
J. Cryptol. (2009) 22: 429–469
DOI: 10.1007/s00145-009-9039-0

Cryptography with Constant Input Locality∗,†

Benny Applebaum‡

Department of Computer Science, Princeton University, Princeton, USA
benny.applebaum@gmail.com

Yuval Ishai§

Department of Computer Science, Technion, Haifa, Israel
yuvali@cs.technion.ac.il

and
UCLA, Los Angeles, CA, USA

Eyal Kushilevitz¶

Department of Computer Science, Technion, Haifa, Israel
eyalk@cs.technion.ac.il

Communicated by I. Damgaard

Received 27 November 2007 and revised 10 March 2009
Online publication 11 April 2009

Abstract. We study the following natural question: Which cryptographic primitives
(if any) can be realized by functions with constant input locality, namely functions in
which every bit of the input influences only a constant number of bits of the output?
This continues the study of cryptography in low complexity classes. It was recently
shown by Applebaum et al. (FOCS 2004) that, under standard cryptographic assump-
tions, most cryptographic primitives can be realized by functions with constant output
locality, namely ones in which every bit of the output is influenced by a constant num-
ber of bits from the input.

We (almost) characterize what cryptographic tasks can be performed with con-
stant input locality. On the negative side, we show that primitives which require some
form of non-malleability (such as digital signatures, message authentication, or non-
malleable encryption) cannot be realized with constant input locality. On the positive
side, assuming the intractability of certain problems from the domain of error cor-
recting codes (namely, hardness of decoding a random binary linear code or the se-
curity of the McEliece cryptosystem), we obtain new constructions of one-way func-
tions, pseudorandom generators, commitments, and semantically-secure public-key en-
cryption schemes whose input locality is constant. Moreover, these constructions also

∗ This paper was solicted by the Editors-in-Chief as one of the best papers from EUROCRYPT 2008,
based on the recommendation of the program committee.

† Research supported by grant 1310/06 from the Israel Science Foundation.
‡ Supported by NSF grants CNS-0627526, CCF-0426582 and CCF-0832797. Most of this work done

while studying in the Technion.
§ Supported by BSF grant 2004361 and NSF grants 0205594, 0430254, 0456717, 0627781, 0716389.
¶ Supported by grant 2002354 from the U.S.-Israel Binational Science Foundation.

© International Association for Cryptologic Research 2009

mailto:benny.applebaum@gmail.com
mailto:yuvali@cs.technion.ac.il
mailto:eyalk@cs.technion.ac.il

430 B. Applebaum, Y. Ishai, and E. Kushilevitz

enjoy constant output locality and thus they give rise to cryptographic hardware that
has constant-depth, constant fan-in and constant fan-out. As a byproduct, we obtain a
pseudorandom generator whose output and input locality are both optimal (namely, 3).

Key words. Cryptography with low complexity, Input locality, NC0, Hardness of
decoding random linear code

1. Introduction

The question of minimizing the complexity of cryptographic primitives has been the
subject of an extensive body of research (see [3,46] and references therein). On one
extreme, it is natural to ask whether one can implement cryptographic primitives in
NC0, i.e., by functions in which each output bit depends on a constant number of input
bits.1 Some primitives, including pseudorandom functions [24], cannot even be realized
in AC0 [42]; no similar negative results are known for other primitives. However, it was
shown recently [2,3] that, under standard assumptions, most cryptographic primitives
can be realized by functions with output locality 4, namely by NC0 functions in which
each bit of the output depends on at most 4 bits of the input.

Another possible extreme is the complementary question of implementing crypto-
graphic primitives by functions in which each input bit affects only a constant number
of output bits. This was not settled by [3], and was suggested as an open problem. This
natural question can be motivated from several distinct perspectives:

• (Theoretical examination of a common practice) A well known design principle
for practical cryptosystems asserts that each input bit must affect many output
bits. This principle is sometimes referred to as Confusion/Diffusion or Avalanche
property. It is easy to justify this principle in the context of block-ciphers (which
are theoretically modeled as pseudorandom functions or permutations), but is it
also necessary in other cryptographic applications (e.g., probabilistic encryption)?

• (Hardware perspective) Unlike NC0 functions, functions with both constant input
locality and constant output locality can be computed by constant depth circuits
with bounded fan-in and bounded fan-out. Hence, the parallel time complexity of
such functions is constant in a wider class of implementation scenarios.

• (Complexity theoretic perspective) The possibility of cryptography in NC0 is
closely related to the intractability of Constraint Satisfaction Problems in which
each constraint involves a constant number of variables (k-CSPs). (The k-CSP
problem generalizes the well known k-SAT problem by allowing each clause to
specify an arbitrary constraint on k input variables, as opposed to being restricted
to a disjunction of literals in the case of k-SAT.) Constraint satisfaction problems
are well studied in complexity theory and are known to be “hard” in several aspects.
In particular, the Cook–Levin theorem [15,41] shows that it is NP-hard to exactly
solve 3-CSP problems, while the PCP theorem [6,7] shows that it is NP-hard even

1 Equivalently, NC0 is the class of functions computed by boolean circuits of polynomial size, constant

depth, and bounded fan-in gates. We will also mention the classes AC0 and NC1 which extend this class. In
AC0 circuits, we allow unbounded fan-in AND and OR gates, and in NC1 circuits the depth is logarithmic.

Cryptography with Constant Input Locality 431

to find an approximate solution. The existence of cryptography in NC0 can be in-
terpreted as a cryptographic version of these intractability results. Similarly, one
can formulate the question of cryptography with constant input locality in terms of
CSPs with bounded occurrences of each variable. It is known that NP hardness and
inapproximability results can be carried from the general CSP setting to the setting
of CSPs with bounded occurrences [15,47], hence it is interesting to ask whether
the same phenomenon occurs with respect to cryptographic hardness as well.

Motivated by the above, we would like to understand which cryptographic tasks (if
any) can be realized with constant input and output locality, or even with constant input
locality alone.

Another question considered in this work, which was also posed in [3], is that of
closing the (small) gap between positive results for cryptography with output locality 4
and the impossibility of cryptography with output locality 2. It was shown in [3] that the
existence of a OWF with output locality 3 follows from the intractability of decoding
a random binary linear code. The possibility of closing this gap for other primitives
remained open.

1.1. Our Results

We provide an almost full characterization of the cryptographic tasks that can be re-
alized by functions with constant input locality. On the negative side, we show that
primitives which require some form of non-malleability (such as signatures, MACs,
and non-malleable encryption schemes [17]) cannot be realized with constant (or, in
some cases, even logarithmic) input locality.

On the positive side, assuming the intractability of some problems from the domain
of error correcting codes, we obtain constructions of pseudorandom generators, com-
mitments, and semantically-secure public-key encryption schemes with constant input
locality and constant output locality. In particular, we obtain the following results:

• For PRGs, we answer simultaneously both of the above questions. Namely, we
construct a collection2 of PRGs whose output locality and input locality are both 3.
We show that this is optimal in both output locality and input locality. Our con-
struction is based on the conjectured intractability of decoding a random binary
linear code. Previous constructions of PRGs (or even OWFs) which enjoyed con-
stant input locality and constant output locality at the same time [4,20], were based
on non-standard intractability assumptions.

• We construct a collection of non-interactive commitment schemes, in which the
output locality of the commitment function is 4, and its input locality is 3. The se-
curity of this scheme also follows from the intractability of decoding a random bi-
nary linear code. (We can also get a standard non-interactive commitment scheme
under the assumption that there exists an explicit binary linear code that has a large
minimal distance but is hard to decode.)

2 A collection of PRGs is a PRG indexed by a public random key. A bit more precisely, {Gz}z∈{0,1}∗ is a
collection of PRGs if for every z the function Gz expands its input and the pair (z,Gz(x)) is pseudorandom
for random x and z. We say that the (input or output) locality of the collection is c if for every z the function Gz

has locality c. See [3], Appendix A for a more general and detailed discussion of collections of cryptographic
primitives.

432 B. Applebaum, Y. Ishai, and E. Kushilevitz

• We construct a semantically secure public-key encryption scheme whose encryp-
tion algorithm has input locality 3. This scheme is based on the security of the
McEliece cryptosystem [44], an assumption which is related to the intractability of
decoding a random binary linear code, but is seemingly stronger. Our encryption
function also has constant output locality, if the security of the McEliece cryptosys-
tem holds when it is instantiated with some error correcting code whose relative
distance is constant.

• We show that MACs, signatures and non-malleable symmetric or public-key en-
cryption schemes cannot be realized by functions whose input locality is constant
or, in some cases, even logarithmic in the input length. In fact, we prove that even
the weakest versions of these primitives (e.g., one-time secure MACs) cannot be
constructed in this model.

Locality-Preserving Reductions We also present new locality-preserving reductions
between different cryptographic primitives. (Unlike the results discussed above, here we
consider unconditional reductions that do not rely on unproven assumptions.) Specif-
ically, we get new locality-preserving constructions of one-time symmetric encryption
scheme, non-interactive commitment, and (collection of) PRG from one-to-one OWF.
(In fact, in the case of PRG the reduction holds even with more general types of one-
way functions.) These reductions preserve both the input locality and the output locality
of the underlying primitive up to an additive constant and extend the output locality pre-
serving reductions of [2,3].

1.2. Our Techniques

Our constructions rely on the machinery of randomized encoding, which was explicitly
introduced in [32] (under the algebraic framework of randomizing polynomials) and
was implicitly used, in weaker forms, in the context of secure multiparty computation
(e.g., [18,40]). A randomized encoding of a function f (x) is a randomized mapping
f̂ (x, r) whose output distribution depends only on the output of f . Specifically, it is
required that: (1) there exists a decoder algorithm that recovers f (x) from f̂ (x, r), and
(2) there exists a simulator algorithm that given f (x) samples from the distribution
f̂ (x, r) induced by a uniform choice of r . That is, the distribution f̂ (x, r) hides all the
information about x except for the value f (x).

In [3], it was shown that the security of most cryptographic primitives is inherited
by their randomized encoding. Suppose that we want to construct some cryptographic
primitive P in some low complexity class WEAK. Then, we can try to encode functions
from a higher complexity class STRONG by functions from WEAK. Now, if we have
an implementation f of the primitive P in STRONG, we can replace f by its encoding
f̂ ∈ WEAK and obtain a low-complexity implementation of P . This paradigm was used
in [2,3].3 For example, it was shown that STRONG can be NC1 and WEAK can be the
class of functions whose output locality is 4.

3 A different randomization approach, which was used for constructing parallel PRGs in [31,51], is to
exploit the fact that generating random solved instances of a problem is sometimes easier than solving it on a
given instance [8,14]. In contrast, randomized encodings are not sensitive to the input distribution and can be
applied to any fixed instance.

Cryptography with Constant Input Locality 433

However, it seems hard to adapt this approach to the current setting, since it is not
clear whether there are non-trivial functions that can be encoded by functions with con-
stant input locality. (In fact, we show that some very simple NC0 functions cannot be
encoded by functions in this class.) We solve this problem by introducing a new con-
struction of randomized encodings. Our construction shows that there exists a complex-
ity class C of simple (but non-trivial) functions that can be encoded by functions with
constant input locality. Roughly speaking, a function f is in C if each of its output bits
can be written as a sum of terms over F2 such that each input variable of f partici-
pates in a constant number of distinct terms, ranging over all outputs of f . Moreover,
if the algebraic degree of these terms is constant, then f can be encoded by a function
with constant input locality as well as constant output locality. (In particular, all linear
functions over F2 admit such an encoding.)

By relying on the nice algebraic structure of intractability assumptions related to de-
coding random binary linear codes, and using techniques from [4], we construct PRGs,
commitments and public-key encryption schemes in C whose algebraic degree is con-
stant. Then, we use the new construction to encode these primitives, and obtain imple-
mentations whose input locality and output locality are both constant.

Interestingly, unlike previous constructions of randomized encodings, the new en-
coding does not have a universal simulator nor a universal decoder; that is, one should
use different decoders and simulators for different functions in C. This phenomenon is
inherent to the setting of constant input locality and is closely related to the fact that
MACs cannot be realized in this model. See Sect. 6.2 for a discussion.

1.3. Previous Work

The existence of cryptographic primitives in NC0 has been recently studied in [3,16,45].
Goldreich observed that a function whose output locality is 2 cannot even be one-
way [20]. Cryan and Miltersen [16] proved that a PRG whose output locality is 3 cannot
achieve a superlinear stretch; namely, it can only stretch n bits to n+O(n) bits. Mossel
et al. [45] extended this impossibility to functions whose output locality is 4.

On the positive side, Goldreich [20] suggested an approach for constructing OWFs
based on expander graphs, an approach whose conjectured security does not follow from
any well-known assumption. This general construction can be instantiated by functions
with constant output locality and constant input locality. Mossel et al. [45] constructed
(non-cryptographic) ε-biased generators with (non-optimal) constant input and output
locality. Applebaum et al. [3] subsequently showed that: (1) the existence of many cryp-
tographic primitives (including OWFs, PRGs, encryption schemes, signatures and hash
functions) in NC1, or even in ⊕L/poly, implies their existence with output locality 4;
and (2) the existence of these primitives in NC1 is implied by most standard crypto-
graphic assumptions such as the intractability of factoring, discrete logarithms and lat-
tice problems. They also constructed a OWF with (optimal) output locality 3 based on
the intractability of decoding a random binary linear code. However, all these construc-
tions did not achieve constant input locality. The constructions in [3] were also limited
to PRGs with small (sub-linear) stretch, namely, one that stretches a seed of length n to
a pseudorandom string of length n+o(n). This problem was addressed by [4], who gave
a construction of a linear-stretch PRG with (large) constant output locality under a non-

434 B. Applebaum, Y. Ishai, and E. Kushilevitz

standard assumption taken from [1]. In fact, the construction of [4] can also give an NC0

PRG with (large) constant input locality (under the same non-standard assumption).

Organization The rest of this paper is structured as follows. Section 2 contains some
preliminaries including the definition and properties of randomized encoding (Sect. 2.1)
as well as standard definitions of cryptographic primitives (Sect. 2.2). In Sect. 3, we
construct a randomized encoding with constant input locality for functions with a “sim-
ple” algebraic structure. This construction is used in Sect. 4 to derive cryptographic
primitives with low locality under coding related assumptions as well as unconditional
locality-preserving cryptographic reductions between different primitives. In Sect. 5, we
prove that MACs and non-malleable encryption schemes cannot be implemented with
low input locality. Negative results for randomized encoding with low input locality are
discussed in Sect. 6.

2. Preliminaries

Notation All logarithms in this paper are to the base 2. For a positive integer n, denote
by [n] the set {1, . . . , n}. For a string x ∈ {0,1}∗, let |x| denote the length of x. For
a string x ∈ {0,1}n and an integer i ∈ [n], let xi denote the ith bit of x. Similarly, for
S ⊆ [n], let xS denote the restriction of x to the indices in S. We will write x⊕i to denote
the string x with the ith bit flipped. We will sometimes abuse notation and identify
binary strings with vectors over F2. All vectors will be regarded by default as column
vectors. Let 〈·, ·〉 denote inner product over F2, i.e., for x, y ∈ F

n
2 , 〈x, y〉 = ∑n

i=1 xi · yi

where arithmetic is over F2. Let Un denote a random variable uniformly distributed
over {0,1}n. If X is a probability distribution, or a random variable, we write x ← X to
indicate that x is a sample taken from X. Let H2(·) denote the binary entropy function,

i.e., for 0 < p < 1, H2(p)
def= −p log(p) − (1 − p) log(1 − p). The statistical distance

between discrete probability distributions Y and Y ′, denoted SD(Y,Y ′), is defined as
the maximum, over all functions A, of the distinguishing advantage |Pr[A(Y) = 1] −
Pr[A(Y ′) = 1]|.

A function ε(·) is said to be negligible if ε(n) < n−c for any constant c > 0 and
sufficiently large n. We will sometimes use neg(·) to denote an unspecified negligi-
ble function. A distribution ensemble {Xn}n∈N is an infinite sequence of distributions,
where the support of each distribution Xn consists of binary strings of some fixed length
m(n). For two distribution ensembles {Xn}n∈N and {Yn}n∈N, we write Xn ≡ Yn if Xn

and Yn are identically distributed, and Xn
s≡ Yn if the two ensembles are statistically

indistinguishable; namely, SD(Xn,Yn) is negligible in n. A weaker notion of closeness

between distributions is that of computational indistinguishability: We write Xn
c≡ Yn if

for every (non-uniform) polynomial-size circuit family {An}, the distinguishing advan-
tage |Pr[An(Xn) = 1] − Pr[An(Yn) = 1]| is negligible. By definition, Xn ≡ Yn implies

that Xn
s≡ Yn which in turn implies that Xn

c≡ Yn. A distribution ensemble {Xn}n∈N is

said to be pseudorandom if Xn
c≡ Um(n) where m(n) is the length of strings over which

Xn is distributed.

Cryptography with Constant Input Locality 435

Locality Let f : {0,1}n → {0,1}s be a function. The output locality of f is c if each
of its output bits depends on at most c input bits. The locality of an input variable xi

in f is c if at most c output bits depend on xi . The input locality of f is c if the input
locality of all the input variables of f is bounded by c. The output locality (resp., input
locality) of a function family f : {0,1}∗ → {0,1}∗ is c(n) if for every n the restriction
of f to n-bit inputs has output locality (resp., input locality) c(n). We envision circuits
as having their inputs at the bottom and their outputs at the top. Hence, for functions
in(n),out(n), we let Localout(n)

in(n) (resp., Localin(n), Localout(n)) denote the non-uniform
class which includes all functions f : {0,1}∗ → {0,1}∗ whose input locality is in(n)

and output locality is out(n) (resp., whose input locality is in(n), whose output locality
is out(n)). The uniform versions of these classes contain only functions that can be
computed in polynomial time. (All of our positive results are indeed uniform.) Note
that LocalO(1) is equivalent to the class NC0 which is the class of functions that can be
computed by constant depth circuits with bounded fan-in. Also, the class LocalO(1)

O(1)
is

equivalent to the class of functions that can be computed by constant depth circuits with
bounded fan-in and bounded fan-out.

Locality-Preserving Reductions A black-box reduction from the function g to the
function f is a polynomial-time algorithm G that computes the function g given oracle
access to the function f . We say that such an algorithm G is a reduction from a crypto-
graphic primitive G to a cryptographic primitive F (or, equivalently, a construction of G
from F , or a transformation from F to G) if for any function f which implements F the
function Gf implements the primitive G . When defining Localout(n)

in(n)
reductions we re-

strict ourselves to very simple reductions which first query the oracle on some substrings
of the original input (in a non-adaptive way) and then perform some Localout(n)

in(n) compu-
tation. Formally, a reduction from a cryptographic primitive G to a cryptographic primi-
tive F is said to be Localout(n)

in(n) if it can be written as G(x) = g(x,f (x(1)), . . . , f (x(k)))

where the concatenation of x(1), . . . , x(k) form a prefix of x, and g ∈ Localout(n)
in(n)

. A

LocalO(1)
O(1) reduction G is also called a locality-preserving reduction as it preserves the

input and output locality of f up to a constant factor.

2.1. Randomized Encoding

We review the notions of randomized encoding and randomizing polynomials from [3,
32,33].

Definition 2.1 (Perfect Randomized Encoding [3]). Let f : {0,1}n → {0,1}l be a
function. We say that a function f̂ : {0,1}n × {0,1}m → {0,1}s is a perfect random-
ized encoding of f , if there exist an algorithm B , called a decoder, and a randomized
algorithm S, called a simulator, for which the following hold:

• perfect correctness. B(f̂ (x, r)) = f (x) for any input x ∈ {0,1}n, r ∈ {0,1}m.
• perfect privacy. S(f (x)) ≡ f̂ (x,Um) for any x ∈ {0,1}n.
• balance. S(Ul) ≡ Us .
• stretch preservation. s − (n + m) = l − n, or equivalently m = s − l.

436 B. Applebaum, Y. Ishai, and E. Kushilevitz

We refer to the second input of f̂ as its random input, and to m and s as the ran-
domness complexity and the output complexity of f̂ , respectively. The complexity of f̂

is defined to be m + s.
Definition 2.1 naturally extends to infinite functions f : {0,1}∗ → {0,1}∗. In this

case, the parameters l,m, s are all viewed as functions of the input length n, and the
algorithms B,S receive 1n as an additional input. By default, we require f̂ to be com-
putable in poly(n) time whenever f is. In particular, both m(n) and s(n) are polynomi-
ally bounded. We also require both the decoder and the simulator to be efficient.

While our constructions yield perfect encodings, our negative results hold even when
the notion of randomized encoding is relaxed as follows.

Definition 2.2 (Statistical Randomized Encoding). Let f : {0,1}n → {0,1}l be a func-
tion. We say that a function f̂ : {0,1}n × {0,1}m → {0,1}s is a δ-correct, ε-private ran-
domized encoding of f , if there exist a (deterministic) decoder B , and a randomized
simulator S, for which the following hold:

• δ-correctness. Pr[B(f̂ (x,Um)) �= f (x)] ≤ δ for any input x ∈ {0,1}n.
• ε-privacy. SD(S(f (x)), f̂ (x,Um)) ≤ ε for any x ∈ {0,1}n.

We can further relax privacy to the computational setting by replacing the second
property with the requirement that for every string family {xn}, the distribution ensem-
bles S(f (xn)) and f̂ (xn,Um(n)) cannot be distinguished by efficient adversaries with
advantage larger than ε. Statistical and computational encoding preserve the security of
some primitives as long as ε and δ are sufficiently small.

We will rely on the following composition property of randomized encodings.

Lemma 2.3 (Lemma 4.6 in [3]) (Composition). Let g(x, rg) be a perfect encoding of
f (x) and h((x, rg), rh) be a perfect encoding of g((x, rg)) (viewed as a single-argument

function). Then, the function f̂ (x, (rg, rh))
def= h((x, rg), rh) is a perfect encoding of f .

2.2. Definitions of Primitives

We will abuse notation and write f : {0,1}m(n) → {0,1}s(n) to denote the family
{fn : {0,1}m(n) → {0,1}s(n)}n∈N.

2.2.1. One Way Functions and Pseudorandom Generators

We will use the following definition of one-way function.

Definition 2.4 (One-way Function). A polynomial-time computable function f :
{0,1}n → {0,1}s(n) is called a one-way function (OWF) if for every (non-uniform) poly
nomial-size circuit family {An}, we have

Pr
x←Un

[
An

(
f (x)

) ∈ f −1(f (x)
)] ≤ neg(n).

We will also mention the following variants of OWFs. A polynomial-time com-
putable function f is weakly one-way if there exists a polynomial p(·) such that

Cryptography with Constant Input Locality 437

for any (non-uniform) polynomial size circuit family {An}, we have Pr[An(f (Un)) /∈
f −1(f (Un))] > 1/p(n). We can further relax the notion of one-wayness by requir-
ing the adversary to find a random preimage of y = f (Un) (rather than some arbi-
trary preimage). Formally, the function f is distributionally one-way if there exists
a polynomial p(·) such that any (non-uniform) polynomial size circuit family {An},
we have SD((An(f (Un)), f (Un)), (Un,f (Un))) > 1/p(n). We say that the function
f = {fn} is regular if it maps the same (poly nomial-time computable) number of el-
ements in {0,1}n to every element in Im(fn). (This is the case, for instance, for any
one-to-one function.) A collection of one-to-one functions F = {fz : Dz → Dz}z∈Z is
referred to as a trapdoor function if there exist probabilistic polynomial-time algorithms
(I,D,F,F−1) with the following properties. Algorithm I is an index selector algo-
rithm that on input 1n selects an index z from Z and a corresponding trapdoor for fz;
algorithm D is a domain sampler that on input z samples an element from the do-
main Dz; F is a function evaluator that given an index z and x returns fz(x); and F−1

is a trapdoor-inverter that given an index z, a corresponding trapdoor t and y ∈ fz(Dz)

returns f −1
z (y). Additionally, the collection should be hard to invert, similarly to a stan-

dard one-way function. (For formal definition see [21, Definition 2.4.4].) We remark that
the existence of OWFs is equivalent to the existence of weak OWFs and distributionally
OWFs [30,52], but it is not known to imply the existence of trapdoor functions.

We move on to the definition of pseudorandom generators.

Definition 2.5 (Pseudorandom Generator). A pseudorandom generator (PRG) is a
polynomial-time computable function, G : {0,1}n → {0,1}s(n), satisfying the follow-
ing two conditions:

• Expansion: s(n) > n, for all n ∈ N.
• Pseudorandomness: The ensemble {G(Un)}n∈N is pseudorandom.

It will sometimes be convenient to define a PRG (respectively, a OWF) by an infi-
nite family of functions G : {0,1}m(n) → {0,1}s(n), where m(·) and s(·) are polyno-
mials. Such a family can be transformed into a function that satisfies Definition 2.5
(resp., Definition 2.4) via padding. It will be also useful to consider collections of
PRGs (resp., OWFs, weak OWFs, distributionally OWFs). Let p(·) be a polynomial,
and let G = {Gz}z∈{0,1}p(n) be a polynomial-time computable collection of functions
where Gz : {0,1}n → {0,1}s(n). Then G is a PRG collection (resp., OWF collection,
weak OWF collection, distributional OWF collection), if G′(x, z) = (Gz(x), z) is a PRG
(resp., OWF, weak OWF, distributional OWF).

2.2.2. Extractors

We will also need the definition of extractors. The min-entropy of a random variable X

is defined as H∞(X)
def= minx log(1

Pr[X=x]).

Definition 2.6 (Extractor). A function Ext : {0,1}n × {0,1}d → {0,1}t is a (k, ε)-
extractor if for every distribution X on {0,1}n with H∞(X) ≥ k the distribution
Ext(X,Ud) is ε-close to the uniform distribution over {0,1}t .

438 B. Applebaum, Y. Ishai, and E. Kushilevitz

Extractors can be used to regain the entropy of sources that have high min-entropy
with high probability. Formally,

Fact 2.7 (Implicit in [4]). Let Ext : {0,1}n ×{0,1}d → {0,1}t be a (k, ε) extractor. Let
X be a distribution over {0,1}n and A : {0,1}n → {0,1}m be a function. Let X|A(X)=a

denote the conditional distribution of X given that A(X) = a. Suppose that

Pr
a←A(X′)

[
H∞(X|A(X)=a) ≥ k

] ≥ 1 − δ,

where X′ is an independent copy of X. Then,

SD
((

A(X),Ext(X,Ud)
)
,
(
A(X),Ut

)) ≤ ε + δ.

An important construction of extractors is based on pairwise independent hashing.

Definition 2.8. A family of functions H = {hz : {0,1}n → {0,1}t } is said to be a fam-
ily of pairwise independent hash functions if for all distinct x, x′ ∈ {0,1}n, the outputs
(hz(x),hz(x

′)) induced by a random choice of z are uniformly and independently dis-
tributed over {0,1}t .

We note that pairwise independent hash functions can be defined by the mapping
hM,v(x) = Mx + v where M is a t × n binary matrix, v is a t-bit vector and arithmetic
is over F2.

Lemma 2.9 (Leftover Hashing Lemma [27]). Let H = {hz} be a family of pairwise
independent hash functions that map n-bit strings to t-bit strings. Then, the function
Ext(x, z) = (hz(x), z) is a (k, ε) extractor where ε = 2−(k−t)/2.

2.2.3. Commitments and Encryption Schemes

We will consider a collection of non-interactive commitment schemes. In such a
scheme, the sender and the receiver share a common public random key z (that can
be selected once and be used in many invocations of the scheme). To commit to a bit b,
the sender computes the commitment function COMz(b; r) that outputs a commitment σ
using the randomness r , and sends the output to the receiver. To open the commitment,
the sender sends the randomness r and the committed bit b to the receiver who checks
whether the opening is valid by computing the function RECz(σ, b, r). The scheme
should be both (computationally) hiding and (statistically) binding. Hiding requires that
σ = COMz(b; r) keep b computationally secret. Binding means that, except with neg-
ligible probability over the choice of the random public key, there is no commitment
string that can be opened in two different ways.

Definition 2.10 (Commitment Scheme). A commitment scheme is a pair (COM, REC)

where COM is a probabilistic polynomial-time algorithm and REC is a deterministic
polynomial-time algorithm. The scheme should satisfy the following conditions:

• Viability: For every bit b ∈ {0,1}, it holds Prz,r [RECz(COMz(b; r), b, r) =
reject)] ≤ neg(|z|).

Cryptography with Constant Input Locality 439

• Hiding: {(z, COMz(0; r))}n c≡ {(z, COMz(1; r))}n where z ← Un, r ← Up(n), and
the polynomial p(·) is the randomness complexity of COM.

• Binding: Prz[∃σ , r0, r1 such that RECz(σ,0, r0) = RECz(σ,1, r1) = accept] <

neg(|z|).

We will use the following definition of semantically secure public-key encryption
scheme [26]:

Definition 2.11 (Public-key Encryption). A secure public-key encryption scheme
(PKE) is a triple (G,E,D) of probabilistic polynomial-time algorithms satisfying the
following conditions:

• Viability: On input 1n the randomized key generation algorithm, G, outputs a pair
of keys (e, d). For every pair (e, d) such that (e, d) ∈ G(1n), and for every plaintext
x ∈ {0,1}∗, the algorithms E,D satisfy

Pr
[
D

(
d,E(e, x)

) �= x
] ≤ neg(n).

• Security: For every polynomial �(·), and every families of plaintexts {xn}n∈N and
{x′

n}n∈N where xn, x
′
n ∈ {0,1}�(n), it holds that

(
e ← G1

(
1n

)
,E(e, xn)

) c≡ (
e ← G1

(
1n

)
,E(e, x′

n)
)
, (1)

where G1(1n) denotes the first element in the pair G(1n).

The following definition of Non-Malleable private-key encryption [17] is based on
the definition of [37]. Since this definition is used here for negative results, we allow
ourselves to use a simplified version which is weaker than the original definition. In-
formally, an encryption scheme is said to be non-malleable if it is impossible, given a
ciphertext c encrypting a message x, to efficiently generate an encryption c′ of a “re-
lated” message x′ except by copying c.

Definition 2.12 (Non-malleable Private-key Encryption). A non-malleable private-
key encryption scheme is a triple (G,E,D) of probabilistic polynomial-time algorithms
satisfying the following conditions:

• Viability: On input 1n the randomized key generation algorithm, G, outputs a key
k. For every k ∈ support(G(1n)) and every plaintext x, the algorithms E,D satisfy

Pr
[
D

(
k,E(k, x)

) �= x
] ≤ neg(n),

where the probability is taken over the internal randomness of E and D.
• Non-malleability: For an adversary A, consider the following experiment which is

indexed by n, the size of the key. First a random n-bit key k is selected. Then, A

outputs a message space distribution M which consists of strings of equal length
(and is represented by a probabilistic polynomial-sized circuit), and a binary rela-
tion R (which is also represented by a polynomial-sized circuit). Next, two random

440 B. Applebaum, Y. Ishai, and E. Kushilevitz

strings x, x̃ are chosen from M, and the ciphertext c = E(k, x) is given to A. Fi-
nally, A outputs a ciphertext c′ �= c. The advantage of A is defined to be

εA(n) = ∣
∣Pr

[(
D(k, c′), x

) ∈ R
] − Pr

[(
D(k, c′), x̃

) ∈ R
]∣
∣.

The scheme is non-malleable if for every (non-uniform) efficient adversary A the
advantage εA(n) of A is negligible in n.

3. Randomized Encoding with Constant Input Locality

In this section, we will show that functions with a “simple” algebraic structure (and, in
particular, linear functions over F2) can be encoded by functions with constant input
locality.

3.1. Key Lemmas

We begin with the following construction that shows how to reduce the input locality of
a function which is represented as a sum of functions.

Construction 3.1 (Basic Input Locality Construction). Let

f (x) = (
a(x) + b1(x), a(x) + b2(x), . . . , a(x) + bk(x), c1(x), . . . , cl(x)

)
,

where f : F
n
2 → F

k+l
2 and a, b1, . . . , bk, c1, . . . , cl : F

n
2 → F2. The encoding f̂ :

F
n+k
2 → F

2k+l
2 is defined by:

f̂
(
x, (r1, . . . , rk)

) def= (
r1 + b1(x), r2 + b2(x), . . . , rk + bk(x),

a(x) − r1, r1 − r2, . . . , rk−1 − rk,

c1(x), . . . , cl(x)
)
.

We refer to a as the pivot of the construction.

Note that after the transformation the pivot function a(x) appears only once, and
therefore the locality of the input variables that appear in a is reduced. In addition, the
locality of all the other original input variables does not increase. For example, applying
the locality construction to the function f (x) = (x1x2 + x2, x1x2 + x2x3, x1x2 + x3, x3)

with x1x2 as a pivot, results in the encoding f̂ (x, r) = (r1 + x2, r2 + x2x3, r3 +
x3, x1x2 − r1, r1 − r2, r2 − r3, x3). Hence, in this case it reduces the locality of x1 from
3 to 1.

Lemma 3.2 (Input Locality Lemma). Let f and f̂ be as in Construction 3.1. Then,
f̂ is a perfect randomized encoding of f .

Proof. The encoding f̂ is stretch-preserving since the number of random inputs equals
the number of additional outputs (i.e., k). Moreover, given a string ŷ = f̂ (x, r) we

Cryptography with Constant Input Locality 441

can decode the value of f (x) as follows: To recover a(x) + bi(x), compute the sum
yi + yk+1 + yk+2 + · · · + yk+i ; To compute ci(x), simply take y2k+i . This decoder
never errs.

Fix some x ∈ {0,1}n. Let y = f (x) and let ŷ denote the distribution f̂ (x,Uk). To
prove perfect privacy, note that: (1) the last l bits of ŷ are fixed and equal to y[k+1...k+l];
(2) the first k bits of ŷ are independently uniformly distributed; (3) the remaining bits of
ŷ are uniquely determined by y and ŷ1, . . . , ŷk . To see (3), observe that, by the definition
of f̂ , we have ŷk+1 = y1 − ŷ1; and for every 1 < i ≤ k, we also have ŷk+i = yi − ŷi −
∑i−1

j=1 ŷk+j .

Hence, define a perfect simulator as follows. Given y ∈ {0,1}k+l , the simulator S

chooses a random string r of length k, and outputs (r, s, y[k+1...k+l]), where s1 = y1 − r1

and si = yi − ri − ∑i−1
j=0 sj for 1 < i ≤ k. This simulator is also balanced as each of its

outputs is a linear function that contains a fresh random bit. (Namely, the output bit
S(y; r)i depends on: (1) ri if 1 ≤ i ≤ k; or (2) yi−k if k + 1 ≤ i ≤ 2k + l.) �

We will also need the following simple transformation.

Lemma 3.3. Let f (x) = (a(x), a(x) + b1(x), a(x) + b2(x), . . . , a(x) + bk(x), c1(x),

. . . , cl(x)), where f : F
n
2 → F

k+l+1
2 and a, b1, . . . , bk, c1, . . . , cl : F

n
2 → F2. Then the

function

f̂ (x) = (
a(x), b1(x), b2(x), . . . , bk(x), c1(x), . . . , cl(x)

)

is a perfect (deterministic) encoding of f . We refer to a as the pivot of this construction.

Proof. The encoding f̂ is stretch-preserving since we did not add any additional
outputs and did not use randomness at all. Moreover, there exists a fixed matrix
M ∈ F

(k+l+1)×(k+l+1)
2 of full rank such that f (x) = M · f̂ (x) for every x. Hence, the

encoding is perfectly private, perfectly correct and balanced. �

Again, after the transformation the locality of the input variables that appear in the
pivot a is reduced, while the locality of all the other original input variables does not
increase.

3.2. Main Results

In the following, it will often be useful to take an algebraic view of functions over
bit-strings, specifying such functions using an additive representation over F2.

Definition 3.4 (Additive Representation). An additive representation of a function
f : F

n
2 → F

l
2 is a representation in which each output bit is written as a sum (over

F2) of functions of the input x. That is, each output bit fi can be written as fi(x) =∑
a∈Ti

a(x), where Ti is a set of boolean functions over n variables. We specify such an
additive representation by an l-tuple (T1, . . . , Tl) where Ti is a set of boolean functions
a : F

n
2 → F2. We assume, without loss of generality, that none of the Ti ’s contains the

constant functions 0 or 1.

442 B. Applebaum, Y. Ishai, and E. Kushilevitz

For example, any function f whose algebraic degree over F2 is d admits an additive
representation in which each a is a product of at most d input variables.

The following measures are defined with respect to a given additive representation
of f .

Definition 3.5 (Multiplicity and Rank). For a function a : F
n
2 → F2, define the multi-

plicity of a to be the number of Ti ’s in which a appears, i.e., #a = |{Ti | a ∈ Ti}|. Given
an additive representation of f , we define the rank of a variable xj to be the number of
different boolean functions a which depend on xj and appear in some Ti . That is,

rank(xj) = ∣
∣
{
a : F

n
2 → F2 | a depends on xj , a ∈ T1 ∪ · · · ∪ Tl

}∣
∣.

Theorem 3.6. Let f : F
n
2 → F

l
2 be a function, and fix some additive representation

(T1, . . . , Tl) for f . Then f can be perfectly encoded by a function f̂ : F
n
2 × F

m
2 → F

s
2

such that the following hold:

1. The input locality of every xj in f̂ is at most rank(xj), and the input locality of
the random inputs ri of f̂ is at most 3.

2. The output locality of f̂ is bounded from above by the output locality of f .
3. The randomness complexity of f̂ is at most

∑
a∈T #a, where T = ⋃l

i=1 Ti .

Proof. We will use the following convention. The additive representation of a function
ĝ resulting from applying Construction 3.1 or Lemma 3.3 to a function g is the (natural)
representation induced by the original additive representation of g. Let T = ⋃l

i=1 Ti

where (T1, . . . , Tl) is the original additive representation of f . We construct f̂ itera-
tively via the following process:

• Let f (0) ← f and i ← 0.
• For all a ∈ T

– if one of the output bits of f (i) is equal to a then apply Lemma 3.3 to f (i) with
a as a pivot.

– elseif the multiplicity of a in f (i) is greater than 1 then apply Construction 3.1
to f (i) with a as a pivot.

– record the resulting encoding in f (i+1) and let i ← i + 1.
• Output f̂ ← f (i).

By Lemmas 3.2 and 3.3, the function f (i) perfectly encodes the function f (i−1); hence,
by the composition property of randomized encodings (Lemma 2.3), the final function
f̂ perfectly encodes f .

The first item of the theorem follows from the following observations: (1) In each
iteration the input locality and the rank of each original variable xj do not increase.
(2) The multiplicity in f̂ of every function a that depends on some original input vari-
able xj is 1. (3) The input locality of the random inputs which are introduced by the
locality construction is at most 3.

To prove the second item of the theorem, it suffices to show that in each iteration the
output locality is not increased. Indeed, Construction 3.1 does not increase the output
locality as long as the pivot does not appear as an output bit. Moreover, in the latter

Cryptography with Constant Input Locality 443

case instead of using Construction 3.1 we apply Lemma 3.3 which does not increase the
output locality at all.

Finally, the last item follows by noting that the randomness complexity of Construc-
tion 3.1 is equal to the multiplicity of the pivot a. �

Remarks on Theorem 3.6.

1. By Theorem 3.6, every linear function admits an encoding of constant input lo-
cality, since each output bit can be written as a sum of degree 1 monomials. More
generally, every function f whose canonic representation as a sum of monomials
(i.e., each output bit is written as a sum of monomials) includes a constant number
of monomials per input bit can be encoded by a function of constant input locality.

2. Interestingly, Construction 3.1 does not provide a universal encoding for any nat-
ural class of functions (e.g., the class of linear functions mapping n bits into l

bits). This is contrasted with previous constructions of randomized encoding with
constant output locality (cf. [3,32,33]). In fact, in Sect. 6.1 we prove that there is
no universal encoding with constant input locality for the class of linear function
L : F

n
2 → F2.

3. When Theorem 3.6 is applied to a function family f : {0,1}n → {0,1}l(n) then the
resulting encoding is uniform whenever the additive representation (T1, . . . , Tl) is
polynomial-time computable.

4. In Sect. 6.1, we show that Theorem 3.6 is tight in the sense that for each integer
i > 0 we can construct a function f in which the rank of x1 is i, and in every
encoding f̂ of f the input locality of x1 is at least i.

In some cases, we can combine Theorem 3.6 and the output-locality construction
from [3, Construction 4.11] to derive an encoding which enjoys low input locality and
output locality at the same time. In particular, we will use the following lemma which
is implicit in [3].

Lemma 3.7 (Implicit in [3]). Let f : F
n
2 → F

l
2. Fix some additive representation T for

f in which each output bit is written as a sum of monomials of degree (at most) d . Then,
we can perfectly encode f by a function f̂ with an additive representation T̂ such that:

• f̂ ∈ Localmax(d+1,3).
• The rank of every original variable xi in f̂ (with respect to T̂) is equal to the rank

of xi in f (with respect to T).
• The new variables introduced by f̂ appear only in monomials of degree 1; hence,

their rank is 1.

By combining Lemma 3.7 with Theorem 3.6 we get:

Corollary 3.8. Let f : F
n
2 → F

l
2 be a function. Fix some additive representation for

f in which each output bit is written as a sum of monomials of degree (at most) d

and the rank of each variable is at most ρ. Then, f can be perfectly encoded by a
function f̂ of input locality max(ρ,3) and output locality max(d + 1,3). Moreover, the
resulting encoding is uniform whenever the additive representation is polynomial-time
computable.

444 B. Applebaum, Y. Ishai, and E. Kushilevitz

Proof. First, by Lemma 3.7, we can perfectly encode f by a function f ′ ∈
Localmax(d+1,3) without increasing the rank of the input variables of f . Next, we ap-
ply Theorem 3.6 and perfectly encode f ′ by a function f̂ ∈ Localmax(d+1,3)

max(ρ,3) . By the

composition property of randomized encodings (Lemma 2.3), the resulting function f̂

perfectly encodes f . Finally, the proofs of Theorem 3.6 and Lemma 3.7 both allow
efficiently transforming an additive representation of the function f into an encoding f̂

in Localmax(d+1,3)
max(ρ,3) . Hence, the uniformity of f is inherited by f̂ . �

It can be shown that if each output bit of f can be written as the sum of at most t

degree-d monomials, then the randomness and output complexity of the above encoding
is at most O(tl). We also remark that Theorem 3.6, Lemma 3.7, and Corollary 3.8
generalize to any finite field F.

Remark 3.9. By Corollary 3.8 any linear (or affine) function L : F
n
2 → F

l
2 can be en-

coded by a function L̂(x, r) ∈ Local33. Moreover, a closer look at Theorem 3.6 and [3,
Construction 4.11] shows that L̂ has the following additional properties: (1) the input
locality of the x’s is 1; (2) the outputs that depend on the x’s have (output) locality 2;
and (3) the complexity of L̂ is O(n · min(n, l)).

4. Primitives with Constant Input Locality and Output Locality

4.1. Main Assumption: Intractability of Decoding Random Linear Code

Our positive results are based on the intractability of decoding a random binary linear
code. In the following, we introduce and formalize this assumption.

An (m,n, δ) binary linear code is a n-dimensional linear subspace of F
m
2 in which

the Hamming distance between each two distinct vectors (codewords) is at least δm.
We refer to the ratio n/m as the rate of the code and to δ as its (relative) distance. Such
a code can be defined by an m × n generator matrix whose columns span the space
of codewords. It follows from the Gilbert–Varshamov bound that whenever n/m < 1 −
H2(δ) − ε, almost all m × n generator matrices form (m,n, δ)-linear codes. Formally,

Fact 4.1 ([50]). Let 0 < δ < 1/2 and ε > 0. Let n/m ≤ 1 − H2(δ) − ε. Then, a ran-
domly chosen m × n generator matrix generates an (m,n, δ) code with probability
1 − 2−(ε/2)m.

A proof of the above version of the Gilbert–Varshamov bound can be found in [49,
Lecture 5]. For code length parameter m = m(n), and noise parameter μ = μ(n), we
will consider the following “decoding game”. Pick a random m × n matrix C repre-
senting a linear code, and a random information word x. Encode x with C and transmit
the resulting codeword y = Cx over a binary symmetric channel in which every bit is
flipped with probability μ. Output the noisy codeword ỹ along with the code’s descrip-
tion C. The adversary’s task is to find the information word x. We say that the above
game is intractable if every polynomial-time adversary wins in the above game with no
more than negligible probability in n.

Cryptography with Constant Input Locality 445

Definition 4.2. Let m(n) ≤ poly(n) be a code length parameter, and 0 < μ(n) < 1/2
be a noise parameter. The problem CODE(m,μ) is defined as follows:

• Input: (C,Cx + e), where C is an m(n) × n random binary generator matrix,
x ← Un, and e ∈ {0,1}m is a random error vector in which each entry is chosen to
be 1 with probability μ (independently of other entries), and arithmetic is over F2.

• Output: x.

We say that CODE(m,μ) is intractable if every (non-uniform) polynomial-time adver-
sary A solves the problem with probability negligible in n.

We note that CODE(m,μ) becomes harder when m is decreased and μ is increased,
as we can always add noise or ignore the suffix of the noisy codeword. Formally,

Proposition 4.3. Let m′(n) ≤ m(n) and 0 < μ(n) ≤ μ′(n) < 1/2 for every n. Then, if
CODE(m,μ) is intractable, so is CODE(m′,μ′).

Proof. Fix n and let m′ = m′(n),m = m(n),μ = μ(n) and μ′ = μ′(n). We reduce
the problem CODE(m,μ) to CODE(m′,μ′) as follows. Given an input (C,y) for
CODE(m,μ) (i.e., C is an m × n binary matrix and y is an m-bit vector), we con-
struct the pair (C′, y′) by letting C′ denote the m′ × n binary matrix that contains the
first m′ rows of C, and y′ ∈ {0,1}m′

be the vector resulting by taking the first m′ entries
of y and adding (over F2) a random vector r ∈ {0,1}m′

in which each entry is chosen to
be 1 (independently of other entries) with probability (μ′ − μ)/(1 − 2μ).

Suppose that (C,y) is drawn from the input distribution of CODE(m,μ), that is, C

is random matrix and y = Cx + e where x ← Un, and e ∈ {0,1}m is a random error
vector of noise rate μ. Then, the pair (C′, y′) can be written as (C′,C′x + e′) where
e′ = e + r is a random noise vector of rate

μ ·
(

1 − μ′ − μ

1 − 2μ

)

+ (1 − μ)
μ′ − μ

1 − 2μ
= μ + (1 − 2μ)(μ′ − μ)

1 − 2μ
= μ′.

Hence, given an algorithm A that solves CODE(m′,μ′), we can find the information
word x by running A on (C′, y′). �

The hardness of CODE(m,μ) is well-studied [12,13,19,29,35,39,43]. It can be also
formulated as the problem of learning parity with noise, and it is known to be NP-
complete in the worst-case [9]. It is widely believed that the problem is hard for every
fixed μ and every m(n) ∈ O(n), or even m(n) ∈ poly(n). Similar assumptions were put
forward in [12,21,25,29,35,36,38]. The plausibility of such an assumption is supported
by the fact that a successful attack would imply a major breakthrough in coding theory.
We mention that the best known algorithm for CODE(m,μ), due to Blum et al. [13],
runs in time 2O(n/ logn) and requires m to be 2O(n/ logn). Lyubashevsky [43] showed how
to reduce m to be only super-linear, i.e., n1+α , at the cost of increasing the running time
to 2O(n/ log logn). When m = O(n) (and μ is constant), the problem is only known to be
solved in exponential time.

446 B. Applebaum, Y. Ishai, and E. Kushilevitz

Our Parameters Typically, we let m(n) ∈ O(n) and μ be a constant such that
n/m(n) < 1 − H2(μ + ε) where ε > 0 is a constant. Hence, by Fact 4.1, the random
code C is, with overwhelming probability, an (m,n,μ+ ε) code. Note that, except with
negligible probability, the noise vector flips less than μ + ε of the bits of y. In this case,
the fact that the noise is random (rather than adversarial) guarantees, by Shannon’s
coding theorem (for random linear codes), that x will be unique with overwhelming
probability. That is, roughly speaking, we assume that it is intractable to correct μn

random errors in a random linear code of relative distance μ + ε > μ and some (fixed)
constant rate.

Pseudorandomness We now show that distinguishing the distribution (C,Cx + e)

from the uniform distribution reduces to decoding x. A similar lemma was proved by
Blum et al. [12, Theorem 13]. However, their version (as well as the version that ap-
pears in [48]) does not preserve the length of the codewords. Namely, they show that
the hardness of decoding random linear code with codewords of length m(n) implies the
pseudorandomness of the distribution (C,Cx + e) in which the length of the codewords
is polynomially smaller than m(n).

Lemma 4.4. Let m(n) be a code length parameter, and μ(n) be a noise parameter. If
CODE(m,μ) is intractable then the distribution (C,Cx + e) is pseudorandom, where
C ← Um(n)×n, x ← Un, and e ∈ {0,1}m(n) is a random error vector of noise rate μ.

Proof. Assume that CODE(m,μ) is intractable. Then, by the Goldreich–Levin hard-
core bit theorem [23], given (C,Cx + e) and a random n-bit vector r , an efficient adver-
sary cannot compute 〈r, x〉 with probability greater than 1

2 + neg(n). Assume, towards
a contradiction, that there exists an efficient distinguisher A = {An} and a polynomial
p(·) such that

Pr
[
An(C,Cx + e) = 0

] − Pr
[
An(Um(n)×n,Um) = 0

]
> 1/p(n),

for infinitely many n’s. We will use An to construct an efficient adversary A′
n that breaks

the security of the Goldreich–Levin hardcore bit. Given (C,y = Cx + e) and a random
n-bit vector r , the adversary A′

n chooses a random m-bit vector s and computes a new

m(n) × n binary matrix C′ def= C − s · rT , where rT denotes the transpose of r . Now
A′

n applies the distinguisher An to (C′, y) and outputs his answer. Before we analyze
the success probability of A′

n we need two observations: (1) the matrix C′ is a random
m(n)×n binary matrix; and (2) y = Cx + e = C′x + s · rT ·x + e = C′x + s · 〈r, x〉+ e.
Hence, when 〈r, x〉 = 0 it holds that (C′, y) = (C′,C′x + e), and when 〈r, x〉 = 1 we
have (C′, y) = (C′,C′x+e+s) ≡ (C′,Um), where Um is independent of C′. Therefore,
we have

Pr
[
A′

n(C,Cx + e, r) = 〈x, r〉]

= Pr
[
A′

n(C,Cx + e, r) = 0|〈x, r〉 = 0
] · Pr

[〈x, r〉 = 0
]

+ Pr
[
A′

n(C,Cx + e, r) = 1|〈x, r〉 = 1
] · Pr

[〈x, r〉 = 1
]

Cryptography with Constant Input Locality 447

= 1

2
· (Pr

[
An(C

′,C′x + e) = 0
] + 1 − Pr

[
An(C

′,Um) = 0
])

≥ 1

2
+ 1

2p(n)
,

where the last inequality holds for infinitely many n’s. Thus, we derive a contradiction
to the security of the GL-hardcore bit. �

4.2. Pseudorandom Generator in Local33
A pseudorandom generator (PRG) is an efficiently computable function G which ex-
pands its input and its output distribution G(Un) is pseudorandom. An efficiently com-
putable collection of functions {Gz}z∈{0,1}∗ is a PRG collection if for every z, the func-
tion Gz expands its input and the pair (z,Gz(x)) is pseudorandom for random x and
z. (See Sect. 2.2 for formal definitions.) We show that pseudorandom generators (and
therefore also one-way functions and one-time symmetric encryption schemes) can be
realized by LocalO(1)

O(1)
functions. Specifically, we get a PRG in Local33. Recall that,

by the tractability of 2-SAT, it is impossible to construct a PRG (and even OWF) in
Local2 [16,20]. In Appendix A, we also prove that there is no PRG in Local2. Hence,
our PRG has optimal input locality as well as optimal output locality.

We rely on the following assumption.

Assumption 4.5. The problem CODE(6n,1/4) is intractable.

Note that the code considered here is of rate n/m = 1/6 which is strictly smaller than
1 −H2(1/4). Therefore, except with negligible probability, its relative distance is larger
than 1/4. Hence, the above assumption roughly says that it is intractable to correct n/4
random errors in a random linear code of relative distance 1/4 + ε, for some constant
ε > 0.

Let m(n) = 6n. Let C ← Um(n)×n, x ← Un and e ∈ {0,1}m be a random error vector
of rate 1/4, that is, each of the entries of e is 1 with probability 1/4 (independently
of the other entries). By Lemma 4.4, the distribution (C,Cx + e) is pseudorandom
under the above assumption. Since the noise rate is 1/4, it is natural to sample the
noise distribution e by using 2m random bits r1, . . . , r2m and letting the ith bit of e

be the product of two fresh random bits, i.e., ei = r2i−1 · r2i . We can now define the
mapping f (C,x, r) = (C,Cx + e(r)) where e(r) = (r2i−1 · r2i)

m
i=1. The output dis-

tribution of f is pseudorandom, however, f is not a PRG since it does not expand
its input. Indeed, we have “wasted” too much randomness on creating the error vec-
tor e. In [4], it was shown how to bypass this problem by applying a randomness ex-
tractor (see Definition 2.6). Namely, the following function was shown to be a PRG:
G(C,x, r, s) = (C,Cx + e(r),Ext(r, s)). Although the setting of parameters in [4] is
different than ours, a similar solution works here as well. We rely on the leftover hash-
ing lemma (Lemma 2.9) and base our extractor on a family of pairwise independent
hash functions (which is realized by the mapping x �→ Mx + v where M is a random
matrix and v is a random vector).4

4 We remark that in [4] one had to rely on a specially made extractor in order to maintain the large stretch
of the PRG. In particular, the leftover hashing lemma could not be used there.

448 B. Applebaum, Y. Ishai, and E. Kushilevitz

Construction 4.6. Let m = 6n and let t = �7.1 · n�. Define the function

G(x,C, r,M,v)
def= (

C,Cx + e(r),Mr + v,M,v
)
,

where x ∈ {0,1}n, C ∈ {0,1}m×n, r ∈ {0,1}2m, M ∈ {0,1}t×2m, and v ∈ {0,1}t .

Theorem 4.7. Under Assumption 4.5, the function G defined in Construction 4.6 is a
PRG.

The proof of the above theorem is deferred to Appendix B. From now on, we fix the
parameters m, t according to Construction 4.6. We can redefine the above construction
as a collection of PRGs by letting C,M,v be the keys of the collection. Namely,

GC,M,v(x, r) = (
Cx + e(r),Mr + v

)
. (2)

We can now prove the main theorem of this section.

Theorem 4.8. Under Assumption 4.5, there exists a collection of pseudorandom
generators {Gz}z∈{0,1}p(n) in Local33. Namely, for every z ∈ {0,1}p(n), it holds that

Gz ∈ Local33.

Proof. Fix C,M,v and write each output bit of GC,M,v(x, r) as a sum of monomials.
Note that in this case, each variable xi appears only in degree 1 monomials, and each
variable ri appears only in the monomial r2·�i/2�−1 · r2·�i/2� and also in degree 1 mono-
mials. Hence, the rank of each variable is at most 2. Moreover, the (algebraic) degree
of each output bit of GC,M,v is at most 2. Therefore, by Corollary 3.8, we can perfectly
encode the function GC,M,v by a function ĜC,M,v in Local33. In [3, Lemma 6.1], it was
shown that a uniform perfect encoding of a PRG is also a PRG. Thus, we get a collection
of PRGs in Local33. �

Since the encoding ĜC,M,v has N = �(n2) inputs and N + �(n) outputs, we get
a pseudorandom generator whose stretch is only sub-linear in the input length. We
mention that, by relying on the results of [4], one can obtain a PRG with linear stretch
and (large) constant input and output locality. However, the security of this construction
is based on a non-standard intractability assumption taken from [1].

Remark 4.9 (Single PRG in Local3). Theorem 4.7 gives a PRG G of degree-2. By
applying the output locality reduction of [3] (see also Lemma 3.7), we can encode G

by a function Ĝ in Local3 and get a single PRG (rather than a collection of PRGs) with
optimal output locality. In a subsequent work [5], it is shown how to improve this result
and obtain a single PRG in Local33 under the same intractability assumption.

4.3. Symmetric Encryption

We can rely on Theorem 4.8 to obtain a (collection of) one-time semantically-secure
symmetric encryption scheme (Ez,Dz) with low input and output locality (whose key is

Cryptography with Constant Input Locality 449

shorter than the message). Specifically, for a (public) collection key z, a private key k, a
plaintext x, and a ciphertext c, we define the scheme (Ez(k, x) = Gz(k)+x,Dz(k, c) =
Gz(k) + c). It is not hard to prove the security of the scheme assuming that Gz is a
collection of PRGs. We can instantiate this scheme with the PRG of Theorem 4.8 and
obtain an encryption scheme whose both encryption algorithm and decryption algorithm
are in Local43. However this scheme is restricted to encrypt messages whose length is
only slightly larger than the key length (as the stretch of G is only sub-linear).

We can remove this limitation and also obtain an encryption algorithm in Local33, at
the expense of increasing the complexity of the decryption algorithm. The idea is to
use a variant of the aforementioned construction. In particular, Construction 4.3 of [2]
uses a PRG (with a one-bit stretch) to obtain a one-time semantically-secure symmetric
encryption (E,D) that allows to encrypt an arbitrary polynomially long message with

a short key. Their encryption algorithm is defined as follows: E(k, x, (s1, . . . , s�−1))
def=

(G(k) + s1,G(s1) + s2, . . . ,G(s�−2) + sl−1,G(s�−1) + x), where k ← Un is the pri-
vate key, x is a (k + �)-bit plaintext and si ← Un+i serve as the coin tosses of E. If we
instantiate this scheme with the PRG collection Gz of (2), we get a collection of encryp-
tion function Ez in which both the rank and the degree of Ez are at most 2. Hence, by
employing Corollary 3.8, we can encode Ez by a function Êz in Local33. In [3], it was
shown that in this case Êz forms a one-time semantically-secure encryption scheme (to-
gether with the decryption function D̂z(k, ĉ) = Dz(k,B(ĉ)), where B is the decoding
algorithm of the encoding). Hence, we get a one-time semantically-secure symmetric
encryption in Local33. However, the decryption is no longer in LocalO(1)

O(1).
A similar approach can be also used to give multiple message security, at the price

of requiring the encryption and decryption algorithms to maintain a synchronized state.
The results of Sect. 4.5 give a direct construction of public-key encryption (hence also
symmetric encryption) with constant input locality under the stronger assumption that
the McEliece cryptosystem is one-way secure.

4.4. Commitment in Local43

We construct a collection of commitment schemes in Local43 (i.e., a commitment of
input locality 3 and output locality 4) under the following assumption.

Assumption 4.10. There exists a constant c that satisfies c > 1
1−H2(1/4)

, for which the
problem CODE(�cn�,1/8) is intractable.

We begin by constructing a commitment scheme COMz with low rank and low alge-
braic degree. Suppose that Assumption 4.10 holds with respect to c (for concreteness
we may think of c = 5.3). Let m = m(n) = �cn�. The public key of our scheme will
be a random m × n generator matrix C. To commit to a bit b, we first choose a ran-
dom information word x ∈ {0,1}n, hide it by computing Cx + e, where e ∈ {0,1}m is
a noise vector of rate 1/8, and then take the exclusive-or of b with a hardcore bit β(x)

of the above function. Assuming that CODE(m,1/8) is intractable, this commitment
hides the committed bit b. To see that the scheme is binding, recall that by Fact 4.1, the
matrix C almost always generates a code whose relative distance is 1/4 + ε, for some
constant ε > 0. Suppose that the relative distance of C is indeed 1/4 + ε. Then, if e

450 B. Applebaum, Y. Ishai, and E. Kushilevitz

contains no more than 1/8 + ε/2 ones, x is uniquely determined by Cx + e. Of course,
the sender might try to cheat and open the commitment ambiguously by claiming that
the weight of the error vector is larger than (1/8 + ε/2) · m. Hence, we let the receiver
verify that the Hamming weight of the noise vector e given to him by the sender in the
opening phase is indeed smaller than (1/8+ ε/2) ·m. This way, the receiver will always
catch a cheating sender (assuming that C is indeed a good code).

Construction 4.11. Given a constant c that satisfies c > 1
1−H2(1/4)

, let ε > 0 be a

constant for which c > 1
1−H2(1/4+ε)

, and let m = m(n) = �cn�. We define the following
scheme:

• Common random key: a random m × n generator matrix C.
• Commitment algorithm: COMC(b; (x, r, s)) = (Cx + e(r), s, b + 〈x, s〉), where

x, s ← Un, r ← U3m, and e(r) = (r1r2r3, r4r5r6, . . . , r3m−2r3m−1r3m).
• Receiver algorithm: RECC(σ, b, (x, r, s)) = accept if and only if COMC(b; (x, r, s))

= σ and the Hamming weight of the noise vector e(r) is smaller than (1/8 +
ε/2) · m.

Theorem 4.12. Suppose that Assumption 4.10 holds with respect to the constant c.
Then, the scheme defined in Construction 4.11 (instantiated with c) forms a collection
of non-interactive commitment schemes.

Proof. (1) Viability: An honest sender will be rejected only if its randomly chosen
noise vector e(r) is heavier than (1/8 + ε/2) · m, which, by a Chernoff bound, happens
with negligible probability (i.e., 2−
(n)) as the noise rate is 1/8.

(2) Hiding: Let C,x, s, r distributed as in Construction 4.11. Then, by Assump-
tion 4.10 and the Goldreich–Levin theorem [23], we have

(
C, COMC

(
0; (x, r, s)

)) ≡ (
C,

(
Cx + e(r), s, 〈x, s〉))

c≡ (
C,

(
Cx + e(r), s,U1

))

≡ (
C,

(
Cx + e(r), s,1 + U1

))

c≡ (
C,

(
Cx + e(r), s,1 + 〈x, s〉))

≡ (
C, COMC

(
1; (x, r, s)

))
.

(3) Binding: Suppose that σ is an ambiguous commitment string. Namely, RECC(σ,0,

(x, r, s)) = RECC(σ,1, (x′, r ′, s)) = accept for some x, r, s, x′, r ′ of appropriate length.
Then, there are two distinct code words Cx and Cx′ for which Cx +e(r) = Cx′ +e(r ′).
Since e(r) and e(r ′) are of weight smaller than (1/8 + ε/2) · m, we conclude that the
relative distance of the code C is smaller than 2 · (1/8 + ε/2) = 1/4 + ε . However,
by Fact 4.1, this event happens only with negligible probability (i.e., 2−
(m) = 2−
(n))
over the choice of C. �

When C is fixed, the rank and algebraic degree of the function COMC are 2 and 3
(with respect to the natural representation as a sum of monomials). Hence, by Corol-

Cryptography with Constant Input Locality 451

lary 3.8, we can encode COMC by a function ˆCOMC ∈ Local43. By [3], this encoding is
also a commitment scheme. Summarizing, we have:

Theorem 4.13. Under Assumption 4.10, there exists a collection of commitment
schemes (COM, REC) in Local43; i.e., for every public key C, we have COMC ∈ Local43.

We remark that we can get a standard non-interactive commitment (rather than col-
lection of commitment schemes) by letting C be a generator matrix of some fixed error
correcting error whose relative distance is large (i.e., 1/4 or any other constant) in which
decoding is intractable. For example, one might use the dual of a BCH code.

4.5. Semantically Secure Public-Key Encryption in LocalO(1)
3

We construct a semantically-secure public-key encryption scheme (PKE) whose encryp-
tion algorithm is in LocalO(1)

O(1) (for definition see Sect. 2.2). Our scheme is based on the
McEliece cryptosystem [44]. We begin by reviewing the general scheme proposed by
McEliece.

• System parameters: Let m(n) : N → N, where m(n) > n, and μ(n) : N → (0,1).
For every n ∈ N, let Cn be a set of generating matrices of (m(n),n,2(μ(n) + ε))

codes that have a (universal) efficient decoding algorithm D that, given a gener-
ating matrix from Cn, can correct up to (μ(n) + ε) · m(n) errors, where ε > 0 is
some constant.5 We also assume that there exists an efficient sampling algorithm
that samples a generator matrix of a random code from Cn.

• Key generation: Given a security parameter 1n, use the sampling algorithm to
choose a random code from Cn and let C be its generating matrix. Let m = m(n)

and μ = μ(n). Choose a random n × n non-singular matrix M over F2, and a
random m × m permutation matrix P . Let C′ = P · C · M be the public key and
P,M,DC be the private key where DC is the efficient decoding algorithm of C.

• Encryption: To encrypt x ∈ {0,1}n compute c = C′x + e where e ∈ {0,1}m is an
error vector of noise rate μ.

• Decryption: To decrypt a ciphertext c, compute P −1c = P −1(C′x + e) = CMx +
P −1e = CMx + e′ where e′ is a vector whose weight equals to the weight of e

(since P −1 is also a permutation matrix). Now, use the decoding algorithm D to
recover the information word Mx (i.e., D(C,CMx + P −1e) = Mx). Finally, to
get x multiply Mx on the left by M−1.

By Chernoff bound, the weight of the error vector e is, except with negligible prob-
ability, smaller than (μ + ε) · m and so the decryption algorithm almost never errs. As
for the security of the scheme, it is not hard to see that the scheme is not semantically
secure. (For example, it is easy to verify that a ciphertext c is an encryption of a given
plaintext x by checking whether the weight of c − C′x is approximately μn.)

However, the scheme is conjectured to be a one-way cryptosystem; namely, it is
widely believed that, for proper choice of parameters, any efficient adversary fails with
probability 1 − neg(n) to recover x from (c = C′x + e,C′) where x is a random n-bit

5 In fact, we may allow ε to decrease with n. See Remark 4.16.

452 B. Applebaum, Y. Ishai, and E. Kushilevitz

string. (In other words, the McEliece cryptosystem is considered to be a collection of
trapdoor one-way functions which is almost one-to-one with respect to its first argu-
ment; i.e., x.)

Suppose that the scheme is indeed one-way with respect to the parameters m(n),μ(n)

and Cn. Then, we can convert it into a semantically secure public-key encryption scheme
by taking the exclusive-or of a hardcore predicate and a one-bit plaintext b (this transfor-
mation is similar to the one used for commitments in the previous section). That is, we
encrypt the bit b by the ciphertext (C′x + e, s, 〈s, x〉 + b) where x, s are random n-bit
strings, and e is a noise vector of rate μ. (Again, we use the Goldreich–Levin hardcore
predicate [23].) To decrypt the message, we first compute x, by invoking the McEliece
decryption algorithm, and then compute the exclusive-or of 〈s, x〉 and the last entry of
the ciphertext. We refer to this scheme as the modified McEliece public-key encryption
scheme. If the McEliece cryptosystem is indeed one-way, then 〈s, x〉 is pseudorandom
given (C′,C′x + e, s), and thus the modified McEliece public-key is semantically se-
cure. Formally,

Lemma 4.14. If the McEliece cryptosystem is one-way with respect to the parameters
m(n),μ(n) and Cn, then the modified McEliece PKE is semantically secure with respect
to the same parameters.

The proof of this lemma is essentially the same as the proof of [22, Proposi-
tion 5.3.14].

Let μ(n) = 2−d(n). Then, we can sample the noise vector e by using the func-
tion e(r) = (

∏out
j=1 rd·(i−1)+j)

m(n)
i=1 where r is a d(n) · m(n) bit string. In this case,

we can write the encryption function of the modified McEliece as EC′(b, x, r, s) =
(C′x + e(r), s, 〈x, s〉 + b).

The rank of each variable of this function is at most 2, and its algebraic degree is at
most d(n). Hence, by Corollary 3.8, we can encode it by a function Ê ∈ Locald(n)+1

3 ,

i.e., the output locality of Ê is d(n) + 1 and its input locality is 3. In [3, Lemma 7.5],
it was shown that randomized encoding preserves the security of PKE. Namely, if
(G,E,D) is a semantically secure PKE then (G, Ê, D̂) is also an encryption scheme
where Ê is an encoding of E, D̂(c) = D(B(c)) and B is the decoder of the encoding.
Hence we have,

Theorem 4.15. If the McEliece cryptosystem is one-way with respect to the parame-
ters m(n),μ(n) = 2−d(n) and Cn, then there exists a semantically secure PKE whose
encryption algorithm is in Locald(n)+1

3 .

The scheme we construct encrypts a single bit; however, we can use concatenation to
derive a PKE for messages of arbitrary (polynomial) length without increasing the input
and output locality. Theorem 4.15 gives a PKE with constant output locality whenever
the noise rate μ is constant. Unfortunately, the binary classical Goppa Codes, which are
commonly used with the McEliece scheme [44], are known to have an efficient decoding
only for subconstant noise rate. Hence, we cannot use them for the purpose of achieving
constant output locality and constant input locality simultaneously. Instead, we suggest

Cryptography with Constant Input Locality 453

using algebraic–geometric (AG) codes which generalize the classical Goppa Codes and
enjoy an efficient decoding algorithm for constant noise rate. It seems that the use of
such codes does not decrease the security of the McEliece cryptosystem [34].

Remark 4.16. Our description of the McEliece cryptosystem assumes that the error-
correcting code being used is efficiently decodable from a constant noise rate. Specifi-
cally, we assume that codes from Cn can correct up to (μ(n)+ ε) ·m(n) errors, for some
constant ε > 0. This requirement can be waived. In particular, we may allow ε = ε(n)

to decrease with n as long as it is larger than, say, 1/
√

m(n). In this case, by Cher-
noff bound, the decryption algorithm errs with probability at most exp(−2ε2m) < 1/2.
This error can be decreased to negligible by repeating the encryption (of the modified
McEliece scheme)
(n) times with independent fresh randomness, and by taking the
majority while decrypting. Note that this transformation does not increase the rank or
the degree of the encryption function.

Remark 4.17. Recall that in the standard definition of semantic security the adver-
sary’s goal is to find two messages x and x′, whose encryptions can be distinguished. In
particular, x and x′ should be chosen before the adversary sees the public-key. One may
consider a stronger variant of semantic security in which the choice of the pair x and
x′ may depend on the public-key e. It is not hard to show that Lemma 4.14 holds also
with respect to this notion of security. (See [22, Sect. 5.4.2].) Furthermore, randomized
encoding preserves semantic-security under key-dependent attacks [3], and therefore
Theorem 4.15 extend to this setting as well.

4.6. Locality Preserving Reductions between Different Primitives

In this section, we show that, in some cases, our machinery can be used to get locality-
preserving reductions between different primitives. That is, we can transform a primitive
F (say one-to-one one-way function) into a different primitive G (say pseudorandom
generator) while preserving the input and output locality of F . Given such a reduction
and an implementation of F with input locality in(n) and output locality out(n) we get
an implementation of G with input locality in(n) + O(1) and output locality out(n) +
O(1). In particular, if F can be implemented with constant input locality and constant
output locality then so is G .

The general idea is to encode the known construction from F to G into a corre-
sponding LocalO(1)

O(1) construction. Consider, for example, the Blum–Micali–Yao con-
struction [11,52] of PRG collection G from one-way permutation f which is defined by
Gz(x) = (f (x), 〈x, z〉), where x, z ∈ {0,1}n (recall that the collection key z is public).
Then, for any fixed collection key z the term 〈x, z〉 is just a fixed function Lz(x) which
is linear in x. Hence, by Remark 3.9, it can be encoded by a function L̂z(x, r) ∈ Local33.
Therefore, the function Ĝz(x, r) = (f (x), L̂z(x, r)) is a (perfect) encoding of Gz and
so it forms a reduction from a collection of PRGs to a one-way permutation. This re-
duction preserves the locality of f . In particular, when f ∈ Localout

in we get a collection
of PRGs in Localout

in+1, assuming that in ≥ 2,out ≥ 3.6

6 The input locality is in + 1 since the input locality of the x’s in L̂z is only 1. See Remark 3.9.

454 B. Applebaum, Y. Ishai, and E. Kushilevitz

More generally, let G be a cryptographic primitive whose security is respected by
perfect encoding. Suppose that G(x) = g(x,f (x(1))), . . . , f (x(k))) defines a black-box
construction of G from an instance f of a primitive F , where g can be encoded in
LocalO(1)

O(1) and the concatenation of x(1), . . . , x(k) forms a prefix of the input x, i.e., x =
(x(1), . . . , x(k), x(k+1)). (The function g is fixed by the reduction and do not depend on
f .) Then, letting ĝ((x, y1, . . . , yk), r) be a perfect LocalO(1)

O(1) encoding of g, the function

Ĝ(x, r) = ĝ((x, f ((x(1))), . . . , f (x(k))), r) perfectly encodes G, and hence, defines a
black-box locality-preserving reduction from a G to F .

It turns out that several known cryptographic reductions are of the above form where
the function g is a random public linear function (e.g., g is used to extract hard-core
bits using Goldreich–Levin [23], or as a pairwise independent hash function). Since
linear functions can be encoded by Local33 functions (Remark 3.9) we get a locality-
preserving reduction for every fixed choice of the linear function. This results in a
locality-preserving transformation from F to collection of G . In the following lemma,
we instantiate this approach with several cryptographic constructions.

Lemma 4.18. Let in(n) ≥ 2,out(n) ≥ 3 be locality parameters. Let f ∈ Localout(n)
in(n) .

Then,

1. f is distributionally one-way ⇒ ∃ collection of OWFs in Localout(n)
in(n)+1.

2. f is a regular OWF ⇒ ∃ collection of PRGs in Localout(n)+1
in(n)+1 .

3. f is a one-to-one OWF ⇒ ∃ non-interactive commitment scheme such that the
sender’s computation is in Localout(n)

in(n)+1.
4. f is a one-to-one trapdoor function ⇒ ∃ public-key encryption scheme (G,E,D)

such that the encryption algorithm E is in Localout(n)
in(n)+1.

5. f is a PRG ⇒ ∃ one-time symmetric-key encryption (E,D) (with a short key)
such that the encryption algorithm E is in Localout(n)+1

in(n)+1 .

Proof. (1) Let f be a distributional OWF. We will employ the reduction of [30] which
can be written as Fz(x) = (f (x),Lz(x)) where Lz is a linear function (originally, Lz is
a projection of a pairwise independent hash function). In [30], it was shown that the col-
lection F is weakly one-way (see also [21, p. 96]). By Remark 3.9, Lz can be encoded
by a function L̂z(x, r) ∈ Local33. Hence, the encoding F̂z(x, r) = (f (x), L̂z(x, r)) forms
a collection of weak OWF. Since the input locality of the original variables (the x’s) in
L̂z is only 1, the input locality of F̂z is only in(n) + 1. Finally, we can transform F̂ to
a strong (i.e., standard) OWF by applying F̂ to polynomially many independent inputs
(cf. [52], [21, Theorem 2.3.2]). This step does not increase the input locality nor the
output locality of the reduction. Hence, we get a collection of OWF in Localout(n)

in(n)+1.
(2) We rely on the PRG construction from [27]. When this construction is applied to a

regular OWF f , it involves only the computation of universal hash functions and hard-
core bits, and therefore can be written as Gz(x) = Lz(x,f (x(1))), . . . , f (x(k))), where
Lz is a linear function [27, Theorem 5.1.4].7 Hence, by Remark 3.9, we can encode the

7 In more detail, suppose that we have a OWF f : {0,1}n → {0,1}m which is t -to-one, where t = t (n) is
computable in polynomial-time. Then, the construction of [27] (see also [28]) can be described in two steps:

Cryptography with Constant Input Locality 455

reduction by a function L̂z(x, y1, . . . , yk, r) in Local33. If f is in Localout(n)
in(n) then the

input locality of the x’s in Gz is in(n) + 1, and the output locality of the outputs that
involve x is out(n)+ 1. (The random inputs r affect 3 outputs and participate in outputs
that depend on 3 inputs.)

(3, 4) We rely on the construction of [10] (instantiated with the Goldreich–
Levin hardcore predicate [23]): to commit to b using the randomness s, z we com-
pute COM(b; s, z) = (f (s), 〈s, z〉 + b, z). Since the degree and rank of the function
g(b, s, z) = (〈s, z〉 + b, z) are both 2, we can apply the same argument used in (1). The
same construction results in a public-key encryption scheme when f is a one-to-one
trapdoor function. (See [22, Proposition 5.3.14].) Note that in both cases, encrypting
(resp., committing to) a long message can be done by applying the basic construction
to every bit separately (with independent fresh randomness). This extension preserves
the locality of the 1-bit schemes.

(5) In [2], it was shown how to transform a PRG with minimal (1-bit) stretch into
a one-time semantically-secure private-key encryption that allows to encrypt messages
whose length is polynomially longer than the key length (for any arbitrary polynomial).

Specifically, the encryption algorithm was defined as follows: Ek(x, (s1, . . . , s�−1))
def=

(G(k)⊕ s1,G(s1)⊕ s2, . . . ,G(s�−2)⊕ sl−1,G(s�−1)⊕x), where k ← Un is the private
key, x is a (k + �)-bit plaintext and si ← Un+i serve as the coin tosses of E. When the
PRG is in Localout(n)

in(n) we get an encryption in Localout(n)+1
in(n)+1 . �

We note that the theorem holds even when f is a collection.

5. Negative Results for Cryptographic Primitives

In this section, we show that cryptographic tasks which require some form of “non-
malleability” cannot be performed by functions with low input locality. This includes
MACs, signatures and non-malleable encryption schemes (e.g., CCA2 secure encryp-
tions). We prove our results in the private-key setting (i.e., for MAC and symmetric
encryption). This makes them stronger as any construction that achieves security in the
public-key setting is also secure in the private-key setting.

5.1. Basic Observations

Let f : {0,1}n → {0,1}s(n) be a function and let s = s(n). For i ∈ [n] and x ∈ {0,1}n,
we let Qi(x) ⊆ [s] be the set of indices in which f (x) and f (x⊕i) differ. (Recall that x⊕i

denote the string x with the ith bit flipped.) We let Qn
i

def= ⋃
x∈{0,1}n Qi(x), equivalently,

Qn
i is the set of output bits which are affected by the ith input bit. From now on, we

First we define a collection gy,r (x) = (f (x),hy(x), 〈x, r〉) where {hy } is a collection of pairwise indepen-
dent hash functions that map n bits to log(t) + 2 bits. This function is shown to have large “pseudoentropy”,
that is, when y, r and x are randomly chosen, the bit 〈x, r〉 has low entropy given the values of g(x),hy(x), y

and r , but it is computationally unpredictable. Then, in the second step we use many instances of g to con-
struct a PRG. That is, we define the function Gw,�y,�r (�x) = h′

w(g
y(1),r(1) (x

(1)), . . . , g
y(k),r(k) (x

(k))), where

{h′
w} is a collection of pairwise independent hash functions of output length �, and k, � are some explicit

functions of n,m and t . Hence, when z = (w, �y, �r) is fixed, and the hash functions are implemented via affine
transformations, Gz(�x) can be written as Lz(�x,f (x(1)), . . . , f (xk)) where Lz is an affine function.

456 B. Applebaum, Y. Ishai, and E. Kushilevitz

omit the superscript n whenever the input length is clear from the context. We show
that, given oracle access to f , we can efficiently approximate the set Qi for every i.

Lemma 5.1. There exists a probabilistic algorithm A that, given oracle access to f :
{0,1}n → {0,1}s , an index i ∈ [n] and an accuracy parameter ε, outputs a set Q ⊆ Qi

such that Prx[Qi(x) � Q] ≤ ε, where the probability is taken over the coin tosses of
A and the choice of x (which is independent of A). Moreover, when {f : {0,1}n →
{0,1}s(n)} is an infinite collection of functions the time complexity of A is polynomial in
n, s(n) and 1/ε(n). In particular, if s(n) = poly(n), then for every constant c, one can
reduce the error to n−c in time poly(n).

Proof. Let t = ln(2s/ε) and α = ε/(2s). The algorithm A constructs the set Q it-
eratively, starting from an empty set. In each iteration, A chooses uniformly and in-
dependently at random a string x ∈ {0,1}n and adds to Q the indices for which f (x)

and f (x⊕i) differ. After t/α iterations A halts and outputs Q. Clearly, Q ⊆ Qi . Let

pj
def= Prx[j ∈ Qi(x)]. We say that j is common if pj > α. Then, if j is common we

have

Pr[j /∈ Q] ≤ (1 − pj)
t/α ≤ (1 − α)t/α ≤ exp(−t) = ε/(2s).

Since |Qi | ≤ s, there are at most s common j ’s and thus, by a union bound, the proba-
bility that A misses a common j is at most ε/2. On the other hand, for a random x, the
probability that Qi(x) contains an uncommon index is at most s · α = ε/2. Hence, we
have Prx[Qi(x) � Q] ≤ ε, which completes the proof. �

Our negative results are based on the following simple observation.

Lemma 5.2. Let f : {0,1}n → {0,1}s(n) be a function in Localin(n). Then, there exist
a probabilistic polynomial-time algorithm A such that for every x ∈ {0,1}n and i ∈ [n],
the output of A on (y = f (x), i,Qn

i ,1n) equals, with probability at least 2−in(n), to the
string y′ = f (x⊕i). In particular, when in(n) = O(log(n)), the success probability of A

is 1/poly(n).

Proof. Fix n and let s = s(n) and Qi = Qn
i . By definition, y and y′ may differ only in

the indices of Qi . Hence, we may randomly choose y′ from a set of size 2|Qi | ≤ 2in(n),
and the lemma follows. �

Note that the above lemma generalizes to the case in which, instead of getting the
set Qn

i , the algorithm A gets a set Q′
i that satisfies Qi(x) ⊆ Q′

i ⊆ Qn
i .

By combining the above lemmas we get the following corollary:

Corollary 5.3. Let f : {0,1}n → {0,1}s(n) be a function in Localin(n), where s(n) =
poly(n). Then, there exist a probabilistic polynomial-time algorithm A that, given oracle
access to f , converts, with probability (1 − 1/n) · 2−in(n), an image y = f (x) of a
randomly chosen string x ← Un into an image y′ = f (x⊕1). Namely,

Pr
x

[
Af

(
f (x),1n

) = f (x⊕1)
] ≥ (1 − 1/n) · 2−in(n),

Cryptography with Constant Input Locality 457

where the probability is taken over the choice of x and the coin tosses of A. In particular,
when l(n) = O(log(n)) the algorithm A succeeds with probability 1/poly(n),

Proof. First, we use algorithm A1 of Lemma 5.1 to learn, with accuracy ε = 1/n, an
approximation Q′

1 of the set Qn
1 . Then, we invoke the algorithm A2 of Lemma 5.2 on

(f (x),1,Q′
1,1n) where f (x) is the challenge given to us, and output the result. Let E1

be the event where Q1(x) ⊆ Q′
1 ⊆ Q1. Since x is uniformly chosen, Lemma 5.1 implies

that this event happens with probability larger than 1 − 1/n. Let E2 denote the event
that A2 succeeds and outputs f (x⊕1). Conditioning on the event E1, the probability of
E2 is at least 2−in(n) (by Lemma 5.2). It follows that our overall success probability is
at least (1 − 1/n) · 2−in(n), and the corollary follows. �

Clearly, one can choose to flip any input bit and not just the first one. Also, we can
increase the success probability to (1 − n−c) · 2−in(n) for any constant c.

We now prove the impossibility results.

5.2. MACs and Signatures

Let (G,S,V) be a MAC scheme, where G is a key generation algorithm, the random-
ized signing function S(k,α, r) computes a signature β on the document α using the
key k and randomness r , and the verification algorithm V (k,α,β) verifies that β is a
valid signature on α using the key k. The scheme is secure (unforgeable) if it is infeasi-
ble to forge a signature in a chosen message attack. Namely, any efficient adversary that
gets oracle access to the signing process S(s, ·) fails to produce a valid signature β on a
document α (with respect to the corresponding key k) for which it has not requested a
signature from the oracle.8 The scheme is one-time secure if the adversary is allowed to
query the signing oracle only once. One-time secure MACs are known to exist even in
an information-theoretic setting. Such schemes do not require any assumption and are
secure even against computationally unlimited adversaries.

Suppose that the signature function S(k,α, r) has logarithmic input locality (i.e.,
S(k,α, r) ∈ LocalO(log(|k|))). Then, we can use Corollary 5.3 to break the scheme with
a single oracle call. First, ask the signing oracle S(k, ·) to sign on a randomly chosen
document α. Then, use the algorithm of Corollary 5.3 to transform, with probability
1/poly(n), the valid pair (α,β) we received from the signing oracle into a valid pair
(α⊕1, β

′). (Note that when applying Corollary 5.3 we let S(·, ·, ·) play the role of f .)
Now, suppose that for each fixed key k ∈ {0,1}n the signature function Sk(α, r) =

S(k,α, r) has input locality in(n). In this case, we cannot use Corollary 5.3 directly.
The problem is that we cannot apply Lemma 5.1 to learn the set Qi (i.e., the set of
output bits which are affected by the ith input bit of f = Sk(·, ·)) since we do not have a
full oracle access to Sk . (In particular, we do not see or control the randomness used in
each invocation of Sk .) However, we can guess the set Qi and then apply Lemma 5.2.
This attack succeeds with probability

(
1/

(
s(n)
in(n)

)) · 2−in(n) where s(n) is the length of the

8 When querying the signing oracle, the adversary chooses only the message and is not allowed to choose
the randomness which the oracle uses to produce the signature.

458 B. Applebaum, Y. Ishai, and E. Kushilevitz

signature (and so is polynomial in n). When in(n) = c is constant, the success proba-
bility is 1/�(s(n)c) = 1/poly(n) and therefore, in this case, we break the scheme.9 To
summarize:

Theorem 5.4. Let (G,S,V) be a MAC scheme. If S(k,α, r) ∈ LocalO(log(|k|)) or
Sk(α, r) ∈ LocalO(1) for every k, then the scheme is not one-time secure.

Remarks on Theorem 5.4.

1. Theorem 5.4 is true even if some bit of α has low input locality. This observation
also holds in the case of non-malleable encryption scheme.

2. If we have access to the verification oracle (for example, in the public-key setting
where (G,S,V) is a digital-signature scheme), we can even break the scheme in
a stronger sense. Specifically, we can forge a signature to any target document
given a single signature to, say, 0n. To see this, note that, given a signature β

of the document α, we can deterministically find a signature β ′ of the document
α⊕i by checking all the polynomially many candidates. Hence, we can apply this
procedure (at most) n times and gradually transform a given signature of some
arbitrary document into a signature of any target document. Therefore, such a
scheme is universally forgeable.

3. A weaker version of Theorem 5.4 still holds even when the input locality of
the signing algorithm is logarithmic with respect to any fixed key (i.e., when
Sk(α, r) ∈ LocalO(log(|k|)) for every k). In particular, we can break such MAC
schemes assuming that we are allowed to ask for several signatures that were
produced with some fixed (possibly unknown) randomness. In such a case, we
use Lemma 5.1 to (approximately) learn the output bits affected by, say, the first
input bit, and then apply Lemma 5.2 to break the scheme. This attack rules out the
existence of a deterministic MAC scheme for which Sk(α) ∈ LocalO(log(|k|)) for
every k.

Theorem 5.4 is tight since if the signing algorithm is allowed to use super-constant
input locality (for every fixed key), then there exists a one-time secure MAC. Formally,

Lemma 5.5. Let in(n) be a locality function and s(n) be a signature length func-
tion. Then, there exists a MAC scheme (G,S,V) which cannot be broken by any (com-
putationally unlimited) adversary via a one-time attack with probability larger than
1/

(
s(n)
in(n)

)
. Moreover, Sk(α, r) ∈ Localin(n) for every fixed key k. In particular, by setting

s(n) =
(n), we get super-polynomial security for any super-constant locality.

The proof of this lemma is deferred to Appendix C.

5.3. Non-malleable Encryption

Let (G,E,D) be a private-key encryption scheme, where G is a key generation algo-
rithm, the encryption function E(k,m, r) computes a ciphertext c encrypting the mes-
sage m using the key k and randomness r , and the decryption algorithm D(k, c, r)

9 When the locality in(n) of Sk is logarithmic (for every fixed key k), this approach yields an attack that

succeeds with probability 1/n�(log(n)) .

Cryptography with Constant Input Locality 459

decrypts the ciphertext c that was encrypted under the key k. Roughly speaking, non-
malleability of an encryption scheme guarantees that it is infeasible to modify a cipher-
text c into a ciphertext c′ of a message related to the decryption of c.

Theorem 5.6. Let (G,E,D) be a private-key encryption scheme. If E(k,m, r) ∈
LocalO(log(|k|)) or Ek(m, r) ∈ LocalO(1) for every k, then the scheme is malleable
with respect to an adversary that has no access to either the encryption oracle or
the decryption oracle. If (G,E,D) is a public-key encryption scheme and Ek(m, r) ∈
LocalO(log(|k|)) for every k, then the scheme is malleable.

Proof. The proof is similar to the proof of Theorem 5.4. Let n be the length of the
key k, p = p(n),m = m(n), and s = s(n) be the lengths of the message x, random-
ness r , and ciphertext length c, respectively; i.e., E : {0,1}n × {0,1}p × {0,1}m →
{0,1}s . Our attacks will use the message space M = {0,1}p and the relation R for
which (x, x′) ∈ R if and only if x and x′ differ only in their first bit.

Suppose that the encryption function E(k, x, r) has logarithmic input locality (i.e.,
E(k, x, r) ∈ LocalO(log(|k|))). Then, by Corollary 5.3, we can break the scheme by trans-
forming, with noticeable probability, the challenge ciphertext c into a ciphertext c′ such
that the corresponding plaintexts differ only in their first bit. Clearly, the probability
for this relation to hold with respect to c̃ which is a ciphertext of a random plaintext is
negligible. Hence, we break the scheme.

Now, suppose that for each fixed key k ∈ {0,1}n the encryption function Ek(x, r) =
E(k, x, r) has input locality in(n). In this case, we guess the set Q1 and then apply
Lemma 5.2. This attack succeeds with probability

(
1/

(
s(n)
in(n)

)) · 2−in(n). When in(n) is
constant, the success probability is 1/poly(n), and therefore, in this case, the scheme is
broken.

We move on to the case in which the input locality of Ek is logarithmic. The previous
attack succeeds in this case with probability 1/n�(log(n)). However, we can improve
this to 1/poly(n) if we have stronger access to the encryption oracle. In particular, we
should be able to get several ciphertexts that were produced with some fixed (possibly
unknown) randomness. In such a case, we use Lemma 5.1 to (approximately) learn the
output bits affected by, say, the first input bit, and then apply Lemma 5.2 to break the
scheme. The public-key setting is a special case in which this attack is feasible as we
get a full access to the randomness of the encryption oracle. �

6. Negative Results for Randomized Encodings

In the following, we prove some negative results regarding randomized encoding with
low input locality. In Sect. 6.1, we provide a necessary condition for a function to have
such an encoding. We use this condition to prove that some simple (NC0) functions
cannot be encoded by functions having sub-linear input locality (regardless of the com-
plexity of the encoding). This is contrasted with the case of constant output locality,
where it is known [3,33] that every function f can be encoded by a function f̂ whose
output locality is 4 (and whose complexity is polynomial in the size of a branching pro-
gram that computes f). In Sect. 6.2, we show that, although linear functions do admit

460 B. Applebaum, Y. Ishai, and E. Kushilevitz

efficient constant-input encoding, they do not admit an efficient universal constant-input
encoding. That is, one should use different decoders and simulators for different linear
functions. This is contrasted with previous constructions of randomized encoding with
constant output locality (cf. [3,32,33]) which gives a (non-efficient) universal encoding
for the class of all functions f : {0,1}n → {0,1}l as well as an efficient universal en-
coding for classes such as all linear functions or all size-s BPs (where s is polynomial
in n).

These results hold in the case of perfect encoding as well as in the more liberal setting
of statistically correct and statistically (or even computationally) private encodings in
which the simulator and decoder are allowed to err.

6.1. A Necessary Condition for Encoding with Low Input Locality

Let f : {0,1}n → {0,1}l be a function. Define an undirected graph Gi(f) over Im(f)

such that there is an edge between the strings y and y′ if there exists x ∈ {0,1}n such
that f (x) = y and f (x⊕i) = y′. Note that two vertices which lie in the same connected
component of Gi(f) differ only in the indices which are affected by the ith input.
Hence, when f has low input locality in, the size of each component of Gi(f) is at most
2|in|. It turns out that a similar restriction also holds when f is encoded by a function
f̂ with low input locality, even when f itself has large input locality. Specifically, in
Sects. 6.1.1 and 6.1.2 we will prove the following theorem:

Theorem 6.1. Let f : {0,1}n → {0,1}l be a function which is encoded by a function
f̂ : {0,1}n × {0,1}m → {0,1}s in Localin. Then,

1. If f̂ is a perfect encoding then for every 1 ≤ i ≤ n the size of the connected com-
ponents of Gi(f) is at most 2in.

2. If f̂ is a δ-correct and ε-private encoding then for every 1 ≤ i ≤ n the degree of
each vertex of Gi(f) is at most n

−log(δ+ε)
· 2in. In particular, if ε + δ < 0.9 then

the degree is bounded by 7n2in.

We will actually show that the second conclusion holds even when the privacy is
relaxed to be ε(n)-computational as long as in(n) ≤ O(logn). Also note that the theo-
rem is meaningful as long as the sum of ε and δ is upper bounded away from 1. This
limitation is rather weak since one typically requires ε and δ to be negligible in n.

Theorem 6.1 shows that even some very simple functions do not admit an encoding
with constant input locality. Consider, for example, the function

f (x1, . . . , xn) = x1 · (x2, . . . , xn) = (x1 · x2, x1 · x3, . . . , x1 · xn).

For every y ∈ Im(f) = {0,1}n−1 it holds that f (1, y) = y and f (0, y) = 0n−1. Hence,
every vertex in G1 is a neighbor of 0n−1 and the size of the connected component
of G1 is 2n−1. Thus, the input locality of x1 in any perfect encoding (respectively,
computational encoding) of this function is at least n− 1 (respectively, n− 2 − logn for
sufficiently large n). Note that this matches the results of Sect. 3 since rank(x1) = n−1.

Cryptography with Constant Input Locality 461

6.1.1. Proof of Theorem 6.1 for Perfect Encoding

Fix i ∈ [n] and let G = Gi(f). Let f̂ : {0,1}n ×{0,1}m → {0,1}s be a perfectly correct
and private randomized encoding of f : {0,1}n → {0,1}l with decoder B and simulator
S. Let Q ⊆ {1, . . . , s} be the set of output bits in f̂ which are affected by the input
variable xi . Namely, j ∈ Q iff ∃x ∈ {0,1}n, r ∈ {0,1}m such that the strings f̂ (x, r) and
f̂ (x⊕i , r) differ on the j th bit.

We begin with the following claims.

Claim 6.2. Let y, y′ ∈ Im(f) be adjacent vertices in Gi . Then, for every ŷ ∈
support(S(y)) there exists ŷ′ ∈ support(S(y′)) which differs from ŷ only in indices which
are in Q.

Proof. Let x ∈ {0,1}n be an input string for which f (x) = y and f (x⊕i) = y′. Fix
some ŷ ∈ support(S(y)). Then, by perfect privacy, there exists some r ∈ {0,1}m for
which ŷ = f̂ (x, r). Let ŷ′ = f̂ (x⊕i , r). By the definition of Q, the strings ŷ and ŷ′
differ only in indices which are in Q. Also, by the perfect privacy of f̂ , we have that
ŷ′ ∈ support(S(y′)) and the claim follows. �

Claim 6.3. Let y ∈ Im(f) and let ŷ ∈ Im(f̂). Then, y = B(ŷ) if and only if ŷ ∈
support(S(y)).

Proof. Let x ∈ f −1(y). By perfect correctness, y = B(ŷ) iff ŷ ∈ support(f̂ (x,Um)).
By perfect privacy, support(f̂ (x,Um)) = support(S(f (x))) = support(S(y)), and the
claim follows. �

We can now prove the first part of Theorem 6.1. The idea is to label each vertex y

of G by a distinct string ŷ ∈ Im(f̂) and to show that the vertices of each connected
component are labeled by a small set of strings. Specifically, we show that if u and v

are in the same connected component then their labels differ only in the indices which
are in Q. It follows that the size of such component is bounded by 2|Q|.

Proof of Theorem 6.1 part 1. Fix u ∈ Im(f) and let û ∈ {0,1}s be some arbitrary

element of support(S(u)). Let Z
def= {z ∈ {0,1}s | zi = ûi ,∀i ∈ [s] \ Q}. That is, z ∈

Z if it differs from û only in indices which are in Q. To prove the claim, we define
an onto mapping from Z (whose cardinality is 2|Q|) to the members of the connected
component of u. The mapping is defined by applying the decoder B of f̂ , namely z →
B(z). (Assume, wlog, that if the decoder is invoked on a string z which is not in Im(f̂)

then it outputs ⊥.) Let v ∈ Im(f) be a member of the connected component of u. We
prove that there exists z ∈ Z such that v = B(z).

The proof is by induction on the distance (in edges) of v from u in the graph G.
In the base case when the distance is 0, we let z = û and, by perfect correctness, get
that B(û) = u. For the induction step, suppose that the distance is i > 1. Then, let w

be the last vertex in a shortest path from u to v. By the induction hypothesis, there
exists a string ŵ ∈ Z for which w = B(ŵ). Hence, by Claim 6.3, ŵ ∈ support(S(w)).
Since v and w are neighbors, we can apply Claim 6.2 and conclude that there exists

462 B. Applebaum, Y. Ishai, and E. Kushilevitz

v̂ ∈ support(S(v)) which differs from ŵ only in indices which are in Q. Since ŵ ∈ Z

it follows that v̂ is also in Z. Finally, by Claim 6.3, we have that B(v̂) = v which
completes the proof. �

6.1.2. Proof of Theorem 6.1 for Statistical and Computational Encoding

In the following, we will keep the notation of the previous section but relax f̂ : {0,1}n ×
{0,1}m → {0,1}s to be a δ-correct and ε-private randomized encoding of f .

We say that a string ŷ ∈ {0,1}s is good for x if there exists a string û such that: (1) û

differs from ŷ only in indices which are in Q; and (2) B(û) = f (x⊕i), where B is the
decoder of f̂ .

Claim 6.4. For every x ∈ {0,1}n a string ŷ which is chosen from the distribution
S(f (x)) will be good with probability 1−δ−ε, where S is a simulator for the encoding.

Proof. Fix x. Consider the imaginary experiment where ŷ is chosen from the distri-
bution f̂ (x, r) where r ← Um. Let ŷ′ = f̂ (x⊕i , r). Clearly, û differs from ŷ only in
indices which are in Q. Furthermore, by the correctness of the encoding û decodes to
f (x⊕i) with probability at least 1 − δ (since r is uniformly distributed). Hence, in our
imaginary experiment ŷ is good for x with probability 1− δ. Finally, privacy guarantees
that SD(f̂ (x,Um),S(y)) ≤ ε and therefore the probability that ŷ is good for x in the
real experiment is at least 1 − δ − ε. �

Lemma 6.5. For every y ∈ Im(f) there exists a set Ty ⊆ Im(f̂) of size at most
n

−log(δ+ε)
such that for every x ∈ f −1(y) there exists a good ŷ ∈ Ty .

Proof. Fix y and let X = f −1(y). We will construct the set Ty iteratively. We begin
with an empty set Ty and with X0 = X. In the ith iteration, we will choose a string ŷ

which is good for at least 1 − δ − ε fraction of the entries in Xi and put the remaining
x’s in Xi+1. Since the initial size of X0 is bounded by 2n we will need at most n

−log(δ+ε)
iterations.

It is left to argue that in each iteration there exists such a good ŷ. Fix some Xi ⊆ X.
By Claim 6.4 and the linearity of expectation, a random ŷ which is chosen from the
distribution S(y) is expected to be good for at least 1 − δ − ε fraction of the x’s of Xi .
The existence of such fixed ŷ is therefore guaranteed by an averaging argument. �

We can now prove the second part of Theorem 6.1. The proof is similar to the proof
of the first part. However, now we will label each vertex y of G by a small collection of
strings ŷ1, . . . , ŷk ∈ Im(f̂). We will show that if u and v are neighbors then there exits
a corresponding label ûi (in the collection of u) and a string v̂ such that: (1) ûi and v̂

differ only in the locations which are indexed by Q; and (2) v̂ decodes to v. It follows
that the degree of G is bounded by k · 2|Q|.

Lemma 6.6. The degree of each vertex of G is at most n
−log(δ+ε)

· 2|Q|.

Proof. Fix u ∈ Im(f) and let Tu ⊆ {0,1}s be a set of size at most n
−log(δ+ε)

which

satisfies Claim 6.5. Let Z
def= {z ∈ {0,1}s | z[s]\Q = û[s]\Q,∃û ∈ Tu}. That is, z ∈ Z if it

Cryptography with Constant Input Locality 463

differs from some û ∈ Tu only in indices which are in Q. To prove the claim, we define
an onto mapping from Z to the neighbors of u. The mapping is defined by applying the
decoder B of f̂ , namely z → B(z).

Let v ∈ Im(f) be a neighbor of u. We prove that there exists z ∈ Z such that v = B(z).
Indeed, let x be a preimage of u for which v = f (x⊕i) and let û ∈ Tu be a good string
for x. It follows that there exists a string v̂ which decodes to v and agrees with û on the
coordinates [s] \ Q, which completes the proof. �

The Computational Setting The above lemma extends to the case where the encoding
is only ε-computational private (and δ-correct) as long as Q is of logarithmic size and
the decoder is efficient. To see this, note that Claim 6.4 (which is the only place where
privacy was used) still holds in the computational setting. Indeed, if the claim does
not hold for some infinite family of {xn} then one can efficiently distinguish between
the ensembles S(f (xn)) and f̂ (xn,Um(n)) with advantage bigger than ε by checking
whether a sample ŷ is good for xn. This test is efficiently computable (by a polynomial-
size circuit family) as long as Q is sufficiently small and B is efficient.

6.2. Impossibility of Universal Encoding for Linear Functions

For a class C of functions that map n-bits into l-bits, we say that C has a universal
encoding in the class Ĉ if there exists a universal simulator S and a universal decoder
B such that, for every function fz ∈ C, there is an encoding f̂z ∈ Ĉ which is private and
correct with respect to the simulator S and the decoder B .

We show that, although linear functions do admit encodings with constant input lo-
cality, they do not admit such a universal encoding. Suppose that the class of linear
(equivalently affine) functions had a universal encoding with constant input locality.
Then, by the results of [3], we would have a one-time secure MACs (S,V) whose sign-
ing algorithm has constant input locality for every fixed key; i.e., Sk(α, r) ∈ LocalO(1)

for every fixed key k. However, the results of Sect. 5.2 rule out the existence of such a
scheme. We now give a more direct proof to the impossibility of obtaining a universal
encoding with constant input locality for linear functions. The proof is similar to the
proofs in Sect. 6.1.

Let C be a class of functions that map n bits into l bits. For each input bit 1 ≤ i ≤ n,
we define a graph Gi over

⋃
f ∈C Im(f) such that there is an edge between the strings

y and y′ if there exists x ∈ {0,1}n and f ∈ C such that f (x) = y and f (x⊕i) = y′.
Namely, Gi = ⋃

f ∈C Gi(f), where Gi(f) is the graph defined in Sect. 6.1. Suppose
that C has universal encoding in Localin with decoder B and simulator S. That is, for
every fz ∈ C there exists a perfect randomized encoding f̂ : {0,1}n ×{0,1}m → {0,1}s
in Localin whose correctness and privacy hold with respect to B and S.

Lemma 6.7. The degree of every vertex in Gi is bounded by
(
s
in

) · 2in.

Proof. Let y be a vertex of Gi and fix some ŷ ∈ S(y). Let y′ be a neighbor of y

with respect to f ∈ C. Let Q = Qi ⊆ {1, . . . , s} be the set of output bits in f̂ which
are affected by the input variable xi . Then, by the proof of Theorem 6.1 part 1, there
exists a set ZQ ⊆ {0,1}s of size 2in such that y′ ∈ Im(B(ZQ)). Hence, we have an onto

464 B. Applebaum, Y. Ishai, and E. Kushilevitz

mapping from Q × ZQ to the neighbors of y. Thus, the number of neighbors is at most(
s
in

) · 2in. �

Lemma 6.8. Let C be the class of linear functions L : {0,1}n → {0,1}l where l ≤ n.
Then, for every 1 ≤ i ≤ n, the graph Gi is a complete graph over {0,1}l .

Proof. Consider, for example, the graph G = G1 and fix some y, y′ ∈ {0,1}l . Then,
for σ = (0,1, . . . ,1) and σ⊕1 = (1,1, . . . ,1), there exists a linear function L : {0,1}n →
{0,1}l for which y = L(σ) and y′ = L(σ⊕1). To see this, write L as a matrix M ∈
{0,1}l×n such that L(x) = Mx. Let M = (M1,M

′), that is, M1 denotes the leftmost
column of M , and M ′ denotes the matrix M without M1. Now, we can first solve the
linear system M · σ = y which is equivalent to M ′ · σ = y and then solve the linear
system M · σ⊕1 = y′ which is now equivalent to M1 = y′ − y. �

Let l ≤ n. By combining the above claims, we conclude that the output complexity
s of any universal encoding in Localin for linear functions L : {0,1}n → {0,1}l must
satisfy

(
s
in

) · 2in ≥ 2l . In particular, when in is constant, the output complexity of the
encoding must be exponential in l. A similar bound also holds when the encoding is
only 0.45-correct and 0.45-computationally private as long as l is super-logarithmic
in n. This can be proven by a straightforward extension of Lemma 6.7 which uses the
second part of Theorem 6.1.

Acknowledgements

We thank Ronny Roth for helpful discussions.

Appendix A. The Impossibility of Implementing a PRG in Local2

We prove that there is no PRG in Local2, and thus the PRG constructed in Sect. 4.2 has
optimal input locality as well as optimal output locality.

Lemma A.1. Let G : {0,1}n → {0,1}s(n) be a polynomial-time computable function
in Local2 where s(n) > n. Then, there exists polynomial-size circuit family {An} that
given z ∈ Im(G) reads some subset S ⊂ [s(n)] of z’s bits and outputs (S, k, zk) for
some k /∈ S.

Proof. Fix n and let s = s(n). Define HG = ((Out = [s], In = [n]),E) to be the bipar-
tite graph whose edges correspond to the input-output dependencies in G; that is, (i, j)

is an edge if and only if the ith output bit of G depends on the j th input bit. Since G

is in Local2 the average degree of output vertices is 2n/s which is smaller than 2 (as
s > n). The circuit An implements the following procedure:

1. Initialize S and T to be empty sets, let H ← HG and let x = 0n.
2. If there exists an output k ∈ Out which is not connected to any input in the graph

H , then halt and predict zk by computing G(x)k .

Cryptography with Constant Input Locality 465

3. Otherwise, there exists an output j ∈ Out which depends on a single input bit
i ∈ In in the graph H (since the average out degree is smaller than 2). Add j to S

and add i to T . Let xi = 0 if G(x) = zj , and 1 otherwise. Remove i and j from
the graph H .

4. Goto 2.

The procedure stops after at most n steps since there are only n < s inputs. The correct-
ness follows by noting that: (1) in each iteration xT = x�

T where x� is the preimage of
z under G; and (2) the kth output bit depends only on the input bits which are indexed
by T . To see (1), observe that in each iteration all the output bits which are indexed by
S depend only on the input bits which are indexed by T . �

We can now conclude that there is no PRG in Local2.

Corollary A.2. There is no PRG in Local2.

Proof. Assume, towards a contradiction, that G : {0,1}n → {0,1}s(n) is a PRG in
Local2. Fix n and let s = s(n). Let An be the adversary defined in Lemma A.1. Then,
we define an adversary Bn that given z ∈ {0,1}s invokes An and checks whether An

predicts zk correctly. By Lemma A.1, when z ∈ Im(G) the adversary Bn always out-
puts 1. However, when z is a random string the probability that Bn outputs 1 is at most
1/2. Indeed, if Bn(z) = 1 for some z ∈ {0,1}s then Bn(z⊕k) = 0, where k is the bit that
An predicts when reading z (and z⊕i denote the string z with the ith bit flipped). Hence,
An errs on at least half of the strings in {0,1}s , and so it distinguishes G(Un) from Us

with advantage 1/2. �

The above corollary can be extended to rule out the existence of a collection of PRGs
with input locality 2. Note that when G is chosen from a collection, the graph HG might
not be available to the adversary constructed in Lemma A.1. However, a closer look at
this lemma shows that, in fact, the adversary does not need an explicit description of
HG; rather, it suffices to find an approximation of HG (in the sense of Lemma 5.1). As
shown in Lemma 5.1, such an approximation can be found efficiently (with, say, 1/n

error probability) given an (oracle) access to G. This modification also shows that such
a PRG can be broken by a uniform adversary.

The above negative result does not rule out the existence of a OWF in Local2, which
is left as an open problem.

Appendix B. Proof of Theorem 4.7

Let r be a uniformly chosen 2m-bit string. Let r|e(r)=z denote the distribution of r

conditioned on the event that e(r)
def= (r2i−1 · r2i)

m
i=1 is equal to z. Then the following

claim is implicit in [4].

Claim B.1 (Similar to Lemma 3 of [4]).

Pr
z←e(U2m)

[
H∞(r|e(r)=z) ≥ 1.17m

] ≥ 1 − exp
(−
(m)

)
.

466 B. Applebaum, Y. Ishai, and E. Kushilevitz

Proof. We view e(r) as a sequence of m independent Bernoulli trials, each with a
probability 0.25 of success. Recall that r is composed of m pairs of bits, and that the
ith bit of e(r) is 1 if and only if r2i−1 and r2i are both equal to 1. Hence, whenever
e(r)i = 0, the pair (r2i−1, r2i) is uniformly distributed over the set {00,01,10}. Let
z ← e(U2m). Consider the case in which at most 0.26m components of z are ones. By a
Chernoff bound, the probability of this event is at least 1 − exp(−
(m)). In this case,
r|e(r)=z is uniformly distributed over a set of size at least 30.74m. Hence, conditioning on
the event that at most 0.26m components of z are ones, the min-entropy of r|e(r)=z is at
least 0.74m log(3) > 1.17m. �

We can now prove Theorem 4.7. Let m = 6n and t = 7.01n. First we show that G

expands its input. Indeed, the difference between the output length and the input length
is: m + t − (n + 2m) = 0.01n > 0.

Let x ← Un, C ← Um·n, r ← U2m, M ← Ut ·2m and v ← Ut . We prove that the
distribution G(x,C, r,M,v) is pseudorandom. Define

�(n)
def= SD

((
C,Cx + e(r),Mr + v,M,v

)
,
(
C,Cx + e(r),Ut+2tm+m

))
.

First observe that

�(n) ≤ SD
((

e(r),Mr + v,M,v
)
,
(
e(r),Ut+2tm+m

))
,

as for every distributions X and Y and every randomized process A, it holds that
SD(A(X),A(Y)) ≤ SD(X,Y). Now, by Lemma 2.9, Fact 2.7 and Claim B.1, we have
that

SD
((

e(r),Mr + v,M,v
)
,
(
e(r),Ut+2tm+m

))

≤ 2−(1.17m−t)/2 + exp
(−
(m)

)

= 2−0.005n + exp
(−
(n)

) ≤ exp
(−
(n)

)
.

Hence, under Assumption 4.5, we have

(
C,Cx + e(r),Mr + v,M,v

) s≡ (
C,Cx + e(r),Ut+2tm+m

) c≡ Umn+m+t+2tm+m,

which completes the proof.

Appendix C. Proof of Lemma 5.5

Given the length of the signature s(n) and the locality parameter in(n), we construct the
following scheme:

• Key Generation: Choose a random s(n) × n binary matrix M by selecting each
of the n columns uniformly and independently from the set of all s(n)-bit vectors
whose Hamming weight is exactly in(n). In addition, uniformly choose an s(n) bit
vector v.

• Signature: To sign compute SM,v(α) = M · α + v.
• Verification: To verify that (α,β) is valid check if M · α + v = β .

Cryptography with Constant Input Locality 467

First, note that each input variable affects at most in(n) output bits as any column of
M has at most in(n) ones. We move on to prove that the scheme is secure. Let s = s(n).
We begin by showing that if the adversary does not query the signing algorithm at all,
then he cannot forge a signature. Fix α ∈ {0,1}n and β ∈ {0,1}s . Then we can write

Pr
M,v

[Mα + v = β] = Pr
M,v

[v = β − Mα] = 2−s ,

where the last equality holds since for every fixed M we have Prv[v = β − Mα] = 2−s .
Suppose that the adversary used his single oracle query to learn the signature β(1) to
some document α(1). We show that the probability that the adversary finds a signature
on any other document α(2) �= α(1) is at most 1/

(
s(n)
in(n)

)
. Indeed, fix some α(1) �= α(2) ∈

{0,1}n and β(1), β(2) ∈ {0,1}s . We will prove that

Pr
M,v

[
Mα(2) + v = β(2)|Mα(1) + v = β(1)

] ≤ 1
(
s(n)
in(n)

) .

First note that Mα(1) + v = β(1) if and only if v = β(1) − Mα(1). Hence, by letting
α = α(2) − α(1) and β = β(2) − β(1), we have

Pr
M,v

[
Mα(2) + v = β(2)|Mα(1) + v = β(1)

] = Pr
M

[Mα = β].

Observe that α �= 0n (since α(1) �= α(2)). Assume, without loss of generality, that α1, the
first bit of α is 1 (otherwise, permute α and the columns of M). Let Mi denote the ith
column of M . Then,

Pr
M

[Mα = β] = Pr
M

[

M1 = β −
n∑

i=2

αi · Mi

]

.

We complete the proof by noting that M1 is distributed uniformly over a set of size
(
s(n)
in(n)

)

independently of the other columns, and thus the above term is bounded by 1/
(
s(n)
in(n)

)
.

References

[1] M. Alekhnovich, More on average case vs approximation complexity, in Proc. 44th FOCS, 2003,
pp. 298–307

[2] B. Applebaum, Y. Ishai, E. Kushilevitz, Computationally private randomizing polynomials and their
applications. Comput. Complex. 15(2), 115–162 (2006). Preliminary version in Proc. 20th CCC, 2005

[3] B. Applebaum, Y. Ishai, E. Kushilevitz, Cryptography in NC0. SIAM J. Comput. 36(4), 845–888 (2006).
Preliminary version in Proc. 45th FOCS, 2004

[4] B. Applebaum, Y. Ishai, E. Kushilevitz, On pseudorandom generators with linear stretch in NC0, in
Proc. 10th Random, 2006

[5] B. Applebaum, Y. Ishai, E. Kushilevitz, Cryptography with constant latency. Manuscript, 2009
[6] S. Arora, S. Safra, Probabilistic checking of proofs: A new characterization of np. J. ACM 45(1), 70–122

(1998). Preliminary version in Proc. 33rd FOCS, 1992
[7] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and hardness of approxima-

tion problems. J. ACM 45(3), 501–555 (1998). Preliminary version in Proc. 33rd FOCS, 1992

468 B. Applebaum, Y. Ishai, and E. Kushilevitz

[8] L. Babai, Random oracles separate PSPACE from the polynomial-time hierarchy. Inf. Process. Lett.
26(1), 51–53 (1987)

[9] E.R. Berlekamp, R.J. McEliece, H.C. van Tilborg, On the inherent intractability of certain coding prob-
lems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

[10] M. Blum, Coin flipping by telephone: a protocol for solving impossible problems. SIGACT News 15(1),
23–27 (1983)

[11] M. Blum, S. Micali, How to generate cryptographically strong sequences of pseudo-random bits. SIAM
J. Comput. 13, 850–864 (1984). Preliminary version in Proc. 23rd FOCS, 1982

[12] A. Blum, M. Furst, M. Kearns, R.J. Lipton, Cryptographic primitives based on hard learning problems,
in Advances in Cryptology: Proc. of CRYPTO ’93, LNCS, vol. 773 (1994), pp. 278–291

[13] A. Blum, A. Kalai, H. Wasserman, Noise-tolerant learning, the parity problem, and the statistical query
model. J. ACM 50(4), 506–519 (2003). Preliminary version in Proc. 32nd STOC, 2000

[14] R.B. Boppana, J.C. Lagarias, One-way functions and circuit complexity. Inf. Comput. 74(3), 226–240
(1987)

[15] S.A. Cook, The complexity of theorem-proving procedures, in STOC ’71: Proceedings of the Third
Annual ACM Symposium on Theory of Computing, New York, NY, USA (ACM Press, New York, 1971),
pp. 151–158

[16] M. Cryan, P.B. Miltersen, On pseudorandom generators in NC0, in Proc. 26th MFCS, 2001, pp. 272–
284

[17] D. Dolev, C. Dwork, M. Naor, Non-malleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)
[18] U. Feige, J. Killian, M. Naor, A minimal model for secure computation (extended abstract), in Proc. of

the 26th STOC, 1994, pp. 554–563
[19] V. Feldman, P. Gopalan, S. Khot, A.K. Ponnuswami, New results for learning noisy parities and half-

spaces, in Proc. 47th FOCS, 2006, pp. 563–574
[20] O. Goldreich, Candidate one-way functions based on expander graphs. Electron. Colloq. Comput. Com-

plex. (ECCC) 7(090) (2000)
[21] O. Goldreich, Foundations of Cryptography: Basic Tools (Cambridge University Press, Cambridge,

2001)
[22] O. Goldreich, Foundations of Cryptography: Basic Applications (Cambridge University Press, Cam-

bridge, 2004)
[23] O. Goldreich, L. Levin, A hard-core predicate for all one-way functions, in Proc. 21st STOC, 1989,

pp. 25–32
[24] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions. J. ACM 33, 792–807

(1986)
[25] O. Goldreich, H. Krawczyk, M. Luby, On the existence of pseudorandom generators. SIAM J. Comput.

22(6), 1163–1175 (1993). Preliminary version in Proc. 29th FOCS, 1988
[26] S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984). Prelim-

inary version in Proc. STOC ’82
[27] J. Håstad, R. Impagliazzo, L.A. Levin, M. Luby, A pseudorandom generator from any one-way function.

SIAM J. Comput. 28(4), 1364–1396 (1999)
[28] T. Holenstein, Pseudorandom generators from one-way functions: A simple construction for any hard-

ness, in Proc. 3rd TCC, 2006, pp. 443–461
[29] N.J. Hopper, M. Blum, Secure human identification protocols, in Advances in Cryptology: Proc. of

ASIACRYPT ’01, LNCS, vol. 2248 (2001), pp. 52–66
[30] R. Impagliazzo, M. Luby, One-way functions are essential for complexity based cryptography, in Proc.

of the 30th FOCS, 1989, pp. 230–235
[31] R. Impagliazzo, M. Naor, Efficient cryptographic schemes provably as secure as subset sum. J. Cryptol.

9(4), 199–216 (1996). Preliminary version in FOCS ’89
[32] Y. Ishai, E. Kushilevitz, Randomizing polynomials: A new representation with applications to round-

efficient secure computation, in Proc. 41st FOCS, 2000, pp. 294–304
[33] Y. Ishai, E. Kushilevitz, Perfect constant-round secure computation via perfect randomizing polynomi-

als, in Proc. 29th ICALP, 2002, pp. 244–256
[34] H. Janwa, O. Moreno, Mceliece public key cryptosystems using algebraic-geometric codes. Des. Codes

Cryptogr. 8(3), 293–307 (1996)
[35] A. Juels, S. Weis, Authenticating pervasive devices with human protocols, in Advances in Cryptology:

Proc. of CRYPTO ’05, LNCS, vol. 3621 (2005), pp. 293–308

Cryptography with Constant Input Locality 469

[36] J. Katz, J.-S. Shin, Parallel and concurrent security of the hb and hb+ protocols, in Advances in Cryp-
tology: Proc. of Eurocrypt 06’, LNCS, vol. 4004 (2006), pp. 73–87

[37] J. Katz, M. Yung, Complete characterization of security notions for probabilistic private-key encryption,
in Proc. 32nd STOC, 2000, pp. 245–254

[38] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire, L. Sellie, On the learnability of discrete
distributions, in Proc. 26th STOC, 1994, pp. 273–282

[39] M.J. Kearns, Efficient noise-tolerant learning from statistical queries. J. ACM 45(6), 983–1006 (1998)
[40] J. Kilian, Founding cryptography on oblivious transfer, in Proc. 20th STOC, 1988, pp. 20–31
[41] L.A. Levin, Universal sequential search problems. PINFTRANS: Probl. Inf. Transm. Translated from

Problemy Peredachi Informatsii (Russian) 9 (1973)
[42] N. Linial, Y. Mansour, N. Nisan, Constant depth circuits, Fourier transform, and learnability. J. ACM

40(3), 607–620 (1993). Preliminary version in Proc. 30th FOCS, 1989
[43] V. Lyubashevsky, The parity problem in the presence of noise, decoding random linear codes, and the

subset sum problem, in Proc. 9th Random, 2005
[44] R.J. McEliece, A public-key cryptosystem based on algebraic coding theory. Technical Report DSN PR

42-44, Jet Prop. Lab., 1978
[45] E. Mossel, A. Shpilka, L. Trevisan, On ε-biased generators in NC0, in Proc. 44th FOCS, 2003, pp. 136–

145
[46] M. Naor, O. Reingold, Synthesizers and their application to the parallel construction of pseudo-random

functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999). Preliminary version in Proc. 36th FOCS, 1995
[47] C. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes. J. Comput.

Syst. Sci. 43, 425–440 (1991). Preliminary version in Proc. 20th STOC, 1988
[48] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, in Proc. 37th STOC,

2005, pp. 84–93
[49] M. Sudan, Algorithmic introduction to coding theory—lecture notes, 2002. http://theory.csail.mit.edu/

~madhu/FT01/
[50] R. Varshamov, Estimate of the number of signals in error correcting codes. Dokl. Akad. Nauk SSSR 117,

739–741 (1957)
[51] E. Viola, On constructing parallel pseudorandom generators from one-way functions, in Proc. IEEE

Conference on Computational Complexity 2005, pp. 183–197
[52] A.C. Yao, Theory and application of trapdoor functions, in Proc. 23rd FOCS, 1982, pp. 80–91

http://theory.csail.mit.edu/~madhu/FT01/
http://theory.csail.mit.edu/~madhu/FT01/

	Cryptography with Constant Input Localityt5,t1
	Abstract
	Introduction
	Our Results
	Locality-Preserving Reductions

	Our Techniques
	Previous Work
	Organization

	Preliminaries
	Notation
	Locality
	Locality-Preserving Reductions
	Randomized Encoding
	Definitions of Primitives
	One Way Functions and Pseudorandom Generators
	Extractors
	Commitments and Encryption Schemes

	Randomized Encoding with Constant Input Locality
	Key Lemmas
	Main Results
	Remarks on Theorem 3.6.

	Primitives with Constant Input Locality and Output Locality
	Main Assumption: Intractability of Decoding Random Linear Code
	Our Parameters
	Pseudorandomness

	Pseudorandom Generator in Local33
	Symmetric Encryption
	Commitment in Local34
	Semantically Secure Public-Key Encryption in Local3O(1)
	Locality Preserving Reductions between Different Primitives

	Negative Results for Cryptographic Primitives
	Basic Observations
	MACs and Signatures
	Remarks on Theorem 5.4.

	Non-malleable Encryption

	Negative Results for Randomized Encodings
	A Necessary Condition for Encoding with Low Input Locality
	Proof of Theorem 6.1 for Perfect Encoding
	Proof of Theorem 6.1 for Statistical and Computational Encoding
	The Computational Setting

	Impossibility of Universal Encoding for Linear Functions

	Acknowledgements
	Appendix A. The Impossibility of Implementing a PRG in Local2
	Appendix B. Proof of Theorem 4.7
	Appendix C. Proof of Lemma 5.5
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

