# A Public Key Cryptosystem Based on Non-abelian Finite Groups 

Wolfgang Lempken and Tran van Trung<br>Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstrasse 29, 45326 Essen, Germany<br>lempken@iem.uni-due.de; trung@iem.uni-due.de

Spyros S. Magliveras and Wandi Wei<br>Department of Mathematical Sciences, Center for Cryptology and Information Security, Florida Atlantic University, Boca Raton, FL 33431, USA<br>spyros@fau.edu; wei@brain.math.fau.edu

Communicated by Stefan Wolf

Received 5 December 2005 and revised 16 October 2008
Online publication 11 November 2008


#### Abstract

We present a new approach to designing public-key cryptosystems based on covers and logarithmic signatures of non-abelian finite groups. Initially, we describe a generic version of the system for a large class of groups. We then propose a class of 2 -groups and argue heuristically about the system's security. The system is scalable, and the proposed underlying group, represented as a matrix group, affords significant space and time efficiency.


Key words. Public-key cryptosystem, Logarithmic signature, Uniform cover, Trapdoor one-way function, Suzuki 2-group.

## 1. Introduction

At the writing of this paper, only a few asymmetric cryptographic primitives remain unbroken. Most of these are based on the perceived intractability of certain mathematical problems in very large finite abelian groups, in particular representations. Prominent hard problems are (i) the problem of factoring large integers, (ii) the Discrete Logarithm Problem (DLP) [1], in particular representations of large cyclic groups, and (iii) finding a short basis for a given integral lattice $\mathcal{L}$ of large dimension. Unfortunately, in view of P. Shor's quantum algorithms for integer factoring and solving the DLP [9], the known public-key systems will be insecure when quantum computers become practical. A recent report edited by P. Nguyen [8] identifies these and other problems facing the field of information security in the future.

[^0]The theoretical foundations for many current asymmetric cryptographic primitives lie in the intractability of mathematical problems closer to number theory than group theory. Number theory deals mostly with abelian groups.

In this paper we introduce a new approach to designing trapdoor one-way functions based on non-abelian finite groups. Our primary motivation emerges from the observation that the security of public key cryptosystem $\mathrm{MST}_{2}$ depends on the choice of a secret epimorphism. In particular, the public key in $\mathrm{MST}_{2}$ consists of a mesh for a group $\mathcal{G}$ and its image under a certain epimorphism $f$ from $\mathcal{G}$ onto a group $\mathcal{H}$, where $f$ is the secret key [7]. Recommended usage is choosing $f$ as conjugation by an element $g \in \mathcal{G}$. Indeed, in certain classes of groups, public knowledge of the mesh and its image under $g$ reveals some information about $g$. This could be used to mount an attack against $M S T_{2}$ for these classes of groups [7].

Our assumption is that random covers in finite groups induce one-way functions. Beginning with a random cover $\alpha$ for a subset of $\mathcal{G}$, we obtain a two-sided transform $\tilde{\alpha}$ of $\alpha$. Then, using $\tilde{\alpha}$ and a secret, tame logarithmic signature $\beta$ for the center of $\mathcal{G}$, we construct $\gamma$ which covers a second subset of $\mathcal{G}$. We make $\alpha$ and $\gamma$ public and keep secret the trap-door in the system $\beta$, as well as the information which produces $\tilde{\alpha}$ from $\alpha$.

## 2. Preliminaries

In this section we briefly present notation, definitions and some basic facts about logarithmic signatures, covers for finite groups, and their induced mappings. For more details, the reader is referred to [6,7]. The group theoretic notation used is standard and can be found in [3].

Let $\mathcal{G}$ be a finite abstract group; we define the width of $\mathcal{G}$ to be the positive integer $w=\lceil\log |\mathcal{G}|\rceil$. Denote by $\mathcal{G}^{[\mathbb{Z}]}$ the collection of all finite sequences of elements in $\mathcal{G}$ and view the elements of $\mathcal{G}^{[\mathbb{Z}]}$ as single-row matrices with entries in $\mathcal{G}$. Let $X=\left[x_{1}, x_{2}, \ldots, x_{r}\right]$ and $Y=\left[y_{1}, y_{2}, \ldots, y_{s}\right]$ be two elements in $\mathcal{G}^{[\mathbb{Z}]}$. We define

$$
X \cdot Y=\left[x_{1} y_{1}, x_{1} y_{2}, \ldots, x_{1} y_{s}, x_{2} y_{1}, x_{2} y_{2}, \ldots, x_{2} y_{s}, \ldots, x_{r} y_{1}, x_{r} y_{2}, \ldots, x_{r} y_{s}\right]
$$

Instead of $X \cdot Y$ we will also write $X \otimes Y$ as ordinary tensor product of matrices, or for short we will write $X Y$. If $X=\left[x_{1}, \ldots, x_{r}\right] \in \mathcal{G}^{[\mathbb{Z}]}$, we denote by $\bar{X}$ the element $\sum_{i=1}^{r} x_{i}$ in the group ring $\mathbb{Z} \mathcal{G}$.

Suppose that $\alpha=\left[A_{1}, A_{2}, \ldots, A_{s}\right]$ is a sequence of $A_{i} \in \mathcal{G}^{[\mathbb{Z}]}$ such that $\sum_{i=1}^{s}\left|A_{i}\right|$ is bounded by a polynomial in $\log |\mathcal{G}|$. Let

$$
\begin{equation*}
\overline{A_{1}} \cdot \overline{A_{2}} \cdots \overline{A_{s}}=\sum_{g \in \mathcal{G}} a_{g} g, \quad a_{g} \in \mathbb{Z} \tag{2.1}
\end{equation*}
$$

Let $\mathcal{S}$ be a subset of $\mathcal{G}$. Then we say that $\alpha$ is
(i) a cover for $\mathcal{G}($ or $\mathcal{S})$ if $a_{g}>0$ for all $g \in \mathcal{G}(g \in \mathcal{S})$
(ii) a logarithmic signature for $\mathcal{G}(\mathcal{S})$ if $a_{g}=1$ for every $g \in \mathcal{G}(g \in \mathcal{S})$.

Let $\alpha$ be a cover. Define $\lambda_{\text {min }}:=\min \left\{a_{g}: g \in \mathcal{G}\right\}, \lambda_{\text {max }}:=\max \left\{a_{g}: g \in \mathcal{G}\right\}$, and $\lambda:=\lambda_{\max } / \lambda_{\text {min }}$. The ratio $\lambda$ measures the degree of uniformity of $\alpha$. We say that $\alpha$ is a uniform cover if $\lambda=1$. In particular, a logarithmic signature is a uniform cover.

Note that if $\alpha=\left[A_{1}, \ldots, A_{s}\right]$ is a logarithmic signature for $\mathcal{G}$, then, each element $y \in \mathcal{G}$ can be expressed uniquely as a product of the form

$$
\begin{equation*}
y=q_{1} \cdot q_{2} \ldots q_{s-1} \cdot q_{s} \tag{2.2}
\end{equation*}
$$

for $q_{i} \in A_{i}$.
Of course, for general covers, the factorization in (2.2) is not unique, and the problem of finding a factorization for a given $y \in \mathcal{G}$ is in general intractable.

Let $\alpha=\left[A_{1}, \ldots, A_{s}\right]$ be a cover for $\mathcal{G}$ with $r_{i}=\left|A_{i}\right|$. Then the $A_{i}$ are called the blocks of $\alpha$ and the vector $\left(r_{1}, \ldots, r_{s}\right)$ of block lengths $r_{i}$ the type of $\alpha$. We define the length of $\alpha$ to be the integer $\ell=\sum_{i=1}^{s} r_{i}$. A uniform cover $\alpha=\left[A_{1}, \ldots, A_{s}\right]$ of type $(r, r, \ldots, r)$ is called an [ $s, r$ ]-mesh. We say that $\alpha$ is nontrivial if $s \geq 2$ and $r_{i} \geq 2$ for $1 \leq i \leq s$; otherwise $\alpha$ is said to be trivial. We denote by $\mathcal{C}(\mathcal{G})$ and $\Lambda(\mathcal{G})$ the respective collections of covers and logarithmic signatures of group $\mathcal{G}$.

Let $\Gamma=\left\{\left(\mathcal{G}_{\ell}, \alpha_{\ell}\right)\right\}_{\ell \in \mathbb{N}}$ be a family of pairs indexed by the security parameter $\ell$, where the $\mathcal{G}_{\ell}$ are groups in a common representation, and where $\alpha_{\ell}$ is a specific cover for $\mathcal{G}_{\ell}$ of length polynomial in $\ell$. We say that $\Gamma$ is tame if there exists a probabilistic polynomial time algorithm $\mathcal{A}$ such that for each $g \in \mathcal{G}_{\ell}, \mathcal{A}$ accepts $\left(\alpha_{\ell}, g\right)$ as input and outputs a factorization $\phi(g)$ of $g$ with respect to $\alpha_{\ell}$ (as in (2.2)) with overwhelming probability of success. We say that $\Gamma$ is wild if for any probabilistic polynomial time algorithm $\mathcal{A}$, the probability that $\mathcal{A}$ succeeds in factorizing a random element $g$ of $\mathcal{G}$ is negligible.

For finite groups, there are instances $\left\{\left(\mathcal{G}_{\ell}, \alpha_{\ell}\right)\right\}_{\ell}$ where the factorization in (2.2) is believed to be hard. For example, let $q$ be a prime power for which the discrete logarithm problem in the multiplicative group of the finite field $\mathbb{F}_{q}$ is believed to be hard. Suppose that $2^{\ell-1} \leq q-1<2^{\ell}$, and let $\mathcal{G}_{\ell}$ be the multiplicative group $\mathbb{F}_{q}^{*}$ just mentioned. Let $f$ be a generator of $\mathcal{G}_{\ell}$. If $\alpha_{\ell}=\left[A_{1}, A_{2}, \ldots, A_{\ell}\right]$, where $A_{i}=\left[1, f^{2^{i-1}}\right]$, then $\alpha_{\ell}$ is a cover of $\mathcal{G}_{\ell}$, and factorization with respect to $\alpha_{\ell}$ amounts to solving the discrete logarithm problem (DLP) in $\mathcal{G}_{\ell}$.

Suppose that $\alpha=\left[A_{1}, A_{2}, \ldots, A_{s}\right]$ is a cover of a group $\mathcal{G}$. Let $g_{0}, g_{1}, \ldots, g_{s} \in \mathcal{G}$ and consider $\beta=\left[B_{1}, B_{2}, \ldots, B_{s}\right]$ with $B_{i}=g_{i-1}^{-1} A_{i} g_{i}$. We say that $\beta$ is a two-sided transform of $\alpha$ by $g_{0}, g_{1}, \ldots, g_{s}$; in the special case where $g_{0}=1$ and $g_{s}=1, \beta$ is called a sandwich of $\alpha$. Notice that $\beta$ is a cover for $\mathcal{G}$.

Let $\alpha=\left[A_{1}, A_{2}, \ldots, A_{s}\right]$ be a cover of type $\left(r_{1}, r_{2}, \ldots, r_{s}\right)$ for $\mathcal{G}$ with $A_{i}=$ $\left[a_{i, 1}, a_{i, 2}, \ldots, a_{i, r_{i}}\right]$, and let $m=\prod_{i=1}^{s} r_{i}$. Let $m_{1}=1$ and $m_{i}=\prod_{j=1}^{i-1} r_{j}$ for $i=$ $2, \ldots, s$. Let $\tau$ denote the canonical bijection from $Z_{r_{1}} \oplus \mathbb{Z}_{r_{2}} \oplus \cdots \oplus \mathbb{Z}_{r_{s}}$ on $\mathbb{Z}_{m}$, i.e.,

$$
\begin{gathered}
\tau: \mathbb{Z}_{r_{1}} \oplus \mathbb{Z}_{r_{2}} \oplus \cdots \oplus \mathbb{Z}_{r_{s}} \rightarrow \mathbb{Z}_{m} \\
\tau\left(j_{1}, j_{2}, \ldots, j_{s}\right):=\sum_{i=1}^{s} j_{i} m_{i}
\end{gathered}
$$

Using $\tau$, we now define the surjective mapping $\breve{\alpha}$ induced by $\alpha$ :

$$
\begin{aligned}
\breve{\alpha} & : \mathbb{Z}_{m} \rightarrow \mathcal{G} \\
\breve{\alpha}(x) & :=a_{1, j_{1}} \cdot a_{2, j_{2}} \cdots a_{s, j_{s}}
\end{aligned}
$$

where $\left(j_{1}, j_{2}, \ldots, j_{s}\right)=\tau^{-1}(x)$. Since $\tau$ and $\tau^{-1}$ are efficiently computable, the mapping $\breve{\alpha}(x)$ is efficiently computable.

Conversely, given a cover $\alpha$ and an element $y \in \mathcal{G}$, to determine any element $x \in \breve{\alpha}^{-1}(y)$ it is necessary to obtain any one of the possible factorizations of type (2.2) for $y$ and determine indices $j_{1}, j_{2}, \ldots, j_{s}$ such that $y=a_{1, j_{1}} \cdot a_{2, j_{2}} \cdots a_{s, j_{s}}$. This is possible if and only if $\alpha$ is tame. Once a vector $\left(j_{1}, j_{2}, \ldots, j_{s}\right)$ has been determined, $\breve{\alpha}^{-1}(y)=\tau\left(j_{1}, j_{2}, \ldots, j_{s}\right)$ can be computed efficiently.

Two covers (logarithmic signatures) $\alpha, \beta$ are said to be equivalent if $\breve{\alpha}=\breve{\beta}$.

### 2.1. An Example

We present a small example involving two logarithmic signatures $\alpha$ and $\beta$ for the alternating group $\mathcal{A}_{5}$. The types of $\alpha$ and $\beta$ are $(5,2,6)$ and $(3,4,5)$, respectively, and $\left|\mathcal{A}_{5}\right|=5 \cdot 2 \cdot 6=3 \cdot 4 \cdot 5=60$. In Fig. 1 the blocks of $\alpha$ and $\beta$ are listed vertically. To compute $\tau^{-1}$ and $\tau$ efficiently, we attach canonical logarithmic signatures $\tau_{\alpha}$ and $\tau_{\beta}$ of the additive group $\mathbb{Z}_{60}$ to the left of $\alpha$ and to the right of $\beta$. The respective types of $\tau_{\alpha}$ and $\tau_{\beta}$ are $(5,2,6)$ and $(3,4,5)$, just as for $\alpha$ and $\beta$.

We now illustrate how $\breve{\alpha}: \mathbb{Z}_{60} \rightarrow \mathcal{A}_{5}$ is computed in practice. Any element $x \in \mathbb{Z}_{60}$ can be written uniquely as the sum of elements of $\tau_{\alpha}$, using exactly one element from each block. Determining this decomposition of $x$ involves a greedy selection of components, one from each block, sequentially from the bottom block upwards, and essentially determines $\tau^{-1}(x)=\left(j_{1}, j_{2}, j_{3}\right)$. If $x_{i}$ are the elements of $\mathcal{A}_{5}$ corresponding to the $j_{i}$, we compute $\breve{\alpha}(x)=x_{1} x_{2} x_{3}$. In particular if $x=47$, we have: $47=40+5+2$, and the components $j_{1}=2, j_{2}=5$, and $j_{3}=40$ point to elements $x_{1}=(15423), x_{2}=(24)(35)$, and $x_{3}=(132)$ of $\mathcal{A}_{5}$. We then compute: $\breve{\alpha}(47)=x_{1} x_{2} x_{3}=(15423) \cdot(24)(35) \cdot(132)=(125)$.

If we now factorize $y=\breve{\alpha}(x)$ with respect to the second logarithmic signature $\beta$, we obtain $y=y_{1} y_{2} y_{3}$. From the elements $y_{i}$ the corresponding elements of the additive $\tau_{\beta}$ are obtained, and their sum is formed. In our particular case, $y=(125)=y_{1} y_{2} y_{3}=$

|  | $\tau_{\alpha}$ | $\alpha$ |
| :---: | :---: | :---: |
|  | $\mathbb{Z}_{60}$ | $\mathcal{A}_{5}$ |
| $x_{1} \rightarrow$ | 0 | (1)(2)(3)(4)(5) |
|  | 1 | (12534) |
|  | 2 | (15423) |
|  | 3 | (13245) |
|  | 4 | (14352) |
| $x_{2} \rightarrow$ | 0 | (12534) |
|  | 5 | (2 4)(35) |
|  | 0 | (13542) |
|  | 10 | (13)(2 4)(5) |
|  | 20 | (1)(2)(3)(4)(5) |
| $x_{3} \rightarrow$ | 30 | $(15)(23)(4)$ |
|  | 40 | $(132)(4)(5)$ |
|  | 50 | $(123)(4)(5)$ |

$\mathcal{A}_{5}$

| $\beta$ | $\tau_{\beta}$ |
| :---: | :---: |
| $\mathcal{A}_{5}$ | $\mathbb{Z}_{60}$ |
| (1)(2)(345) | 0 |
| (1)(2)(354) | 1 |
| (1)(2)(3)(4)(5) | 2 |
| (1)(2 3)(45) | 0 |
| (1)(25 3)(4) | 3 |
| (1)(2 4 3)(5) | 6 |
| (1)(2)(3)(4)(5) | 9 |
| (124)(3)(5) | 0 |
| (1)(235)(4) | 12 |
| (1 3)(2)(4 5) | 24 |
| (15342) | 36 |
| (14325) | 48 |

Fig. 1. Two logarithmic signatures of $\mathcal{A}_{5}$.
(354)•(253)•(124), corresponding to the $\tau_{\beta}$ components $1,3,0$, respectively. Thus, $\breve{\beta}^{-1}\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\right)=1+3+0=4$. We would like to mention that in this example, $\alpha$ and $\beta$ belong to the class of tame $\log$ signatures, in fact $\beta$ is supertame. Here, we do not explain further how the factorization $y=y_{1} y_{2} y_{3}$ is obtained efficiently. For further details, see [6].

When the underlying group is chosen appropriately, the bijections $\breve{\alpha} \breve{\beta}^{-1}$ can be used as cryptographic transformations with key ( $\alpha, \beta$ ) in symmetric cryptosystem PGM [5,6] or as cryptographic primitives in other systems.

## 3. Description of a New Public Key Cryptosystem

We presently describe a new cryptosystem, called $M S T_{3}$. Let $\mathcal{G}$ be a finite non-abelian group with nontrivial center $\mathcal{Z}$ such that $\mathcal{G}$ does not split over $\mathcal{Z}$. Assume further that $\mathcal{Z}$ is sufficiently large so that exhaustive search problems are computationally not feasible in $\mathcal{Z}$.

The cryptographic hypothesis, which forms the security basis of our cryptosystem, is that if $\alpha=\left[A_{1}, A_{2}, \ldots, A_{s}\right]:=\left(a_{i j}\right)$ is a random cover for a "large" subset $\mathcal{S}$ of $\mathcal{G}$, then finding a factorization

$$
g=a_{1 j_{1}} a_{2 j_{2}} \cdots a_{s j_{s}}
$$

for an arbitrary element $g \in \mathcal{S}$ with respect to $\alpha$ is, in general, an intractable problem.

### 3.1. Setup

Alice chooses a large group $\mathcal{G}$ as described above and generates
(1) a tame logarithmic signature $\beta=\left[B_{1}, B_{2}, \ldots, B_{s}\right]:=\left(b_{i j}\right)$ of type $\left(r_{1}, r_{2}, \ldots, r_{s}\right)$ for $\mathcal{Z}$
(2) a random cover $\alpha=\left[A_{1}, A_{2}, \ldots, A_{s}\right]:=\left(a_{i j}\right)$ of the same type as $\beta$ for a certain subset $\mathcal{J}$ of $\mathcal{G}$ such that $A_{1}, \ldots, A_{s} \subseteq \mathcal{G} \backslash \mathcal{Z}$.

She then chooses $t_{0}, t_{1} \ldots, t_{s} \in \mathcal{G} \backslash \mathcal{Z}$ and computes:
(3) $\tilde{\alpha}=\left[\tilde{A}_{1}, \tilde{A}_{2}, \ldots, \tilde{A}_{s}\right]$, where $\tilde{A}_{i}=t_{i-1}^{-1} A_{i} t_{i}$ for $i=1, \ldots, s$
(4) $\gamma:=\left(h_{i j}\right)=\left(b_{i j} \tilde{a}_{i j}\right)$.

Alice publishes her public key $\left(\alpha=\left(a_{i j}\right), \gamma=\left(h_{i j}\right)\right)$, keeping $\left(\beta=\left(b_{i j}\right),\left(t_{0}, \ldots, t_{s}\right)\right)$ as her private key.

### 3.2. Encryption

If Bob wants to send a message $x \in \mathbb{Z}_{|\mathcal{Z}|}$ to Alice, he
(i) computes $y_{1}=\breve{\alpha}(x)$ and $y_{2}=\breve{\gamma}(x)$
(ii) sends $y=\left(y_{1}, y_{2}\right)$ to Alice.

### 3.3. Decryption

Now, Alice knows $y_{2}$, figures that

$$
\begin{aligned}
y_{2} & =\breve{\gamma}(x) \\
& =b_{1 j_{1}} \tilde{a}_{1 j_{1}} \cdot b_{2 j_{2}} \tilde{a}_{2 j_{2}} \cdots b_{s j_{s}} \tilde{a}_{s j_{s}} \\
& =b_{1 j_{1}} t_{0}^{-1} a_{1 j_{1}} t_{1} \cdots b_{s j_{s}} t_{s-1}^{-1} a_{s j_{s}} t_{s} \\
& =b_{1 j_{1}} b_{2 j_{2}} \cdots b_{s j_{s}} t_{0}^{-1} a_{1 j_{1}} a_{2 j_{2}} \cdots a_{s j_{s}} t_{s} \\
& =\breve{\beta}(x) \cdot t_{0}^{-1} \breve{\alpha}(x) t_{s} \\
& =\breve{\beta}(x) \cdot t_{0}^{-1} y_{1} t_{s},
\end{aligned}
$$

and can therefore compute

$$
\breve{\beta}(x)=y_{2} t_{s}^{-1} y_{1}^{-1} t_{0} .
$$

Alice then recovers $x$ from $\breve{\beta}(x)$ using $\breve{\beta}^{-1}$, which is efficiently computable as $\beta$ is tame.

### 3.4. Remark

1. Let $\alpha=\left[A_{1}, \ldots, A_{s}\right]$ be a cover for $\mathcal{J}$ satisfying Setup condition (2) so that

$$
\overline{A_{1}} \cdot \overline{A_{2}} \cdots \overline{A_{s}}=\sum_{h \in \mathcal{J}} a_{h} h
$$

and let $\lambda=\frac{1}{|\mathcal{J}|} \sum_{h \in \mathcal{J}} a_{h}$. The assumption that Alice is able to construct a cover $\alpha$ of the same type as $\beta$ implies that $\lambda|\mathcal{J}| \leq|\mathcal{Z}|$.

Note also that for the construction of $M S T_{3}$, the cryptographic hypothesis that $\breve{\alpha}$ and $\breve{\gamma}$ are one-way functions is still necessary, in general. However, we will show below that the hypothesis for $\alpha$ can be removed if $\lambda_{\text {min }}:=\min \left\{a_{h}: h \in \mathcal{J}\right\}$ is sufficiently large.
2. The assumption that $\mathcal{G}$ does not split over $\mathcal{Z}$ implies that there is no subgroup $\mathcal{H}<\mathcal{G}$ with $\mathcal{H} \cap \mathcal{Z}=1$ such that $\mathcal{G}=\mathcal{Z} \cdot \mathcal{H}(=\mathcal{Z} \times \mathcal{H}$, since $\mathcal{Z}$ is the center of $\mathcal{G}$ ). Without this assumption the system may be vulnerable to attacks based on permutation group algorithms. In particular, if our group is a direct product $\mathcal{G}=\mathcal{Z} \times \mathcal{H}$ and can be represented as a permutation group of reasonable degree (e.g., $\leq 100000$ ), then using an appropriate strong generating set for $\mathcal{G}$ and Schreier trees, one could extract $b_{i j}$ from $h_{i j}$. The system will consequently be weakened.

The encryption as described is a deterministic encryption: the same plaintext will give the same ciphertext by each encryption. However, a randomized encryption can be realized as follows:

To encrypt a message $x \in \mathbb{Z}_{|\mathcal{Z}|}$, Bob chooses a random number $R \in \mathbb{Z}_{|\mathcal{Z}|}, R \neq 0$, and
(i) computes $y_{0}=x+R$, where the computation is carried out in $\mathbb{Z}_{|\mathcal{Z}|}$
(ii) computes $y_{1}=\breve{\alpha}(R)$ and $y_{2}=\breve{\gamma}(R)$
(iii) sends $y=\left(y_{0}, y_{1}, y_{2}\right)$ to Alice.

To decrypt $y=\left(y_{0}, y_{1}, y_{2}\right)$, Alice first recovers $R$ from $\left(y_{1}, y_{2}\right)$ as described above and then obtains $x=y_{0}-R$.

## 4. Realization of $\mathrm{MST}_{3}$ and Its Security

In this section we propose a class of groups for the generic version of our public-key cryptosystem $\mathrm{MST}_{3}$. Here, the crucial point is the fact that for arbitrary members $\mathcal{G}$ in this family, we can show the security and strength of the system. To make the analysis below understandable, we include some basic notation and definitions concerning finite $p$-groups and describe the structure of the Suzuki 2-groups in some details.

### 4.1. Suzuki-2 Groups

To begin with, we recall some basic facts about finite $p$-groups, where $p$ denotes a prime number. A finite group $\mathcal{G}$ of order a power of $p$ is called a $p$-group, i.e., $|\mathcal{G}|=p^{n}$ for a certain positive integer $n$. The least common multiple of the orders of the elements of $\mathcal{G}$ is called the exponent of $\mathcal{G}$. An abelian (commutative) $p$-group $\mathcal{G}$ of exponent $p$ is said to be elementary abelian. The set $\mathbb{Z}(\mathcal{G})=\{z \in \mathcal{G}: z g=g z \forall g \in \mathcal{G}\}$ is called the center of $\mathcal{G}$. It is well known that $\mathbb{Z}(\mathcal{G})$ is a normal subgroup of order at least $p$ for any $p$-group $\mathcal{G}$. The subgroup $\mathcal{G}^{\prime}$ generated by all the elements of the form $x^{-1} y^{-1} x y$ with $x, y \in \mathcal{G}$ is called the commutator subgroup of $\mathcal{G}$. The so-called Frattini subgroup of $\mathcal{G}$, denoted by $\Phi(\mathcal{G})$, is by definition the intersection of all the maximal subgroups of $\mathcal{G}$. If $\mathcal{G}$ is a $p$-group, then the factor group $\mathcal{G} / \Phi(\mathcal{G})$ is elementary abelian. In particular, if $\mathcal{G}$ is a 2-group, then $\Phi(\mathcal{G})=\left\langle g^{2} \mid g \in \mathcal{G}\right\rangle$. Finally, an element of order 2 in a group is called an involution.

Formally, a Suzuki 2-group is defined as a nonabelian 2-group with more than one involution having a cyclic group of automorphisms which permutes its involutions transitively. This class of 2-groups was studied and characterized by G. Higman [2]. In particular, in any Suzuki 2-group $\mathcal{G}$ we have $\mathbb{Z}(\mathcal{G})=\Phi(\mathcal{G})=\mathcal{G}^{\prime}=\Omega_{1}(\mathcal{G})$, where $\Omega_{1}(\mathcal{G})=\left\langle g \in \mathcal{G} \mid g^{2}=1\right\rangle$ and $|\mathbb{Z}(\mathcal{G})|=q=2^{m}, m>1$. It is shown in [2] that the order of $\mathcal{G}$ is either $q^{2}$ or $q^{3}$. Thus all the involutions of $\mathcal{G}$ are in the center of $\mathcal{G}$, therefore $\mathbb{Z}(\mathcal{G})$ and the factor group $\mathcal{G} / \Phi(\mathcal{G})$ are elementary abelian. Consequently, all elements not in $\mathbb{Z}(\mathcal{G})$ have order 4 , i.e., $\mathcal{G}$ is of exponent 4 . It is known that $\mathcal{G}$ has an automorphism $\xi$ of order $q-1$ cyclically permuting the involutions of $\mathcal{G}$ [2] (see also [4]).

In our realization of $\mathrm{MST}_{3}$ we only consider the class of Suzuki 2-groups having order $q^{2}$. Using Higman's notation, a Suzuki 2-group of order $q^{2}$ will be denoted by $A(m, \theta)$. Let $q=2^{m}$ with $3 \leq m \in \mathbb{N}$ such that the field $\mathbb{F}_{q}$ has a nontrivial automorphism $\theta$ of odd order. This implies that $m$ is not a power of 2 . Then the groups $A(m, \theta)$ do exist.

In fact, if we define

$$
\mathcal{G}:=\left\{S(a, b) \mid a, b \in \mathbb{F}_{q}\right\}
$$

where

$$
S(a, b)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & 1 & 0 \\
b & a^{\theta} & 1
\end{array}\right)
$$

is a $3 \times 3$-matrix over $\mathbb{F}_{q}$, then it is shown that the group $\mathcal{G}$ is isomorphic to $A(m, \theta)$. Thus $\mathcal{G}$ has order $q^{2}$, and we have

$$
\mathcal{Z}:=\mathbb{Z}(\mathcal{G})=\Phi(\mathcal{G})=\mathcal{G}^{\prime}=\Omega_{1}(\mathcal{G})=\left\{S(0, b) \mid b \in \mathbb{F}_{q}\right\}
$$

Since the center $\mathbb{Z}(\mathcal{G})$ is elementary abelian of order $q$, it can be identified with the additive group of the field $\mathbb{F}_{q}$. Also the factor group $\mathcal{G} / \Phi(\mathcal{G})$ is an elementary abelian group of order $q$. It is then easily verified that the multiplication of two elements in $\mathcal{G}$ is given by the rule

$$
\begin{equation*}
S\left(a_{1}, b_{1}\right) S\left(a_{2}, b_{2}\right)=S\left(a_{1}+a_{2}, b_{1}+b_{2}+a_{1}^{\theta} a_{2}\right) \tag{4.1}
\end{equation*}
$$

In this matrix-form representation, the Suzuki 2-groups $A(m, \theta)$ can be considered as subgroups of the general linear group $G L(3, q)$ over $\mathbb{F}_{q}$.

Remark 4.1. It has been shown in [2] that the groups $A(m, \theta)$ and $A(m, \phi)$ are isomorphic if and only if $\phi=\theta^{ \pm 1}$.

The security analysis of the realization of $M S T_{3}$ with Suzuki 2-groups $\mathcal{G}=A(m, \theta)$, as carried out below, does not require the explicit representation of $\mathcal{G}$ in the matrix form above. In fact we can view $G$ just as a nonabelian 2-group of order $q^{2}, q=2^{m}, m>1$, having exponent 4 such that $\mathcal{Z}:=\mathbb{Z}(\mathcal{G})=\Phi(\mathcal{G})=\mathcal{G}^{\prime}$ with $\mathbb{Z}(\mathcal{G})$ elementary abelian of order $q$. The arguments strongly exploit the structure of $\mathcal{G}$. For instance, any two elements $x, y \in \mathcal{G}$ of order 4 belonging to distinct cosets of the center $\mathbb{Z}(\mathcal{G})$ do not commute, i.e., $x y \neq y x$.

In this realization we choose the elements for the cover $\alpha$ according to the following:
Property DC. For every $A_{i}, i=1, \ldots, s$, elements of $A_{i}$ are selected so that if $x \neq y$, $x, y \in A_{i}$, then $x y^{-1}$ is an element of order 4 in $\mathcal{G}$.

This means that distinct elements $x$ and $y$ of $A_{i}$ are not in the same coset of $\mathcal{Z}$.

### 4.2. Security of the Given Realization of $\mathrm{MST}_{3}$

We can envisage the following types of attacks against $\mathrm{MST}_{3}$.

### 4.2.1. Attack 1

The first attack attempts to extract information about $\left(t_{0}, \ldots, t_{s}\right)$ and $\beta=\left(b_{i j}\right)$ from the public knowledge of $\alpha=\left(a_{i j}\right)$ and $\gamma=\left(h_{i j}\right)$. However, it is sufficient for the attacker to obtain a logarithmic signature $\beta^{\prime}$ equivalent to $\beta$, i.e., any convenient $\beta^{\prime}$ which is a sandwich transform of $\beta$. Thus, without loss of generality, by applying a sandwich
transformation, we can assume that the first element of each block, except for the last block of $\beta$, is the identity $1 \in \mathcal{G}$. The attacker considers the general equations

$$
\begin{equation*}
h_{i, j}=b_{i, j} t_{i-1}^{-1} a_{i, j} t_{i}, \quad i=1, \ldots, s, 1 \leq j \leq r_{i} \tag{4.2}
\end{equation*}
$$

where the $h_{i, j}$ and $a_{i, j}$ are public.
Since $b_{1,1}=1$, (4.2) yields

$$
\begin{equation*}
h_{1,1}=t_{0}^{-1} a_{1,1} t_{1} \tag{4.3}
\end{equation*}
$$

Since $t_{0} \in \mathcal{G} \backslash \mathcal{Z}$, the attacker has $q^{2}-q$ choices for $t_{0}$, and for each such choice, $t_{1}$ is completely determined from (4.3). Further, having selected a $t_{0}$, since $a_{1 j}$ and $h_{1 j}$ are known, the attacker can compute $b_{1 j}$ from $h_{1 j}=b_{1 j} t_{0}^{-1} a_{1 j} t_{1}$ for each $j \in\left\{2, \ldots, r_{1}\right\}$. Thus, the choice of $t_{0}$ determines uniquely all further elements of block $B_{1}$.

By analogy, knowledge of $t_{1}$ and the fact that $b_{2,1}=1$ determine $t_{2}$ and all elements $b_{2, j}$ for $j \in\left\{2, \ldots, r_{2}\right\}$. Iteratively, having chosen $t_{0}$, the attacker can compute $t_{1}, \ldots, t_{s-1}$, all possible $b_{i, j}$ for $i \in\{1, \ldots, s-1\}$, and corresponding $j \in\left\{1, \ldots, r_{i}\right\}$.

Now, the first element $b_{s, 1}$ of the last block $B_{s}$ is in $\mathcal{Z}$ but otherwise indeterminate. There are $q$ choices for $b_{s, 1}$, and for each such choice, $t_{s}$ and all elements of the last block are completely determined. Thus, there are $q^{2}-q$ choices for $t_{0}$ and $q$ choices for $b_{s, 1}$, i.e., $(q-1) q^{2}$ choices for $\left(t_{0}, b_{s, 1}\right)$, each of which completely determines $\left(t_{0}, \ldots, t_{s} ; \beta\right)$.

If $t_{0}$ is replaced by $t_{0} z$, where $z \in \mathcal{Z}$, while keeping the public keys $\alpha$ and $\gamma$, as well as the private $\beta$ invariant, it is easy to verify from (4.2) that ( $t_{0}, t_{1}, \ldots, t_{s}$ ) is replaced by $\left(t_{0} z, t_{1} z, \ldots, t_{s} z\right)$. Thus, from the point of view of the attacker, the choices for $\left(t_{0}, \ldots, t_{s}\right)$ fall into equivalence classes, each of size $|\mathcal{Z}|=q$. More precisely, it suffices to choose one $t_{0}$ from each distinct coset of $\mathcal{G}$ modulo $\mathcal{Z}$. It follows that an attacker actually has

$$
\frac{(q-1) q^{2}}{q}=q(q-1)
$$

possible choices for the controlling pair $\left(t_{0}, b_{s, 1}\right)$. Since $q$ is assumed to be very large, this type of attack is not feasible.

### 4.2.2. Attack 2

The goal of the following chosen plaintext attack is to determine $\beta$ and $\left(t_{0}, t_{s}\right)$ from the equations

$$
\begin{equation*}
y_{2}=\breve{\beta}(x) t_{0}^{-1} y_{1} t_{s}, \quad x \in \mathbb{Z}_{|\mathcal{Z}|} \tag{4.4}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\breve{\beta}(x)=y_{2} t_{s}^{-1} y_{1}^{-1} t_{0}, \tag{4.5}
\end{equation*}
$$

where $y_{1}=\breve{\alpha}(x)$ and $y_{2}=\breve{\gamma}(x)$.
The attacker attempts to compute enough values $\breve{\beta}\left(x_{i}\right)$ in order to reconstruct $\beta$ using Proposition 4.1 in [7]: The proposition states that if $\mathcal{G}$ is a permutation group of degree $N$ and if $\beta$ is of known type $\left(r_{1}, \ldots, r_{s}\right)$, then one can reconstruct a logarithmic signature equivalent to $\beta$ by using certain $1-s+\sum_{i=1}^{s} r_{i}$ properly selected values $\breve{\beta}\left(x_{i}\right)$.

We note incidentally that the conclusion of Proposition 4.1 remains valid for abstract groups, i.e., the condition that $\mathcal{G}$ be a permutation group is not used or needed in the proof of the proposition.

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a collection of plaintexts, chosen by the attacker, from which information about $\beta$ is to be derived. We have

$$
\begin{equation*}
\breve{\beta}\left(x_{i}\right)=y_{i, 2} t_{s}^{-1} y_{i, 1}^{-1} t_{0}, \quad i=1, \ldots, n, \tag{4.6}
\end{equation*}
$$

where $y_{i, 1}:=\breve{\alpha}\left(x_{i}\right)$ and $y_{i, 2}:=\breve{\gamma}\left(x_{i}\right)$.
The attacker tries to compute or guess the $n$ distinct values $\breve{\beta}\left(x_{i}\right)$ in order to reconstruct $\beta$. Note that in each of (4.6) only $y_{i, 1}$ and $y_{i, 2}$ are known. First of all we have

$$
y_{i, 2}\left(y_{i, 1}^{-1}\right)^{t_{s}} t_{s}^{-1} t_{0}=y_{i, 2} y_{i, 1}^{-1} y_{i, 1}\left(y_{i, 1}^{-1}\right)^{t_{s}} t_{s}^{-1} t_{0} \in \mathcal{Z}
$$

Since $y_{i, 1}\left(y_{i, 1}^{-1}\right)^{t_{s}} \in \mathcal{G}^{\prime}=\mathcal{Z}$, it follows that

$$
t_{0}^{-1} t_{s} \in y_{i, 2} y_{i, 1}^{-1} \mathcal{Z}
$$

or, equivalently,

$$
\begin{equation*}
t_{s} \in t_{0} y_{i, 2} y_{i, 1}^{-1} \mathcal{Z}, \quad \text { for } i=1, \ldots, n \tag{4.7}
\end{equation*}
$$

Suppose that

$$
y_{i, 2} y_{i, 1}^{-1} \mathcal{Z} \neq y_{j, 2} y_{j, 1}^{-1} \mathcal{Z} \quad \text { for a pair } i \neq j
$$

Then,

$$
t_{s} \in t_{0} y_{i, 2} y_{i, 1}^{-1} \mathcal{Z} \cap t_{0} y_{j, 2} y_{j, 1}^{-1} \mathcal{Z}=\emptyset
$$

which is a contradiction to the fact that there is at least one pair $\left(t_{0}, t_{s}\right)$ satisfying (4.6). Hence, we have

$$
y_{i, 2} y_{i, 1}^{-1} \in y_{1,2} y_{1,1}^{-1} \mathcal{Z}, \quad \text { for } i=1, \ldots, n .
$$

Set $w:=y_{1,2} y_{1,1}^{-1}$.
Since $t_{0} \in \mathcal{G} \backslash \mathcal{Z}$, there are $q^{2}-q$ possibilities for $t_{0}$. If $t_{0}$ is chosen, then $t_{s} \in t_{0} w \mathcal{Z}$, i.e., there are $q$ possibilities for $t_{s}$. Thus, we have $q(q-1) q$ "admissible" pairs $\left(t_{0}, t_{s}\right)$.

Further, it is clear that if $\left(t_{0}, t_{s}\right)$ satisfies (4.7), so does the pair $\left(t_{0} z, t_{s} z\right)$ with $z \in \mathcal{Z}$; in other words, for each solution pair $\left(t_{0}, t_{s}\right)$ of (4.6), one has $q$ associated solutions ( $t_{0} z, t_{s} z$ ) with $z \in \mathcal{Z}$.

Suppose now that $\left(\tau_{0}, \tau_{s}\right)$ and $\left(t_{0}, t_{s}\right)$ satisfy

$$
y_{i, 2} t_{s}^{-1} y_{i, 1}^{-1} t_{0}=z=\breve{\beta}\left(x_{i}\right)=y_{i, 2} \tau_{s}^{-1} y_{i, 1}^{-1} \tau_{0} .
$$

Thus, we have

$$
\tau_{0}^{-1} y_{i, 1} \tau_{s}=t_{0}^{-1} y_{i, 1} t_{s} \quad \text { for } i=1, \ldots, n
$$

Therefore,

$$
\begin{equation*}
\tau_{0}^{-1} y_{i, 1} y_{j, 1}^{-1} \tau_{0}=t_{0}^{-1} y_{i, 1} y_{j, 1}^{-1} t_{0}, \quad \forall i, j=1, \ldots, n \tag{4.8}
\end{equation*}
$$

If there are enough pairs $(i, j)$ such that the different elements $y_{i, 1} y_{j, 1}^{-1}$ generate $\mathcal{G}$ (at least $m$ such elements are needed), then $\tau_{0}$ and $t_{0}$ induce the same inner automorphism of $\mathcal{G}$, i.e.,

$$
\begin{equation*}
\tau_{0} \equiv t_{0} \bmod \mathcal{Z} \tag{4.9}
\end{equation*}
$$

Hence, $\tau_{0}=t_{0} z$ and then $\tau_{s}=t_{s} z$ for some $z \in \mathcal{Z}$. Thus, the number of admissible pairs ( $t_{0}, t_{s}$ ) yielding distinct $\breve{\beta}\left(x_{i}\right)$ is

$$
\frac{q^{2}(q-1)}{q}=q(q-1)
$$

The result of this analysis shows that the attacker has to construct at least $q(q-1)$ solution tuples $\left(\breve{\beta}\left(x_{1}\right), \ldots, \breve{\beta}\left(x_{n}\right)\right)$. Among these possible solutions, only one is correct. In other words the success probability of the attacker is $\frac{1}{q(q-1)}$. Interestingly the number $q(q-1)$ of solution tuples for $\left(\breve{\beta}\left(x_{1}\right), \ldots, \breve{\beta}\left(x_{n}\right)\right)$ is exactly the number of non-associated solutions $\left(t_{0}, t_{s}\right)$ for (4.6).

## Remark 4.2.

1. If the attacker does not have enough equations of type (4.8), to conclude (4.9), then there are more possibilities for $\left(t_{0}, t_{s}\right)$ and therefore more possible solution tuples $\left(\breve{\beta}\left(x_{1}\right), \ldots, \breve{\beta}\left(x_{n}\right)\right)$. Since only one of those possible solutions is the correct one, the probability of a successful attack is even smaller than $\frac{1}{q(q-1)}$.
2. According to Proposition 4.1 of [7], one needs $1-s+\sum_{i=1}^{s} r_{i}$ different values $\breve{\beta}(x)$ to reconstruct a logarithmic signature equivalent to $\beta$. Now, $\beta$ is a logarithmic signature of type $\left(r_{1}, \ldots, r_{s}\right)$ for $\mathcal{Z}$, and $|\mathcal{Z}|=q=2^{m}$. Let $r_{i}=2^{e_{i}}$ for $i=1, \ldots, s$. Then

$$
2^{m}=2^{e_{1}} \cdots 2^{e_{s}}, \quad \text { and } \quad \sum_{i=1}^{s} e_{i}=m
$$

Now,

$$
\begin{aligned}
\sum_{i=1}^{s} r_{i}-s+1 & =\sum_{i=1}^{s}\left(2^{e_{i}}-1\right)+1 \\
& >\sum_{i=1}^{s} e_{i} \\
& =m
\end{aligned}
$$

This inequality validates a statement mentioned in the analysis of Attack 2.

### 4.3. Space and Time Complexity for Computing with $\mathcal{G}$

In this section we discuss space and time requirements when computing with $\mathcal{G}=A(m, \theta)$ in matrix-form representation. As before, let $q=2^{m}$, where $m \geq 3$ is
not a power of 2 , and let $\theta$ be a nontrivial odd-order automorphism of the field $\mathbb{F}_{q}$. Recall that $\mathcal{G}$ consists of all $3 \times 3$ matrices of the form

$$
S(a, b)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & 1 & 0 \\
b & a^{\theta} & 1
\end{array}\right)
$$

with $a, b \in \mathbb{F}_{q}$. The center $\mathcal{Z}:=\mathbb{Z}(\mathcal{G})=\left\{S(0, b) \mid b \in \mathbb{F}_{q}\right\}$ of $\mathcal{G}$ is an elementary abelian group of order $q$. Hence $\mathcal{Z}$ may be viewed a vector space of dimension $m$ over $\mathbb{F}_{2}$.

As mentioned in Sect 4.1 above, the multiplication of two elements in $\mathcal{G}$ is given by the rule

$$
\begin{equation*}
S\left(a_{1}, b_{1}\right) S\left(a_{2}, b_{2}\right)=S\left(a_{1}+a_{2}, b_{1}+b_{2}+a_{1}^{\theta} a_{2}\right) \tag{4.10}
\end{equation*}
$$

We could store the group elements $S(a, b)$ as pairs $(a, b)$, but this would require that we compute some $a^{\theta}$ each time we compute a product of group elements. In turn, each computation $a^{\theta}$ requires $O(m)$ multiplications in $\mathbb{F}_{q}$. It is therefore more time efficient to store the group elements as triples $\left(a, b, a^{\theta}\right)$. Thus, the product $S\left(a_{1}, b_{1}\right) \cdot S\left(a_{2}, b_{2}\right)$ is identified with the triple

$$
\left(a_{1}+a_{2}, b_{1}+b_{2}+a_{1}^{\theta} a_{2}, a_{1}^{\theta}+a_{2}^{\theta}\right)
$$

and computation of the product requires just a single multiplication and four additions in $\mathbb{F}_{q}$.

The reduced storage requirement for group elements and the highly efficient operation in the 2 -group $\mathcal{G}$ are significant positive factors for the realization of the cryptosystem with underlying group $\mathcal{G}=A(m, \theta)$.

### 4.4. MST $_{3}$ without the Cryptographic Hypothesis for $\alpha$

One striking fact emerges when comparing $\mathrm{MST}_{3}$ with $\mathrm{MST}_{2}$. This fact lies in our cryptographic hypothesis that "randomly generated covers for large finite groups induce one-way functions."

For $M S T_{2}$, the cryptographic hypothesis is fundamental. However, for $M S T_{3}$, the cryptographic hypothesis for random cover $\alpha$ may be dropped without impairing the security of the system if $\alpha$ is constructed appropriately.

The value $|\mathcal{Z}| /|\mathcal{J}|$ can be viewed as the average number of representations for each element of $\mathcal{J}$ with respect to cover $\alpha$. This implies that any $y \in \mathcal{J}$ will have, on average, $|\mathcal{Z}| /|\mathcal{J}|$ preimages in $\mathbb{Z}_{|\mathcal{Z}|}$ with respect to $\breve{\alpha}: \mathbb{Z}_{|\mathcal{Z}|} \rightarrow \mathcal{J}$. When the cryptographic hypothesis for $\alpha$ is removed, $\mathrm{MST}_{3}$ remains secure if $|\mathcal{Z}| /|\mathcal{J}|$ is large. For, if $\breve{\alpha}$ is not a one-way function, i.e., for any given $y \in \mathcal{J}$, finding $z \in \mathbb{Z}_{|\mathcal{Z}|}$ such that $\breve{\alpha}(z)=y$ is computationally feasible, then using an oracle $\Omega$ that outputs $z \in \mathbb{Z}_{|\mathcal{Z}|}$ for a given input $y \in \mathcal{J}$ such that $\breve{\alpha}(z)=y$ will break $M S T_{3}$ after $|\mathcal{Z}| / 2|\mathcal{J}|$ queries on average.

Assume that $x \in \mathbb{Z}_{|\mathcal{Z}|}$ is a cleartext and $y_{1}:=\breve{\alpha}(x)$. Now, if $|\mathcal{Z}| \geq 2|\mathcal{J}|^{2}$, then the oracle $\Omega$ needs at least $|\mathcal{J}|$ queries for input $y_{1}$ in order to find $x$ with probability $\geq 1 / 2$. As $\mathcal{J}$ is large, any computation with time complexity $O(|\mathcal{J}|)$ is intractable, and the condition $|\mathcal{Z}| \geq 2|\mathcal{J}|^{2}$ simply means that the cryptographic hypothesis for $\alpha$ need not be made.

## 5. Conclusions

We have presented a new approach to designing a public-key cryptosystem based on covers and logarithmic signatures of nonabelian finite groups in a particular class. As a realization of the generic version of the system, a class of special 2-groups is proposed, which allows us to carry out a detailed analysis showing the strength of the system. We obtain lower bounds on the work effort for two types of attacks against the system. The results show, as desired, that the cryptosystem is secure against these attacks if the order of the chosen 2-group is sufficiently large. Further, when the underlying 2-group is presented as a matrix group, it has an efficient representation permitting a minimal storage space for its elements and, even more significantly, a shortest possible time for group element multiplications.

## Acknowledgements

The third author wishes to express his thanks to the Department of Mathematical Sciences and to the Center for Cryptology and Information Security, Florida Atlantic University, USA, for their hospitality he enjoyed while carrying out parts of this research.

## References

[1] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469-472 (1985)
[2] G. Higman, Suzuki 2-groups. Ill. J. Math. 7, 79-96 (1963)
[3] B. Huppert, Endliche Gruppen I (Springer, Berlin, 1967)
[4] B. Huppert, N. Blackburn, Finite Groups II (Springer, Berlin, 1982)
[5] S.S. Magliveras, A cryptosystem from logarithmic signatures of finite groups. In Proceedings of the 29th Midwest Symposium on Circuits and Systems (Elsevier, Amsterdam, 1986), pp. 972-975
[6] S.S. Magliveras, N.D. Memon, The algebraic properties of cryptosystem PGM. J. Cryptol. 5, 167-183 (1992)
[7] S.S. Magliveras, D.R. Stinson, T. van Trung, New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15, 285-297 (2002)
[8] P. Nguyen, Editor, New Trends in Cryptology, European project "STORK—Strategic Roadmap for Crypto"—IST-2002-38273. http://www.di.ens.fr/~pnguyen/pub.html\#Ng03
[9] P. Shor, Polynomial time algorithms for prime factorization and discrete logarithms on quantum computers. SIAM J. Comput. 26(5), 1484-1509 (1997)


[^0]:    This work was partially supported by a Federal Earmark grant for Research in Secure Telecommunication Networks (2004-05).

