
J. Cryptol. (2009) 22: 470–504
DOI: 10.1007/s00145-009-9041-6

The Twin Diffie–Hellman Problem and Applications∗

David Cash†

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

cdc@gatech.edu

Eike Kiltz‡

Cryptology & Information Security Group, CWI, Amsterdam, The Netherlands

kiltz@cwi.nl

Victor Shoup§

Dept. of Computer Science, New York University, Courant Institute, 251 Mercer Street, New York,
NY 10012, USA

shoup@cs.nyu.edu

Communicated by Nigel P. Smart

Received 11 June 2008 and revised 10 March 2009
Online publication 11 April 2009

Abstract. We propose a new computational problem called the twin Diffie–Hellman
problem. This problem is closely related to the usual (computational) Diffie–Hellman
problem and can be used in many of the same cryptographic constructions that are
based on the Diffie–Hellman problem. Moreover, the twin Diffie–Hellman problem
is at least as hard as the ordinary Diffie–Hellman problem. However, we are able to
show that the twin Diffie–Hellman problem remains hard, even in the presence of a
decision oracle that recognizes solutions to the problem—this is a feature not enjoyed
by the Diffie–Hellman problem, in general. Specifically, we show how to build a cer-
tain “trapdoor test” that allows us to effectively answer decision oracle queries for
the twin Diffie–Hellman problem without knowing any of the corresponding discrete
logarithms. Our new techniques have many applications. As one such application, we
present a new variant of ElGamal encryption with very short ciphertexts, and with a
very simple and tight security proof, in the random oracle model, under the assumption
that the ordinary Diffie–Hellman problem is hard. We present several other applications
as well, including a new variant of Diffie and Hellman’s non-interactive key exchange
protocol; a new variant of Cramer–Shoup encryption, with a very simple proof in the
standard model; a new variant of Boneh–Franklin identity-based encryption, with very
short ciphertexts; a more robust version of a password-authenticated key exchange pro-
tocol of Abdalla and Pointcheval.

∗ This paper was solicted by the Editors-in-Chief as one of the best papers from EUROCRYPT 2008,
based on the recommendation of the program committee.

† Part of this work completed while at CWI.
‡ Supported by the research program Sentinels.
§ Supported by NSF award number CNS-0716690.

© International Association for Cryptologic Research 2009

mailto:cdc@gatech.edu
mailto:kiltz@cwi.nl
mailto:shoup@cs.nyu.edu

The Twin Diffie–Hellman Problem and Applications 471

1. Introduction

In some situations, basing security proofs on the hardness of the Diffie–Hellman prob-
lem is hindered by the fact that recognizing correct solutions is also apparently hard
(indeed, the hardness of the latter problem is the decisional Diffie–Hellman assump-
tion). There are a number of ways for circumventing these technical difficulties. One
way is to simply make a stronger assumption, namely, that the Diffie–Hellman prob-
lem remains hard, even given access to a corresponding decision oracle. Another way
is to work with groups that are equipped with efficient pairings, so that such a deci-
sion oracle is immediately available. However, we would like to avoid making stronger
assumptions, or working with specialized groups, if at all possible.

In this paper, we introduce a new problem, the twin Diffie–Hellman problem, which
has the following interesting properties:

• the twin Diffie–Hellman problem can easily be employed in many cryptographic
constructions where one would usually use the ordinary Diffie–Hellman problem,
without imposing a terrible efficiency penalty;

• the twin Diffie–Hellman problem is hard, even given access to a corresponding
decision oracle, assuming the ordinary Diffie–Hellman problem (without access to
any oracles) is hard.

Using the twin Diffie–Hellman problem, we construct a new variant of ElGamal en-
cryption that is secure against chosen ciphertext attack, in the random oracle model,
under the assumption that the ordinary Diffie–Hellman problem is hard. Compared to
other ElGamal variants with similar security properties, our scheme is attractive in that
it has very short ciphertexts and a very simple and tight security proof.

At the heart of our method is a “trapdoor test” which allows us to implement an ef-
fective decision oracle for the twin Diffie–Hellman problem without knowing any of
the corresponding discrete logarithms. This trapdoor test has many applications, includ-
ing a new variant of Diffie and Hellman’s non-interactive key exchange protocol [12],
which is secure in the random oracle model assuming the Diffie–Hellman problem is
hard; a new variant of Cramer–Shoup encryption [10] with a very simple security proof,
in the standard model, under the hashed decisional Diffie–Hellman assumption; a new
variant of Boneh–Franklin identity-based encryption [6], with very short ciphertexts,
and a simple and tighter security proof in the random oracle model, assuming the bilin-
ear Diffie–Hellman problem is hard; a very simple and efficient method of securing a
password-authenticated key exchange protocol of Abdalla and Pointcheval [1] against
server compromise, which can be proved secure, using our trapdoor test, in the random
oracle model, under the Diffie–Hellman assumption.

1.1. Hashed ElGamal Encryption and its Relation to the Diffie–Hellman Problem

To motivate the discussion, consider the “hashed” ElGamal encryption scheme [2]. This
public-key encryption scheme makes use of a group G of prime order q with generator
g ∈ G, a hash function H, and a symmetric cipher (E,D). A public key for this scheme is
a random group element X, with corresponding secret key x, where X = gx . To encrypt
a message m, one chooses a random y ∈ Zq , computes

Y := gy, Z := Xy, k := H(Y,Z), c := Ek(m),

472 D. Cash, E. Kiltz, and V. Shoup

and the ciphertext is (Y, c). Decryption works in the obvious way: Given the ciphertext
(Y, c) and secret key x, one computes

Z := Yx, k := H(Y,Z), m := Dk(c).

The Diffie–Hellman Assumption Clearly, the hashed ElGamal encryption scheme is
secure only if it is hard to compute Z, given the values X and Y . Define

dh(X,Y) := Z, where X = gx , Y = gy , and Z = gxy . (1)

The problem of computing dh(X,Y) given random X,Y ∈ G is the DH problem. The
DH assumption asserts that this problem is hard. However, this assumption is not suf-
ficient to establish the security of hashed ElGamal against a chosen ciphertext attack,
regardless of what security properties the hash function H may enjoy.

To illustrate the problem, suppose that an adversary selects group elements Ŷ and Ẑ

in some arbitrary way, and computes k̂ := H(Ŷ , Ẑ) and ĉ := E
k̂
(m̂) for some arbitrary

message m̂. Further, suppose the adversary gives the ciphertext (Ŷ , ĉ) to a “decryption
oracle,” obtaining the decryption m. Now, it is very likely that m̂ = m if and only if
Ẑ = dh(X, Ŷ). Thus, the decryption oracle can be used by the adversary as an oracle to
answer questions of the form “is dh(X, Ŷ) = Ẑ?” for group elements Ŷ and Ẑ of the
adversary’s choosing. In general, the adversary would not be able to efficiently answer
such questions on his own, and so the decryption oracle is leaking some information
about that secret key x which could conceivably be used to break the encryption scheme.

The Strong DH Assumption Therefore, to establish the security of hashed ElGamal
against chosen ciphertext attack, we need a stronger assumption. For X, Ŷ , Ẑ ∈ G, de-
fine the predicate

dhp(X, Ŷ , Ẑ) := dh(X, Ŷ)
?= Ẑ.

At a bare minimum, we need to assume that it is hard to compute dh(X,Y), given ran-
dom X,Y ∈ G, along with access to a decision oracle for the predicate dhp(X, ·, ·),
which on input (Ŷ , Ẑ) returns dhp(X, Ŷ , Ẑ). This assumption is called the strong DH
assumption [2].1 Moreover, it is not hard to prove, if H is modeled as a random ora-
cle, that hashed ElGamal is secure against chosen ciphertext attack under the strong
DH assumption, and under the assumption that the underlying symmetric cipher is it-
self secure against chosen ciphertext attack. This was proved in [2,24], for a variant
scheme in which Y is not included in the hash; including Y in the hash gives a more
efficient security reduction (see [11]). Note that the strong DH assumption is different
(and weaker) than the so-called gap DH assumption [28] where an adversary gets access
to a full decision oracle for the predicate dhp(·, ·, ·), which on input (X̂, Ŷ , Ẑ), returns
dhp(X̂, Ŷ , Ẑ).

1 We remark that in more recent papers the name strong DH assumption also sometimes refers to a different
assumption defined over bilinear maps [4]. We follow the original terminology from [2].

The Twin Diffie–Hellman Problem and Applications 473

1.2. The Twin Diffie–Hellman Assumptions

For general groups, the strong DH assumption may be strictly stronger than the DH
assumption. One of the main results of this paper is to present a slightly modified version
of the DH problem that is just as useful as the (ordinary) DH problem, and which is just
as hard as the (ordinary) DH problem, even given access to a corresponding decision
oracle. Using this, we get a modified version of hashed ElGamal encryption which can
be proved secure under the (ordinary) DH assumption, in the random oracle model. This
modified system is just a bit less efficient than the original system.

Again, let G be a cyclic group with generator g, and of prime order q . Let dh be
defined as in (1). Define the function

2dh : G
3 → G

2

(X1,X2, Y) �→ (
dh(X1, Y),dh(X2, Y)

)
.

We call this the twin DH function. One can also define a corresponding twin DH predi-
cate:

2dhp(X1,X2, Ŷ , Ẑ1, Ẑ2) := 2dh(X1,X2, Ŷ)
?= (Ẑ1, Ẑ2).

The twin DH assumption states that it is hard to compute 2dh(X1,X2, Y), given ran-
dom X1,X2, Y ∈ G. It is clear that the DH assumption implies the twin DH assump-
tion. The strong twin DH assumption states that it is hard to compute 2dh(X1,X2, Y),
given random X1,X2, Y ∈ G, along with access to a decision oracle for the predicate
2dhp(X1,X2, ·, ·, ·), which on input (Ŷ , Ẑ1, Ẑ2), returns 2dhp(X1,X2, Ŷ , Ẑ1, Ẑ2).

One of our main results is the following:

Theorem 1. The (ordinary) DH assumption holds if and only if the strong twin DH
assumption holds.

The non-trivial direction to prove is that the DH assumption implies the strong twin DH
assumption.

A Trapdoor Test While Theorem 1 has direct applications, the basic tool that is used
to prove the theorem, which is a kind of “trapdoor test,” has even wider applications.
Roughly stated, the trapdoor test works as follows: Given a random group element X1,
we can efficiently construct a random group element X2, together with a secret “trap-
door” τ , such that

• X1 and X2 are independent (as random variables), and
• if we are given group elements Ŷ , Ẑ1, Ẑ2, computed as functions of X1 and X2

(but not τ), then using τ , we can efficiently evaluate the predicate
2dhp(X1,X2, Ŷ , Ẑ1, Ẑ2), making a mistake with only negligible probability.

We note that our trapdoor test actually appears implicitly in Shoup’s DH self-
corrector [32]; apparently, its implications were not understood at the time, although
the techniques of Cramer and Shoup [10] are in some sense an extension of the idea.
We discuss the connection between our trapdoor test and Shoup’s DH self-corrector in
Sect. 8.

474 D. Cash, E. Kiltz, and V. Shoup

1.3. Applications and Results

1.3.1. The Twin ElGamal Encryption Scheme

Theorem 1 suggests the following twin ElGamal encryption scheme. This scheme makes
use of a hash function H and a symmetric cipher (E,D). A public key for this scheme
is a pair of random group elements (X1,X2), with corresponding secret key (x1, x2),
where Xi = gxi for i = 1,2. To encrypt a message m, one chooses a random y ∈ Zq and
computes

Y := gy, Z1 := X
y

1 , Z2 := X
y

2 , k := H(Y,Z1,Z2), c := Ek(m).

The ciphertext is (Y, c). Decryption works in the obvious way: Given the ciphertext
(Y, c) and secret key (x1, x2), one computes

Z1 := Yx1 , Z2 := Yx2 , k := H(Y,Z1,Z2), m := Dk(c).

The arguments in [2] and [11] carry over, so that one can easily show that the twin
ElGamal encryption scheme is secure against chosen ciphertext attack, under the strong
twin DH assumption, and under the assumption that (E,D) is secure against chosen
ciphertext attack, if H is modeled as a random oracle. By Theorem 1, the same holds
under the (ordinary) DH assumption.

Note that the ciphertexts for this scheme are extremely compact—no redundancy is
added, as in the Fujisaki–Okamoto transformation [13]. Moreover, the security reduc-
tion for our scheme is very tight. We remark that this seems to be the first DH-based
encryption scheme with short ciphertexts. All other known constructions either add re-
dundancy to the ciphertext [3,9,13,29,33] or resort to assumptions stronger than DH [2,
11,24].

1.3.2. The Twin DH Key-Exchange Protocol

In their paper [12], Diffie and Hellman presented the following simple, non-interactive
key exchange protocol. Alice chooses a random x ∈ Zq , computes X := gx ∈ G, and
publishes the pair (Alice,X) in a public directory. Similarly, Bob chooses a random
y ∈ Zq , computes Y := gy ∈ G, and publishes the pair (Bob, Y) in a public directory.
Alice and Bob may compute the shared value Z := gxy ∈ G as follows: Alice retrieves
Bob’s entry from the directory and computes Z as Yx , while Bob retrieves Alice’s key
X, and computes Z as Xy . Before using the value Z, it is generally a good idea to hash
it, together with Alice’s and Bob’s identities, using a cryptographic hash function H.
Thus, the key that Alice and Bob actually use to encrypt data using a symmetric cipher
is k := H(Alice,Bob,Z).

Unfortunately, the status of the security of this scheme is essentially the same as
that of the security of hashed ElGamal against chosen ciphertext attack, if we allow an
adversary to place arbitrary public keys in the public directory (without requiring some
sort of “proof of possession” of a secret key). The issue is very similar to the problem
inherent in ElGamal, where an adversary can inject a key Ŷ of its choosing and then
request a symmetric key k with Ŷ and some other user’s key X. The adversary can test
dhp(X, Ŷ , Ẑ) for any Ẑ by checking if k = H(Alice,Bob, Ẑ).

The Twin Diffie–Hellman Problem and Applications 475

To avoid this problem, we define the twin DH protocol, as follows: Alice’s public key
is (X1,X2), and her secret key is (x1, x2), where Xi = gxi for i = 1,2; similarly, Bob’s
public key is (Y1, Y2), and his secret key is (y1, y2), where Yi = gyi for i = 1,2; their
shared key is

k := H
(
Alice,Bob,dh(X1, Y1),dh(X1, Y2),dh(X2, Y1),dh(X2, Y2)

)
,

where H is a hash function. Of course, Alice computes the 4-tuple of group elements in
the hash as

(
Y

x1
1 , Y

x1
2 , Y

x2
1 , Y

x2
2

)
,

and Bob computes them as
(
X

y1
1 ,X

y2
1 ,X

y1
2 ,X

y2
2

)
.

Using the “trapdoor test,” it is a simple matter to show that the twin DH protocol satisfies
a natural and strong definition of security, under the (ordinary) DH assumption, if H is
modeled as a random oracle.

1.3.3. A Variant of Cramer–Shoup Encryption

We present a variant of the public-key encryption scheme by Cramer and Shoup [10].
Using our trapdoor test, along with techniques originally developed for identity-based
encryption [4], we give an extremely simple proof of its security against chosen-
ciphertext attack, in the standard model, under the decisional DH assumption [14]:
given X and Y , it is hard to distinguish dh(X,Y) from Z, for random X,Y,Z ∈ G.
In fact, our proof works under the weaker hashed decisional DH assumption: Given X

and Y , it is hard to distinguish H(dh(X,Y)) from k, for random X,Y ∈ G, and ran-
dom k in the range of H. As a simple extension we show that a recent variant of the
Kurosawa–Desmedt scheme from [22] can be obtained using our framework. This vari-
ant has shorter ciphertexts, and its security relies on the hashed DH assumption.

Obviously, our variants are secure under the DH assumption if H is modeled as a
random oracle. We also note that by using the Goldreich–Levin theorem, a simple ex-
tension of our scheme, which is still fairly practical, can be proved secure against chosen
ciphertext attack under the DH assumption.

The observation that a variant of the Cramer–Shoup encryption scheme can be proved
secure under the hashed decisional DH assumption was also made by Brent Waters,
in unpublished work (personal communication, 2006) and independently by Goichiro
Hanaoka and Kaoru Kurosawa, in recent work [21]. In the same paper, Hanaoka and
Kurosawa give two schemes based on techniques different from ours, where the first
achieves CCA security in the standard model based on the DH assumption and the
second achieves security based on the hashed DH assumption and has ciphertext lengths
equal to those of the Kurosawa–Desmedt scheme.

1.3.4. Identity-Based Encryption

Strong versions of assumptions also seem necessary to analyze some identity-based
encryption (IBE) schemes that use bilinear pairings. As a further contribution, we give

476 D. Cash, E. Kiltz, and V. Shoup

a twin version of the bilinear DH (BDH) assumption and prove that its (interactive)
strong twin BDH variant is implied by the standard BDH assumption.

The well-known IBE scheme of Boneh and Franklin [6] achieves security against
chosen ciphertext attacks, in the random oracle model, by applying the Fujisaki–
Okamoto transformation. Our techniques give a different scheme with shorter cipher-
texts and a tighter security reduction.

The same technique can also be applied to the scheme by Sakai and Kasahara [31]
which is based on a stronger bilinear assumption but has improved efficiency.

1.3.5. Other Applications

Our twinning technique and, in particular, the trapdoor test can be viewed as a general
framework that gives a method for “updating” a protocol Π whose security relies on
the strong DH assumption to a protocol Π ′ that has roughly the same complexity as Π ,
but whose security is solely based on the DH assumption. Apart from the applications
mentioned above, we remark that this technique can also be applied to the undeniable
signatures and designated confirmer signatures from [28], the key-exchange protocols
from [23], and the public-key encryption scheme from [7].

As another application of our trapdoor test, in Sect. 9 we show how one can eas-
ily convert the very elegant and efficient protocol of Abdalla and Pointcheval [1] for
password-authenticated key exchange, into a protocol that provides security against
server compromise, without adding any messages to the protocol, and still basing the
security proof, in the random oracle model, on the DH assumption.

2. A Trapdoor Test and a Proof of Theorem 1

It is not hard to see that the strong twin DH assumption implies the DH assumption. To
prove that the DH implies the strong twin DH assumption, we first need our basic tool,
a “trapdoor test.” Its purpose will be intuitively clear in the proof of Theorem 1: In order
to reduce the strong twin DH assumption to the DH assumption, the DH adversary will
have to answer decision oracle queries without knowing the discrete logarithms of the
elements of the strong twin DH problem instance. This tool gives us a method for doing
so.

Theorem 2 (Trapdoor Test). Let G be a cyclic group of prime order q , generated by
g ∈ G. Suppose X1, r, s are mutually independent random variables, where X1 takes
values in G, and each of r, s is uniformly distributed over Zq , and define the random
variable X2 := gs/Xr

1. Further, suppose that Ŷ , Ẑ1, Ẑ2 are random variables taking
values in G, each of which is defined as some function of X1 and X2. Then we have:

(i) X2 is uniformly distributed over G;
(ii) X1 and X2 are independent;

(iii) if X1 = gx1 and X2 = gx2 , then the probability that the truth value of

Ẑr
1Ẑ2 = Ŷ s (2)

The Twin Diffie–Hellman Problem and Applications 477

does not agree with the truth value of

Ẑ1 = Ŷ x1 ∧ Ẑ2 = Ŷ x2 (3)

is at most 1/q; moreover, if (3) holds, then (2) certainly holds.

Proof. Observe that s = rx1 + x2. It is easy to verify that X2 is uniformly distributed
over G, and that X1,X2, r are mutually independent, from which (i) and (ii) follow.
To prove (iii), condition on fixed values of X1 and X2. In the resulting conditional
probability space, r is uniformly distributed over Zq , while x1, x2, Ŷ , Ẑ1, and Ẑ2 are
fixed. If (3) holds, then by substituting the two equations in (3) into (2), we see that (2)
certainly holds. Conversely, if (3) does not hold, we show that (2) holds with probability
at most 1/q . Observe that (2) is equivalent to

(
Ẑ1/Ŷ

x1
)r = Ŷ x2/Ẑ2. (4)

It is not hard to see that if Ẑ1 = Ŷ x1 and Ẑ2 �= Ŷ x2 , then (4) certainly does not hold.
This leaves us with the case Ẑ1 �= Ŷ x1 . But in this case, the left hand side of (4) is a
random element of G (since r is uniformly distributed over Zq), but the right hand side
is a fixed element of G. Thus, (4) holds with probability 1/q in this case. �

Using this tool, we can easily prove Theorem 1. So that we can give a concrete se-
curity result, let us define some terms. For an adversary B, let us define his DH ad-
vantage, denoted AdvDHB,G, to be the probability that B computes dh(X,Y), given
random X,Y ∈ G. For an adversary A, let us define his strong twin DH advan-
tage, denoted Adv2DHA,G, to be the probability that A computes 2dh(X1,X2, Y),
given random X1,X2, Y ∈ G, along with access to a decision oracle for the predicate
2dhp(X1,X2, ·, ·, ·), which on input Ŷ , Ẑ1, Ẑ2, returns 2dhp(X1,X2, Ŷ , Ẑ1, Ẑ2).

Theorem 1 is a special case of the following:

Theorem 3. Suppose A is a strong twin DH adversary that makes at most Qd queries
to its decision oracle, and runs in time at most τ . Then there exists a DH adversary
B with the following properties: B runs in time at most τ , plus the time to perform
O(Qd logq) group operations and some minor bookkeeping; moreover,

Adv2DHA,G ≤ AdvDHB,G + Qd

q
.

In addition, if B does not output “failure,” then its output is correct with probability at
least 1 − 1/q .

Proof. Our DH adversary B works as follows, given a challenge instance (X,Y) of the
DH problem. First, B chooses r, s ∈ Zq at random, sets X1 := X and X2 := gs/Xr

1, and
gives A the challenge instance (X1,X2, Y). Second, B processes each decision query
(Ŷ , Ẑ1, Ẑ2) by testing if Ẑ1Ẑ

r
2 = Ŷ s holds. Finally, if and when A outputs (Z1,Z2), B

tests if this output is correct by testing if Z1Z
r
2 = Y s holds; if this does not hold, then

B outputs “failure,” and otherwise, B outputs Z1. The proof is easily completed using
Theorem 2. �

478 D. Cash, E. Kiltz, and V. Shoup

3. Definitions

We say that a function f (k) is negligible if for every c > 0 there exists an kc such that
f (k) < 1/kc for all k > kc .

3.1. Public Key Encryption

We recall the usual definitions for chosen ciphertext security.
Let PKE be a public-key encryption scheme. Consider the following chosen cipher-

text attack game, played between a challenger and a adversary A:

1. The challenger generates a public key/secret key pair, and gives the public key to
A.

2. A makes a number of decryption queries to the challenger, where each such query
is a ciphertext Ĉ. For each query, the challenger decrypts Ĉ and sends the result
to A.

3. A makes one challenge query, which is a pair of equal-length messages (m0,m1).
For each query, the challenger chooses b ∈ {0,1} at random, encrypts mb , and
sends the resulting ciphertext C to A.

4. A makes more decryption queries, just as in step 2, but with the restriction that
Ĉ �= C.

5. A outputs b̂ ∈ {0,1}.
The advantage AdvCCAA,PKE is defined to be |Pr[b̂ = b] − 1/2|. The scheme PKE is
said to be secure against chosen ciphertext attack if for all efficient adversaries A, the
advantage AdvCCAA,PKE is negligible as a function of the security parameter.

If we wish to analyze a scheme PKE in the random oracle model, then hash func-
tions are modeled as random oracles in the security analysis, where both challenger and
adversary are given access to the random oracle in the above attack game. We write
AdvCCAro

A,PKE for the corresponding advantage in the random oracle model.

3.2. Symmetric Encryption

If SE = (E,D) is a symmetric cipher, then one defines security against chosen ciphertext
attack in exactly the same way, except that in step 1 of the above attack game, the chal-
lenger simply generates a secret key (and no public key).2 The advantage AdvCCAA,SE

is defined in exactly the same way, and PKE is said to be secure against chosen cipher-
text attack if for all efficient adversaries A, the advantage AdvCCAA,SE is negligible.

The usual construction of a chosen-ciphertext secure symmetric encryption scheme
is to combine a one-time pad and a message-authentication code (MAC). We remark
that such schemes do not necessarily add any redundancy to the symmetric ciphertext.
In fact, Phan and Pointcheval [30] showed that a strong PRP [16] directly implies a
length-preserving chosen-ciphertext secure symmetric encryption scheme that avoids
the usual overhead due to the MAC. In practice, the modes of operation CMC [19],
EME [20], and EME* [18] can be used to encrypt large messages. The resulting scheme
is chosen-ciphertext secure provided that the underlying block-cipher is a strong PRP.

2 We note that a more standard definition also gives the adversary access to an encryption oracle, but this
is not necessary for our applications.

The Twin Diffie–Hellman Problem and Applications 479

3.3. Identity-Based Encryption

An IBE scheme consists of algorithms for master key generation, user key generation,
encryption, and decryption. The master key generation algorithm outputs a random pri-
vate/public master key pair. The user key generation algorithm uses the private master
key and outputs a private user key for any identity. To encrypt a message for a user,
one inputs the master public key and that user’s identity to the encryption algorithm.
Decryption then uses the user’s private key to recover the message.

The concept of chosen ciphertext security naturally adapts to IBE. For an adversary
A and IBE scheme IBE, the game is as follows:

1. The challenger generates a master public key/secret key pair, and gives the master
public key to A.

2. A makes user secret key queries and decryption queries to the challenger. Each
user secret key query is an identity îd, and the challenger responds by running the
user secret key generation on îd and sending that key to A. Each decryption query
is an identity ˆid and ciphertext ĉ, and the challenger responds by decrypting Ĉ

using the secret key for id and sending the result to A.
3. A makes one challenge query, which is an identity id and a pair of equal-length

messages (m0,m1). The challenger chooses b ∈ {0,1} at random, encrypts mb for
id, and sends the resulting ciphertext C to A. A is not allowed to choose id after
requesting the user private key for id in the previous step.

4. A makes more user secret key queries and decryption queries, just as in step 2,
but with the restriction that îd �= id in user secret key queries and (ˆid, Ĉ) �= (id,C)

in decryption queries.
5. A outputs b̂ ∈ {0,1}.

As before, we define the advantage AdvCCAA,IBE as |Pr[b̂ = b] − 1/2|. When a hash
function is modeled as a random oracle, we denote the advantage by AdvCCAro

A,IBE.

3.4. Target Collision-Resistant Hash Functions

We briefly recall the definition of target collision-resistant hash functions. Let T be a
family of functions from D to R. The target collision-resistance game goes as follows:

1. The adversary gives an element x ∈ D to the challenger.
2. The challenger chooses a random function from T, represented by a hash key k. It

gives k to the adversary.
3. The adversary gives a second element x′ ∈ D to the challenger.

We define the advantage AdvTCRA,T of A as Pr[x �= x′ ∧ Tk(x) = Tk(x
′)]. We say

that T is target collision-resistant if AdvTCRA,T is negligible for every poly-time A. In
our schemes below, we let the (random) hash key be implicitly available in the public
parameters and simply write T(x) when evaluating the hash function.

4. Twin ElGamal Encryption

We are now able to establish the security of the twin ElGamal encryption scheme de-
scribed in Sect. 1.3.1, which we denote PKE2dh. The security will be based on the strong

480 D. Cash, E. Kiltz, and V. Shoup

twin DH assumption, of course, and this allows us to borrow the “oracle patching” tech-
nique from previous analyzes of hashed ElGamal encryption based on the strong DH
assumption [11]. We stress, however, that unlike previous applications of this technique,
the end result is a scheme based on the original DH assumption.

Theorem 4. Suppose H is modeled as a random oracle and that the DH assumption
holds. Then PKE2dh is secure against chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext attack
against PKE2dh in the random oracle model, and that A runs in time τ , and makes at
most Qh hash queries and Qd decryption queries. Then there exists a DH adversary Bdh
and an adversary Bsym that carries out a chosen ciphertext attack against SE, such that
both Bdh and Bsym run in time at most τ , plus the time to perform O((Qh + Qd) logq)

group operations; moreover,

AdvCCAro
A,PKE2dh

≤ AdvDHBdh,G + AdvCCABsym,SE + Qh

q
.

Proof. In light of Theorem 1, the proof is fairly standard. We proceed with a sequence
of games.

Game 0. Let Game 0 be the original chosen ciphertext attack game, and let S0 be the
event that b̂ = b in this game.
In this game, the challenger generates the secret key (x1, x2) and computes the cor-
responding public key (X1,X2). We have to describe how the random oracle is im-
plemented by the challenger. This is done in a special way to facilitate the proof.
The challenger implements the random oracle using an associative array L, indexed
by elements of G

3, where each element in the array takes an initial, default value of
⊥, indicating that it is undefined. In addition, the challenger prepares some values in
advance, to be used later as part of the ciphertext generated in response to the adver-
sary’s challenge query. Namely, the challenger chooses a random symmetric key k,
and a random y ∈ Zq , sets Y := gy , Z1 := X

y

1 , and Z2 := X
y

2 . The challenger also
sets L[Y,Z1,Z2] := k, which intuitively represents the fact that H(Y,Z1,Z2) = k.
Now, the challenger sends the public key to the adversary. Whenever the adversary
makes a random oracle query, the challenger sends the corresponding entry in L to the
adversary, initializing it, if necessary, to a random symmetric key if it is currently ⊥.
To process decryption queries in step 2 of the chosen ciphertext attack game, sup-
pose the ciphertext is (Ŷ , ĉ). If Ŷ = Y , then the challenger simply responds with
Dk(ĉ). Otherwise, the challenger decrypts as usual, using the secret key (x1, x2), and
processing its own random oracle queries using L, just as above.
To process the challenge query in step 3, the challenger uses the values Y,Z1,Z2, k

generated in the initialization step, and computes c := Ek(mb). The ciphertext (Y, c)

is given to the adversary.
Decryption queries in step 4 are processed just as in step 2.
That finishes the description of Game 0. Despite the syntactic differences, it is clear
that

AdvCCAro
A,PKE2dh

= ∣∣Pr[S0] − 1/2
∣∣. (5)

The Twin Diffie–Hellman Problem and Applications 481

Game 1. We now describe Game 1, which is the same as Game 0, but with the
following difference: In the initialization step, the challenger does not initialize
L[Y,Z1,Z2]. Everything else remains exactly the same.
Let S1 be the event that b̂ = b in Game 1. Let F be the event that the adversary queries
the random oracle at (Y,Z1,Z2) in Game 1. Note that the challenger never queries
the random oracle at this point, due to the special way that decryption and challenge
queries are processed. Since both Games 0 and 1 proceed identically unless F occurs,
we have

∣∣Pr[S1] − Pr[S0]
∣∣ ≤ Pr[F]. (6)

We claim that

Pr[F] ≤ Adv2DHB2dh,G, (7)

where B2dh is an efficient strong twin DH adversary that makes at most Qh decision
oracle queries. We sketch at a very high level how B2dh works. Basically, B2dh runs
just like the challenger in Game 1, but for every random oracle query (Ŷ , Ẑ1, Ẑ2),
B2dh sends this triple to its own decision oracle, and marks it “good” or “bad” ac-
cordingly (this is the only time B2dh uses its decision oracle). Using this information,
B2dh can easily process decryption requests without using the secret key: Given a ci-
phertext (Ŷ , ĉ) with Ŷ �= Y , it checks if it has already seen a “good” triple of the form
(Ŷ , ·, ·) among the random oracle queries; if so, it uses the key associated with that
triple; if not, it generates a random key, and it will stay on the lookout for a “good”
triple of the form (Ŷ , ·, ·) in future random oracle queries, associating this key with
that triple to keep things consistent. At the end of the game, B2dh checks if it has seen
a “good” triple of the form (Y, ·, ·); if so, it outputs the last two components.
Of course, Theorem 1 gives us an efficient DH adversary Bdh with

Adv2DHB2dh,G ≤ AdvDHBdh,G + Qh

q
. (8)

Finally, it is easy to see that in Game 1, the adversary is essentially playing the chosen
ciphertext attack game against SE. Thus, there is an efficient adversary Bsym such that

∣
∣Pr[S1] − 1/2

∣
∣ = AdvCCABsym,SE. (9)

The theorem now follows by combining (5)–(9). �

Instantiating PKE2dh with a length-preserving chosen-ciphertext secure symmetric
encryption scheme (see Sect. 3), we obtain a DH-based chosen-ciphertext secure en-
cryption scheme with the following properties.

Optimal ciphertext overhead. The ciphertext overhead, i.e., ciphertext size minus
plaintext size, is exactly one group element, which is optimal for Diffie–Hellman
based schemes.

Encryption/decryption efficiency. Encryption needs three exponentiations in G, one
of which is to the fixed-base g (that can be shared among many public-keys). Decryp-
tion only needs one sequential exponentiation in G to compute Yx1 and Yx2 simulta-
neously, which is nearly as efficient as one single exponentiation (see, e.g., [27]).

482 D. Cash, E. Kiltz, and V. Shoup

5. Non-interactive Key Exchange

In this section, we give a model and security definition for non-interactive key exchange
and analyze the twin DH protocol from Sect. 1.3.2. After the seminal work of Diffie and
Hellman on this subject, it does not seem to have been explored further in the literature,
except in the identity-based setting.

5.1. Model and Security

A non-interactive key exchange scheme KE consists of two algorithms: one for key
generation and one for computing paired keys. The key generation algorithm is proba-
bilistic and outputs a public key/secret key pair. The paired key algorithm takes as input
an identity and public key along with another identity and a secret key, and outputs a
shared key for the two identities. Here, identities are arbitrary strings chosen by the
users, and the key authority does not generate keys itself but acts only as a phone book.

For security we define an experiment between a challenger and an adversary A. In
this experiment, the challenger takes a random bit b as input and answers oracle queries
for A until A outputs a bit b̂. The challenger answers the following types of queries
for A:

Register honest ID. A supplies a string id. The challenger runs the key generation
algorithm to generate a public key/secret key pair (pk, sk) and records the tuple
(honest, id,pk, sk) for later. The challenger returns pk to A.

Register corrupt ID. In this type of query, A supplies both the string id and a public
key pk. The challenger records the tuple (corrupt, id,pk) for later.

Get honest paired key. Here A supplies two identities id, id′ that were registered as
honest. Now the challenger uses the bit b: If b = 0, the challenger runs the paired key
algorithm using the public key for id and the secret key for id′. If b = 1, the challenger
generates a random key, records it for later, and returns that to the adversary. To keep
things consistent, the challenger returns the same random key for the set {id, id′}
every time A queries for their paired key (perhaps in reversed order).

Get corrupt paired key. Here A supplies two identities id, id′, where id was regis-
tered as corrupt and id′ was registered as honest. The challenger runs the paired key
algorithm using the public key for id and the secret key for id′ and returns the paired
key.

When the adversary finally outputs b̂, it wins the experiment if b̂ = b. For an adversary
A, we define its active attack advantage AdvAAA,KE to be |Pr[b̂ = b] − 1/2|. When a
hash function is modeled as a random oracle in the experiment, we denote the adver-
sary’s advantage by AdvAAro

A,KE.

5.2. Security of the Twin DH Protocol

We prove the twin DH protocol secure under the DH assumption using our trapdoor
test. We denote the twin DH protocol by KE2dh.

Theorem 5. Suppose H is modeled as a random oracle and that the DH assumption
holds. Then KE2dh is secure against active attacks.

The Twin Diffie–Hellman Problem and Applications 483

In particular, suppose A is an adversary that attacks KE2dh in the random oracle
model, and that A runs in time τ , and makes at most a total of Q oracle queries of all
types. Then there exists a DH adversary Bdh that runs in time at most τ plus the time to
perform O(Q logq) group operations; moreover,

AdvAAro
A,KE2dh

≤ 2AdvDHBdh,G + 4Q/q.

Proof. We proceed with a sequence of games.

Game 0. Let Game 0 be the original attack experiment and let S0 be the event that b̂ = b

in this game. To help with the proof, we describe a specific way for the challenger to
implement the experiment. The challenger uses two associative arrays, L and K , both
initially empty. L will store random oracle responses, and K will store responses to
paired key queries.
As the adversary issues random oracle queries, the challenger stores its responses
in L, indexed by the input to the oracle. Whenever the adversary issues a paired key
query for some identities (id, id′), the challenger first uses the honest identity’s secret
key to compute the parties’ inputs to the random oracle, say (id, id′,Z1,Z2,Z3,Z4).
Now the challenger uses b. If b = 1, then it returns K[id, id′], initializing it to a ran-
dom key if necessary. It does not modify L in this case. If b = 0, however, then it
performs a few checks to keep things consistent, as they would be in a real exper-
iment. If L[id, id′,Z1,Z2,Z3,Z4] = k has been initialized, it stores K[id, id′] := k

and returns k to the adversary. Otherwise, the challenger generates a random k and
stores it at both K[id, id′] and L[id, id′,Z1,Z2,Z3,Z4].
We claim that this way of running the game does not affect the distributions involved.
If b = 0, then the oracle responses are managed consistently. If b = 1, then the honest
key pair oracle responses are totally independent of the rest of the game, because they
are stored in K and only accessed when responding to future key pair queries. Thus
we have

AdvAAro
A,KE2dh

= ∣∣Pr[S0] − 1/2
∣∣. (10)

Game 1. In this game, when the adversary requests a paired key for honest identities
id and id′, the challenger it ignores the bit b and always processes the queries as if
b = 1. That is, it only stores the new paired key in K and not in L. Everything else
is exactly the same. Thus, if the adversary happens to query the random oracle at the
corresponding point for the paired key of id and id′, then the challenger will check L,
see that entry is uninitialized, and generate a fresh random response instead of the
one stored in K .
Let S1 be the event that b̂ = b in Game 1. Let F be the event that the adversary queries
random oracle H at a point (id, id′, Ẑ1, Ẑ2, Ẑ3, Ẑ4) such that the point is the correct
input to the random oracle for the paired key of some registered identities id, id′. By
the construction of Game 1, it is clear that

∣∣Pr[S1] − Pr[S0]
∣∣ ≤ Pr[F]. (11)

Moreover, we have

Pr[S1] = 1/2. (12)

484 D. Cash, E. Kiltz, and V. Shoup

All that remains is to bound Pr[F]. We claim that

Pr[F] ≤ 2(AdvDHBdh,G + 2Q/q), (13)

where Bdh is an efficient DH adversary. We give a high-level description of Bdh.
Bdh gets a DH instance (X,Y) as input and simulates the challenger’s behavior in
Game 1. It maintains the associative arrays L[·] and K[·, ·] to manage random oracle
queries and paired keys, respectively.
When registering an honest identity id, Bdh generates a random bit bid and random
rid, sid, tid ∈ Zq . If bid = 0, Bdh computes

X1 := Xgtid , X2 := X
sid
1 /grid

and if bid = 1, Bdh instead computes

X1 := Ygtid , X2 := X
sid
1 /grid .

The pair (X1,X2) is returned as the public key for id. Bdh saves the bit bid , trap-
door information rid, sid , and randomizing factor tid for later in the simulation. Bdh
registers corrupt identities by simply saving them.
For honest and corrupt paired key queries with identities id, id′, Bdh returns K[id, id′]
if it is initialized. Otherwise it generates a random key k, stores it in K[id, id′], and
returns it.
On a random oracle query H(id, id′, Ẑ1, Ẑ2, Ẑ3, Ẑ4), Bdh returns the corresponding
entry from L if it is already initialized. If not, Bdh must decide if this is the correct
input to the random oracle for the paired key of id, id′ in order to “patch” together
queries and maintain consistency. We now describe how Bdh manages the patching.
If id, id′ are not in the correct order in the query, then the query certainly will not cor-
respond to their paired key. Otherwise, assume id is honest (a similar argument works
for the case that id′ is honest), and let the public keys of id, id′ be (X1,X2), (Y1, Y2),
respectively. Bdh uses the trapdoor information for id to evaluate (with some error)
the predicates

2dhp(X1,X2, Y1, Ẑ1, Ẑ3) and 2dhp(X1,X2, Y2, Ẑ2, Ẑ4)

as in Theorem 2. If both of these predicates evaluate to 1, then Bdh determines that
the tuple (id, id′, Ẑ1, Ẑ2, Ẑ3, Ẑ4) is the input for their paired key, it marks that tuple
as “good” and stores k in K[id, id′].

Bdh runs until the adversary halts and then looks in L for a good tuple with
honest identities id, id′ such that bid �= bid′ . If Bdh finds such a good tuple
(id, id′, Ẑ1, Ẑ2, Ẑ3, Ẑ4), it looks up the public keys (X1,X2), (Y1, Y2) for id, id′.
Suppose that bid = 0 and b′

id = 1. Then Bdh computes an output for the DH problem
by

Z := Z1/
(
Xtid′ Y tidgtid tid′).

A similar computation works in the case that bid = 1 and bid = 0.
Finally, we claim that Bdh produces the correct solution to its DH instance with prob-
ability at least (1/2)(Pr[F] − 2Q/q). First observe that all of the public keys given

The Twin Diffie–Hellman Problem and Applications 485

to the adversary are uniform and independent by Theorem 2. Also by Theorem 2, the
probability that Bdh makes an error when patching together queries is at most 2Q/q .
It is also easy to check that the bits bid, bid′ are independent of the adversary’s view.
Thus, conditioned on the event that the adversary queries a good tuple, Bdh is able to
compute the correct value Z with probability 1/2, and (13) follows.

The theorem is proved by combining (10), (11), (13), and (12). The bound on the num-
ber of group operations follows from the observation that Bdh only performs a constant
number of exponentiations per oracle query. �

6. A Variant of the Cramer–Shoup Encryption Scheme

In this section, we show how to apply our trapdoor test to construct public-key encryp-
tion schemes with security proofs in the standard model. We give a new assumption
based on the decisional Diffie–Hellman problem and describe several schemes with
varying efficiency and security properties.

6.1. The (Twin) DDH Assumption

Let G be a group of order q and let g be a random generator. Distinguishing the two
distributions (X,Y,dh(X,Y)) and (X,Y,Z) for random X,Y,Z ∈ G is the decision
Diffie–Hellman (DDH) problem. For an adversary B, let us define his DDH advantage,
denoted AdvDDHB,G, by

AdvDDHB,G = Pr
[

B
(
X,Y,dh(X,Y)

) = 1
] − Pr

[
B(X,Y,Z) = 1

]
, (14)

where X,Y,Z are uniform random variables on G. The DDH assumption states that the
DDH problem is hard.

As a natural decision variant of the twin DH problem, the twin DDH problem is dis-
tinguishing the two distributions (X1,X2, Y,dh(X1, Y)) and (X1,X2, Y,Z) for random
X1,X2, Y,Z ∈ G. The strong twin DDH assumption states that the twin DDH problem
is hard, even given access to a decision oracle for the predicate for 2dhp(X1,X2, ·, ·, ·),
which on input (Ŷ , Ẑ1, Ẑ2) returns 2dhp(X1,X2, Ŷ , Ẑ1, Ẑ2). (Note the value dh(X2, Y)

is never provided as input to the distinguisher since otherwise the strong twin DDH as-
sumption could be trivially broken using the 2dhp oracle.) For an adversary B, we define
its strong twin DDH advantage, denoted Adv2DDHB,G, by

Adv2DDHB,G = Pr
[

B
(
X1,X2, Y,dh(X1, Y)

) = 1
] − Pr

[
B(X1,X2, Y,Z1) = 1

]
, (15)

where X1,X2, Y,Z1 are uniform random variables on G, and B has access to an oracle
for 2dhp(X1,X2, ·, ·, ·).

We also consider potentially weaker “hashed” variants of the above two assumptions.
For a hash function H : G → {0,1}κ , the hashed DDH problem is to distinguish the two
distributions (X,Y,H(dh(X,Y)) and (X,Y, k), for random X,Y ∈ G and k ∈ {0,1}κ .
The hashed DDH assumption states that the hashed DDH problem is hard. Finally, the
strong twin hashed DDH assumption states that it is hard to distinguish the distributions
(X1,X2, Y,H(dh(X,Y)) and (X1,X2, Y, k), even with access to an oracle computing
2dhp(X1,X2, ·, ·, ·), where X1,X2, Y ∈ G and k ∈ {0,1}κ are random.

486 D. Cash, E. Kiltz, and V. Shoup

We note that the (strong twin) hashed DDH assumption simplifies to the (strong twin)
DDH assumption if the range of the hash function is G instead of {0,1}κ and H is the
identity (i.e., it maps Z ∈ G to Z ∈ G). Furthermore, there are natural groups (such as
non-prime-order groups) where the DDH problem is known to be easy, yet the hashed
DDH problem is still assumed to be hard for a reasonable choice of the hash func-
tion [14]. If H is modeled as random oracle then the hashed DDH and the DH assump-
tions become equivalent.

Using the trapdoor test in Theorem 2, we can prove an analogue of Theorem 3.

Theorem 6. The (hashed) DDH assumption holds if and only if the strong twin
(hashed) DDH assumption holds. In particular, suppose A is a strong twin (hashed)
DDH adversary that makes at most Qd queries to its decision oracle, and runs in time
at most τ . Then there exists a (hashed) DDH adversary B with the following properties:
B runs in time at most τ , plus the time to perform O(Qd logq) group operations and
some minor bookkeeping; moreover,

Adv2DDHA,G ≤ AdvDDHB,G + Qd

q
.

6.2. A Variant of the Cramer–Shoup Scheme

We now can consider the following encryption scheme which we call PKEc̃s. This
scheme makes use of a symmetric cipher (E,D) and a hash function T : G → Zq which
we assume to be target collision-resistant [11].

A public key for this scheme is a tuple of random group elements (X1, X̃1,X2, X̃2),
with corresponding secret key (x1, x̃1, x2, x̃2), where Xi = gxi and X̃i = gx̃i for i = 1,2.
To encrypt a message m, one chooses a random y ∈ Zq , computes

Y := gy, t := T(Y), Z1 := (
Xt

1X̃1
)y

, Z2 := (
Xt

2X̃2
)y

,

k := H
(
X

y

1

)
, c := Ek(m),

and the ciphertext is (Y,Z1,Z2, c). Decryption works as follows: given the ciphertext
(Y,Z1,Z2, c) and secret key (x1, x̃1, x2, x̃2), one computes t := T(Y) and checks if

Yx1t+x̃1 = Z1 and Yx2t+x̃2 = Z2. (16)

If not, then one rejects the ciphertext. (In this case, we say the ciphertext is not consis-
tent.) Otherwise, compute

k := H
(
Yx1

)
, m := Dk(c).

We remark that since |G| = |Zq | = q , hash function T could be a bijection. See [8] for
efficient constructions for certain groups G.

Relation to Cramer–Shoup Our scheme is very similar to the one by Cramer and
Shoup [10]. Syntactically, the difference is that in Cramer–Shoup the value Z1 is com-
puted as Z1 = X

y

3 (where X3 is another random group element in the public key) and

The Twin Diffie–Hellman Problem and Applications 487

t is computed as t = T(Y,Z1). However, our variant allows for a simple security proof
based on the hashed DDH assumption whereas for the Cramer–Shoup scheme only
proofs based on the DDH assumption are known (and the known proofs do not seem to
extend to the hashed case because the reductions all apply algebraic operations to the
challenge input). In Appendix A, we review the proof of the original Cramer–Shoup
scheme and show how the scheme can be analyzed using the twin DDH assumption.
The purpose of this appendix is expository.

We now show that, using the trapdoor test, PKEc̃s allows for a very elementary proof
under the hashed DDH assumption. We stress that are security proof is not in the random
oracle model.

Theorem 7. Suppose T is a target collision resistant hash function. Further, suppose
the hashed DDH assumption holds, and that the symmetric cipher SE = (E,D) is secure
against chosen ciphertext attack. Then PKEc̃s is secure against chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext attack
against PKEc̃s and that A runs in time τ , and makes at most Qd decryption queries.
Then there exists a hashed DDH adversary Bddh, an adversary Bsym that carries out
a chosen ciphertext attack against SE, and a TCR adversary Btcr such that both Bddh,
Bsym and Btcr run in time at most τ , plus the time to perform O(Qd logq) group oper-
ations; moreover,

AdvCCAA,PKEc̃s ≤ AdvDDHBddh,G,H + AdvCCABsym,SE + AdvTCRBtcr,T + Qd

q
.

Proof. We proceed with a sequence of games.

Game 0. Let Game 0 be the original chosen ciphertext attack game, and let S0 be the
event that b̂ = b in this game.

AdvCCAA,PKEc̃s = ∣∣Pr[S0] − 1/2
∣∣. (17)

Game 1 Let Game 1 be like Game 0, but with the following difference. Game 1 aborts if
the adversary, at any time, makes a decryption query containing a Ŷ such that Ŷ �= Y

and T(Ŷ) = T(Y) where Y comes from the challenge ciphertext. Using a standard
argument from [11], it is easy to show that

∣∣Pr[S1] − Pr[S0]
∣∣ ≤ AdvTCRBtcr,T. (18)

Game 2. Let Game 2 be as Game 1 with the following differences. For computing
the public-key the experiment picks x1, x2, y, a1, a2 ∈ Zq at random and computes
X1 = gx1 , X2 = gx2 , and Y = gy . Next, it computes t := T(Y) and

X̃1 := X−t
1 ga1, X̃2 := X−t

2 ga2 .

Note that the way the public-key is setup uses a technique to prove selective-ID se-
curity for IBE schemes [4].
The challenge ciphertext (Y,Z1,Z2, c) for message mb is computed as

t := T(Y), Z1 := Ya1 , Z2 := Ya2 , k := H
(
X

y

1

)
, c := Ek(mb).

(19)

488 D. Cash, E. Kiltz, and V. Shoup

This is a correctly distributed ciphertext for mb and randomness y = logg(Y)

since, for i = 1,2, (Xt
i X̃i)

y = (Xt−t
i gai)y = (gai)y = Yai = Zi . We can assume

(Y,Z1,Z2, k) to be computed in the beginning of the experiment since they are inde-
pendent of m0,m1.
A decryption query for ciphertext (Ŷ , Ẑ1, Ẑ2, ĉ) is answered as follows. Compute
t̂ = T(Ŷ). If t = t̂ then verify consistency by checking if Z1 = Ẑ1 and Z2 = Ẑ2. If the
ciphertext is consistent then use the challenge key k defined in (19) to decrypt ĉ. If
t �= t̂ then proceed as follows. For i = 1,2, compute Z̄i = (Ẑi/Ŷ

ai)1/(t̂−t). Consis-
tency of the ciphertext is verified by checking if

Ŷ x1 = Z̄1 and Ŷ x2 = Z̄2. (20)

Let ŷ = logg Ŷ . The value Ẑi was correctly generated iff Ẑi = (Xt̂
i X̃i)

ŷ = (Xt̂−t
i gai)ŷ

= (Ŷ xi)t̂−t · Ŷ ai which is equivalent to Z̄i = Ŷ xi . Hence, (20) is equivalent to the test
from the original scheme (16). If the ciphertext is consistent then one can use the
symmetric key k̂ = H(Z̄1) = H(Ŷ x1) to decrypt ĉ and return m̂ = D

k̂
(ĉ).

Let S2 be the event that b̂ = b in this game. As we have seen,

Pr[S2] = Pr[S1]. (21)

Game 3. Let Game 3 be as Game 2 with the only difference that the value k to compute
the challenge ciphertext is now chosen at random. We claim that

∣∣Pr[S3] − Pr[S2]
∣∣ ≤ Adv2DDHB2ddh,G,H, (22)

where B2ddh is an efficient strong twin hashed DDH adversary that makes at most
Qd queries to the decision oracle. B2ddh is defined as follows. Using the values
(X1,X2, Y, k) from its challenge (where either k = H(dh(X1, Y)) or k is random), ad-
versary B2ddh runs (without knowing x1, x2, y) the experiment as described in Game 2
using k as the challenge key in (19) to encrypt mb . Note that the only point where
Games 2 and 3 make use of x1 and x2 is the consistency check (20) which B2ddh
equivalently implements using the 2dhp oracle, i.e., by checking if

2dhp(X1,X2, Ŷ , Z̄1, Z̄2)

holds. We have that if k = H(dh(X1, Y)) ∈ {0,1}κ , this perfectly simulates Game 2,
whereas if k ∈ {0,1}κ is random this perfectly simulates Game 3. This proves (22).
Finally, it is easy to see that in Game 3, the adversary is essentially playing the chosen
ciphertext attack game against SE. Thus, there is an efficient adversary Bsym such that

∣∣Pr[S3] − 1/2
∣∣ = AdvCCABsym,SE. (23)

The theorem now follows by combining (17)–(23) with Theorem 6. �

6.3. A Variant with Shorter Ciphertexts

Consider a ciphertext in the above scheme that is of the form (Y = gr ,Z1 =
(Xt

1X̃1)
r ′
,Z2, c) with r �= r ′. Such a ciphertext is inconsistent and should therefore

The Twin Diffie–Hellman Problem and Applications 489

be rejected by (16) in the decryption algorithm. Essentially, the trapdoor test says that
in the view of the adversary, the unique value Z2 that leads the simulation (as described
in the proof of Theorem 7) to falsely accept such ciphertexts is a uniformly distributed
group element. Therefore, the adversary can never guess this “bad Z2” and, with high
probability, the simulation of the CCA experiment is correct.

With this intuition it is easy to see that one can as well replace Z2 ∈ G in the
ciphertext by Z′

2 = KDF(Z2) ∈ {0,1}k , where KDF : G → {0,1}k is a secure key-
derivation function. (For uniform X ∈ G, KDF(X) is computationally indistinguish-
able from a uniform bitstring in {0,1}k .) Accordingly, decryption is modified to check
Z′

2 = KDF(Y x2t+x̃2). This variant shortens the ciphertexts by replacing a group element
by a bitstring in {0,1}k .

Yet another variant uses the value Z2 directly as a source for an integrity check of
the symmetric cipher. Here we assume that symmetric encryption satisfies the stronger
notion of (one-time) authenticated encryption [22]. Such a ciphertext can, for example,
be obtained by combining a one-time pad with a message authenticated code (MAC).
The idea is to move the value Z2 from the ciphertext into the symmetric key which we
re-define as k = H(X

y

1 · Z2) = H(X
y

1 · (Xt
2X̃2)

y). Now, if (Y,Z1) is inconsistent (in the
above sense that r �= r ′) then the value for Z2 used in the simulation is random and will
make the symmetric key k essentially look random (from the adversary’s view). Conse-
quently, the authenticity property of the symmetric cipher makes the simulated decryp-
tion algorithm reject this ciphertext. After applying one more simplification (defining
Z2 = X

y

2), we get the following scheme which we call PKEk̃d.
Public and secret keys are the same as in PKEc̃s with the difference that the element

X̃2 is no longer needed in the public-key. To encrypt a message m, one chooses a random
y ∈ Zq , computes

Y := gy, t := T(Y), Z1 := (
Xt

1X̃1
)y

, k := H
(
X

y

2

)
, c := Ek(m),

and the ciphertext is (Y,Z1, c). Decryption works as follows: Given the ciphertext
(Y,Z1, c) and secret key (x1, x̃1, x2), one computes t := T(Y) and checks if

Yx1t+x̃1 = Z1.

If not, reject; otherwise, compute

k := H
(
Yx2

)
, m := Dk(c).

This scheme is essentially the public-key encryption scheme presented in [22]. Here,
using the trapdoor test we offer a different and maybe simpler interpretation of its secu-
rity.

Theorem 8. Suppose T is a target collision resistant hash function. Further, suppose
the hashed DDH assumption holds, and that the symmetric cipher SE = (E,D) is secure
in the sense of authenticated encryption. Then PKEk̃d is secure against chosen ciphertext
attack.

490 D. Cash, E. Kiltz, and V. Shoup

A proof and a more precise security statement can be looked up in [22] or can al-
ternatively be obtained by modifying the proof of Theorem 7 as described above. We
remark that even though it is not explicitly mentioned in [22] their original proof already
implies security of the PKEk̃d scheme based on the hashed DDH assumption.

6.4. A Variant with Security from the DH Assumption

We now consider an extension of PKEc̃s that achieves security based on the (compu-
tational) DH assumption. The idea is to first extend the public keys and ciphertexts to
have several Xi and Zi terms, respectively, and then use the Goldreich–Levin hard-core
function [16,17] as the hash function to extract symmetric key bits. Because security
depends on the reduction to the hard-coreness of the function, the reduction is not very
tight, and so we carry out the analysis in asymptotic terms. Below, we denote by fgl the
Goldreich–Levin hard-core function for dh′(X,Y,R) := (dh(X,Y),R).

Let κ be the security parameter, and for simplicity we assume that it is also the length
(in bits) of the symmetric keys for (E,D). Let ν = O(logκ) be some integer that di-
vides κ , and � := κ/ν. In this scheme, the secret key now consists of 2(� + 1) ran-
dom elements of Zp , denoted xi, x̃i for i = 1, . . . , � + 1. The public key contains the
2(� + 1) corresponding group elements Xi = gxi , X̃i = gx̃i , for i = 1, . . . , � + 1, along
with a random bit string R of length long enough to evaluate a hard-core function with
ν output bits (u := 2 log |G| bits are sufficient). To encrypt a message m, one chooses a
random y ∈ Zq and computes

Y := gy, t := T(Y), Zi := (
Xt

i X̃i

)y for i = 1, . . . , � + 1.

Then one sets ki := fgl(X
y
i ,R) ∈ {0,1}ν (i = 1, . . . , �). Note that X�+1, X̃�+1, and

Z�+1 are not used for key derivation. Finally, a concatenation of all ki yields a sym-
metric key k ∈ {0,1}κ that is used to encrypt m as c := Ek(m). The ciphertext is
(Y,Z1, . . . ,Z�+1, c). Decryption first verifies the consistency of (Y,Z1, . . . ,Z�+1, c)

by checking if Yxi t+x̃i = Zi for all i = 1, . . . , � + 1. Then the key k is reconstructed
as the concatenation of ki = fgl(Y

xi ,R) for i = 1, . . . , �, and finally m is recovered by
computing m := Dk(c).

In order to analyze this scheme we will need the following version of the Goldreich–
Levin theorem.

Theorem 9. Suppose that Agl is a probabilistic poly-time algorithm such that
Agl(X,Y,R, k) distinguishes k = fgl(dh(X,Y),R) from a uniform string with non-
negligible advantage, for random X,Y ∈ G and random R ∈ {0,1}u. Then there exists
a probabilistic poly-time algorithm Adh that computes dh(X,Y) with non-negligible
probability for random X,Y .

Using our techniques, it also not hard to show that this theorem still holds if we
assume that Agl additionally gets as input a random X′ ∈ G and has access to an oracle
computing 2dhp(X,X′, ·, ·, ·). We will use this augmented version in our analysis below.

Theorem 10. Suppose T is a target collision resistant hash function. Further, suppose
the DH assumption holds, and that the symmetric cipher SE = (E,D) is secure against
chosen ciphertext attack. Then PKEdh is secure against chosen ciphertext attack.

The Twin Diffie–Hellman Problem and Applications 491

Proof. We proceed with a sequence of games. For each i, let Si be the event that b̂ = b

in Game i.

Game 0. We define Game 0 to be the original CCA game that A plays against PKEdh.
By definition,

∣∣Pr[S0] − 1/2
∣∣ = AdvCCAA,PKEdh . (24)

Game 1. Game 1 is the same as Game 0, except now if the adversary asks for a de-
cryption of a ciphertext containing Ŷ �= Y but T(Ŷ) = T(Y), where Y is from the
challenge ciphertext, then the game aborts. By the target-collision resistance of T, we
have that

∣∣Pr[S1] − Pr[S0]
∣∣ ≤ negl(κ). (25)

Games 2. Game 2 is the same as Game 1, except that k is set to a uniform and inde-
pendent bit string. We claim that

∣∣Pr[S2] − Pr[S1]
∣∣ ≤ negl(κ). (26)

We will prove this by a hybrid argument. For j = 0, . . . , �, we define the hybrid games
Hj and H′

j . Intuitively, in Hj and H′
j , k1, . . . , kj will be uniformly random strings, while

kj+1, . . . , k� will be computed normally. The hybrids will be defined so that Hj and
H′

j have exactly the same output distribution, but are run in a slightly different way to
facilitate the proof. In addition, H′

0 will have the same output distribution as Game 1,
and H� will have that of Game 2. (The hybrid games H0 and H′

� will not be defined.) In
the analysis, we will show that the games Hj and H′

j induce the same output distribution
and that the games H′

j−1 and Hj are computationally indistinguishable.
We now describe the hybrid games. Fix some j ∈ {0, . . . , �}. We start with Hj and

show how to define H′
j afterwards. In Hj , the public key is generated as follows. It sam-

ples y ←R Zq and sets Y := gy , t := T(Y). For i = 1, . . . �, i �= j , Xi, X̃i are generated
normally. The game then samples xj , x�+1, aj , a�+1 ←R Zq and computes

Xj := gxj , X�+1 := gx�+1 , X̃j := X−t
j gaj , X̃�+1 := X−t

�+1g
a�+1 . (27)

Finally, it samples R ←R {0,1}u and sets the public key to (X1, X̃1, . . . ,X�+1, X̃�+1,R).
To compute the challenge ciphertext, Hj does the following. It uses the Y that it

computed at the start of the game, and sets Zi := Yxi for i �= j, � + 1. It sets Zj :=
Yaj and Z�+1 := Ya�+1 . For i = 1, . . . , j , it sets ki ←R {0,1}ν . For i = j + 1, . . . , � it
computes ki := fgl(Y

xi ,R). It uses k := k1 . . . k� and computes c := Ek(mb), and the
challenge ciphertext is (Y,Z1, . . . ,Z�+1, c).

To respond to a decryption query for the ciphertext (Ŷ , Ẑ1, . . . , Ẑ�+1, ĉ), Hj first
computes t̂ := T(Ŷ). If t̂ = t , it checks if Ẑi = Zi for all i. If this holds it decrypts
ĉ using k. If t̂ �= t , it verifies the consistency of Zi for i �= j, � + 1, normally. It then
computes

Z̄j := (
Ẑj /Ŷ

aj

j

)1/(t−t̂)
, Z̄�+1 := (

Ẑ�+1/Ŷ
a�+1
�+1

)1/(t−t̂)

492 D. Cash, E. Kiltz, and V. Shoup

and tests if

Ŷ xj = Z̄j and Ŷ x�+1 = Z̄�+1. (28)

If this holds, it computes k̂j := fgl(Z̄j ,R) and then computes the rest of the k̂i normally
(as fgl(Y

xi ,R)) and decrypts ĉ using k̂ := k̂1 . . . k̂�. This completes the decryption of Hj .
We let the hybrid game H′

j be exactly like Hj+1, except that kj+1 is computed as
kj+1 := fgl(Y

xj+1 ,R) instead of being set to a random string. Note that in both Hj

and H′
j , k1, . . . , kj are set to random strings and kj+1, . . . , k� are computed normally.

The only difference between Hj and H′
j is the way in which the games are “managed,”

but the output distributions are exactly the same. The change between Hj and H′
j is

essentially like the change between Games 1 and 2 in the proof of Theorem 7, and the
same argument there can be applied here. The essential difference between Hj and H′

j

is which elements in the key are “trapdoor elements”: in Hj they are Xj , X̃j , while in
H′

j they are Xj+1, X̃j+1.
We are now ready to describe our adversary that breaks the hardcore-ness of

fgl. Let Bgl be an adversary that gets (X,X′, Y,R, s) as input, where either s =
fgl(dh(X,Y),R) or s is a random string. In addition, Bgl has access to an oracle com-
puting 2dhp(X,X′, Ŷ , Ẑ, Ẑ′).

Bgl does the following. It selects j ←R {1, . . . , �}, sets Xj := X, and X�+1 := X′. It
proceeds to simulate H′

j−1 for A, except that it sets kj := s. The only point where xj

and x�+1 are used is in the consistency check in (28), which Bgl can perform by using
an oracle query as in the proof of Theorem 7. When A outputs b̂, Bgl checks if b̂ = b,
and outputs 1 if this holds, and 0 otherwise.

It is not hard to check that, conditioned on s = fgl(dh(X,Y),R), Bgl simulates H′
j−1

for A, and conditioned on the event that s was random, Bgl simulates Hj . Then the
following standard hybrid argument applies:

Pr
[

Bgl(X,Y,R, s) = 1
∣∣s = fgl

(
dh(X,Y),R

)] − Pr
[

Bgl(X,Y,R, s) = 1
∣∣s is random

]

= 1

�

�∑

j=1

Pr[b̂ = b in H′
j−1] − 1

�

�∑

j=1

Pr[b̂ = b in Hj]

= 1

�

�∑

j=1

(
Pr[b̂ = b in H′

j−1] − Pr[b̂ = b in Hj]
)

= 1

�

(
Pr[b̂ = b in H′

0] − Pr[b̂ = b in H�]
)

= 1

�

(
Pr[S1] − Pr[S0]

)
. (29)

We get (29) by recalling that Pr[b̂ = b in Hj] = Pr[b̂ = b in H′
j] for j = 1, . . . , � − 1.

Finally, if the advantage of Bgl is non-negligible, then by Theorem 9 (augmented
with our trapdoor test), we get an adversary Bdh that solves the DH problem with non-
negligible advantage. Then, by the DH assumption, (26) follows.

The Twin Diffie–Hellman Problem and Applications 493

Returning to the proof of the theorem, in Game 2 the adversary is mounting a chosen-
ciphertext attack against the symmetric encryption scheme. Thus, by the CCA security
of SE,

Pr[S2] = negl(k). (30)

The proof is completed by combining (24), (25), (26), and (30). �

7. Identity-Based Encryption

In this section, we show how to apply the trapdoor test in Theorem 2 to identity-based
encryption. We give a bilinear version of the strong twin DH problem and show that
it can be reduced to the standard bilinear DH problem. We then use this assumption
to construct a new IBE scheme that we call twin Boneh–Franklin. While our scheme
is not as computationally efficient as some other CCA secure schemes, it only incurs
one group element of overhead in the ciphertexts and has tighter reduction to the BDH
assumption than the original (CPA) scheme on which it is based.

7.1. The (Twin) BDH Assumption

In groups equipped with a pairing ê : G × G → GT , we can define the function

bdh(X,Y,W) := Z, where X = gx , Y = gy , W = gw , and Z = ê(g, g)wxy .

Computing bdh(X,Y,W) for random X,Y,W ∈ G is the bilinear DH (or BDH) prob-
lem. For an adversary B, let us define his BDH advantage, denoted AdvBDHB,G, as the
probability that B computes bdh(X,Y,W) for random X,Y,W ∈ G. The BDH assump-
tion states that solving the BDH problem is hard. Next we define a predicate

bdhp(X, Ŷ , Ŵ , Ẑ) := bdh(X, Ŷ , Ŵ)
?= Ẑ.

We can also consider the BDH problem where, in addition to random (X,Y,W), one is
also given access to an oracle that on input (Ŷ , Ŵ , Ẑ) returns bdhp(X, Ŷ , Ŵ , Ẑ). The
strong BDH assumption [25] states that the BDH problem remains hard even with the
help of the oracle.

For reasons similar to the issue with hashed ElGamal encryption, the strong BDH
assumption seems necessary to prove the CCA security of the basic version [25] of the
original Boneh–Franklin IBE [6]. We can repeat the “twinning” idea and define the twin
BDH problem, where one must compute 2bdh(X1,X2, Y,W) for random X1,X2, Y,W ,
where we define

2bdh(X1,X2, Y,W) := (
bdh(X1, Y,W),bdh(X2, Y,W)

)
.

The strong twin BDH problem is the same as the twin BDH problem, but the adversary
has access to an oracle computing the predicate

2bdhp(X1,X2, Ŷ , Ŵ , Ẑ1, Ẑ2) := 2bdh(X1,X2, Ŷ , Ŵ)
?= (Ẑ1, Ẑ2),

494 D. Cash, E. Kiltz, and V. Shoup

for Ŷ , Ŵ , Ẑ1, Ẑ2 of its choice. For an adversary B, define his strong twin BDH ad-
vantage, denoted Adv2BDHB,G, as the probability that B computes bdh(X,Y,W)

when given random X,Y,W ∈ G along with access to an oracle for the predicate
2bdhp(X1,X2, ·, ·, ·, ·), which on input Ŷ , Ŵ , Ẑ1, Ẑ2 returns 2bdhp(X1,X2, Ŷ , Ŵ ,

Ẑ1, Ẑ2). The strong twin BDH assumption states that the BDH problem is still hard,
even with access to the decision oracle.

We will need a slight generalization of the trapdoor test in Theorem 2 to prove the
following theorem. It is easy to check that Theorem 2 is still true if the elements Ẑ1, Ẑ2
are in a different cyclic group of the same order (we will take them in the range group
of the pairing), and we replace Ŷ with ê(Ŷ , Ŵ). With this observation, we can prove an
analogue of Theorem 3.

Theorem 11. Suppose B2bdh is a strong twin BDH adversary that makes at most Qd
queries to its decision oracle, and runs in time at most τ . Then there exists a BDH
adversary Bbdh with the following properties: Bbdh runs in time at most τ , plus the time
to perform O(Qd logq) group operations and some minor bookkeeping; moreover,

Adv2BDHB2bdh,G ≤ AdvBDHBbdh,G + Qd

q
.

In addition, if Bbdh does not output “failure,” then its output is correct with probability
at least 1 − 1/q .

7.2. Twin Boneh–Franklin

Theorem 11 admits a simple analysis of the following IBE scheme, which we call
the twin Boneh–Franklin IBE scheme. This scheme will use two hash functions, H
(which outputs symmetric keys) and G (which outputs group elements), and a sym-
metric cipher (E,D). A master public key is a pair of group elements (X1,X2), where
Xi = gxi for i = 1,2. The master private key is (x1, x2), which are selected at ran-
dom from Zq by the setup algorithm. The secret key for an identity id ∈ {0,1}∗ is
(S1, S2) = (G(id)x1 ,G(id)x2). To encrypt a message m for identity id, one chooses
y ∈ Zq at random and sets

Y := gy, Z1 := ê
(
G(id),X1

)y
, Z2 := ê

(
G(id),X2

)y
,

k := H(id, Y,Z1,Z2), c := Ek(m).

The ciphertext is (Y, c). To decrypt using the secret key (S1, S2) for id, one computes

Z1 := ê(S1, Y), Z2 := ê(S2, Y), k := H(id, Y,Z1,Z2), m := Dk(c).

We shall denote this scheme IBE2bdh. Now we can essentially borrow the analysis of
the original Boneh–Franklin scheme under the strong BDH assumption [25], except now
we get that the scheme is secure against chosen ciphertext attacks under the strong twin
BDH assumption. By Theorem 11, we get that the above IBE scheme is CCA secure
under the BDH assumption if the symmetric cipher is secure and the hash functions are
treated as random oracles. This is captured in the following theorem.

The Twin Diffie–Hellman Problem and Applications 495

Theorem 12. Suppose H and G are modeled as random oracles. Further, suppose
the DH assumption holds, and that the symmetric cipher SE = (E,D) is secure against
chosen ciphertext attack. Then IBE2bdh is secure against chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext attack
against IBE2bdh in the random oracle model, and that A runs in time τ , and makes at
most Qh hash queries, Qd decryption queries, and Qid user secret key queries. Then
there exists a BDH adversary Bbdh and an adversary Bsym that carries out a chosen
ciphertext attack against SE, such that both Bbdh and Bsym run in time at most τ , plus
the time to perform O((Qid + Qh + Qd) logq) group operations; moreover,

AdvCCAro
A,IBE2bdh

≤ e · (Qid + 1) ·
(

2Qh + Qd

q
+ AdvBDHBbdh,G + AdvCCABsym,SE

)
.

Proof. As with our other proofs, we proceed with a sequence of games.

Game 0. Let Game 0 be the original IBE chosen ciphertext attack game, and let S0 be
the event that b̂ = b in this game.
The challenger chooses the master private key (x1, x2) and gives the adversary the
corresponding master public key (X1,X2) as normal. To track random oracle re-
sponses, the challenger uses two associative arrays L and K . L will store responses
for G and K will store responses for H, and both will initially have all entries set to ⊥.
When processing a random oracle response, the adversary returns the corresponding
entry if it is defined, and otherwise initializes it with an appropriate random value
and returns that. Apart from this bookkeeping, the challenger runs Game 0 exactly as
specified in the definition, and we have

AdvCCAro
A,IBE2bdh

= ∣∣Pr[S0] − 1/2
∣∣. (31)

Game 1. Game 1 will be like Game 0, but now we change how the challenger processes
queries to G. Now, in addition to inserting oracle responses into L, the challenger also
“marks” some entries in the L array used to store G responses. On query G(ˆid), in
addition to the normal processing, with probability δ the challenger marks L[ˆid]. The
challenger completely hides the marks from the adversary.
At the end of the game, the challenger looks at L and decides if it should abort the
game. For each user secret key query that the adversary issued during the game, the
challenger checks if the entry in L for that identity is marked. If any of them are
marked, the challenger aborts the game. Finally, it checks the entry L[id], where id is
the identity from the challenge query. If that entry is not marked, then the challenger
aborts. Otherwise, it proceeds normally.
Let S1 be the event that b̂ = b in Game 1 and F1 be the event that the challenger
aborts. Since the coins that determine F1 are independent of the rest of the game, it
follows that

∣
∣Pr[S1] − Pr[S0]

∣
∣ = Pr[F1] ≤ δ · (1 − δ)Qid ,

and if we set δ = 1/(1 + Qid),

∣∣Pr[S1] − Pr[S0]
∣∣ ≤ (

e(1 + Qid)
)−1

. (32)

496 D. Cash, E. Kiltz, and V. Shoup

Game 2 Game 2 will be like Game 1, except that now the challenger sets up some
of the challenge ciphertext in advance. Before starting the game, it chooses a random
symmetric key k, random y ∈ Zq and random W ∈ G, sets Y := gy , Z1 := ê(W,X1)

y

and Z2 := ê(W,X2)
y .

Now the challenger uses these values in the rest of the game. When creating the
challenge ciphertext, the challenger sets K[id, Y,Z1,Z2] := k (overwriting the entry
if it is already defined), computes c := E(k,mb), and returns (Y, c).
For decryption queries, when the adversary asks for the decryption of (Ŷ , ĉ) under
identity ˆid, if îd = id, L[id] is marked, and Ŷ = Y , then the challenger uses k to
decrypt ĉ. Otherwise, the challenger decrypts normally.
For the challenge query, the challenger uses k to compute c := E(k,mb) and returns
(Y, c).
Let S2 be the event that b̂ = b in Game 2. Since Game 2 and Game 1 only differ
when the adversary manages to query H(id, Y,Z1,Z2) before the challenge query,
and this event only happens if the adversary can guess Y , an independently chosen
group element. Thus,

∣∣Pr[S2] − Pr[S1]
∣∣ ≤ QH/q. (33)

Game 3 Game 3 will include one simple change from Game 2: It no longer immedi-
ately stores the value k in K as described in Game 2. Instead, it leaves that entry
unchanged, but still uses the k,Y,Z1,Z2 generated at the beginning of the game to
generate the challenge ciphertext.
Let S3 be the event that b̂ = b in Game 3. Let F2bdh be the event that the adversary
queries H at (id, Y,Z1,Z2), where id is the identity used in the challenge ciphertext.
Since Game 2 and Game 3 are exactly the same when F2bdh does not occur, it follows
that

∣∣Pr[S3] − Pr[S2]
∣∣ ≤ Pr[F2bdh]. (34)

We claim that

Pr[F2bdh] ≤ Adv2BDHB2bdh,G, (35)

for an efficient strong twin BDH adversary B2bdh that makes Qh +Qd decision oracle
queries. We give a high level description of B2bdh. B2bdh gets (X1,X2, Y,W) as input
and begins to run Game 3, acting as the challenger for the adversary. Of course, it
sets the master public key to (X1,X2) and uses (Y, c) as challenge ciphertext, where
c := Ek(mb), as in Game 3.
We need to describe how B2bdh answers queries for the random oracles and user secret
keys. When the adversary requests G(îd), if that entry gets marked, B2bdh chooses
a new random r ∈ Zq , sets L[ˆid] := Wgr , and gives Wgr to the adversary. If the
entry does not get marked, B2bdh returns gr instead. (Note that B2bdh can respond
with the corresponding user secret key for unmarked identities.) In either case, r is
remembered for later.
When the adversary requests the user secret key for an unmarked identity îd, B2bdh

retrieves the r used to generate the entry gr in L[ˆid], and returns (Xr
1,X

r
2). If the ad-

versary requests the user secret key for a marked identity, B2bdh immediately aborts.

The Twin Diffie–Hellman Problem and Applications 497

For H queries, B2bdh implements the same oracle patching idea used in the proof
of Theorem 4. On query H(ˆid, Ŷ , Ẑ1, Ẑ2), B2bdh looks up Ŵ stored at L[ˆid] and
queries its decision oracle with (Ŷ , Ŵ , Ẑ1, Ẑ2), and marks the tuple as “good” or
“bad” depending on the answer. If it finds a good tuple, it uses the corresponding key
to decrypt ciphertexts with Ŷ . Otherwise, it generates a random symmetric key to
use with those ciphertexts, and watches for a good tuple to come up as a hash query.
When it sees one, it “patches” that query by returning the symmetric key generated
earlier.
After the game ends, B2bdh checks that the identity from the test query was unmarked.
If not, B2bdh aborts. Otherwise, it examines K and looks for a good entry of the form
K[id, Y,Z1,Z2] (where id and Y are from the test query). If it finds one, it looks up
the Ŵ = Wgr and corresponding r and outputs (Z1/ê(X1, Y)r ,Z2/ê(X2, Y)r). It is
straightforward to check that B2bdh solves the strong twin BDH problem whenever
the event F2bdh would happen in Game 3.
Finally, in Game 3 the adversary is essentially playing the chosen ciphertext game
against SE. Thus there is an adversary Bsym such that

∣∣Pr[S1] − 1/2
∣∣ = AdvCCABsym,SE. (36)

The theorem follows by combining (31)–(36). �

We remark that our ideas can also be applied to the IBE scheme from Sakai–
Kasahara [31]. The resulting IBE scheme is more efficient, but its security can only
be proved based on the (computational) q-BDHI assumption [5].

8. Relation to Shoup’s DH Self-corrector

In [32], Shoup presented a simple DH self-corrector, which implicitly contained our
trapdoor test (our Theorem 2).3 In this section, we describe Shoup’s DH self-corrector,
using the high-level notion of our trapdoor test.4

Let G be a group of prime order q with generator g ∈ G. In general, a DH self-
corrector works as follows. Suppose A is a probabilistic, polynomial-time algorithm
that on a random input (X,Y) ∈ G × G, outputs a list L of group elements, such that L

contains dh(X,Y) with non-negligible probability. A self-corrector C is a probabilistic,
polynomial-time algorithm that uses A as a subroutine, so that for all inputs (X,Y) ∈
G × G, it correctly computes dh(X,Y) with all but negligible probability; that is, the
output of C is a single group element (or possibly “failure”), which is an incorrect
solution to the given instance of the DH problem with negligible probability.

Here is how we can construct C, using the trapdoor test, and an algorithm A, as
above, as a subroutine. First, using the well-known random self reducibility property of
the DH problem, along with standard amplification techniques, we can convert A into a
probabilistic, polynomial-time algorithm A′ that for all inputs (X,Y), computes a list L′

3 Maurer and Wolf [26] also present a DH self-corrector, based, however, on completely different princi-
ples.

4 Actually, we present a slightly less efficient, less general, but simpler, version of Shoup’s corrector.

498 D. Cash, E. Kiltz, and V. Shoup

of group elements, such that L′ does not contain dh(X,Y) with negligible probability.
On input (X,Y), the self-corrector C runs as follows:

initialize the trapdoor test with X1 := X,
obtaining X2 and a corresponding trapdoor

L1 ← A′(X1, Y)

L2 ← A′(X2, Y)

for each Z1 in L1 and each Z2 in L2 do
if 2dhp(X1,X2, Y,Z1,Z2) then

output Z1 and halt
output “failure”

If 2dhp(X1,X2, ·, ·, ·) is implemented using the trapdoor test, and q is large (which is
the interesting case, of course), then it is clear that C makes a mistake with negligible
probability.

9. Password Authenticated Key Exchange

Abdalla and Pointcheval [1] presented a very efficient and elegant protocol for password
authenticated key exchange (PAKE), called SPAKE2. If users have weak passwords, it
prevents offline dictionary attacks. Security is proved in the random oracle model, under
the DH assumption. The protocol makes use of a group G of prime order q , a generator
g ∈ G, and a hash function H, which we model as a random oracle. The protocol has
additional system parameters U and V , which are randomly chosen elements of G. Fur-
thermore, passwords pw are viewed as elements of Zq . Protocol SPAKE2 is described
in Fig. 1. Both users compute the value Z = dh(X,Y), and then compute the session
key as k = H(pw, idP , idQ,X,Y,Z).

Often, users play very distinct roles. One user may be a client, which obtains the
password by keyboard entry, while the other is a server, which is a machine that keeps
a password file, containing information for each client who is authorized to access the
server. A type of attack that we would like to provide some defense against is a server

Fig. 1. Protocol SPAKE2.

The Twin Diffie–Hellman Problem and Applications 499

Fig. 2. Protocol SPAKE+
2 .

compromise, in which an adversary obtains the server’s password file. Given the pass-
word file, the adversary can certainly impersonate the server; however, we would like
to make it as hard as possible for the adversary to impersonate a client, and gain unau-
thorized access to the server.

Given the password file, an adversary can always mount an offline dictionary attack
to recover a given client’s password; ideally, this would be all the adversary could do;
in particular, it should be infeasible to recover a strong password.

Consider again protocol SPAKE2. The roles of the two users in that protocol are quite
symmetric, but for concreteness, let us say that P is the client, and Q is the server. In the
most obvious implementation, Q would explicitly store the password pw in the pass-
word file. Clearly, this implementation is undesirable, as an adversary that compromises
the server immediately recovers the password.

While there are generic transformations that can transform any PAKE protocol into
a PAKE protocol that provides protection against security compromise (see [15]), we
present a protocol, SPAKE+

2 , which does so more directly. With this protocol, if the
server is compromised, the best an adversary can do to impersonate a client is an offline
dictionary attack.

In addition to SPAKE2, protocol SPAKE+
2 employs another hash function G, which

has range Zq × Zq , and which we also model as a random oracle. Let pw be the pass-
word shared between client P and server Q, which is an arbitrary bit string. The proto-
col is described in Fig. 2. Here, the client stores (π0,π1), while the server stores (π0,L),
where L := gπ1 and

(π0,π1) := G(pw, idP , idQ).

Of course, the client can derive (π0,π1) from pw. Both users compute the val-
ues Z = dh(X,Y) = gxy and N = gπ1y , and then compute the session key as k =
H(π0,X,Y,Z,N).

500 D. Cash, E. Kiltz, and V. Shoup

It is not hard to argue that protocol SPAKE+
2 offers the same level of security as pro-

tocol SPAKE2 under normal conditions, when the server is not compromised. However,
consider what happens if the server Q is compromised in protocol SPAKE+

2 , and the
adversary obtains π0 and L. At this point, the adversary could attempt an offline dictio-
nary attack, as follows: evaluate G at points (pw′, idP , idQ) for various passwords pw′,
trying to find pw′ such that G(pw′, idP , idQ) = (π0, ·). If this succeeds, then with high
probability, pw′ = pw, and the adversary can easily impersonate the client.

The key property we want to prove is the following: If the above dictionary attack
fails, then under the DH assumption, the adversary cannot impersonate the client. Intu-
itively, to impersonate the client, the adversary will have to compute dh(L,Y ′), where
L is the value gπ1 stored on the server, and Y ′ := gy is a random group element gen-
erated by the server. If the dictionary attack fails, then the adversary does not see π1.
However, he may also interact with the client, who uses the value π1 in its calculation
of N . To prove that the adversary cannot compute dh(L,Y ′), one would normally have
to appeal to the strong DH assumption. However, because the hash happens to already
include Z in addition to N , it is not hard to prove, using Theorem 2, that the (ordinary)
DH assumption suffices.

Appendix A. The Proof of Security for PKEcs

In this section, we show how the proof of the original analysis of PKEcs can be viewed
in terminology.

We first recall the original scheme given by Cramer and Shoup, which we will denote
PKEcs. The schemes uses a hash function T : G → Zq and a symmetric cipher SE =
(E,D). For simplicity we assume that the cipher’s secret key consists of a random group
member in G, but this assumption can be removed using standard techniques, c.f. [11].

A secret key consists of four random elements of Zq , denoted x1, x2, x̃2, x3, and the
corresponding public key consists of four group elements X1 = gx1 ,X2 = gx2 , X̃2 =
gx̃2,X3 = gx3 . To encrypt a message m, one chooses y at random from Zq , and com-
putes

Y := gy, Z1 := X
y

1 , t := T(Y,Z1), Z2 := (
Xt

2X̃2
)y

,

k := X
y

3 , c := Ek(m).

The ciphertext is (Y,Z1,Z2, c). To decrypt (Ŷ , Ẑ1, Ẑ2, ĉ), one computes t̂ := T(Ŷ , Ẑ1)

and tests if

Ŷ x1 ?= Ẑ1 and Ŷ t̂x2+x̃2 ?= Ẑ2.

If not, reject. Otherwise, compute k̂ := Yx3 and output D
k̂
(ĉ).

Theorem 13 (Cramer–Shoup). Suppose T is a target collision resistant hash function.
Further, suppose the DDH assumption holds, and that the symmetric cipher SE = (E,D)

is secure against chosen ciphertext attack. Then PKEcs is secure against chosen cipher-
text attack.

The Twin Diffie–Hellman Problem and Applications 501

In particular, suppose A is an adversary that carries out a chosen ciphertext attack
against PKEcs and that A runs in time τ , and makes at most Qd decryption queries.
Then there exists a DDH adversary Bddh, an adversary Bsym that carries out a chosen
ciphertext attack against SE, and a TCR adversary Btcr such that Bddh, Bsym and Btcr
run in time at most τ , plus the time to perform O(Qd logq) group operations; moreover,

AdvCCAA,PKEc̃s ≤ AdvDDHBddh,G + AdvCCABsym,SE + AdvTCRBtcr,T + Qd

q
.

Proof. As usual, our proof consists of a sequence of games. For each i, let Si be the
event that b̂ = b in Game i.

Game 0. Let Game 0 be the chosen ciphertext game played by A against PKEcs. Then

AdvCCAA,PKEcs = ∣∣Pr[S0] − 1/2
∣∣. (A.1)

Game 1. Game 1 is like Game 0, except that if the adversary issues a decryption query
containing (Ŷ , Ẑ1) �= (Y,Z1) such that T(Ŷ , Ẑ1) = t , then the game aborts. It is stan-
dard to show (since Y and Z1 can be chosen ahead of time) that there exists an
adversary Btcr such that

∣∣Pr[S1] − Pr[S0]
∣∣ ≤ AdvTCRBtcr,T. (A.2)

Game 2. Let Game 2 is like Game 1, except that now the challenger sets up some values
ahead of time and uses them during the game, but does not change the distribution
of the game at all. At the start of the game, the challenger chooses y, x1 ←R Zq and
computes

Y := gy, X1 := gx1 , Z1 := X
y

1 , t := T(Y,Z1).

It then chooses x2, r ←R Zq and computes

X2 := gx2 , X̃2 := grX−t
2 .

It chooses x3 ←R Zq and computes X3 := gx3 normally, and sets the public key to
(X1,X2, X̃2,X3). To compute the challenge ciphertext, the challenger sets

Z2 := Y r, k := Yx3 , c := Ek(mb)

and returns (Y,Z1,Z2, c).
We also change the way the challenger performs the consistency check in the decryp-
tion oracle. On input (Ŷ , Ẑ1, Ẑ2, ĉ), if (Ŷ , Ẑ1) = (Y,Z1), then the challenger further
checks if Ẑ2 = Z2. If so, it uses k to decrypt ĉ; otherwise, it rejects the query. If

(Ŷ , Ẑ1) �= (Y,Z1), it computes t̂ := T(Ŷ , Ẑ1) and Z̄2 := (Ẑ2/g
r)

1
t̂−t . Then it tests if

Ẑ1
?= Ŷ x1 and Z̄2

?= Ŷ x2 . (A.3)

If this does not hold, it rejects. Otherwise, it computes k̂ := Ŷ x3 and outputs D
k̂
(ĉ).

502 D. Cash, E. Kiltz, and V. Shoup

We claim that the distribution of Game 2 is exactly the same as the distribution of
Game 1. This follows by observing that the public key and challenge ciphertext are
computed correctly, and that the decryption consistency check works as before. Then
we have that

Pr[S2] = Pr[S1]. (A.4)

Game 3. Let Game 3 is like Game 2, except we change how the challenger computes
X3 and the values that depend on X3. The challenger now picks x3, u3 ←R Zq and
sets X3 := gx3X

u3
1 . In the challenge ciphertext it computes k := Yx3Z

u3
1 , and in de-

cryption queries it computes k̂ := Ŷ x3Ẑ
u3
1 . These changes do not affect the distribu-

tion of the game because X3 is still independent of X1, and the rest of the values are
computed correctly

Pr[S3] = Pr[S2]. (A.5)

Game 4. Let Game 4 be exactly like Game 3, except that Z1 is set to a random element
other than X1. We claim that there exists an efficient adversary B2ddh such that

∣∣Pr[S4] − Pr[S3]
∣∣ ≤ Adv2DDHB2ddh,G + Qd/q. (A.6)

B2ddh gets (X1,X2, Y,Z1) as input and simply simulates Game 3 for A. It selects
x3, u3 itself, but the rest of the discrete logs are not necessary for the experiment.
For the consistency check in (A.3), B2ddh uses its 2dhp oracle. The claim follows by
observing that B2ddh exactly simulates Game 3 if Z1 = dh(X1, Y) or Game 4 if Z1 is
random.

Game 5. Let Game 5 be exactly like Game 4, except that k is set to a random group
element. We claim that

Pr[S5] = Pr[S4]. (A.7)

To prove this, it is sufficient to show that in Game 3 k is uniform when conditioned on
the values in the public key and the challenge ciphertext, which determine behavior
of the decryption oracle. This argument is exactly as in the original proof.
In Game 5, A is playing a chosen-ciphertext game against SE, and hence there exists
an adversary Bsym such that

∣∣Pr[S5] − 1/2
∣∣ ≤ AdvCCABsym,SE. (A.8)

The theorem follows by collecting (A.1), (A.2), (A.4), (A.5), (A.6), (A.7), and (A.8). �

References

[1] M. Abdalla, D. Pointcheval, Simple password-based encrypted key exchange protocols, in CT-RSA
2005, ed. by A. Menezes. LNCS, vol. 3376 (Springer, Berlin, 2005), pp. 191–208

[2] M. Abdalla, M. Bellare, P. Rogaway, The oracle Diffie–Hellman assumptions and an analysis of DHIES,
in CT-RSA 2001, ed. by D. Naccache. LNCS, vol. 2020 (Springer, Berlin, 2001), pp. 143–158

[3] J. Baek, B. Lee, K. Kim, Secure length-saving ElGamal encryption under the computational Diffie–
Hellman assumption, in ACISP 2000 (2000), pp. 49–58

The Twin Diffie–Hellman Problem and Applications 503

[4] D. Boneh, X. Boyen, Efficient selective-ID secure identity based encryption without random oracles,
in EUROCRYPT 2004, ed. by C. Cachin, J. Camenisch. LNCS, vol. 3027 (Springer, Berlin, 2004), pp.
223–238

[5] D. Boneh, X. Boyen, Short signatures without random oracles, in EUROCRYPT 2004, ed. by C. Cachin,
J. Camenisch. LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 56–73

[6] D. Boneh, M.K. Franklin, Identity-based encryption from the Weil pairing, in CRYPTO 2001, ed. by
J. Kilian. LNCS, vol. 2139 (Springer, Berlin, 2001), pp. 213–229

[7] X. Boyen, Miniature CCA2 PK encryption: Tight security without redundancy, in Advances in
Cryptology—ASIACRYPT 2007. LNCS, vol. 4833 (Springer, Berlin, 2007), pp. 485–501

[8] X. Boyen, Q. Mei, B. Waters, Direct chosen ciphertext security from identity-based techniques, in ACM
CCS 05 (ACM Press, New York, 2005), pp. 320–329

[9] J.-S. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, C. Tymen, GEM: A generic chosen-
ciphertext secure encryption method, in CT-RSA 2002, ed. by B. Preneel. LNCS, vol. 2271 (Springer,
Berlin, 2002), pp. 263–276

[10] R. Cramer, V. Shoup, A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack, in CRYPTO’98, ed. by H. Krawczyk. LNCS, vol. 1462 (Springer, Berlin, 1998), pp.
13–25

[11] R. Cramer, V. Shoup, Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

[12] W. Diffie, M.E. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654
(1976)

[13] E. Fujisaki, T. Okamoto, Secure integration of asymmetric and symmetric encryption schemes, in
CRYPTO’99, ed. by M.J. Wiener. LNCS, vol. 1666 (Springer, Berlin, 1999), pp. 537–554

[14] R. Gennaro, H. Krawczyk, T. Rabin, Secure hashed Diffie–Hellman over non-DDH groups, in EURO-
CRYPT 2004, ed. by C. Cachin, J. Camenisch. LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 361–381

[15] C. Gentry, P. MacKenzie, Z. Ramzan, A method for making password-based key exchange resilient to
server compromise, in CRYPTO 2006, ed. by C. Dwork. LNCS (Springer, Berlin, 2006), pp. 142–159

[16] O. Goldreich, Foundations of Cryptography: Basic Tools, vol. 1 (Cambridge University Press, Cam-
bridge, 2001)

[17] O. Goldreich, L.A. Levin, A hard-core predicate for all one-way functions, in 21st ACM STOC (ACM
Press, New York, 1989), pp. 25–32

[18] S. Halevi, EME*: Extending EME to handle arbitrary-length messages with associated data, in IN-
DOCRYPT 2004, ed. by A. Canteaut, K. Viswanathan. LNCS, vol. 3348 (Springer, Berlin, 2004), pp.
315–327

[19] S. Halevi, P. Rogaway, A tweakable enciphering mode, in CRYPTO 2003, ed. by D. Boneh. LNCS, vol.
2729 (Springer, Berlin, 2003), pp. 482–499

[20] S. Halevi, P. Rogaway, A parallelizable enciphering mode, in CT-RSA 2004, ed. by T. Okamoto. LNCS,
vol. 2964 (Springer, Berlin, 2004), pp. 292–304

[21] G. Hanaoka, K. Kurosawa, Efficient chosen ciphertext secure public key encryption under the compu-
tational Diffie–Hellman assumption, in ASIACRYPT, 2008, pp. 308–325

[22] D. Hofheinz, E. Kiltz, Secure hybrid encryption from weakened key encapsulation, in Advances in
Cryptology, Proceedings of CRYPTO 2007, ed. by A. Menezes. LNCS (Springer, Berlin, 2007), pp.
553–571. Full version available from http://eprint.iacr.org/2007/288

[23] C. Kudla, K.G. Paterson, Modular security proofs for key agreement protocols, in ASIACRYPT 2005,
ed. by B.K. Roy. LNCS, vol. 3788 (Springer, Berlin, 2005), pp. 549–565

[24] K. Kurosawa, T. Matsuo, How to remove MAC from DHIES, in ACISP 2004 (2004), pp. 236–247
[25] B. Libert, J.-J. Quisquater, Identity based encryption without redundancy, in ACNS 05, ed. by J. Ioanni-

dis, A. Keromytis, M. Yung. LNCS, vol. 3531 (Springer, Berlin, 2005), pp. 285–300
[26] U.M. Maurer, S. Wolf, Diffie–Hellman oracles, in CRYPTO’96, ed. by N. Koblitz. LNCS, vol. 1109

(Springer, Berlin, 1996), pp. 268–282
[27] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, The CRC Press

Series on Discrete Mathematics and Its Applications (CRC Press, Boca Raton, 1997)
[28] T. Okamoto, D. Pointcheval, The gap-problems: A new class of problems for the security of crypto-

graphic schemes, in PKC 2001, ed. by K. Kim. LNCS, vol. 1992 (Springer, Berlin, 2001), pp. 104–118
[29] T. Okamoto, D. Pointcheval, REACT: Rapid enhanced-security asymmetric cryptosystem transform, in

CT-RSA 2001, ed. by D. Naccache. LNCS, vol. 2020 (Springer, Berlin, 2001), pp. 159–175

http://eprint.iacr.org/2007/288

504 D. Cash, E. Kiltz, and V. Shoup

[30] D.H. Phan, D. Pointcheval, About the security of ciphers (semantic security and pseudo-random permu-
tations), in SAC 2004, ed. by H. Handschuh, A. Hasan. LNCS, vol. 3357 (Springer, Berlin, 2004), pp.
182–197

[31] R. Sakai, M. Kasahara, ID based cryptosystems with pairing on elliptic curve. Cryptology ePrint
Archive, Report 2003/054, 2003. http://eprint.iacr.org/

[32] V. Shoup, Lower bounds for discrete logarithms and related problems, in EUROCRYPT’97, ed. by
W. Fumy. LNCS, vol. 1233 (Springer, Berlin, 1997), pp. 256–266

[33] R. Steinfeld, J. Baek, Y. Zheng, On the necessity of strong assumptions for the security of a class of
asymmetric encryption schemes, in ACISP 2002. LNCS, vol. 2384 (Springer, Berlin, 2002), pp. 241–
256

http://eprint.iacr.org/

	The Twin Diffie-Hellman Problem and Applicationsa0
	Abstract
	Introduction
	Hashed ElGamal Encryption and its Relation to the Diffie-Hellman Problem
	The Diffie-Hellman Assumption
	The Strong DH Assumption

	The Twin Diffie-Hellman Assumptions
	A Trapdoor Test

	Applications and Results
	The Twin ElGamal Encryption Scheme
	The Twin DH Key-Exchange Protocol
	A Variant of Cramer-Shoup Encryption
	Identity-Based Encryption
	Other Applications

	A Trapdoor Test and a Proof of Theorem 1
	Definitions
	Public Key Encryption
	Symmetric Encryption
	Identity-Based Encryption
	Target Collision-Resistant Hash Functions

	Twin ElGamal Encryption
	Non-interactive Key Exchange
	Model and Security
	Security of the Twin DH Protocol

	A Variant of the Cramer-Shoup Encryption Scheme
	The (Twin) DDH Assumption
	A Variant of the Cramer-Shoup Scheme
	Relation to Cramer-Shoup

	A Variant with Shorter Ciphertexts
	A Variant with Security from the DH Assumption

	Identity-Based Encryption
	The (Twin) BDH Assumption
	Twin Boneh-Franklin

	Relation to Shoup's DH Self-corrector
	Password Authenticated Key Exchange
	Appendix A. The Proof of Security for PKEcs
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

