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Abstract.  Given a set of participants that is partitioned into distinct compartments,
a multipartite access structure is an access structure that does not distinguish between
participants belonging to the same compartment. We examine here three types of such
access structures: two that were studied before, compartmented access structures and
hierarchical threshold access structures, and a new type of compartmented access struc-
tures that we present herein. We design ideal perfect secret sharing schemes for these
types of access structures that are based on bivariate interpolation. The secret sharing
schemes for the two types of compartmented access structures are based on bivariate
Lagrange interpolation with data on parallel lines. The secret sharing scheme for the hi-
erarchical threshold access structures is based on bivariate Lagrange interpolation with
data on lines in general position. The main novelty of this paper is the introduction
of bivariate Lagrange interpolation and its potential power in designing schemes for
multipartite settings, as different compartments may be associated with different lines
or curves in the plane. In particular, we show that the introduction of a second dimen-
sion may create the same hierarchical effect as polynomial derivatives and Birkhoff
interpolation were shown to do in Tassa (J. Cryptol. 20:237-264, 2007).

Key words. Secret sharing, Multipartite access structures, Compartmented access
structures, Hierarchical threshold access structures, Bivariate interpolation, Monotone
span programs.

1. Introduction

Secret sharing schemes have attracted a lot of attention over the past decade. A great
deal of the ongoing research in this area is devoted to the properties of multipartite ac-
cess structures and to secret sharing schemes (especially ideal ones) that realize them.
Letting Y = {uy, ..., u,} be the underlying set of participants and P = {Cy, ...,C;} be
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a partition of U/ into m disjoint subsets, or compartments, an m-partite (or multipar-
tite) access structure on I/ with respect to partition P is any access structure that does
not distinguish between members of the same compartment. Weighted threshold ac-
cess structures [1,15], multilevel access structures [3,16], hierarchical threshold access
structures [17], compartmented access structures [3,9], bipartite access structures [13],
and tripartite access structures [1,5,9] are typical examples of such multipartite access
structures.

There are several reasons why multipartite access structures were the focus of at-
tention of so many studies in secret sharing, from the first years of secret sharing [3,
15,16] till today, e.g., [6]. The first reason lies in their generality; in fact, every access
structure may be viewed as a multipartite access structure with singleton compartments
(though, usually, when speaking of multipartite access structures, one thinks of settings
in which m, the number of compartments, is significantly smaller than #, the number of
participants). The second reason is that those are very natural and well-motivated access
structures, from both theoretical and practical points of view. The practical motivation
stems from the fact that we live in a world where everyone is equal, but some are more
equal than others. The theoretical motivation is due to the fact that such access struc-
tures usually have a very concise description by a small set of conditions, and since they
seem like a natural way of generalizing threshold access structures: Instead of impos-
ing a threshold condition on the number of participants in a given subset, we impose
a small set of conditions on the number of participants in the subset from each of the
compartments.

Shamir’s threshold secret sharing scheme [15] is based on polynomial interpolation.
That scheme realizes the k-out-of-n threshold access structure, where any subset of I/
of size at least k is authorized to recover the secret S. Letting the secret S be an element
of a finite field F, the dealer selects a random polynomial P (x) of degree k — 1 over
F, where P(0) = S. Each participant u; € U is identified with some (public) identity in
the field, x; € F, and is given the private share P(x;). Clearly, any subset of I/ of size
at least k£ has enough information to recover P and, consequently, also the secret. It is
easy to see that any subset of size less than k remains completely oblivious regarding
the value of § = P(0).

Polynomial interpolation served as the basis for secret sharing also in [17] for re-
alizing hierarchical threshold access structures. Such access structures are multipartite
where the partition represents a hierarchy on ¢/. In order to distinguish between the par-
ticipants of different levels, the dealer uses polynomial derivatives. Participants of lesser
ranks in the hierarchy receive private shares that correspond to higher derivatives of the
polynomial, as such shares convey less information on the polynomial than shares that
correspond to lower derivatives. By appropriately selecting the orders of the derivatives
and the identities of the participants in the underlying field, one obtains a secret sharing
scheme that realizes the hierarchical threshold access structure.

In this paper, we show how to utilize bivariate interpolation in order to realize some
multipartite access structures. Letting F be a finite field of size ¢ = |F| sufficiently large
so that the domain of all possible secrets may be embedded in F, the secret S € F is
encoded by the coefficients of an unknown bivariate polynomial P(x, y) € F[x, y]. The
dealer associates each participant u; € I/ with a unique point (x;, y;) € F? and gives that
participant the private share P (x;, y;). The idea is to select the participant identities and
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the secret value so that authorized subsets will be able to recover P(x, y) and, conse-
quently, the secret, while unauthorized subsets will not be able to learn any information
about the secret. What makes bivariate interpolation suitable for multipartite settings
is the ability to associate each compartment with a different line in the plane. Namely,
participants from a given compartment are associated with points that lie on the same
line, where each compartment is associated with a different line.

To the best of our knowledge, this is the first time in which bivariate interpolation is
used in the context of secret sharing. Bivariate polynomials were used in conjunction
with secret sharing in the past, e.g., [12]. However, those bivariate polynomials were
no more than a sequence of univariate polynomials. Namely, the bivariate polynomial
P(x, y) was interpreted as a sequence of univariate polynomials {P (-, y) : y € F}, and
Shamir’s threshold secret sharing scheme was utilized separately on each of those uni-
variate polynomials.

The paper is organized as follows. In Sect. 2, we provide the necessary formal defin-
itions and notation agreements regarding secret sharing (Sect. 2.1) and monotone span
programs (Sect. 2.2). We also outline the main idea of our proof strategy (Sect. 2.3) and
review some basic results in algebra that we shall use later on (Sect. 2.4). In Sect. 3,
we deal with compartmented access structures. We distinguish between two types of
such structures: one that agrees with the type that was presented and studied by Brickell
in [3] and another that we present here for the first time. We design for those access
structures ideal secret sharing schemes that are based on bivariate Lagrange interpola-
tion with data on parallel lines. In Sect. 4, we deal with hierarchical threshold access
structures and realize them by bivariate Lagrange interpolation with data on lines in gen-
eral position. In [17], those access structures were realized by introducing polynomial
derivatives and Birkhoff interpolation in order to create the desired hierarchy between
the different compartments (that are called levels in that context). Here, we show that we
may achieve the same hierarchical effect by introducing a second dimension, in lieu of
polynomial derivatives. All necessary background from bivariate interpolation theory is
provided there. Finally, in Sect. 5, we contemplate on the possible advantages of using
more involved interpolation settings.

2. Preliminaries

2.1. Secret Sharing

Hereinafter, we adopt the following notation convention: Vectors are denoted by bold-
face letters, while their components are denoted with the corresponding italic-type in-
dexed letter. In addition, N stands for the nonnegative integers.

We begin by formal definitions of access structures and secret sharing schemes.

Definition 2.1 (Access Structure). Let U = {ui,...,u,}. A collection I" € 2¥ is
monotone if V € I" and V € VW imply that YW € I". An access structure is a monotone
collection I" C U of nonempty subsets of /. Sets in I" are called authorized, and sets
not in I" are called unauthorized. An authorized set V € I' is called a minterm if for
every W C V, the set WV is unauthorized. An unauthorized set V ¢ I' is called a max-
term if for every VW 2 V), the set WV is authorized.
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Definition 2.2 (Secret-Sharing Scheme). Let S be a finite set of secrets, where |S| >
2. A (perfect) secret-sharing scheme 7 on U = {uy,...,u,} with domain of secrets
S is a randomized mapping from S to a set of n-tuples [[/_; S;, where S; is called
the share-domain of u;. A dealer shares a secret S € S among the n participants of I/
according to I7 by first sampling a vector of shares I1(S) = (S1,...,S,) € H?:l S; and
then privately communicating each share S; to the participant u;. We say that IT realizes
an access structure I” C 2Y if the following two requirements hold:

CORRECTNESS. The secret S can be reconstructed by any authorized set of participants.
That is, for any authorized set V € I' (where V = {u;,, ..., u;,}), there exists a

reconstruction function! RECONy, : S, x -+ x Sijy — S such that for every S €
S and for every possible value of the restriction of I7(S) to its V-entries, denoted
IT(S), the following equality holds:

RECONy (ITy(S)) = S.

PRIVACY. Every unauthorized set can learn nothing about the secret (in the information
theoretic sense) from their shares. Formally, for any unauthorized set W ¢ I", for
every two secrets S, S’ € S, and for every possible |W|-tuple of shares (S;),, cyy:

P I (S) = (Si)u;ew] = Pr[TIw(S') = (Si)uew -

Viewing the secret S as a random variable that takes values in S and letting H(-)
denote the entropy, the correctness and privacy requirements are equivalent to saying
that for any value of the random mapping 17,

H(SITy(S))=0 VVerl, whileH(S|ITy(S))=H(S) VYV¢r.
We proceed to define multipartite access structures.

Definition 2.3 (Multipartite Access Structures). Let I/ be a set of participants and
assume that it is partitioned into m disjoint compartments,

u=\Jc. (1)
i=1

Let I" € 2 be an access structure on { and assume that for all permutations 7 : 2 — U
such that 7(C;) =C;, 1 <i <m, V € I' if and only if 7(V) € I". Then I is called
m-partite or multipartite with respect to partition (1).

Given any subset W C U, its type with respect to partition (1) is the vector
(t1,...,ty) € N where t; = |W NC;|, 1 <i <m.In view of Definition 2.3, the status
of a given subset with respect to the multipartite access structure is solely determined
by its type.

! The reconstruction function RECONy, need not be efficiently implemented. However, this is the case for
all the secret sharing schemes designed in this paper.
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In every secret-sharing scheme, the size of the domain of shares of each participant
is at least the size of the domain of the secrets [11], namely |S;| > |S| forall 1 <i <n.
This motivates the next definition.

Definition 2.4 (Ideality). A secret-sharing scheme with domain of secrets S is ideal if
the domain of shares of each user is S. An access structure I” is ideal if for some finite
domain of secrets S, there exists an ideal secret sharing scheme realizing it.

In the Shamir k-out-of-n threshold secret sharing scheme that was described in the
introduction, the domain of secrets is some finite field IF. That field also serves as the
domain of possible private shares for each participant. Therefore, that scheme is ideal.

It is important to note that ideality is concerned only with the private data and does
not care about additional public data. For example, in the Shamir scheme, there are other
pieces of information that are public, like k, n, and the identities of all participants.
The reason for this distinction between the private and public data is twofold: First,
the security of any system tends to degrade when the amount of information that must
be kept secret increases. Second, the size of the private shares influences the memory
constraints for the participants as well as the efficiency of the distribution algorithm.
Based on this distinction between private and public data, we present in this paper a
novel framework in which the dealer publishes shares of some dummy participants, in
addition to the private shares that are distributed to the real participants. Our schemes are
still ideal, since the private shares are drawn from the same field F from which the secret
is drawn. In fact, our proof techniques may be used to show that the dealer may always
select the polynomial P (x, y) so that the public shares of the dummy participants are
all zero (whence, they need not be published). However, for convenience, we prefer to
describe our ideal schemes in the more natural setting where we simply publish the
shares of the dummy participants.

Most previously known secret sharing schemes are linear. The concept of linear se-
cret sharing schemes was introduced by Brickell [3] in the ideal setting and was later
generalized to nonideal schemes. Linear schemes are equivalent to monotone span pro-
grams [10]. For simplicity, we only define ideal linear schemes.

Definition 2.5 (Ideal Linear Secret Sharing Scheme). Let IF be a finite field. An ideal
linear secret sharing scheme over [ takes the following form: The domain of secrets
and shares is S = FF. The scheme is specified by n + 1 vectors in F¢ for some integer
d: a vector u; for each participant u; € U, 1 <i <n, and a so-called target vector t. To
share a secret S € F, the dealer chooses a random vector w € F¢ such that w-t = S, and
then the share of participant u; is w - u;.

The next theorem characterizes the access structure that is realized by a linear secret
sharing scheme.

Theorem 2.1 [3,10]. A linear secret sharing scheme with vectors {u;}1<i<p, and t
realizes the access structure I' ={V CU : t € Span{u; : u; € V}}.
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2.2. Monotone Span Programs

Karchmer and Wigderson [10] introduced monotone span programs as a linear algebraic
model of computation for computing monotone functions. A monotone span program
(MSP hereinafter) is a quintuple M = (F, M, U, ¢, t), where F is a field, M is a matrix
of dimensions a x b over F, U = {uy,...,u,} is a finite set, ¢ is a surjective function
from {1, ...,a} to U, and t is some target row vector from F?. The MSP M realizes the
monotone access structure I” C 24 when V € I if and only if t is spanned by the rows
of the matrix M whose labels belong to V. The size of M is a, the number of rows in
M . Namely, in the terminology of secret sharing, the size of the MSP is the total number
of shares that were distributed to all participants in /. An MSP is ideal if a = n.

If I is a monotone access structure over U, its dual is defined by I'* = {V : V¢ ¢ I''}.
It is easy to see that I"* also is monotone. In [8] it was shown thatif M = (F, M, U, ¢, t)
is an MSP that realizes a monotone access structure I, then there exists an MSP M* =
@, M*,U, ¢, t*) of the same size like M that realizes the dual access structure I"*.
Hence, an access structure is ideal if and only if its dual is. An efficient construction of
the MSP for the dual access structure was proposed in [7].

2.3. Our Strategy

All the secret sharing schemes that we shall present herein are ideal linear schemes.
Namely, they are monotone span programs of size n (every participant has exactly one
row in M with his label). In order to prove that a given scheme realizes perfectly some
access structure ", we shall prove two claims. Letting )V be some subset of I/ and
My, be the sub-matrix of M that consists of all rows of M with labels in V', we first
show that if V is a minterm, then, with high probability, t € row(My)). Namely, the
vectors associated with the members of 1V span the target vector t with high probability,
whence, )V may reconstruct the secret S. Since the matrices My, for a minterm V), will
always be square, we shall simply show that, with high probability, their determinant
is nonzero. This will prove that, with almost certainty, )V may reconstruct the secret.
Then we proceed to show that if V is a maximal unauthorized subset, then, with high
probability, t ¢ row(My)). This is established by showing that if we augment My, with
the additional row t, we get a matrix of full rank. Since the latter matrix will always
be square, we shall show that, with high probability, it has a nonzero determinant. This
will prove that, with almost certainty, ) may not learn any information about the secret.

2.4. Some Algebra

Throughout this study, we use the following basic lemma that provides an upper bound
for the number of zeros of a multivariate polynomial over a finite field.

Lemma 2.2 (Schwartz—Zippel Lemma) [14,18]. Let G(z1, ..., zk) be a nonzero poly-
nomial of k variables over a finite field F of size q. Assume that the highest degree of
each of the variables z in G is no larger than d. Then the number of zeros of G in ¥
is bounded from above by kdg*~!.

Proof. The claim is obviously true for k = 1. Proceeding by induction, we assume
that it holds for k — 1 variables and prove the claim for k variables. The polynomial G
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may be written as follows:
d .
G(ziyees2k) ZZGj(Zl,n-,Zkf])Z;i'
Jj=0

For every selection of (z1,...,2xk—1) € Fk —1 there are two possibilities: Either
Gj(z1,...,2k—1) #O0foratleastone 0 < j <d,or G;(z1,...,2—1) =0forall0 < j <
d. In the first case, there are at most d values of z; for which G(zy, ..., Zx—1, zx) = 0; in
the second case, on the other hand, G(z, ..., zx—1, 2x) = 0 for all z; € F. By the induc-
tion assumption, the number of points (z1, ..., Zx—1) € F*—1 of the second kind, denoted
herein £, satisfies £ < (k — l)qu’z. Hence, the number of points (z1,...,zx) € Fk at
which G(z1, ..., zx) = 0 is bounded by

(@' =0 d+e-g=dg" "+ e (g —d) <dg"" + (k- Ddg* T =kdg" . O

All the matrices that we shall consider in this study will consist of entries that are
multivariate polynomials evaluated at a randomly selected point (xp, ..., x;) € F* for
some ¢. The idea is to fix some of the components, say xi, ..., x;—k, and then view
the determinant of the matrix as a polynomial in the last k variables x;_j4+1, ..., X;.
Denoting that polynomial by Gy, . x,_,(Xi—k+1,...,%;), we then prove two claims,
using Lemma 2.2:

1. For almost all selections of the first + — k variables, the resulting polynomial

Gy,,....x,_; 18 a nonzero polynomial.
2. When Gy, .. x,_, is a nonzero polynomial, for almost all selections of (x;_x+1,
..., x1),wehave Gy, (X—gg1, ..., %) #O.

As a final remark, we note that in some of our proofs we use the fact that a determinant
of a matrix may be expressed as a linear combination of all minors that are contained
within a selection of rows in that matrix. More specifically, let M be an n x n matrix,
and let k be an integer smaller than n. A minor of order k in M is a determinant of
a sub-matrix of M of dimensions k x k. There are (Z) such minors that are contained
within the first k rows of M. It is easy to see that det M equals a linear combination of
all those minors, where the coefficients of the linear combination depend only on the
entries in the last n — k rows of M. The proof for the case k =n — 1 is immediate if
we expand the determinant by the last row. The proof for other values of k now easily
follows by induction.

3. Compartmented Access Structures

The original compartmented access structure that was presented in [3] is defined as
follows. Lett; e N, 1 <i <m, and t € N be thresholds such that t > Z;":l t;. Then

r={Vcu:3wcVsuchthat WNC;| =1, 1 <i <m, and [W|=1t}. (2)

Such access structures are suitable for situations in which the size of an authorized
subset must be at least some threshold ¢, but, in addition, we wish to guarantee that every



234 T. Tassa and N. Dyn

compartment is represented by at least some number of participants in the authorized
subset. In other situations, however, an opposite demand may occur: while the size of
an authorized subset must be at least some threshold, we would like to limit the number
of participants that represent each of the compartments; namely,

A={VCU:IW S Vsuchthat WNC;|<si, 1 <i <m, and W| =5}, (3)

where s;,s € Nand s <)/, s;. Those two types of compartmented access structures
protect democracy: While the first attempts to protect possibly weak compartments from
being left out of a coalition that is capable of recovering the secret, the second prevents
possibly strong compartments from dominating such a coalition. We refer to I” as a
compartmented access structure with lower bounds, while A is referred to hereinafter
as a compartmented access structure with upper bounds.

When m = 1, both types of compartmented access structures coincide with the stan-
dard threshold access structures of Shamir [15]. When m = 2, the two types of access
structures agree: a compartmented access structure with lower bounds ¢, 7, and thresh-
old 7 is a compartmented access structure with upper bounds s1 =t — 2, s =t —#; and
threshold s = #; conversely, an access structure of type (3) with bounds s, 52, and s may
be viewed as an access structure of type (2) with bounds | =5 — 52, t = s — 51, and
t = s. However, when m > 3, these two types of compartmented access structures dif-
fer. To exemplify this, we show an access structure of type (2) that does not fall within
the framework (3) and another access structure of type (3) that does not fall within the
framework (2).

The access structure I of type (2) withm =3, 1 =1,tb =1,13 =1, and t =4 has
minterms V of types (1, 1,2) (namely, [V NCi| =1, |V NC =1, and |V NC3| =2),
(1,2,1), or (2,1, 1). This collection of minterms does not fall within the framework
(3) for any choice of s; and s. Indeed, if that collection of subsets was to fall under
framework (3), then we should have had s; = so = s3 = 2 and s = 4; but then that
collection should have also included subsets of type (0, 2, 2), which it does not. Hence,
there is no way of fitting that compartmented access structure with lower bounds within
the framework with upper bounds. An example that demonstrates the noncontainment
in the other direction is the access structure A of type (3) withm =3, 51 =1, 50 =1,
s3 =1, and s = 2. Its minterms are of types (0, 1, 1), (1,0, 1), or (1, 1, 0). To fit this
collection into (2), we would need to have t; =, =3 =0 and r = 2, but such a choice
of parameters allows also subsets of type (0, 0, 2).

Compartmented access structures with lower bounds, (2), are already known to be
ideal [3]. We design here ideal linear schemes for these access structures, as well as for
the corresponding access structures with upper bounds, (3), that are based on bivariate
interpolation.

3.1. Ideal Secret Sharing for Compartmented Access Structures with Upper Bounds

In this section we describe a linear secret sharing scheme for compartmented access
structures with upper bounds, (3). Hereinafter, S € I is the secret to be shared. Let x;,
1 <i <m, be m distinct random points in F. Let P;(y) = Zj‘:—o] ai,jy«", 1<i<m,be
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F =X X=Xy X = X3

X=X
J) (X].aZ1)

(x3°,23)
[ ]

(Xz’,ZQ)
[}

Fig. 1. Secret Sharing Scheme 1.

random polynomials over IF such that § =) "/" | Zjl;ol a;, ;. Finally, we set
m m si—1
PO, y)=Y POMLi(xX)=)_ > aijy Li(x), “)
i=1 i=1 j=0

where L;(x) are the Lagrange polynomials of degree m — 1 over {x; : 1 <i < m},
namely,

X — X
L= [[ —* 1<i=m ®)
l<j<m P
J#i

These polynomials have the property that L; (x;) = §; j for all 1 <i, j <m. Then the
secret sharing scheme is as follows:

Secret Sharing Scheme 1.

1. Each participant u; j from compartment C; is identified by a unique public point
(xi, yi,j), where y; j # 1 is random, and his private is P(x;, yi ;).

2. In addition, we publish the value of P atk :=Y_;_ | s; — s random points (x/, z;),
where x| ¢ {x1,...,xn}, 1 <i <k.

Figure 1 illustrates that scheme for the case of m = 3 compartments and k = s; +
52 + s3 —s = 3. The k = 3 public point values are denoted by full bullets. The point
values that correspond to the participants are marked by empty circles along the three
random parallel lines x = x;, 1 <i <3.

Clearly, this is an ideal scheme since the private shares of all users are taken from
the domain of secrets F. The number of unknowns in the polynomial P is > -, s; (the
coefficients of all the univariate polynomials P;(y), 1 <i < m). Since we are given
for free k := ) /L, s; — s point values, we need additional s points for full recovery.
Moreover, we cannot use more than s; points from the line x = x;, 1 <i < m, because
any s; points from along that line already fully recover P;(y), but they do not contribute
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anything towards the recovery of P;(y) for j #i. In view of the above, this scheme
agrees with the constraints in (3). We proceed to show that, with high probability (with
respect to the random selection of points), the resulting scheme is perfect.

1

Lemma 3.1. IfV € A, it may recover the secret S with probability 1 — Cq™", where

the constant C depends on m, s, and s1, ..., Spy.

Proof. Let )V be a minimal set in A. Let us assume that |[VNC;| =k; <s;, 1 <i <
m. Then the system of equations in the unknown coefficients of P(x, y), (4), namely
{aij:1<i<m,0<j<s; — 1} that V may construct has a matrix of coefficients of
the following form:

M; O 0 0
0O M, O 0
0 0O Mz --- 0
M= . ) ) . A (6)
0 0 o --- M,
Hy H, H; --- Hy

Here, M; is a block of size k; x s; that represents the equations that are contributed
by the k; participants from compartment C;. If V N C; = {u;1,...,u;x} and u; ; is
characterized by the point (x;, y;,;), then

—1
I yia yi%l T yis,l
Uoyia v o !
;. . ;
M= @)
: : ; o
L 7 I R

The last k = Z;-"zl s;i — s rows in the matrix, denoted in (6) by the row of H-blocks,
represent the additional k equations that result from the k public values of P that were
published by the dealer. These k values are of the form P(x}, Zj), 1 < j < k. Then the
jth row within the last row of blocks in M has the following form:
(L) Lizy o LD e L) L))z o LaGHr ")
We proceed to prove that, with high probability, the matrix M has a nonzero deter-
minant, whence the minimal authorized set V may solve the corresponding system of
linear equations and recover the entire polynomial, and consequently the secret, from
their shares. To that end, we view the determinant of M as a k-variate polynomial
G(z1,---,zk) whose coefficients depend on Li(x}), 1<i<m,1<j<k,and on all
s x s minors of M that are contained within its first s rows. There are two cases to
consider: the case where that polynomial is identically zero and the case that it is not.
Let us first assume that G(z1, ..., zx) is not identically zero. Assuming, without loss
of generality, that s; < --- <, we have that the degree of G with respect to each of
its variables is no more than s, — 1. Hence, Lemma 2.2 implies that the number of
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zeros of G in F¥ is bounded by k(s — l)qk’]. Since z;j, 1 < j <k, were randomly

selected from IF, we infer that the probability of (z1, ..., zx) being one of the zeros of
G is bounded from above by k(s,, — l)q’l.
Regarding the case where G(z1, ..., zx) =0, we claim that the probability for such

an event is also O(g~"). Let us exemplify how such an event may occur. Assume, for
example, that m =2, s; = sp =3, and s = 5, whence, k = 1. Then, if V is a minimal
authorized set with [V N Ci| =3 and |V N (| = 2, the corresponding matrix has the
following form:

1 i y? 0 0 0

1 V2 y% 0 0 0

_ 1 3 Y3 0 0 0
M= 0 0 0 1 V4 yé%
0 0 0 1 Vs vz

Li(x)) Li(xDzi Lix)Dzd La(x))  La(x)Dzi La(x))z?

Then G(z1) = ap + a1z1 + azz%, where the coefficients ag, ai, a» depend on Ll(xi),
Ly(x}),and y;, I <i <5. For example,

L yi y2 0 0 1 yy 0 0 0
1 y» y» 0 0 1 » 0 0 0
ay=Lo(x))-|1 y3 y3 0 O[—LiGx)-[1 y3 0 0 0].
0 0 0 1 wm 0 0 1 yé%
0 0 0 1 ys 0 0 1 ys y?

Then G =0 if and only if ag = a; = a> = 0. In general, G is identically zero if and
only if all of its coefficients are zero, where each of the coefficients is a polynomial in
€:= "7 s; variables (the s values of y; j and x1,...,x;) whose degree with respect
to each of its variables is bounded by d = max{s,, — 1, m — 1}. Hence, the number of
selections of those £ variables that would make a single coefficient of G zero is bounded
by £dg*~'. The number of choices of the yi,j’s and x}’s, on the other hand, is £2(¢%).

Hence, we get that the probability of each of the coefficients to be zero is Cg~!, where
the constant C depends on m, s, and s1, ..., s;,. This implies that the probability that
G=0isalso Cqg. (]

Lemma 3.2. IfV ¢ A, then with probability 1 — Cq~" it may not learn any informa-
tion about the secret S, where the constant C depends on m, s, and sy, ..., Sp.

Proof. Assume thatV ¢ A. Without loss of generality, we may assume that [V NC;| =
ki <si, 1 <i <m, since if |V NC;| > s; for some 1 <i < m, we may discard the
redundant participants from that compartment without reducing the row space of the
corresponding matrix. Furthermore, we may assume that |V| = s — 1, since if |V| <
s —1, we may find a superset V' D V such that V' NC;| <s;,1 <i <m,and |V'|=s5—1
and prove that V' cannot learn a thing about the secret with probability 1 — O(g~!);
since V' has more information than V' does, that will settle our claim.

The matrix that corresponds to the information that ) has regarding the coefficients
of the polynomial is given by (6). As in the proof of Lemma 3.1, M; is a Vandermonde
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block (7) of size k; x s; that represents the equations that are contributed by the k;
participants from compartment C;. The last k = ) 7" ;s; — s rows correspond to the
public values of the polynomial. However, here M has only Y /", s; — 1 rows. We need
to show that the vector (1, ..., 1) is, most probably, not spanned by the rows of M. In
order to show this, we augment M by adding to it that vector as a first row and then show
that the augmented M has a full rank of ) 7., s; with probability 1 — O (¢~"). That part
of the proof goes along the same line of argumentation as in the proof of Lemma 3.1. [J

We are now ready to state and prove our main result regarding Secret Sharing
Scheme 1.

Theorem 3.3. The ideal Secret Sharing Scheme 1 is a perfect scheme that realizes the
compartmented access structure with upper bounds (3) with probability 1 — &, where
£ = (”jl)Cq_l, and C is a constant depending on m, s, and s1, ..., Sp.

Proof. Lemmas 3.1 and 3.2 provide an upper bound for the probability of a failure of
the scheme for a given subset V C /. We may now use the union bound to upper bound
the probability of having any failure at all. It is sufficient to consider only the minterms
and maxterms. Namely, if we guarantee that the scheme is correct for all minterms
V € Ao, then it is also correct for all other authorized subsets in A. Similarly, if the
scheme is private with respect to all maxterms V ¢ A, it is certainly private with respect
to any other unauthorized subset.

Since any minterm of A is of size s, the number of minterms is bounded from above
by (’Z) In view of the analysis in the proof of Lemma 3.2, it suffices to consider only
maxterms of size s — 1. The number of such maxterms is bounded from above by (," ).

Therefore, as (7) + (,",) = (";H) we may combine the probability estimates in Lem-
mas 3.1 and 3.2 to conclude that the scheme fails to be perfect with probability that does
not exceed ¢ = ("tl)Cq_l, where C is a constant depending on m, s, and sy, ..., S.

This completes the proof. O

We would like to stress that the probability here is with respect to the choices of the
points in the plane. Once such a choice was made, the dealer may check that all minimal
authorized subsets (minterms) may recover the secret, while all maximal nonauthorized
subsets (maxterms) may not learn a thing about the secret. If all those subsets pass the
test, then the resulting scheme is perfectly secure. In the event that one of the subsets did
not pass the test, the dealer has only to try another selection. Having said this, it should
be noted that as, typically, n and s are small numbers, while g is of cryptographic
magnitudes, the probability of success in Theorem 3.3 is overwhelming, and it renders
the above-described check unnecessary.

Most constructions of linear schemes, including the linear scheme of Brickell for
compartmented access structures with lower bounds [3], suffer from a similar problem:
there is a small probability that the allocation of vectors to participants might result in
a minterm that cannot recover the secret, or a maxterm that can. However, as explained
above, practically it is an insignificant problem, unless the underlying parameters (2, m,
s,and sy, ..., s, in our case) are exceptionally large. There are very few linear schemes
in which there is an allocation of vectors that is provably secure (namely, an allocation
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that may be proven to always yield a perfect scheme). The Shamir scheme is such.
Another example is the scheme due to Tassa in [17] for hierarchical threshold secret
sharing, where, relying upon results from the theory of Birkhoff interpolation, it was
possible to get a provably perfect scheme using the so-called monotone allocation of
identities in the field (provided that the field is large enough).

Corollary 3.4. The compartmented access structure with upper bounds (3) may 1be
. R . . . _ +
realized ideally by a linear secret sharing scheme over fields F of size ¢ = |F| > C (" N ),
where C is a constant depending on m, s, and sy, ..., Sp.
3.2. Ideal Secret Sharing for Compartmented Access Structures with Lower Bounds

In this section we describe a linear secret sharing scheme for compartmented access
structures with lower bounds, (2). To this end, we construct a scheme for the dual access
structure I"*.

3.2.1. Realizing the Dual Access Structure

The dual access structure of (2) is given by I'* = {V : V¢ ¢ I'}. Hence, V € I'* if
and only if |V¢| <t or |V NC;| < ¢t; for some 1 <i < m. Introducing the notation
n=|U|and n; = |C;|, 1 <i <m, we infer that V € I'* if and only if [V| >n —¢t+ 1 or
IVNCi| >n; —t; + 1 for some 1 <i <m. Namely,

r*={vcu:|\V|=ror VNG| > r; forsome 1 <i <m}, (8)
where
r=n—t+1 and ri=n;—t;+1, 1<i<m. )
Sincet > Y"'L i and n =Y 7. n;, we see that

m
ni—Zt,-+mzn—t+m:r+m—l.

i=1 i=1 i=1

7
I
NE

Therefore, the thresholds in the dual access structure (8) satisfy
m
drizr4m—1. (10)
i=1

We proceed to describe a linear ideal secret sharing scheme for realizing such access
structures and then prove that, with high probability, it is perfect.

Let x;, 1 <i <m, be m distinct random points in IF, and let P;(y) be a polynomial of
degree r; — 1 over IF such that

Pi(0)=---=P,(0) =S, (11
where S is the secret. Define
m m ri—1
P, =Y PMLix)=Y_ Y aijy Li(x), (12)

i=1 i=1 j=0
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where L;(x), 1 <i < m, are, as before, the Lagrange polynomials of degree m — 1
over {x; : 1 <i <m}, (5). Note that condition (11) implies that aj o = --- = am 0, and,
consequently, the number of unknown coefficients in the representation of P (x, y) with
respect to the basis Li(x)yf, I1<i<m,0<j<ri—1,isg= Zl’-"zl ri —(m —1). Note
that by (10), g > r.

Our secret sharing scheme for the realization of the dual access structure I"*, (8), is
as follows:

Secret Sharing Scheme 2.

1. Each participant u; j from compartment C; will be identified by a unique public
point (x;, yi j), where y; ; # 0 is random, and his private share will be the value
of P at that point.

2. In addition, we publish the value of P at k = g — r random points (x], z;), where
x ¢ {xt,...,xp}, 1 <i<k.

Lemma 3.5. IfV e I'*, it may recover the secret S with probability | — Cq~', where
the constant C depends on m,r,and ri, ..., ry.

Proof. Let) be an authorized set in I"*. Then either |V NC;| > r; forsome 1 <i <m
or |V| > r. In the first case, the claim is straightforward. Indeed, if |V N C;| > r; for
some 1 <i < m, then it may fully recover P;(y), and, consequently, it may learn the
value of S = P;(0).

Hence, we assume hereinafter that |V NC;| =k; <r;, 1 <i <m, and that V is a min-
imal authorized subset, namely, |V| = r. Then the system of equations in the ) ;. r;
unknown coefficients of P(x, y) that VV may construct has a matrix of coefficients of the
following form:

My Gip 0 0 0
0 M, Gy3 0 0
0 0 M3  Gzga 0
M= : : : : : : (13)
0 0 0 Mm—l Gm—l,m
0 0 0 0 M,
H H Hj Hy, Hy,

The pair of blocks M; and G;;+1, 1 <i <m — 1, represents the equations that are
contributed by the k; participants from compartment C;, plus the additional equation
a0 =ai4+1,0. FVNC; ={u; 1, ..., uix}and u; ; is characterized by the point (x;, y; ;),
then this pair of blocks has the following form:

rifl

L yia yi2,l Vil 0 0 0
L vz ¥ vyl oo 0
(M; Gijp1)= S : ; (14)
U vk Y it oo 0
1 0 0 0 -1 0 0
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Here, M; is a block of size (k; +1) x r;, and G; ;41 is a block of size (k; + 1) x riy1.
M,, represents the equations that are contributed by the k,, participants from com-
partment C,,. Assuming that they are identified by the points (x, ym,;), 1 < j < kn,

2 rm—1
1 Ym,1 ym,l ym,ll
2 'm—
1 Ym,2 ym,2 ym,2
L e (15)
2 rm—1
1 ym»km ym’km e ym,k,,,

Asforthelastk=g—r = Z;"zl ri — (m — 1) — r rows in the matrix, denoted in (13)
by the row of H-blocks, they represent the additional k equations that result from the
k public values of P that were published by the dealer. These k values are of the form
P(x}, zj), 1 < j < k. Then, as in the previous section, the jth row within the last row
of blocks in M has the following form:

(L)) LiG)z; o LGN v L)) L)z - LG

We claim that the first ) 7" k; + (m — 1) rows in M are independent. This stems
from the Vandermonde structure of the blocks, our assumption that k; < r;, and the
fact that y; j #0 for 1 <i <m and 1 < j <k;. Indeed, consider the rectangular block
(M; Gi,i+1) given in (14). Since k; < r; — 1, the first k; columns in this rectangular
block form a square Vandermonde block of the form

ki
L i yi2,1 Vi

ki
L yi2 yi2,2 o io
: k',-
L yik y%ki ik
1 0 o --- 0

Since y;, j, 1 < j < k;, are distinct and nonzero, the above Vandermonde block is nonsin-
gular. Hence, by applying a Gaussian elimination within that row of blocks we may ar-
rive at a full-rank row-reduced echelon form for that row of blocks. Applying a Gaussian
elimination within each of the first m block-rows in M, (13), we may arrive at a full-
rank row-reduced echelon form for the first Z;"zl ki + (m — 1) rows in M. This settles
our claim that the first Z;"zl ki + (m — 1) rows in M are independent.

Next, we aim at showing that all the rows in M are linearly independent with prob-
ability 1 — O(g~"). To this end, we may view the determinant of M as a k-variate
polynomial G(z1, ..., zk) whose coefficients depend on L,-(x;.), 1<i<m,1<j<k,
andonall (3 7L, ri —k) x (Q_i~, r; — k) minors of M that are contained within its first
Y ri —k rows. Arguing along the same lines as in the proof of Lemma 3.1, we claim,
omitting further details, that G(z1, ..., zx) vanishes with probability C q’l, where the
constant C depends on m, r,and rq, ..., rp,. O

Lemma 3.6. IfV ¢ I'*, then with probability 1 — Cq~" it may not learn any informa-
tion about the secret S, where the constant C depends onm,r,andry, ..., rpy.
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Proof. Assume that V ¢ I'*. Then |V NCij| =k; <ri, 1 <i <m, and in addition
[V|=r — 1 — £ for some £ > 0. Condition (10) on the thresholds imply that we may
augment V with £ additional participants so that its size becomes exactly r — 1, while
its number of participants in each compartment C;, 1 <i < m, still does not reach the
necessary threshold r;. Indeed, the maximal number that the augmented ) may have in
compartment C; so that it remains unauthorized is r; — 1. As, by (10), Y7, (r; — 1) >
r — 1, the above-described procedure is possible.

We proceed to show that the augmented V' cannot learn a thing about the secret S with
probability 1 — O(g~"). The matrix that corresponds to V is given by (13), and its size is
(d—1)xd, whered =Y /., r;. Let ¢; denote the standard basis vector in F¢ whose ith
component equals 1, while all the rest are zero. In addition, we introduce the notation
hj =1+ le;ll ri, 1 < j <m; h; denotes the index of the free coefficient of P;(y)
within the vector of unknown coefficients of P(x, y) (hence, Ay, ..., h, correspond to
the indices of the m unknown coefficients that equal the secret S). We need to show
that none of the vectors e is in the row space of the matrix M. It is easy to see that it
suffices to show that ey, is not in that row space.

To show this, we add ey, as a last row vector in the block-row (0 --- 0 My).
Since y;, j #Oforall 1 <i <m and 1 < j < k;, we may argue along the same lines as
in the proof of Lemma 3.5 to conclude that the first ) ;- ; k; +m rows in the augmented
matrix M are linearly independent. Then, the remainder of the proof that the augmented
M has, with probability 1 — O (¢~"), a full rank of Y ri is the same as in the proof
of Lemma 3.5. ]

Using Lemmas 3.5 and 3.6 and arguing along the same lines as in the proof of Theo-
rem 3.3, we arrive at the following result:

Theorem 3.7. The ideal Secret Sharing Scheme 2 is a perfect scheme that realizes the
compartmented access structure (8) with probability 1 — &, where ¢ = ("'rH)Cq_l, and
C is a constant depending on m, r,and ry, ..., ry.

3.2.2. A Scheme for Compartmented Access Structures with Lower Bounds

Using the results of Sect. 3.2.1, we may now easily construct an ideal secret sharing
scheme for compartmented access structures with lower bounds, (2). Given such an
access structure, I', we construct the ideal linear secret sharing scheme for its dual,
(8)—(9). Then we translate that ideal scheme (equivalently, MSP) into an ideal scheme
(MSP) for I" = (I'*)*, using the explicit construction described in [7]. We omit further
details.

Our scheme differs from the scheme suggested by Brickell [3]. Both schemes require
to check a large number of matrices for nonsingularity. (There are no known schemes for
compartmented access structures that circumvent that problem.) However, while in [3]
it is only proven that a proper allocation of participant identities exists, in our scheme
we may randomly select the participant identities, knowing that the resulting scheme is
guaranteed to be perfect with probability of at least 1 — (”f])Cq_l, Theorem 3.7. As
this probability is overwhelmingly close to certainty with typical values of ¢, n, m, and
the thresholds, the check of all matrices that correspond to the minterms and maxterms
of the access structure may be avoided.



Multipartite Secret Sharing by Bivariate Interpolation 243
4. Hierarchical Threshold Access Structures

Here we present an ideal secret sharing scheme for the realization of hierarchical access
structures. This scheme uses Lagrange interpolation of bivariate polynomials where the
data is given on lines in general position in the plane. In Sect. 4.1 we review all nec-
essary background regarding that type of interpolation. Then, in Sect. 4.2 we deal with
the following question: Given the values of a bivariate polynomial in a set of points in
the plane, what is the amount of information that those values reveal on the polyno-
mial? Using these results, we proceed to Sect. 4.3, where we define hierarchical access
structures and present a scheme that realizes them.

4.1. Lagrange Interpolation with Data on Lines in General Positions
Let
{Litizizn. Li={(x,y)€F*:Li(x,y):=aix + bjy +¢; =0},

be a collection of n lines in F? in general position. Namely, for every pair 1 <i < j <n,
L; and L; intersect at a point A; ; = (x; j, yi,j), and A; j # Ay for {i, j} # {k, £}
(Fig. 2 illustrates the case n =4). Let f(x, y) be a function on 2. Then there exists a
unique polynomial of degree n — 2,

Px,)= Y ajx'y/ €Flx,yl, (16)
0<i+j<n—2
that satisfies
P(xij,yi,j)=f(xij, ), 1Zi<j=<n. (17)

This polynomial is given by

Px,y)= Y fxij,yij)Lijx, ), (18)
1<i<j<n
where
Li(x,y)
Lij(x,y)= 1_[ L) 19)
1<k<n kX, Vi,
k#i,j

The bivariate Lagrange polynomials L; ;(x, y) are of degreen—2,and L; j (x; j, yi,j) =
1, while L; j(xk¢, yr,¢) = 0 for all {k, £} # {i, j} (because the point (xg ¢, yx,¢) lies on
a line other than L; or L, whence the numerator in (19) becomes zero). Note that the
number of independent terms (monoms) in (16) agrees with the number of constraints
in(17), i.e., (5).

This type of bivariate interpolation was first studied in [4]. We shall use this bivariate
interpolation in a slightly different manner. As described above, in order to recover a
polynomial P (x, y) of degree k, we need its values at the intersection points of k 4 2
lines in general position. Assume, however, that we have only k& + 1 lines in general
position, but we were able to fully recover the restriction of P(x,y) to each of these
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Fig. 2. Four lines in general position and the corresponding interpolation points.

lines (the restriction of a bivariate polynomial of degree k to a line is the univariate
polynomial of degree k that is obtained by replacing x and y in P(x,y) with their
linear parameterization along that line). Then that information is also sufficient for the
full recovery of P(x, y), since we may add a (k + 2)th line that intersects all the original
k + 1 lines and then, as we know the value of P along each of those k + 1 lines, we
know its value in all of the (k42-2) intersection points of the k + 2 lines; this enables the
full recovery of P (x, y) through (18)—(19). For example, in order to recover a quadratic
polynomial P(x, y) (k =2), we need its values in the 6 intersection points of k +2 =4
lines in general position (L1, Ly, L3, and L4 in Fig. 2); alternatively, we may compute
its restriction to only k + 1 = 3 of those lines, say L1, L2, and L3, and this is sufficient
for finding the value of P in all 6 intersection points of L1, Lo, L3, and L4. Hence, while
in this section our setting included # lines and a polynomial P (x, y) of degree n — 2,
in the following sections our settings will include # lines and a polynomial P (x, y) of
degree n — 1.

4.2. Constructibility and Nonconstructibility Results
Let:

IF be a finite field;

{Liti<i<n, Li ={(x,y) € F2: Li(x,y):=ajx + bjy + ¢; =0}, be a collection of
n lines in F? in general position;

P(x,¥) = Y 0<itj<n_14i,jx'y/ be a polynomial of degree (at most) n — 1 in
F[x, y]; and

V C J/_, Li be a set of points on the given lines, none of which is an intersection
point of two of those lines.

The question that we address here is the amount of information that D := P|y, reveals
on the polynomial P.

In order to answer this question, we define the type of a set V (Definition 4.1) and an
order on such types (Definition 4.2).
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Ly
Ly Ly Ly Ly

Ly
Fig. 3. Two point sets of type (2, 2, 3).

Definition 4.1. Let {L;}1<;<, be n lines in general position in F2. A finite subset of
points, none of which is an intersection point,

ve (Un\(

is said to be of type v € N", where v is a monotone vector in the sense that 0 < v| <
vy <. < vy, if there exists a permutation 7 of (1,...,n) such that |V N L) =v;
foralll <i <n.

U LiﬂLj>,

1<i<j<n

For example, the two subsets depicted in Fig. 3 are of type v= (2, 2, 3).

Definition 4.2. A vector u € N" dominates the vector v € N", denoted u > v, if for all
. i i
l<i<n, Z/:l“j = Zj:l vj.

For example, (1,3,3,3) >= (1,2,3,4), while (1,1,4,5) % (1,2,3,4).

Theorem 4.1. Let F be a finite field of size q and n be a natural number such that
q>Cp =} _3k2 Ler:

o {Li}1<i<n be n lines in general position in F2, none of which goes through the
origin (0, 0);

e V be a randomly selected set of points on those lines, none of which is an intersec-
tion point, and let v be the type of this set;

e P(x,y) = ZOgiﬂgn—l ai,jxiyj be a polynomial of degree (at most) n — 1 in
Flx, y], and P|y be the values of P in the points of V.

Then if v > (1,2, ...,n), the set of values P |y, determines the polynomial P with prob-

ability 1 — C,q~" at least.
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Theorem 4.2. Let:

e {Li}1<i<n be n lines in general position in F2;

e V be a set of points on those lines, none of which is an intersection point, of type
vi£(1,2,...,n);

e P(x,y)= ZOSiﬂSnilai,jxiyj be a polynomial of degree (at most) n — 1 in
F[x, y], and P|y be the values of P in the points of V.

e S be a random linear combination of the coefficients of P.

Then P|y does not yield any information on S with probability 1 — g~ at least, where
q = |F|.

Remarks.

1. Note that the probability in Theorem 4.1 is with respect to the random selection
of V € §2, where

(0N

In Theorem 4.2, the set V is fixed, and the probability is with respect to the selec-
tion of the random coefficients in the linear combination S.

2. The value of the constant C,, may be reduced by applying tighter estimates. How-
ever, in practical applications of Theorem 4.1 for the secret sharing scheme that
we present later on, the typical values of n and ¢ are usually such that C,,¢ ™! is a
very small probability.

U L,-ﬂLj)|v:=type(V)z(l,Z,...,n) .

I<i<j<n

In the following, we use the notation o, = Y ;i = w

Lemma 4.3. Let v be a monotone vector such that v = (1,2, ...,n). Then there
exists a monotone vector u such that w < v (namely, u; < v; for all 1 <i <n),
u>(1,2,....n), Y  ui =0y, and u, <n.

Proof. We prove the claim by induction. The claim clearly holds for n = 1. Assume
that it holds for vectors of length n — 1, and let v be a monotone vector in N” such that
v>=(1,2,...,n).

If v, > n, we define u = (uy, ..., u,) as follows: u,, = n, while (uy,...,u,_1) is a
monotone vector such that u; <wv; forall 1 <i <n—1, (uy,...,up—1) > (1,2,...,
n—1)), Z?;l u; =o0y,_1, and u,_1 <n — 1. The vector (u1,...,u,_1) exists by the
induction hypothesis, since if v > (1,2, ..., n), then (v, ..., v,—1) = (1,2,...,n—1).
The vector u = (uq, ..., u,—1, u,) thus defined satisfies all the requirements.

Assume next that v, < n. If Z?:l v; = 0, we are done, since we can take u =v. If,
on the other hand, Z:'l:l v; > oy, we proceed to find a vector u = (wq, ..., Wy—1, Uy)
such that w; <v;, 1 <i<n-—1, (wy,...,w,_1) is a monotone vector that dominates
1,2,...,n—=1), Z?z_ll w; =0,-1 + (n —vy,), and w,—; < v,. Such a vector would
satisfy all the requirements. By the induction hypothesis, there exists a monotone vec-
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tor (uy,...,up—1) suchthat u; <v; forall 1 <i<n—1, (uy,...,up,—1) > 1,2,...,
n—1), and Zf’;ll u; = o,_1. Hence, since

n—1 n—1 n n—1
E Ui_E u; = E Ui_E uj | — vy > (04 —0p_1) — vy =h — v,

i=1 i=1 i=1 i=1

there exists a monotone vector (wy, ..., w,_1) such that u; <w; <v;, 1 <i<n-—1,
and Z;:]l w; = o,—1 + (n — vy,). Specifically, if j is the maximal index for which

N /S B n—1
dj =3 i_;vi— Y j_;ui =n— vy, then

u;, 1§l<j,
wi=v;—(dj—m—uvy), i=],
v, j<i<n-—1.
Finally, as (w1, ..., wy—1) = (W1, ..., up—1) = (1,2,...,n—1)and wy,—1 < v,—1 < vy,
we are done. O

Proof of Theorem 4.1. Let ) be arandomly selected set from £2, (20). By Lemma 4.3,
V has a subset of points V' of type v’ such that v/ = (1,2,...,n), >/, v/ = 0y, and
v), < n. We proceed to show that P|y» determines the polynomial P with probability
of 1 — Cn,q~" at least. Since P|y is a superset of Py, this will settle our claim. For
simplicity of notation, we denote the subset V' and its type v’ by ) and v, respectively.

The case n =1 is trivial. Let us examine the case n = 2. In this case, the unknown
polynomial is P(x, y) = a + bx + cy, there are two intersecting lines, L and L;, and
we are given the value of P at three points: (x1, y;) € L1 and (x2, y2), (x3,¥3) € L»
(none of which is A2 := Lj N L»), see Fig. 4. First, we compute the restriction of P
to L. This restriction is a linear univariate polynomial, and hence, we may compute it
by standard univariate interpolation through the two points (x2, y») and (x3, y3). As a
result, we have the value of P in A1 2. This, in turn, enables us to compute the restriction
of P to L1, again, by univariate interpolation, this time through A > and (x1, y1). Now,
if L3 is any line that lies in a general position with respect to L1 and L, we have the
value of P in the corresponding three intersection points, A; j = L;NL;, 1 <i < j <3.
Using the techniques presented in Sect. 4.1, we may fully recover P(x, y).

We proceed by induction. Without loss of generality we may assume that |V N L;| =
vi, | <i <n (namely, we assume that the permutation 7 in Definition 4.1 is the iden-
tity). Let us denote the points in V by {(x;, ¥;) : 1 <i < 0,}. The values Pl|y give
rise to a linear system of o, equations in the o, unknown coefficients of P(x,y) =
> 0<itj<n—1Gi,jX'y/. Denote by M the matrix of this linear system; then its ith row,
1 <i <oy, is given by

— 2 2 -1 -2 -2 -1
Mi.=(1 xi vy x> xiyi y> ... x! X7y X! v ).

We aim at showing that M is singular with probability not exceeding C,q~".
To this end, we invoke Lemma 4.3 for the vector (v, ..., v,_1). Since this vector
dominates the vector (1, ...,n — 1), there exists a monotone vector (1, ..., u,_1) such

that u; <v;, 1 <i<n-—1,uy,—1 <n-—1, and Zl'-';ll u; = op—1. Let us rearrange the
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Fig. 4. Interpolating a linear polynomial on two intersecting lines.

order of the rows in M so that the first 0,1 rows correspond to a subset of points of
type (u1,...,u,—1). Hence, by induction, the main o, -dimensional minor of M is
singular with probability not exceeding C,,_1¢ .

Next, we consider the determinant

n—1 n—2 n—1
1 X1 V1 . Xy i ... b
1 Xo y, n—1 xn—2y yn—l
n—1 On—1 Op—1 0y—179%n—1 Op—1
det M = det — — —
1 Xop_ 141 Yop_1+1 "'xUn_1+1 xGn_1+1yO‘n71+1 yGn_1+1
n—1 n—2 n—1
1 Xo, Yo, | Xg, Xo Yo, ... Yo,

We view the first 0,1 points in the sequence as fixed and the last n points as variables.
In addition, for all 6,1 + 1 <i < 0y, y; depends on x; linearly, y; = a;x; + l;,-. (The
constants @; and l;i are the parameters of the line on which the point (x;, y;) lies. We
assume, without loss of generality, that none of the lines is of the form x = Const.)

Therefore, we may view det M as a polynomial in the variables (x5, ,+1, ..., Xq,). For
the sake of simplicity, we denote the variables (x5, ;41,...,%Xs,) by &1, ..., &, (and the
corresponding y-coordinates by 7y, ..., 7,).

We claim, and prove later, that det M (&1, ..., &,) is a nonzero polynomial whenever

the main o,,_1-dimensional minor of M is nonzero. Since &; are chosen randomly in I,
under the restriction that &; # &; whenever they both correspond to points on the same
line, the number of selections of (£, ...,&,) is at least (Z) Since the degree of the
polynomial det M (&1, ..., &,) with respect to each of its variables is at most n — 1, we
infer, by Lemma 2.2, that det M (&1, ..., &,) has at most n(n — l)q"_1 zeros. There-
fore, the probability of selecting (&1, ..., &,) as one of the zeros of det M is at most

nn—1g"~" )

O < cpq~! for ¢, = . Altogether, we conclude that det M vanishes with
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I'= C,q~!. This implies that P|y deter-

probability not exceeding C,—1g~! + c,q~
mines the polynomial with probability at least 1 — C,,qg .
It remains to prove that if the main o;,,_1-dimensional minor of M is nonzero, then

det M (&1, ..., &,) is anonzero polynomial. Observe that

detM(&1,....86) = Mo, , - p(1,....8) +r(1,.... 8n),

where M, , is the main o,_;-dimensional minor of M (which is assumed to be
NoNzero),

S LT T e

péi,..., &) =det 21

gnt g2y, o Emp? gt

is the determinant of the lower right block in M, and r (&1, ..., &,) stands for the sum of
all other terms in the determinant. We show that det M (&1, ..., &,) is a nonzero polyno-
mial by proving the following two claims:

Claim 1. p(&y, ..., &,) is a nonzero polynomial.

Claim 2. degr(&y,...,&,) <degp(&r,...,&).

Proof of Claim 1. By extracting 5{“1 from the ith row in the determinant in (21), for
all 1 <i < n, we obtain a Vandermonde determinant. This brings us to the conclusion
that

P& & =]]& "
i=1

T (2-2)= T @n-gm,
J 1

1<i<j<n 1<i<j<n
or, after substituting n; = a;&; + b;, that

pEL .. E)= ] pijG....&), (22)

I<i<j<n
where
Pi Ly ) = (G — aEE; +bi& — bt

The polynomial p; (&1, ..., &) is nonzero, since bi, b j # 0 (as implied by our assump-
tion that none of the lines goes through the origin). As it is a polynomial of degree 1 in
each of the two variables §;, §;, it has no more than 2¢ zeros in IF; x ;. Consequently,
viewed as a polynomial in (&1, ...,&,), pi j(1,...,&,) has no more than 2q"‘1 ZEToSs.
Since, by (22), p(&1, ..., &,) is a product of ('2') such polynomials, it has no more than
n(n — 1)g"~! zeros in F". As n(n — 1) < g, the number of zeros of p(&1,...,&,) is
smaller than |F"|. This implies that p(£1, ..., &,) is a nonzero polynomial. O

Proof of Claim 2. detM is a linear combination of all minors of size n x n that are
contained within the last n rows of M. While p(&y,...,&,) is the n x n minor that



250 T. Tassa and N. Dyn

corresponds to the n right-most columns, the remainder r(£1, .. ., &,) corresponds to all
other minors that involve at least one of the first o,,_; columns.
Let w(&1,...,&,) and u'(&1,...,&,) be two such n x n minors that differ in one

column only: while the first column in u (&1, .. ., &,) consists of entries of the form éij nf.‘ ,

the first column in @/ (£1, ..., &,) consists of entries of the form Ei] /771].‘/. (All othern — 1
columns in those two minors are the same.) We proceed to show that if j' + k" < j +k,
then deg (&1, ..., &) <degu(&l, ..., &,). As shown later, this will settle our claim.
Let u(é1,....&) = > i ni(51, ..., &) be the expansion of the determinant ju
with respect to its first column. Then the corresponding expansion of u’ is given
by WL ) = Y0 Wi(EL ..., &), where ) = p; - & /¥ k. Assume that
deg (&1, ...,&,) = d. Namely, the highest-order terms in each of u;(&,...,&,),
1 <i <n, are of the form []/_, Sl.h", where Y7, h; <d. Hence, the highest-order
terms in all of p(£1,...,&,), 1 <i <n, are of degree d + (j' + k') — (j + k) <d
at most. This settles our claim because every minor in r (&1, ..., &,) may be obtained
from the minor p(&1,...,&,) by a number of degree-decreasing column-switches of
that sort, and, consequently, the degree of each such minor is strictly less than that of

p(gl""vé:n)' D
The proof of Theorem 4.1 is thus complete. (]

Proof of Theorem 4.2. Assume that v i (1,2,...,n). To prove this part of the the-
orem, it is more convenient to change the basis of the space of bivariate polynomials
of degree n — 1. Let Lg be a line in 2 that intersects all the lines Li,...,L, inn dis-
tinct points, none of which is in V. Then, in view of our discussion in Sect. 4.1, any
polynomial

Px,y)= Y aix'y eFuilx,y]
O<i+j<n—1

has an alternative representation

P(x,y)= Y bijLij(x,y) (23)
O<i<j<n
where
Lijo,y)= [ Letx, ), (24)
0<k<n
ki, j

and Ly (x, y) = 0 is the equation that defines the line L, 0 <k <n.

As in the proof of Theorem 4.1, let us denote the points in V by {(x;, y;) : 1 <i <|v|}.
The values P|y give rise to a system of |v| equations in the o,, unknown coefficients
in (23). Letting M denote the matrix of coefficients in that system, the ith row of M,
1 <i <|v|, is given by,

Mi.=(Loa(xi,y) Loz, y) LiaGi,y) - Loa(xi,yi) -+ La—1.a(xi, ).
(25)

We proceed to show that the rank of M is smaller than o;,. This will imply that a random
vector from " is in the row space of M with probability ¢ ~! at the most. Since S is
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a random linear combination of the o, coefficients of P, this will imply that P|y does
not yield any information on § with probability 1 — ¢ ~! at least.

The main observation towards this end is that if (x;, y;) € L then Ly ¢(x;,y;) =0
if j ¢ {k, £}. Consequently, in every row of the matrix M, there are 0,1 entries that
are zero. For example, in rows that correspond to points (x;, y;) € L,, only the last n
entries, L; ,(x;, y;), 0 < j <n — 1, are nonzero.

Asv i (1,2,...,n), there exists 1 < j < n for which Z{:] v; < 0. Assume that the
rows of the matrix M are ordered so that the first v rows correspond to the points on
L1, the next vy rows correspond to the points on L, and so forth. Then in all the rows
after the first Zl!:] v; Tows, the first o; entries are zero. Indeed, the first o; entries in
each row are

Mi,1;gj=(L0,1(xi,yi) Loo(xi,yi) Lia(xi,yi) -+ Loj(xi,yi) -+ Lj—l,j(xi,yi)).

Each row after the first Z{:] v; rows corresponds to a point (x;, y;) that lies on one
of the lines L1, ..., L,. For such points, Ly ¢(x;,y;) =0forall 0 <k < £ < j. We
arrive at the conclusion that the first o; columns of the matrix M are identically zero

As the number of columns of M is o,,, we infer that the rank of M is at most o, — 1. [J

beyond the first le | Vi <o rows. That means that the column rank of M is lacking.

4.3. Hierarchical Threshold Access Structures

Let U be a set of participants that is partitioned into m disjoint levels, (1), and let k; <
ko < --- < ky be a sequence of thresholds. The corresponding hierarchical threshold

access structure is defined by
i
yn <U Cj)
j=1

Those access structures were presented and studied in [17]. They are realized there
by an ideal secret sharing scheme that is based on Birkhoff interpolation, namely, in-
terpolation in which the given values of the unknown polynomial, P (x), also include
derivative values. Specifically, participants from level C;, 1 <i < m, receive the value
of the (k;_1)th derivative of P at the point x that identifies them (where hereinafter
ko := 0). As participants from higher levels (namely, C; for lower values of i) have
shares that equal derivatives of P of lower orders, those shares carry more information
on the coefficients of P than shares of participants from lower levels.

Here we show how to realize such hierarchical access structures using bivariate La-
grange interpolation on lines in general position. The scheme that we present here does
not use derivatives, as the Birkhoff interpolation-based scheme of [17] did, but instead
it adds one more dimension in order to achieve the same hierarchical effect.

Let {L}1<j<n be n :=k, lines in general position in IF2, none of which goes through
the origin (0,0). Let {w; j}o<i+j<n—1 be publicly known values that are selected
randomly and independently from F. Finally, let P(x,y) =} o-;, j<n—14i,jx'y’ be
a random polynomial in F,,_{[x, y], whose coefficients are selected so that § =
ZO§i+j§n—l a; jw;, j. Then the secret sharing scheme in this case is as follows.

F:{VCU: >k;foralll <i<my. (26)
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Secret Sharing Scheme 3.

1. Each participant from level C; will be identified by a unique public point on
Ly \(Ulsjsn L), and his private share will be the value of P at that point.

JFki
2. In addition, we publish the value of P at:

e k;_1 additional points on Ly;,2 <i <m; and
o jpointson Lj forall j€{1,2,...,n}]\{k; : 1 <i <m}.

Example. Assume that there are m = 3 levels with thresholds k; = 2, k = 4, and
k3 =5 (namely, V € I' if and only if it has at least 2 participants from the highest
level Cy, at least 4 participants from the two highest levels C; U C,, and at least 5 par-
ticipants altogether). Then we select 5 random lines in general position: L;, 1 <i <S5.
The allocation of private shares will be as follows:

1. Participants from C; will be given polynomial shares on L, (since k; = 2).
2. Participants from C, will be given polynomial shares on L4 (since ko = 4).
3. Participants from C3 will be given polynomial shares on L5 (since k3 = 5).

The corresponding points are marked in Fig. 5 by empty circles. The public values will
be:

1. 2 point values on L4, and 4 point values on L5 (those points are marked by full
bullets in Fig. 5).

2. 1 point value on L; and 3 point values on L3 (those points are marked by full
squares in Fig. 5).

Theorem 4.4. The ideal Secret Sharing Scheme 3 is a perfect scheme that realizes the

hierarchical threshold access structure (26), with probability 1 — C,,q ™" at least, where
Cn = ZZ:3 kk+2.

A direct consequence of Theorem 4.4 is that there exists an ideal secret sharing
scheme for the hierarchical threshold access structure, (26), whenever

n
q=IF|>Cy:=) k2, 27)
k=3

where n = k,,, is the size of minimal authorized subsets. This lower bound on the size
of the underlying field is a significant improvement with respect to the corresponding
result in [17, Corollary 3.4], where the condition on the size of the field was

q><|U|+1>.(n—2)(n—l)+n
n 2

(The improvement is due to the fact that typically [U/| > n.)

Proof of Theorem 4.4. GivenV C U, let x; = |V NC;|, 1 <i <m, denote the number
of participants that } has from the ith level. Then V knows the value of P at v; points
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Fig. 5. Secret Sharing Scheme 3.

along L, 1 < j <n, where

ki_ xi, j=k forsomel <i<m,
vj — .l 1+ X J i X =1 = (28)
Js otherwise.
Let us denote v := (vy, ..., v,), and let v denote the nondecreasing ordering of v;

namely, v’ is the rype of the set of points in which V knows the value of P. In view
of Theorems 4.1 and 4.2, we need only to show that v/ > (1,2, ...,n) if and only if
Verl.

Part 1: V e I' implies that v’ > (1,2, ..., n).
Assume that V € I". Then, by (26),

i
dxjzki. l1<i<m. (29)
j=1

The vectors v and v’ include components of two kinds, as seen in (28): level components
that correspond to positions {ky, ..., k;, } in v, and separator components that are the re-
maining n — m components. This induces a similar separation on the components of the
vector (1,2,...,n): we refer to the components in positions {ki, ..., k;,} as level com-
ponents and to the remaining ones as separator components. Let w = (vg,, Vk,, - . ., Uk,,)
be the sub-vector of all level components within v, let w’ be its nondecreasing ordering,
and let (k1, k2, ..., k;,) be the sub-vector of all level components within (1,2, ..., n).
We begin by proving that

w' = (ki ko, oo k). (30)
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We will then use (30) in order to establish the full domination relation, i.e.,
vV =(01,2,...,n). 31
e Step 1: Proving (30). In order to prove (30) we need to show that
¢
dDwh=Y "k 1=t<m. (32)
j=1 j=1

Fix ¢ in the range 1 < £ < m. There are two cases to consider: If {w], ..., w;} =
{vkl,...,vk[},then

4 14 12 £—1 L L
Yowi=d v =) ki tx) =) kit Y xiz ) ki (33)
j=1 j=1 j=1 j=1 j=1 j=1

where the last inequality stems from (29). If, on the other hand, {w, ..., w},} #
{vk;, ..., v} (this may happen only when £ < m), then there exists a minimal
index i, 1 <i < ¢, such that vy, ¢ {w], ..., w;}. Hence,
¢ i—1 ¢
Sup=Y o+ Y, 3
j=1 j=I j=i
where
i<ri<riz1<---<ry. 35)
As argued in (33),

i—1 i—1
D u =D k. (36)
j=1 j=1

On the other hand, (35) implies that r; > j + 1 for all i < j < £. Hence, as k1 <
ky <--- <k,, we conclude that k,j > kj11. Therefore, by the definition of ks
(28), we conclude that

Uk >krj—1=kj, i<j=<Ct 37

Finally, (32) follows from (34), (36), and (37).

e Step 2: Proving (31). Having shown (30), we proceed to prove (31). To this end,
we need to show that if we add to the two vectors on both sides of the domina-
tion relation (30) the n — m separator components {1,2,...,n}\{ky, ..., k;}, the
domination relation (31) still holds, i.e.,

i i
Yviz) ) l<is=n (38)
j=1 j=1
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Fix an i, let 1 < £ < m be the maximal index such that k; < i, and let ¢ be the
number of level components in (v; AU vlf ). There are three cases to consider:

1. If t = £, then (38); follows from (32),. Indeed, in this case, the t = £ level
components in (v{, ..., v}) are exactly (w}, ..., w}), and the additional sepa-
rator components on the left-hand side of (38); are {1, 2, ...,i}\{k1, ..., k¢}.
Hence, by adding the sum of {1,2,...,i}\{k1, ..., k¢} to both sides of the
inequality (32),, we arrive at (38);.

2. If t > £, then

i t
D= witgi (39)
j=1 j=1

where g, stands for the sum of the smallest » separator values, namely, the r
minimal numbers in {1, 2, ..., n}\{ky, ..., k;}. In view of (32), equality (39)
implies that

i '
D= kj+gioe— (8ot —8io)-
j=1 j=1

By the definition of the partial sums g, Zf-:l ki+gi—¢= ZS-:I Jj. Hence,
it remains to prove that

t

D k= (gie—gi-) (40)

j=t+1

in order to establish our claim (38) in this case. Indeed, as, by our assump-
tion, the prefix {1, 2, ..., i} includes exactly ¢ level components, {ky, ..., k¢},
the difference g;_¢ — gi—; is composed of the r — £ largest numbers in
{1,2,...,i}\{k1, ..., k¢}, all of which are less than or equal to i. On the
other hand,

t
Z kj= (=0 kepr > (1 —20)-i.
j=t+1

Hence, (40) follows, and our claim in this case is settled.
3. If t < £, then equality (39) still holds. In view of (32), equality (39) implies
that

i :
D= kgt (8ot — 8k—1)

j=1 j=1
(note that in this case k; < k¢ < i). Since, by the definition of the partial
sums gy, th=1 kj+ g1 = Z];’Zl Jj» we need only to prove that

i
Bt — 8= Y. J (41)

j=ki+1
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in order to establish our claim (38) in this case. Indeed, as the minimal sepa-
rator value in g;_; — gx,— 1S at least k; 4+ 1 and each separator value is strictly
larger than its predecessor, inequality (41) holds. This settles our claim in this
case as well, and thus the proof of (38) is complete.

Part2: V ¢ I implies that v' / (1,2, ...,n).
Assume next that V ¢ I'. Then there exists a minimal i > 1 such that

4
ijzkg forall 1 < ¢ <i (42)
j=I

and

i
> xj <k (43)
j=1

In that case, we claim that
ki ki
> ovi<> i (44)
j=1 j=1

Indeed, by the definition of v, (28),

ki i i
Y= D vt ug= Y J+) Kty
j=1 1<j<k; j=1 1<j<k; j=1

Jetki,.. ki) Jétky, ...k}

where the last inequality is implied by (43). Since v’ is the nondecreasing ordering of v,
inequality (44) implies that ZI;."ZI v; < ZI;’: | J» whence v/ £ (1,2, ...,n). The proof
is thus complete. U

5. Epilogue

The advantage of bivariate interpolation over the standard univariate one in designing
linear secret sharing schemes for multipartite settings is in the ability to associate differ-
ent compartments with different lines in the plane. Bivariate interpolation on lines was
extended to multivariate interpolation on flats in several dimensions in [2]. By going
to higher dimensions and by adequately choosing the flats that represent the compart-
ments, it might be possible to design secret sharing schemes for a wide array of interest-
ing access structures. (In several dimensions, we have more flexibility in choosing the
dimensions of the flats and their interrelation.) It would be also interesting to explore
the possible advantages of using nonlinear manifolds instead of flats.
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We would like to note that after the completion of this work, we came across the
new paper of Herranz and Séaez [9], where they introduce a new type of a multipartite
access structure. In that access structure, each authorized subset must be of size at least
t, and it must include representatives from at least k different compartments. Namely,
if U is partitioned to m compartments, (1), then V € I" if and only if |V| > ¢ for some
t >0and |[VNC;| >0 for at least k indices 1 <i < m. (Clearly, k <m,t.) The linear
scheme proposed in [9] for that access structure may be viewed as a scheme that is based
on bivariate polynomial interpolation. With that interpretation, their scheme takes the
following form:

Secret Sharing Scheme 4.

1. The dealer generates a random polynomlal P(x,y) = Q)+ R(y) over F, where
Q(x) =Y~y aix' and R(y) = Z byt

2. The secretis S = P (0, 0).

3. Each participant u; ; from compartment C; will be identified by a unique pub-
lic point (x;, i, j), where x; # 0 and y; ;j # 0, and his private share will be
P(xi, yi,j)-

Here, x;, 1 <i <m, are m distinct values in the field F. All participants of compart-
ment C; receive private shares on the vertical line x = x;. It is shown in [9] that there
exists an allocation of identities in I for which the resulting scheme is perfect. Utiliz-
ing the same techniques that we used here for the compartmented access structures, it
is possible to prove that a random allocation of identities will result in a perfect scheme
with probability 1 — O(g~1).
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