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Abstract. We describe the use of explicit isogenies to translate instances of the Dis-
crete Logarithm Problem (DLP) from Jacobians of hyperelliptic genus 3 curves to Ja-
cobians of non-hyperelliptic genus 3 curves, where they are vulnerable to faster index
calculus attacks. We provide explicit formulae for isogenies with kernel isomorphic
to (Z/2Z)3 (over an algebraic closure of the base field) for any hyperelliptic genus 3
curve over a field of characteristic not 2 or 3. These isogenies are rational for a positive
fraction of all hyperelliptic genus 3 curves defined over a finite field of characteris-
tic p > 3. Subject to reasonable assumptions, our constructions give an explicit and
efficient reduction of instances of the DLP from hyperelliptic to non-hyperelliptic Ja-
cobians for around 18.57% of all hyperelliptic genus 3 curves over a given finite field.
We conclude with a discussion on extending these ideas to isogenies with more general
kernels.

Key words. Hyperelliptic curve cryptography, Discrete logarithm problem, Isogeny,
Genus 3

1. Introduction

After the great success of elliptic curves in public-key cryptography, researchers have
naturally been drawn to their higher-dimensional generalisations: Jacobians of higher-
genus curves. Curves of genus 1 (elliptic curves), 2, and 3 are widely believed to offer
the best balance of security and efficiency. This article is concerned with the security of
curves of genus 3.

There are two classes of curves of genus 3: hyperelliptic and non-hyperelliptic. Each
class has a distinct geometry: The canonical morphism of a hyperelliptic curve is a dou-
ble cover of a curve of genus 0, while the canonical morphism of a non-hyperelliptic
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curve of genus 3 is a birational map to a nonsingular plane quartic curve. A hyper-
elliptic curve cannot be isomorphic (or birational) to a non-hyperelliptic curve. From
a cryptological point of view, the Discrete Logarithm Problem (DLP) in Jacobians of
hyperelliptic curves of genus 3 over Fq may be solved in ˜O(q4/3) group operations, us-
ing the index calculus algorithm of Gaudry, Thomé, Thériault, and Diem [8]. Jacobians
of non-hyperelliptic curves of genus 3 over Fq are amenable to Diem’s index calculus
algorithm [5], which requires only ˜O(q) group operations to solve the DLP (for compar-
ison, Pollard/baby-step-giant-step methods require ˜O(q3/2) group operations to solve
the DLP in Jacobians of genus 3 curves over Fq ). The security of non-hyperelliptic
genus 3 curves is therefore widely held to be lower than that of their hyperelliptic
cousins.

Our aim is to construct explicit homomorphisms to provide a means of efficiently
translating instances of the DLP from Jacobians of hyperelliptic curves of genus 3 to Ja-
cobians of non-hyperelliptic curves, where faster index calculus is available. In the con-
text of DLP-based cryptography, we may assume that our Jacobians are absolutely sim-
ple. In this situation, every nontrivial homomorphism of Jacobians of curves of genus 3
is an isogeny, that is, a surjective homomorphism with finite kernel.

To be specific, suppose we are given a hyperelliptic curve H of genus 3 over a finite
field Fq , together with an instance P = [n]Q of the DLP in JH (Fq); our task is to
recover n given P and Q. After applying the standard Pohlig–Hellman reduction [19],
we may assume that P and Q have prime order. We want to solve this DLP instance by
solving an equivalent DLP instance in a non-hyperelliptic Jacobian. Suppose we have
an isogeny φ : JH → JC , where C is a non-hyperelliptic curve of genus 3. Further,
suppose that φ is explicit (that is, we have equations for C and an efficient map on
divisor classes representing φ) and defined over Fq , so it maps JH (Fq) into JC(Fq).
Provided φ(Q) �= 0, we can recover n by solving the DLP instance φ(P ) = [n]φ(Q)

in JC(Fq) with Diem’s algorithm.
The approach outlined above is conceptually straightforward; the difficulty lies in

computing explicit isogenies of Jacobians of genus 3 curves. Automorphisms, integer
multiplications, and Frobenius maps aside, we know of no explicit and general formu-
lae for isogenies from Jacobians of hyperelliptic curves of genus 3 apart from those
presented below.

In Sects. 3 through 6, we derive explicit formulae for isogenies whose kernels are
generated by differences of Weierstrass points, following the construction of Donagi
and Livné [7]. The key step is making Recillas’ trigonal construction [20] completely
explicit. This gives us a curve X of genus 3 and an explicit isogeny JH → JX . While X

may be hyperelliptic, naïve moduli space dimension arguments suggest (and experience
confirms) that X will be non-hyperelliptic with an overwhelming probability, and thus
explicitly isomorphic to a nonsingular plane quartic curve C. We can therefore compute
an explicit isogeny φ : JH → JC ; if φ is defined over Fq , then we can use it to reduce
DLP instances. We note that the trigonal construction (and hence our formulae) does
not apply in characteristics 2 and 3.

We show in Sect. 8 that, subject to some reasonable assumptions, given a uniformly
randomly chosen hyperelliptic curve H of genus 3 over a sufficiently large finite field Fq

of characteristic at least 5, our algorithms succeed in constructing an explicit isogeny de-
fined over Fq from JH to a non-hyperelliptic Jacobian with probability ≈ 0.1857. In par-
ticular, instances of the DLP can be solved in ˜O(q) group operations for around 18.57%
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of all Jacobians of hyperelliptic curves of genus 3 over finite fields of characteristic at
least 5.

We discuss more general isogenies in Sect. 9. Given explicit formulae for these isoge-
nies, we expect that most, if not all, instances of the DLP in Jacobians of hyperelliptic
curves of genus 3 over any finite field could be reduced to instances of the DLP in
non-hyperelliptic Jacobians.

Our results have a number of interesting implications for curve-based cryptography,
at least for curves of genus 3. First, the difficulty of the DLP in a subgroup G of JH

depends not only on the size of the subgroup G, but upon the existence of other rational
subgroups of JH that can be used to form quotients. Second, the security of a given hy-
perelliptic genus 3 curve depends significantly upon the factorisation of its hyperelliptic
polynomial. Neither of these results has any parallel in genus 1 or 2.

The constructions of Sects. 3 through 6 and 9 require some nontrivial algebraic geom-
etry. We have included enough mathematical detail here to enable the reader to compute
examples, to justify our claim that the construction is efficient, and to support our heuris-
tics.

A Note on the Text

This article presents an extended version of work that appeared in the proceedings of
the EUROCRYPT 2008 conference [23]. The chief results are the same; we have made
some (minor) changes to our notation, expanded the derivation in Sect. 6, given further
details and proofs throughout, and added an appendix with algorithms to compute sets
of tractable subgroups.

2. Notation and Conventions for Hyperelliptic Curves

We will work over Fq throughout this article,1 where q is a power of a prime p > 3.
We let G denote the Galois group Gal(Fq/Fq), which is (topologically) generated by
the qth power Frobenius map.

Suppose we are given a hyperelliptic curve H of genus 3 over Fq . We will use both
an affine model

H : y2 = F(x),

where F is a squarefree polynomial of degree 7 or 8, and a weighted projective plane
model

H : w2 = ˜F(u, v)

for H (here u, v, and w have weights 1, 1, and 4, respectively). The coordinates of
these models are related by x = u/v and y = w/v4. The polynomial ˜F is squarefree
of total degree 8, with ˜F(u, v) = v8F(u/v) and F(x) = ˜F(x,1). We emphasise that F

need not be monic. By a randomly chosen hyperelliptic curve we mean the hyperelliptic
curve defined by w2 = ˜F(u, v), where ˜F is a uniformly randomly chosen squarefree
homogeneous bivariate polynomial of degree 8 over Fq .

1 Some of the theory carries over to more general base fields. In particular, the results of Sects. 5 and 6 are
valid over fields of characteristic not 2 or 3.



508 B. Smith

The canonical hyperelliptic involution ι of H is defined by (x, y) �→ (x,−y) in the
affine model, (u : v : w) �→ (u : v : −w) in the projective model, and induces the nega-
tion map [−1] on JH . The quotient π : H → H/〈ι〉 ∼= P

1 sends (u : v : w) to (u : v) in
the projective model, and (x, y) to x in the affine model (where it maps onto the affine
patch of P

1 where v �= 0).
To compute in JH , we fix an isomorphism from JH to the group of degree-0 di-

visor classes on H , denoted Pic0(H). Recall that divisors are formal sums of points
in H(Fq), and if D =∑P∈H nP (P ) is a divisor, then

∑

P∈H nP is the degree of D.
We say D is principal if D = div(f ) :=∑P∈H ordP (f )(P ) for some function f on H ,
where ordP (f ) denotes the number of zeroes (or the negative of the number of poles)
of f at P . Since H is complete, every principal divisor has degree 0. The group Pic0(H)

is defined to be the group of divisors of degree 0 modulo principal divisors; the equiva-
lence class of a divisor D is denoted by [D]. We let JH [l] denote the l-torsion sub-
group of JH : that is, the kernel of the multiplication-by-l map. If l is prime to q ,
then JH [l](Fq) is isomorphic to (Z/lZ)6.

3. The Kernel of the Isogeny

The eight points of H(Fq) where w = 0 are called the Weierstrass points of H . Each
Weierstrass point W corresponds to a linear factor

LW := v(W)u − u(W)v

of ˜F , which is defined up to scalar multiples. If W1 and W2 are Weierstrass points,
then 2(W1) − 2(W2) = div(LW1/LW2), so 2[(W1) − (W2)] = 0; hence, [(W1) − (W2)]
represents an element of JH [2](Fq). In particular, [(W1) − (W2)] = [(W2) − (W1)], so
the divisor class [(W1) − (W2)] corresponds to the pair {W1,W2} of Weierstrass points,
and hence to the quadratic factor LW1LW2 of ˜F (up to scalar multiples).

Proposition 1. To every G -stable partition of the eight Weierstrass points of H into
four disjoint pairs, we may associate an Fq -rational subgroup of JH [2](Fq) isomorphic
to (Z/2Z)3.

Proof. Let {{W ′
1,W

′′
1 }, {W ′

2,W
′′
2 }, {W ′

3,W
′′
3 }, {W ′

4,W
′′
4 }} be a partition of the set of

Weierstrass points of H into four disjoint pairs. Each pair {W ′
i ,W

′′
i } corresponds to

the 2-torsion divisor class [(W ′
i ) − (W ′′

i )] in JH [2](Fq). We associate the subgroup
S := 〈[(W ′

i ) − (W ′′
i )] : 1 ≤ i ≤ 4〉 to the partition. Observe that

4
∑

i=1

[(

W ′
i

)− (W ′′
i

)]=
[

div

(

w

/ 4
∏

i=1

LW ′′
i

)]

= 0;

this is the only relation on the classes [(W ′
i ) − (W ′′

i )], so S ∼= (Z/2Z)3. The action of G
on JH [2](Fq) corresponds to its action on the Weierstrass points, so if the partition
is G -stable, then the subgroup S is G -stable. �
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Remark 1. By “an Fq -rational subgroup of JH [2](Fq) isomorphic to (Z/2Z)3”, we
mean a G -stable subgroup that is isomorphic to (Z/2Z)3 over Fq . We emphasise that
the subgroup need not be contained in JH (Fq).

Remark 2. Requiring the pairs of Weierstrass points in Proposition 1 to be disjoint
ensures that the associated subgroup is isotropic with respect to the 2-Weil pairing. We
will see in Sect. 9 that this is necessary for the quotient by the subgroup to be an isogeny
of principally polarised abelian varieties, and hence for the quotient to be an isogeny of
Jacobians.

Definition 1. We call the subgroups corresponding to partitions of the Weierstrass
points of H as in Proposition 1 tractable subgroups. We let S(H) denote the set of
all Fq -rational tractable subgroups of JH [2](Fq).

Remark 3. Not every subgroup of JH [2](Fq) that is the kernel of an isogeny of Ja-
cobians is a tractable subgroup. For example, if W1, . . . ,W8 are the Weierstrass points
of H , then the subgroup

〈[

(W1) − (Wi) + (Wj ) − (Wk)
] : (i, j, k) ∈ {(2,3,4), (2,5,6), (3,5,7)

}〉

is a maximal 2-Weil isotropic subgroup of JH (Fq), and hence is the kernel of an isogeny
of Jacobians (see Sect. 9). However, this subgroup contains no nontrivial differences of
Weierstrass points, and therefore cannot be a tractable subgroup.

Computing S(H) is straightforward if we identify each tractable subgroup with
its corresponding partition of Weierstrass points. Recall that each pair of Weierstrass
points {W ′

i ,W
′′
i } corresponds to a quadratic factor of ˜F (up to scalar multiples). Since

the pairs are disjoint, the corresponding quadratic factors are pairwise coprime, so we
may take them to form a factorisation of ˜F . We therefore have a correspondence of
tractable subgroups, partitions of Weierstrass points into pairs, and sets of quadratic
polynomials (up to scalar multiples):

S ←→ {{

W ′
i ,W

′′
i

} : 1 ≤ i ≤ 4
}←→ {F1,F2,F3,F4}, where ˜F = F1F2F3F4.

The action of G on JH [2](Fq) corresponds to its action on the set of Weierstrass points,
so the action of G on a tractable subgroup S corresponds to the action of G on the
corresponding set {F1,F2,F3,F4} (assuming the Fi have been scaled appropriately). In
particular, S is Fq -rational precisely when {F1,F2,F3,F4} is fixed by G . The factors Fi

are themselves defined over Fq precisely when the corresponding points of S are Fq -
rational.

We can use this information to compute S(H). The set of pairs of Weierstrass points
contains a G -orbit ({W ′

i1
,W ′′

i1
}, . . . , {W ′

in
,W ′′

in
}) if and only if (possibly after exchanging

some of the W ′
ik

with the W ′′
ik

) either both (W ′
i1
, . . . ,W ′

in
) and (W ′′

i1
, . . . ,W ′′

in
) are G -

orbits or (W ′
i1
, . . . ,W ′

in
,W ′′

i1
, . . . ,W ′′

in
) is a G -orbit. Every G -orbit of Weierstrass points

corresponds to an Fq -irreducible factor of F , so the size of S(H) depends only on the
factorisation of F . A table relating the size of S(H) to the factorisation of ˜F appears
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in Lemma 1 below; this will be useful for our analysis in Sect. 8. For completeness, we
have included a naïve algorithm for enumerating S(H) in Appendix A.

Lemma 1. Let H : w2 = ˜F(u, v) be a hyperelliptic curve of genus 3 over Fq . The
cardinality of the set S(H) depends only on the degrees of the Fq -irreducible factors
of ˜F , and is described by the following table:

Degrees of Fq -irreducible factors of ˜F #S(H)

(8), (6,2), (6,1,1), (4,2,1,1) 1
(4,2,2), (4,1,1,1,1), (3,3,2), (3,3,1,1) 3

(4,4) 5
(2,2,2,1,1) 7

(2,2,1,1,1,1) 9
(2,1,1,1,1,1,1) 15

(2,2,2,2) 25
(1,1,1,1,1,1,1,1) 105

Other 0

Proof. This is a routine combinatorial exercise after noting that every G -orbit of pairs
of Weierstrass points corresponds to either an even-degree factor of F , or a pair of
factors of F of the same degree. �

4. The Trigonal Construction

We will now briefly outline the theoretical aspects of constructing isogenies with
tractable kernels. We will make the construction completely explicit in Sects. 5 and 6.

Definition 2. Suppose S = 〈[(W ′
i ) − (W ′′

i )] : 1 ≤ i ≤ 4〉 is a tractable subgroup. We
say that a morphism g : P

1 → P
1 is a trigonal map for S if g has degree 3 and

g(π(W ′
i )) = g(π(W ′′

i )) for 1 ≤ i ≤ 4.

Given a trigonal map g for some tractable subgroup S, Recillas’ trigonal construc-
tion [20] specifies a curve X of genus 3 and a map f : X → P

1 of degree 4.2 The
isomorphism class of X depends only on S, and is independent of the choice of g (see
Recillas [20], Donagi [6, Theorem 2.11], and Remark 5 below). Theorem 1, due to Don-
agi and Livné, states that if g is a trigonal map for S, then S is the kernel of an isogeny
from JH to JX .

Theorem 1 (Donagi and Livné [7, Sect. 5]). Let S be a tractable subgroup in S(H),
and let g : P

1 → P
1 be a trigonal map for S. If X is the curve formed from g by Recillas’

trigonal construction, then there is an isogeny φ : JH → JX (defined over Fq ) with
kernel S.

2 Recillas’ original trigonal construction is defined where π is an étale double cover; the trigonal construc-
tion we apply here is, in fact, the flat limit of Recillas’ construction (see [7, Sect. 3] for details).
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We will give only a brief description of the geometry of X here, concentrating instead
on its explicit construction; we refer the reader to Recillas [20], Vakil [24], Donagi [6,
Sect. 2], and Birkenhake and Lange [1, Sect. 12.7] for proofs and further detail. The
isogeny of Theorem 1 is analogous to the well-known Richelot isogeny in genus 2 (see
Bost and Mestre [3], and Donagi and Livné [7, Sect. 4] for details), and to the explicit
isogeny described by Lehavi and Ritzenthaler in [14] for Jacobians of non-hyperelliptic
genus 3 curves.

In abstract terms, if U is the subset of the codomain of g above which g ◦ π is
unramified, then X is by definition the closure of the curve over U representing the
pushforward to U of the sheaf of sections of π : (g ◦ π)−1(U) → g−1(U) (in the étale
topology). This means in particular that the Fq -points of X over an Fq -point P of U

represent partitions of the six Fq -points of (g◦π)−1(P ) into two sets of three exchanged
by the hyperelliptic involution. The fibre product of H and X over P

1 with respect to g ◦
π and f is the union of two isomorphic curves, R and R′, which are exchanged by the
involution on H ×P1 X induced by the hyperelliptic involution. The natural projections
induce coverings πH : R → H and πX : R → X of degrees 2 and 3, respectively, so R

is a (3,2)-correspondence between H and X.
The maps πH and πX induce homomorphisms (πH )∗ : JH → JR (the pullback)

and (πX)∗ : JR → JX (the pushforward). In terms of divisor classes, the pullback is
defined by

(πH )∗
([

∑

P∈H

nP (P )

])

=
[

∑

P∈H

nP

∑

Q∈π−1
H (P )

(Q)

]

,

with appropriate multiplicities where πH ramifies; the pushforward is defined by

(πX)∗
([

∑

Q∈R

mQ(Q)

])

=
[

∑

Q∈R

mQ

(

πX(Q)
)

]

.

Composing (πX)∗ with (πH )∗, we obtain an isogeny φ : JH → JX with kernel S. If
we replace R with R′ in the above, we obtain an isogeny isomorphic to −φ. Thus, up
to isomorphism, the construction of the isogeny depends only on the subgroup S. The
curves and Jacobians described above form the commutative diagrams shown in Fig. 1.

The hyperelliptic Jacobians form a codimension-1 subspace Hg of the moduli space
of 3-dimensional principally polarised abelian varieties—which, by the theorem of Oort
and Ueno [18], is also the moduli space Mg of Jacobians of genus 3 curves. The Weil
hypotheses imply that #Hg(Fq)/#Mg(Fq) ∼ 1/q for sufficiently large q (cf. [13, The-
orem 1]). In particular, for cryptographically relevant sizes of q , the probability that
a uniformly randomly chosen curve X of genus 3 over Fq should be hyperelliptic is
negligible. We will suppose that the same is true for the curve X constructed in Theo-
rem 1 for a uniformly randomly chosen H and S in S(H). This is consistent with our
experimental observations, so we postulate Hypothesis 1.

Hypothesis 1. The probability that the curve X constructed by the trigonal construc-
tion for a randomly chosen H/Fq and S in S(H) is hyperelliptic is negligible for suffi-
ciently large q .
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Fig. 1. The curves, Jacobians, and morphisms of Sect. 4.

5. Computing Trigonal Maps

Suppose we are given a tractable subgroup S of JH [2](Fq), corresponding to a parti-
tion {{W ′

i ,W
′′
i } : 1 ≤ i ≤ 4} of the Weierstrass points of H into pairs. The first step in

the explicit trigonal construction is to compute a trigonal map g for S. We will compute
polynomials N = x3 + n1x + n0 and D = x2 + d1x + d0 such that the rational map

g : x �−→ t = N(x)

D(x)
= x3 + n1x + n0

x2 + d1x + d0
(1)

defines a trigonal map for S. The derivation is an exercise in classical geometry; we
include it here to demonstrate its efficiency and to justify Hypothesis 2, which will be
important in determining the expectation of success of our reduction in Sect. 8. The
reader prepared to admit the existence of efficiently computable trigonal maps in the
form of (1) may skip the remainder of this section on first reading.

By definition, g : P
1 → P

1 is a degree-3 map with g(π(W ′
i )) = g(π(W ′′

i )) for 1 ≤
i ≤ 4. We will express g as a composition g = p ◦ e, where e : P

1 → P
3 is the rational

normal embedding defined by

e : (u : v) �−→ (u0 : u1 : u2 : u3) = (u3 : u2v : uv2 : v3),

and p : P
3 → P

1 is the projection defined as follows. For each 1 ≤ i ≤ 4, we let Li

denote the line in P
3 passing through e(π(W ′

i )) and e(π(W ′′
i )). There exists at least

one line L intersecting all four of the Li (in fact there are two, though they may co-
incide; we will compute them below). We take p to be the projection away from L;
then p(e(π(W ′

i ))) = p(e(π(W ′′
i ))) for 1 ≤ i ≤ 4, so g = p ◦ e is a trigonal map for S.

Given linear equations for L in the coordinates ui , we can use Gaussian elimination to
compute elements n1, n0, d1, and d0 of Fq such that

L = V (u0 + n1u2 + n0u3, u1 + d1u2 + d0u3).
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The projection p : P
3 → P

1 away from L is then defined by

p : (u0 : u1 : u2 : u3) �−→ (u0 + n1u2 + n0u3 : u1 + d1u2 + d0u3),

so our trigonal map g = p ◦ e is defined by

g : (u : v) �−→ (

u3 + n1uv2 + n0v
3 : u2v + d1uv2 + d0v

3).

Therefore, if we set N(x) := x3 + n1x + n0 and D(x) := x2 + d1x + d0, then g will be
defined by the rational map x �−→ t = N(x)/D(x).

To compute equations for L, we will use the classical theory of Grassmannian vari-
eties. The elementary Lemmas 2 and 3 will be stated without proof; we refer the reader
to Griffiths and Harris [9, Sect. 1.5] and Harris [10, Lecture 6] for details.

The set of lines in P
3 has the structure of an algebraic variety Gr(1,3), called the

Grassmannian. There is a convenient model for Gr(1,3) as a quadric hypersurface in P
5:

if v0, . . . , v5 are coordinates on P
5, then we may take

Gr(1,3) := V (v0v3 + v1v4 + v2v5) ⊂ P
5.

Lemma 2. There is a bijection between points of Gr(1,3)(Fq) and lines in P
3, defined

as follows.

1. The point of Gr(1,3)(Fq) corresponding to the line through (p0 : p1 : p2 : p3)

and (q0 : q1 : q2 : q3) in P
3 has coordinates

(∣

∣

∣

∣

p0 p1
q0 q1

∣

∣

∣

∣

:
∣

∣

∣

∣

p0 p2
q0 q2

∣

∣

∣

∣

:
∣

∣

∣

∣

p0 p3
q0 q3

∣

∣

∣

∣

:
∣

∣

∣

∣

p2 p3
q2 q3

∣

∣

∣

∣

:
∣

∣

∣

∣

p3 p1
q3 q1

∣

∣

∣

∣

:
∣

∣

∣

∣

p1 p2
q1 q2

∣

∣

∣

∣

)

.

2. The line in P
3 corresponding to a point (γ0 : · · · : γ5) of Gr(1,3)(Fq) is defined by

V

⎛

⎜

⎜

⎝

0u0 − γ3u1 − γ4u2 − γ5u3,

γ3u0 + 0u1 − γ2u2 + γ1u3,

γ4u0 + γ2u1 + 0u2 − γ0u3,

γ5u0 − γ1u1 + γ0u2 + 0u3

⎞

⎟

⎟

⎠

(two of the equations will be redundant linear combinations of the others).

Lemma 3. Let L be the line in P
3 corresponding to a point (γ0 : · · · : γ5) of

Gr(1,3)(Fq). The points in Gr(1,3)(Fq) corresponding to lines in P
3 that inter-

sect nontrivially with L are precisely the points lying in the hyperplane defined by
∑5

i=0 γivi+3 = 0 (where the subscripts are taken modulo 6).

Suppose S is represented by a set {Fi = aiu
2 +biuv +civ

2 : 1 ≤ i ≤ 4} of quadratic
factors of ˜F (as in Sect. 3), with each factor Fi corresponding to a pair {W ′

i ,W
′′
i }

of Weierstrass points. Applying Lemma 2, we see that the line Li through e(π(W ′
i ))

and e(π(W ′′
i )) corresponds to the point

(

c2
i : −cibi : b2

i − aici : a2
i : aibi : aici

)
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on Gr(1,3). If (γ0 : · · · : γ5) in Gr(1,3)(Fq) corresponds to a candidate for L, then by
Lemma 3 we have M(γ0, . . . , γ5)

T = 0, where

M =

⎛

⎜

⎜

⎜

⎜

⎝

a2
1 a1b1 a1c1 c2

1 −c1b1 (b2
1 − a1c1)

a2
2 a2b2 a2c2 c2

2 −c2b2 (b2
2 − a2c2)

a2
3 a3b3 a3c3 c2

3 −c3b3 (b2
3 − a3c3)

a2
4 a4b4 a4c4 c2

4 −c4b4 (b2
4 − a4c4)

⎞

⎟

⎟

⎟

⎟

⎠

. (2)

The kernel of M is two-dimensional, corresponding to a line � in P
5. The kernel is

independent of the ordering of the Fi , and does not change if we replace the Fi by scalar
multiples; hence, � depends only on the subgroup S. Let {α,β} be a basis for kerM ,
writing α = (α0, . . . , α5) and β = (β0, . . . , β5). If S is Fq -rational, then so is kerM , so
we may take the αi and βi to be in Fq (see Cartier [4, Sect. I]). We want to find a point
PL = (α0 + λβ0 : · · · : α5 + λβ5) where � intersects with Gr(1,3). The points (u0 : · · · :
u3) on the line L in P

3 corresponding to PL satisfy (Mα + λMβ)(u0, . . . , u3)
T = 0,

where

Mα :=

⎛

⎜

⎜

⎝

0 −α3 −α4 −α5
α3 0 −α2 α1
α4 α2 0 −α0
α5 −α1 α0 0

⎞

⎟

⎟

⎠

and Mβ :=

⎛

⎜

⎜

⎝

0 −β3 −β4 −β5
β3 0 −β2 β1
β4 β2 0 −β0
β5 −β1 β0 0

⎞

⎟

⎟

⎠

.

By part (2) of Lemma 2, the rank of Mα + λMβ is 2. Using the expression

det(Mα + λMβ) =
(

1

2

(

6
∑

i=0

βiβi+3

)

λ2 +
(

6
∑

i=0

αiβi+3

)

λ + 1

2

6
∑

i=0

αiαi+3

)2

(3)

(where the subscripts are taken modulo 6), we see that Mα + λMβ has rank 2 precisely
when det(Mα + λMβ) = 0; we can therefore solve det(Mα + λMβ) = 0 to determine a
value for λ. Finally, we use Gaussian elimination to compute n1, n0, d1, and d0 in Fq(λ)

such that (1,0, n1, n0) and (0,1, d1, d0) generate the rowspace of Mα + λMβ . We then
take L = V (u0 + n1u2 + n0u3, u1 + d1u2 + d0u3), and compute p, e, and the trigonal
map g = p ◦ e as above.

Since L is defined over Fq(λ), so is the projection p and the trigonal map g. But λ

satisfies a quadratic equation with coefficients in Fq , so Fq(λ) is at most a quadratic
extension of Fq . Computing the discriminant of det(Mα + λMβ), we obtain a criterion
for existence of trigonal maps over Fq for a given tractable subgroup.

Proposition 2. Suppose S is a tractable subgroup, and let {α = (αi), β = (βi)} be
any Fq -rational basis of the nullspace of the matrix M defined in (2). There exists an Fq -
rational trigonal map for S if and only if

(

6
∑

i=0

αiβi+3

)2

−
(

6
∑

i=0

αiαi+3

)(

6
∑

i=0

βiβi+3

)

(4)

is a square in Fq , where the subscripts are taken modulo 6.
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Proof. From the derivation above, we see that there exists an Fq -rational trigonal map
for S if and only if we can find a λ in Fq such that det(Mα + λMβ) = 0. By (3), we can
find such a λ if and only if the quadratic polynomial

1

2

(

6
∑

i=0

βiβi+3

)

T 2 +
(

6
∑

i=0

αiβi+3

)

T + 1

2

6
∑

i=0

αiαi+3

has two roots in Fq . This occurs precisely when the discriminant of this polynomial—
the expression in (4) above—is a square in Fq . �

Proposition 2 shows that the rationality of a trigonal map for a tractable subgroup S

depends only upon whether an element of Fq depending only on S is a square. It seems
reasonable to assume that these field elements are uniformly distributed for uniformly
random choices of H and S, and indeed this is consistent with our experimental obser-
vations. Since a uniformly randomly chosen element of Fq is a square with probabil-
ity ∼ 1/2, we propose Hypothesis 2.

Hypothesis 2. The probability that there exists an Fq -rational trigonal map for a sub-
group S uniformly randomly chosen from S(H), where H is a randomly chosen hyper-
elliptic curve over Fq , is 1/2.

6. Equations for the Isogeny

Suppose we have a hyperelliptic curve H of genus 3, a tractable subgroup S in S(H),
and a trigonal map g for S. We will now perform an explicit trigonal construction on g

to compute a curve X and an isogeny φ : JH → JX with kernel S.
We assume that g has been derived as in Sect. 5 and, in particular, that g : P

1 → P
1

is defined by a rational map in the form

g : x �−→ t = N(x)

D(x)
= x3 + n1x + n0

x2 + d1x + d0
.

Observe that g maps the point at infinity to the point at infinity (that is, (1 : 0)). For
notational convenience, we define

G(t, x) = x3 + g2(t)x
2 + g1(t)x + g0(t) := N(x) − tD(x);

unless otherwise noted, we will view G(t, x) as an element of Fq [t][x]. We have

g2(t) = −t, g1(t) = n1 − d1t, and g0(t) = n0 − d0t.

We also define f0, f1, and f2 to be the elements of Fq [t] such that

f0(t) + f1(t)x + f2(t)x
2 ≡ F(x) (mod G(t, x)).

Let U be the subset of A
1 = P

1 \ {(1 : 0)} above which g ◦ π is unramified. With the
notation above,

U = Spec
(

k[t]) \ V
((

f 2
1 − 4f2f0

)(

4g3
2g0 − g2

2g2
1 − 18g2g1g0 + 4g3

1 + 27g2
0

))

.
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We will derive equations for an affine model X|U of f −1(U)—that is, the open subset
of X over U . We will not prove here that the normalisation of X|U is isomorphic to
the curve X specified by Recillas, but we will exhibit a bijection on geometric points.
If X is not hyperelliptic, then taking the canonical map of X|U into P

2 will give us a
nonsingular plane quartic curve C isomorphic to X.

By definition, every point P in X|U(Fq) corresponds to a pair of unordered triples of
points in H(Fq), exchanged by the hyperelliptic involution, with each triple supported
on the fibre of g ◦π over f (P ). To be more explicit, suppose Q is a generic point of U .
Since g ◦π is unramified above Q, we may choose three preimages P1, P2, and P3 of Q

such that

(g ◦ π)−1(Q) = {P1,P2,P3, ι(P1), ι(P2), ι(P3)
}

.

Viewing unordered triples of points as effective divisors of degree 3 (that is, as formal
sums of three points), we have

f −1(Q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Q1 ↔ {P1 + P2 + P3, ι(P1) + ι(P2) + ι(P3)},
Q2 ↔ {P1 + ι(P2) + ι(P3), ι(P1) + P2 + P3},
Q3 ↔ {ι(P1) + P2 + ι(P3), P1 + ι(P2) + P3},
Q4 ↔ {ι(P1) + ι(P2) + P3, P1 + P2 + ι(P3)}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (5)

Note that Pi and ι(Pi) never appear in the same divisor for any 1 ≤ i ≤ 3. There is
a one-to-one correspondence between effective divisors of degree 3 on H satisfying
this condition, and ideals (a(x), y − b(x)) where a is a monic cubic polynomial and
b is a quadratic polynomial satisfying b2 ≡ F (mod a) (this is the well-known Mum-
ford representation [17, Sect. IIIa]). For example, P1 + P2 + P3 corresponds to the
ideal (a(x), y − b(x)) where a(x) =∏i (x − x(Pi)) and b satisfies y(Pi) = b(x(Pi))

for 1 ≤ i ≤ 3 (with appropriate multiplicities); we may compute b using the Lagrange
interpolation formula. A divisor is defined over Fq if and only if a and b are de-
fined over Fq . The ideal (a(x), y − b(x)) corresponds to P1 + P2 + P3 if and only
if (a(x), y + b(x)) corresponds to ι(P1) + ι(P2) + ι(P3); so each point of X over U

corresponds to a pair {(a(x), y ± b(x))} of ideals. We will construct a curve parameter-
ising these pairs of ideals, and take this as a model for X|U .

Suppose {(a(x), y ± b(x))} is a pair of ideals corresponding to one of the preimages
of Q on X|U . The product of the two ideals is equal to the principal ideal (a(x)); but
products of ideals correspond to sums of divisors, so (a(x)) must cut out the divisor
P1 + P2 + P3 + ι(P1) + ι(P2) + ι(P3) on H . This divisor is just (g ◦ π)∗(Q), which
we know is cut out by (G(t (Q), x)); so we conclude that a(x) = G(t(Q), x) for every
pair of ideals {(a(x), y ± b(x))} corresponding to a point in f −1(Q). In particular, the
generic point of X|U corresponds to a pair of ideals of the form {(G(t, x), y ± (b0 +
b1x + b2x

2))}, where b0, b1, and b2 are algebraic functions of t such that

(

b0 + b1x + b2x
2)2 ≡ F(x) (mod G(t, x)). (6)

Viewing b0, b1, and b2 as coordinates on A
3 (over Fq ), we expand both sides of (6)

modulo G(t, x) and equate coefficients to obtain a variety ˜X in U × A
3 parameterising

ideals:

˜X = V
(

c̃0(t, b0, b1, b2), c̃1(t, b0, b1, b2), c̃2(t, b0, b1, b2)
)

,
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where

c̃0(t, b0, b1, b2) = g2(t)g0(t)b
2
2 − 2g0(t)b2b1 + b2

0 − f0(t),

c̃1(t, b0, b1, b2) = (g2(t)g1(t) − g0(t)
)

b2
2 − 2g1(t)b2b1 + 2b1b0 − f1(t), and

c̃2(t, b0, b1, b2) = (g2(t)
2 − g1(t)

)

b2
2 − 2g2(t)b2b1 + 2b2b0 + b2

1 − f2(t).

The ideals in each pair {(G(t, x), y ± (b2x
2 + b1x + b0))} are exchanged by the

involution ι∗ : ˜X −→ ˜X defined by

ι∗ : (t, b0, b1, b2) �−→ (t,−b0,−b1,−b2);
the curve X|U is therefore the quotient of ˜X by 〈ι∗〉. To make this quotient explicit,
let m : U × A

3 −→ U × A
6 be the map defined by

m : (t, b0, b1, b2) �−→ (t, b00, b01, b02, b11, b12, b22) = (t, b2
0, b0b1, b0b2, b

2
1, b1b2, b

2
2

);
observe that

m(U × A
3) = V

(

b2
01 − b00b11, b01b02 − b00b12, b2

02 − b00b22,

b02b11 − b01b12, b02b12 − b01b22, b2
12 − b11b22

)

⊂ U × A
6.

We have X|U = m(˜X), so

X|U = V

⎛

⎜

⎝

c0(t, b00, . . . , b22), c1(t, b00, . . . , b22), c2(t, b00, . . . , b22),

b2
01 − b00b11, b01b02 − b00b12, b2

02 − b00b22,

b02b11 − b01b12, b02b12 − b01b22, b2
12 − b11b22

⎞

⎟

⎠
⊂ U × A

6,

where c0, c1, and c2 are the polynomials defined by

c0(t, b00, b01, b02, b11, b12, b22) := g2g0b22 − 2g0b12 + b00 − f0,

c1(t, b00, b01, b02, b11, b12, b22) := (g2g1 − g0)b22 − 2g1b12 + 2b01 − f1, and

c2(t, b00, b01, b02, b11, b12, b22) := (g2
2 − g1

)

b22 − 2g2b12 + 2b02 + b11 − f2.

Observe that X|U is defined over the field of definition of g.
It remains to derive a correspondence R between H and X|U inducing the isogeny φ.

We know that R is a component of the fibre product H ×P1 X (with respect to g ◦ π

and f ). We may realise the open affine subset H |U×UX|U as the subvariety V (G(t, x))

of H |U × X|U ; decomposing the ideal (G(t, x)) will therefore give us a model for R.

Lemma 4. Let s be the polynomial in Fq [t] defined by

s := f 3
0 − f 2

0 f1g2 − 2f 2
0 f2g1 + f 2

0 f2g
2
2 + f0f

2
1 g1 + 3f0f1f2g0 − f0f1f2g1g2

− 2f0f
2
2 g0g2 + f0f

2
2 g2

1 − f 3
1 g0 + f 2

1 f2g0g2 − f1f
2
2 g0g1 + f 3

2 g2
0, (7)

and let α be its leading coefficient. Then s has a square root in Fq(
√

α)[t].
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Proof. The polynomial s is a square in Fq(
√

α)[t] if and only if each of its roots in Fq

occur with multiplicity 2. In the notation of (5), we have

s
(

t (Q)
)= F

(

x(P1)
)

F
(

x(P2)
)

F
(

x(P3)
)

,

so s(t (Q)) = 0 if and only if F(x(Pi)) = 0 for some 1 ≤ i ≤ 3—that is, if and only if at
least one of the Pi is a Weierstrass point of H . But the trigonal map g was constructed
precisely so that the Weierstrass points of H appear in pairs in the fibres of g; hence,
exactly two of the Pi must be Weierstrass points, and so F(x(P1))F (x(P2))F (x(P3)) =
0 and s(t (Q)) = 0 with multiplicity 2. �

Proposition 3. Let s be the polynomial of Lemma 4, and let δ0, δ1, δ2, and δ4 be the
polynomials in Fq2 [t] defined by

δ4 := −27g2
0 + 18g0g1g2 − 4g0g

3
2 − 4g3

1 + g2
1g2

2,

δ2 := 12f0g1 − 4f0g
2
2 − 18f1g0 + 2f1g1g2 + 12f2g0g2 − 4f2g

2
1,

δ1 := 8
√

s, and

δ0 := −4f0f2 + f 2
1 .

On the curve X|U , we have

(

δ4(t)b
2
22 + δ2(t)b22 + δ0(t)

)2 − δ1(t)
2b22 = 0. (8)

Proof. Consider again the fibre of f : X → P
1 over the generic point Q = (t) of U

(as in (5)). If {P1 + P2 + P3, ι(P1) + ι(P2) + ι(P3)} is a pair of divisors corresponding
to one of the points in the fibre, then by the Lagrange interpolation formula the value
of b22 at the corresponding point of ˜X is

b22 =
(
∑

y(Pi)/
((

x(Pi) − x(Pj )
)(

x(Pi) − x(Pk)
))

)2
, (9)

where the sum is taken over the cyclic permutations (i, j, k) of (1,2,3). After inter-
polating for each pair of divisors in the fibre, an elementary but involved symbolic
calculation shows that b22 satisfies

(

�b2
22 − 2

(

∑

i

�i

)

b22 + 1

�

(

2

(

∑

i

�2
i

)

−
(

∑

i

�i

)2))2

− 64

(

∏

i

�i

)

b22 = 0,

(10)
where

�i := (f2(t)x(Pi)
2 + f1(t)x(Pi) + f0(t)

)

�i = F
(

x(Pi)
)

�i

with

�i := (x(Pj ) − x(Pk)
)2

for each cyclic permutation (i, j, k) of (1,2,3), and where � := �1�2�3.
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Now �,
∑

i �i ,
∑

i �
2
i , and

∏

i �i are symmetric functions with respect to permuta-
tions of the points in the fibre g−1(Q) = g−1((t)). They are therefore polynomials in
the homogeneous elementary symmetric functions

e1 =
∑

i

x(Pi), e2 =
∑

i<j

x(Pi)x(Pj ), and e3 =
∏

i

x(Pi),

which are polynomials in t . Indeed, the ei are given by the coefficients of G(t, x):

e1 = −g2(t), e2 = g1(t), and e3 = −g0(t).

Expressing �,
∑

i �i ,
∑

i �
2
i , and

∏

i �i in terms of f0, f1, f2, g0, g1, and g2, and
substituting the resulting expressions into (10), we obtain (8). �

Equation (8) gives us a (singular) affine plane model for X. We can also use (8) to
compute a square root for b22 on X|U : we have

b22 = ρ2, where ρ := δ4(t)b
2
22 + δ2(t)b22 + δ0(t)

δ1(t)
.

Returning to (9), we observe that b22 is a unit on X|U , since its zeroes and poles occur
only at points Q where g ◦ π is ramified over f (Q), and these points were excluded
from U . Since ρ is the square root of b22, it must also be a unit on X|U .

Given a point (t, b00, . . . , b22) of X|U , the corresponding pair of divisors of degree 3
on H is cut out by the pair of ideals

{(

G(t, x), y ±
(

b02

ρ
+ b12

ρ
x + b22

ρ
x2
))}

.

This is precisely the decomposition of (G(t, x)) that we need to compute the correspon-
dence from H |U to X|U : we have V (G(t, x)) = R ∪ R′, where

R = V

(

G(t, x), y − 1

ρ

(

b02 + b12x + b22x
2)
)

(11)

and

R′ = V

(

G(t, x), y + 1

ρ

(

b02 + b12x + b22x
2)
)

.

On the level of divisor classes, the isogeny φ : JH → JX is made explicit by the map

φ = (πX)∗ ◦ (πH )∗,

where πH : R → H and πX : R → X|U are the natural projections defined by
(x, y, t, b00, . . . , b22) �→ (x, y) and (x, y, t, b00, . . . , b22) �→ (t, b00, . . . , b22), respec-
tively. In terms of ideals cutting out effective divisors, φ is realised by the map

ID �−→
(

ID +
(

G(t, x), y − 1

ρ

(

b02 + b12x + b22x
2)
))

∩ Fq [s, t, b00, . . . , b22].
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Taking R′ in place of R in the above gives an isogeny equal to −φ. It remains to deter-
mine the field of definition of φ.

Proposition 4. If S is a subgroup in S(H) with an Fq -rational trigonal map g de-
fined over Fq , and s(t) is the polynomial defined in Lemma 4, then the explicit trigonal
construction on g described above yields an isogeny defined over Fq if and only if the
leading coefficient of s(t) is a square in Fq .

Proof. We noted earlier that X|U is defined over the field of definition of g. The
correspondence R, and hence the induced isogeny φ, are both defined over the field of
definition of ρ, which is the field of definition of δ4δ1, δ2/δ1, and δ0/δ1. But δ4, δ4, and
δ0 are all defined over Fq (cf. Proposition 3), while δ1 is defined over Fq(

√
α) where α

is the leading coefficient of s by Lemma 4. �

Remark 4. If φ is not defined over Fq , then the Jacobian JX is, in fact, a quadratic
twist of the quotient JH /S (see Sect. 9). In fact, when φ is not Fq -rational, Frobenius
exchanges ρ and −ρ, hence R and R′, and therefore φ and −φ. This is a concrete
realisation of the Galois cohomology referred to in the proof of Proposition 5 below.
The obstruction to the existence of an isomorphism from JH /S to JX over Fq is, in
fact, the interaction of G with [±1] on JX .

If we assume that the leading coefficients of the polynomials s(t) are uniformly dis-
tributed for randomly chosen H , S, and g, then the probability that s is a square in Fq [t]
is 1/2. Indeed, it is easily seen that s(t) is a square for H if and only if it is not a square
for the quadratic twist of H . Suppose H : w2 = ˜F(u, v) is a hyperelliptic curve. Let c be
a non-square in Fq , and let H ′ : w2 = c˜F(u, v) be the quadratic twist of H . Suppose S

in S(H) is a tractable subgroup, represented by a set {F1,F2,F3,F4} of quadratic fac-
tors of ˜F . The set {cF1,F2,F3,F4} is a factorisation of c˜F , so it represents a tractable
subgroup S′ in S(H ′). We noted in Sect. 5 that scalar multiples of quadratic polynomi-
als do not affect the construction of trigonal maps; so if S has a trigonal map g defined
over Fq , then g is also a trigonal map for S′. Let s be the polynomial computed from g

and S in Lemma 4, and let s′ be the corresponding polynomial computed for g and S′.
Looking at the form of (7), we see that s′(t) = c3s(t). Therefore, the leading coefficient
of s′ is a square if and only if the leading coefficient of s is not a square. In particular,
if S has a trigonal map defined over Fq , then so does S′, and we can construct an isogeny
of Jacobians with kernel S if and only if we cannot construct an isogeny of Jacobians
with kernel S′.

This suggests that the probability that we can compute an isogeny defined over Fq

given a randomly chosen H and S in S(H) with a trigonal map defined over Fq is 1/2—
since we have a 50% chance of being on the “right” quadratic twist of H . This hypoth-
esis is consistent with our experimental observations.

Hypothesis 3. For a randomly chosen hyperelliptic curve H and a uniformly ran-
domly chosen subgroup S in S(H) with a trigonal map g defined over Fq , the proba-
bility that we can compute an Fq -rational isogeny φ with kernel S is 1/2.
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7. Computing Isogenies

Now we will put the ideas above into practice. Suppose we are given a hyperelliptic
curve H of genus 3 over Fq , and a DLP instance in JH (Fq) to solve. Our goal is to
compute a nonsingular plane quartic curve C and an explicit isogeny JH → JC defined
over Fq , so that we can solve our DLP instance in JC(Fq).

We begin by computing the set S(H) of Fq -rational tractable subgroups of the 2-
torsion subgroup JH [2](Fq) (see Appendix A below). For each S in S(H), we apply
Proposition 2 to determine whether there exists an Fq -rational trigonal map g for S.
If so, we use the formulae of Sect. 5 to compute g; if not, we move on to the next S.
Having computed g, we apply Proposition 4 to determine whether we can compute an
isogeny over Fq . If so, we use the formulae of Sect. 6 to compute equations for X and
the isogeny φ : JH → JX; if not, we move on to the next S.

The formulae of Sect. 6 give an affine model of X in A
1 × A

6. In order to ap-
ply Diem’s algorithm to the DLP in JX , we need a nonsingular plane quartic model
of X, that is, a nonsingular curve C ⊂ P

2 isomorphic to X, cut out by a quartic form.
Such a model exists if and only if X is not hyperelliptic. To find C, we compute a ba-
sis B = {ψ1,ψ2,ψ3} of the Riemann–Roch space of a canonical divisor of X. This is a
routine geometrical calculation; Hess [11] describes an efficient approach. In practice,
the algorithms implemented in Magma [2,15] compute B very quickly. The three func-
tions in B define a map ψ : X → P

2, mapping P to (ψ1(P ) : ψ2(P ) : ψ3(P )). Up to
automorphisms of P

2, the map ψ is independent of the choice of basis B, and depends
only on X. If the image of ψ is a conic (that is, if the ψi satisfy a quadratic relation),
then X is hyperelliptic; in this situation we move on to the next S, since we will gain no
advantage from index calculus on X. Otherwise, the image of ψ is a nonsingular plane
quartic C, and ψ restricts to an isomorphism ψ : X → C.

If the procedure outlined above succeeds for some S in S(H), then we have com-
puted an explicit Fq -rational isogeny ψ∗ ◦ φ : JH → JC . We can then map our DLP
from JH (Fq) into JC(Fq), and solve it using Diem’s algorithm.

We emphasise that the entire procedure is very fast: The curve X and the isogeny
can be constructed using just a few low-degree polynomial operations and some low-
dimensional linear algebra (and hence the procedure is polynomial-time in logq , the
size of the base field). For a rough idea of the computational effort involved, given a
random H over a 160-bit prime field with a tractable subgroup S in S(H), a naïve
implementation of our algorithms in Magma computes the trigonal map g, the curve X,
the nonsingular plane quartic C, and the isogeny φ : JH → JC in a few seconds on a
1.2 GHz laptop. Since the difficulty of the construction depends only upon the difficulty
of arithmetic in Fq (and not upon the size of the DLP subgroup of JH (Fq)), we may
conclude that instances of the DLP in 160-bit Jacobians chosen for cryptography may
also be reduced to instances of the DLP in non-hyperelliptic Jacobians in very little
time.

Example 1. We will give an example over a small field. Let H be the hyperelliptic
curve over F37 defined by

H : y2 = x7 + 28x6 + 15x5 + 20x4 + 33x3 + 12x2 + 29x + 2.
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Using the ideas in Sect. 3, or the algorithms in Appendix A, we find that JH has one F37-
rational tractable subgroup:

S(H) = {S}, where S =
{

u2 + ξ1uv + ξ2v
2, u2 + ξ37

1 uv + ξ37
2 v2,

u2 + ξ372

1 uv + ξ372

2 v2, uv + 20v2

}

,

where ξ1 is an element of F373 satisfying ξ3
1 + 29ξ2

1 + 9ξ1 + 13 = 0, and ξ2 = ξ50100
1 .

Applying the methods of Sect. 5, we compute a trigonal map g : x �→ N(x)/D(x) for S,
taking

N(x) = x3 + 16x + 22 and D(x) = x2 + 32x + 18;
clearly g is defined over F37. The formulae of Sect. 6 give us a curve X ⊂ A

1 × A
6 of

genus 3, defined by

X = V

⎛

⎜

⎜

⎝

(18t2+15t)b22+(36t+30)b12+b00+19t5+10t4+12t3+7t2+t+30,

(32t2+2t+15)b22+(27t+5)b12+2b01+5t5+26t4+15t3+23t2+19t+17,

(t2+32t+21)b22+2tb12+2b02+b11+36t5+29t4+7t3+13t2+21t+18,

b00b11−b2
01,b00b12−b01b02,b00b22−b2

02,b02b11−b01b12,b02b12−b01b22,b
2
12−b11b22

⎞

⎟

⎟

⎠

.

The map on divisors inducing an isogeny from JH to JX with kernel S is induced by
the correspondence R defined as in (11) with

G(t, x) = x3 − tx2 − (32t − 16)x − 18t + 22,

δ0 = 27t10 + 20t9 + 33t8 + 6t7 + 16t6 + 8t5 + 9t4 + 2t3 + 31t2 + 15t + 16,

δ1 = 35t3 + 8t2 + 33t + 3,

δ2 = 20t7 + 18t6 + 29t5 + 14t4 + 6t3 + 20t2 + 12t + 16, and

δ4 = 27t4 + 36t3 + 13t2 + 21t.

Computing the canonical morphism of X, we find that X is non-hyperelliptic, and iso-
morphic to the nonsingular plane quartic curve

C = V

(

u4 + 26u3v + 2u3w + 17u2v2 + 9u2vw + 20u2w2 + 34uv3 + 24uv2w

+ 5uvw2 + 36uw3 + 19v4 + 13v3w + v2w2 + 23vw3 + 5w4

)

.

Composing the isomorphism with the isogeny JH → JX , we obtain an explicit isogeny
φ : JH → JC . We can verify that JH and JC are isogenous by checking that the zeta
functions of H and C are identical. Indeed, direct calculation with Magma shows that

Z(H ;T ) = Z(C;T ) = 373T 6 + 4 · 372T 5 − 6 · 37T 4 − 240T 3 − 6T 2 + 4T + 1

(37T − 1)(T − 1)
.

Let D = [(10 : 28 : 1) − (14 : 6 : 1)] and D′ = [(19 : 28 : 1) − (36 : 13 : 1)] be divisor
classes on H ; we have D′ = [22359]D. Applying φ, we find that

φ(D) = [(7 : 18 : 1) + (34 : 34 : 1) − (18 : 22 : 1) − (15 : 33 : 1)
]

and

φ(D′) = [(7 : 23 : 1) + (6 : 13 : 1) − (13 : 15 : 1) − (7 : 18 : 1)
];

direct calculation verifies that φ(D′) = [22359]φ(D), as expected.
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8. Expectation of Existence of Computable Isogenies

Our aim in this section is to estimate the proportion of genus 3 hyperelliptic Jacobians
over Fq for which the methods of this article produce an Fq -rational isogeny—and thus
for which the DLP may be solved using Diem’s algorithm—as q tends to infinity. We
will assume that if we are given a selection of Fq -rational tractable subgroups of a given
Jacobian, then the probabilities that each will yield a rational isogeny are mutually inde-
pendent. This hypothesis appears to be consistent with our experimental observations.

Hypothesis 4. For a randomly chosen hyperelliptic curve H , the probabilities that we
can compute an Fq -rational isogeny with kernel S for each S in S(H) are mutually
independent.

Theorem 2. Assume Hypotheses 1, 2, 3, and 4. As q tends to infinity, the expecta-
tion that the algorithms in this article will give a reduction of the DLP in a subgroup
of JH (Fq) for a randomly chosen hyperelliptic curve H of genus 3 over Fq to a sub-
group of JC(Fq) for some nonsingular plane quartic curve C is

∑

T ∈T

(

(

1 − (1 − 1/4)s(T )
)

/
∏

n∈T

(

νT (n)! · nνT (n)
)

)

≈ 0.1857, (12)

where T denotes the set of integer partitions of 8 and νT (n) denotes the multiplicity of
an integer n in a partition T , and s(T ) = #S(H), where H is any hyperelliptic curve
over Fq such that the multiset of degrees of the Fq -irreducible factors of its hyperelliptic
polynomial coincides with T .

Proof. Suppose H is a randomly chosen hyperelliptic curve of genus 3 over Fq . Hy-
potheses 1, 2, and 3 together imply that for each S in S(H), the probability that we
can compute an isogeny with kernel S defined over Fq is 1/2 · 1/2 · 1 = 1/4. Hypoth-
esis 4 implies that we have an equal chance of constructing an isogeny from each S

in S(H), so the probability that we can compute an isogeny over Fq from JH is
1 − (1 − 1/4)#S(H). The expectation that we can compute an isogeny over Fq given
a curve over Fq is therefore

Eq :=
∑

˜F (1 − (3/4)#S(H))
∑

˜F 1
, (13)

where H is the curve defined by w2 = ˜F(u, v), and ˜F ranges over the set of all ho-
mogeneous squarefree polynomials of degree 8 over Fq . Lemma 1 implies that #S(H)

depends only on the degrees of the Fq -irreducible factors of ˜F , so the map T �→ s(T ) is
well-defined. For each T in T , let Nq(T ) denote the number of homogeneous square-
free polynomials over Fq whose multiset of degrees of Fq -irreducible factors coincides
with T . We can now rewrite (13) as

Eq =
∑

T ∈T (1 − (3/4)s(T ))Nq(T )
∑

T ∈T Nq(T )
.
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There are Nq(n) = 1
n

∑

d|n μ(d)qn/d monic irreducible polynomials of degree n

over Fq (here μ is the Möbius function). Clearly Nq(T ) = (q − 1)
∏

n∈T

(Nq(n)

νT (n)

)

, so

Nq(T ) =
(

∏

n∈T

(

νT (n)! · nνT (n)
)

)−1

q9 + O
(

q8),

and
∑

T ∈T Nq(T ) = q9 + O(q8). Therefore, as q tends to infinity, we have

lim
q→∞Eq =

∑

T ∈T

(

(

1 − (3/4)s(T )
)

/
∏

n∈T

(

νT (n)! · nνT (n)
)

)

.

The result follows upon explicitly computing this sum, using the values for s(T ) listed
in Lemma 1. �

Theorem 2 gives the expectation of our ability to construct an explicit isogeny for a
randomly selected hyperelliptic curve. However, looking at the table in Lemma 1, we
see that we can be sure that a particular curve has no isogenies with tractable kernels de-
fined over Fq if we use only curves whose hyperelliptic polynomials have an irreducible
factor of degree 5 or 7 (or a single irreducible factor of degree 3). It may be difficult to
efficiently construct a curve in this form if we are using a CM construction, for example,
to ensure that the Jacobian has a large prime-order subgroup. In any case, it is interesting
to note that the security of genus 3 hyperelliptic Jacobians depends significantly upon
the factorisation of their hyperelliptic polynomials. This observation has no analogue
for elliptic curves or Jacobians of curves of genus 2. Of course, if E : y2 = F(x) is an
elliptic curve and F is completely reducible, then #E(Fq) is divisible by 4 and, in par-
ticular, #E(Fq) cannot be prime; but this does not reduce the security of E(Fq) to the
extent that a completely reducible hyperelliptic polynomial does for a curve of genus 3.

Remark 5. We noted in Sect. 4 that the Fq -isomorphism class of the curve X in the
trigonal construction is independent of the choice of trigonal map. If there is no trigonal
map defined over Fq for a given subgroup S in S(H), then the methods of Sect. 5
construct a pair of Galois-conjugate trigonal maps g1 and g2 (corresponding to the roots
of (3)) instead. Applying the trigonal construction to g1 and g2, we obtain curves X1
and X2 over Fq2 . If the isomorphism between X1 and X2 were made explicit, then we

could descend it to compute a curve X over Fq in the Fq -isomorphism class of X1
and X2, and hence a nonsingular plane quartic C over Fq and an isogeny JH → JC .
We note that the isogeny may not be defined over Fq , but this approach could still allow
us to replace the 1/4 in (13) and (12) with 1/2, raising the expectation of success in
Theorem 2 to 31.13%.

Example 2. Let p = 1008945029102471339. Note that p is a 60-bit prime; if H is
a hyperelliptic curve of genus 3 over Fp such that JH (Fp) has a large prime-order
subgroup and if Gaudry–Thomé–Thériault–Diem index calculus is the fastest algorithm
for solving DLP instances in JH (Fp), then JH has roughly the same security level as
an elliptic curve over a 160-bit field.
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We generated one million random hyperelliptic curves of genus 3 over Fp using
Magma. For each curve H , we computed the set S(H) of tractable subgroups; then,
for each S in S(H) we determined whether there was an Fp-rational trigonal map for
S, and if so whether there was an Fp-rational isogeny with kernel S. Of these curves,
502005 (that is, 50.02%) had at least one rational tractable subgroup. Between them, the
106 curves had 1002244 rational tractable subgroups, of which 501629 had a rational
trigonal map (that is, 50.05%, which is close to the 50% predicted by Hypothesis 2).
Of these subgroups, 250560 led to a rational isogeny (that is, 49.95%, which is close to
the 50% predicted by Hypothesis 3). We found that 185814 of the curves had at least
one Fp-rational isogeny, none of which had a hyperelliptic codomain (this is compati-
ble with Hypothesis 1). In particular, we could move a discrete logarithm problem for
18.58% of these curves (recall that Theorem 2 predicts a success rate of about 18.57%).

9. Other Isogenies

So far, we have concentrated on using isogenies with kernels generated by differences of
Weierstrass points to move instances of the DLP from hyperelliptic to non-hyperelliptic
Jacobians. More generally, we could use isogenies with other kernels. There are two
important issues to consider here: the first is a theoretical restriction on the types of
subgroups that can be kernels of isogenies of Jacobians, and the second is a practical
restriction on the isogenies that we can currently compute.

Let H be a hyperelliptic curve of genus 3. We want to characterise the subgroups S

of JH that are kernels of isogenies of Jacobians, combining standard results from the
theory of abelian varieties with some special results on curves of genus 3. For our pur-
poses, it is enough to know that the l-Weil pairing is a nondegenerate, bilinear pairing on
the l-torsion of an abelian variety, which can be efficiently evaluated in the case where
the abelian variety is the Jacobian of a hyperelliptic curve; for further detail, we refer
the reader to [12, Ex. A.7.8].

Definition 3. Let A be an abelian variety over Fq , and let l be a positive integer co-
prime with q . We say a subgroup S of A[l] is maximal l-isotropic if

1. the l-Weil pairing on A[l] restricts trivially to S, and
2. S is not properly contained in any other subgroup of A[l] satisfying (1).

If l is a prime not dividing q , then every maximal l-isotropic subgroup of JH (Fq)[l]
is isomorphic to (Z/lZ)3. The situation is more complicated when l is not prime; for
example, JH [2] is a maximal 4-isotropic subgroup of JH [4], but it is isomorphic to
(Z/2Z)6 and not (Z/4Z)3.

Proposition 5. Let H be a hyperelliptic curve of genus 3 over Fq such that JH is
absolutely simple. Let S be a finite, nontrivial, Fq -rational subgroup of JH (Fq). There
exists a curve X of genus 3 over Fq , and an isogeny φ : JH → JX with kernel S, if and
only if S is a maximal l-isotropic subgroup of JH [l] for some positive integer l. The
isogeny φ is defined over Fq2 .
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Proof. The quotient JH → JH /S always exists as an isogeny of abelian varieties, and
is defined over Fq (see Serre [21, Sect. III.3.12]). For the quotient to be an isogeny of
Jacobians, there must be an integer l such that S is a maximal l-isotropic subgroup (see
Proposition 16.8 of Milne [16]). This ensures that the canonical polarisation on JH in-
duces a principal polarisation on the quotient JH /S. The theorem of Oort and Ueno [18]
therefore guarantees that there will be an isomorphism of principally polarised abelian
varieties over Fq from JH /S to the Jacobian JX of some irreducible curve X (irre-
ducibility of X follows from the fact that JH , and hence JH /S, is absolutely simple).
Composing this isomorphism with the quotient map gives an isogeny of Jacobians from
JH to JX with kernel S. Standard arguments from Galois cohomology (see Serre [22,
Sect. III.1], for example) show that the isomorphism is defined over either Fq or Fq2 ,
and it follows that the isogeny JH → JX must be defined over Fq or Fq2 . �

Remark 6. Proposition 5 does not hold in higher genus. For every g ≥ 4, there
are g-dimensional abelian varieties that are not isomorphic to Jacobians. Indeed, this
is the generic situation. For g ≥ 2 the moduli space of g-dimensional abelian vari-
eties is g(g + 1)/2-dimensional, with the Jacobians occupying a subspace of dimen-
sion (3g −3)—which is strictly less than g(g +1)/2 for g ≥ 4. We should not therefore
expect an arbitrary quotient of a Jacobian to be isomorphic to a Jacobian in genus g ≥ 4.
Proposition 5 does hold in genus 1 and 2, and in these cases the isogenies are always
defined over Fq .

We can expect the curve X of Proposition 5 to be non-hyperelliptic. To compute
an Fq -rational isogeny from JH to a non-hyperelliptic Jacobian; therefore, the minimum
requirement is an Fq -rational l-isotropic subgroup of JH (Fq) isomorphic to (Z/lZ)3

for some prime l. We emphasise that this subgroup need not be contained in JH (Fq).
Indeed, there may be isogenies from JH to non-hyperelliptic Jacobians over Fq even
when JH (Fq) has prime order (which would be the desirable situation in cryptological
applications).

The major obstruction to using more general isogenies to move DLP instances is the
lack of general constructions for explicit isogenies in genus 3. Apart from integer multi-
plications, automorphisms, Frobenius isogenies, and the construction for isogenies with
tractable kernels exhibited above, we know of no constructions for explicit isogenies of
general Jacobians of genus 3 hyperelliptic curves. In particular, while we know that the
curve X of Proposition 5 exists, we generally have no means of computing a defining
equation for it, let alone equations for a correspondence between H and X that would
allow us to move DLP instances from JH to JX . This situation stands in marked contrast
to the case of isogenies of elliptic curves, which have been made completely explicit by
Vélu [25]. Deriving general formulae for explicit isogenies in genus 3 (and 2) remains
a significant problem in computational number theory.

Appendix A. Computing S(H)

Given a hyperelliptic curve H of genus 3 over Fq , we want to compute the set S(H)

of Fq -rational tractable subgroups of JH . Algorithm 4 splits the hyperelliptic polyno-
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mial of H into Galois orbits of factors, before calling the recursive subroutine Algo-
rithm 5 to enumerate S(H). This algorithm is included only for completeness, and is
not particularly efficient (we suggest some optimisations in Remark 7 below.)

Algorithm 4. Given a hyperelliptic curve H of genus 3 over Fq , enumerates the
set S(H) of Fq -rational tractable subgroups of JH [2](Fq). Each subgroup in S(H)

is represented by a set of four coprime quadratic factors of ˜F .

Input The hyperelliptic polynomial ˜F(u, v) of H .
Output The set S(H).
Step 1 Let F be the set of irreducible factors of ˜F over its splitting field,

scaled so that ˜F =∏L∈F L, and set O := {}.
Step 2 Choose a polynomial L from F . Set O := (L), set F := F \ {L},

and set L1 := L.
Step 3 Set L := σ(L), where σ denotes the qth power Frobenius map.

If L �= L1, then append L to O , set F := F \ {L}, and go to Step 3.
If L = L1, then set O := O ∪ {O}; if F �= ∅, then go to Step 2.

Step 4 Return the result of Algorithm 5 applied to O.

Algorithm 5. Given a set of G -orbits of coprime linear polynomials over Fq , returns
the G -invariant sets of coprime quadratic products of the polynomials.

Input A set O of disjoint sequences of distinct linear polynomials. Each sequence O =
(O1, . . . ,Om) in O must satisfy O1 = σ(Om) and Oi+1 = σ(Oi) for 1 ≤ i < m,
where σ denotes the qth-power Frobenius map.

Output The set S of G -stable sets of coprime quadratic polynomials such that
∏

S∈S
∏

Q∈S Q =∏O∈O
∏

L∈O L.
Step 1 If O is empty, then return S := {∅}.
Step 2 Choose a sequence O from O, and set m := #O .

If m is even, then let T be the result of Algorithm 5 applied to O \ {O},
and set S := {{Oi · O(m/2)+i : 1 ≤ i ≤ m/2} ∪ T : T ∈ T }.
If m is odd, then set S := {}.

Step 3 For each P in O \ {O} such that #P = #O = m,

Step 3i Set U := {{O1+i · P1+((i+j) mod m) : 0 ≤ i < m} : 0 ≤ j < m
}

.
Step 3ii Let V be the result of Algorithm 5 applied to O \ {O,P }.
Step 3iii Set S := S ∪ {U ∪ V : U ∈ U , V ∈ V}.

Step 4 Return S .

Remark 7. As we noted above, Algorithms 4 and 5 are not particularly efficient. For
conceptual simplicity, we worked over the splitting field of the hyperelliptic polyno-
mial, and this can be extremely slow in practice. A number of simple optimisations will
significantly improve the performance of this algorithm. The key is to avoid field exten-
sions where possible, and to minimise their degree in any case. Before factoring ˜F over
its splitting field, we should factor it over Fq , and then work on a case-by-case basis
depending on the degrees of the Fq -irreducible factors. For example, if ˜F has an odd
number of odd-degree factors, then S(H) is empty by Lemma 1, and we can simply
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return the empty set. If ˜F is Fq -irreducible, then it is not necessary to factor ˜F over
its splitting field (which is Fq8 ); there is one tractable subgroup, and it corresponds to

the four quadratic factors of ˜F that we obtain by factoring ˜F over Fq4 . Making similar
modifications for the cases where ˜F has factors of degree 6, we can avoid working over
any extensions of degree greater than 4. If desired, we can further avoid some field ex-
tensions in the case where ˜F has only low-degree factors. These modifications resulted
in a factor-of-50 speedup for our experiments with 60-bit prime fields; the unmodified
Algorithms 4 and 5 should not be used in practice.
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