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Abstract. We present a new approach to designing public-key cryptosystems based
on covers and logarithmic signatures of non-abelian finite groups. Initially, we describe
a generic version of the system for a large class of groups. We then propose a class of
2-groups and argue heuristically about the system’s security. The system is scalable,
and the proposed underlying group, represented as a matrix group, affords significant
space and time efficiency.
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1. Introduction

At the writing of this paper, only a few asymmetric cryptographic primitives remain
unbroken. Most of these are based on the perceived intractability of certain mathemati-
cal problems in very large finite abelian groups, in particular representations. Prominent
hard problems are (i) the problem of factoring large integers, (ii) the Discrete Logarithm
Problem (DLP) [1], in particular representations of large cyclic groups, and (iii) finding
a short basis for a given integral lattice L of large dimension. Unfortunately, in view of
P. Shor’s quantum algorithms for integer factoring and solving the DLP [9], the known
public-key systems will be insecure when quantum computers become practical. A re-
cent report edited by P. Nguyen [8] identifies these and other problems facing the field
of information security in the future.
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The theoretical foundations for many current asymmetric cryptographic primitives
lie in the intractability of mathematical problems closer to number theory than group
theory. Number theory deals mostly with abelian groups.

In this paper we introduce a new approach to designing trapdoor one-way functions
based on non-abelian finite groups. Our primary motivation emerges from the obser-
vation that the security of public key cryptosystem MST2 depends on the choice of a
secret epimorphism. In particular, the public key in MST2 consists of a mesh for a group
G and its image under a certain epimorphism f from G onto a group H, where f is the
secret key [7]. Recommended usage is choosing f as conjugation by an element g ∈ G .
Indeed, in certain classes of groups, public knowledge of the mesh and its image un-
der g reveals some information about g. This could be used to mount an attack against
MST2 for these classes of groups [7].

Our assumption is that random covers in finite groups induce one-way functions.
Beginning with a random cover α for a subset of G , we obtain a two-sided transform α̃

of α. Then, using α̃ and a secret, tame logarithmic signature β for the center of G , we
construct γ which covers a second subset of G . We make α and γ public and keep secret
the trap-door in the system β , as well as the information which produces α̃ from α.

2. Preliminaries

In this section we briefly present notation, definitions and some basic facts about log-
arithmic signatures, covers for finite groups, and their induced mappings. For more
details, the reader is referred to [6,7]. The group theoretic notation used is standard and
can be found in [3].

Let G be a finite abstract group; we define the width of G to be the positive inte-
ger w = �log |G|�. Denote by G[Z] the collection of all finite sequences of elements
in G and view the elements of G[Z] as single-row matrices with entries in G . Let
X = [x1, x2, . . . , xr ] and Y = [y1, y2, . . . , ys] be two elements in G[Z]. We define

X · Y = [x1y1, x1y2, . . . , x1ys, x2y1, x2y2, . . . , x2ys, . . . , xry1, xry2, . . . , xrys].
Instead of X · Y we will also write X ⊗ Y as ordinary tensor product of matrices, or
for short we will write XY . If X = [x1, . . . , xr ] ∈ G[Z], we denote by X the element∑r

i=1 xi in the group ring ZG .
Suppose that α = [A1,A2, . . . ,As] is a sequence of Ai ∈ G[Z] such that

∑s
i=1 |Ai | is

bounded by a polynomial in log |G|. Let

A1 · A2 · · ·As =
∑

g∈G
agg, ag ∈ Z. (2.1)

Let S be a subset of G . Then we say that α is

(i) a cover for G (or S ) if ag > 0 for all g ∈ G (g ∈ S )
(ii) a logarithmic signature for G (S ) if ag = 1 for every g ∈ G (g ∈ S ).

Let α be a cover. Define λmin := min{ag : g ∈ G}, λmax := max{ag : g ∈ G}, and
λ := λmax/λmin. The ratio λ measures the degree of uniformity of α. We say that α

is a uniform cover if λ = 1. In particular, a logarithmic signature is a uniform cover.
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Note that if α = [A1, . . . ,As] is a logarithmic signature for G , then, each element
y ∈ G can be expressed uniquely as a product of the form

y = q1 · q2 . . . qs−1 · qs (2.2)

for qi ∈ Ai .
Of course, for general covers, the factorization in (2.2) is not unique, and the problem

of finding a factorization for a given y ∈ G is in general intractable.
Let α = [A1, . . . ,As] be a cover for G with ri = |Ai |. Then the Ai are called the

blocks of α and the vector (r1, . . . , rs) of block lengths ri the type of α. We define the
length of α to be the integer � = ∑s

i=1 ri . A uniform cover α = [A1, . . . ,As] of type
(r, r, . . . , r) is called an [s, r]-mesh. We say that α is nontrivial if s ≥ 2 and ri ≥ 2 for
1 ≤ i ≤ s; otherwise α is said to be trivial. We denote by C(G) and Λ(G) the respective
collections of covers and logarithmic signatures of group G .

Let Γ = {(G�, α�)}�∈N be a family of pairs indexed by the security parameter �, where
the G� are groups in a common representation, and where α� is a specific cover for G� of
length polynomial in �. We say that Γ is tame if there exists a probabilistic polynomial
time algorithm A such that for each g ∈ G�, A accepts (α�, g) as input and outputs a
factorization φ(g) of g with respect to α� (as in (2.2)) with overwhelming probability
of success. We say that Γ is wild if for any probabilistic polynomial time algorithm A,
the probability that A succeeds in factorizing a random element g of G is negligible.

For finite groups, there are instances {(G�, α�)}� where the factorization in (2.2) is
believed to be hard. For example, let q be a prime power for which the discrete logarithm
problem in the multiplicative group of the finite field Fq is believed to be hard. Suppose
that 2�−1 ≤ q − 1 < 2�, and let G� be the multiplicative group F

∗
q just mentioned. Let f

be a generator of G�. If α� = [A1,A2, . . . ,A�], where Ai = [1, f 2i−1 ], then α� is a cover
of G�, and factorization with respect to α� amounts to solving the discrete logarithm
problem (DLP) in G�.

Suppose that α = [A1,A2, . . . ,As] is a cover of a group G . Let g0, g1, . . . , gs ∈ G
and consider β = [B1,B2, . . . ,Bs] with Bi = g−1

i−1Aigi . We say that β is a two-sided
transform of α by g0, g1, . . . , gs ; in the special case where g0 = 1 and gs = 1, β is
called a sandwich of α. Notice that β is a cover for G .

Let α = [A1,A2, . . . ,As] be a cover of type (r1, r2, . . . , rs) for G with Ai =
[ai,1, ai,2, . . . , ai,ri ], and let m = ∏s

i=1 ri . Let m1 = 1 and mi = ∏i−1
j=1 rj for i =

2, . . . , s. Let τ denote the canonical bijection from Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs on Zm, i.e.,

τ : Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs → Zm,

τ(j1, j2, . . . , js) :=
s∑

i=1

jimi.

Using τ , we now define the surjective mapping ᾰ induced by α:

ᾰ : Zm → G,

ᾰ(x) := a1,j1 · a2,j2 · · ·as,js ,
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where (j1, j2, . . . , js) = τ−1(x). Since τ and τ−1 are efficiently computable, the map-
ping ᾰ(x) is efficiently computable.

Conversely, given a cover α and an element y ∈ G , to determine any element
x ∈ ᾰ−1(y) it is necessary to obtain any one of the possible factorizations of type (2.2)
for y and determine indices j1, j2, . . . , js such that y = a1,j1 · a2,j2 · · ·as,js . This is
possible if and only if α is tame. Once a vector (j1, j2, . . . , js) has been determined,
ᾰ−1(y) = τ(j1, j2, . . . , js) can be computed efficiently.

Two covers (logarithmic signatures) α, β are said to be equivalent if ᾰ = β̆ .

2.1. An Example

We present a small example involving two logarithmic signatures α and β for the al-
ternating group A5. The types of α and β are (5,2,6) and (3,4,5), respectively, and
|A5| = 5 · 2 · 6 = 3 · 4 · 5 = 60. In Fig. 1 the blocks of α and β are listed vertically. To
compute τ−1 and τ efficiently, we attach canonical logarithmic signatures τα and τβ of
the additive group Z60 to the left of α and to the right of β . The respective types of τα

and τβ are (5,2,6) and (3,4,5), just as for α and β .
We now illustrate how ᾰ : Z60 → A5 is computed in practice. Any element x ∈ Z60

can be written uniquely as the sum of elements of τα , using exactly one element
from each block. Determining this decomposition of x involves a greedy selection
of components, one from each block, sequentially from the bottom block upwards,
and essentially determines τ−1(x) = (j1, j2, j3). If xi are the elements of A5 corre-
sponding to the ji , we compute ᾰ(x) = x1 x2 x3. In particular if x = 47, we have:
47 = 40 + 5 + 2, and the components j1 = 2, j2 = 5, and j3 = 40 point to ele-
ments x1 = (1 5 4 2 3), x2 = (2 4)(3 5), and x3 = (1 3 2) of A5. We then compute:
ᾰ(47) = x1 x2 x3 = (1 5 4 2 3)·(2 4)(3 5)·(1 3 2) = (1 2 5).

If we now factorize y = ᾰ(x) with respect to the second logarithmic signature β , we
obtain y = y1 y2 y3. From the elements yi the corresponding elements of the additive τβ

are obtained, and their sum is formed. In our particular case, y = (1 2 5) = y1 y2 y3 =

x1 →

x2 →

x3 →

τα α

Z60 A5

0 (1)(2)(3)(4)(5)
1 (1 2 5 3 4)
2 (1 5 4 2 3)
3 (1 3 2 4 5)
4 (1 4 3 5 2)

0 (1 2 5 3 4)
5 (2 4)(3 5)

0 (1 3 5 4 2)
10 (1 3)(2 4)(5)
20 (1)(2)(3)(4)(5)
30 (1 5)(2 3)(4)
40 (1 3 2)(4)(5)
50 (1 2 3)(4)(5)

A5

β τβ

A5 Z60

(1)(2)(3 4 5) 0
(1)(2)(3 5 4) 1
(1)(2)(3)(4)(5) 2

(1)(2 3)(4 5) 0
(1)(2 5 3)(4) 3
(1)(2 4 3)(5) 6
(1)(2)(3)(4)(5) 9

(1 2 4)(3)(5) 0
(1)(2 3 5)(4) 12
(1 3)(2)(4 5) 24
(1 5 3 4 2) 36
(1 4 3 2 5) 48

← y1

← y2

← y3

Fig. 1. Two logarithmic signatures of A5.
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(3 5 4)·(2 5 3)·(1 2 4), corresponding to the τβ components 1, 3, 0, respectively. Thus,
β̆−1( (1 2 5) ) = 1 + 3 + 0 = 4. We would like to mention that in this example, α and
β belong to the class of tame log signatures, in fact β is supertame. Here, we do not
explain further how the factorization y = y1 y2 y3 is obtained efficiently. For further
details, see [6].

When the underlying group is chosen appropriately, the bijections ᾰβ̆−1 can be used
as cryptographic transformations with key (α,β) in symmetric cryptosystem PGM [5,6]
or as cryptographic primitives in other systems.

3. Description of a New Public Key Cryptosystem

We presently describe a new cryptosystem, called MST3. Let G be a finite non-abelian
group with nontrivial center Z such that G does not split over Z . Assume further that Z
is sufficiently large so that exhaustive search problems are computationally not feasible
in Z .

The cryptographic hypothesis, which forms the security basis of our cryptosystem, is
that if α = [A1,A2, . . . ,As] := (aij ) is a random cover for a “large” subset S of G , then
finding a factorization

g = a1j1a2j2 · · ·asjs

for an arbitrary element g ∈ S with respect to α is, in general, an intractable problem.

3.1. Setup

Alice chooses a large group G as described above and generates

(1) a tame logarithmic signature β = [B1,B2, . . . ,Bs] := (bij ) of type (r1, r2, . . . , rs)

for Z
(2) a random cover α = [A1,A2, . . . ,As] := (aij ) of the same type as β for a certain

subset J of G such that A1, . . . ,As ⊆ G \ Z .

She then chooses t0, t1 . . . , ts ∈ G \ Z and computes:

(3) α̃ = [Ã1, Ã2, . . . , Ãs], where Ãi = t−1
i−1 Ai ti for i = 1, . . . , s

(4) γ := (hij ) = (bij ãij ).

Alice publishes her public key (α = (aij ), γ = (hij )), keeping (β = (bij ), (t0, . . . , ts))

as her private key.

3.2. Encryption

If Bob wants to send a message x ∈ Z|Z | to Alice, he

(i) computes y1 = ᾰ(x) and y2 = γ̆ (x)

(ii) sends y = (y1, y2) to Alice.



A Public Key Cryptosystem Based on Non-abelian Finite Groups 67

3.3. Decryption

Now, Alice knows y2, figures that

y2 = γ̆ (x)

= b1j1 ã1j1 .b2j2 ã2j2 · · ·bsjs ãsjs

= b1j1 t
−1
0 a1j1 t1 · · ·bsjs t

−1
s−1asjs ts

= b1j1b2j2 · · ·bsjs t
−1
0 a1j1a2j2 · · ·asjs ts

= β̆(x).t−1
0 ᾰ(x)ts

= β̆(x).t−1
0 y1ts ,

and can therefore compute

β̆(x) = y2t
−1
s y−1

1 t0.

Alice then recovers x from β̆(x) using β̆−1, which is efficiently computable as β is
tame.

3.4. Remark

1. Let α = [A1, . . . ,As] be a cover for J satisfying Setup condition (2) so that

A1 · A2 · · ·As =
∑

h∈J
ahh,

and let λ = 1
|J |

∑
h∈J ah. The assumption that Alice is able to construct a cover

α of the same type as β implies that λ|J | ≤ |Z|.
Note also that for the construction of MST3, the cryptographic hypothesis that

ᾰ and γ̆ are one-way functions is still necessary, in general. However, we will
show below that the hypothesis for α can be removed if λmin := min{ah : h ∈ J }
is sufficiently large.

2. The assumption that G does not split over Z implies that there is no subgroup
H < G with H ∩ Z = 1 such that G = Z · H (=Z × H, since Z is the center
of G ). Without this assumption the system may be vulnerable to attacks based
on permutation group algorithms. In particular, if our group is a direct product
G = Z × H and can be represented as a permutation group of reasonable degree
(e.g., ≤100000), then using an appropriate strong generating set for G and Schreier
trees, one could extract bij from hij . The system will consequently be weakened.

The encryption as described is a deterministic encryption: the same plaintext will
give the same ciphertext by each encryption. However, a randomized encryption can be
realized as follows:

To encrypt a message x ∈ Z|Z |, Bob chooses a random number R ∈ Z|Z |,R �= 0, and

(i) computes y0 = x + R, where the computation is carried out in Z|Z |
(ii) computes y1 = ᾰ(R) and y2 = γ̆ (R)
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(iii) sends y = (y0, y1, y2) to Alice.

To decrypt y = (y0, y1, y2), Alice first recovers R from (y1, y2) as described above
and then obtains x = y0 − R.

4. Realization of MST3 and Its Security

In this section we propose a class of groups for the generic version of our public-key
cryptosystem MST3. Here, the crucial point is the fact that for arbitrary members G in
this family, we can show the security and strength of the system. To make the analysis
below understandable, we include some basic notation and definitions concerning finite
p-groups and describe the structure of the Suzuki 2-groups in some details.

4.1. Suzuki-2 Groups

To begin with, we recall some basic facts about finite p-groups, where p denotes a
prime number. A finite group G of order a power of p is called a p-group, i.e., |G| = pn

for a certain positive integer n. The least common multiple of the orders of the elements
of G is called the exponent of G . An abelian (commutative) p-group G of exponent p

is said to be elementary abelian. The set Z(G) = {z ∈ G : zg = gz ∀g ∈ G} is called the
center of G . It is well known that Z(G) is a normal subgroup of order at least p for any
p-group G . The subgroup G′ generated by all the elements of the form x−1y−1xy with
x, y ∈ G is called the commutator subgroup of G . The so-called Frattini subgroup of G ,
denoted by Φ(G), is by definition the intersection of all the maximal subgroups of G .
If G is a p-group, then the factor group G/Φ(G) is elementary abelian. In particular, if
G is a 2-group, then Φ(G) = 〈g2 | g ∈ G〉. Finally, an element of order 2 in a group is
called an involution.

Formally, a Suzuki 2-group is defined as a nonabelian 2-group with more than one
involution having a cyclic group of automorphisms which permutes its involutions
transitively. This class of 2-groups was studied and characterized by G. Higman [2].
In particular, in any Suzuki 2-group G we have Z(G) = Φ(G) = G′ = Ω1(G), where
Ω1(G) = 〈g ∈ G |g2 = 1〉 and |Z(G)| = q = 2m,m > 1. It is shown in [2] that the order
of G is either q2 or q3. Thus all the involutions of G are in the center of G , therefore Z(G)

and the factor group G/Φ(G) are elementary abelian. Consequently, all elements not in
Z(G) have order 4, i.e., G is of exponent 4. It is known that G has an automorphism ξ

of order q − 1 cyclically permuting the involutions of G [2] (see also [4]).
In our realization of MST3 we only consider the class of Suzuki 2-groups having

order q2. Using Higman’s notation, a Suzuki 2-group of order q2 will be denoted by
A(m,θ). Let q = 2m with 3 ≤ m ∈ N such that the field Fq has a nontrivial automor-
phism θ of odd order. This implies that m is not a power of 2. Then the groups A(m,θ)

do exist.
In fact, if we define

G := {
S(a, b) | a, b ∈ Fq

}
,
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where

S(a, b) =
⎛

⎜
⎝

1 0 0

a 1 0

b aθ 1

⎞

⎟
⎠

is a 3 × 3-matrix over Fq , then it is shown that the group G is isomorphic to A(m,θ).
Thus G has order q2, and we have

Z := Z(G) = Φ(G) = G′ = Ω1(G) = {
S(0, b) | b ∈ Fq

}
.

Since the center Z(G) is elementary abelian of order q , it can be identified with the
additive group of the field Fq . Also the factor group G/Φ(G) is an elementary abelian
group of order q . It is then easily verified that the multiplication of two elements in G is
given by the rule

S(a1, b1)S(a2, b2) = S
(
a1 + a2, b1 + b2 + aθ

1a2
)
. (4.1)

In this matrix-form representation, the Suzuki 2-groups A(m,θ) can be considered
as subgroups of the general linear group GL(3, q) over Fq .

Remark 4.1. It has been shown in [2] that the groups A(m,θ) and A(m,φ) are iso-
morphic if and only if φ = θ±1.

The security analysis of the realization of MST3 with Suzuki 2-groups G = A(m,θ),
as carried out below, does not require the explicit representation of G in the matrix form
above. In fact we can view G just as a nonabelian 2-group of order q2, q = 2m, m > 1,
having exponent 4 such that Z := Z(G) = Φ(G) = G′ with Z(G) elementary abelian
of order q . The arguments strongly exploit the structure of G . For instance, any two
elements x, y ∈ G of order 4 belonging to distinct cosets of the center Z(G) do not
commute, i.e., xy �= yx.

In this realization we choose the elements for the cover α according to the following:

Property DC. For every Ai , i = 1, . . . , s, elements of Ai are selected so that if x �= y,
x, y ∈ Ai , then xy−1 is an element of order 4 in G .

This means that distinct elements x and y of Ai are not in the same coset of Z .

4.2. Security of the Given Realization of MST3

We can envisage the following types of attacks against MST3.

4.2.1. Attack 1

The first attack attempts to extract information about (t0, . . . , ts) and β = (bij ) from the
public knowledge of α = (aij ) and γ = (hij ). However, it is sufficient for the attacker
to obtain a logarithmic signature β ′ equivalent to β , i.e., any convenient β ′ which is
a sandwich transform of β . Thus, without loss of generality, by applying a sandwich
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transformation, we can assume that the first element of each block, except for the last
block of β , is the identity 1 ∈ G . The attacker considers the general equations

hi,j = bi,j t
−1
i−1ai,j ti , i = 1, . . . , s, 1 ≤ j ≤ ri , (4.2)

where the hi,j and ai,j are public.
Since b1,1 = 1, (4.2) yields

h1,1 = t−1
0 a1,1t1. (4.3)

Since t0 ∈ G \ Z , the attacker has q2 − q choices for t0, and for each such choice, t1 is
completely determined from (4.3). Further, having selected a t0, since a1j and h1j are
known, the attacker can compute b1j from h1j = b1j t

−1
0 a1j t1 for each j ∈ {2, . . . , r1}.

Thus, the choice of t0 determines uniquely all further elements of block B1.
By analogy, knowledge of t1 and the fact that b2,1 = 1 determine t2 and all ele-

ments b2,j for j ∈ {2, . . . , r2}. Iteratively, having chosen t0, the attacker can compute
t1, . . . , ts−1, all possible bi,j for i ∈ {1, . . . , s − 1}, and corresponding j ∈ {1, . . . , ri}.

Now, the first element bs,1 of the last block Bs is in Z but otherwise indeterminate.
There are q choices for bs,1, and for each such choice, ts and all elements of the last
block are completely determined. Thus, there are q2 − q choices for t0 and q choices
for bs,1, i.e., (q − 1)q2 choices for (t0, bs,1), each of which completely determines
(t0, . . . , ts;β).

If t0 is replaced by t0z, where z ∈ Z , while keeping the public keys α and γ , as
well as the private β invariant, it is easy to verify from (4.2) that (t0, t1, . . . , ts) is re-
placed by (t0z, t1z, . . . , tsz). Thus, from the point of view of the attacker, the choices for
(t0, . . . , ts) fall into equivalence classes, each of size |Z| = q . More precisely, it suffices
to choose one t0 from each distinct coset of G modulo Z . It follows that an attacker
actually has

(q − 1)q2

q
= q(q − 1)

possible choices for the controlling pair (t0, bs,1). Since q is assumed to be very large,
this type of attack is not feasible.

4.2.2. Attack 2

The goal of the following chosen plaintext attack is to determine β and (t0, ts) from the
equations

y2 = β̆(x)t−1
0 y1ts , x ∈ Z|Z |, (4.4)

or equivalently,

β̆(x) = y2t
−1
s y−1

1 t0, (4.5)

where y1 = ᾰ(x) and y2 = γ̆ (x).
The attacker attempts to compute enough values β̆(xi) in order to reconstruct β using

Proposition 4.1 in [7]: The proposition states that if G is a permutation group of degree
N and if β is of known type (r1, . . . , rs), then one can reconstruct a logarithmic signa-
ture equivalent to β by using certain 1 − s + ∑s

i=1 ri properly selected values β̆(xi).
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We note incidentally that the conclusion of Proposition 4.1 remains valid for abstract
groups, i.e., the condition that G be a permutation group is not used or needed in the
proof of the proposition.

Let {x1, . . . , xn} be a collection of plaintexts, chosen by the attacker, from which
information about β is to be derived. We have

β̆(xi) = yi,2t
−1
s y−1

i,1 t0, i = 1, . . . , n, (4.6)

where yi,1 := ᾰ(xi) and yi,2 := γ̆ (xi).
The attacker tries to compute or guess the n distinct values β̆(xi) in order to recon-

struct β . Note that in each of (4.6) only yi,1 and yi,2 are known. First of all we have

yi,2
(
y−1
i,1

)ts t−1
s t0 = yi,2y

−1
i,1 yi,1

(
y−1
i,1

)
ts t−1

s t0 ∈ Z.

Since yi,1(y
−1
i,1 )ts ∈ G′ = Z , it follows that

t−1
0 ts ∈ yi,2 y−1

i,1 Z

or, equivalently,

ts ∈ t0yi,2y
−1
i,1 Z, for i = 1, . . . , n. (4.7)

Suppose that

yi,2y
−1
i,1 Z �= yj,2y

−1
j,1 Z for a pair i �= j.

Then,

ts ∈ t0yi,2y
−1
i,1 Z ∩ t0yj,2y

−1
j,1 Z = ∅,

which is a contradiction to the fact that there is at least one pair (t0, ts) satisfying (4.6).
Hence, we have

yi,2y
−1
i,1 ∈ y1,2y

−1
1,1 Z, for i = 1, . . . , n.

Set w := y1,2y
−1
1,1.

Since t0 ∈ G \ Z , there are q2 − q possibilities for t0. If t0 is chosen, then ts ∈ t0wZ ,
i.e., there are q possibilities for ts . Thus, we have q(q − 1)q “admissible” pairs (t0, ts).

Further, it is clear that if (t0, ts) satisfies (4.7), so does the pair (t0z, tsz) with z ∈ Z ;
in other words, for each solution pair (t0, ts) of (4.6), one has q associated solutions
(t0z, tsz) with z ∈ Z .

Suppose now that (τ0, τs) and (t0, ts) satisfy

yi,2t
−1
s y−1

i,1 t0 = z = β̆(xi) = yi,2τ
−1
s y−1

i,1 τ0.

Thus, we have

τ−1
0 yi,1τs = t−1

0 yi,1ts for i = 1, . . . , n.

Therefore,

τ−1
0 yi,1y

−1
j,1τ0 = t−1

0 yi,1y
−1
j,1t0, ∀i, j = 1, . . . , n. (4.8)
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If there are enough pairs (i, j) such that the different elements yi,1y
−1
j,1 generate G (at

least m such elements are needed), then τ0 and t0 induce the same inner automorphism
of G , i.e.,

τ0 ≡ t0 mod Z. (4.9)

Hence, τ0 = t0z and then τs = tsz for some z ∈ Z . Thus, the number of admissible pairs
(t0, ts) yielding distinct β̆(xi) is

q2(q − 1)

q
= q(q − 1).

The result of this analysis shows that the attacker has to construct at least q(q − 1)

solution tuples (β̆(x1), . . . , β̆(xn)). Among these possible solutions, only one is cor-
rect. In other words the success probability of the attacker is 1

q(q−1)
. Interestingly the

number q(q − 1) of solution tuples for (β̆(x1), . . . , β̆(xn)) is exactly the number of
non-associated solutions (t0, ts) for (4.6).

Remark 4.2.

1. If the attacker does not have enough equations of type (4.8), to conclude (4.9),
then there are more possibilities for (t0, ts) and therefore more possible solution
tuples (β̆(x1), . . . , β̆(xn)). Since only one of those possible solutions is the correct
one, the probability of a successful attack is even smaller than 1

q(q−1)
.

2. According to Proposition 4.1 of [7], one needs 1 − s + ∑s
i=1 ri different values

β̆(x) to reconstruct a logarithmic signature equivalent to β . Now, β is a loga-
rithmic signature of type (r1, . . . , rs) for Z , and |Z| = q = 2m. Let ri = 2ei for
i = 1, . . . , s. Then

2m = 2e1 · · ·2es , and
s∑

i=1

ei = m.

Now,

s∑

i=1

ri − s + 1 =
s∑

i=1

(
2ei − 1

) + 1

>

s∑

i=1

ei

= m.

This inequality validates a statement mentioned in the analysis of Attack 2.

4.3. Space and Time Complexity for Computing with G

In this section we discuss space and time requirements when computing with
G = A(m,θ) in matrix-form representation. As before, let q = 2m, where m ≥ 3 is
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not a power of 2, and let θ be a nontrivial odd-order automorphism of the field Fq .
Recall that G consists of all 3 × 3 matrices of the form

S(a, b) =
⎛

⎜
⎝

1 0 0

a 1 0

b aθ 1

⎞

⎟
⎠

with a, b ∈ Fq . The center Z := Z(G) = {S(0, b)|b ∈ Fq} of G is an elementary abelian
group of order q . Hence Z may be viewed a vector space of dimension m over F2.

As mentioned in Sect 4.1 above, the multiplication of two elements in G is given by
the rule

S(a1, b1)S(a2, b2) = S
(
a1 + a2, b1 + b2 + aθ

1a2
)
. (4.10)

We could store the group elements S(a, b) as pairs (a, b), but this would require that
we compute some aθ each time we compute a product of group elements. In turn, each
computation aθ requires O(m) multiplications in Fq . It is therefore more time efficient
to store the group elements as triples (a, b, aθ ). Thus, the product S(a1, b1) · S(a2, b2)

is identified with the triple
(
a1 + a2, b1 + b2 + aθ

1a2, a
θ
1 + aθ

2

)
,

and computation of the product requires just a single multiplication and four additions
in Fq .

The reduced storage requirement for group elements and the highly efficient opera-
tion in the 2-group G are significant positive factors for the realization of the cryptosys-
tem with underlying group G = A(m,θ).

4.4. MST3 without the Cryptographic Hypothesis for α

One striking fact emerges when comparing MST3 with MST2. This fact lies in our
cryptographic hypothesis that “randomly generated covers for large finite groups induce
one-way functions.”

For MST2, the cryptographic hypothesis is fundamental. However, for MST3, the
cryptographic hypothesis for random cover α may be dropped without impairing the
security of the system if α is constructed appropriately.

The value |Z|/|J | can be viewed as the average number of representations for each
element of J with respect to cover α. This implies that any y ∈ J will have, on aver-
age, |Z|/|J | preimages in Z|Z | with respect to ᾰ : Z|Z | → J . When the cryptographic
hypothesis for α is removed, MST3 remains secure if |Z|/|J | is large. For, if ᾰ is not
a one-way function, i.e., for any given y ∈ J , finding z ∈ Z|Z | such that ᾰ(z) = y is
computationally feasible, then using an oracle Ω that outputs z ∈ Z|Z | for a given input
y ∈ J such that ᾰ(z) = y will break MST3 after |Z|/2|J | queries on average.

Assume that x ∈ Z|Z | is a cleartext and y1 := ᾰ(x). Now, if |Z| ≥ 2|J |2, then the
oracle Ω needs at least |J | queries for input y1 in order to find x with probability
≥ 1/2. As J is large, any computation with time complexity O(|J |) is intractable, and
the condition |Z| ≥ 2|J |2 simply means that the cryptographic hypothesis for α need
not be made.
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5. Conclusions

We have presented a new approach to designing a public-key cryptosystem based on
covers and logarithmic signatures of nonabelian finite groups in a particular class. As a
realization of the generic version of the system, a class of special 2-groups is proposed,
which allows us to carry out a detailed analysis showing the strength of the system.
We obtain lower bounds on the work effort for two types of attacks against the system.
The results show, as desired, that the cryptosystem is secure against these attacks if the
order of the chosen 2-group is sufficiently large. Further, when the underlying 2-group
is presented as a matrix group, it has an efficient representation permitting a minimal
storage space for its elements and, even more significantly, a shortest possible time for
group element multiplications.
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