
J. Cryptol. (2010) 23: 281–343
DOI: 10.1007/s00145-009-9040-7

Security Against Covert Adversaries: Efficient Protocols
for Realistic Adversaries∗

Yonatan Aumann and Yehuda Lindell
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel

aumann@cs.biu.ac.il; lindell@cs.biu.ac.il

Communicated by Oded Goldreich

Received 23 October 2007 and revised 10 March 2009
Online publication 7 April 2009

Abstract. In the setting of secure multiparty computation, a set of mutually dis-
trustful parties wish to securely compute some joint function of their private inputs.
The computation should be carried out in a secure way, meaning that no coalition of
corrupted parties should be able to learn more than specified or somehow cause the re-
sult to be “incorrect.” Typically, corrupted parties are either assumed to be semi-honest
(meaning that they follow the protocol specification) or malicious (meaning that they
may deviate arbitrarily from the protocol). However, in many settings, the assumption
regarding semi-honest behavior does not suffice and security in the presence of mali-
cious adversaries is excessive and expensive to achieve.

In this paper, we introduce the notion of covert adversaries, which we believe faith-
fully models the adversarial behavior in many commercial, political, and social set-
tings. Covert adversaries have the property that they may deviate arbitrarily from the
protocol specification in an attempt to cheat, but do not wish to be “caught” doing so.
We provide a definition of security for covert adversaries and show that it is possible
to obtain highly efficient protocols that are secure against such adversaries. We stress
that in our definition, we quantify over all (possibly malicious) adversaries and do not
assume that the adversary behaves in any particular way. Rather, we guarantee that if an
adversary deviates from the protocol in a way that would enable it to “cheat” (meaning
that it can achieve something that is impossible in an ideal model where a trusted party
is used to compute the function), then the honest parties are guaranteed to detect this
cheating with good probability. We argue that this level of security is sufficient in many
settings.

Key words. Secure two-party computation, Simulation paradigm, Covert adver-
saries, Efficient constructions.

∗ An extended abstract of this work appeared in the 4th Theory of Cryptography Conference. Work sup-
ported in part by an Infrastructures Grant from the Ministry of Science, Israel. The second author was also
supported by The Israel Science Foundation (Grant No. 781/07).

© International Association for Cryptologic Research 2009

mailto:aumann@cs.biu.ac.il
mailto:lindell@cs.biu.ac.il

282 Y. Aumann and Y. Lindell

1. Introduction

1.1. Background

In the setting OUTPUT of secure multiparty computation, a set of parties with private
inputs wish to jointly compute some functionality of their inputs. Loosely speaking,
the security requirements of such a computation are that (i) nothing is learned from the
protocol other than the output (privacy), (ii) the output is distributed according to the
prescribed functionality (correctness), and (iii) parties cannot make their inputs depend
on other parties’ inputs. Secure multiparty computation forms the basis for a multitude
of tasks, including those as simple as coin-tossing and agreement, and as complex as
electronic voting, electronic auctions, electronic cash schemes, anonymous transactions,
remote game playing (a.k.a. “mental poker”), and privacy-preserving data mining.

The security requirements in the setting of multiparty computation must hold even
when some of the participating parties are adversarial. It has been shown that, with the
aid of suitable cryptographic tools, any two-party or multiparty function can be securely
computed [3,6,11,14,30], even in the presence of very strong adversarial behavior. How-
ever, the efficiency of the computation depends dramatically on the adversarial model
considered. Classically, two main categories of adversaries have been considered:

1. Malicious adversaries: these adversaries may behave arbitrarily and are not bound
in any way to following the instructions of the specified protocol. Protocols that
are secure in the malicious model provide a very strong security guarantee as hon-
est parties are “protected” irrespective of the adversarial behavior of the corrupted
parties.

2. Semi-honest adversaries: these adversaries correctly follow the protocol specifica-
tion, yet may attempt to learn additional information by analyzing the transcript of
messages received during the execution. Security in the presence of semi-honest
adversaries provides only a weak security guarantee, and is not sufficient in many
settings. Semi-honest adversarial behavior primarily models inadvertent leakage
of information, and is suitable only where participating parties essentially trust
each other, but may have other concerns.

Secure computation in the semi-honest adversary model can be carried out very ef-
ficiently, but, as mentioned, provides weak security guarantees. Regarding malicious
adversaries, it has been shown that, under suitable cryptographic assumptions, any mul-
tiparty probabilistic polynomial-time functionality can be securely computed for any
number of malicious corrupted parties [11,14]. However, this comes at a price. These
feasibility results of secure computation typically do not yield protocols that are effi-
cient enough to actually be implemented and used in practice (particularly if standard
simulation-based security is required). Their importance is more in telling us that it
is perhaps worthwhile searching for other efficient protocols, because we at least know
that a solution exists in principle. However, the unfortunate state of affairs today—many
years after these feasibility results were obtained—is that very few truly efficient pro-
tocols exist for the setting of malicious adversaries. Thus, we believe that some middle
ground is called for: an adversary model that accurately models adversarial behavior in
the real world, on the one hand, but for which efficient, secure protocols can be obtained,
on the other.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 283

1.2. Our Work—Covert Adversaries

In this work, we introduce a new adversary model that lies between the semi-honest
and malicious models. The motivation behind the definition is that in many real-world
settings, parties are willing to actively cheat (and as such are not semi-honest), but only
if they are not caught (and as such they are not arbitrarily malicious). This, we believe,
is the case in many business, financial, political and diplomatic settings, where hon-
est behavior cannot be assumed, but where the companies, institutions and individuals
involved cannot afford the embarrassment, loss of reputation, and negative press as-
sociated with being caught cheating. It is also the case, unfortunately, in many social
settings, e.g. elections for a president of the country-club. Finally, in remote game play-
ing, players may also be willing to actively cheat, but would try to avoid being caught,
or else they may be thrown out of the game. In all, we believe that this type of covert
adversarial behavior accurately models many real-world situations. Clearly, with such
adversaries, it may be the case that the risk of being caught is weighed against the ben-
efits of cheating, and it cannot be assumed that players would avoid being caught at
any price and under all circumstances. Accordingly, our definition explicitly models the
probability of catching adversarial behavior; a probability that can be tuned to the spe-
cific circumstances of the problem. In particular, we do not assume that adversaries are
only willing to risk being caught with negligible probability, but rather allow for much
higher probabilities.

The Definition Our definition of security is based on the classical ideal/real simulation
paradigm,1 and provides the guarantee that if the adversary cheats, then it will be caught
by the honest parties (with some probability). In order to understand what we mean by
this, we have to explain what we mean by “cheating.” Loosely speaking, we say that
an adversary successfully cheats if it manages to do something that is impossible in the
ideal model. Stated differently, successful cheating is behavior that cannot be simulated
in the ideal model. Thus, for example, an adversary who learns more about the honest
parties’ inputs than what is revealed by the output, has cheated. In contrast, an adversary
who uses pseudorandom coins instead of random coins (where random coins are what
are specified in the protocol) has not cheated.

We are now ready to informally describe the guarantee provided by our definition.
Let 0 < ε ≤ 1 be a value (called the deterrence factor). Then, any attempt to cheat by
a real adversary A is detected by the honest parties with probability at least ε. This is
formalized by allowing the ideal-model simulator S to sometimes “fail” (meaning that
the output distribution of the real protocol execution cannot be simulated in the standard
ideal model for secure computation), with the requirement that in a real execution with
A the honest parties would detect cheating with probability that is at least ε times the
probability that the simulator fails. Note that when an adversary follows a strategy that

1 According to this paradigm, security is formalized by comparing the execution of a real protocol to an
ideal execution where a trusted party receives the parties’ inputs, computes the function and returns the out-
puts. More formally, a protocol is secure if for every real-model adversary A attacking the protocol there
exists an ideal-model adversary/simulator S (interacting in a world where a trusted party computes the func-
tion) such that the output distribution of the honest parties and S in an ideal execution is computationally
indistinguishable from the output distribution of the honest parties and A in a real execution of the protocol.
See Sect. 2 for more details.

284 Y. Aumann and Y. Lindell

can result in a successful cheat with some probability p, the honest parties are guaran-
teed to catch the adversary cheating with probability at least ε · p. Thus, provided that
ε is sufficiently large, an adversary that wishes not to be caught cheating, will refrain
from attempting to cheat, lest it be caught doing so. Clearly, the higher the value of ε,
the greater the probability adversarial behavior is caught and thus the greater the deter-
rent to cheat. We therefore call our notion security in the presence of covert adversaries
with ε-deterrent. Note that the security guarantee does not preclude successful cheating.
Indeed, if the adversary decides to cheat then it may gain access to the other parties’
private information or bias the result of the computation. The only guarantee is that if
it attempts to cheat, then there is a fair chance that it will be caught doing so. This is in
contrast to standard definitions, where absolute privacy and security are guaranteed, for
the given type of adversary. We remark that by setting ε = 1, our definition can be used
to capture a requirement that cheating parties are always caught.

Further Details on the Definition The above intuitive notion can be interpreted in a
number of ways. We present three different formulations that form a strict hierarchy
(i.e., the first definition is weaker than the second which is weaker than the third). We
briefly describe the three definitions here (these descriptions are not complete and are
only intended to give a flavor of the full definitions):

1. Failed-simulation formulation: In this definition, the ideal-model simulator is al-
lowed to sometimes “fail” in the sense that the output distribution generated in
the ideal model need not always be indistinguishable from the output distribution
in a real protocol execution. Rather, it is guaranteed that if these output distribu-
tions can be distinguished with some probability Δ, then the honest parties will
detect cheating by a corrupted party with probability at least ε · Δ, where ε is
the deterrence factor. On an intuitive level, this captures what we desire because
executions that are successfully simulated are executions in which the adversary
does not successfully cheat, whereas in failed simulations the adversary may have
successfully cheated. The important point is that the probability that the honest
parties will detect cheating is related (by ε) to the probability that the simulator
may fail in its simulation.

2. Explicit-cheat formulation: In this definition, the ideal-model adversary/simulator
is explicitly given the ability to cheat. Specifically, the ideal model is modified so
that a special cheat instruction can be sent by the adversary to the trusted party.
Upon receiving such an instruction, the trusted party hands all the honest parties’
inputs to the adversary. Then, it tosses coins and with probability ε announces to
the honest parties that cheating has taken place (by sending the message corruptedi

where party Pi is the corrupted party that sent the cheat instruction). However,
with probability 1 − ε, the trusted party does not announce that cheating has taken
place, and so the adversary gets off scot-free. Observe that in the ideal model the
adversary can always cheat. However, as required, if it chooses to do so it is guar-
anteed to be caught with probability ε. Here, the ideal-model simulator is required
to generate an output distribution that is computationally indistinguishable from a
real execution (but in the modified ideal model and not the standard one).

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 285

3. Strong explicit-cheat formulation: Here we make a small modification to the ideal
model of the previous definition so that the adversary only receives the hon-
est parties’ inputs in the case that the honest parties do not detect its cheating.
Specifically, if the trusted party announces that cheating has taken place, then
the adversary learns absolutely nothing. This is stronger than the previous defini-
tion because when the adversary attempts to cheat, it must take the risk of being
caught and gaining nothing. Thus the deterrence is higher. (Metaphorically speak-
ing, there is less deterrence to not rob a bank if when you are caught you are
allowed to keep the stolen money.)

In Sect. 3 we present all three definitions, and also discuss the relationships between
them and the standard definitions of security in the presence of semi-honest and mali-
cious adversaries. We also explain why we chose these specific formulations over other
possibilities.

Composition An important security property, and one that is guaranteed by the stan-
dard definition of security that is based on the ideal/real simulation paradigm, is that of
modular sequential composition. Loosely speaking, this means that if a secure protocol
ρ is used as a subprotocol inside some larger protocol π , then it suffices to analyze π in
a model where instead of running ρ the parties send their inputs to ρ to a trusted party
who carries out the computation for them (the fact that “sequential” composition is con-
sidered means that when ρ is being executed, no other subprotocols are executed). Such
composition theorems significantly simplify proofs of security (making them “mod-
ular”) and are also security goals within themselves (guaranteeing a higher level of
security). We prove modular sequential composition theorems for the “explicit-cheat”
and “strong explicit-cheat” definitions, and a weaker sequential composition theorem
for the “failed-simulation” definition. (The weaker version states that if you run secure
protocols sequentially, then their security properties are preserved. Thus, this provides
appropriate security guarantees for running protocols sequentially, but does not allow
modular construction of larger protocol π using a subprotocol ρ that has already been
proven secure. We did not succeed in proving a modular composition theorem for this
definition, but also do not have a counter-example.2 We leave the existence of a modular
sequential composition for the failed-simulation definition as an open question.)

Protocol Constructions As mentioned, the aim of this work is to provide a definition of
security for which it is possible to construct highly efficient protocols. We demonstrate
this by presenting a generic protocol for secure two-party computation in our model that
is only mildly less efficient than the protocol of Yao [30], which is secure only for semi-
honest adversaries. The first step of our construction is a protocol for oblivious transfer
that is based on homomorphic encryption schemes.3 Highly efficient protocols under
this assumption are known [1,21]. However, these protocols do not achieve simulation-
based security. Rather, only privacy is guaranteed (with the plus that privacy is preserved

2 In previous versions of this work, we stated that we have a modular sequential composition theorem for
all of our definitions. We retract that statement here.

3 We remark that there is no need to show “feasibility” here because any protocol that is secure in the
presence of malicious adversaries is secure in the presence of covert adversaries (with any ε). Thus, our focus
is on constructing protocols that are highly efficient and not on using general assumptions.

286 Y. Aumann and Y. Lindell

even in the presence of fully malicious adversaries). We prove the following informally
stated theorem:

Theorem 1.1. Let ε = 1 − 1
k

where k = poly(n) and n is the security parameter.
Assuming the existence of homomorphic encryption schemes, there exists an oblivious
transfer protocol that is secure in the presence of covert adversaries with ε-deterrent,
has four rounds of communication and requires O(k) homomorphic encryption opera-
tions.

We remark that the constant hidden inside the O notation for O(k) is very small (to be
exact, the protocol requires the generation of 2k pairs of encryption keys, and carrying
out 2k encryptions, 2 homomorphic operations and 1 decryption). When setting ε = 1/2
we have k = 2 and thus the protocol is highly efficient. (To compare, the analogous pro-
tocols that achieve only privacy without simulation require generating one encryption
key, carrying out one encryption and one decryption, and computing two homomorphic
operations. Thus our protocol is about four times slower.) We also show that when many
oblivious transfers are run simultaneously, efficiency can be further improved because
the generation of 2k pairs of encryption keys may be carried out only once.

Having constructed an oblivious transfer protocol that meets our definition, we use it
in the protocol of Yao [30] in order to obtain efficient general two-party computation.
We modify Yao’s protocol so that a number � of garbled circuits are sent, and then all
but one are opened in order to check that they were constructed correctly (this follows
the folklore cut-and-choose methodology for boosting the security of Yao’s protocol
for adversaries that may not be semi-honest). In addition, as it was pointed out in [22],
when dealing with malicious adversaries it is necessary to modify the circuit so that each
input bit is “split” into a number of random shares (see Sect. 6 for a full explanation as
to why this is necessary). This modification has a significant effect on efficiency because
an oblivious transfer is needed for every input bit. Thus, when each bit is split into m

shares, we have that m oblivious transfers are needed for each input bit. We present
a protocol for general secure two-party computation for which different values of �

and m can be plugged in (recall that � denotes the number of garbled circuits that are
constructed and sent, and m denotes the number of oblivious transfers per input bit). Our
protocol achieves ε-deterrent for ε = (1 − �−1)(1 − 2−m+1). Thus, in order to achieve
a deterrent of ε = 1/2 it suffices to take � = m = 3. For a higher deterrent of ε ≈ 9/10
it is possible to take � = m = 10. We prove the following informally stated theorem:

Theorem 1.2. Assume the existence of one-way functions and secure oblivious trans-
fer. Then, for every � and m and every probabilistic polynomial-time function f , there
exists a protocol π that securely computes f in the presence of covert adversaries with
ε-deterrent for ε=(1−�−1)(1−2−m+1). Furthermore, the protocol π has a constant
number of rounds, requires m oblivious transfers per input bit, and has communication
complexity O(� · n · |C|) excluding the cost of the oblivious transfers, where |C| is the
size of the circuit computing f and n is the security parameter.

It is sufficient for the oblivious transfer protocol referred to in Theorem 1.2 to be
secure in the presence of covert adversaries (with the same ε achieved by protocol π).

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 287

Thus, a protocol for general two-party computation with ε = 1/2 can be constructed
by combining Theorems 1.1 and 1.2, and the result is a protocol that is only a constant
factor slower than the original protocol of Yao that is only secure for semi-honest adver-
saries. (Note that the protocol of Yao [30] has communication complexity O(n|C|) and
requires one oblivious transfer per input bit.) Our protocol construction is for the case of
non-reactive functionalities where the computation consists of a single stage in which
parties first provide inputs and then receive their specified outputs. The more general
case of reactive computation (where the computation consists of a number of stages in
which inputs are provided and outputs are received) can be obtained in straightforward
way by making modifications to the circuit as described in [11, Chap. 7].

We view our constructions as a “proof of concept” that highly efficient protocols are
achievable in this model, and leave the construction of such protocols for specific tasks
of interest for future work.

Comparison to Efficient Protocols in the Malicious Model As we have mentioned,
achieving secure computation in the presence of malicious adversaries seems to be sig-
nificantly harder than for covert adversaries as introduced here. In order to demonstrate
this, we compare the complexity of our protocol to the best-known general protocols for
two-party computation in the presence of malicious adversaries. Recently, two efficient
protocols for general two-party computation in the presence of malicious adversaries
were presented [20,23]. The protocol of [20] achieves universal composability under
the decisional composite residuosity and strong RSA assumptions and assumes a com-
mon reference string. The protocol of [23] can be constructed under more general as-
sumptions and is secure in the plain model, achieving stand-alone security. The protocol
of [20] requires O(|C|) public-key operations and bandwidth of O(n · |C|). Thus, for
circuits that are not very small, the computational overhead is prohibitive (and signifi-
cantly greater than for our protocol where for ε = 1/2 a constant number of public-key
operations is needed per input bit irrespective of the size of the circuit). The complexity
of the protocol of [23] is comparable to ours with respect to public-key operations, but
requires symmetric operations and bandwidth on the order of O(sn|C| + s2k) where k

is the length of the input, n is the (computational) security parameter and s is a statisti-
cal security parameter (currently s needs to be set at least 680 to achieve a reasonable
error probability but it is conjectured that this can be reduced to 160). Thus, once again,
our protocol is much more efficient for circuits that are not very small.

1.3. Related Work

The idea of allowing the adversary to cheat as long as it will be detected was first
considered by [10] who defined a property called t-detectability; loosely speaking, a
protocol fulfilling this property provides the guarantee that no coalition of t parties can
cheat without being caught. The work of [10] differs to ours in that (a) they consider the
setting of an honest majority, and (b) their definition is not simulation-based. Another
closely related work to ours is that of [5] which considered honest-looking adversaries.
Such adversaries may deviate arbitrarily from the protocol specification, but only if this
deviation cannot be detected. Our definition differs from that of [5] in a number of im-
portant ways. First, our definition provides security guarantees even for adversaries that
are willing to be caught with high probability. Thus, we do not assume anything about

288 Y. Aumann and Y. Lindell

the adversary’s willingness or lack of willingness to be caught. Second, we place the
onus of detecting any cheating by an adversary on the protocol. This is of importance
because the fact that an adversary generates messages that are distributed differently to
an honest party does not mean that the honest parties can or will detect this. (In order
to see this, first note that the honest parties may not have the appropriate distinguisher.
Second, the result of any single execution may not be enough to detect cheating. For
example, if the protocol tells an honest party to send a random bit and the adversary
always sends the bit 1, then the honest parties cannot deduce that the adversary is cheat-
ing in any given execution because an honest party also sends the bit 1 with probability
1/2.) Thus, in our formulation, the protocol specification itself has instructions that in-
clude outputting the fact that “party Pi has cheated.” We remark also that our motivation
and that of [5] is completely different: they considered a more stringent setting where
all parties are either malicious or honest-looking. In contrast, we consider a relaxation
of the adversary model (where parties are either fully honest or covert) with the aim of
obtaining more efficient protocols.

The idea of allowing an adversary to cheat with non-negligible probability as long as
it will be caught with good probability has been mentioned many times in the literature;
see [19,24] for just two examples. We stress, however, that none of these works formal-
ized this idea. Furthermore, our experience in proving our protocol secure is that simple
applications of cut-and-choose do not meet our definition (and there are actual attacks
that can be carried out on the cut-and-choose technique used in [24], for example). An-
other approach to obtaining efficient protocols is to consider definitions of security that
are weaker in the sense that they do not follow the simulation paradigm; see [17] for
just one example. In contrast, our approach is to remain within the ideal/real simulation
paradigm, thereby preserving the well-known advantages of this definitional paradigm.

We conclude by remarking that the works on covert secure two-party and multiparty
computation of [7,29] have no connection with this work; those works consider stegano-
graphic secure computation and so it is the computation that is covert, whereas in our
work it is the adversarial behavior that is covert.

1.4. Organization

In Sect. 2 we review the standard definitions of secure two-party computation and in
Sect. 3 we present formal definitions for the notion of security in the presence of covert
adversaries. We present three formulations of this notion and prove relations between
the different formulations. In addition, we show that our definitions fall in between
malicious and semi-honest security (i.e., security in the presence of malicious adver-
saries implies security in the presence of covert adversaries for any ε, and security in
the presence of covert adversaries with ε > 1/poly(n) implies security in the presence
of semi-honest adversaries). In Sect. 4 we prove composition theorems for all three of
our formulations of security in the presence of covert adversaries. We then proceed to
construct efficient protocols under the strongest of our three definitions. In Sect. 5 we
construct protocols for oblivious transfer (the basic protocol is given in Sect. 5.1 and
extensions in Sect. 5.2). Then in Sect. 6 we present our protocol for general two-party
computation and prove its security.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 289

2. Preliminaries and Standard Definitions

2.1. Preliminaries

A function μ(·) is negligible in n, or just negligible, if for every positive polynomial
p(·) and all sufficiently large n’s it holds that μ(n) < 1/p(n). A probability ensemble
X = {X(a,n)}a∈{0,1}∗;n∈N is an infinite sequence of random variables indexed by a and
n ∈ N. (The value a will represent the parties’ inputs and n the security parameter.) Two
distribution ensembles X = {X(a,n)}a∈{0,1}∗;n∈N and Y = {Y(a,n)}a∈{0,1}∗;n∈N are

said to be computationally indistinguishable, denoted X
c≡ Y , if for every non-uniform

polynomial-time algorithm D there exists a negligible function μ(·) such that for every
a ∈ {0,1}∗ and every n ∈ N,

∣
∣Pr

[

D
(

X(a,n)
) = 1

] − Pr
[

D
(

Y(a,n)
) = 1

]∣
∣ ≤ μ(n).

All parties are assumed to run in time that is polynomial in the security parameter.
(Formally, each party has a security parameter tape upon which that value 1n is written.
Then the party is polynomial in the input on this tape. We note that this means that a
party may not even be able to read its entire input, as would occur in the case that its
input is longer than its overall running time.)

2.2. Secure Multiparty Computation—Standard Definition

In this section we briefly present the standard definition for secure multiparty computa-
tion and refer to [11, Chap. 7] for more details and motivating discussion. The following
description and definition is based on [11], which in turn follows [2,4,15,25].

Multiparty Computation A multiparty protocol problem is cast by specifying a ran-
dom process that maps sets of m-inputs to sets of m-outputs (one for each party).
We will assume that the number of parties m is fixed, but as noted in [11], this can
easily be generalized to the case that m is a parameter. We refer to such a process
as a functionality and denote it f : ({0,1}∗)m → ({0,1}∗)m, where f = (f1, . . . , fm).
That is, for every vector of inputs x = (x1, . . . , xm), the output-vector is a random
variable y = (f1(x), . . . , fm(x)) ranging over vectors of strings. The ith party Pi ,
with input xi , wishes to obtain fi(x). We sometimes denote such a functionality by
(x) �→ (f1(x), . . . , fm(x)). Thus, for example, the oblivious transfer functionality is
denoted by ((x0, x1), σ) �→ (λ, xσ), where (x0, x1) is the first party’s input, σ is the
second party’s input, and λ denotes the empty string (meaning that the first party has no
output). We assume the existence of special symbols abort and corrupted that are not in
the range of f (these have special meaning, as will be seen later).

Adversarial Behavior Loosely speaking, the aim of a secure multiparty protocol is
to protect honest parties against dishonest behavior by other parties. In this section,
we present the definition for malicious adversaries who control some subset of the
parties and may instruct them to arbitrarily deviate from the specified protocol. We also
consider static corruptions, meaning that the set of corrupted parties is fixed at the onset.

290 Y. Aumann and Y. Lindell

Security of Protocols (Informal) The security of a protocol is analyzed by compar-
ing what an adversary can do in a real protocol execution to what it can do in an ideal
scenario that is secure by definition. This is formalized by considering an ideal com-
putation involving an incorruptible trusted third party to whom the parties send their
inputs. The trusted party computes the functionality on the inputs and returns to each
party its respective output. Loosely speaking, a protocol is secure if any adversary in-
teracting in the real protocol (where no trusted third party exists) can do no more harm
than if it was involved in the above-described ideal computation. One technical detail
that arises when considering the setting of no honest majority is that it is impossible to
achieve fairness or guaranteed output delivery. That is, it is possible for the adversary
to prevent the honest parties from receiving outputs. Furthermore, it may even be pos-
sible for the adversary to receive output while the honest parties do not. We consider
malicious adversaries and static corruptions in all of our definitions in this paper.

Execution in the Ideal Model As we have mentioned, some malicious behavior cannot
be prevented (for example, early aborting). This behavior is therefore incorporated into
the ideal model. Let the set of parties be P1, . . . ,Pm and let I ⊆ [m] denote the indices
of the corrupted parties, controlled by an adversary A. An ideal execution proceeds as
follows:

Inputs: Each party obtains an input; the ith party’s input is denoted xi . The adversary
A receives an auxiliary input denoted z.

Send inputs to trusted party: Any honest party Pj sends its received input xj to the
trusted party. The corrupted parties controlled by A may either abort (by replacing
the input xi with a special aborti message), send their received input, or send some
other input of the same length to the trusted party. This decision is made by A and
may depend on the values xi for i ∈ I and its auxiliary input z. Denote the vector of
inputs sent to the trusted party by w (note that w does not necessarily equal x).
If the trusted party receives an input of the form aborti for some i ∈ I , it sends aborti
to all parties and the ideal execution terminates. (If it receives aborti for more than
one i, then it takes any arbitrary one, say the smallest i, and ignores all others.)
Otherwise, the execution proceeds to the next step.

Trusted party sends outputs to adversary: The trusted party computes (f1(w), . . . ,
fm(w)) and sends fi(w) to party Pi , for all i ∈ I (i.e., to all corrupted parties).

Adversary instructs trusted party to continue or halt: A sends either continue or
aborti to the trusted party (for some i ∈ I). If it sends continue, the trusted party
sends fj (w) to party Pj , for all j /∈ I (i.e., to all honest parties). Otherwise, if it
sends aborti , the trusted party sends aborti to all parties Pj for j /∈ I .

Outputs: An honest party always outputs the message it obtained from the trusted
party. The corrupted parties output nothing. The adversary A outputs any arbitrary
(probabilistic polynomial-time computable) function of the initial inputs {xi}i∈I , the
auxiliary input z, and the messages {fi(w)}i∈I obtained from the trusted party.

This ideal model is different from that of [11] in that in the case of an “abort,” the honest
parties output aborti and not a ⊥ symbol. This means that the honest parties know the
identity of the corrupted party who causes the abort. This is achieved by most multiparty
protocols, including that of [14], but not all (e.g., the protocol of [16] does not meet this
requirement).

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 291

Let f : ({0,1}∗)m → ({0,1}∗)m be an m-party functionality, where f = (f1, . . . ,

fm), let A be a non-uniform probabilistic polynomial-time machine, and let I ⊆ [m]
be the set of corrupted parties. Then, the ideal execution of f on inputs x, auxiliary
input z to A and security parameter n, denoted IDEALf,A(z),I (x, n), is defined as the
output vector of the honest parties and the adversary A from the above ideal execution.

Execution in the Real Model We next consider the real model in which a real m-party
protocol π is executed (and there exists no trusted third party). In this case, the adversary
A sends all messages in place of the corrupted parties, and may follow an arbitrary
polynomial-time strategy. In contrast, the honest parties follow the instructions of π . As
is standard, we assume that the parties are connected via authenticated channels; this
means that the adversary can see all messages sent between parties, but cannot modify
them. As default, we also assume synchronous network and a broadcast channel (or
public-key infrastructure for running authenticated Byzantine agreement [8]). This is the
basic real model that is typically defined; we refer the reader to [11, Chap. 7] for more
details. We stress that our definitions below for covert adversaries can be applied to any
specification of a real model (synchronous or asynchronous communication, broadcast
channel or not, and so on). We therefore take the basic model here, but this is no way
limits our definitions.

Let f be as above and let π be an m-party protocol for computing f . Furthermore,
let A be a non-uniform probabilistic polynomial-time machine and let I be the set of
corrupted parties. Then, the real execution of π on inputs x, auxiliary input z to A and
security parameter n, denoted REALπ,A(z),I (x, n), is defined as the output vector of the
honest parties and the adversary A from the real execution of π .

Security as Emulation of a Real Execution in the Ideal Model Having defined the
ideal and real models, we can now define security of protocols. Loosely speaking, the
definition asserts that a secure party protocol (in the real model) emulates the ideal
model (in which a trusted party exists). This is formulated by saying that adversaries
in the ideal model are able to simulate executions of the real-model protocol. We will
consider executions where all inputs are of the same length (see discussion in [11]), and
will therefore say that a vector x = (x1, . . . , xm) is balanced if for every i and j it holds
that |xi | = |xj |.

Definition 2.1 (Secure multiparty computation). Let f and π be as above. Protocol π

is said to securely compute f with abort in the presence of malicious adversaries if for
every non-uniform probabilistic polynomial-time adversary A for the real model, there
exists a non-uniform probabilistic polynomial-time adversary S for the ideal model,
such that for every I ⊆ [m],

{

IDEALf,S(z),I (x, n)
}

x,z∈({0,1}∗)m+1;n∈N

c≡ {

REALπ,A(z),I (x, n)
}

x,z∈({0,1}∗)m+1;n∈N

where x is a balanced vector.

We note that the above definition assumes that the parties (and adversary) know the
input lengths (this can be seen from the requirement that x is balanced and so all the

292 Y. Aumann and Y. Lindell

inputs in the vector of inputs are of the same length).4 We remark that some restriction
on the input lengths is unavoidable; see [11, Sect. 7.1] for discussion.

2.3. Functionalities that Provide Output to a Single Party

In the standard definition of secure computation, both parties receive output and these
outputs may be different. However, the presentation of our two-party protocol is far
simpler if we assume that only party P2 receives output. We will show now that this
suffices for the general case. That is, we claim that any protocol that can be used to
securely compute any efficient functionality f (x, y) where only P2 receives output, can
be used to securely compute any efficient functionality f = (f1, f2) where party P1
receives f1(x1, x2) and party P2 receives f2(x1, x2). For simplicity, we will assume that
the length of the output of f1(x1, x2) is at most n, where n is the security parameter.
This can be achieved by simply taking n to be larger in case it is necessary.

Let f = (f1, f2) be a functionality. We wish to construct a secure protocol in which
P1 receives f1(x1, x2) and P2 receives f2(x1, x2). As a building block we use a proto-
col for computing any efficient functionality with the limitation that only P2 receives
output. Let r, a, b ∈R {0,1}n be randomly chosen strings. Then, in addition to x1, party
P1’s input includes the elements r , a and b. Furthermore, define a functionality g (that
has only a single output) as follows:

g
(

(r, a, b, x1), x2
) = (

α,β,f2(x1, x2)
)

where α = r + f1(x1, x2), β = a · α + b, and the arithmetic operations are defined
over GF[2n]. Note that α is a one-time pad encryption of P1’s output f1(x, y), and β

is an information-theoretic message authentication tag of α (specifically, aα + b is a
pairwise-independent hash of α). Now, the parties compute the functionality g, using
a secure protocol in which only P2 receives output. Following this, P2 sends the pair
(α,β) to P1. Party P1 checks that β = a · α + b; if yes, it outputs α − r , and otherwise
it outputs abort2.

It is easy to see that P2 learns nothing about P1’s output f1(x1, x2), and that it cannot
alter the output that P1 will receive (beyond causing it to abort), except with probability
2−n. We remark that it is also straightforward to construct a simulator for the above pro-
tocol. Applying the composition theorem of [4] (for standard security) or Theorem 4.2
(for covert adversaries—to be defined below), we have the following proposition:

Proposition 2.2. Assume that there exists a protocol for securely computing any prob-
abilistic polynomial-time functionality in which only a single party receives output.
Then, there exists a protocol for securely computing any probabilistic polynomial-time
functionality in which both parties receive output. This holds also for security in the
presence of covert adversaries for Definitions 3.3 and 3.4.

We remark that the circuit for computing g is only mildly larger than that for com-
puting f . Thus, the construction above is also efficient and has only a mild effect on the

4 In the case that no parties are corrupted, we assume that the adversary receives the length of the inputs
as part of its auxiliary input z.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 293

complexity of the secure protocol (assuming that the complexity of the original proto-
col, where only P2 receives output, is proportional to the size of the circuit computing
f as is the case for our protocol below).

3. Definitions—Secure Computation with Covert Adversaries

3.1. Motivation

The standard definition of security (see Definition 2.1) is such that all possible
(polynomial-time) adversarial behavior is simulatable. Here, in contrast, we wish to
model the situation that parties may successfully cheat. However, if they do so, they
are likely to be caught. There are a number of ways of defining this notion. In order to
motivate ours, we begin with a somewhat naive implementation of the notion, and show
its shortcoming.

First Attempt Define an adversary to be covert if the distribution over the messages
that it sends during an execution is computationally indistinguishable from the distrib-
ution over the messages that an honest party would send. Then, quantify over all covert
adversaries A for the real world (rather than all adversaries).5 A number of problems
arise with this definition.

• The fact that the distribution generated by the adversary can be distinguished from
the distribution generated by honest parties does not mean that the honest parties
can detect this in any specific execution. Consider for example a coin-tossing pro-
tocol where the honest distribution gives even probabilities to 0 and 1, while the
adversary gives double the probability to the 1 outcome. Clearly, the distributions
differ. However, in any given execution, even an outcome of 1 does not provide the
honest players with sufficient evidence of any wrong-doing. Thus, it is not suffi-
cient that the distributions differ. Rather, one needs to be able to detect cheating in
any given execution.

• The fact that the distributions differ does not necessarily imply that the honest
parties have an efficient distinguisher. Furthermore, in order to guarantee that the
honest parties detect the cheating, they would have to analyze all traffic during
an execution. However, this analysis cannot be part of the protocol because then
the distinguishers used by the honest parties would be known (and potentially by-
passed).

• Another problem is that, as mentioned in the introduction, adversaries may be will-
ing to risk being caught with more than negligible probability, say 10−6. With such
an adversary, the definition would provide no security guarantee. In particular, the
adversary may be able to always learn all parties’ inputs, and risk being caught in
one run in a million.

5 We remark that this is the conceptual approach taken by [5], and that there are important choices that
arise when attempting to formalize the approach. In any case, as we have mentioned, the work [5] differs
greatly because its aim was to model all parties as somewhat adversarial.

294 Y. Aumann and Y. Lindell

Second Attempt To solve the aforementioned problems, we first require that the pro-
tocol itself be responsible for detecting cheating. Specifically, in the case that a party Pi

attempts to cheat, the protocol may instruct the honest parties to output a message say-
ing that “party Pi has cheated” (we require that this only happens if Pi indeed cheated).
This solves the first two problems. To solve the third problem, we explicitly quantify
the probability that an adversary is caught cheating. Roughly, given a parameter ε, a
protocol is said to be secure against covert adversaries with ε-deterrent if any cheating
adversary will necessarily be caught with probability at least ε.

This definition captures the spirit of what we want, but is still problematic. To illus-
trate the problem, consider an adversary that plays honestly with probability 0.99, and
cheats otherwise. Such an adversary can only ever be caught with probability 0.01 (be-
cause otherwise it is honest). However, when ε = 1/2 for example, such an adversary
must be caught with probability 0.5, which is impossible. We therefore conclude that an
absolute parameter cannot be used, and the probability of catching the adversary must
be related to the probability that it cheats.

Final Definition We thus arrive at the following approach. First, as mentioned, we re-
quire that the protocol itself be responsible for detecting cheating. That is, if a party
Pi successfully cheats, then with good probability (ε), the honest parties in the protocol
will all receive a message that “Pi cheated.” Second, we do not quantify only over adver-
saries that are covert (i.e., those that are not detected cheating by the protocol). Rather,
we allow all possible adversaries, even completely malicious ones. Then, we require ei-
ther that this malicious behavior can be successfully simulated (as in Definition 2.1), or
that the honest parties will receive a message that cheating has been detected, and this
happens with probability at least ε times the probability that successful cheating takes
place. We stress that when the adversary chooses to cheat, it may actually learn secret
information or cause some other damage. However, since it is guaranteed that such a
strategy will likely be caught, there is strong motivation to refrain from doing so.

As it turns out, the above intuition can be formalized in three different ways, which
form a hierarchy of security guarantees. In practice, the implementor should choose
the formulation that best suites her needs, and for which sufficiently efficient protocols
exists. All three definitions are based on the ideal/real simulation paradigm, as presented
in Sect. 2. In each definition, the only change is to the ideal model; the real model is
the same as for standard definitions of security for malicious adversaries (see Sect. 2.2).
We now present the definitions in order of security, starting with the weakest (i.e., least
secure) one.

3.2. Version 1: Failed-Simulation Formulation

The first formulation we present is based on allowing the simulator to fail sometimes,
where by “fail” we mean that its output distribution is not indistinguishable from the real
one. This corresponds to an event of successful cheating. However, we guarantee that
the probability that the adversary is caught cheating is at least ε times the probability
that the simulator fails. The details follow.

Recall that we call a vector balanced if all of its items are of the same length. In
addition, we denote the output vector of the honest parties and adversary A in an ideal
execution of f by IDEALf,A(z),I (x, n), where x is the vector of inputs, z is the auxiliary

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 295

input to A, I is the set of corrupted parties, and n is the security parameter, and denote
the analogous outputs in a real execution of π by REALπ,A(z),I (x, n). We begin by
defining what it means to “detect cheating”:

Definition 3.1. Let π be an m-party protocol, let A be an adversary, and let I be the
index set of the corrupted parties. A party Pj is said to detect cheating in π if its output
in π is corruptedi ; this event is denoted OUTPUTj (REALπ,A(z),I (x)) = corruptedi . The
protocol π is called detection accurate if for every j, k /∈ I , the probability that Pj

outputs corruptedk is negligible.

We require that all protocols be detection accurate (meaning that only corrupted par-
ties can be “caught cheating”). This is crucial because otherwise a party that is detected
cheating can just claim that it is due to a protocol anomaly and not because it really
cheated. The definition follows:

Definition 3.2 (Security—failed-simulation formulation). Let f and π be as in Defin-
ition 2.1, and let ε : N → [0,1] be a function. Protocol π is said to securely compute f

in the presence of covert adversaries with ε-deterrent if it is detection accurate and if for
every non-uniform probabilistic polynomial-time adversary A for the real model, there
exists a non-uniform probabilistic polynomial-time adversary S for the ideal model
such that for every I ⊆ [m], every balanced vector x ∈ ({0,1}∗)m, every auxiliary in-
put z ∈ {0,1}∗, and every non-uniform polynomial-time distinguisher D, there exists a
negligible function μ(·) such that

Pr
[∃i ∈ I ∀j /∈ I : OUTPUTj

(

REALπ,A(z),I (x, n)
) = corruptedi

]

≥ ε(n)·∣∣Pr
[

D
(

IDEALf,S(z),I (x, n)
) = 1

]−Pr
[

D
(

REALπ,A(z),I (x, n)
) = 1

]∣
∣ − μ(n).

The parameter ε indicates the probability that successful adversarial behavior is de-
tected (observe that when such a detection occurs, all honest parties must detect the
same corrupted party). Clearly, the closer ε is to one, the higher the deterrence to cheat,
and hence the level of security, assuming covert adversaries. Note that the adversary can
decide to never be detected cheating, in which case the IDEAL and REAL distributions
are guaranteed to be computationally indistinguishable, as in the standard definition of
security. In contrast, it can choose to cheat with some noticeable probability, in which
case the IDEAL and REAL output distribution may be distinguishable (while guarantee-
ing that the adversary is caught with good probability). This idea of allowing the ideal
and real models to not be fully indistinguishable in order to model “allowed cheating”
was used in [12].

We stress that the definition does not require the simulator to “fail” with some prob-
ability. Rather, it is allowed to fail with a probability that is at most 1/ε times the prob-
ability that the adversary is caught cheating. As we shall see, this is what enables us to
construct highly efficient protocols. We also remark that due to the required detection
accuracy, the simulator cannot fail when the adversary behaves in a fully honest-looking
manner (because in such a case, no honest party will output corruptedi). Thus, security
is always preserved in the presence of adversaries that are willing to cheat arbitrarily, as
long as their cheating is not detected.

296 Y. Aumann and Y. Lindell

We remark that the above definition (as with the ones that follow) requires that all
honest parties agree on the identity of the cheating party Pi . This is important for en-
suring that a party that cheats can be “punished” (if the honest different parties disagree
about who cheated, then no action can be taken against the cheating party).

3.3. Version 2: Explicit-Cheat Formulation

The main drawback of Definition 3.2 is that it does not rule out the ability of the adver-
sary to make its cheat strategy (implicitly) depend on the honest parties’ inputs or on the
output. Specifically, it is possible that the adversary can act in a way that for some set of
honest party inputs its behavior is like that of an honest party, while for another set of
honest party inputs its behavior achieves successful cheating. For example, in oblivious
transfer, a corrupted sender may carry out a strategy whereby if the receiver has input bit
σ = 0 then the protocol terminates as with an honest sender, and if the receiver has input
bit σ = 1 then the protocol terminates with the receiver detecting cheating. (Some nat-
ural protocols have this property.) In order to see that this phenomenon is not ruled out
by Definition 3.2, observe that the probability that an honest party outputs corruptedi

may be different for every x. Thus, in particular, the adversary’s strategy may be such
that for some inputs this probability is high and for others it is low. This phenomenon is
undesirable since there may be honest parties’ inputs for which it is more “worthwhile”
for the adversary to risk being caught. Therefore, it may run a strategy that results in po-
tentially successful cheating only when the honest parties have such worthwhile inputs.
We therefore wish to force the adversary to explicitly decide whether or not to cheat,
and have this decision be independent of the honest parties’ inputs.

Another drawback of Definition 3.2 is that there is no explicit partition of the prob-
ability space of the ideal-model executions into “successful” and “unsuccessful” sim-
ulations (i.e., the definition does not mandate the existence of a subspace such that
executions inside the subspace have the property that the honest parties detect cheating
with probability ε, while outside of the subspace full security holds). Thus, there is no
guarantee that the executions in which the honest parties detect cheating are fully cor-
related with the executions in which the adversary’s behavior cannot be simulated. It is
not clear that this is essential, but it is intuitively appealing (this notion is reminiscent
of the fraction version of knowledge complexity in [13]). As more evidence that this
drawback is main aesthetic, we note that honest parties cannot detect cheating when
the corrupted parties behave honestly, because this would contradict the requirement
of detection accuracy in Definition 3.1. Thus, there must be some correlation between
unsuccessful simulations and the event that honest parties output corrupted.

The above discussion brings us to an alternate definition, which is based on redefin-
ing the ideal functionality so as to explicitly include the option of cheating. Aside from
overcoming the drawbacks described above, this alternate formulation has two addi-
tional advantages. First, it makes the security guarantees that are achieved more explicit.
Second, it makes it easy to prove a sequential composition theorem (see below).

We modify the ideal model by adding new instructions that the adversary can send to
the trusted party. Recall that in the standard ideal model, the adversary can send a special
aborti message to the trusted party, resulting in the honest parties receiving aborti as
output. In the ideal model for the explicit-cheat formulation for covert adversaries, the
adversary can send the following additional special instructions:

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 297

• Special input corruptedi : If the ideal-model adversary sends corruptedi instead of
an input, the trusted party sends corruptedi to all honest parties and halts. This en-
ables the simulation of behavior by a real adversary that always results in detected
cheating. (It is not essential to have this special input, but it sometimes makes
proving security easier.)

• Special input cheati : If the ideal-model adversary sends cheati instead of an in-
put, the trusted party hands it all of the honest parties’ inputs. Then, the trusted
party tosses coins and with probability ε determines that this “cheat strategy” by
Pi was detected, and with probability 1 − ε determines that it was not detected.
If it was detected, the trusted party sends corruptedi to all honest parties. If it was
not detected, the trusted party gives the ideal-model adversary the ability to set the
outputs of the honest parties to whatever values it wishes. Thus, a cheati input is
used to model a protocol execution in which the real-model adversary decides to
cheat. Such cheating is always successful in the ideal model in that the adversary
learns the honest parties’ inputs. However, as required, this cheating is also always
detected with probability at least ε. Note also that if the cheat attempt is not de-
tected then the adversary is given “full cheat capability” including the ability to
determine the honest parties’ outputs.

The idea behind our new ideal model is that given the above instructions, the adversary
in the ideal model can choose to cheat, with the caveat that its cheating is guaranteed
to be detected with probability at least ε. We stress that since the capability to cheat is
given through an “input” that is provided to the trusted party, the adversary’s decision
to cheat must be made before the adversary learns anything (and thus independently of
the honest parties’ inputs and the output).

We are now ready to present the modified ideal model. Let ε : N → [0,1] be a func-
tion. Then, the ideal execution with ε proceeds as follows:

Inputs: Each party obtains an input; the ith party’s input is denoted by xi ; we assume
that all inputs are of the same length, denoted n. The adversary receives an auxiliary
input z.

Send inputs to trusted party: Any honest party Pj sends its received input xj to the
trusted party. The corrupted parties, controlled by A, may either send their received
input, or send some other input of the same length to the trusted party. This decision
is made by A and may depend on the values xi for i ∈ I and the auxiliary input z.
Denote the vector of inputs sent to the trusted party by w.

Abort options: If a corrupted party sends wi = aborti to the trusted party as its input,
then the trusted party sends aborti to all of the honest parties and halts. If a corrupted
party sends wi = corruptedi to the trusted party as its input, then the trusted party
sends corruptedi to all of the honest parties and halts. If multiple parties send aborti
(respectively, corruptedi), then the trusted party relates only to one of them (say, the
one with the smallest i). If both corruptedi and abortj messages are sent, then the
trusted party ignores the corruptedi message.

Attempted cheat option: If a corrupted party sends wi = cheati to the trusted party as
its input, then the trusted party sends to the adversary all of the honest parties’ inputs
{xj }j /∈I (as above, if multiple cheati messages are sent, the trusted party ignores all
but one). In addition,

298 Y. Aumann and Y. Lindell

1. With probability ε, the trusted party sends corruptedi to the adversary and all
of the honest parties.

2. With probability 1 − ε, the trusted party sends undetected to the adversary.
Following this, the adversary sends the trusted party output values {yj }j /∈I of
its choice for the honest parties. Then, for every j /∈ I , the trusted party sends
yj to Pj .

The ideal execution then ends at this point.
If no wi equals aborti , corruptedi or cheati , the ideal execution continues below.

Trusted party answers adversary: The trusted party computes (f1(w), . . . , fm(w))

and sends fi(w) to A, for all i ∈ I .
Trusted party answers honest parties: After receiving its outputs, the adversary

sends either aborti for some i ∈ I , or continue to the trusted party. If the trusted party
receives continue then it sends fj (w) to all honest parties Pj (j /∈ I). Otherwise, if it
receives aborti for some i ∈ I , it sends aborti to all honest parties.

Outputs: An honest party always outputs the message it obtained from the trusted
party. The corrupted parties output nothing. The adversary A outputs any arbitrary
(probabilistic polynomial-time computable) function of the initial inputs {xi}i∈I , the
auxiliary input z, and the messages obtained from the trusted party.

The output of the honest parties and the adversary in an execution of the above ideal
model is denoted by IDEALCε

f,S(z),I
(x, n).

Notice that there are two types of “cheating” here. The first is the classic abort and
is used to model “early aborting” due to the impossibility of achieving fairness in gen-
eral when there is no honest majority (as in Definition 2.1, the honest parties here are
informed as to who caused the abort). The other type of cheating in this ideal model is
more serious for two reasons: first, the ramifications of the cheat are greater (the adver-
sary may learn all of the parties’ inputs and may be able to determine their outputs), and
second, the cheating is only guaranteed to be detected with probability ε. Nevertheless,
if ε is high enough, this may serve as a deterrent. We stress that in the ideal model the
adversary must decide whether to cheat obliviously of the honest parties’ inputs and
before it receives any output (and so it cannot use the output to help it decide whether
or not it is “worthwhile” cheating). We have the following definition.

Definition 3.3 (Security—explicit-cheat formulation). Let f , π and ε be as in Defini-
tion 3.2. Protocol π is said to securely compute f in the presence of covert adversaries
with ε-deterrent if for every non-uniform probabilistic polynomial-time adversary A for
the real model, there exists a non-uniform probabilistic polynomial-time adversary S
for the ideal model such that for every I ⊆ [m]:

{

IDEALCε
f,S(z),I (x, n)

}

x,z∈({0,1}∗)m+1;n∈N

c≡ {

REALπ,A(z),I (x, n)
}

x,z∈({0,1}∗)m+1;n∈N

where x is a balanced vector.

Definition 3.3 and Detection Accuracy We note that in Definition 3.3 it is not neces-
sary to explicitly require that π be detection accurate because this is taken care of in the
ideal model (in an ideal execution, only a corrupted party can send a cheati input).

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 299

3.4. Version 3: Strong Explicit-Cheat Formulation

The third, and strongest version follows the same structure and formulation of the pre-
vious version (version 2). However, we make a slight but important change to the ideal
model. In the ideal model of the explicit-cheat formulation, the adversary can always
cheat and obtain the honest parties’ inputs. Here, we modify the ideal model so that the
adversary only learns the honest parties’ inputs if its cheating goes undetected. Stated
differently, if the adversary sends an input cheati , then the trusted party only sends it the
honest parties’ inputs in the event of undetected (which occurs with probability 1 − ε).
However, if the trusted party sends corruptedi to the honest parties and the adversary
(an event which happens with probability ε), then the adversary learns nothing and so
its attempt to cheat fails completely. This is significantly stronger than the previous de-
finition because the adversary must take the risk of being caught without knowing if it
will gain anything at all. Formally, we modify the “attempted cheat option” in the ideal
model as follows:

Attempted cheat option: If a corrupted party sends wi = cheati to the trusted party as
its input, then the trusted party works as follows:

1. With probability ε, the trusted party sends corruptedi to the adversary and all
of the honest parties.

2. With probability 1−ε, the trusted party sends undetected to the adversary along
with the honest parties’ inputs {xj }j /∈I . Following this, the adversary sends the
trusted party output values {yj }j /∈I of its choice for the honest parties. Then, for
every j /∈ I , the trusted party sends yj to Pj .

Everything else in the ideal model remains the same. We denote the resultant ideal
model by IDEALSCε

f,S(z),I
(x, n) and have the following definition:

Definition 3.4 (Security—strong explicit-cheat formulation). Let f , π and ε be as
in Definition 3.2. Protocol π is said to securely compute f in the presence of covert
adversaries with ε-deterrent if for every non-uniform probabilistic polynomial-time ad-
versary A for the real model, there exists a non-uniform probabilistic polynomial-time
adversary S for the ideal model such that for every I ⊆ [m]:
{

IDEALSCε
f,S(z),I (x, n)

}

x,z∈({0,1}∗)m+1;n∈N

c≡ {

REALπ,A(z),I (x, n)
}

x,z∈({0,1}∗)m+1;n∈N

where x is a balanced vector.

The difference between the regular and strong explicit-cheat formulations is perhaps
best exemplified in the case that ε = 1. In both versions, any potentially successful
cheating attempt is detected. However, in the regular formulation, the adversary may
learn the honest parties’ private inputs (albeit, while being detected). In the strong for-
mulation, in contrast, the adversary learns nothing when it is detected. Since it is always
detected, this means that full security is achieved.

3.5. Cheating and Aborting

It is important to note that in all of our above definitions, a party that halts mid-way
through the computation may be considered a “cheat” (we also use this in an inherent

300 Y. Aumann and Y. Lindell

way when constructing our protocols later). Arguably, this may be undesirable due to the
fact that an honest party’s computer may crash (such unfortunate events may not even
be that rare). Nevertheless, we argue that as a basic definition it suffices. This is due
to the fact that it is possible for all parties to work by storing their input and random-
tape on disk before they begin the execution. Then, before sending any message, the
incoming messages that preceded it are also written to disk. The result of this is that if
a party’s machine crashes, it can easily reboot and return to its previous state. (In the
worst case the party will need to request a retransmit of the last message if the crash
occurred before it was written.) We therefore believe that honest parties cannot truly
hide behind the excuse that their machine crashed (it would be highly suspicious that
someone’s machine crashed in an irreversible way that also destroyed their disk at the
critical point of a secure protocol execution).

Despite the above, it is possible to modify the definition so that honest halting is
never considered cheating. When considering the failed-simulation formulation (Defin-
ition 3.2), this modification only needs to be made to the notion of “detection accuracy”
and uses the notion of a fail-stop party who acts semi-honestly, except that it may halt
early.

Definition 3.5. A protocol π is non-halting detection accurate if it is detection ac-
curate as in Definition 3.1 and if for every honest party Pj and fail-stop party Pk , the
probability that Pj outputs corruptedk is negligible.

Definition 3.2 can then be modified so that protocol π is required to be non-halting
detection accurate (and not just detection accurate). When considering Definitions 3.3
and 3.4, this strengthening must be explicitly added to the definition by requiring that
π be non-halting detection accurate. (Recall that detection accuracy is not needed for
these definitions. However, the requirement that corruptedk is not output for a fail-stop
party Pk does need to be added separately.)

We remark that although this strengthening is clearly desirable, it may also be pro-
hibitive. We note that we are able to modify our main protocol so that it meets this
stronger definition; see Sect. 6.3. In order to do so, we require an oblivious transfer that
is secure in the presence of malicious adversaries (and not just covert). A highly effi-
cient protocol for this task, with only a constant number of exponentiations per transfer,
appears in [27].

3.6. Relations between Security Models

Relations between Covert Security Definitions The three security definitions for covert
adversaries constitute a strict hierarchy, with version 1 being strictly weaker than ver-
sion 2, which in turn is strictly weaker than version 3. We begin by proving that version 1
is strictly weaker than version 2.

Proposition 3.6. Let π be a protocol that securely computes some functionality f in
the presence of covert adversaries with ε-deterrent by Definition 3.3. Then, π securely
computes f in the presence of covert adversaries with ε-deterrent by Definition 3.2.
Furthermore, assuming the existence of string oblivious transfer that is secure in the

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 301

presence of malicious adversaries, there exist protocols that are secure by Definition 3.2
and not secure by Definition 3.3.

Proof. Let f , π and ε be as in the proposition. Then, we first claim that π is detection
accurate. This is due to the fact that in the ideal model of Definition 3.3, honest parties
only output corruptedi for i ∈ I . Therefore, this must hold also in the real model, except
with negligible probability (as required by Definition 3.1). Now, let A be an adversary
and let S be the simulator that is guaranteed to exist for IDEALC by Definition 3.3. We
claim that the simulator S also works for Definition 3.2. In order to see this, let Δ be the
probability that S sends corruptedi or cheati for input for some i ∈ I (this probability
depends only on A, the corrupted parties’ inputs and the auxiliary input z). Now, when
S sends input corruptedi , the honest parties all output corruptedi with probability 1.
In addition, when S sends input cheati , the honest parties all output corruptedi with
probability ε in the ideal model. It follows that the honest parties output corruptedi with
probability at least ε · Δ. It remains, therefore, to show that the IDEAL and REAL dis-
tributions can be distinguished with probability at most Δ (because then the probability
that the adversary is caught cheating is at least ε times the maximum distinguishing
“gap” between the IDEAL and REAL distributions). However, this follows immediately
from the fact that if S does not send any input of the form corruptedi or cheati , then the
ideal execution is the same as in the standard definitions (and so the same as in Defin-
ition 3.2). Thus, in the event that S does not send corruptedi or cheati , the IDEAL and
REAL of Definition 3.2 are computationally indistinguishable. Since S sends corruptedi

or cheati with probability Δ, we obtain that the IDEAL distribution can be distinguished
from the REAL one with probability at most Δ + μ(n) as desired.

For the furthermore part of the proposition, take any protocol for string oblivious
transfer that is secure in the presence of malicious adversaries, as in Definition 2.1; de-
note it π . Then, define a protocol π ′ where the sender upon input (x0, x1) first computes
the ciphertexts c0 = Ek0(x0) and c1 = Ek1(x1), where k0 and k1 are secret keys for a
private-key encryption scheme chosen by the sender. We assume that the encryption
scheme is such that not all keys are valid, and the decryption algorithm outputs ⊥ in
such a case (there are many examples of such encryption schemes). Then, the parties
run the oblivious transfer protocol π where the sender inputs (k0, k1) and the receiver
inputs σ . Finally, the sender sends the receiver the pair of ciphertexts (c0, c1). Upon
receiving kσ and (c0, c1), the receiver decrypts cσ obtaining xσ . If upon decryption
the receiver obtains ⊥ then it outputs corruptedS , where S denotes the sender. It is not
difficult to show that π ′ is secure by Definition 3.2 with ε = 1 (using the composition
theorem for malicious adversaries of [4]), because by the security of π the only thing
that a corrupted sender can do is to send invalid ciphertexts or keys, in which case the re-
ceiver always outputs corruptedS . However, π ′ is not secure by Definition 3.3 because
a corrupted sender can send a valid key k0 and an invalid key k1. This means that R

always outputs corruptedS if σ = 1 and never outputs corruptedS if σ = 0. This con-
tradicts Definition 3.3 because the adversary must decide to cheat independently of the
honest party’s input. (Technically, the ideal-model simulator has no input to the trusted
party that can result in this output distribution.) �

Next we prove that Definition 3.3 is strictly weaker than Definition 3.4.

302 Y. Aumann and Y. Lindell

Proposition 3.7. Let π be a protocol that securely computes some functionality f in
the presence of covert adversaries with ε-deterrent by Definition 3.4. Then, π securely
computes f in the presence of covert adversaries with ε-deterrent by Definition 3.3.
Furthermore, assuming that there exist protocols that are secure by Definition 3.4, there
exist protocols that are secure by Definition 3.3 and not secure by Definition 3.4.

Proof. The fact that security under Definition 3.4 implies security under Definition 3.3
is immediate because the only difference is that in Definition 3.4 the ideal simulator may
receive less information. (Formally this is shown by just constructing a simulator for De-
finition 3.3 that does not pass on the inputs to the simulator designed for Definition 3.4
in the case of undetected.)

For the furthermore part of the proposition, take any protocol that is secure under
Definition 3.4 and add an instruction that if a party receives the output corruptedi then
it sends party Pi its input and halts. Such a protocol is still secure under Definition 3.3
(because the ideal adversary receives the honest parties’ inputs in the case that the honest
parties receive corruptedi). However, if the functionality being computed does not reveal
all the inputs, the modified protocol is no longer secure under Definition 3.4. �

Relation to the Malicious and Semi-Honest Models As a sanity check regarding our
definitions, we present two propositions that show the relation between security in the
presence of covert adversaries and security in the presence of malicious and semi-honest
adversaries.

Proposition 3.8. Let π be a protocol that securely computes some functionality f with
abort in the presence of malicious adversaries, as in Definition 2.1. Then, π securely
computes f in the presence of covert adversaries with ε-deterrent, for any of the three
formulations (Definitions 3.2, 3.3, and 3.4) and for every 0 ≤ ε ≤ 1.

This proposition follows from the simple observation that according to Definition 2.1,
there exists a simulator that always succeeds in its simulation. Thus, Definition 3.2 holds
even if the probability of detecting cheating is 0. Likewise, the same simulator works
for Definitions 3.3 and 3.4 (there is simply no need to ever send a cheat input).

Next, we consider the relation between covert and semi-honest adversaries. We re-
mark that security for malicious adversaries only implies security for semi-honest ad-
versaries if the semi-honest adversary is allowed to modify its input before the execution
begins [18].6 Calling such an adversary augmented semi-honest, we have the following:

Proposition 3.9. Let π be a protocol that securely computes some functionality f in
the presence of covert adversaries with ε-deterrent, for any of the three formulations
and for ε(n) ≥ 1/poly(n). Then, π securely computes f in the presence of augmented
semi-honest adversaries.

6 This situation is anti-intuitive because the ability to modify input only strengthens the adversary, and so it
seems that this should in turn imply security for (ordinary) semi-honest adversaries. However, this intuition is
false because when the real adversary is allowed to modify its input, so is the ideal adversary/simulator. Thus,
the ideal adversary in this case is given more power than a standard semi-honest ideal adversary, enabling it
to simulate some protocols that a standard semi-honest simulator cannot.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 303

This proposition follows from the fact that due to the requirement of detection ac-
curacy, no party outputs corruptedi when the adversary is semi-honest. Since ε ≥
1/poly(n), this implies that the REAL and IDEAL distributions can be distinguished
with at most negligible probability, as required. We stress that if ε = 0 (or is negligible)
then the definition of covert adversaries requires nothing, and so the proposition does
not hold for this case.

We conclude that, as one may expect, security in the presence of covert adversaries
with ε-deterrent lies in between security in the presence of malicious adversaries and
security in the presence of semi-honest adversaries. If 1/poly(n) ≤ ε(n) ≤ 1 then it
can be shown that Definitions 3.2 and 3.3 are strictly different to both the semi-honest
and malicious models (this is not difficult to see and so details are omitted). Regarding
Definition 3.4, the same is true for the case that 1/poly(n) ≤ ε(n) ≤ 1 − 1/poly(n).
However, as we show below, when ε(n) = 1 − μ(n), Definition 3.4 is equivalent to
security in the presence of malicious adversaries (Definition 2.1).

Strong Explicit-Cheat Formulation and the Malicious Model The following proposi-
tion shows that the strong explicit-cheat formulation “converges” to the malicious model
as ε approaches 1. In order to make this claim technically, we need to deal with the fact
that in the malicious model honest parties never output corruptedi , whereas this can
occur in the strong explicit formulation even with ε = 1. We therefore define a transfor-
mation of any protocol π to π ′ where the only difference is that if an honest party should
output corruptedi in π , then it outputs aborti instead in π ′. We have the following:

Proposition 3.10. Let π be a protocol and μ a negligible function. Then π se-
curely computes some functionality f in the presence of covert adversaries with ε(n) =
1 − μ(n) under Definition 3.4 if and only if π ′ securely computes f with abort in the
presence of malicious adversaries.

This is true since, by definition, either the ideal adversary does not send cheati , in
which case the ideal execution is the same as in the regular ideal model, or it does
send cheati , in which case it is caught with probability that is negligibly close to 1 and
so the protocol is aborted. Stated differently, when ε is negligibly close to 1, sending
cheati is the same as sending aborti (as long as the output of honest parties is changed
from corruptedi to aborti as discussed above). We stress that Proposition 3.10 does not
hold for Definitions 3.2 and 3.3 because in these definitions the adversary may learn
the honest parties’ private inputs when it is caught (something that is not allowed in the
malicious model).

4. Modular Sequential Composition

Sequential composition theorems for secure computation are important for two reasons.
First, they constitute a security goal within themselves and guarantee security even when
parties run many executions, albeit sequentially. Second, they are useful tools that help
in writing proofs of security. As such, we believe that when presenting a new defini-
tion, it is of great importance to also prove an appropriate composition theorem for that

304 Y. Aumann and Y. Lindell

definition. We prove modular sequential composition theorems that are analogous to
that of [4] for Definitions 3.3 and 3.4, and a weaker sequential composition theorem for
Definition 3.2.

The weaker sequential composition theorem states that when a polynomial number of
secure protocols are run sequentially, then security is maintained for the overall execu-
tion, with the deterrent being the minimum deterrent of any of the individual protocols.

For Definitions 3.3 and 3.4 we prove modular sequential composition. The basic
idea behind such composition is that it is possible to design a protocol that uses an
ideal functionality as a subroutine, and then analyze the security of the protocol when
a trusted party computes this functionality. For example, assume that a protocol is con-
structed that uses oblivious transfer as a subroutine. Then, first we construct a protocol
for oblivious transfer and prove its security. Next, we prove the security of the protocol
that uses oblivious transfer as a subroutine, in a model where the parties have access
to a trusted party computing the oblivious transfer functionality. The composition theo-
rem then states that when the “ideal calls” to the trusted party for the oblivious transfer
functionality are replaced by real executions of a secure protocol computing this func-
tionality, the protocol remains secure. In the proofs below, for the sake of simplicity,
we assume a synchronous model of communication. However, we remark that when
output delivery is not guaranteed (as is the case in our definitions and in general when
no honest majority is assumed) then this is the same as assuming asynchronous com-
munication and having the parties include the round number in every message that they
send. In order to ensure the effect of a synchronous network, an honest party only sends
its (i + 1)th message after receiving round-i messages from all parties (for this we also
need to assume that all parties send and receive messages in all rounds). The adversary
in such a case can easily prevent the protocol from terminating; however, as we have
stated, this is allowed here as neither fairness nor output delivery are guaranteed.

4.1. Sequential Composition for Definition 3.2

In this section, we prove a basic sequential composition theorem for the failed-
simulation formulation of security in the presence of covert adversaries. The guarantee
provided is that sequential executions of secure protocols preserves the security guaran-
tees. We first need to define what we mean by sequential execution. Let f1, . . . , fp(n) be

multi-party functionalities. For each party Pj and functionality f�, let M
(j)

� be a prob-
abilistic polynomial-time transition procedure that generates Pj ’s input to f� based on
Pj ’s private input and the outputs of the previous fi computations (i < �). Denote by

M� the set of M
(j)
� . Let f be the multiparty functionality resulting from applying M1,

then f1, then M2, then f2, etc., up to Mp(n) and then fp(n). We call f the composition
of f�’s and the M�’s.

For each � let π� be a protocol for computing f�. Let π be the protocol obtained by
first applying M1, then π1, then M2, then π2, etc., up to Mp(n) and then πp(n). We call
π the concatenation of the π�’s and the M�’s.

Theorem 4.1. Let p(n) be a polynomial. Let f1, . . . , fp(n) be multiparty probabilis-
tic polynomial-time functionalities, M1, . . . ,Mp(n) transition procedures (as defined
above), and π1, . . . , πp(n) protocols that securely compute f1, . . . , fp(n) in the presence

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 305

of covert adversaries with deterrents ε1, . . . , εp(n), respectively, under Definition 3.2.
Let f be the composition of f�’s and the M�’s and π the concatenation of the π�’s
and the M�’s (as defined above). Then π securely computes f in the presence of covert
adversaries with deterrent ε = min�{ε�}, under Definition 3.2.

Proof. First note that since the transition procedures do not include inter-party com-
munication, we can eliminate reference to them, as follows. For each �, let f ′

� be the
functionality that is the composition of f� on M�, and in addition, appends each party’s
input to each party’s output. Similarly, let π ′

� be the protocol obtained by concatenating
π� to M� and also outputting its inputs (for each party separately). Then, since M� does
not include any interaction between the players, if π� securely computes f� in the pres-
ence of covert adversaries with deterrence ε�, then so does π ′

� for f ′
� . Furthermore, f is

the composition of the f ′
� and π is the concatenation of the π ′

�’s.
Let A be an adversary attacking π . For each �, let A� be the restriction of A to π ′

�.
For � < p(n) the output of A� is the full state of the adversary at the end of the execution
of π ′

�. The input to A� (� > 1) is the state of the adversary at the beginning of π ′
�. Let S�

be the simulator for A� guaranteed by the security of π ′
� with respect to f ′

� . Finally, let
S be the simulator that is obtained by running S1, . . . , Sp(n) in turn, where the simulator
S� is run on the adversary A� with its input being the state output by S�−1.

Denote by REALπ,A(z),I (x, n) the real execution of π with adversary A with axillary
input z, and by IDEALf,S(z),I (x, n) the ideal execution of f with simulator S running on
adversary A with axillary input z. Further denote HYBRID〈π ′

1,...,π
′
�,f

′
�+1,...,f

′
p(n)

〉,A(z),S(z),I

(x, n) the sequential executions of π ′
1, . . . , π

′
� followed by sequential calls to a trusted

party computing f ′
�+1, . . . , f

′
p(n). In the execution, π ′

1, . . . , π
′
� are executed by the ad-

versaries A1, . . . , A�, while the f ′
�+1, . . . , f

′
p(n)

are with the simulators S�+1, . . . , Sp(n)

running on the residual adversary.
First observe that for � = 1 it holds that

HYBRID〈π ′
1,...,π

′
�−1,f

′
�,...,f

′
p(n)

〉,A(z),S(z),I (x, n) ≡ IDEALf,S(z),I (x, n)

and for � = p(n) it holds that

HYBRID〈π ′
1,...,π

′
�,f

′
�+1,...,f

′
p(n)

〉,A(z),S(z),I (x, n) ≡ REALπ,A(z),I (x, n).

We therefore have that:

∣
∣Pr

[

D
(

IDEALf,S(z),I (x, n)
) = 1

] − Pr
[

D
(

REALπ,A(z),I (x, n)
) = 1

]∣
∣

≤
p(n)
∑

�=1

∣
∣Pr

[

D
(

HYBRID〈π ′
1,...,π

′
�−1,f

′
�,...,f

′
p(n)

〉,A(z),S(z),I (x, n)
) = 1

]

− Pr
[

D
(

HYBRID〈π ′
1,...,π

′
�,f

′
�+1,...,f

′
p(n)

〉,A(z),S(z),I (x, n)
) = 1

]∣
∣.

306 Y. Aumann and Y. Lindell

We begin by proving that for every � = 1, . . . , p(n) there exists a negligible function
μ�(n) such that
∣
∣Pr

[

D
(

HYBRID〈π ′
1,...,π

′
�−1,f

′
�,...,f

′
p(n)

〉,A(z),S(z),I (x, n)
) = 1

]

− Pr
[

D
(

HYBRID〈π ′
1,...,π

′
�,f

′
�+1,...,f

′
p(n)

〉,A(z),S(z),I (x, n)
) = 1

]∣
∣

≤ 1

ε�

· Pr
[∃i ∈ I ∀j /∈ I : OUTPUT

π ′
�

j

(

REALπ,A(z),I (x, n)
) = corruptedi

] − μ�(n)

where OUTPUT
π ′

�

j (REALπ,A(z),I (x, n)) = corruptedi is the event that j outputs
corruptedi in the real execution of π during the execution of π ′

�.
Assume by contradiction that there exists an � (1 ≤ � ≤ p(n)) and a non-negligible

function δ such that
∣
∣Pr

[

D
(

HYBRID〈π ′
1,...,π

′
�−1,f

′
�,...,f

′
p(n)

〉,A(z),S(z),I (x, n)
) = 1

]

− Pr
[

D
(

HYBRID〈π ′
1,...,π

′
�,f

′
�+1,...,f

′
p(n)

〉,A(z),S(z),I (x, n)
) = 1

]∣
∣

>
1

ε�

· Pr
[∃i ∈ I ∀j /∈ I : OUTPUT

π ′
�

j

(

REALπ,A(z),I (x, n)
) = corruptedi

]

+ δ(n). (1)

This implies that there must be a vector of inputs x� for the honest parties in the �th
execution (π ′

� or f ′
�) and a state s for A after the executions π ′

1, . . . , π
′
�−1 such that (1)

holds when the honest parties’ inputs to the �th execution are x� and the state of A
is s. This follows from a straightforward averaging argument. Specifically, if for all
possible states and vectors, (1) does not hold, then when summing over all possibilities
the inequality would not be achieved. Now, consider an adversary Aπ ′

�
that is given a

state s as input and interacts with honest parties upon the input vector x�. The strategy
of Aπ ′

�
is to run A from state s, and to output the state of A at the end of the execution.

In addition, we construct a distinguisher Dπ ′
�

who receives the inputs/outputs of the
honest parties, the original vector x of inputs, and the output of Aπ ′

�
. Dπ ′

�
then emulates

the rest of the ideal executions, applies D to the result and outputs whatever D outputs.
For s and x� as above, it follows that

Pr
[

Dπ ′
�

(

REALπ ′
�,Aπ ′

�
(s),I (x�, n)

) = 1
]

= Pr
[

D
(

HYBRID〈π ′
1,...,π

′
�,f

′
�+1,...,f

′
p(n)

〉,A(z),S(z),I (x, n)
) = 1 | (s, x�)

]

where the conditioning on (s, x�) means an s and x� for which (1) holds. Observe now
that when the ideal simulator S� that is guaranteed to exist for π ′

� is applied to this adver-
sary, the result is exactly an execution of HYBRID〈π ′

1,...,π
′
�−1,f

′
�,...,f

′
p(n)

〉,A(z),S(z),I (x, n).

Thus,

Pr
[

Dπ ′
�

(

IDEALf ′
�,S�(s),I

(x�, n)
) = 1

]

= Pr
[

D
(

HYBRID〈π ′
1,...,π

′
�−1,f

′
�,...,f

′
p(n)

〉,A(z),S(z),I (x, n)
) = 1 | (s, x�)

]

.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 307

Finally, note that the probability that some Pj outputs corruptedi in such a stand-alone
execution of π ′

� equals the probability that it outputs it in π ′
� in a real execution of

π ′
1, . . . , π

′
p(n). This is because the first � executions are identical in both cases, and we

are considering the event of corruptedi being output before these � executions end. We
thus conclude that
∣
∣Pr

[

Dπ ′
�

(

IDEALf ′
�,Sπ ′

�
(s),I (x�, n)

) = 1
]

− Pr
[

Dπ ′
�

(

REALπ ′
�,Aπ ′

�
(s),I (x�, n)

) = 1
]∣
∣

>
1

ε�

· Pr
[∃i ∈ I ∀j /∈ I : OUTPUTj

(

REALπ ′
�,Aπ ′

�
(s),I (x�, n)

) = corruptedi

] + δ(n)

in contradiction to the assumption that π ′
� securely computes f ′

� in the presence of covert

adversaries with ε�-deterrent. Let ε = min{e�}p(n)

�=1 . We conclude that
∣
∣Pr

[

D
(

IDEALf,S(z),I (x, n)
) = 1

] − Pr
[

D
(

REALπ,A(z),I (x, n)
) = 1

]∣
∣

≤
p(n)
∑

�=1

1

ε
· Pr

[∃i ∈ I ∀j /∈ I : OUTPUT
π ′

�

j

(

REALπ,A(z),I (x, n)
) = corruptedi

]

−
p(n)
∑

�=1

μ�(n)

= 1

ε
· Pr

[∃i ∈ I ∀j /∈ I : OUTPUTj

(

REALπ,A(z),I (x, n)
) = corruptedi

] − μ(n)

for some negligible function μ(n), as required. �

4.2. Composition for Definitions 3.3 and 3.4

In this section, we prove a modular sequential composition theorem for the stronger
Definitions 3.3 and 3.4. We begin by presenting some background and notation.

The Hybrid Model We consider a hybrid model where parties both interact with each
other (as in the real model) and use trusted help (as in the ideal model). Specifically, the
parties run a protocol π that contains “ideal calls” to a trusted party computing some
functionalities f1, . . . , fp(n). These ideal calls are just instructions to send an input to
the trusted party. Upon receiving the output back from the trusted party, the protocol π

continues. The protocol π is such that fi is called before fi+1 for every i (this just de-
termines the “naming” of the calls as f1, . . . , fp(n) in that order). We stress that honest
parties all send their input to the trusted party in the same round and do not send other
messages until they receive back their output (this is because we consider sequential
composition here). Of course, the trusted party may be used a number of times through-
out the π -execution. However, each time is independent (i.e., the trusted party does
not maintain any state between these calls). We call the regular messages of π that are
sent amongst the parties standard messages and the messages that are sent between

308 Y. Aumann and Y. Lindell

parties and the trusted party ideal messages. We stress that in the hybrid model, the
trusted party behaves as in the ideal model of the definition being considered. Thus,
when proving security in the hybrid model for Definitions 3.3 and 3.4, the trusted party
computing f1, . . . , fp(n) follows the instructions of the trusted party in Definitions 3.3
and 3.4, respectively. Formally, we define an (f, ε)-hybrid model that is the same as the
regular hybrid model except that the trusted party is as in IDEALCε (when considering
Definition 3.3) or as in IDEALSCε (when considering Definition 3.4).

Let f1, . . . , fp(n) be probabilistic polynomial-time functionalities and let π be an
m-party protocol that uses ideal calls to a trusted party computing f1, . . . , fp(n). Fur-
thermore, let A be a non-uniform probabilistic polynomial-time machine and let I be
the set of corrupted parties. Then, the f1, . . . , fp(n)-hybrid execution of π on inputs x,

auxiliary input z to A and security parameter n, denoted HYBRID
f1,...,fp(n)

π,A(z),I
(x), is defined

as the output vector of the honest parties and the adversary A from the hybrid execution
of π with a trusted party computing f1, . . . , fp(n).

Sequential Modular Composition Let f1, . . . , fp(n) and π be as above, and let
ρ1, . . . , ρp(n) be protocols. We assume that each ρi has a fixed number rounds that is the
same for all parties. Consider the real protocol πρ1,...,ρp(n) that is defined as follows. All
standard messages of π are unchanged. When a party Pi is instructed to send an ideal
message x to the trusted party to compute fj , it begins a real execution of ρj with input
x instead. When this execution of ρj concludes with output y, party Pi continues with
π as if y was the output received by the trusted party for fj (i.e. as if it were running
in the hybrid model). If a party receives corruptedk as output from ρj , then it behaves
as instructed in π . Note that corruptedk may be received as output when ρj is run and
when fj is run. This is due to the fact that the ideal model used is that of IDEALC or
IDEALSC, and in these ideal models parties may receive corruptedk for output.

The composition theorem of [4] for malicious adversaries states that if ρ1, . . . , ρp(n)

securely compute f1, . . . , fp(n) respectively, and π securely computes some function-
ality g in the f -hybrid model, then πρ1,...,ρp(n) securely computes g (in the real model).
We remark that our proof below is an almost direct corollary of the theorem of [4] (after
casting the models of Definitions 3.3 and 3.4 in a different, yet equivalent, model).

Theorem 4.2. Let p(n) be a polynomial, let f1, . . . , fp(n) be multiparty probabilistic
polynomial-time functionalities and let ρ1, . . . , ρp(n) be protocols that securely compute
f1, . . . , fp(n) in the presence of covert adversaries with deterrent ε1, . . . , εp(n), respec-
tively. Let g be a multiparty functionality and let π be a secure protocol for computing
g in the (f1, ε1), . . . , (fp(n), εp(n))-hybrid model (using a single call to each fi) in the
presence of covert adversaries with ε-deterrent. Then, πρ1,...,ρp(n) securely computes
g in the presence of covert adversaries with ε-deterrent. The above holds for Defini-
tions 3.3 and 3.4 by taking the appropriate ideal model in each case.

Proof Sketch. Theorem 4.2 can be derived as an almost immediate corollary from the
composition theorem of [4] in the following way. First, define a special functionality
interface that follows the instructions of the trusted party in Definition 3.3 (respectively,
in Definition 3.4). That is, define a reactive functionality that receives inputs and writes

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 309

outputs (this functionality is modeled by an interactive Turing machine). The appropri-
ate reactive functionality here acts exactly like the trusted party (e.g., if it receives a
cheati message when computing f�, then it tosses coins and with probability ε� outputs
corruptedi to all parties and with probability 1 − ε� gives the adversary all of the honest
parties’ inputs and lets it chooses their outputs). Next, consider the standard ideal model
of Definition 2.1 with functionalities of the above form. It is easy to see that a proto-
col securely computes some functionality f under Definition 3.3 (respectively, under
Definition 3.4) if and only if it is securely computes the appropriately defined reactive
functionality under Definition 2.1. This suffices because the composition theorem of [4]
can be applied to Definition 2.1, yielding the result.7 �

Observe that in Theorem 4.2 the protocols ρ1, . . . , ρp(n) and π may all have different
deterrent values. Thus the proof of π in the hybrid model must take into account the
actual deterrent values ε1, . . . , εp(n) of the protocols ρ1, . . . , ρp(n), respectively.

5. Oblivious Transfer

In the oblivious transfer functionality [9,28], a sender has two inputs (x0, x1) and a
receiver has an input bit σ . The sender receives no output (and, in particular, learns
nothing about the receiver’s bit), while the receiver learns xσ (but learns nothing about
x1−σ). This variant of oblivious transfer is often called 1-out-of-2 oblivious transfer.

In this section we will construct an efficient oblivious transfer protocol that is secure
in the presence of covert adversaries with ε-deterrent. We will first present the basic
scheme that considers a single oblivious transfer and ε = 1/2. We will then extend this
to enable the simultaneous execution of many oblivious transfers and also higher values
of ε. Our constructions all rely on the existence of secure homomorphic encryption
schemes.

Homomorphic Encryption Intuitively, a public-key encryption scheme is homomor-
phic if given two ciphertexts c1 = Epk(m1) and c2 = Epk(m2) it is possible to effi-
ciently compute Epk(m1 + m2) without knowledge of the secret decryption key. Of
course this assumes that the plaintext message space is a group; we actually assume that
both the plaintext and ciphertext spaces are groups (with respective group operations +
and ·). A natural way to define this is to require that for all pairs of keys (pk, sk),
all m1,m2 ∈ P and c1, c2 ∈ C with m1 = Dsk(c1) and m2 = Dsk(c2), it holds that
Dsk(c1 · c2) = m1 + m2. However, we actually need a stronger property. Specifically,
we require that the result of computing c1 · c2 when c2 is a random encryption of m2 is a
random encryption of m1 +m2 (by a random encryption we mean a ciphertext generated
by encrypting the plaintext with uniformly distributed coins). This property ensures that
if one party generated c1 and the other party applied a series of homomorphic operations
to c1 in order to generate c, then the only thing that the first party can learn from c is the

7 Two remarks are in place here. First, the composition theorem of [4] is formally proven for standard
(non-reactive) functionalities and the case of an honest majority. Nevertheless, the proof can be extended to
these cases in a straightforward way with almost no changes. Second, the composition theorem of [4] assumes
a strict polynomial-time simulator. This is fine because we also required this in our definitions.

310 Y. Aumann and Y. Lindell

underlying plaintext. In particular, it learns nothing about the steps taken to arrive at c

(e.g., it cannot know if the second party added m3 and then m4 where m2 = m3 +m4 or
if it just added m2). We stress that this holds even if the first party knows the secret key
of the encryption scheme. We formalize the above by requiring that the distribution of
{pk, c1, c1 · c2} is identical to the distribution of {pk,Epk(m1),Epk(m1 + m2)}, where
in the latter case the encryptions of m1 and m1 + m2 are generated independently of
each other, using uniformly distributed random coins. We denote by Epk(m) the ran-
dom variable generated by encrypting m with public-key pk using uniformly distributed
random coins. We have the following formal definition.

Definition 5.1. A public-key encryption scheme (G,E,D) is homomorphic if for all
n and all (pk, sk) output by G(1n), it is possible to define groups M, C such that:

• The plaintext space is M, and all ciphertexts output by Epk are elements of C ;8

and
• For every m1,m2 ∈ M it holds that

{

pk, c1 = Epk(m1), c1 · Epk(m2)
} ≡ {

pk,Epk(m1),Epk(m1 + m2)
}

(2)

where the group operations are carried out in C and M, respectively.

Note that in the left distribution in (2) the ciphertext c1 is used to generate an encryp-
tion of m1 + m2 using the homomorphic operation, whereas in the right distribution the
encryptions of m1 and m1 + m2 are independent. An important observation is that any
such scheme supports the multiplication of a ciphertext by a scalar, that can be achieved
by computing multiple additions. We also assume that (G,E,D) has no decryption er-
rors; this means that for every key-pair (pk, sk) in the range of G(1n) and for every
m in the message space Pr[Dsk(Esk(m)) = m] = 1. Such encryption schemes can be
constructed under the quadratic-residuosity, N -residuosity, decisional Diffie–Hellman
(DDH) and other assumptions; see [1,21,26] for some references. By convention, no
ciphertext is invalid. That is, any ciphertext that is not in the ciphertext group C is inter-
preted as an encryption of the identity element of the plaintext group M.

5.1. The Basic Protocol

Protocol 5.2 (Oblivious transfer from errorless homomorphic encryption).

• Inputs: The sender S has a pair of strings (x0, x1) for input; the receiver R has a
bit σ . Both parties have the security parameter 1n as auxiliary input. (In order to
satisfy the constraints that all inputs are of the same length, it is possible to define
|x0| = |x1| = k and give the receiver (σ,12k−1).)

• Assumption: We assume that the group determined by the homomorphic encryp-
tion scheme with security parameter n is large enough to contain all strings of
length k. Thus, if the homomorphic encryption scheme only works for single bits,
we will only consider k = 1 (i.e., bit oblivious transfer).

8 The plaintext and ciphertext spaces may depend on pk; we leave this implicit.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 311

• The protocol:

1. The receiver R chooses two sets of two pairs of keys:
(a) (pk0

1, sk0
1) ← G(1n); (pk0

2, sk0
2) ← G(1n) using random coins r0

G, and
(b) (pk1

1, sk1
1) ← G(1n); (pk1

2, sk1
2) ← G(1n) using random coins r1

G.
R sends (pk0

1,pk0
2) and (pk1

1,pk1
2) to the sender S.

2. Key-generation challenge:
(a) S chooses a random coin b ∈R {0,1} and sends b to R.
(b) R sends S the random-coins rb

G that it used to generate (pkb
1 ,pkb

2).
(c) S checks that the public keys output by the key-generation algorithm G

when given input 1n and the appropriate portions of the random-tape
rb
G equal pkb

1 and pkb
2 . If this does not hold, or if R did not send any

message here, S outputs corruptedR and halts. Otherwise, it proceeds.
Denote pk1 = pk1−b

1 and pk2 = pk1−b
2 .

3. R chooses two random bits α,β ∈R {0,1}. Then:
(a) R computes

c1
0 = Epk1(α), c2

0 = Epk2(1 − α),

c1
1 = Epk1(β), c2

1 = Epk2(1 − β)

using random coins r1
0 , r2

0 , r1
1 and r2

1 , respectively.
(b) R sends (c1

0, c
2
0) and (c1

1, c
2
1) to S.

4. Encryption-generation challenge:
(a) S chooses a random bit b′ ∈R {0,1} and sends b′ to R.
(b) R sends r1

b′ and r2
b′ to S (i.e., R sends an opening to the ciphertexts c1

b′
and c2

b′).
(c) S checks that one of the ciphertexts {c1

b′ , c2
b′ } is an encryption of 0 and

the other is an encryption of 1. If not (including the case that no message
is sent by R), S outputs corruptedR and halts. Otherwise, it continues to
the next step.

5. R sends a “reordering” of the ciphertexts {c1
1−b′ , c2

1−b′ }. Specifically, if σ = 0
then it sets c0 to be the ciphertext that is an encryption of 1, and sets c1 to be
the ciphertext that is an encryption of 0. Otherwise, if σ = 1 then it sets c0 to
be the encryption of 0, and c1 to be the encryption of 1. (Only the ordering
needs to be sent and not the actual ciphertexts. Furthermore, this can be sent
together with the openings in Step 4b.)

6. S uses the homomorphic property and c0, c1 as follows.
(a) S computes c̃0 = x0 ·E c0 (this operation is relative to the key pk1 or pk2

depending if c0 is an encryption under pk1 or pk2).
(b) S computes c̃1 = x1 ·E c1 (this operation is relative to the key pk1 or pk2

depending if c1 is an encryption under pk1 or pk2).
S sends c̃0 and c̃1 to R. (Notice that one of the ciphertexts is encrypted with
key pk1 and the other is encrypted with key pk2.)

7. If σ = 0, the receiver R decrypts c̃0 and outputs the result (if c̃0 is en-
crypted under pk1 then R outputs x0 = Dsk1(c̃0); otherwise it outputs x0 =
Dsk2(c̃0)). Otherwise, if σ = 1, R decrypts c̃1 and outputs the result.

312 Y. Aumann and Y. Lindell

8. If at any stage during the protocol, S does not receive the next message that
it expects to receive from R or the message it receives is invalid and cannot
be processed, it outputs abortR (unless it was already instructed to output
corruptedR). Likewise, if R does not receive the next message that it expects
to receive from S or it receives an invalid message, it outputs abortS .

We remark that the reordering message of Step 5 can actually be sent by R together
with the message in Step 4b. Furthermore, the messages of the key-generation challenge
can be piggybacked with later messages, as long as they conclude before the final step.
We therefore have that the number of rounds of communication can be exactly four
(each party sends two messages).

Before proceeding to the proof of security, we present the intuitive argument show-
ing why Protocol 5.2 is secure. We begin with the case that the receiver is corrupt. First
note that if the receiver follows the instructions of the protocol, it learns only a single
value x0 or x1. This is because one of c0 and c1 is an encryption of 0. If it is c0, then
c̃0 = x0 ·E c0 = Epk(0 ·x0) = Epk(0) (where pk ∈ {pk1,pk2}, and so nothing is learned
about x0; similarly if it is c1 then c̃1 = Epk(0) and so nothing is learned about x1. How-
ever, in general, the receiver may not generate the encryptions c1

0, c
1
1, c

2
0, c

2
1 properly

(and so it may that at least one of the pairs (c1
0, c

2
0) and (c1

1, c
2
1) are both encryptions

of 1, in which case the receiver could learn both x0 and x1). This is prevented by the
encryption-generation challenge. That is, if the receiver tries to cheat in this way then
it is guaranteed to be caught with probability at least 1/2. The above explains why a
malicious receiver can learn only one of the outputs, unless it is willing to be caught
cheating with probability 1/2. This therefore demonstrates that “privacy” holds. How-
ever, we actually need to prove security via simulation, which involves showing how
to extract the receiver’s implicit input and how to simulate its view. Extraction works
by first providing the corrupted receiver with the encryption-challenge bit b′ = 0 and
then rewinding it and providing it with the challenge b′ = 1. If the corrupted receiver
replies to both challenges, then the simulator can construct σ from the opened cipher-
texts and the reordering provided. Given this input, the simulation can be completed in
a straightforward manner; see the proof below. A crucial point here is that if the receiver
does not reply to both challenges then an honest sender would output corruptedR with
probability 1/2, and so this corresponds to a cheatR input in the ideal world.

We now proceed to discuss why the protocol is secure in the presence of a corrupt
sender. In this case, it is easy to see that such a sender cannot learn anything about the
receiver’s input because the encryption scheme is semantically secure (and so a cor-
rupt sender cannot determine σ from the unopened ciphertexts). However, as above, we
need to show how extraction and simulation works. Extraction here works by providing
encryptions so that in one of the pairs (c1

0, c
2
0) or (c1

1, c
2
1) both of the encrypted values

are 1. If this pair is the one used (and not the one opened), then we have that c̃0 is an
encryption of x0 and c̃1 is an encryption of c̃1. An important point here is that unlike a
real receiver, the simulator can do this without being “caught.” Specifically, the simu-
lator generates the ciphertexts so that for a random b′ ∈R {0,1} it holds that c1

1−b′ and

c2
1−b′ are both encryptions of 1, whereas c1

b′ and c2
b′ are general correctly, one being an

encryption of 0 and the other an encryption of 1. Then, the simulator “hopes” that the

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 313

corrupted sender asks it to open the ciphertexts c1
b′ and c2

b′ which look as they should.
In such a case, the simulator proceeds and succeeds in extracting both x0 and x1. How-
ever, if the corrupted sender asks the simulator to open the other ciphertexts (that are
clearly invalid), the simulator just rewinds the corrupted sender and tries again. Thus,
extraction can be achieved. Regarding the simulation of the sender’s view, this follows
from the fact that the only differences between the above and a real execution are the
values encrypted in the ciphertexts c1

0, c
2
0, c

1
1, c

2
1. These distributions are therefore indis-

tinguishable by the semantic security of the encryption scheme.
We now formally prove that Protocol 5.2 meets Definition 3.4 with ε = 1

2 (of course,
this immediately implies security under Definitions 3.2 and 3.3 as well).

Theorem 5.3. Assuming that (G,E,D) constitutes a semantically secure homomor-
phic encryption scheme (with errorless decryption), Protocol 5.2 securely computes the
oblivious transfer functionality ((x0, x1), σ) �→ (λ, xσ) in the presence of covert adver-
saries with ε-deterrent for ε = 1

2 , under Definition 3.4.

Proof. We will separately consider the case that no parties are corrupted, the case
that the receiver is corrupted and the case that the sender is corrupted (the case that
both parties are corrupted is trivial). We note that although we construct three different
simulators (one for each corruption case), a single simulator as required by the definition
can be constructed by simply combining the three simulators into one machine, and
working appropriately given the corruption set I .

No Corruptions We first consider the case that no parties are corrupted (i.e., I = φ). In
this case, the real adversary A’s view can be generated by a simulator Sim that simply
runs S and R honestly, with inputs x0 = x1 = 0k and σ = 0 (recall that in this case we
assume that the adversary’s auxiliary input contains the input length k). The fact that
this simulation is indistinguishable from a real execution (with the honest parties’ real
inputs) follows from the indistinguishability property of encryption scheme. The proof
is straightforward and is therefore omitted. We remark that in order to show that the
REAL and IDEAL outputs are indistinguishable, we also have to show that the honest
parties’ outputs in a real execution are correct (because this is the case in the ideal
world). The sender’s output is defined as λ and so this clearly holds. Regarding the
receiver, recall that c̃0 = x0 ·E c0 and c̃1 = x1 ·E c1. Thus, if σ = 0 it holds c0 is an
encryption of 1 and so c̃0 = Epk1(x0 · 1) = Epk1(x0); likewise, if σ = 1 then c1 is an
encryption of 1 and so c̃1 = Epk1(x1). This implies that the receiver correctly obtains
xσ , as required.

Corrupted receiver: Let A be a real adversary that controls the receiver R. We con-
struct a simulator Sim that works as follows:

1. Sim receives (σ,12k−1) and z as input and invokes A on this input.
2. Sim plays the honest sender with A as receiver.
3. When Sim reaches the key-generation challenge step, it first sends b = 0 and re-

ceives back A’s response. Then, Sim rewinds A, sends b = 1 and receives back
A’s response.

314 Y. Aumann and Y. Lindell

(a) If both of the responses from A would cause a corrupted-output (meaning a
response that would cause S to output corruptedR in a real execution), Sim
sends corruptedR to the trusted party, simulates the honest S aborting due to
detected cheating, and outputs whatever A outputs.

(b) If A sends back exactly one response that would cause a corrupted-output,
then Sim sends cheatR to the trusted party.

i. If the trusted party replies with corruptedR , then Sim rewinds A and hands
it the query for which A’s response would cause a corrupted-output. Sim
then simulates the honest S aborting due to detected cheating, and outputs
whatever A outputs.

ii. If the trusted party replies with undetected and the honest S’s input pair
(x0, x1), then Sim plays the honest sender with input (x0, x1) in the re-
mainder of the execution with A as the receiver. At the conclusion, Sim
outputs whatever A outputs.

(c) If neither of A’s responses would cause a corrupted-output, then Sim rewinds
A, gives it a random b′ and proceeds as below.

4. Sim receives ciphertexts c1
0, c

2
0, c

1
1, c

2
1 from A.

5. Next, in the encryption-generation challenge step, Sim first sends b′ = 0 and re-
ceives back A’s response, which includes the reordering of the ciphertexts (recall
that the reordering message are actually sent together with the ciphertext open-
ings). Then, Sim rewinds A, sends b′ = 1 and receives back A’s response.
(a) If both of the responses from A would cause a corrupted-output, Sim sends

corruptedR to the trusted party, simulates the honest S aborting due to detected
cheating, and outputs whatever A outputs.

(b) If A sends back exactly one response that would cause a corrupted-output,
then Sim sends cheatR to the trusted party.

i. If the trusted party replies with corruptedR , then Sim rewinds A and hands
it the query for which A’s response would cause a corrupted-output. Sim
then simulates the honest S aborting due to detected cheating, and outputs
whatever A outputs.

ii. If the trusted party replies with undetected and the honest S’s input pair
(x0, x1), then Sim plays the honest sender with input (x0, x1) and com-
pletes the execution with A as the receiver. (Note that the sender has not
yet used its input at this stage of the protocol. Thus, Sim has no problem
completing the execution like an honest sender.) At the conclusion, Sim
outputs whatever A outputs.

(c) If neither of A’s responses would cause a corrupted-output, then Sim uses the
reorderings to determine the value of σ . Specifically, Sim chooses a random
b′ and takes the reordering that relates to c1

1−b′ and c2
1−b′ (if c1

1−b′ is an en-
cryption of 1, then Sim determines σ = 0 and otherwise it determines σ = 1).
The value b′ chosen is the one that Sim sends to A and appears in the final
transcript.

Sim sends σ to the trusted party and receives back x = xσ . Simulator Sim
then completes the execution playing the honest sender and using x0 = x1 = x.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 315

6. If at any point A sends a message that would cause the honest sender to halt and
output abortR , simulator Sim immediately sends abortR to the trusted party, halts
the simulation and proceeds to the final “output” step.

7. Output: At the conclusion, Sim outputs whatever A outputs.

This completes the description of Sim. Denoting Protocol 5.2 as π and noting that I

here equals {R} (i.e., the receiver is corrupted), we need to prove that for ε = 1
2 ,

{

IDEALSCε
ot,S(z),I

((

(x0, x1), σ
)

, n
)} c≡ {

REALπ,A(z),I

((

(x0, x1), σ
)

, n
)}

.

It is clear that the simulation is perfect if Sim sends corruptedR or cheatR at any stage.
This is due to the fact that the probability that an honest S outputs corruptedR in the
simulation is identical to the probability in a real execution (probability 1 in the case
that A responds incorrectly to both challenges and probability 1/2 otherwise). Further-
more, in the case that Sim sends cheatR and receives back undetected it concludes the
execution using the true input of the sender. The simulation until the last step is per-
fect (it involves merely sending random challenges); therefore the completion using
the true sender’s input yields a perfect simulation. The above is clearly true of abortR
as well (because this can only occur before the last step where the sender’s input is
used).

It remains to analyze the case that Sim does not send corruptedR , cheatR or abortR
to the trusted party. Notice that in this case, A responded correctly to both the key-
generation challenges and the encryption-generation challenges. In particular, this im-
plies that the keys pk1 and pk2 are correctly generated, and that Sim computes σ based
on the encrypted values sent by A and the reordering.

Now, if σ = 0, then Sim hands A the ciphertexts c̃0 = Epk(x0) and c̃1 = Epk′(0),
where pk,pk′ ∈ {pk1,pk2} and pk �= pk′, and if σ = 1, it hands A the ciphertexts
c̃0 = Epk(0) and c̃1 = Epk′(x1). This follows from the instructions of Sim and the hon-
est party (Sim plays the honest party with x0 = x1 = xσ and so c̃σ is an encryption of
xσ and c̃1−σ is an encryption of 0). The important point to notice is that these messages
are distributed identically to the honest sender’s messages in a real protocol; the fact
that Sim does not know x1−σ makes no difference because for every x′ it holds that
x′ · Epk(0) = Epk(0). We note that this assumes that the homomorphic property of the
encryption scheme holds, but this is given by the fact that pk1 and pk2 are correctly
formed. Regarding the rest of the messages sent by Sim, these are generated indepen-
dently of the sender-input and so exactly like an honest sender.

We conclude that the view of A as generated by the simulator Sim is identical to the
distribution generated in a real execution. Thus, its output is identically distributed in
both cases. (Since the sender receives no output, we do not need to consider the output
distribution of the honest sender in the real and ideal executions.) We conclude that

{

IDEALSCε
ot,S(z),I

((

(x0, x1), σ
)

, n
)} ≡ {

REALπ,A(z),I

((

(x0, x1), σ
)

, n
)}

completing this corruption case.

Corrupted sender: Let A be a real adversary that controls the sender S. We construct
a simulator Sim that works as follows:

316 Y. Aumann and Y. Lindell

1. Sim receives (x0, x1) and z and invokes A on this input.
2. Sim interacts with A and plays the honest receiver until Step 3 of the protocol.
3. In Step 3 of the protocol, Sim works as follows:

(a) Sim chooses random bits b,α ∈R {0,1};
(b) Sim computes:

c1
b = Epk1(α), c2

b = Epk2(1 − α),

c1
1−b = Epk1(1), c2

1−b = Epk2(1);

(c) Sim sends c1
0, c

2
0, c

1
1, c

2
1 to A.

4. In the next step (Step 4 of the protocol), A sends a bit b′. If b′ = b, then Sim opens
the ciphertexts c1

b and c2
b as the honest receiver would (note that the ciphertexts

are “correctly” constructed). Otherwise, Sim returns to Step 3 of the simulation
above (i.e., it returns to the beginning of Step 3 of the protocol) and tries again
with fresh randomness.9

5. Sim sends a random reordering of the ciphertexts c1
1−b and c2

1−b (the actual order
does not matter because they are both encryptions of 1).

6. The simulator Sim receives from A the ciphertexts c̃0 and c̃1. Sim computes x0 =
Dsk1(c̃0) and x1 = Dsk2(c̃1) (or x0 = Dsk2(c̃0) and x1 = Dsk1(c̃1), depending on
which of c0, c1 is encrypted with pk1 and which with pk2), and sends the pair
(x0, x1) to the trusted party as S’s input.

7. If at any stage in the simulation A does not respond, or responds with an invalid
message that cannot be processed, then Sim sends abortS to the trusted party for
the sender’s inputs. (Such behavior from A can only occur before the last step and
so before any input (x0, x1) has already been sent to the trusted party.)

8. Sim outputs whatever A outputs.

Notice that Sim never sends cheatS to the trusted party. Thus we actually prove standard
security in this corruption case. That is, we prove that:

{

IDEALot,Sim(z),I

(

(x0, x1, σ), n
)} c≡ {

REALπ,A(z),I

(

(x0, x1, σ), n
)}

. (3)

By Proposition 3.8, this implies security for covert adversaries as well. In order to
prove (3), observe that the only difference between the view of the adversary A in a
real execution and in the simulation by Sim is due to the fact that Sim does not gen-
erate c1

b, c
2
b correctly. Thus, intuitively, (3) follows from the security of the encryption

scheme. That is, we begin by showing that if the view of A in the real and ideal exe-
cutions can be distinguished, then it is possible to break the security of the encryption
scheme. We begin by showing that the view of A when interacting with an honest sender
with input σ = 0 is indistinguishable from the view of A when interacting in a simula-
tion with Sim.

9 This yields an expected polynomial-time simulation because these steps are repeated until b′ = b. A strict
polynomial-time simulation can be achieved by just halting after n attempts. The probability that b′ �= b in all
of these attempts can be shown to be negligible, based on the hiding property of the encryption scheme.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 317

Let A′ be an adversary that attempts to distinguish encryptions under a key pk.10

Adversary A′ receives a key pk, chooses a random bit γ ∈R {0,1} and a random index
� ∈R {1,2} and sets pk

1−γ

� = pk. It then chooses the keys pk
1−γ

3−� , pk
γ

1 and pk
γ

2 by
itself and sends A the keys (pk0

1,pk0
2) and (pk1

1,pk1
2). When A replies with a bit b,

adversary A′ acts as follows. If b = γ , then A′ opens the randomness used in generating
(pkb

1 ,pkb
2) as the honest receiver would (A′ can do this because it chose (pk

γ

1 ,pk
γ

2) by
itself and γ = b). If b �= γ , then A′ cannot open the randomness as an honest receiver
would. Therefore, A′ just halts. If A continues, then it sets pk1 = pk

1−γ

1 and pk2 =
pk

1−γ

2 (and so pk� is the public-key pk that A′ is “attacking”). Now, A′ computes
the ciphertexts c1

0, c
2
0, c

1
1, c

2
1 in the following way. A′ chooses α and β at random, as the

honest receiver would. Then, for a random ζ adversary A′ computes c1
ζ = Epk1(α), c2

ζ =
Epk2(1 − α), and c3−�

1−ζ = Epk3−�
(1). However, A′ does not compute c�

1−ζ = Epk�
(1).

Rather, it outputs a pair of plaintexts m0 = 0,m1 = 1 and receives back c = Epk(mb) =
Epk�

(mb) (for b ∈R {0,1}). Adversary A′ sets c�
1−ζ = c (i.e., to equal the challenge

ciphertext) and continues playing the honest receiver until the end. In this simulation,
A′ sets the reordering so that c0 equals c3−�

1−ζ (that is, it is an encryption of 1). The key
point here is that if A′ does not halt and b = 0, then the simulation by A′ is identical
to a real execution between A and an honest receiver R who has input σ = 0 (because
c0 = c3−�

1−ζ is an encryption of 1 and c1 = c�
1−ζ is an encryption of 0, as required). In

contrast, if A′ does not halt and b = 1, then the simulation by A′ is identical to the
simulation carried out by Sim (because in this case they are both encryptions of 1).
Finally, note that A′ halts with probability exactly 1/2 in both cases (this is due to
the fact that the distribution of the keys is identical for both choices of γ). Combining
the above together, we have that if it is possible to distinguish the view of A in the
simulation by Sim from a real execution with a receiver who has input 0, then it is
possible to distinguish encryptions. Specifically, A′ can just run the distinguisher that
exists for these views and output whatever the distinguisher outputs.

The above shows that the view of A in the simulation is indistinguishable from its
view in a real execution with an honest receiver with input σ = 0. However, we actually
have to show that when the honest receiver has input σ = 0, the joint distribution of A
and the honest receiver’s outputs in a real execution is indistinguishable from the joint
distribution of Sim and the honest receiver’s outputs in the ideal model. The point to
notice here is that the output of the honest receiver in both the real and ideal models
is the value obtained by decrypting c̃0 using key pk3−�. (In the real model this is what
the protocol instructs the honest party to output and in the ideal model this is the value
that Sim sends to the trusted party as the sender’s input x0.) However, in this reduc-
tion A′ knows the associated secret-key to pk3−�, because it chose pk3−� itself. Thus,
A′ can append the decryption of c̃0 to the view of A, thereby generating a joint dis-
tribution. It follows that if A′ received an encryption of m0 = 0 then it generates the
joint distribution of the outputs in the real execution, and if it received an encryption
of m1 = 1 then it generates the joint distribution of the outputs in the ideal execution.

10 The game that A′ plays is that it receives a key pk, outputs a pair of plaintexts m0,m1, receives back
a challenge ciphertext Epk(mb) for some b ∈ {0,1}, and outputs a “guess” bit b′ . An encryption scheme is
indistinguishable if the probabilities that A′ outputs b′ = 1 when b = 1 and when b = 0 are negligibly close.

318 Y. Aumann and Y. Lindell

By the indistinguishability of the encryption scheme we have the real and ideal distri-
butions are indistinguishable, completing the proof of (3) for the case that σ = 0. The
case for σ = 1 follows from an almost identical argument as above. Combining these
two cases, we have the output distribution generated by the simulator in the ideal model
is computationally indistinguishable from the output distribution of a real execution. It
remains to show that Sim runs in expected polynomial-time. Note that Sim rewinds if
in the simulation it holds that b′ �= b. Now, in the case that the ciphertexts c1

0, c
2
0, c

1
1, c

2
1

are generated as by the honest party (each pair containing an encryption of 0 and an
encryption of 1), the probability that b′ �= b is exactly 1/2 because the value of b′ is
information-theoretically hidden. In contrast, in the simulation this is not the case be-
cause c1

b, c
2
b are “correctly” constructed, whereas c1

1−b, c
2
1−b are both encryptions of 1.

Nevertheless, if the probability that b′ �= b is non-negligibly far from 1/2, then this can
be used to distinguish an encryption of 0 from an encryption of 1 (the actual reduction
can be derived from the reduction already carried out above and is thus omitted). It fol-
lows that the expected number of rewindings is at most slightly greater than 2, implying
that the overall simulation runs in expected polynomial-time. As we have mentioned in
Footnote 9, the simulation can be made to run in strict polynomial-time by aborting if
for n consecutive trials it holds that b′ �= b. By the argument given above, such an abort
can only occur with negligible probability. This concludes the proof of this corruption
case, and thus of the theorem. �

Discussion The proof of Protocol 5.2 in the case that the receiver is corrupted relies
heavily on the fact that the simulator can send cheat and therefore does not need to
complete a “standard” simulation. Take for example the case that A (controlling the
receiver) only replies with one valid response to the encryption-generation challenge.
In this case, the receiver can learn both x0 and x1 with probability 1/2. However, the
simulator in the ideal model can never learn both x0 and x1. Therefore, the simulator
cannot generate the correct distribution. However, by allowing the simulator to declare
a cheat, it can complete the simulation as required. This demonstrates why it is possible
to achieve higher efficiency for this definition of security. We remark that the above pro-
tocol is not non-halting detection accurate (see Definition 3.5). For example, a cheating
receiver can send c1

0 = Epk1(α) and c2
0 = Epk1(α). Then, if the sender chooses b′ = 1

(thus testing c1
1 and c2

1), the adversary succeeds in cheating and learning both of the
sender’s inputs. However, if the sender chooses b′ = 0, the receiver can just abort at this
point. This means that such an early abort must be considered an attempt to cheat, and
so a sender running with a fail-stop receiver must also output corruptedR .

The Proof of Security for a Corrupted Sender We stress that we have actually proven
something stronger. Specifically, we have shown that Protocol 5.2 is secure in the pres-
ence of a covert receiver with 1/2-deterrent as stated. However, we have also shown
that Protocol 5.2 is (fully) secure with abort in the presence of a malicious sender.

Efficiently Recognizable Public Keys We remark that in the case that it is possible to
efficiently recognize that a public key is in the range of the key-generator of the public-
key encryption scheme, it is possible to skip the key-generation challenge step in the
protocol (the sender can verify for itself if the key is valid).

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 319

5.2. Extensions

String Oblivious Transfer In Protocol 5.2, x0 and x1 are elements in the group over
which the homomorphic encryption scheme is defined. If this group is large, then we
can carry out string oblivious transfer. This is important because later we will use Pro-
tocol 5.2 to exchange symmetric encryption keys. However, if the group contains only
0 and 1, then this does not suffice. In order to extend Protocol 5.2 to deal with string
oblivious transfer, even when the group has only two elements, we only need to change
the last two steps of the protocol. Specifically, instead of S computing a single encryp-
tion for x0 and a single encryption for x1, it computes an encryption for each bit. That
is, denote the bits of x0 by x1

0 , . . . , xn
0 , and likewise for x1. Then, S computes:

c̃0 = x1
0 ·E c0, . . . , x

n
0 ·E c0 and c̃1 = x1

1 ·E c1, . . . , x
n
1 ·E c1.

Note that the receiver can still only obtain one of the strings because if σ = 0 then c̃1
just contains encryptions to zeroes, and vice versa if σ = 1.

Simultaneous Oblivious Transfer We will use Protocol 5.2 in Yao’s protocol for secure
two-party computation. This means that we will run one oblivious transfer for every bit
of the input. In principle, these oblivious transfers can be run in parallel, as long as the
protocol being used remains secure under parallel composition. The classical notion of
parallel composition considers the setting where the honest parties run each execution
obliviously of the others (this is often called “stateless composition”). We do not know
how to prove that our protocol composes in parallel in this sense. Nevertheless, we can
modify Protocol 5.2 so that it is possible to simultaneously run many oblivious transfers
with a cost that is less than running Protocol 5.2 the same number of times in parallel.
We call this simultaneous oblivious transfer in order to distinguish it from “parallel
oblivious transfer” (which considers stateless parallel composition, as described above).
The simultaneous oblivious transfer functionality is defined as follows:

((

x0
1 , x1

1

)

, . . . ,
(

x0
n, xn

1

)

, (σ1, . . . , σn)
) �→ (

λ,
(

x
σ1
1 , . . . , xσn

n

))

.

Thus, we essentially have n oblivious transfers where in the ith such transfer, the sender
has input (x0

i , x1
i) and the receiver has input σi .

The extension to Protocol 5.2 works as follows. First, the same public-key pair
(pk1,pk2) can be used in all executions. Therefore, Steps 1 and 2 remain unchanged.
Then, Step 3 is carried out independently for all n bits σ1, . . . , σn. That is, for every i,
two pairs of ciphertexts encrypting 0 and 1 (in random order) are sent. The important
change comes in Step 4. Here, the same challenge bit b′ is used for every i. The sender
then replies as it should, opening the c1

b′ and c2
b′ ciphertexts for every i. The protocol

then concludes by the sender computing the c̃0 and c̃1 ciphertexts for every i, and the
receiver decrypting.

The proof of the above extension is almost identical to the proof of Theorem 5.3.
The main point is that since only a single challenge is used for both the key-generation
challenge and encryption-generation challenge, the probability of achieving b′ = b (as
needed for the simulation) and b = γ (as needed for the reduction to the security of
the encryption scheme) remains one half. Furthermore, the probability that a corrupted

320 Y. Aumann and Y. Lindell

R will succeed in cheating remains the same because if there is any i for which the
encryptions are not correctly formed, then the receiver will be caught with probability
one half.

Higher Values of ε Finally, we show how it is possible to obtain higher values of ε with
only minor changes to Protocol 5.2. The basic idea is to increase the probability of catch-
ing a corrupted receiver in the case that it attempts to generate an invalid key-pair or send
ciphertexts in Step 3 that do not encrypt the same value. Let k = poly(n) be an integer.
Then, first the receiver generates k pairs of public keys (pk1

1,pk1
2), . . . , (pkk

1,pkk
2) in-

stead of just two pairs. The sender then asks the receiver to reveal the randomness used
in generating all the pairs except for one (the unrevealed key-pair is the one used in
the continuation of the protocol). Note that if a corrupted receiver generated even one
key-pair incorrectly, then it is caught with probability 1 − 1/k. Likewise, in Step 3, the
receiver sends k pairs of ciphertexts where in each pair one ciphertext is an encryption
of 0 and the other an encryption of 1. Then, the sender asks the receiver to open all
pairs of encryptions of σi except for one pair. Clearly, the sender still learns nothing
about σ because the reordering is only sent on the ciphertext pair that is not opened.
Furthermore, if the receiver generates even one pair of ciphertexts so that the cipher-
texts are not correctly formed, then it will be caught with probability 1 − 1/k. The rest
of the protocol remains the same. We conclude that the resulting protocol is secure in
the presence of covert adversaries with ε-deterrent where ε = 1 − 1/k. Notice that this
works as long as k is polynomial in the security parameter and thus ε can be made to
be very close to 1, if desired. (Of course, this methodology cannot be used to make ε

negligibly close to 1, because then k has to be super-polynomial.)

Summary We conclude with the following theorem, derived by combining the exten-
sions above:

Theorem 5.4. Assume that there exist semantically secure homomorphic encryption
schemes with errorless decryption. Then, for any k = poly(n) there exists a protocol
that securely computes the simultaneous string oblivious transfer functionality

((

x0
1 , x1

1

)

, . . . ,
(

x0
n, xn

1

)

, (σ1, . . . , σn)
) �→ (

λ,
(

x
σ1
1 , . . . , xσn

n

))

in the presence of covert adversaries with ε-deterrent for ε = 1 − 1
k

. Furthermore, the
protocol has four rounds of communication, and involves generating 2k encryption keys,
carrying out 2kn encryption operations, 2n homomorphic multiplications and n decryp-
tions.

Note that the amortized complexity of each oblivious transfer is: 2k encryptions,
2 scalar multiplications with the homomorphic encryption scheme and 1 decryption.
(The key generation which is probably the most expensive is run 2k times independently
of n. Therefore, when many oblivious transfers are run, this becomes insignificant.)

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 321

6. Secure Two-Party Computation

In this section, we show how to securely compute any two-party functionality in the
presence of covert adversaries. We present a protocol for the strong explicit-cheat for-
mulation, with parameters that can be set to obtain a wide range of values for the
ε-deterrent. Our protocol is based on Yao’s protocol for semi-honest adversaries [30].
We will base our description on the write-up of [22] of this protocol, and will assume fa-
miliarity with it. Nevertheless, in Appendix A, we briefly describe Yao’s garbled circuit
construction and present an important lemma regarding it.

6.1. Overview of the Protocol

The original protocol of Yao is not secure when the parties may be malicious. Intuitively,
there are two main reasons for this. First, the circuit constructor P1 may send P2 a
garbled circuit that computes a completely different function. Second, the oblivious
transfer protocol that is used when the parties can be malicious must be secure for this
case. The latter problem is solved here by using the protocol guaranteed by Theorem 5.4.
The first problem is solved by having P1 send P2 a number of garbled circuits; denote
this number by �. Then, P2 asks P1 to open all but one of the circuits (chosen at random)
in order to check that they are correctly constructed. This opening takes place before P1
sends the keys corresponding to its input, so nothing is revealed by opening the circuits.
The protocol then proceeds similarly to the semi-honest case. The main point here is
that if the unopened circuit is correct, then this will constitute a secure execution that
can be simulated. However, if it is not correct, then with probability 1 − 1/� party P1
will have been caught cheating and so P2 will output corrupted1 (recall, � denotes the
number of circuits sent). While the above intuition forms the basis for our protocol, the
actual construction of the appropriate simulator is somewhat delicate, and requires a
careful construction of the protocol. We note some of these subtleties hereunder.

First, it is crucial that the oblivious transfers are run before the garbled circuits are
sent by P1 to P2. This is due to the fact that the simulator sends a corrupted P2 a fake
garbled circuit that evaluates to the exact output received from the trusted party (and
only this output), as described in Lemma A.1. However, in order for the simulator to
receive the output from the trusted party, it must first send it the input used by the
corrupted P2. This is achieved by first running the oblivious transfers, from which the
simulator is able to extract the corrupted P2’s input.

The second subtlety relates to an issue we believe may be a problem for many other
implementations of Yao that use cut-and-choose. The problem is that the adversary can
construct (at least in theory) a garbled circuit with two sets of keys, where one set of
keys decrypt the circuit to the specified one and another set of keys decrypt the circuit
to an incorrect one. This is a problem because the adversary can supply “correct keys”
to the circuits that are opened and “incorrect keys” to the circuit that is computed. Such
a strategy cannot be carried out without risk of detection for the keys that are associated
with P2’s input because these keys are obtained by P2 in the oblivious transfers before
the garbled circuits are even sent (thus if incorrect keys are sent for one of the circuits,
P2 will detect this if that circuit is opened). However, it is possible for a corrupt P1 to
carry out this strategy for the input wires associated with its own input. We prevent this
by having P1 commit to these keys and send the commitments together with the garbled

322 Y. Aumann and Y. Lindell

circuits. Then, instead of P1 just sending the keys associated with its input, it sends the
appropriate decommitments.

A third subtlety that arises is connected to the difference between Definitions 3.2
and 3.3 (where the latter is the stronger definition where the decision by the adversary
to cheat is not allowed to depend on the honest parties’ inputs or on the output). Con-
sider a corrupted P1 that behaves exactly like an honest P1 except that in the oblivious
transfers, it inputs an invalid key in the place of the key associated with 0 as the first
bit of P2. The result is that if the first bit of P2’s input is 1, then the protocol succeeds
and no problem arises. However, if the first bit of P2’s input is 0, then the protocol
will always fail and P2 will always detect cheating. Thus, P1’s decision to cheat may
depend on P2’s private input, something that is impossible in the ideal models of Defi-
nitions 3.3 and 3.4. In summary, this means that such a protocol achieves Definition 3.2
(with ε = 1/�) but not Definition 3.3. In order to solve this problem, we use a circuit that
computes the function g(x1, x

1
2 , . . . , xm

2) = f (x1,
⊕m

i=1 xi
2), instead of a circuit that di-

rectly computes f . Then, upon input x2, party P2 chooses random x1
2 , . . . , xm−1

2 and sets

xm
2 = (

⊕m−1
i=1 xi

2) ⊕ x2. This makes no difference to the result because
⊕m

i=1 xi
2 = x2

and so g(x1, x
1
2 , . . . , xm

2) = f (x1, x2). However, this modification makes every bit of
P2’s input uniform when considering any proper subset of x1

2 , . . . , xm
2 . This helps be-

cause as long as P1 does not provide invalid keys for all m shares of x2, the probability
of failure is independent of P2’s actual input (because any set of m − 1 shares is in-
dependent of x2). Since m − 1 invalid shares are detected with probability 1 − 2−m+1,
we have that P2 detects the cheating by P1 with this probability, independently of its
input value. This method was previously used in [23] (however, there they must set m

to equal the security parameter).
Intuitively, an adversary can cheat by providing an incorrect circuit or by providing

invalid keys for shares. However, it is then detected with the probabilities described
above. Below, we show that when using � circuits and splitting P2’s input into m shares,
we obtain ε = (1 − 1/�)(1 − 2−m+1). This enables us to play around with the values of
m and � in order to optimize efficiency versus ε-deterrent. For example, if we wish to
obtain ε = 1/2 we can use the following parameters:

1. Set � = 2 and m = n: This yields ε = (1 − 1/2)(1 − 2−n+1) which is negligibly
close to 1/2. However, since in Yao’s protocol we need to run an oblivious transfer
for every one of P2’s input bits, this incurs a blowup of the number of oblivious
transfers (and thus exponentiations) by n. Thus, this setting of parameters results
in a considerable computational blowup.

2. Set � = 3 and m = 3: This yields ε = (1 − 1/3)(1 − 1/4) = 1/2. The computa-
tional cost incurred here is much less than before because we only need 3 oblivious
transfers for each of P2’s input bits. Furthermore, the cost of sending 3 circuits is
not much greater than 2, and so the overall complexity is much better.

Before proceeding to the protocol, we provide one more example of parameters. In order
to achieve ε = 9/10, it is possible to set � = 25 and m = 5 (setting � = m = 10 gives
0.898 which is very close). This gives a significantly higher value of ε. We remark that
such a setting of ε also assumes a value of ε = 9/10 for the oblivious transfer protocol.
As we have seen, this involves a blowup of 5 times more computation than for oblivious
transfer with ε = 1/2.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 323

6.2. The Protocol for Two-Party Computation

We are now ready to describe the actual protocol.

Protocol 6.1 (Two-party computation of a function f).

• Inputs: Party P1 has input x1 and party P2 has input x2, where |x1| = |x2|. In
addition, both parties have parameters � and m, and a security parameter n. For
simplicity, we will assume that the lengths of the inputs are n.

• Auxiliary input: Both parties have the description of a circuit C for inputs of
length n that computes the function f . The input wires associated with x1 are
w1, . . . ,wn and the input wires associated with x2 are wn+1, . . . ,w2n.

• The protocol:

1. Parties P1 and P2 define a new circuit C′ that receives m + 1 inputs
x1, x

1
2 , , . . . , xn

2 each of length n, and computes the function f (x1,
⊕m

i=1 xi
2).

Note that C′ has n + mn input wires. Denote the input wires associ-
ated with x1 by w1, . . . ,wn, and the input wires associated with xi

2 by
wn+(i−1)m+1, . . . ,wn+im, for i = 1, . . . , n.

2. Party P2 chooses m − 1 random strings x1
2 , . . . , xm−1

2 ∈R {0,1}n and defines

xm
2 = (

⊕m−1
i=1 xi

2) ⊕ x2, where x2 is P2’s original input (note that
⊕m

i=1 xi
2 =

x2). The value z2
def= x1

2 , . . . , xm
2 serves as P2’s new input of length mn to C′.

(The input wires associated with P2’s new input are wn+1, . . . ,wn+mn.)
3. For each i = 1, . . . ,mn and β = 0,1, party P1 chooses � encryption keys

by running G(1n), the key generator for the encryption scheme, � times. The
j th key associated with a given i and β is denoted k

j
wn+i ,β

; note that this is
the key associated with the bit β for the input wire wn+i in the j th circuit.
The result is an �-tuple, denoted:

[

k1
wn+i ,β

, . . . , k�
wn+i ,β

]

.

(This tuple constitutes the keys that are associated with the bit β for the input
wire wn+i in all � circuits.)

4. P1 and P2 run mn executions of an oblivious transfer protocol, as follows. In
the ith execution, party P1 inputs the pair

([

k1
wn+i ,0, . . . , k

�
wn+i ,0

]

,
[

k1
wn+i ,1, . . . , k

�
wn+i ,1

])

and party P2 inputs the bit zi
2 (P2 receives the keys [k1

wn+i ,z
i
2
, . . . , k�

wn+i ,z
i
2
]

as output). The executions are run using a simultaneous oblivious transfer
functionality, as in Theorem 5.4. If a party receives a corruptedi or aborti
message as output from the oblivious transfer, it outputs it and halts.

5. Party P1 constructs � garbled circuits GC1, . . . ,GC� using independent ran-
domness (the circuits are garbled versions of C′ described above). The keys
for the input wires wn+1, . . . , wn+mn in the garbled circuits are taken from
above (i.e., in GCj the keys associated with wn+i are k

j

wn+i ,0
and k

j

wn+i ,1
).

324 Y. Aumann and Y. Lindell

The keys for the inputs wires w1, . . . ,wn are chosen randomly, and are de-
noted in the same way.

P1 sends the � garbled circuits to P2.
6. P1 commits to the keys associated with its inputs. That is, for every i =

1, . . . , n, β = 0,1 and j = 1, . . . , �, party P1 computes

c
j
wi,β

= Com
(

k
j
wi,β

; rj
i,β

)

where Com is a perfectly-binding commitment scheme, Com(x; r) denotes a
commitment to x using randomness r , and r

j
i,β is a random string of sufficient

length to commit to a key of length n.
P1 sends all of the above commitments. The commitments are sent as �

vectors of pairs (one vector for each circuit); in the j th vector the ith pair is
{cj

wi,0
, c

j

wi ,1
} in a random order (the order is randomly chosen independently

for each pair).
7. Party P2 chooses a random index γ ∈R {1, . . . , �} and sends γ to P1.
8. P1 sends P2 all of the keys for the input wires in all garbled circuits ex-

cept for GCγ (this enables a complete decryption of the garbled circuit),
together with the associated mappings and the decommitment values. (I.e.
for every i = 1, . . . , n + mn and j �= γ , party P1 sends the keys and map-
pings (k

j

wi,0
,0), (k

j

wi ,1
,1). In addition, for every i = 1, . . . , n and j �= γ it

sends the decommitments r
j

i,0, r
j

i,1.)
9. P2 checks that everything that it received is in order. That is, it checks:

– That the keys it received for all input wires in circuits GCj (j �= γ) indeed
decrypt the circuits (when using the received mappings), and the decrypted
circuits are all C′.

– That the decommitment values correctly open all the commitments c
j
wi,β

that were received, and these decommitments reveal the keys k
j
wi,β

that
were sent for P1’s wires.

– That the keys received in the oblivious transfers earlier match the appro-
priate keys that it received in the opening (i.e., if it received [k1

i , . . . , k
�
i]

in the ith oblivious transfer, then it checks that k
j
i from the transfer equals

k
j

wn+i ,z
i
2

from the opening).

If all the checks pass, it proceeds to the next step. If not, it outputs corrupted1
and halts. In addition, if P2 does not receive this message at all, it outputs
corrupted1.

10. P1 sends decommitments to the input keys associated with its input for the
unopened circuit GCγ . That is, for i = 1, . . . , n, party P1 sends P2 the key
k
γ
wi,xi

and decommitment r
γ

i,xi
, where xi is the ith bit of P1’s input.

11. P2 checks that the values received are valid decommitments to the commit-
ments received above. If not, it outputs abort1. If yes, it uses the keys to com-
pute C′(x1, z2) = C′(x1, x

1
2 , . . . , xm

2) = C(x1, x2), and outputs the result. If
the keys are not correct (and so it is not possible to compute the circuit), or
if P2 does not receive this message at all, it outputs abort1.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 325

Fig. 1. A high-level diagram of the protocol.

Note that Steps 7–10 are actually a single step of P1 sending a message to P2,
followed by P2 carrying out a computation. If during the execution, any party fails
to receive a message or it receives one that is ill-formed, it outputs aborti (where Pi

is the party who failed to send the message). This holds unless the party is explicitly
instructed above to output corruptedi instead (as in Step 9).

For reference throughout the proof, we provide a high-level diagram of the protocol
in Fig. 1.

We have motivated the protocol construction above and thus proceed directly to prove
its security. Note that we assume that the oblivious transfer protocol is secure with the
same ε as above (of course, one can also use an oblivious transfer protocol that is secure
in the presence of malicious adversaries, because this is secure in the presence of covert
adversaries for any ε).

Theorem 6.2. Let � and m be parameters in the protocol that are both upper-bound
by poly(n), and set ε = (1 − 1/�)(1 − 2−m+1). Let f be any probabilistic polynomial-
time function. Assume that the encryption scheme used to generate the garbled circuits

326 Y. Aumann and Y. Lindell

has indistinguishable encryptions under chosen-plaintext attacks (and has an elusive
and efficiently verifiable range), and that the oblivious transfer protocol used is secure
in the presence of covert adversaries with ε-deterrent according to Definition 3.4. Then,
Protocol 6.1 securely computes f in the presence of covert adversaries with ε-deterrent
according to Definition 3.4.

Proof. Our analysis of the security of the protocol is in the (OT , ε)-hybrid model,
where the parties are assumed to have access to a trusted party computing the oblivious
transfer functionality following the ideal model of Definition 3.4; see Sect. 4. Thus the
simulator that we describe will play the trusted party in the oblivious transfer, when sim-
ulating for the adversary. We separately consider the different corruption cases (when
no parties are corrupted, and when either one of the parties is corrupted). In the case that
no parties are corrupted, the security reduces to the semi-honest case which has already
been proven in [22] (the additional steps in Protocol 6.1 do not make a difference here).

Party P2 is Corrupted Intuitively, the security in this case relies on the fact that P2 can
only learn a single set of keys in the oblivious transfers and thus can decrypt the garbled
circuit to only a single value as required. Formally, let A be a probabilistic polynomial-
time adversary controlling P2. The simulator S fixes A’s random-tape to a uniformly
distributed tape and works as follows:

1. S chooses � sets of mn random keys as P1 would.
2. S plays the trusted party for the oblivious transfers with A as the receiver. S

receives the input that A sends to the trusted party (as its input as receiver to the
oblivious transfers):
(a) If the input is abort2 or corrupted2, then S sends abort2 or corrupted2 (re-

spectively) to the trusted party computing f , simulates P1 aborting and halts
(outputting whatever A outputs).

(b) If the input is cheat2, then S sends cheat2 to the trusted party. If it receives
back corrupted2, then it hands A the message corrupted2 as if it received it
from the trusted party, simulates P1 aborting and halts (outputting whatever
A outputs). If it receives back undetected (and thus P1’s input x1 as well),
then S works as follows. First, it hands A the string undetected together with
the nm random keys that it chose (note that A expects to receive the inputs
of P1 to the oblivious transfers in the case of undetected). Next, S uses the
input x1 of P1 that it received in order to perfectly emulate P1 in the rest of the
execution. That is, it runs P1’s honest strategy with input x1 while interacting
with A playing P2 for the rest of the execution. Let y1 be the output for P1
that it receives. S sends y1 to the trusted party (for P1’s output) and outputs
whatever A outputs. The simulation ends here in this case.

(c) If the input is a series of bits z1
2, . . . , z

mn
2 , then S hands A the keys from above

that are “chosen” by the zi
2 bits, and proceeds with the simulation below.

3. S defines x2 = ⊕m−1
i=0 (zi·n+1

2 , . . . , zi·n+n
2) and sends x2 to the trusted party com-

puting f . S receives back some output y.
4. S chooses a random value ζ and computes the garbled circuits GCj for j �= ζ cor-

rectly (using the appropriate input keys from above as P1 would). However, for the

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 327

garbled circuit GCζ , the simulator S does not use the true circuit for computing
f but rather a circuit G̃C that always evaluates to y (the value it received from the
trusted party), using Lemma A.1. S uses the appropriate input keys from above
also in generating GCζ . S also computes commitments to the keys associated with
P1’s input in an honest way.

5. S sends GC1, . . . ,GC� and the commitments to A and receives back an index γ .
6. If γ �= ζ then S rewinds A and returns to Step 4 above (using fresh randomness).

Otherwise, if γ = ζ , then S opens all the commitments and garbled circuits
GCj for j �= γ , as the honest P1 would, and proceeds to the next step.

7. S hands A arbitrary keys associated with the input wires of P1. That is, for i =
1, . . . , n, S hands A an arbitrary one of the two keys associated with the input
wire wi in GCγ (one key per wire), together with its correct decommitment.

8. If at any stage, S does not receive a response from A, it sends abort2 to the trusted
party (resulting in P1 outputting abort2). If the protocol proceeds successfully to
the end, S sends continue to the trusted party and outputs whatever A outputs.

Denoting Protocol 6.1 as π and I = {2} (i.e., party P2 is corrupted), we prove that:

{

IDEALSCε
f,S(z),I

(

(x1, x2), n
)} c≡ {

HYBRID
ot,ε
π,A(z),I

(

(x1, x2), n
)}

. (4)

In order to prove (4), we separately consider the cases of abort (including a “corrupted”
input), cheat or neither. If A sends abort2 or corrupted2 as the oblivious transfer input,
then S sends abort2 or corrupted2 (respectively) to the trusted party computing f . In
both cases the honest P1 outputs the same (abort2 or corrupted2) and the view of A
is identical. Thus, the IDEAL and HYBRID output distributions are identical. The exact
same argument is true if A sends cheat2 and the reply to S from the trusted party is
corrupted2. In contrast, if A sends cheat2 and S receives back the reply undetected,
then the execution does not halt immediately. Rather, S plays the honest P1 with its
input x1. Since S follows the exact same strategy as P1, and the output received by P1
from the execution is the same y1 that S receives from the protocol execution, it is
clear that once again the output distributions are identical (recall that in the ideal model,
P1 outputs the same y1 obtained by S). We remark that the probability of the trusted
party answering corrupted2 or undetected is the same in the hybrid and ideal executions
(i.e., ε), and therefore the output distributions in the cases of abort, corrupted or cheat
are identical. We denote the event that A sends an abort, corrupted or cheat message in
the oblivious transfers by badOT. Thus, we have shown that

{

IDEALSCε
f,S(z),I

(

(x1, x2), n
) ∣
∣ badOT

} ≡ {

HYBRID
ot,ε
π,A(z),I

(

(x1, x2), n
) ∣
∣ badOT

}

.

We now show that the IDEAL and HYBRID distributions are computationally indistin-
guishable in the case that A sends valid input in the oblivious transfer phase (i.e., in
the event ¬badOT). In order to show this, we consider a modified simulator S ′ who is
also given the honest party P1’s real input x1. Simulator S ′ works exactly as S does,
except that it constructs GCζ honestly, and not as G̃C from Lemma A.1. Furthermore,
in Step 7 it sends the keys associated with P1’s input x1 and not arbitrary keys. It is
straightforward to verify that the distribution generated by S ′ is identical to the distri-
bution generated by A in an execution of the real protocol. This is due to the fact that

328 Y. Aumann and Y. Lindell

all � circuits received by A are honestly constructed and the keys that it receives from
S ′ are associated with P1’s real input. The only difference is the rewinding. However,
since ζ is chosen uniformly, this has no effect on the output distribution. Thus:

{

IDEALSCε
f,S ′(z,x1),I

(

(x1, x2), n
) ∣
∣ ¬badOT

}≡{

HYBRIDot
π,A(z),I

(

(x1, x2), n
) ∣
∣ ¬badOT

}

.

Next we prove that conditioned on the event that badOT does not occur, the distributions
generated by S and S ′ are computationally indistinguishable. That is,

{

IDEALSCε
f,S(z),I

(

(x1, x2), n
)∣
∣¬badOT

} c≡{

IDEALSCε
f,S ′(z,x1),I

(

(x1, x2), n
) ∣
∣ ¬badOT

}

.

In order to see this, notice that the only difference between S and S ′ is in the con-
struction of the garbled circuit GCζ . By Lemma A.1 it follows immediately that these
distributions are computationally indistinguishable. (Note that we do not need to con-
sider the joint distribution of A’s view and P1’s output because P1 has no output from
Protocol 6.1.) This yields the above equation. In order to complete the proof of (4), note
that the probability that the event badOT happens is identical in the IDEAL and HYBRID

executions. This holds because the oblivious transfer is the first step of the protocol and
A’s view in this step with S is identical to its view in a protocol execution with a trusted
party computing the oblivious transfer functionality. Combining this fact with the above
equations we derive (4).

We remark that the simulator S described above runs in expected polynomial-time.
In order to see this, note that by Lemma A.1, a fake garbled circuit is indistinguishable
from a real one. Therefore, the probability that γ = ζ is at most negligibly far from
1/� (otherwise, this fact alone can be used to distinguish a fake garbled circuit from
a real one). It follows that the expected number of attempts by S is close to �, and so
its expected running-time is polynomial (by the assumption on �). By our definition,
S needs to run in strict polynomial-time. However, this is easily achieved by having S
halt if it fails after n� rewinding attempts. Following the same argument as above, such
a failure can occur with at most negligible probability.

We conclude that S meets the requirements of Definition 3.4. (Note that S only sends
cheat2 due to the oblivious transfer. Thus, if a “fully secure” oblivious transfer proto-
col were to be used, the protocol would meet the standard definition of security for
malicious adversaries for the case that P2 is corrupted.)

Party P1 Is Corrupted The proof of security in this corruption case is considerably
more complex. Intuitively, security relies on the fact that if P1 does not construct the
circuits correctly or does not provide the same keys in the oblivious transfers and circuit
openings, then it will be caught with probability at least ε. In contrast, if it does construct
the circuits correctly and provide the same keys, then its behavior is effectively the
same as an honest party and so security is preserved. Formally, let A be an adversary
controlling P1. The simulator S works as follows:

1. S invokes A and plays the trusted party for the oblivious transfers with A as the
sender. S receives the input that A sends to the trusted party (as its input to the
oblivious transfers):

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 329

(a) If the input is abort1 or corrupted1, then S sends abort1 or corrupted1 (re-
spectively) to the trusted party computing f , simulates P2 aborting and halts
(outputting whatever A outputs).

(b) If the input is cheat1, then S sends cheat1 to the trusted party. If it receives
back corrupted1, then it hands A the message corrupted1 as if it received it
from the trusted party, simulates P2 aborting and halts (outputting whatever
A outputs). If it receives back undetected (and thus P2’s input x2 as well),
then S works as follows. First, it hands A the string undetected together with
the input string z2 that an honest P2 upon input x2 would have used in the
oblivious transfers (note that A expects to receive P2’s input to the oblivi-
ous transfers in the case of undetected). We remark that S can compute z2
by simply following the instructions of an honest P2 with input x2 from the
start (nothing yet has depended on P2’s input so there is no problem of con-
sistency). Next, S uses the derived input z2 that it computed above in order
to perfectly emulate P2 in the rest of the execution. That is, it continues P2’s
honest strategy with input z2 while interacting with A playing P1 for the rest
of the execution. Let y2 be the output for P2 that it receives. S sends y2 to the
trusted party (for P2’s output) and outputs whatever A outputs. The simulation
ends here in this case.

(c) If the input is a series of mn pairs of �-tuples of keys
([

k1
wn+i ,0, . . . , k

�
wn+i ,0

]

,
[

k1
wn+i ,1, . . . , k

�
wn+i ,1

])

for i = 1, . . . ,mn, then S proceeds as below.
2. S receives from A a message consisting of � garbled circuits GC1, . . . ,GC� and

a series of commitments.
3. For j = 1, . . . , �, simulator S sends A the message γ = j , receives its reply and

rewinds A back to the point before A receives γ .
4. S continues the simulation differently, depending on the validity of the circuit

openings. In order to describe the cases, we introduce some terminology.

Legitimate circuit: We say that a garbled circuit GCj is legitimate if in at least
one of its openings, in response to a challenge γ �= j , it is decrypted to the
auxiliary input circuit C′. Note that if a circuit is legitimate then in all valid
decryptions of the circuit (for all γ �= j) it decrypts to C′. Furthermore, if a
circuit is illegitimate then in all openings it is not correctly decrypted.

Inconsistent key: This notion relates to the question of whether the keys pro-
vided by P1 in the oblivious transfers are the same as those committed to and
thus revealed in a circuit opening. We say that a (committed) key k

j
wi,β

received
in an oblivious transfer is inconsistent if it is different from the analogous key
committed to by P1. We stress that the keys obtained in the oblivious transfers
(and of course the committed keys) are fixed before this point of the simulation
and thus this event is well defined.

Inconsistent wire: A wire wi is inconsistent if there exists a circuit GCj such

that either k
j

wi,0
or k

j

wi,1
is an inconsistent key.

Totally inconsistent input: An original input bit xi
2 is totally inconsistent if all

of the wires associated with the shares of xi
2 are inconsistent (recall that xi

2 is

330 Y. Aumann and Y. Lindell

split over m input wires). Note that the different inconsistent wires need not be
inconsistent in the same circuit, nor need they be inconsistent with respect to
the same value (0 or 1). Note that the determination that a wire is inconsistent
is independent of the value γ sent by S because the oblivious transfers and
commitments to keys take place before S sends γ in Step 3 above.

Before proceeding to describe how S works, we remark that our strategy below is
to have S use the different possibilities regarding the legitimacy of circuit and con-
sistency of keys to cause the honest party in an ideal execution to output corrupted1
with the same probability as the honest P2 catches A cheating in a real execution.
Furthermore S does this while ensuring that γ is uniformly distributed and the
bits chosen as shares of each xi

2 are also uniformly distributed. In this light, we
describe the expected probabilities of catching A in three cases:

• There exists an illegitimate circuit GCj0 : in this case P2 certainly catches A
cheating unless γ = j0. Thus, P2 catches A with probability at least 1 − 1/�.
We stress that P2 may catch A with higher probability depending on whether
or not there are other illegitimate circuits of inconsistent inputs.

• There exists a totally inconsistent wire: if the inconsistent values of the wire
belong to different circuits then P2 will always catch A. However, if they
belong to one circuit GCj0 then A will be caught if γ �= j0, or if γ = j0
and the keys chosen in the oblivious transfer are all consistent (this latter
event happens with probability at most 2−m+1 because m − 1 bits of the
sharing are chosen randomly. Thus, P2 catches A with probability at least
(1 − �−1)(1 − 2m+1).

• None of the above occurs but there are inconsistent keys: in this case, P2
catches A if the inconsistent keys are those chosen and otherwise does not.

We are now ready to proceed. S works according to the follows cases:
(a) Case 1—At least one circuit is illegitimate: Let GCj0 be the first illegitimate

circuit. Then, S sends w1 = cheat1 to the trusted party. By the definition of the
ideal model, with probability ε = (1 − 1/�)(1 − 2−m+1) it receives the mes-
sage corrupted1, and with probability 1−ε it receives the message undetected
together with P2’s input x2:

i. If S receives the message corrupted1 from the trusted party, then it chooses
γ �= j0 at random and sends γ to A. Then, S receives back A’s opening
for the circuits, including the illegitimate circuit GCj0 , and simulates P2
aborting due to detected cheating. S then outputs whatever A outputs and
halts.

ii. If S receives the message undetected from the trusted party (together with

P2’s input x2), then with probability p = �−1

1−ε
it sets γ = j0, and with

probability 1 − p it chooses γ �= j0 at random. It then sends γ to A, and
continues to the end of the execution emulating the honest P2 with the
input x2 it received from the trusted party. (When computing the circuit,
S takes the keys from the oblivious transfer that P2 would have received
when using input x2 and when acting as the honest P2 to define the string
z2.) Let y2 be the output that S received when playing P2 in this execu-
tion. S sends y2 to the trusted party (to be the output of P2) and outputs

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 331

whatever A outputs). Note that if the output of P2 in this emulated exe-
cution would have been corrupted1 then S sends y2 = corrupted1 to the
trusted party.11

(We remark that below we will show below that the above probabilities
result in γ being uniformly distributed in {1, . . . , �}.)

(b) Case 2—All circuits are legitimate but there is a totally inconsistent input:
Let xi

2 be the first totally inconsistent input and, for brevity, assume that the
inconsistent keys are all for the 0-value on the wires (i.e. there are inconsis-
tent keys k

j1
wn+(i−1)m+1,0

, . . . , k
jm

wn+im,0 for some j1, . . . , jm ∈ {1, . . . , �}). In this
case, S sends w1 = cheat1 to the trusted party. With probability ε it receives
the message corrupted1, and with probability 1 − ε it receives the message
undetected together with P2’s input x2:

i. If S receives the message corrupted1 from the trusted party, then it chooses
random values for the bits on the wires wn+(i−1)m+1, . . . ,wn+im−1, sub-
ject to the constraints that not all are 1; i.e. at least one of these wires gets
a value with an inconsistent key.12 Let wn+(i−1)m+t be the first of these
that is 0, and let Gj0 be the first circuit for which the key of this wire
is inconsistent. S chooses γ �= j0 at random and sends it to A. Among
other things, S receives back A’s opening of GCj0 , and simulates P2’s
aborting due to detected cheating. (Note that the probability that a real P2

will make these two choices—choose the values for the first m − 1 wires
so that not all are 1, and choose γ �= j0 – is exactly ε.) S then outputs
whatever A outputs and halts.

ii. If S receives the message undetected (and thus the real input x2 of P2)
from the trusted party, it first determines the values for the shares of xi

2
and for the value γ , as follows:

• With probability p = 2−m+1

1−ε
, for all t = 1, . . . ,m − 1 it sets the value

on the wire wn+(i−1)m+t to equal 1 (corresponding to not choosing
the inconsistent keys), and the value on the wire wn+im to equal
the XOR of xi

2 with the values set on the wires wn+(i−1)m+1, . . . ,
wn+(i−1)m+m−1. The value γ is chosen at random (out of 1, . . . , �).

• With probability 1 − p, for all t = 1, . . . ,m − 1 it sets the value on
the wire wn+(i−1)m+t to a random value, subject to the constraint that
not all are 1 (i.e. at least one of the shares has an inconsistent key),
and it sets the value on the wire wn+im to equal the XOR of xi

2 with
the values set on the wires wn+(i−1)m+1, . . . ,wn+(i−1)m+m−1. Let
wn+(i−1)m+t be the first wire that is 0, and let j0 be the first circuit
for which the key of this share is inconsistent. Then S sets γ = j0.

11 We remark that P2 may output corrupted1 with probability that is higher than ε (e.g., if more than one
circuit is illegitimate or if inconsistent keys are presented as well). This possibility is dealt with by having S
play P2 and force a corrupted1 output if this would have occurred in the execution.

12 Recall that the input wires associated with P2’s input bit xi
2 are wn+(i−1)m+1, . . . ,wn+im. Thus, the

simulator here fixes the values on all the wires except the last (recall also that the first m − 1 values plus P2’s
true input bit fully determine the value for the last wire wn+im).

332 Y. Aumann and Y. Lindell

The values for shares of all other input bits are chosen at random (subject
to the constraint that their XOR is the input value obtained from the trusted
party, as an honest P2 would choose). S now sends γ to A, and completes
the execution emulating an honest P2 using these shares and γ . It outputs
whatever A would output, and sets P2’s output to whatever P2 would
have received in the executions, including corrupted1, if this would be the
output (this is as described at the end of Step 4(a)ii above).

(c) Case 3—All circuits are legitimate and there is no totally inconsistent input:
For each inconsistent wire (i.e. a wire for which there exists an inconsistent
key), if there are any, S chooses a random value, and checks whether the value
it chose corresponds to an inconsistent key. There are two cases:

i. Case 3a—S chose bits with inconsistent keys: In this case, S sends
w1 = cheat1 to the trusted party. With probability ε it receives the message
corrupted1, and with probability 1 − ε it receives the message undetected
together with P2’s input x2. Let wi0 be the first of the wires for which
the bit chosen has an inconsistent key, and let GCj0 be the first circuit in
which the key is inconsistent:
A. If S receives the message corrupted1 from the trusted party, then it

chooses γ �= j0 at random and sends it to A. S then simulates P2
aborting due to detected cheating. S then outputs whatever A outputs
and halts.

B. If S receives the message undetected, together with x2 = (x1
2 , . . . , xn

2),
from the trusted party, then first it chooses bits for the remaining (con-
sistent) shares at random, subject to the constraint that for any input bit
xi

2, the XOR of all its shares equals the value of this bit, as provided
by the trusted party. In addition:

• With probability p = �−1

1−ε
, simulator S sets γ = j0.

• With probability 1 − p, simulator S chooses γ �= j0 at random.

In both cases, S sends γ to A and completes the execution emulat-
ing an honest P2 using the above choice of shares, and outputting the
values as explained in Step ii above (in particular, if the output of the
emulated P2 is corrupted1, then S causes this to be the output of P2 in
the ideal model).

ii. Case 3b—S chose only bits with consistent keys: S reaches this point of
the simulation if all garbled circuits are legitimate and if either all keys are
consistent or it is simulating the case that no inconsistent keys were cho-
sen. Thus, intuitively, the circuit and keys received by S from A are the
same as from an honest P1. The simulator S begins by choosing a random
γ and sending it to A. Then, S receives the opening of the other circuits, as
before. In addition, S receives from A the set of keys and decommitments
(for the wires w1, . . . ,wn) for the unopened circuit GCγ . If anything in
this process is invalid (i.e. any of the circuits is not correctly decrypted, or
the decommitments are invalid, or the keys cannot be used in the circuit),
then S sends abort1 or corrupted1 to the trusted party causing P2 to output
abort1 or corrupted1, respectively (the choice of whether to send abort1 or

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 333

corrupted1 is according to the protocol description and what causes P2 to
output abort1 and what causes it to output corrupted1). Otherwise, S uses
the opening of the circuit GCγ obtained above, together with the keys ob-
tained in order to derive the input x′

1 used by A. Specifically, in Step 3, the
simulator S receives the opening of all circuits and this reveals the associ-
ation between the keys on the input wires and the input values. Thus, when
A sends the set of keys associated with its input in circuit GCγ , simulator
S can determine the exact input x′

1 that is defined by these keys. S sends
the trusted party x′

1 (and continue) and outputs whatever A outputs.

This concludes the description of S . For reference throughout the analysis below, we
present a high-level outline and summary of the simulator in Figs. 2 and 3. We present
it in the form of a “protocol” between the simulator S and the real adversary A.

Denote by badOT the event that A sends abort1, corrupted1 or cheat1 in the oblivious
transfers. The analysis of the event badOT is identical to the case that P2 is corrupted
and so denoting π as Protocol 6.1 and I = {1} (i.e., party P1 is corrupted), we have that:

{

IDEALSCε
f,S(z),I

(

(x1, x2), n
) ∣
∣ badOT

} ≡ {

HYBRIDot
π,A(z),I

(

(x1, x2), n
) ∣
∣ badOT

}

.

It remains to analyze the case that ¬badOT (i.e., the oblivious transfer is not aborted).
We will prove the case following the same case analysis as in the description of the
simulator. Before doing so, notice that the only messages that A receives in a protocol
execution are in the oblivious transfers and the challenge value γ . Thus, when analyzing
Protocol 6.1 in a hybrid model with a trusted party computing the oblivious transfer
functionality, its view consists only of the value γ . Thus, in order to show that A’s view
in the simulation is indistinguishable from its view in a real execution, it suffices to
show that the value γ that S hands A is (almost) uniformly distributed in {1, . . . , �}.
We stress that this is not the case when considering the joint distribution including P2’s
output (because cheating by A can cause P2 to output an incorrect value). The focus of

Fig. 2. A high-level diagram of the simulator (P1 corrupted).

334 Y. Aumann and Y. Lindell

Fig. 3. Cases for the simulator S (P1 corrupted).

the proof below is thus to show that the distribution over the challenge value γ sent by
S during the simulation is uniform, and that the joint distribution over A’s view and the
output of P2 in the simulation is statistically close to a real execution.

1. Case 1—At least one circuit is illegitimate: We first show that the value γ sent by
S in the simulation is uniformly distributed over {1, . . . , �}, just like the value sent
by P2 in a real execution. In order to see this, we distinguish between the case that
S receives corrupted1 and the case that it receives undetected. We first prove that
γ = j0 with probability 1/�:

Pr[γ = j0] = Pr[γ = j0 | corrupted1]Pr[corrupted1] + Pr[γ = j0 | undetected]
× Pr[undetected]

= 0 · Pr[corrupted1] + �−1

1 − ε
· Pr[undetected]

= 1

�
· 1

1 − ε
· (1 − ε) = 1

�

where the second equality is by the simulator’s code, and the third follows from
the fact that Pr[undetected] = 1 − ε, by definition. We now proceed to prove that
for every j �= j0 it also holds that Pr[γ = j] = 1/�. For every j = 1, . . . , � with
j �= j0:

Pr[γ = j] = Pr[γ = j | corrupted1]Pr[corrupted1] + Pr[γ = j | undetected]
× Pr[undetected]

= Pr[γ = j | corrupted1] · ε + Pr[γ = j | undetected] · (1 − ε)

=
(

1

� − 1

)

· ε +
((

1 − 1

�(1 − ε)

)

· 1

� − 1

)

· (1 − ε)

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 335

= 1

� − 1
·
(

ε +
(

1 − 1

�(1 − ε)

)

· (1 − ε)

)

= 1

� − 1
·
(

ε + (1 − ε) − 1 − ε

�(1 − ε)

)

= 1

� − 1
·
(

1 − 1

�

)

= 1

�

where, once again, the third equality is by the code of the simulator. (Recall that

when undetected is received, then with probability 1−p for p = �−1

(1−ε)
the value γ

is uniformly distributed under the constraint that it does not equal j0. Thus, when
undetected occurs, the probability that γ equals a given j �= j0 is 1

�−1 times 1−p.)
We now proceed to show that the joint distribution of A’s view and P2’s output

in a real execution (or more exactly, a hybrid execution where the oblivious trans-
fers are computed by a trusted party) is identical to the joint distribution of S and
P2’s output in an ideal execution. We show this separately for the case that γ �= j0
and the case that γ = j0. Now, when a real P2 chooses γ �= j0, then it always
outputs corrupted1. Likewise, in an ideal execution where the trusted party sends
corrupted1 to P2, the simulator S sets γ �= j0. Thus, when γ �= j0, the honest
party outputs corrupted1 in both the real and ideal executions. Next consider the
case that γ = j0. In the simulation by S , this only occurs when S receives back
undetected, in which case S perfectly emulates a real execution because it is given
the honest party’s real input x2. Thus P2’s output is distributed identically in both
the real and ideal executions when γ = j0. (Note that P2 may output corrupted1 in
this case as well. However, what is important is that this will happen with exactly
the same probability in the real and ideal executions.) Finally recall from above
that γ as chosen by S is uniformly distributed, and thus the two cases (of γ �= j0
and γ = j0) occur with the same probability in the real and ideal executions. We
therefore conclude that the overall distributions are identical. This completes this
case.

2. Case 2—All circuits are legitimate but there is a totally inconsistent input: We
analyze this case in an analogous way to above. Let ‘all = 1’ denote the case that in
a real execution all of the m− 1 first wires associated with the totally inconsistent
input are given value 1 (and so the inconsistent keys determined for those wires
are not revealed). Since the values on these wires are chosen by P2 uniformly, we
have that Pr[‘all = 1’] = 2−m+1. Noting also that γ is chosen by P2 independently
of the values on the wires, we have that in a real execution:

Pr[γ �= j0 & ¬‘all = 1’] =
(

1 − 1

�

)(

1 − 1

2m−1

)

= ε

where the second equality is by the definition of ε (recall that j0 is the index of the
first circuit for which an inconsistent key is chosen by S). Now, the trusted party
sends corrupted1 with probability exactly ε. Furthermore, in this case, S generates
a transcript for which the event γ �= j0 & ¬‘all = 1’ holds (see item (i) of Case 2
of the simulator), and such an event in a real execution results in P2 certainly

336 Y. Aumann and Y. Lindell

outputting corrupted1. We thus have that the corrupted1 event in the ideal model
is mapped with probability exactly ε to a sub-distribution over the real transcripts
in which P2 outputs corrupted1.

Next we analyze the case that not all values on the wires are 1, but γ = j0. In a
real execution, we have that this event occurs with the following probability:

Pr[γ = j0 & ¬‘all = 1’] = 1

�
· (1 − 2−m+1).

By the description of S , this occurs in the simulation with probability (1 − ε) ×
(1 − p) where p = 2−m+1/(1 − ε); see the second bullet of Case 2 subitem (ii),
and observe that γ is always set to j0 in this case. Now,

(1 − ε)(1 − p) = (1 − ε) ·
(

1 − 2−m+1

1 − ε

)

= 1 − ε − 2−m+1

= 1 − (

1 − 2−m+1)(1 − �−1) − 2−m+1

= 1 −
(

1 − 1

�
− 2−m+1 + 2−m+1

�

)

− 2−m+1

= 1

�
− 2−m+1

�
= 1

�
· (1 − 2−m+1).

Thus, the probability of this event in the simulation by S is exactly the same as in
a real execution. Furthermore, the transcript generated by S in this case (and the
output of P2) is identical to in a real execution, because S runs an emulation using
P2’s real input.

Thus far, we have analyzed the output distributions in the events (γ �=
j0 & ¬‘all = 1’) and (γ = j0 & ¬‘all = 1’), and so have covered the case ¬‘all = 1’.
It remains for us to analyze the event ‘all = 1’. That is, it remains to consider the
case that all m − 1 wires do equal 1; this case is covered by the simulation in the
first bullet of Case 2, subitem (ii). In a real execution, this case occurs with proba-
bility 2−m+1. Likewise, in the simulation, S reaches subitem (ii) with probability
1 − ε and then proceeds to the first bullet with probability p = 2−m+1/(1 − ε).
Therefore, this case appears with overall probability 2−m+1 exactly as in a real ex-
ecution. Furthermore, as above, the simulation by S is perfect because it emulates
using P2’s real input.

We have shown that for the events (γ �= j0 & ¬‘all = 1’), (γ = j0 & ¬‘all = 1’),
and ‘all = 1’, the joint output distribution generated by S is identical to that in a
real execution. Furthermore, we have shown that these events occur with the same
probability in the real and ideal executions. Since these events cover all possibili-
ties, we conclude that the simulation by S in this case is perfect. (By perfect, we
mean that when all circuits are legitimate but there is a totally inconsistent input,
the joint output distribution of S and P2 in an ideal execution is identical to the
joint output distribution of A and P2 in a hybrid execution of the protocol where
a trusted party is used for the oblivious transfers.)

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 337

3. Case 3—All circuits are legitimate and there is no totally inconsistent input: We
have the following subcases:
(a) Case 3a—S chose values with inconsistent keys: First observe that S chooses

values with inconsistent keys with exactly the same probability as P2 in a real
execution. This holds because there are no totally inconsistent values and thus
the choice of values on the wires with inconsistent keys is uniform. (Note
that P2’s strategy for choosing values is equivalent to choosing any subset
of m − 1 values uniformly and then choosing the last value so that the XOR
equals the associated input bit. Since there is at least one wire where both
keys are consistent, we can look at this wire as being the one that determines
the actual unknown input bit of P2 and all others are chosen uniformly by S
and P2. Thus, the probability that S chooses an inconsistent key is the same
as P2.) We therefore fix the choice of values for the wires and proceed to
analyze the transcripts generated by the simulator, conditioned on this choice
of keys.

In a real execution in which P2 chose inconsistent keys, it outputs
corrupted1 if the circuit in which the inconsistent keys were chosen is opened
(it may also output corrupted1 if the circuit is opened but this is not rele-
vant here). Now, if the trusted party sends corrupted1, then the simulator en-
sures that the circuit in which the inconsistent keys were chosen is opened
(it does this by choosing γ uniformly under the constraint that γ �= j0; see
subitem (A) of subitem (i) in Case 3a). In contrast, if the trusted party sends
undetected, then S runs a perfect emulation using P2’s real input; the two
subcases (with probability p and 1 − p) are to ensure that γ is chosen uni-
formly. Thus, it remains to show that in this case, for every j = 1, . . . , � we
have Pr[γ = j] = 1/�. As above, we separately analyze the probability for
j = j0 and j �= j0. The computation is almost the same as in Case 1 above
and we are therefore brief:

Pr[γ = j0] = Pr[γ = j0 | corrupted1] · ε + Pr[γ = j0 | undetected] · (1 − ε)

= 0 · ε + �−1

1 − ε
· (1 − ε) = 1

�
.

In addition, for all j �= j0:

Pr[γ = j] = Pr[γ = j | corrupted1] · ε + Pr[γ = j | undetected] · (1 − ε)

=
(

1

� − 1

)

· ε +
((

1 − 1

�(1 − ε)

)

· 1

� − 1

)

· (1 − ε) = 1

�
.

Thus, in this case, S chooses γ uniformly in {1, . . . , �}. Furthermore, the tran-
script in each subcase is exactly as in a real execution, as required.

(b) Case 3b—S chose only values with consistent keys: As above, the probability
that S chose only values with consistent keys is identical to the probability
that a real P2 chooses only values with consistent keys. Now, in such a case,
all circuits are legitimate, and in addition, all keys that are retrieved by P2 are
consistent (this includes the keys for the opened circuits and for the circuit

338 Y. Aumann and Y. Lindell

that is computed). This means that the computation of the circuit using the
keys retrieved by P2 is identical to the computation of an honestly generated
circuit. (Note that P2 may abort or output corrupted1 in this case. However,
here we are interested in the result of the computation of the circuit Gγ , if
it is computed by P2.) We also note that the keys provided by P1 that are
associated with its own input are provided via decommitments. Thus, P1 can
either not provide valid decommitments, or must provide decommitments that
yield keys that result in the circuit being decrypted correctly. This also means
that the associations made by S between the input keys of P1 and the string
x′

1 that it sends to the trusted party are correct. We conclude that in this case,
the joint output of A and the real P2 in a real execution is identical to the joint
output of S and P2 in an ideal execution, as required.

This completes the proof of security in (OT , ε)-hybrid model. Applying Theorem 4.2
(sequential composition), we have that Protocol 6.1 is secure in the real model, when us-
ing a real oblivious transfer protocol that is secure in the presence of covert adversaries
with ε-deterrent. �

6.3. Non-Halting Detection Accuracy

It is possible to modify Protocol 6.1 so that it achieves non-halting detection accuracy;
see Definition 3.5. Before describing how we do this, notice that the reason that we need
to recognize a halting-abort as cheating in Protocol 6.1 is that if P1 generates one faulty
circuit, then it can always just refuse to continue (i.e., abort) in the case that P2 asks it
to open the faulty circuit. This means that if aborting is not considered cheating, then
a corrupted P1 can form a strategy whereby it is never detected cheating, but succeeds
in actually cheating with probability 1/�. In order to solve this problem, we construct
a method whereby P1 does not know if it will be caught or not. We do so by having
P2 receive the circuit openings via a fully secure 1-out-of-� oblivious transfer protocol,
rather than having P1 send it explicitly. This forces P1 to either abort before learning
anything, or to risk being caught with probability 1 − 1/�. In order to describe this in
more detail, we restate the circuit opening stage of Protocol 6.1 as follows:

1. Party P1 sends � garbled circuits GC1, . . . ,GC� to party P2.
2. P2 sends a random challenge γ ∈R {1, . . . , �}.
3. P1 opens GCj for all j �= γ by sending decommitments, keys, and so on. In

addition, it sends the keys associated with its own input in GCγ .
4. P2 checks the circuits GCj for j �= γ and computes GCγ (using the keys from

P1 in the previous step and the keys it obtained earlier in the oblivious transfers).
P2’s output is defined to be the output of GCγ .

Notice that P2 only outputs corrupted1 if the checks from the circuit that is opened do
not pass. As we have mentioned, there is no logical reason why an adversarial P1 would
ever actually reply with an invalid opening; rather it would just abort. Consider now the
following modification:

1. Party P1 sends � garbled circuits GC1, . . . ,GC� to party P2.
2. P1 and P2 participate in a (fully secure) 1-out-of-� oblivious transfer with the

following inputs:

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 339

(a) P1 defines its inputs (x1, . . . , x�) as follows. Input xi consists of the opening
of circuits GCj for j �= i together with the keys associated with its own input
in GCi .

(b) P2’s input is a random value γ ∈R {1, . . . , �}.
3. P2 receives an opening of �− 1 circuits together with the keys needed to compute

the other and proceeds as above.

Notice that this modified protocol is essentially equivalent to Protocol 6.1 and thus its
proof of security is very similar. However, in this case, an adversarial P1 who constructs
one faulty circuit must decide before the oblivious transfer if it wishes to abort (in which
case there is no successful cheating) or if it wishes to proceed (in which case P2 will
receive an explicitly invalid opening). Note that due to the security of the oblivious
transfer, P1 cannot know what value γ party P2 inputs, and so cannot avoid being
detected.

The price of this modification is that of one fully secure 1-out-of-� oblivious transfer
and the replacement of all of the original oblivious transfer protocols with fully secure
ones. (Of course, we could use oblivious transfer protocols that are secure in the pres-
ence of covert adversaries with non-halting detection accuracy, but we do not know how
to construct such a protocol more efficiently than a fully secure one.) A highly efficient
oblivious transfer protocol with a constant number of exponentiations per execution was
recently shown in [27] (we remark that the protocol of [27] is designed in the common
reference string model; however, coin-tossing can be used to generate the reference
string). Using this protocol, we achieve non-halting detection accuracy at a similar cost.
As we have mentioned, this is a significant advantage. (We remark that one should not
be concerned with the lengths of x1, . . . , x� in P1’s input to the oblivious transfer. This
is because P1 can send them encrypted ahead of time with independent symmetric keys
k1, . . . , k�. Then the oblivious transfer takes place only on the keys.)

Acknowledgements

We would like to thank Oded Goldreich and Carmit Hazay for some helpful comments
on the write-up, and Tal Zarsky for discussions on the social and legal implications of
this adversary model. Finally, we thank the anonymous referees for their many helpful
comments.

Appendix A. Yao’s Protocol for Semi-Honest Adversaries

We now describe Yao’s protocol for secure two-party computation (in the presence of
semi-honest adversaries) which is proven secure in [22]. Yao’s protocol is based on the
following “garbled-circuit” construction.

The Garbled Circuit Construction Let C be a Boolean circuit that receives two inputs
x1, x2 ∈ {0,1}n and outputs C(x1, x2) ∈ {0,1}n (for simplicity in this description, we as-
sume that the input length, output length and the security parameter are all of the same
length n). We also assume that C has the property that if a circuit-output wire comes

340 Y. Aumann and Y. Lindell

from a gate g, then gate g has no wires that are input to other gates.13 (Likewise, if a
circuit-input wire is itself also a circuit-output, then it is not input into any gate.) The
reduction uses a private key encryption scheme (G,E,D) that has indistinguishable en-
cryptions for multiple messages, and also a special property called an elusive efficiently
verifiable range; see [22].14

We begin by describing the construction of a single garbled gate g in C. The circuit
C is Boolean, and therefore any gate is represented by a function g : {0,1} × {0,1} →
{0,1}. Now, let the two input wires to g be labeled w1 and w2, and let the output wire
from g be labeled w3. Furthermore, let k0

1, k1
1, k0

2, k1
2, k0

3, k1
3 be six keys obtained by

independently invoking the key-generation algorithm G(1n); for simplicity, assume that
these keys are also of length n. Intuitively, we wish to be able to compute k

g(α,β)

3 from kα
1

and k
β

2 , without revealing any of the other three values k
g(1−α,β)

3 , k
g(α,1−β)

3 , k
g(1−α,1−β)

3 .
The gate g is defined by the following four values:

c0,0 = Ek0
1

(

Ek0
2

(

k
g(0,0)

3

))

, c0,1 = Ek0
1

(

Ek1
2

(

k
g(0,1)

3

))

,

c1,0 = Ek1
1

(

Ek0
2

(

k
g(1,0)

3

))

, c1,1 = Ek1
1

(

Ek1
2

(

k
g(1,1)

3

))

.

The actual gate is defined by a random permutation of the above values, denoted as
c0, c1, c2, c3; from here on we call them the garbled table of gate g. Notice that given
kα

1 and k
β

2 , and the values c0, c1, c2, c3, it is possible to compute the output of the gate

k
g(α,β)

3 as follows. For every i, compute D
k
β
2
(Dkα

1
(ci)). If more than one decryption

returns a non-⊥ value, then output abort. Otherwise, define k
γ

3 to be the only non-⊥
value that is obtained. (Notice that if only a single non-⊥ value is obtained, then this
will be k

g(α,β)

3 because it is encrypted under the given keys kα
1 and k

β

2 . By the properties
of the encryption scheme, it can be shown that except with negligible probability, only
one non-⊥ value is indeed obtained.)

We are now ready to show how to construct the entire garbled circuit. Let m be the
number of wires in the circuit C, and let w1, . . . ,wm be labels of these wires. These la-
bels are all chosen uniquely with the following exception: if wi and wj are both output
wires from the same gate g, then wi = wj (this occurs if the fan-out of g is greater than
one). Likewise, if an input bit enters more than one gate, then all circuit-input wires
associated with this bit will have the same label. Next, for every label wi , choose two
independent keys k0

i , k
1
i ← G(1n); we stress that all of these keys are chosen indepen-

dently of the others. Now, given these keys, the four garbled values of each gate are
computed as described above and the results are permuted randomly. Finally, the output
or decryption tables of the garbled circuit are computed. These tables simply consist

13 This requirement is due to our labeling of gates described below, that does not provide a unique label
to each wire (see [22] for more discussion). We note that this assumption on C increases the number of gates
by at most n.

14 Loosely speaking, an encryption scheme has an elusive range if without knowing the key, it is hard to
generate a ciphertext that falls in the range. An encryption scheme has a verifiable range if given the key and
a ciphertext, it is easy to verify that the ciphertext is in the range. Such encryption schemes can be constructed
using pseudorandom functions by encrypting the message together with n zeroes. It is easy to see that this
provides both an elusive range and an efficiently verifiable one. We denote by ⊥ the result of decrypting a
value not in the range.

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 341

of the values (0, k0
i) and (1, k1

i) where wi is a circuit-output wire. (Alternatively, out-
put gates can just compute 0 or 1 directly. That is, in an output gate, one can define
cα,β = Ekα

1
(E

k
β
2
(g(α,β))) for every α,β ∈ {0,1}.) The entire garbled circuit of C, de-

noted G(C), consists of the garbled table for each gate and the output tables. We note
that the structure of C is given, and the garbled version of C is simply defined by spec-
ifying the output tables and the garbled table that belongs to each gate. This completes
the description of the garbled circuit.

Let x1 = x1
1 · · ·xn

1 and x2 = x1
2 · · ·xn

2 be two n-bit inputs for C. Furthermore, let
w1, . . . ,wn be the input labels corresponding to x1, and let wn+1, . . . ,w2n be the input
labels corresponding to x2. It is shown in [22] that given the garbled circuit G(C) and

the strings k
x1

1
1 , . . . , k

xn
1

n , k
x1

2
n+1, . . . , k

xn
2

2n , it is possible to compute C(x1, x2), except with
negligible probability.

Yao’s Protocol Yao’s protocol works by designating one party, say P1, to be the circuit
constructor. P1 builds a garbled circuit to compute f and hands it to P2. In addition, P1

sends P2 the keys k
x1

1
1 , . . . , k

xn
1

n that are associated with its input x1. Finally, P2 obtains

the keys k
x1

2
n+1, . . . , k

xn
2

2n associated with its input via (semi-honest) oblivious transfer.
That is, for every i = 1, . . . , n, parties P1 and P2 run an oblivious transfer protocol. In
the ith execution, P1 plays the sender with inputs (k0

n+i , k
1
n+i) and P2 plays the receiver

with input xi
2. Following this, P2 has the keys k

x1
1

1 , . . . , k
xn

1
n , k

x1
2

n+1, . . . , k
xn

2
2n and so, as

stated above, it can compute the circuit to obtain C(x1, x2). Furthermore, since it has
only these keys, it cannot compute the circuit for any other input.

A Lemma. In our proof of security, we will use the following lemma:

Lemma A.1. Given a circuit C with inputs wires w1, . . . ,w2n and an output value y

(of the same length as the output of C), it is possible to efficiently construct a garbled
circuit G̃C such that:

1. The output of G̃C is always y, regardless of the garbled values that are provided
for P1 and P2’s input wires; and

2. If y = f (x1, x2), then no non-uniform probabilistic polynomial-time adversary A
can distinguish between the distribution ensemble consisting of G̃C and a single
arbitrary key for every input wire, and the distribution ensemble consisting of a

real garbled version of C, together with the keys k
x1

1
1 , . . . , k

xn
1

n , k
x1

2
n+1, . . . , k

xn
2

2n .

Proof Sketch. The proof of this lemma is taken from [22] (it is not stated in this way
there, but is proven). We sketch the construction of G̃C here for the sake of complete-
ness, and refer the reader to [22] for a full description and proof. The first step in the
construction of the fake circuit G̃C is to choose two random keys ki and k′

i for every
wire wi in the circuit C. Next, the gate tables of C are computed: let g be a gate with
input wires wi,wj and output wire w�. The table of gate g contains encryptions of the
single key k� that is associated with wire w�, under all four combinations of the keys
ki, k

′
i , kj , k

′
j that are associated with the input wires wi and wj to g. (This is in con-

trast to a real construction of the garbled circuit that involves encrypting both k� and k′
�,

342 Y. Aumann and Y. Lindell

depending on the function that the gate in question computes.) That is, the following
values are computed:

c0,0 = Eki

(

Ekj
(k�)

)

,

c0,1 = Eki

(

Ek′
j
(k�)

)

,

c1,0 = Ek′
i

(

Ekj
(k�)

)

,

c1,1 = Ek′
i

(

Ek′
j
(k�)

)

.

The gate table for g is then just a random ordering of the above four values. This process
is carried out for all of the gates of the circuit. It remains to describe how the output
decryption tables are constructed. Denote the n-bit output y by y1 · · ·yn, and denote the
circuit-output wires by wm−n+1, . . . ,wm. In addition, for every i = 1, . . . , n, let km−n+i

be the (single) key encrypted in the gate whose output wire is wm−n+i , and let k′
m−n+i be

the other key (as described above). Then, the output decryption table for wire wm−n+i is
given by: [(0, km−n+i), (1, k′

m−n+i)] if yi = 0, and [(0, k′
m−n+i), (1, km−n+i)] if yi = 1.

This completes the description of the construction of the fake garbled circuit G̃C.
Notice that by the above construction of the circuit, the output keys (or garbled val-

ues) obtained by P2 for any set of input keys (or garbled values), equals km−n+1, . . . , km.
Furthermore, by the above construction of the output tables, these keys km−n+1, . . . , km

decrypt to y = y1 · · ·yn exactly. Thus, property (1) of the lemma trivially holds. The
proof of property (2) follows from a hybrid argument in which the gate construction is
changed one at a time from the real construction to the above fake one (indistinguisha-
bility follows from the indistinguishability of encryptions). The construction and proof
of this hybrid are described in full in [22]. �

References

[1] W. Aiello, Y. Ishai, O. Reingold, Priced oblivious transfer: how to sell digital goods, in EUROCRYPT
2001. LNCS, vol. 2045 (Springer, Berlin, 2001), pp. 119–135

[2] D. Beaver, Foundations of secure interactive computing, in CRYPTO’91. LNCS, vol. 576 (Springer,
Berlin, 1991), pp. 377–391

[3] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant
distributed computation, in 20th STOC (1988), pp. 1–10

[4] R. Canetti, Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202
(2000)

[5] R. Canetti, R. Ostrovsky, Secure computation with honest-looking parties: what if nobody is truly hon-
est?, in 31st STOC (1999), pp. 255–264

[6] D. Chaum, C. Crépeau, I. Damgard, Multi-party unconditionally secure protocols, in 20th STOC (1988),
pp. 11–19

[7] N. Chandran, V. Goyal, R. Ostrovsky, A. Sahai, Covert multiparty computation, in 48th FOCS (2007)
[8] D. Dolev, H.R. Strong, Authenticated algorithms for byzantine agreement. SIAM J. Comput. 12(4),

656–665 (1983)
[9] S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing contracts. Commun. ACM 28(6),

637–647 (1985)
[10] M.K. Franklin, M. Yung, Communication complexity of secure computation, in 24th STOC (1992),

pp. 699–710

Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries 343

[11] O. Goldreich, Basic Applications, Foundations of Cryptography, vol. 2 (Cambridge University Press,
Cambridge, 2004)

[12] O. Goldreich, Y. Lindell, Session-key generation using human passwords only. J. Cryptol. 19(3), 241–
340 (2006)

[13] O. Goldreich, E. Petrank, Quantifying knowledge complexity. Comput. Complex. 8(1), 50–98 (1999)
[14] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game—a completeness theorem for

protocols with honest majority, in 19th STOC (1987), pp. 218–229
[15] S. Goldwasser, L. Levin, Fair computation of general functions in presence of immoral majority, in

CRYPTO’90. LNCS, vol. 537 (Springer, Berlin, 1990), pp. 77–93
[16] S. Goldwasser, Y. Lindell, Secure computation without agreement. J. Cryptol. 18(3), 247–287 (2005)
[17] S. Halevi, Y.T. Kalai, Smooth projective hashing and two-message oblivious transfer. Cryptology ePrint

Archive, Report 2007/118 (2007)
[18] Y. Ishai, Personal Communication (2007)
[19] Y. Ishai, J. Kilian, K. Nissim, E. Petrank, Extending oblivious transfers efficiently, in CRYPTO 2003.

LNCS, vol. 2729 (Springer, Berlin, 2003), pp. 145–161
[20] S. Jarecki, V. Shmatikov, Efficient two-party secure computation on committed inputs, in Eurocrypt ’07.

LNCS, vol. 4515 (Springer, Berlin, 2007), pp. 97–114
[21] Y.T. Kalai, Smooth projective hashing and two-message oblivious transfer, in EUROCRYPT 2005.

LNCS, vol. 3494 (Springer, Berlin, 2005), pp. 78–95
[22] Y. Lindell, B. Pinkas, A proof of Yao’s protocol for secure two-party computation. Cryptology ePrint

Archive, Report 2004/175, 2004. J. Cryptol., to appear
[23] Y. Lindell, B. Pinkas, An efficient protocol for secure two-party computation in the presence of mali-

cious adversaries, in EUROCRYPT 2007. LNCS, vol. 4515 (Springer, Berlin, 2007), pp. 52–78
[24] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, Fairplay—a secure two-party computation system, in The 13th

USENIX Security Symposium (2004), pp. 287–302
[25] S. Micali, P. Rogaway, Secure Computation. Unpublished manuscript, 1992, preliminary version in

CRYPTO’91. LNCS, vol. 576 (Springer, Berlin, 1991), pp. 392–404
[26] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in EUROCRYPT

’99. LNCS, vol. 1592 (Springer, Berlin, 1999), pp. 223–238
[27] C. Peikert, V. Vaikuntanathan, B. Waters, A framework for efficient and composable oblivious transfer,

in CRYPTO 2008. LNCS, vol. 5157 (Springer, Berlin, 2008), pp. 554–571
[28] M. Rabin, How to exchange secrets by oblivious transfer. Tech. Memo TR-81, Aiken Computation

Laboratory, Harvard U. (1981)
[29] L. von Ahn, N. Hopper, J. Langford, Covert two-party computation, in 37th STOC (2005), pp. 513–522
[30] A. Yao, How to generate and exchange secrets, in 27th FOCS (1986), pp. 162–167

	Security Against Covert Adversaries: Efficient Protocols for Realistic Adversariesthanks
	Abstract
	Introduction
	Background
	Our Work-Covert Adversaries
	The Definition
	Further Details on the Definition
	Composition
	Protocol Constructions
	Comparison to Efficient Protocols in the Malicious Model

	Related Work
	Organization

	Preliminaries and Standard Definitions
	Preliminaries
	Secure Multiparty Computation-Standard Definition
	Multiparty Computation
	Adversarial Behavior
	Security of Protocols (Informal)
	Execution in the Ideal Model
	Execution in the Real Model
	Security as Emulation of a Real Execution in the Ideal Model

	Functionalities that Provide Output to a Single Party

	Definitions-Secure Computation with Covert Adversaries
	Motivation
	First Attempt
	Second Attempt
	Final Definition

	Version 1: Failed-Simulation Formulation
	Version 2: Explicit-Cheat Formulation
	Definition 3.3 and Detection Accuracy

	Version 3: Strong Explicit-Cheat Formulation
	Cheating and Aborting
	Relations between Security Models
	Relations between Covert Security Definitions
	Relation to the Malicious and Semi-Honest Models
	Strong Explicit-Cheat Formulation and the Malicious Model

	Modular Sequential Composition
	Sequential Composition for Definition 3.2
	Composition for Definitions 3.3 and 3.4
	The Hybrid Model
	Sequential Modular Composition

	Oblivious Transfer
	Homomorphic Encryption
	The Basic Protocol
	No Corruptions
	Corrupted receiver:
	Corrupted sender:
	Discussion
	The Proof of Security for a Corrupted Sender
	Efficiently Recognizable Public Keys

	Extensions
	String Oblivious Transfer
	Simultaneous Oblivious Transfer
	Higher Values of epsilon
	Summary

	Secure Two-Party Computation
	Overview of the Protocol
	The Protocol for Two-Party Computation
	Party P2 is Corrupted
	Party P1 Is Corrupted

	Non-Halting Detection Accuracy

	Acknowledgements
	Appendix A. Yao's Protocol for Semi-Honest Adversaries
	The Garbled Circuit Construction
	Yao's Protocol

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

