapdoor property. If (and only if)
one knows the trapdoor g1/e mod N , then one can open the commitment with arbitrary
messages. Finally, we notice that one can efficiently compute an eth root of h from
k,h,Δ,N, e satisfying the equation hk = Δe mod N for k �= 0 mod e.

For our protocol we also require a family of universal one-way hash functions [40].
This is a sequence H = (Hn)n∈N of function sets Hn := {

Hk,n

∣
∣ k

}

, where each Hk,n

maps elements from the common domain Dn to a common range Rn. Additionally, the
family is target-resistant, i.e., for any probabilistic polynomial-time algorithm A the
probability that A(1n) generates some x ∈ Dn and, after some function Hk,n has been
chosen uniformly from Hn and has been presented to A, then A returns x′ �= x with
Hk,n(x) = Hk,n(x

′), is negligible. In particular, every collision-intractable hash function
is also universal one-way. In the following, we usually refer to an instance Hk,n simply
as H .

We describe our non-malleable commitment in Fig. 7. The CRS consists of a random
RSA instance N,e and four random elements g,G,h0, h1 ∈R Z

∗
N together with a uni-

versal one-way hash function H : Z
∗
N → Ze. To commit to m ∈ Ze, choose r ∈R Z

∗
N

and set M := gmre . Furthermore, compute x := H(GmRe) for random R ∈R Z
∗
N and

select a ∈R Ze, r, u ∈R Z
∗
N to calculate A := (hx

0h1)
aue for the coin-flipping protocol.

We remark that, in contrast to the discrete-log case where A = (g1M)ahu
1 , here a com-

mitment of the message enters A vicariously by means of hx
0 for the hash value x of yet

another commitment GmRe of the message. In addition to the computations above, ex-
ecute the proof of knowledge protocol given in [41] for M . Clearly, the derived scheme
is computationally-binding and perfectly-secret.

In comparison to the discrete-log case, we have to perform some extra work. Namely,
we give two commitments of m and we use a universal one-way hash function H . The
reason for this basically stems from the lack of symmetry: In the discrete-log case we
use two generators and two exponents, whereas here the party selects one exponent and
a single value raised to the eth power. Indeed, the second commitment GmRe is only
necessary if the message space depends on the adversarial parameters. Otherwise one
could hash M to x and still achieve non-malleability with respect to such an “indepen-
dent” message space.

5.2. Proof of Non-malleability

It remains to prove non-malleability. The proof is very similar to the one of the discrete-
log case, so we only sketch the necessary adaptations of the main steps. We again begin
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Sender S N,e,g,G,h0, h1 Receiver R
H : Z

∗
N → Ze

message m ∈ Ze

(a) commitment phase:

select R ∈R Z
∗
N

let x := H(GmRe)

choose a, s ∈R Ze

choose r, t, u ∈R Z
∗
N

set M := gmre

set A := (hx
0h1)

aue

set S := gste
x,M,A,S−−−−−−−−−−−−−−→ choose b ∈R Ze

b←−−−−−−−−−−−−−−
set c := a + b mod e

set y := s + cm mod e

set z := trcg(s+cm)/e� mod N
a,u, y, z−−−−−−−−−−−−−−→ set c := a + b mod e

check A
!= (hx

0h1)
aue

check SMc != gyze

(b) decommitment phase:
m,r,R−−−−−−−−−−−−−−→ check M

!= gmre

check x
!= H(GmRe)

Fig. 7. RSA-based non-malleable commitment scheme.

with the extraction procedure with respect to restricted attacks where the message space
is independent of the adversarial parameters and then lift it to full-fledged attacks. Once
more, the order of the messages in the executions between the sender and the adversary,
and the adversary and the receiver is irrelevant to the discussion. Also, the construc-
tion of the non-malleability simulator from the extraction procedure is identical to the
discrete-log case and we do not address this part of the proof here.

Restricted Attacks

We first describe the extraction procedure in the RSA case. Given N,e,g and a commit-
ment M = gmre for an unknown messages m ∈ M together with a proof of knowledge,
select v ∈R Z

∗
N and set G := ve mod N . Also, let x := H(Re) for random R ∈ Z

∗
N and

define h0 ∈R Z
∗
N as well as h1 := h−x

0 we for w ∈R Z
∗
N . With these choices the eth root

of hx
0h1 equals w, hence the coin-flip commitment A := (hx

0h1)
aue is openable with

any value a, and the extraction process is therefore identical to the discrete-log case.
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The extraction works as long as the adversary does not find ambiguous decommit-
ments for the commitment A∗. In the discrete-log case, in Lemma 1, it is shown that this
probability is negligibly close to π −πopen(A) under the discrete-log assumption. Basi-
cally, the technique there was to choose appropriate parameters to be able to mimic the
extraction procedure and to use the ambiguous opening to A∗ to compute the discrete
logarithm of X with respect to g in group Gq .

Here, in an intermediate step, we first show that we can essentially restrict ourselves
to the case that the adversary sends a different hash value x∗ �= x. If the adversary
were able to find a related opening with noticeable probability for x∗ = x, this would
contradict either the one-wayness of H or the RSA assumption. Namely, given N,e

and a random X ∈ Z
∗
N let G := X and compute the other public parameters correctly,

and sample m ∈R M and compute M := gmre and GmRe. Then, given the universal
one-way hash function H(·), compute x := H(GmRe) and run the adversary on these
parameters. If the adversary chooses x∗ = x and later reveals a correct decommitment
m∗, r∗,R∗ after learning m,r,R, we either have GmRe = Gm∗

(R∗)e from which we
can compute the eth root of G = X, or we have GmRe �= Gm∗

(R∗)e yielding a colli-
sion H(GmRe) = x = x∗ = H(Gm∗

(R∗)e) for H(·). Hence, the adversary succeeds for
x = x∗ only with negligible probability. Observe that this argument even holds if the
message space depends on the adversarial parameters.

From now on, we condition on the event that the adversary always selects x∗ �= x.
Transferring Lemma 1 means that we are given N,e,X and try to compute the eth root
of the random value X ∈ Z

∗
N . For this, we copy N,e, sample m ∈R M, compute M :=

gmre and x := H(GmRe) for r, g,G,R ∈R Z
∗
N and, again, set h1 := h−x

0 we for random
w ∈R Z

∗
N and h0 := X. Analogously to Lemma 1, we run the extraction procedure (with

the opening step in the initial execution to obtain m∗, r∗,R∗). Under this assumption,
and following the approach in Lemma 1, from an ambiguous decommitment for a∗ for
the values chosen above, we finally derive the equation

h
(x∗−x)(a∗

i −a∗
j )

0 = Δe mod N

for known Δ,x∗ �= x, a∗
i �= a∗

j . Since (x∗ − x), (a∗
i − a∗

j ) �= 0 mod e we can compute
an eth root of h0 = X. Hence, under the RSA assumption the extraction procedure
succeeds with probability πopen(A) − 1/e − δ(n), where δ(n) is negligible.

The final step in the proof of the discrete-log case is Lemma 2, where we show that
the extracted messages m′ is (at least) a suitable replacement for m∗. In that lemma,
we prove that if this were not true, then we could compute discrete logarithms. The
analogous proof here is the same as in the adaption of Lemma 1: Given N,e,X, choose
m ∈R M, set g := X and compute M := gmre as well as x := H(GmRe) for random
G,R ∈R Z

∗
N . Moreover, let h0 ∈R Z

∗
N and h1 := h−x

0 we. Run the extraction procedure
(with an initial decommitment step to get m∗, r∗,R∗) to obtain m′, r ′,R′ with M∗ =
gm∗

(r∗)e = gm′
(r ′)e; since m∗ �= m′ this yields the eth root of g = X.

Full-Fledged Attacks

Here, the message space is not independent of the adversarial data anymore. Similar to
the discrete-log case we have to ensure that we are able to produce an appropriate CRS
before we get to know the message space.
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For the extraction procedure we choose the same re-randomizing technique as in the
discrete-log case. To adapt the modification of Lemma 1, we select G := ve mod N

for a random v ∈R Z
∗
N and precompute x := H(Re

0) for R0 ∈R Z
∗
N ; since we know the

eth root of G, it is easy to find an appropriate value R matching x for the afterwards
chosen message m ∈R M(ADVPAR). Choose the parameters g,h0 ∈R Z

∗
N honestly, and

set h1 := h−x
0 we mod N for random w ∈R Z

∗
N . Conditioning again on the adversary

sending x∗ �= x, the proof goes through in this case as well.
Finally, we have to prove that the extracted message equals the adversary’s one (or,

more precisely, satisfies the relation). Similarly as in the previous step, we select G as
G := ve mod N such that we are able to preselect the value x. The rest of the proof is
as before, i.e., we finally derive different openings of M yielding the eth root of g.

Theorem 3. If the RSA assumption holds and if H is a family of universal one-way
hash functions, then the protocol in Fig. 7 is a perfectly-secret commitment scheme
which is liberal non-malleable with respect to opening.

Although without practical significance, one can, in principle, construct collision-
intractable hash functions and thus universal one-way hash functions under the RSA
assumption. We may therefore reduce the prerequisite of the theorem to the RSA as-
sumption only.

6. Factoring-Based Non-malleable Commitments

The DLog-based scheme and the RSA-based one use Okamoto’s witness-independent
proof of knowledge for the corresponding representation problem [41]. Although there
are similar protocols for the factoring representation problem, such protocols are usually
not known to be proofs of knowledge, i.e., a simulator for extracting the message is
missing. However, our protocols heavily rely on this extraction property.

6.1. Preliminaries

We overcome the problem of not having a proof of knowledge by observing that, since
we are actually interested in non-malleability with respect to opening, the proof of
knowledge need not be verifiable immediately in the commitment phase. It suffices that
the sender convinces the receiver of the proof’s validity in the decommitment stage. To
refute non-malleability, the adversary must open her commitment correctly, and partic-
ularly, the proof must be shown to be right then. Therefore, the simulator can already
in the commitment phase assume that the proof is indeed valid. We call such a proof
of knowledge a posteriori verifiable. In fact, with this technique we are able to derive
a non-malleable commitment scheme similar to the RSA-based one, but relying on the
intractability of factoring large numbers.

Factoring Representation

We briefly recall the factoring representation. For a thorough treatment of this problem
see [25]. Given an n-bit RSA modulus N = pq let τ denote an integer such that 2τ+1
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neither divides p−1 nor q −1, e.g., let τ be the smallest integer with this property. Now,
squaring permutes the set of 2τ+1th powers modulo N . Let HQRN denote this subgroup
of higher quadratic residues which is efficiently samplable by raising a random element
from Z

∗
N to its 2nth power.

Our factoring-based non-malleable commitment scheme utilizes the analogue to the
RSA function (m, r) �→ gmre mod N , namely, the mapping (m, r) �→ gmr2τ+t

mod N

for m ∈ Z2t for parameter t ≥ 1 and random g ∈R HQRN . Then the ability to find
(m, r), (m′, r ′) with distinct m,m′ ∈ Z2t such that gmr2τ+t = gm′

(r ′)2τ+t
mod N en-

ables to efficiently compute a 2τ+1th root of g, which is as hard as factoring N . On the
other hand, given a 2τ+t th root of g, one may open a given commitment with appropri-
ate values later (trapdoor property). Hence, for appropriate choices of the parameters we
benefit from the same properties as for RSA. Unfortunately, unlike in the DLog or RSA
case, no efficient proof of knowledge is known for this type of representation problem.
As explained above, we therefore switch to a posteriori verifiable proofs.

Outline of CRT Extraction Procedure

Using the Chinese Remainder Theorem, we present a fast a posteriori verifiable proof
of knowledge and thus a non-malleable commitment scheme based on the factoring
representation problem.

We first explain the underlying idea of our construction by a simpler, yet insecure
version of our proof of knowledge. Recall that, given a sequence of values ypi

= m mod
pi for distinct primes p1, . . . , pk such that

∏

i pi ≥ m, one can efficiently reconstruct
the original number m (over the integers) by applying the Chinese Remainder Theorem.
To derive an a posteriori verifiable proof of knowledge from this, we basically let the
sender of the commitment to m also supply y = m mod p for a small random prime p

(determined again by a coin-flipping protocol). The receiver is then able to verify this
value y later with help of the known prime p, after having received the original message
m in the decommitment phase. The value y essentially serves as a proof of knowledge
as we can derive m by rewinding the protocol and finishing it with different primes until
the original message is recoverable according to the Chinese Remainder Theorem.

The basic construction suffers from two fundamental problems. First, y = m mod p

leaks some information about the message m, even if p is small. Second, we have
to ensure that the extraction works even if some malicious prover sometimes supplies
incorrect values y. In particular, the extractor should be able to detect if the recovered
message is correct or not. Next, we describe how to solve these problems, yielding our
a posteriori verifiable proof of knowledge.

To ensure secrecy of the message, we first demand that the actual message length
is only t − 2d instead of t , where d is an appropriate parameter. The slightly shorter
message is then padded with random bits s ∈R Z22d and the sender S now commits
to the message mpad := s + 22dm ∈ Z2t instead of m (using randomness r to compute
the commitment). Then both parties agree on a d-bit prime number p as the challenge
and S reveals the residue yp := mpad + 2t r mod p, i.e., the sender also includes the
randomness r of the commitment into the computation of the residue (this is to ensure
verifiability for the extractor, as we will see below). Because of the 2d random bits s

in the padded message, the distribution of yp is almost independent of the message.



562 M. Fischlin and R. Fischlin

Specifically, for superlogarithmic d the distribution of yp is statistically close to the
uniform distribution on Zp , and therefore yp does not leak any essential information
about m.

To extract the message we repeat the challenge/response step several times with dif-
ferent challenges i.e., independent prime numbers. As explained above, we could easily
retrieve the value (mpad, r) and thus the message m by applying the Chinese Remainder
Theorem if all replies were correct. But this assumption is too optimistic. The situation
is even worse due to the a posteriori verifiability. For common proofs of knowledge,
the extractor identifies the successful responses by simply checking the verifier’s con-
trol equation. But our new approach lacks such a possibility as the proof would only be
verifiable afterwards in the decommitment phase.

Luckily, since the adversary for non-malleability with respect to opening must also
open her commitment successfully—which includes a successful check of the previ-
ously sent yp—repeating the challenge/response step still guarantees that a small set
of correct residues can be found among such repetitions. And although we may not be
able to distinguish good from bad values immediately, such a list of residues allows
identifying the right pair (mpad, r), in principle, by checking which of the possible CRT
solutions matches the given commitment for mpad under randomness r .7

But how fast can we reconstruct the “right” pair (mpad, r) from a list including pre-
sumably invalid residues? This problem has already been solved in the context of codes,
namely, transmitting the residues of a message modulo different primes can be viewed
a linear error-correcting code. The so-called list decoding algorithms generate a list
of all possible messages which match the received codeword up to a given number of
errors. In our context, we ask for the message/randomness pair which fulfills the code-
word (yp1 , yp2, . . . , ypk

) for at least K out of k primes (where we choose the number of
repetitions k in dependence of the adversary’s success probability). We then apply the
following result [5, Corollary 2.1]:

Lemma 3 (Boneh 2000). Given primes p1 < p2 < · · · < pk , integers yp1, yp2 ,

. . . , ypk
∈ Z and a threshold B , a list of all positive integers m < B with m =

ypi
mod pi for at least K of the k congruences can be computed in polynomial-time

if K
k

≥ log2 pk

log2 p1
·
√

log2 4B

log2 P
where P := ∏k

i=1 pi .

See also [29] for a slightly better bound on K/k. Yet, in our setting the algorithm of
[29] only improves the value logpk/ logp1 ≤ 2 to an arbitrarily small constant (whose
inverse affects the running time of the reconstruction algorithm).

ε-Non-malleability

Extracting via the CRT list decoding algorithm requires collecting a sufficiently large
number k of congruences, among which there must be K good ones. To guarantee that
the extractor works in polynomial-time, we use the ε-variant of non-malleability. That
is, the simulator using the extractor is given a parameter ε = ε(n) and has to compute
a related message with the same probability as the adversary, up to an error ε (plus a
negligible function). The running time of the simulator may now also depend on ε−1(n).

7 Here we exploit the fact that the proof of knowledge comprises the message and the randomness.
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For our approach we further require that ε is not too small. Specifically, we assume
that any algorithm running in time poly(n) ·ε−2(n) for some polynomial poly(n) factors
a random modulus with negligible probability only. For instance, take the subexponen-
tial running time L[n] = eO(n1/3(logn)2/3) of the currently best factorization algorithm
for moduli of bit size n (see [34] for a discussion about the estimated security of such
moduli), and let ε−1(n) be bounded by, say, the time L[n/8] to factor moduli of length
n/8. Similar assumptions about the subexponential hardness of cryptographic problems
have been used in other settings, e.g., [10,35,38].

6.2. Factoring-Based Scheme

The factoring-based non-malleable commitment scheme is given in Fig. 8. The public
parameters consist of a random instance N,τ, t, g of the factoring representation prob-
lem and three random elements G,h0, h1 ∈R HQRN together with a universal one-way
hash function H : Z

∗
N → Z2t . We assume that N ≤ 2n such that values from Z

∗
N can be

described with n bits.
To commit to m ∈ Z2t−2d , choose s ∈R Z22d , r ∈R Z

∗
N and set mpad := s+22dm, M :=

gmpadr2τ+t
. Furthermore, compute x := H(GmR2τ+t

) for random R ∈R Z
∗
N and select

a ∈R Z2t , r, u ∈R Z
∗
N to calculate A := (hx

0h1)
au2τ+2t

for the coin-flipping protocol.
Note, that for technical reasons the exponent for the commitment A is 2τ+2t rather than
2τ+t .

To derive the challenge prime p, both parties run the coin-flipping protocol agreeing
on a random c ∈ Z2t . Then they map c to a d-bit prime p := PrimeGend(c) via function
PrimeGend . The sender finally answers with the residue of yp = mpad + 2t r mod p.

The function PrimeGend is assumed to be collision-intractable in the sense that two
distinct random values c, c′ ∈ Z2t are hardly ever sent to the same prime. The function
may also fail to generate a truly prime number with some very small probability. We
specify the exact requirement below. The function PrimeGend can be built, for instance,
based on ideas developed by Maurer [37] or Cramer and Shoup [12]. Indeed, generating
a random prime slows down the protocol significantly, and we therefore later explore
alternatives based on relatively prime polynomials.

As for the technical parameters, let t > 2d ≥ 8 and suppose d and t+n
d−1 are super-

logarithmic but polynomial in n. Assume further that any algorithm running in time
poly(n) · ε−2(n) for some polynomial poly(n) factors a random modulus with negligi-
ble probability only. Also, let the probability of PrimeGend generating a collision or
producing a composite number in poly(n) · ε−2 independent executions be negligible.
We call such parameters t, d, n and ε admissible.

6.3. Security Proof

Again, first we show that the factoring-based non-malleable commitment scheme in
Fig. 8 is non-malleable for restricted attacks. Namely, A does not “mix” the order of
messages and the messages space M is independent of the adversarial parameters. The
step from such restricted attacks to full-fledged attacks follows straightforwardly from
the RSA setting and is omitted.

As in the RSA case for restricted attacks, we first prove that we can condition on
the adversary sending a different hash value x∗ �= x. Suppose towards contradiction
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Sender S N,τ, t, g,G,h0, h1 Receiver R
H : Z

∗
N → Z2t

message m ∈ Z2t−2d

(a) commitment phase

choose R ∈R Z
∗
N

x := H(GmR2τ+t
)

choose s ∈R Z22d , a ∈R Z2t

choose u, r ∈R Z
∗
N

mpad := s + 22dm

M := gmpadr2τ+t
mod N

A := (hx
0h1)

au2τ+2t
(N)

x,M,A−−−−−−−−−−−−−−→ choose b ∈R Z2t

b←−−−−−−−−−−−−−−
c := a + b mod 2t

p := PrimeGend(c)

yp := mpad + 2t r mod p
a,u, yp−−−−−−−−−−−−−−→ A

!= (hx
0h1)

au2τ+2t
(N)

c := a + b mod 2t

p := PrimeGend(c)

(b) decommitment phase
m,s, r,R−−−−−−−−−−−−−−→ mpad := s + 22dm

M
!= gmpadr2τ+t

(N)

x
!= H(GmR2τ+t

)

yp
!= mpad + 2t r (p)

Fig. 8. Factoring based non-malleable commitment scheme.

that the adversary is able to find a related opening with noticeable probability for such
x∗ = x. Then we claim that this contradicts either the one-wayness of H or the fac-
toring assumption. To see this, assume we are given N and a random X ∈ Z

∗
N . Let

G := X and compute the other public parameters correctly. Sample m ∈R M and set
M := gmpadr2τ+t

and GmR2τ+t
. Then, after receiving the universal one-way hash func-

tion H(·), compute x := H(GmR2τ+t
) and run the adversary on these data. Suppose

the adversary selects x∗ = x and, after seeing the opening m,r,R, later decommits cor-
rectly to m∗, r∗,R∗. Then, if GmR2τ+t = Gm∗

(R∗)2τ+t
we derive the 2τ+1th root of

G = X, and if GmR2τ+t �= Gm∗
(R∗)2τ+t

we get a collision H(GmR2τ+t
) = x = x∗ =

H(Gm∗
(R∗)2τ+t

) for the function H(·). It follows that the adversary succeeds for x = x∗
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with negligible probability only. We finally remark that the argument remains valid if
the message space depends on the adversarial parameters.

In the following, we can now assume that the adversary always selects x∗ �= x. Next
we address the CRT extractor. Given N,τ, t, g and a commitment M := gmpadr2τ+t

for
an unknown messages m ∈ M, select v ∈R Z

∗
N and set G := v2τ+t

mod N . Also, let

x := H(R2τ+t
) for random R ∈ Z

∗
N and define h0 ∈R Z

∗
N as well as h1 := h−x

0 w2τ+2t

for w ∈R Z
∗
N . With these choices the 2τ+2t th root of hx

0h1 equals w, hence the coin-

flipping commitment A := (hx
0h1)

au2τ+2t
is openable with any value ai :

A = (

hx
0h1

)a
u2τ+2t = (

hx
0h1

)ai
(

wai−au
)2τ+2t

.

Therefore, we are in the analogous situation to the RSA case, being able to open A

ambiguously.
The extractor next starts to emulate the PIM attack by pretending to be S and R using

the given values and the constructed CRS. It suspends the simulation right before the
receiver sends b. Next, the extractor repeats the challenge/response step

k := 32(t + n + 2)ε−2

d − 1

times. It finally runs Boneh’s algorithm on the data, trying to obtain a decommitment
m′

pad, r
′ of the adversary’s commitment M∗. If the algorithm returns such a pair the

extractor outputs the unpadded message m′. If it returns more than one pair then we
take the first one which is a valid decommitment to M∗.

For the analysis of the extractor’s success probability, we first prove an analo-
gous statement to Lemma 1 about the adversary being essentially unable to open her
“coin” commitment ambiguously during the extraction procedure (i.e., counterfeits a
coin). Here, this should hold under the factoring assumption in the sense that, given
N,τ, t, g,X, we should not be able to efficiently compute the 2τ+1th root of the ran-
dom value X ∈ Z

∗
N . To show that we can use an allegedly successful adversary to refute

this, copy N,τ, t , sample m ∈R M, compute M := gmpadr2τ+t
and x := H(GmR2τ+t

)

for G ∈R HQRN and r,R ∈R Z
∗
N . Also, set h1 := h−x

0 w2τ+2t
for random w ∈R Z

∗
N and

h0 := X.
As in the proof for Lemma 1, we run our extraction procedure here, including an

opening step in the initial execution to obtain m∗, r∗,R∗. From an ambiguous decom-
mitment a∗

i , a∗
j of the adversary to A∗ for the values chosen above, we finally derive the

equation

h
(x∗−x)(a∗

i −a∗
j )

0 = Δ2τ+2t

mod N

for known Δ,x∗ �= x, a∗
i �= a∗

j . Since 0 < |x∗ − x|, |a∗
i − a∗

j | < 2t one has 0 <

|x∗ − x| · |a∗
i − a∗

j | < 22t . Hence, we can compute an 2τ+1th root of h0 = X. The

running time of this algorithm is clearly bounded by poly(n) · ε−2, and we would thus
be able to factor the modulus N in this time with noticeable probability. Altogether,
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since the parameters are admissible, under the factoring assumption the probability that
the adversary ambiguously decommitments to A∗ during the k repetitions is negligible.

Next, note that the probability of generating collisions among the primes or to derive
a composite number by running PrimeGend during the k repetitions is negligible by as-
sumption. Hence, from now on we condition on the adversary opening her commitment
A∗ unambiguously and having k distinct primes output by PrimeGend . By this, we only
lose a negligible probability in total.

Now fix the random bits ω of the adversary. The tuple describing the execution up to
the rewind point,

ExSoFar = (N, τ, t, g,G,h0, h1,w,ω,x,M,A),

is called good, if the PIM adversary completes this commitment phase after receiving b

and later reveals a valid decommitment (event Succ) with probability at least 1
2ε(n). In

other words, the adversary’s choice y∗
p corresponds to some related message which the

adversary would later open. Since all other parameters are fixed, the probability space
now merely consists of the choice of b.

We claim that the probability of ExSoFar being good is at least 1
2ε(n). This can been

seen as follows. We can assume without loss of generality that πopen(A) is larger than
ε(n) for the specific parameter n; else, even if the simulator completely fails to produce
a related output, the simulator’s success probability would be ε(n)-close. But if we had
Prob

[

ExSoFar good
]

< 1
2ε(n) then

πopen(A) ≤ Prob
[

Succ |ExSoFar not good
] + Prob

[

ExSoFar good
]

<
1

2
ε(n) + 1

2
ε(n) = ε(n).

This would contradict πopen(A) > ε(n), of course.
Given the prefix ExSoFar is good, A reveals a residue which matches a successful

opening with probability of at least 1
2ε. For the number K of correct residues y∗

p among
the k repetitions, it therefore holds

K ≥ 8(t + n + 2)ε−1

d − 1
,

except with probability e−2 (t+n+2)ε−2
d−1 by the Chernoff bound. Since the parameters are

admissible, this probability is negligible.
Note that the correctness of a residue y∗

p merely assures that this value matches some
valid decommitment of the adversary. In principle, all K correct residues could corre-
spond to different adversarial decommitments. However, using an approach similar to
the one above showing that the adversary essentially cannot open the commitment for
A∗ ambiguously under the factoring assumption, we can also prove that the adversary
cannot open her commitment M∗ ambiguously, except with negligible probability. For
this execute the same protocol as above, but this time we also open the sender’s commit-
ment to see the adversarial decommitment to M∗ in each repetition; if we find distinct
valid decommitments we can compute a 2τ+1th root of g and therefore factor the mod-
ulus. Hence, except with negligible probability, all K good residues correspond to a
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single decommitment, and there must be at least one entry in the list output by Boneh’s
algorithm which is also a valid decommitment to M∗.

We have log2 4B ≤ t + n + 2 for the (t + n)-bit number (m∗
pad, r

∗), log2 P ≥
k(d − 1) = 32(t + n + 2)ε−2 for the product of k distinct d-bit primes and log2 pk

log2 p1
≤

d
d−1 ≤ √

2 for d ≥ 4. Hence, the prerequisites to apply Boneh’s algorithm (Lemma 3)
are satisfied:

K

k
≥ ε

4
=

√

2

32ε−2
≥

√

2 · (t + n + 2)

32(t + n + 2)ε−2
≥ log2 pk

log2 p1
·
√

log2 4B

log2 P
.

Overall, the extractor thus retrieves a decommitment m′ except with probability negli-
gibly close to 1

2ε. Taking an analogous approach as in the RSA case, one easily proves
that the extracted message m′ is also a suitable replacement for m∗. This too implies
that, if Boneh’s algorithm returns more than a single valid decommitment m′

pad, r
′ to

M∗, then simply taking the first one is an admissible strategy.

Theorem 4. Let t, n, d, ε be admissible parameters. If the factoring assumption holds
and if H is a family of universal one-way hash functions, then the protocol in Figure 8
is a statistically-secret commitment scheme which is ε-non-malleable with respect to
opening.

Hash-and-Commit Paradigm

The a posteriori proof of knowledge may also be applied to the DLog and RSA based
scheme. It allows to hash longer messages before committing. In this case, the sender
S pads the 
-bit long message m by 2d random bits s. Then, S hashes mpad,h :=
h(mpad) := h(s + 22dm) using some collision-resistant function h : Z2
+2d → Z2t and
commits to M := gmpad,h r2τ+t

. The response corresponds to the actual message mpad

rather than its hash value yp := mpad + 22d+
r mod p. One can easily identify a right
message by applying the hash function and seeing if the result matches the given com-
mitment M .

6.4. Construction Based on Polynomials

A disadvantage of our a posteriori proof of knowledge is the generation of prime num-
bers. A faster approach can be based on polynomials over a finite fields. For this let
q be a prime of bit size

√
d . For simplicity, assume D := √

d is an integer. Use
ψq(z) := ∑

i≥0 ziχ
i ∈ Zq [χ] to embed a non-negative integer z = ∑

i≥0 ziq
i to the

polynomial ring Zq [χ] over the field Zq .
For the proof of knowledge, both parties as before agree on a uniformly distributed

c ∈ ZqD via the coin-flipping protocol. Then they use the polynomial

p(χ) := PolyGenq,D(c) := χD + ψq(c)

as the challenge for the proof of knowledge. The sender replies with

yp(χ) := ψq(mpad + 2t r) mod p(χ),

where mpad = s + qDm and s ∈R ZqD .
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First, observe that PolyGenq,D(c) is an injective mapping. Then, we remark that the
Chinese Remainder Theorem holds for polynomial rings over fields, too (see Knuth [33,
Sect. 4.6.2, Example 3]): Given yp(χ) for pairwise co-prime polynomials p(χ), one can
efficiently construct ψq(mpad + 2t r). Note that ψq(s) (which is part of ψq(mpad + 2t r))
is uniformly distributed in Zq [χ]/(p). Therefore, it serves as a real one-time pad, and
as a result the commitment scheme achieves even perfect secrecy.

The main advantage of using polynomials is that random elements are more likely to
be relatively prime than random integers: Two randomly chosen monic polynomials of
the same degree over Zq are relatively prime with overwhelming probability 1 − 1

q
(see

[33, 4.6.5, Example 5]). Hence, even generating a large number of random polynomials
is unlikely to result in polynomials with a non-trivial gcd.

On the downside, to best of our knowledge, CRT list-decoding algorithms do not
work for polynomials in place of integers. Ideas how one could derive such a procedure
for polynomials are described in a more general framework by Sudan [45]. Here we
restrict the number of correct solutions to be collected to a constant such that searching
all possible subsets of congruences can be done in polynomial-time.

We call parameters t, n,D, ε admissible if the all of the following properties hold.
Suppose that t ≥ 2d , that t+n

D
is constant and that t+n

D
ε−1 is superlogarithmic. As-

sume further that any algorithm running in time poly(n) · ε−1(n) for some polynomial
poly(n) factors a random modulus with negligible probability only. Moreover, let the
probability of PolyGenq,D generating two polynomials which are not relatively prime in
poly(n) · ε−1 independent executions be negligible. Then, we have

Theorem 5. Let t, n,D, ε be admissible. If the factoring assumption holds and if H

is a family of universal one-way hash functions, then the version of the protocol in
Fig. 8 based on polynomials is a perfectly-secret commitment scheme which is ε-non-
malleable with respect to opening.

The proof is almost identical to the prime generation case. Only this time we let
the extractor make k := 4 t+n

D
ε−1(n) repetitions to get K ≥ t+n

D
correct solutions, ex-

cept with negligible probability exp(−2 t+n
D

ε−1(n)). Then, we run Knuth’s polynomial-
based CRT algorithm for each subset of t+n

D
values among the k answers; we check

each possible solution against the given commitment. This gives us the right pair in
polynomial time.
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Appendix A. Non-malleable Commitments via Random Oracles

The random oracle methodology [3,21] exploits the very strong assumption that a hash
function behaves like a truly random function. In this model, where all parties have
oracle access to such a random function H , we devise non-interactive non-malleable
commitments in the plain model. However, we remark that the random oracle heuristic
provides only some evidence that the scheme is indeed secure if one uses appropriate
instantiations for H . It might well be that there is no secure implementation in practice
at all [9].

The definition of non-malleability transfers to the random oracle model if we augment
each party S, R, A and A′ as well as M and R with the same oracle H representing a
random function with infinite domain and fixed output length. The probability that A
and A′, respectively, succeed is then taken over the random choice of H , too.

Let Comsecret be the non-interactive statistically-secret commitment scheme de-
scribed in [7,30,40]. The protocol goes like this: First, the sender hashes the message
m to a short string mh with some collision-intractable hash function. Then the sender
picks a pairwise independent function h and a value x such that h(x) = mh. It computes
the hash value y of x under the collision-intractable hash function and sends (y,h) to
R. To decommit the sender reveals m and x.

Since the protocol Comsecret merely requires a collision-intractable hash function and
random oracles have this property by construction, we may use H as the collision-
intractable hash function in the scheme. Then ComH

secret is indeed non-interactive and
still provides statistical secrecy as well as computational unambiguity. We claim that
this scheme is even non-malleable with respect to opening in the random oracle model.

Basically, the protocol is non-malleable because any adversary A sending a commit-
ment (y∗, h∗) and later a correct decommitment (m∗, x∗), each time after having seen
the sender’s values (y,h) and (m,x), must have obtained the answers m∗

h = H(m∗) and
y∗ = H(x∗) from the oracle queries to H . Otherwise, the probability that A finds a good
decommitment is negligible because predicting H on a new value is infeasible. But then
A already “knows” a related message m∗ to m in the commitment phase, contradicting
the secrecy.

It is now easy to formalize the intuition and define the simulator. A′ first sends a
dummy commitment (y,h) on behalf of the sender to A, say, by committing to the
all-zero string. Then it records all queries of A to oracle H and the answers—this is
possible as A′ simulates A and sees all queries of A before forwarding it to H . Since
all hash values of H are distinct with overwhelming probability, we may assume that
every image has a unique pre-image in the list of recorded pairs. If finally A sends some
commitment (y∗, h∗) then the simulator looks up y∗ in the list and obtains the corre-
sponding query x∗ yielding y∗. This gives the unique m∗

h = h∗(x∗) and another search
reveals the pre-image m∗ of m∗

h under H . Let A’ output m′ := m∗. Clearly, the proba-
bility that A′ returns a related message is negligibly close to A’s success probability.
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