
J. Cryptol. (2008) 21: 547–578
DOI: 10.1007/s00145-008-9024-z

Encryption Modes with Almost Free Message Integrity

Charanjit S. Jutla
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598-704, USA

csjutla@us.ibm.com

Communicated by Moti Yung

Received 24 December 2003 and revised 8 April 2008
Online publication 24 May 2008

Abstract. We define a new mode of operation for block ciphers which, in addition
to providing confidentiality, also ensures message integrity. In contrast, previously for
message integrity a separate pass was required to compute a cryptographic message
authentication code (MAC). The new mode of operation, called Integrity Aware Paral-
lelizable Mode (IAPM), requires a total of m + 1 block cipher evaluations on a plain-
text of length m blocks. For comparison, the well-known CBC (cipher block chaining)
encryption mode requires m block cipher evaluations, and the second pass of comput-
ing the CBC-MAC essentially requires additional m + 1 block cipher evaluations. As
the name suggests, the new mode is also highly parallelizable.

Key words. Block ciphers, Encryption, Authentication, Pairwise independent, Paral-
lelizable.

1. Introduction

Symmetric key encryption has become an integral part of today’s world of communi-
cation. It refers to schemes and algorithms used to secretly communicate data over an
insecure channel between parties sharing a secret key. It is also used in other scenarios
such as data storage.

There are two primary aspects of any security system: confidentiality and authentica-
tion. In its most prevalent form, confidentiality is attained by encryption of bulk digital
data using block ciphers. The block ciphers (e.g., DES [26], AES[1]), which are de-
signed to encrypt fixed length data, are used in various chaining modes to encrypt bulk
data. One such mode of operation is cipher block chaining (CBC) ([2,27]). The security
of CBC has been well studied [5].

Cipher block chaining of block ciphers is also used for authentication between par-
ties sharing a secret key. The CBC-MAC (CBC Message Authentication Code) is an
international standard [14]. The security of CBC-MAC was demonstrated in [6]. Au-
thentication in this symmetric key setting is also called Message Integrity.

Despite similar names, the two CBC modes, one for encryption and the other for
MAC are different, as in the latter the intermediate results of the computation of the

© International Association for Cryptologic Research 2008

mailto:csjutla@us.ibm.com

548 C.S. Jutla

MAC must be kept secret. In fact, in most standards (TLS, IPsec [29,30]), as well as in
proprietary security systems, two different passes with two different keys, one each of
the two modes is used to achieve confidentiality and message integrity.

Nevertheless, it is enticing to combine the two passes into one so that in a single ci-
pher block chaining pass, both confidentiality and message integrity are ensured. Many
such attempts have been made, which essentially use a simple checksum or manipu-
lation detection code (MDC) in the chaining mode [9,23,28]. Unfortunately, all such
previous schemes are susceptible to attacks (see, e.g., [32]).

We mention here that there are two alternative approaches to authenticated encryp-
tion [4], i.e., encryption with message integrity. The first is to generate a MAC using
universal hash functions [8] as in UMAC [7]. UMACs on certain architectures can be
generated rather fast. However, UMAC suffers from requiring too much key material or
a pseudorandom number generator to expand the key. (For comparison sake, on a mes-
sage of size n, UMAC requires a key of size n for similar efficiency and security.) In
another scheme, block numbers are embedded into individual blocks to thwart attacks
against message integrity [18]. However, this makes the cipher-text longer.

In this paper, we present a new mode of operation for block ciphers, which in a
single pass achieves both confidentiality and message integrity. In one variant, to encrypt
a message of length m blocks, the new mode requires a total of m + 1 block cipher
evaluations. All other operations are simple operations, like exclusive-or. To contrast
this with the usual CBC mode, the encryption pass requires m block cipher evaluations,
and the CBC-MAC computation on the ciphertext requires another m + 1 block cipher
evaluations.

Our new mode of operation is also simple. To illustrate, a simpler (though not as
efficient) version of the mode starts by performing a usual CBC encryption of the plain-
text appended with checksum (MDC). As required in CBC mode, it uses a random
initial vector r . As already mentioned, such a scheme is susceptible to message integrity
attacks. However, if one “whitens” the complete output with a random sequence, the
scheme becomes secure against message integrity attacks. Whitening just refers to xor-
ing the output with a random sequence. The random sequence could be generated by
running the block cipher on r , r + 1, r + 2, . . . , r + m (but with a different shared key).
This requires m + 1 additional cryptographic operations and hence is no more efficient
than generating a MAC.

The efficiency of the new mode comes from proving that the output whitening random
sequence need only be pair-wise independent. In other words, if the output whitening
sequence is s0, s1, s2, . . . , sm, then each si is required to be random but only pairwise-
independent of the other elements. Such a sequence is easily generated by performing
only logm cryptographic operations like block cipher evaluations. A simple algebraic
scheme can also generate such a sequence by performing only two cryptographic oper-
ations.

In fact, an even weaker condition than pair-wise independence suffices. A sequence
of uniformly distributed n-bit random numbers s0, s1, . . . , sm is called XOR-universal
[19] if, for every n-bit constant c and every pair i, j , i �= j , the probability that si ⊕
sj equals c is 2−n. We show that the output whitening sequence need only be XOR-
universal. A simple algebraic scheme can generate such a sequence by performing only
one cryptographic operation.

Encryption Modes with Almost Free Message Integrity 549

The XOR-universal sequence generated to ensure message integrity can also be used
to remove chaining from the encryption mode while still ensuring confidentiality. This
results in a mode of operation for authenticated encryption which is highly paralleliz-
able, and we call this mode IAPM (for Integrity Aware Parallelizable Mode).

It is known (see [4,18]) that for symmetric key encryption, confidentiality under cho-
sen plaintext attacks (CPA), along with integrity of ciphertexts, implies confidentiality
under chosen ciphertext attacks (CCA). In this paper we prove the schemes secure for
confidentiality under CPA and secure for integrity of ciphertexts.

Concurrently to our work, Gligor and Donescu ([10]) have also described a mode of
operation similar to CBC (but not the parallelizable mode) which has built-in message
integrity, although with a slightly weaker security bound than our construction. Sub-
sequently, and based on these results, a new authenticated encryption mode OCB was
described in [31]. The mode OCB was designed to also handle plaintexts of irregular
lengths, i.e., bit lengths which are not multiple of the block length.

It has also been shown ([17]) that any scheme to encrypt m blocks of size n bits
each, that assures message integrity, is linear in (GF2)n, and uses m + k invocations of
random functions (from n bits to n bits) and v blocks of randomness, must have k + v

at least Ω(logm).
Pairwise independent random number generators (also called universal hash func-

tions [8]) have been used extensively in cryptography. In particular, Goldreich, Kraw-
czyk, and Luby [11] used them to build pseudorandom generators from regular one-way
functions, and Naor and Yung [25] used them in the construction of universal one-way
hash functions. In the context of symmetric key encryption, pairwise independent ran-
dom permutations were used to construct pseudo-random permutations from pseudo-
random functions [24]. In the context of de-randomization, Luby had demonstrated how
the random choices needed in a randomized parallel algorithm for maximal independent
set problem need only be pairwise independent [21].

The rest of the paper is organized as follows. Section 2 formalizes the notions of se-
curity for both confidentiality and message integrity. Section 3 describes the new mode
of operation IAPM. We also formalize the mode in the random permutation model. In
Sect. 4 we prove that the new scheme is secure for message integrity. In Sect. 5 we
prove the secrecy theorem for IAPM.

2. Authenticated Encryption Schemes

We give definitions of schemes which explicitly define the notion of secrecy of the input
message. In addition, we also define the notion of message integrity. Moreover, we allow
arbitrary finite length input messages as long as they are multiples of the block size of
the underlying block cipher.

Let Coins be the set of infinite binary strings. Let K⊆ {0,1}∗ be the key space, and
D be a distribution on the key space.

Definition. A (probabilistic, symmetric, stateless) authenticated encryption scheme,
with block size n, key space K, and distribution D, consists of the following:

– Initialization: All parties exchange information over private lines to establish a
private key x ∈ K. All parties store x in their respective private memories.

550 C.S. Jutla

– Message sending with integrity:

Let E : K× Coins × {{0,1}n}∗ → {{0,1}n}∗

D : K× {{0,1}n}∗ → {{0,1}n}∗ ∪ {⊥}
be polynomial time computable function ensembles. The functions E and D must
have the property that for all x ∈ K, P ∈ {{0,1}n}∗, and c ∈ Coins,

Dx

(
Ex(c,P)

) = P.

We will usually drop the random argument to E as well and just think of E as a
probabilistic function ensemble. The security of such a scheme is given by the following
two definitions, the first defining confidentiality under chosen plaintext attacks, and the
second defining message integrity.

Definition (Security under Find-then-Guess [5,22]).
Consider an adaptive probabilistic adversary A which runs in two stages: find and

guess. The two stages will be called A1 and A2. It is given access to the encryption
oracle Ex . In the find stage it tries to come up with two equal length messages P 0

and P 1. It also retains a state C1 for the next stage. In the guess stage it is given the
encryption C2 of P b , where b is chosen randomly to be 0 or 1. The value C2 can really
be seen as result of another oracle query P b , except that b is hidden from the adversary.
This “oracle call” will also be called the “choice” stage. The adversary’s success is
reflected in how well it guesses b. Formally,

AdvA = ∣∣Pr
[
x ←D K; (

P 0,P 1, C1
) ← A1Ex(·); b ←R {0,1}; C2 ← Ex

(
P b

) :
A2Ex(·)(C1,C2) = b

] − 1/2
∣∣.

An authenticated encryption scheme is said to be (t, q,μ, ε)-secure against chosen
plaintext attack if, for any adversary A as above which runs in time at most t and asks
at most q queries of Ex , these totaling at most μ blocks, and its advantage AdvA is at
most ε.

The following notion of security is also called integrity of ciphertext [4].

Definition. (Message Integrity): Consider an adaptive probabilistic adversary A run-
ning in two stages. In the first stage (find), A asks r queries of the oracle Ex . Let the
oracle replies be C1, . . . ,Cr . Subsequently in the second stage, A produces a cipher-
text C′, different from each Ci , i ∈ [1..r]. The adversary’s success probability is given
by

Succ
def= Pr

[
Dx(C

′) �=⊥]
,

where the probability is over the choice of x from K according to D, other randomness
used by E, and the probabilistic choices of A.

Encryption Modes with Almost Free Message Integrity 551

An authenticated encryption scheme is (t, q,μ, ε)-secure for message integrity if,
for any adversary A running in time at most t and making at most q queries totaling μ

blocks, its success probability is at most ε.

3. The New Modes of Operation

We begin by defining XOR-universal hash function families [19].

3.1. XOR-Universal Distributions

Definition. We denote by F(m → n) the set of all functions from m bits to n bits. We
denote by P(n → n) the set of all permutations from n bits to n bits.

Definition (Hash Function Family). An (m,n)-family of hash functions H is a collec-
tion of functions that map the set of binary strings of length m bits into the set of binary
strings of length n, i.e., a subset of F(m → n).

Definition (XOR-Universal Hash Function Family [19]). An (m,n)-family of hash
functions H is called an XOR-Universal hash function family if, for every m-bit value
M and every n-bit value c, Prh[h(M) = c] is 2−n, and further if, for every pair of
distinct m-bit values M1 and M2 and every n-bit value c, Prh[h(M1) ⊕ h(M2) = c] is
2−n, where the probabilities are over choosing h uniformly from H.

An (m,n) hash function family H can be given by a single function H which takes a
�log |H |
-bit value, called seed, as another argument.

Definition (XOR-Universal Sequence). A probability distribution over sequences of
n-bit numbers s0, s1, . . . , sm−1 is called XOR-universal if each si is uniformly distrib-
uted and, for every n-bit constant c and every pair i, j , i �= j , the probability that si ⊕ sj
is c is 2−n.

An XOR-universal sequence of length 2m can be generated using an XOR-Universal
(m,n)-hash function family H and seed k by si = H(k, i).

3.2. The New Mode—IAPM

We now describe the new mode of operation for block ciphers, which along with confi-
dentiality also guarantees message integrity. The new mode is also highly parallelizable,
as will be clear from the description. It is called IAPM for integrity aware parallelizable
mode. There are many variants of this mode, depending on how the XOR-universal
sequence is generated and even on how the initial vectors are chosen. One variant is
described in Fig. 1. We now give more details for IAPM and its many variants.

Let n be the block size of the underlying block cipher (or pseudo-random permu-
tation). For now, we assume that if the block cipher requires keys of length k, then
this mode of operation requires two keys of length k, chosen independently. Let these
keys be called K1 and K2. From now on, we will use fx to denote the block cipher
encryption function under key x.

552 C.S. Jutla

Fig. 1. Parallelizable encryption with message integrity (IAPM).

The message to be encrypted, P , is divided into blocks of length n each. Let these
blocks be P1,P2, . . . ,Pm. A random initial block, also called initial vector (IV), of
length n (bits) is chosen. As we discuss later, the IV need not be random, as long as
it is unique (that is never reused). The IV is expanded using the key K2, used as a
secret seed, to produce an XOR-Universal sequence S0, . . . , Sm+1. There are various
methods to achieve this, which we will discuss shortly. The cipher-text message C =
〈C0,C1, . . . ,Cm+1〉 is then generated as follows (see Fig. 1). The encryption pseudo-
code follows:

C0 = IV
for j = 1 to m do

Mj = Pj ⊕ Sj

Nj = fK1(Mj)

Cj = Nj ⊕ Sj

end for
checksum =

⊕m
j=1 Pj

Mm+1 = checksum ⊕ Sm+1

Nm+1 = fK1(Mm+1)

Cm+1 = Nm+1 ⊕ S0

Note that S0 is used in the last step. The xor-ing of Sj with Pj before applying the
function f is commonly called pre-whitening. Similarly, xor-ing of Sj to Nj to obtain
Cj is called post-whitening.

It is easy to see that the above scheme is invertible. The inversion process yields
blocks P1,P2, . . . ,Pm+1. The decrypted plain-text is 〈P1,P2, . . . ,Pm〉. Message in-
tegrity is verified by checking Pm+1 = P1 ⊕ P2 ⊕ · · · ⊕ Pm.

Encryption Modes with Almost Free Message Integrity 553

Generation of XOR-Universal Sequences We now focus on how the XOR-universal
sequence used above is generated. We first describe methods which employ the block
cipher itself. The block IV is first expanded into t = O(logm) new random blocks
W1, . . . ,Wt by using the block cipher and key K2 as follows:

W1 = fK2(IV)

for i = 2 to t do
Wi = fK2(W1 + i − 2)

end for

The t blocks are then used to produce m + 2 new XOR-universal random blocks
S0, S1, . . . , Sm+1. In other words, the t blocks W1, . . . ,Wt combined serve as the seed
into an XOR-Universal Hash Function family H. There are several such XOR-Universal
families, some requiring t to be only one. Such a family will be described later. For now,
consider the following elementary method using subsets (t = �log(m + 2)
):

for i = 1 to 2t do
Let 〈a1, a2, . . . , at 〉 be the binary representation of i

Si−1 = ⊕t
j=1 (aj · Wj)

end for

Galois Field Constructions of XOR-Universal Sequences There are several algebraic
XOR-Universal Hash families. Firstly, one could consider a pairwise independent hash
function family H using an algebraic construction in GF(p) as follows: generate two
random blocks W1 and W2, and then let Sj = H(〈W1,W2〉, j) = (W1 +W2 ∗ j) mod p,
where p is a prime of appropriate size. For example, if the block cipher has block size
128 bits, p could be chosen to be 2128 − 159. This leads to a faster implementation than
the subset construction.

A sequence of 2n − 1 uniformly distributed n-bit random numbers, which are XOR-
universal, can also be generated by viewing the n-bit numbers as elements of GF(2n).
Consider H(W, j) = j · W , where multiplication is in GF(2n). It is easy to see that
H is an (n,n)-XOR-universal hash family (except for the value j = 0). Now, let Sj =
H(W, e(j)), where e(j) is any one-to-one function from Z2n−1 to nonzero elements of
GF(2n). Then, it is easy to see that S0, . . . , S2n−2 is an XOR-universal sequence. Note
that this requires generation of only a single W , i.e., t = 1 (see Fig. 1).

It is worth noting that in a serial implementation of IAPM, and particularly in a re-
source constrained system, generation of Sj from W or from Sj−1 may influence the
efficiency of the mode. In particular, if e(j) = gj , where g is a generator of the field
GF(2n), it takes at least one multiplication to get Sj from Sj−1. If e(j) is the binary
representation of j + 1, then a basis of the field GF(2n) over GF2 (times W) maybe ini-
tialized in n vectors, and then Sj can be computed by exclusive-or operations of these
vectors. In fact, e(j) can be the (j +1)th gray code vector, in which case, only one n-bit
exclusive-or operation is required to get Sj from Sj−1 (see, e.g., [15,31]), as long as the
n precomputed vectors are maintained.

In some situations, even maintaining n vectors in active memory maybe too taxing on
the system. In such a situation, a GF(p) based solution as described in the next section
may be advantageous.

554 C.S. Jutla

Fig. 2. IAPM with safe initial vectors.

Safe Initial Vectors Till now we have focused on construction of XOR-universal se-
quences using fresh seeds for each message, e.g., using W = fK2(IV) as seed into an
XOR-universal hash family. Halevi [12] has observed that the XOR-universal sequences
can be generated using noncryptographic operations, i.e., by avoiding fK2(IV). A care-
ful setup and analysis shows that one can use the same seed for all messages, and hence
this “global” seed can just be the independently chosen n-bit key K2. To this end, we
define a set of initial vectors to be safe as follows.

Definition. For a sequence of messages P i , i = 1 to z, each of length mi n-bit blocks,
a sequence of n-bit initial vectors IVi (i = 1 to z) is called safe if (a) for all i ∈ [1..z],
IVi +mi +1 < 2n−1, where the addition is integer addition, and (b) for all i, i1 ∈ [1..z],
i �= i1, for all j ∈ [0..mi + 1], and for all j1 ∈ [0..mi1 + 1], IVi + j �= IVi1 + j1.

The j th whitening value for the ith message, Si
j (j ∈ [0..mi + 1]), is then generated

as Si
j = H(K2, IVi + j), where H is any XOR-Universal hash family. We will show the

surprising result that if the initial vectors are safe, then regardless of how the adversary
choses the n-bit initial vector for its adversarial message, its (success) probability for
attaining message integrity is negligible.

There are many ways to implement safe initial vectors, including a random choice for
the initial vector. Alternatively, one could require the initial vector to be a multiple of
2n/2, and assuming that the length of each message is less than 2n/2 − 1, this leads to a
sequence of safe initial vectors. However, with this scheme, some of the optimizations
mentioned above for computing Sj from Sj−1 do not work when switching to a new
message. For the same optimizations to work even across messages, one can set IVi =
IVi−1 + mi−1 + 2 (see Fig. 2), and it is easy to see that this leads to safe initial vectors.

The intuition behind why safe initial vectors are secure is that while encrypting gen-
uine messages, the value IVi + mi + 1 is never used for calculating a post-whitening
value. Now, suppose that an adversary, attacking the message integrity of the scheme,

Encryption Modes with Almost Free Message Integrity 555

tries to use an initial vector different from IVi but one which is close enough, say
IVi + s, where s ≤ mi . Then, the above fact and the asymmetry in the last block whiten-
ing values forces the adversary to end up using a “wrong” whitening value (either post-
whitening or pre-whitening value) for at least one block. We defer complete details of
the proof to Sect. 4.

3.3. Integrity Aware Parallelizable Mode (IAPM) Using a Prime Number

The GF(p) construction with only a single W , instead of two, is not XOR-universal
(as opposed to the previous construction in GF(2n)). However, it is XOR-universal in
GF(p). Such a sequence can be used securely in a slight variant of the mode described
above where “whitening” now refers to addition modulo 2n. We now give more details
of this variant.

Let p be a prime close to 2n. For example, for 128 bit block ciphers p could be
2128 −159, which is known to be a prime. This prime will be fixed for all invocations of
this mode using block ciphers of block size 128 bit. For 64-bit ciphers, p = 264 − 257
is a close prime.

Let K2 be an additional independently chosen key (in addition to key K1 for the
block cipher). Now, the sequence S0, S1, . . . , Sm+1 is generated by the following proce-
dure:

procedure xor_universal_gfp_sequence(input IV, m,K2; output S)
{

S0 = IV ∗ K2 mod p

for j = 1 to m + 1 do
S∗

j = (Sj−1 + K2) mod 2n

if (K2 > S∗
j) Sj = S∗

j + (2n − p) else Sj = S∗
j .

end for
}

We assume that the initial vectors IV are chosen to be safe, e.g., by requiring them to
be multiple of 2�n/2
 or by incrementing them appropriately as in the previous section.

In the above code, the condition (K2 > S∗
j) is equivalent to n-bit integer addition

overflow in the previous step. Essentially, we are computing Sj to be (j + 1) ∗ K2 mod
p, except that we use a lazy representation. In other words, we do not reduce modulo p

if (Sj−1 +K2) < 2n but we do compensate by 2n −p if (Sj−1 +K2) ≥ 2n, since in the
latter case, (Sj−1 + K2) = Sj−1 + K2 − p = (Sj−1 + K2 − 2n) + (2n − p) (mod p).
We prove in Lemma 9 that there is no overflow when compensating by (2n − p).

In this mode, the pre- and post-whitening is done by n-bit integer addition. The ci-
phertext message C = 〈C0,C1, . . . ,Cm+1〉 is generated as follows (see Fig. 3):

C0 = IV
for j = 1 to m do

Mj = (Pj + Sj) mod 2n

Nj = fK1(Mj)

Cj = (Nj + Sj) mod 2n

end for
checksum = P1 ⊕ P2 ⊕ · · · ⊕ Pm

556 C.S. Jutla

Fig. 3. Integrity aware parallelizable mode (IAPM) in GF(p) using Safe IVs.

Mm+1 = (checksum + Sm+1) mod 2n

Nm+1 = fK1(Mm+1)

Cm+1 = (Nm+1 + S0) mod 2n

Note that for computing the checksum, we use exclusive-or instead of addition mod-
ulo 2n. Note that S0 is used in the last step. The above scheme is invertible.

3.4. IAPM in Random Permutation Model

Since the description of IAPM in Sect. 3.2 was for block ciphers, we formally define the
authenticated encryption scheme IAPM in the random permutation model here. In the
following, the operator “+” will stand for integer addition, and “⊕” for n-bit exclusive-
or.
Definition. Given a permutation f from n bits to n bits and a function g from n bits
to n bits, the (deterministic) function E-IAPMf,g : {0,1}n × {{0,1}n}∗ → {{0,1}n}+ is
defined as follows:

– Let the input to E-IAPMf,g be an n-bit IV (denoting initial vector) and an mn-bit
string P (2n > m ≥ 0) such that IV+m+ 1 < 2n − 1, which is divided into m n-bit
strings P1,P2, . . . ,Pm.

– Define C0 = IV, and checksum = 0 ⊕ ⊕m
j=1 Pj .

– For notational convenience, we will also refer to checksum as Pm+1.
– Define for j = 1 to m: Cj = g(IV + j) ⊕ f (Pj ⊕ g(IV + j)).
– Define Cm+1 = g(IV) ⊕ f (Pm+1 ⊕ g(IV + m + 1)).
– The output of the function E-IAPMf,g is the (m + 2)n-bit string C0, C1, . . . ,Cm,

Cm+1.

Encryption Modes with Almost Free Message Integrity 557

Definition. Given a permutation f from n bits to n bits and a function g from n bits to
n bits, the (deterministic) function D-IAPMf,g : {{0,1}n}+ → {{0,1}n}∗ ∪{⊥} is defined
as follows:

– Let the input to D-IAPMf,g be an (m + 2)n-bit string C (2n ≥ m ≥ 0), which is
divided into (m + 2) n-bit strings C0,C1, . . . ,Cm,Cm+1.

– Define IV = C0.
– If IV+m + 1 ≥ 2n − 1, the output of the function is ⊥.
– Define for j = 1 to m: Pj = g(IV + j) ⊕ f −1(Cj ⊕ g(IV + j)).
– Define Pm+1 = g(IV + m + 1) ⊕ f −1(Cm+1 ⊕ g(IV)).
– if 0⊕⊕m

j=1 Pj is not same as Pm+1, return ⊥, otherwise the output of the function
D-IAPMf,g is the mn-bit string P1, . . . ,Pm.

Definition (IAPM in random permutation model). Let G be a (n,n)-family of
XOR-universal hash functions. The authenticated encryption scheme IAPM(G) with
block size n is given by the following key space, distribution, encryption function, and
decryption function:

– The set K of keys is the set of pairs f and g, where f is in P(n→n) (i.e., a permu-
tation), and g is in G .

– the distribution D on K is given by choosing f uniformly from P(n→n) and choos-
ing g independently and uniformly from G .

– The encryption function under key (f, g) is given by E-IAPMf,g.
– The decryption function under key (f, g) is given by D-IAPMf,g.

It is easy to see that D-IAPMf,g(E-IAPMf,g(IV, 〈P1, . . . ,Pm〉)) = 〈P1, . . . ,Pm〉.

4. Message Integrity of IAPM

In this section we will prove the message integrity of IAPM in the random permutation
model. The proof can be extended to strong (super) pseudo-random permutations [22]
by standard techniques.1 For simplicity, we will assume that the initial vectors (IVs)
are chosen deterministically as a function of the previous ciphertexts (which includes
the previous initial vectors and the lengths of the previous ciphertexts). As shown in
Sect. 3.2, there are several deterministic schemes to achieve safe initial vectors, and the
following theorem assumes any such scheme. If, on the other hand, the initial vectors
are chosen randomly (and completely independent of f and g), a slight modification of
the proof below shows that the adversary’s success probability is marginally higher, i.e.,
by (z + u)(z + 1) ∗ 2−n (where z and u are as in the theorem below). In the proof, we
will mention the changes required for this random IV case.

Theorem 1. Let A be an adaptive adversary attacking the message integrity of
IAPM(G) (in the random permutation model). Let A make at most z queries in the first

1 Even if the function g was chosen as an application of another random permutation from the same
pseudo-random permutation class from which f is chosen (as opposed to g being chosen independently of f),
a standard hybrid argument shows that g can still be considered independent of f.

558 C.S. Jutla

stage, totaling at most μ blocks. Let u = μ+z. Moreover, assume that the initial vectors
for the queries in the first stage are chosen using a deterministic scheme such that they
are safe. Let v be the maximum number of blocks in the second stage. If 4u2 < 2n and
4v2 < 2n, then for adversary A,

Succ <
(
u2 + 2u + 3v + 4z + 1

) ∗ 2−n.

Proof. We first note that we allow arbitrary functions as adversaries and not just com-
putable functions. Then without loss of generality, we can assume that the adversary is
deterministic, as every probabilistic adversary is just a probability distribution over all
deterministic adversaries [20].

Note that, in the message integrity attack, the adversary’s success probability is mea-
sured under the key chosen from K according to distribution D. Thus by the definition
of IAPM(G), the space for the probability distribution is the set of pairs f and g. Any
variable which is a function of f and g will be called a random variable and for clar-
ity will be in bold-face. We will refer to f as the permutation and g as the whitening
function.

Fix an adaptive adversary. Since the adversary is deterministic, the first query’s plain-
text (say P 1 = 〈P 1

1 , . . . ,P 1
m〉) is fixed for that adversary. Thus, the first query’s output,

say C1, is only a function of f and g. Note that the IV for the first message (which is
the first block of C1) is also chosen deterministically and is in fact fixed. The adversary
being adaptive, its second query is a function of C1. But, since C1 is only a function of
f and g, the second query’s plaintext and IV can also be considered just as a function of
f and g. Thus, C2 is only a function of f and g, and so forth.

For all variables corresponding to a message (query), we will use superscripts to de-
note the message number and subscripts to denote blocks in a particular message. We
will use C to denote the whole transcript of sequence of ciphertext outputs C1, . . . ,Cz.
Thus, Ci

j is a variable denoting the j th block in the ith ciphertext message. More pre-
cisely, this variable C should be written C(f, g), as it is a function of f and g, as argued
in the previous paragraph.

We will use ci to denote prospective values for Ci . We will use c to denote the
prospective ciphertext transcript c1, . . . , cz. The function | · | is used to represent length
of a message in n-bit blocks. Let l() be the length of the first ciphertext (determined
by the adversary A). Given a sequence of ciphertext messages c1, . . . , ci , i < z, let
l(c1, . . . , ci) be the length of the (i + 1)th ciphertext (which is determined by the adver-
sary and therefore is a deterministic function of c1, . . . , ci). We will use the shorthand
li for |ci |. If the adversary makes less than z queries in the first stage, say z′ ≤ z, we
assume, for convenience, that l(c1, . . . , ci) = 1 for all i ≥ z′, as the ciphertext tran-
script includes the initial vectors ci

0. Note that if a query is a null message, then IAPM
generates two blocks of ciphertext, the initial vector and the block produced from the
checksum. Thus for all i ≤ z′, li ≥ 2, whereas, for all i > z′, li = 1. We will use the
function Z(c) to determine the largest i (≤ z) such that li (c) ≥ 2. Similarly, the random
variable Z will denote Z(C(f, g)). Note that Z ≤ z.

We will also refer to ci
0 as IVi (c) or just IVi when clear from context.

Let the adversary’s query in the second stage, the attempted forgery, be cipher-text
C′, different from all ciphertexts in the first stage. We will refer to C′ as the forged

Encryption Modes with Almost Free Message Integrity 559

Fig. 4. IAPM in random permutation model.

ciphertext. Since C′ is a deterministic function of C, given c1, . . . , cz, let the ciphertext
in the second stage be c′ with length l′, i.e., c′ = C′(c). We will also refer to c′

0 as IV′(c)
or just IV′ when clear from context.

Let Li = l(C1, . . . ,Ci−1) be the random variable representing the length of ciphertext
Ci (i.e., the checksum block has index Li −1). Similarly, L′ will denote the length of C′.

As per the definition of IAPM in random permutation model (also see Fig. 4), the
whitening function g is applied before and after the application of the permutation f.
For each block j in message i, the pre-whitening is done with g applied to IVi offset
by j . Similarly for the post-whitening, except when j is the last block, in which case
the post-whitening is done with g applied to IVi offset with zero. Motivated by this, for
each i in [1..z], define σ i

j (c) to be the post-whitening offset in the j th block of the ith

message, namely σ i
j (c) = j if j < li − 1 and σ i

j (c) = 0 if j = li − 1. Similarly, define
σ ′

j (c) = j if j < l′ − 1 and σ ′
j (c) = 0 if j = l′ − 1.

For a fixed ciphertext transcript c, the plaintext block P i
j (being chosen adaptively)

can be viewed as only a function of c, and we will write it as P i
j (c). Thus, instead of

writing P i
j as a function of the permutation f and the whitening function g, we will

consider it as a function of prospective ciphertext transcript c. The random variable Pi
j

can still be expressed as P i
j (C) = P i

j (C(f, g)).
For any prospective ciphertext transcript c and whitening function g ∈ G , for i ∈ [1..z]

and j ∈ [1..li − 1], define Mi
j (c, g) = P i

j (c) ⊕ g(ci
0 + j). Similarly, define Ni

j (c, g) =
ci
j ⊕ g(ci

0 + σ i
j (c)). We will use Mi

j to denote the random variable Mi
j (C, g) and use

Ni
j to denote the random variable Ni

j (C, g). In other words, Mi
j is the actual input

to the permutation f (for ith message’s j th block), and Ni
j is the output of f on that

input. We will refer to Mi
j s as the whitened plaintext blocks and to Ni

j s as the raw
ciphertext blocks. Just as for C, we will use P(c), M(c,g), and N(c,g) to denote the

560 C.S. Jutla

whole sequence. Note that although Ni
j = f(Mi

j), there is no such relationship between

Ni
j (c, g) and Mi

j (c, g). In particular, Ni
j (c, g) = f(Mi

j (c, g)) only if the transcript c and

whitening function g are such that ci
j = f(Mi

j (c, g)) ⊕ g(ci
0 + σ i

j (c)).
Moving on to the forged ciphertext, again for a fixed c, as c′ is fixed, for j ∈ [1..l′−1],

define N ′
j (c, g) = c′

j ⊕ g(c′
0 + σ ′

j (c)). Note that as c′ is picked by the adversary, p′ is

not just a function of c, and hence M ′ (as opposed to Mi
j) cannot be defined as a

function of just c and g. Thus, for j ∈ [1..l′ − 1], any permutation f , and g ∈ G , de-
fine M ′

j (c, g, f) = f −1(N ′
j (c, g)). As before, N′

j will stand for the random variable
N ′

j (C, g), and M′
j for M ′

j (C, g, f). We will refer to N′
j s as the whitened forged cipher-

text blocks and to M′
j s as the raw forged plaintext blocks.

Also, for j ∈ [1..l′ − 1], define P ′
j (c, g, f) = M ′(c, g, f) ⊕ g(c′

0 + j). By the
definition of IAPM(G) (see D-IAPM), the random variable P′

j (= P ′
j (C, g, f)) is

M′
j ⊕ g(C′

0 + j).
For future reference, we list all these definitions and equalities here.

Pi
j = P i

j (C), for j ∈ [
1..Li − 2

]
, (1)

Ci
j = g

(
Ci

0 + j
) ⊕ f

(
Pi

j ⊕ g
(
Ci

0 + j
))

for j ∈ [
1..Li − 2

]
, (2)

Pi
Li−1 = 0 ⊕

Li−2⊕

j=1

Pi
j , (3)

Ci
Li−1 = g

(
Ci

0

)
,⊕f

(
Pi

Li−1 ⊕ g
(
Ci

0 + Li − 1
))

, (4)

Mi
j (c, g) = P i

j (c) ⊕ g
(
ci

0 + j
)
, (5)

Ni
j (c, g) = ci

j ⊕ g
(
ci

0 + σ i
j (c)

)
, (6)

Mi
j = Mi

j

(
C,g

)
, (7)

Ni
j = Ni

j (C,g) = f
(
Mi

j

)
, (8)

N ′
j (c, g) = c′

j ⊕ g
(
c′

0 + σ ′
j (c)

)
, (9)

N′
j = N ′

j (C,g), (10)

M ′
j (c, g, f) = f −1(N ′

j (c, g)
)
, (11)

M′
j = M ′

j (C,g, f), (12)

P ′
j (c, g, f) = M ′(c, g, f) ⊕ g(c′

0 + j), (13)

P′
j = M′

j ⊕ g(C′
0 + j). (14)

Below we define events E0, E1, and E2, which are random variables (being functions
of the permutation f and the whitening function g). We prove that either the adversary
forces the events E0 or E1, or the event E2 happens with high probability. In either
case, we show that the checksum validates with low probability. The events E0 and

Encryption Modes with Almost Free Message Integrity 561

E1 describe attacks in which the forged ciphertext is copied from one of the previous
legitimate ciphertexts, possibly with re-arrangement and deletion of blocks. The event
E0 is called deletion attempt, as the adversary in this case just truncates an original
ciphertext but retains the last block. The event E1 can be seen as a rotation attempt by
the adversary.

Event E0 (deletion attempt): There is an i ∈ [1..Z] such that 2 ≤ L′ < Li and

(i) ∀j ∈ [0..L′ − 2] : C′
j = Ci

j and (ii) C′
L′−1 = Ci

Li−1.

Event E1 (rotation attempt)2: There is an i ∈ [1..Z] and a t , 1 ≤ t ≤ Li − L′, such that

(i) C′
0 = Ci

0 + t, (ii) ∀j ∈ [1..L′ − 1] : C′
j = Ci

σ ′
j (C)+t

.

In other words, C′
1 = Ci

t+1, C′
2 = Ci

t+2, . . . ,C′
L′ = Ci

t . Also, (i) is same as requiring
the initial vector of the forged ciphertext to be same as the initial vector of the ith
ciphertext offset by t .
Event E2 says that there is a block x in the forged ciphertext C′ such that its (whitened
forged ciphertext block) N′

x variable is different from all previous (raw ciphertext
variables) Ns and also different from all other N’s.

Event E2: There is an x ∈ [1..L′ − 1] such that

(i) ∀t ∈ [1..z] ∀j ∈ [1..Lt − 1] : N′
x �= Nt

j and

(ii) ∀j ∈ [1..L′ − 1], j �= x : N′
x �= N′

j .

The adversary’s success probability is upper bounded by (a) the probability of event
E0 or E1 or E2 not happening, plus (b) the probability of the checksum validating
along with events E0 or E1 or E2 happening. Intuitively, when E0 or E1 holds, a pre-
whitening value will have a discrepancy, whereas if E2 holds, a post-whitening value
will have a discrepancy. These discrepancies lead to a bound on the latter probability (b),
though proving the bound requires a few lemmas.

As for bounding the probability (a), the event E2 not happening translates into a dis-
junction of events of the type gi

j ⊕ gi1
j1 = Ci

j ⊕ Ci1
j1, where gi

j stands for g(IVi + j).
Naively, since G is XOR-universal, one would think that the probability of each of these
events is 2−n. However, it is not guaranteed that the whitening function g is indepen-
dent of the ciphertext C, as the ciphertext satisfies Ci

j = Ni
j ⊕ gi

j . Intuitively, if all the

whitened plaintexts Mi
j were distinct and Ci

j = Ni
j ⊕ gi

j were the only relations be-
tween C and g, then indeed g would be independent of C (as g and f are independently
chosen). But, requiring all Mi

j to be distinct implies another relation between C and g.
However, it can be shown that, on every fixed outcome of the ciphertext C (i.e.,

C = c for some constant transcript c), requiring the M variables to be distinct (and the
N variables to be distinct), rules out only a negligible fraction of functions in G as a
potential value for g and moreover leaves the remaining functions in G equiprobable.

2 If we only consider initial vectors chosen with a nice structure, e.g., with enough zeroes in the least
significant bits to unambiguously embed block numbers, then the event E1 need not be considered. In that
case, one can show that either the adversary forces event E0, or event E2 happens with high probability.

562 C.S. Jutla

So, consider the following predicate PD (pairwise different). For any constant c and
function g ∈ G , define PD(c, g) to be

∀i, i1 ∈ [1..z],∀j ∈ [
1..li − 1

]
,∀j1 ∈ [

1..li1 − 1
]
, (i, j) �= (i1, j1) :

(
Mi

j (c, g) �= Mi1
j1(c, g)

) ∧ (
Ni

j (c, g) �= Ni1
j1(c, g)

)
.

Again, we will use PD to denote the random variable PD(C(f, g), g). If a random
schedule is used to pick the initial vectors, then we must include in this predicate the
condition that {ci

0}i are safe.
The rest of the proof of the theorem is organized as follows. To start with, we will

formalize in Lemma 1 the equiprobability of the allowed g, given a constant transcript
C = c and conditioned on the event PD(c, g). We use this lemma to prove in Lemma 6
that the probability of the event PD and the negation of (E0 or E1 or E2) is low. We also
use Lemma 1 to prove in Lemma 3 that event PD itself happens with high probability.
Finally, we prove that the checksum validating along with events E0 or E1 or E2 is a
small probability event as well (Lemmas 7 and 8), which would lead to the proof of the
theorem. We first state all the lemmas and use them to prove the theorem. The proofs of
the lemmas follow later.

We need to characterize the set of prospective ciphertexts with safe IVs for this partic-
ular adversary A. Before that, recall the (adversarial) ciphertext length function l from
above. Also, recall that the predicate “safe” applies to a set of initial vectors. Now, for
0 ≤ i < z, define

L
(
c1, . . . , ci

) = {
ci+1 : ∣∣ci+1

∣∣ = l
(
c1, . . . , ci

)
and

{
c
j

0

}
j∈[1..i+1] safe

}
.

Let

C = {
c : ∀i ∈ [1..z] ci ∈ L

(
c1, . . . , ci−1)}.

Thus, C can be seen as the space of prospective ciphertext transcripts for this partic-
ular adversary A. Note that when we sum over c ranging from C , it really means the
following telescopic sum:

∑

c∈C
=

∑

c1∈L()

. . .
∑

ci∈L(c1,...,ci−1)

. . .
∑

cz∈L(c1,...,cz−1)

.

Remark. If a random schedule is used to choose the IVs, then we exclude the safety
condition from C and include it in the predicate PD. Moreover, in all the lemmas and the
proof of the theorem below, the probability will be over choosing (f, g) according to D,
as well as choosing the initial vectors randomly and independently. The only change
will be in the analysis of Lemma 2, as the safety condition will incur an additional cost
of (z + u)(z + 1) ∗ 2−n.

In the following lemmas, the adversary A is fixed to be as in Theorem 1 statement.
The quantities n, z, μ, u, and v are as stipulated in Theorem 1 statement.

Encryption Modes with Almost Free Message Integrity 563

Lemma 1. For every prospective ciphertext transcript c ∈ C and for any function
g ∈ G such that PD(c, g),

Pr(f,g)∈DK
[
g = g|C = c ∧ PD(c, g)

] = Pr(f,g)∈DK[g = g]
Pr(f,g)∈DK[PD(c, g)] .

Lemma 2. For every prospective ciphertext transcript c ∈ C ,

Pr(f,g)∈DK
[¬PD(c, g)

]
< u2 ∗ 2−n.

Lemma 3.

Pr(f,g)∈DK
[¬PD

]
< u2 ∗ 2−n.

The following lemma follows from Lemmas 1 and 2 and is used to prove Lemmas 6
and 8.

Lemma 4. For every triple of n-bit constants a, b, and d such that a �= b and for every
prospective ciphertext transcript c ∈ C ,

Pr(f,g)∈DK
[
g(a) ⊕ g(b) = d ∧ C = c ∧ PD(c, g)

] ≤ 2−n+1 ∗ Pr(f,g)∈DK[C = c].

The following lemma is also used to prove Lemma 6.

Lemma 5. For every prospective ciphertext transcript c ∈ C and its corresponding
forged transcript c′, either E0 or E1 holds for c, or

∃x ∈ [1..l′ − 1] ∀t ∈ [1..z] ∀j ∈ [1..lt − 1] :
(
IV′(c) + σ ′

x(c) = IVt (c) + σ t
j (c)

) ⇒ (c′
x �= ct

j).

Lemma 6. Let events E0, E1, and E2 be as in Theorem 1. Then,

Pr(f,g)∈DK
[¬(E0 ∨ E1 ∨ E2) ∧ PD

]
< (2u + 2v) ∗ 2−n.

Lemma 7. Pr(f,g)∈DK[⊕L′−1
j=1 P′

j = 0 | E2] ≤ v
2n−(u+v)

.

Lemma 8. Pr(f,g)∈DK[⊕L′−1
j=1 P′

j = 0 ∧ (E0 ∨ E1) ∧ PD] ≤ z ∗ 2−n+2.

Proof of Theorem 1 (continued):

Pr(f,g)∈DK

[
L′−1⊕

j=1

P′
j = 0

]

≤ Pr

[
L′−1⊕

j=1

P′
j = 0 ∧ PD

]

+ Pr[¬PD]

564 C.S. Jutla

≤ Pr

[
L′−1⊕

j=1

P′
j = 0 ∧ (E0 ∨ E1 ∨ E2) ∧ PD

]

+ Pr

[
L′−1⊕

j=1

P′
j = 0 ∧ ¬(E0 ∨ E1 ∨ E2) ∧ PD

]

+ Pr[¬PD]

≤ Pr

[
L′−1⊕

j=1

P′
j = 0 ∧ (E0 ∨ E1) ∧ PD

]

+ Pr

[
L′−1⊕

j=1

P′
j = 0 ∧ E2

]

+ Pr
[¬(E0 ∨ E1 ∨ E2) ∧ PD

] + Pr[¬PD]
≤ z ∗ 2−n+2 + v

2n − (u + v)

+ (u + v) ∗ 2−n+1 + u2 ∗ 2−n (by Lemmas 8, 7, 6, and 3 resp.)

≤ (
u2 + 2u + 3v + 4z

) ∗ 2−n + O(u + v) ∗ v ∗ 2−2n. �

4.1. Proofs of the Lemmas

Lemma 1. For every prospective ciphertext transcript c ∈ C and for any function
g ∈ G such that PD(c, g),

Pr(f,g)∈DK
[
g = g|C = c ∧ PD(c, g)

] = Pr(f,g)∈DK[g = g]
Pr(f,g)∈DK[PD(c, g)] .

Proof. Now,

Pr(f,g)∈DK
[
g = g|C = c ∧ PD(c,g)

]

= Pr[g = g ∧ C = c ∧ PD(c,g)]
Pr[C = c ∧ PD(c,g)] .

We first consider the numerator:

Pr
[
g = g ∧ C = c ∧ PD(c,g)

]

=
∑

f ′
Pr

[
g = g ∧ f = f ′ ∧ C = c ∧ PD(c,g)

]

= Pr
[
g = g ∧ f ∈ Fc,g ∧ C = c ∧ PD(c,g)

]

= Pr[g = g ∧ f ∈ Fc,g],
where Fc,g is the set of permutation defined as follows: since PD(c, g) holds, all
the raw ciphertext block variables N(c,g) are distinct. Similarly, all whitened plain-
text block variables M(c,g) are distinct. These M(c,g) and N(c,g) values deter-
mine a unique permutation fc,g projected on a number of blocks given by c (i.e.,
|c| − z). Thus, for c, g s.t. PD(c, g), define Fc,g to be the set of permutations

Encryption Modes with Almost Free Message Integrity 565

with the projection on these blocks equal to fc,g and with no other restrictions on
other blocks. If c, g are such that ¬PD(c, g), then we let Fc,g to be the empty
set.

The last equality above follows as the two events are identical. To see that g = g

and f ∈ Fc,g implies C = c, first note that since f is in Fc,g , the set Fc,g is nonempty,
and hence PD(c, g) holds, which implies PD(c, g). Now note that the first plaintext
message p1 is fixed, and moreover the first initial vector c1

0 is fixed, which fixes M1

to M1(c, g) by (7) and (5). Since N1 = f(M1) (by (8)), this fixes N1 to f(M1(c, g)),
which is fc,g(M

1(c, g)) by the definition of Fc,g and fc,g . But fc,g(M
1(c, g)) is

same as N1(c, g) by the definition of fc,g . Thus, C1 is fixed to c1 by (2) and (6).
This, in turn, fixes P2 = P 2(c) by (1) and fixes C2

0 to c2
0 as the initial vectors are

chosen as a deterministic function of the previous ciphertexts, and so forth induc-
tively.

We now consider the denominator:

Pr
[
C = c ∧ PD(c,g)

]

=
∑

g′∈G

∑

f ′
Pr

[
g = g′ ∧ f = f ′ ∧ C = c ∧ PD(c,g)

]

=
∑

g′∈G :PD(c,g′)

Pr
[
g = g′ ∧ f ∈ Fc,g′ ∧ C = c ∧ PD(c,g)

]

=
∑

g′∈G :PD(c,g′)

Pr[g = g′ ∧ f ∈ Fc,g′].

The above follows because, as before, when PD(c, g′) holds, there is a fixed set of
permutations Fc,g′ with a unique projection (on |c| − z blocks) compatible with g = g′
and C = c.

Since g and f are independent, we have from the above analysis:

Pr
[
g = g|C = c ∧ PD(c,g)

]

= Pr[g = g ∧ f ∈ Fc,g]∑
g′∈G :PD(c,g′) Pr[g = g′ ∧ f ∈ Fc,g′]

= Pr[g = g] ∗ Pr[f ∈ Fc,g]∑
g′∈G :PD(c,g′) Pr[g = g′] ∗ Pr[f ∈ Fc,g′] = Pr[g = g]

Pr[PD(c,g)] .

The last equality follows because in distribution D, f is chosen uniformly, Fc,g is non-
empty by the hypothesis of the lemma, and Fc,g′ is nonempty as PD(c, g′) holds, and
further |Fc,g| = |Fc,g′ |. �

Lemma 2. For every prospective ciphertext transcript c ∈ C ,

Pr(f,g)∈DK
[¬PD(c, g)

]
<

(
u2) ∗ 2−n.

566 C.S. Jutla

Proof. Recall that event PD(c, g) is

∀i, i1 ∈ [1..z],∀j ∈ [
1..li − 1

]
,∀j1 ∈ [

1..li1 − 1
]
, (i, j) �= (i1, j1) :

(
Mi

j (c,g) �= Mi1
j1(c,g)

) ∧ (
Ni

j (c,g) �= Ni1
j1(c,g)

)
.

Then ¬ PD(c, g) can be written as

∃i, i1 ∈ [1..z],∃j ∈ [
1..li − 1

]
,∃j1 ∈ [

1..li1 − 1
] : (i, j) �= (i1, j1) ∧

[(
Mi

j (c,g) = Mi1
j1(c,g)

) ∨ (
Ni

j (c,g) = Ni1
j1(c,g)

)]
.

Since we have a constant ciphertext transcript c and hence a constant plaintext P(c)

as well, the probability of any event Mi
j (c, g) = Mi1

j1(c, g) is just 2−n, as each Mi
j (c, g)

is just a function of g, the latter being chosen from an XOR-universal set G, and given
that the initial vectors are safe. Similarly for Ni

j (c, g) = Ni1
j1(c, g). The lemma follows

by union bound. �

Lemma 3.

Pr(f,g)∈DK[¬ PD] <
(
u2) ∗ 2−n.

Proof. For c = c1, c2, . . . , ci , i ≤ z, define #(c) to be (2n)!/(2n − ∑i
j=1(|cj | − 1))!.

In other words, #(c) is the ratio of the number of permutations on 2n blocks and |Fc,g|
(as defined in Lemma 1, and which is same irrespective of g, as long as PD(c, g) holds).

Recall from the proof of Lemma 1 that, for c ∈ C ,

Pr
[
C = c ∧ PD(c,g)

] =
∑

g′∈G :PD(c,g′)

Pr[g = g′ ∧ f ∈ Fc,g′].

We use this to get

Pr
[
PD(C,g)

] =
∑

c∈C
Pr

[
C = c ∧ PD(c,g)

]

=
∑

c∈C

∑

g′∈G :PD(c,g′)

Pr[g = g′ ∧ f ∈ Fc,g′]

=
∑

c∈C

∑

g′∈G :PD(c,g′)

Pr[g = g′] ∗ Pr[f ∈ Fc,g′]

=
∑

c∈C

∑

g′∈G :PD(c,g′)

Pr[g = g′] ∗ 1

#(c)

=
∑

c∈C

(
1

#(c)
∗ Pr[PD(c,g]

)

≥ minc∈C
{
Pr

[
PD(c,g)

]} ∗
∑

c∈C

1

#(c)

Encryption Modes with Almost Free Message Integrity 567

≥ (
1 − u2 ∗ 2−n

) ∗
∑

c∈C

1

#(c)
(by Lemma 2)

≥ (
1 − u2 ∗ 2−n

)
.

The last inequality follows by

∑

c∈C

1

#(c)
=

∑

c1∈L()

· · ·
∑

ci∈L(c1,...,ci−1)

· · ·
∑

cz∈L(c1,...,cz−1)

1

#(c1; . . . ; cz)

≥
∑

c1∈L()

· · ·
∑

ci∈L(c1,...,ci−1)

· · ·
∑

cz−1∈L(c1,...,cz−2)

1

#(c1; . . . ; cz−1)

≥ · · · ≥
∑

c1∈L()

1

#(c1)
≥ 1,

where we used the fact that the number of cz in L(c1, . . . , cz−1) is 2n(|cz|−1), and so
on. �

We will need the following lemma to prove Lemmas 6 and 8.

Lemma 4. For every triple of n-bit constants a, b, and d such that a �= b and for every
prospective ciphertext transcript c ∈ C ,

Pr(f,g)∈DK
[
g(a) ⊕ g(b) = d ∧ C = c ∧ PD(c, g)

] ≤ 2−n+1 ∗ Pr(f,g)∈DK[C = c].

Proof.

Pr
[
g(a) ⊕ g(b) = d ∧ C = c ∧ PD(c,g)

]

= Pr
[
g(a) ⊕ g(b) = d | C = c ∧ PD(c,g)

] ∗ Pr
[
C = c ∧ PD(c,g)

]

≤ Pr
[
g(a) ⊕ g(b) = d | C = c ∧ PD(c,g)

] ∗ Pr[C = c].
The first factor is upper bounded by 2−n/Pr[PD(c, g)] by using Lemma 1. To see

this,

Pr(f,g)∈DK
[
g(a) ⊕ g(b) = d | C = c ∧ PD(c,g)

]

=
∑

g∈G
Pr

[
g = g ∧ g(a) ⊕ g(b) = d | C = c ∧ PD(c,g)

]

=
∑

g∈G
Pr

[
g = g | C = c ∧ PD(c,g)

]

∗ Pr
[
g(a) ⊕ g(b) = d | g = g ∧ C = c ∧ PD(c,g)

]

=
∑

g∈G:g(a)⊕g(b)=d

Pr
[
g = g | C = c ∧ PD(c,g)

]

568 C.S. Jutla

≤
∑

g∈G:g(a)⊕g(b)=d

Pr(f,g)∈DK[g = g]
Pr[PD(c,g)] (by Lemma 1)

= 1

Pr[PD(c,g)] ∗
∑

g∈G:g(a)⊕g(b)=d

1

|G|

= 1

Pr[PD(c,g)] ∗ Prg∈G
[
g(a) ⊕ g(b) = d

]

= 2−n

Pr[PD(c,g)] .

Now by Lemma 2 and the hypothesis of Theorem 1 that 4u2 < 2n, we have
Pr[PD(c, g)] > 1/2, and hence the lemma follows. �

Lemma 5. For every prospective ciphertext transcript c ∈ C and its corresponding
forged transcript c′, either E0 or E1 holds for c, or

∃x ∈ [1..l′ − 1] ∀t ∈ [1..z] ∀j ∈ [1..lt − 1] :
(
IV′(c) + σ ′

x(c) = IVt (c) + σ t
j (c)

) ⇒ (
c′
x �= ct

j

)

Proof. Since the initial vectors are safe, by definition, for all t ∈ [1..z], IVt + lt − 1 <

2n − 1. Also, IV′ + l′ − 1 < 2n − 1 (see Step 3 of D-IAPM).
Recall that σ t

j (c) is the post-whitening offset for block j in message t . As it is clear
from context, we will drop the argument c from σ and σ ′.

If for all message indices t ∈ [1..z], the forged initial vector IV′ is not equal to IVt

(along with their offsets), i.e., for all t : IV′ �∈ IVt + [0..lt − 2], then we can take x =
l′ − 1, in which case σ ′

x = 0, and hence IV′ + σ ′
x = IV′. Now, note that σ t

j ranges from
0 to lt − 2, and hence this x satisfies the lemma vacuously.

Next, consider the case where there exists a t ∈ [1..z] such that IV′ equals IVt with
some offset, i.e., IV′ ∈ IVt + [0..lt − 2]. As the initial vectors are safe, there can be at
most one such t . Also, note that t ≤ Z(c), as for i > Z(c), li = 1. There are two main
sub-cases.

(a) For every x ∈ [1..l′ − 1], IV′ + σ ′
x ∈ IVt + [0..lt − 2] (i.e., the set IV′ along with

its offsets is contained in the set IVt along with its offsets). Again, as the initial
vectors are safe, IV′ + σ ′

x cannot equal IVt ′ + σ t ′
j ′ for some other t ′ �= t . Also,

since σ ′
x ranges over values from 0 to l′ − 2, we have IV′ + l′ − 2 ≤ IVt + lt − 2.

There are two further sub-cases.
(a1) (IV′ = IVt : truncation attempt). Here l′ ≤ lt . If c′ is a (strict) prefix of ct ,

then we pick the last block of c′, i.e., we let x = l′ − 1. Since it is the last
block, the post-whitening offset is zero, i.e., σ ′

x = 0. Since IV′ = IVt , the
value IV′ +σ ′

x will be same as IVt +σ t
j (for some j) only if σ t

j = σ ′
x = 0, or

in other words only if j = lt − 1. Now, c′ being a prefix of ct , if c′
x = ct

lt−1,
then it forces event E0 (the deletion attempt) for c (note t ≤ Z(c)).

Encryption Modes with Almost Free Message Integrity 569

Otherwise, if c′ is not a prefix of ct , let x be the least index in which
c′ and ct differ. If for some j , σ t

j = σ ′
x , then either σ t

j = σ ′
x = 0 or j = x.

In the latter case, c′
x ⊕ ct

j = c′
x ⊕ ct

x , which is nonzero as x is the index in
which c′ and ct differ. In the former case, j = lt − 1 and x = l′ − 1. In this
case, c′

x ⊕ ct
j = c′

l′−1 ⊕ ct
lt−1. If this quantity is zero, then since x (= l′ − 1)

was the least index in which ct and c′ differed, event E0 would hold for c.
(a2) (IV′ �= IVt : rotation attempt) Note that, if instead of general safe initial

vectors we had required the initial vectors to have enough least signif-
icant bits to be zero, so that the offsets could be embedded unambigu-
ously, then this case would not arise. In other words, with this restriction,
IV′ + σ ′

x ∈ IVt + [0..lt − 2] could only happen if IV′ = IVt . However,
in the case of general safe initial vectors, this case could certainly arise.
We will show that for each x, there is a unique jx ∈ [1..lt − 1] such that
IV′ + σ ′

x = IVt + σ t
jx

. Recall that σ ′
x = x except for x = l′ − 1, in which

case it drops to zero, i.e., x − (l′ − 1). Hence, for the above jx to exist, jl′−1

must drop by (l′ −1) as well (we formalize this in the next paragraph). Next,
we will show that either for some x, c′

x �= ct
jx

or event E1 holds (i.e., c′ is a
rotation of a portion of ct).

To be more precise, we first note that IV′ ≥ IVt + 1, as IV′ is in IVt +
[0..lt − 2]. Thus from IV′ ≤ IVt + lt − l′ it follows that IV′ = IVt + s for
some s such that 1 ≤ s ≤ lt − l′ (thus satisfying E1(i)). Thus, for every
x ∈ [1..l′ − 1], IV′ + σ ′

x = IVt + σ ′
x + s. Note that 1 ≤ σ ′

x + s ≤ lt − 2,
as 0 ≤ σ ′

x ≤ l′ − 2 and 1 ≤ s ≤ lt − l′. Hence, for each x ∈ [1..l′ − 1],
σ t

σ ′
x+s

= σ ′
x + s, and hence IV′ +σ ′

x = IVt +σ ′
x + s = IVt +σ t

σ ′
x+s

. Thus, for

each x, there is a unique jx , namely σ ′
x + s, such that IV′ + σ ′

x = IVt + σ t
jx

.
Now, suppose that for all x ∈ [1..l′ − 1], c′

x ⊕ ct
jx

= 0, i.e., c′
x = ct

σ ′
x+s

.
But this implies that E1 holds for c. Otherwise, we have an x such that
c′
x ⊕ ct

jx
�= 0, and the lemma follows as t and jx are the only values for

which IV′ + σ ′
x = IVt + σ t

jx
.

(b) (extension attempt) There exists an x ∈ [1..l′ − 1] such that IV′ + σ ′
x �∈

IVt + [0..lt − 2]. Since IV′ ∈ IVt + [0..lt − 2], it follows that there exists an
x ∈ [1..l′ − 2] such that IV′ + σ ′

x �∈ IVt + [0..lt − 2]. For the least such x (and
note σ ′

x = x), we have IV′ + x = IVt + lt − 1. Since the initial vectors are safe,
there is no other t ′, j ′ such that IV′ + σ ′

x = IVt ′ + σ t ′
j ′ , j ′ in [1..lt

′ − 1]. Thus
this x satisfies the lemma vacuously. The key observation here is that for every
t ∈ [1..Z(c)], the value IVt + lt − 1 is never used as a post-whitening index in
the first stage of the attack.

�

Lemma 6. Let events E0, E1, and E2 be as in Theorem 1. Then,

Pr(f,g)∈DK
[¬(E0 ∨ E1 ∨ E2) ∧ PD

]
< (2u + 2v) ∗ 2−n.

570 C.S. Jutla

Proof. To begin with, we have

Pr
[¬(E0 ∨ E1 ∨ E2) ∧ PD

] =
∑

c∈C
Pr

[¬(E0 ∨ E1 ∨ E2) ∧ C = c ∧ PD
]
. (15)

Focusing on the negation of E2, the inside expression above (see the definition of
E2) is the probability of the conjunction (one for each x) of disjunctions. Hence, it is
upper bounded by the least (over x) of the probabilities of the disjunctions, which in
turn is upper bounded by the sum of the probability of each disjunct. Thus, for any fixed
ciphertext transcript c,

Pr
[¬(E0 ∨ E1 ∨ E2) ∧ C = c ∧ PD

]

≤ min
x∈[1..l′−1]

{ ∑

t∈[1..z],j∈[1..|ct |−1]
Pr

[
(N′

x = Nt
j) ∧ C = c ∧ ¬(E0 ∨ E1) ∧ PD

]

+
∑

j∈[1..l′−1],j �=x

Pr
[
(N′

x = N′
j) ∧ C = c ∧ PD

]}
.

Since each of the summands in the expression above has a conjunct C = c for some
constant string c, it follows that Nt

j = Nt
j (c, g) and N′

x = N ′
x(c, g). Thus, each of the

summands in the first sum can be written (by equation (6)) as

Pr
[
(g′

σ ′
x
⊕ gt

σ t
j
= c′

x ⊕ ct
j) ∧ C = c ∧ ¬(E0 ∨ E1) ∧ PD(c, g)

]
,

where g′
j is shorthand for g(IV′(c) + j), and gt

j is shorthand for g(IVt (c) + j). Now,

by Lemma 4, each of these probabilities is upper bounded by 2−n+1 ∗ Pr[C = c] as long
as IV′ +σ ′

x(c) �= IVt +σ t
j (c). However, if IV′ +σ ′

x(c) = IVt +σ t
j (c), then by Lemma 5

either (E0 or E1) holds for c, or c′
x ⊕ ct

j �= 0, which would make this probability zero.
For the summands in the second sum, Lemma 4 is unconditionally applicable as σ ′

x(c) �=
σ ′

j (c).
From (15), we then get

Pr
[¬(E0 ∨ E1 ∨ E2) ∧ PD

] ≤ (u + v) ∗ 2−n+1. �

Lemma 7. Pr(f,g)∈DK[⊕L′−1
j=1 P′

j = 0 | E2] ≤ v
2n−(u+v)

.

Proof. For each x in [1..v − 1], let E2(x) denote the event E2 holding with this x.
First note that

Pr

[
L′−1⊕

j=1

P′
j = 0 | E2

]

≤
∑

x

Pr

[
L′−1⊕

j=1

P′
j = 0 | E2(x)

]

, (16)

which follows from Pr[A|B ∨C] ≤ Pr[A|B]+Pr[A|C] for arbitrary events A, B , and C.

Encryption Modes with Almost Free Message Integrity 571

Now, for any x in [1..L′ − 1], we have
⊕L′−1

j=1 P′
j = 0 iff

f−1(N′
x) = M′

x =
L′−1⊕

j=1,j �=x

(
M′

j ⊕ g(C′
0 + j)

) ⊕ g(C′
0 + x).

The first equation follows from (12), (11), and (10), and the “iff” claim follows
by (14). Under the condition E2(x), given any value of the RHS of (16), we will
show that the LHS of (16) can take (at least) 2n − (μ + v − 2) values, each with
equal probability, and hence the probability of LHS being equal to RHS is at most
1/(2n − (u + v)).

To this end, we calculate the above probability by fixing g, each Nt
j , and each M′

j

(j �= x), and summing the probability over all the fixings:

Pr

[

f−1(N′
x) =

L′−1⊕

j=1,j �=x

(
M′

j ⊕ g(C′
0 + j)

) ⊕ g(C′
0 + x) | E2(x)

]

=
∑

g,nt
j ,m′

j (j �=x)

Pr

[
g = g ∧

∧(
Nt

j = nt
j

) ∧
∧

j �=x

(M′
j = m′

j) ∧ f−1(N′
x)

=
⊕

... | E2(x)

]

=
∑

Pr

[
f−1(N ′

x(C, g)
) =

⊕
... | E2(x) ∧ g

= g ∧
∧(

Nt
j = nt

j

) ∧
∧

j �=x

(M′
j = m′

j)

]

∗Pr

[
g = g ∧

∧(
Nt

j = nt
j

) ∧
∧

j �=x

(M′
j = m′

j) | E2(x)

]
. (17)

We now show that event E2(x) and C′
0 are completely determined by (i) the whiten-

ing function g, and (ii) Nt
j (t ∈ [1..z], j ∈ [1..Lt −1]). First, by (2), (4), (5), (7), and (8),

Nt
j and g completely determine C. Hence, the adversarial choice of C′

0, L′, and in fact
the whole of C′ is determined by these quantities. On fixing g to g, and fixing Nt

j to nt
j ,

say the ciphertext C fixes to c, the plaintext P fixes to p, and the whitened plaintext Mt
j

fixes to mt
j . Further, say L′ fixes to l′, and C′

j fixes to c′
j , j ∈ [0..l′ − 1].

Further, note that for all j ∈ [1..L′ − 1], N′
j = C′

j ⊕ g(C′
0 +σ ′

j (C)) (by (10) and (9)).
Thus, for each j (including x), N′

j fixes to a constant value, say n′
j . Thus, the conjunc-

tion of the conditions (g = g), (Nt
j = nt

j), and E2(x) is equivalent to the conjunction
of (g = g), (Nt

j = nt
j), and the condition that n′

x is different from all other n′
j and from

all nt
j .

572 C.S. Jutla

The first factor in the above summation (17) now simplifies to

Pr

[
f−1(n′

x) =
⊕(

m′
j ⊕ g(c′

0 + j)
) ⊕ g(c′

0 + x) |

(g = g) ∧
∧(

Nt
j = nt

j

) ∧
∧

j �=x

(
M′

j = m′
j

) ∧
∧

t,j

(
n′

x �= nt
j

) ∧
∧

j : j �=x

(n′
x �= n′

j)

]
. (18)

Now note that (g = g) ∧ ∧
(Nt

j = nt
j) is implied by (g = g) ∧ ∧

(f−1(nt
j) = mt

j),

where mt
j is as fixed above. This follows by induction, noting that m1 is determined

by g, the fixed adversarial value P 1, and C1
0 (also see the second paragraph of the proof

of Lemma 1 for a similar argument). The conditioning in the above probability 18 is
then same as (by (8), (12), and (11))

(g = g) ∧
∧(

f−1(nt
j

) = mt
j

) ∧
∧

j �=x

(
f−1(n′

j) = m′
j

) ∧
∧

t,j

(
n′

x �= nt
j

) ∧
∧

j : j �=x

(n′
x �= n′

j).

Since the permutation f is independent of the whitening function g, the above probabil-
ity (18) (i.e., the first factor of summation (17)) is at most 1/(2n − (μ+ v)). The lemma
follows by summing over all x. �

Lemma 8. Pr(f,g)∈DK[⊕L′−1
j=1 P′

j = 0 ∧ (E0 ∨ E1) ∧ PD] ≤ z ∗ 2−n+2.

Proof. In the following, we will drop the argument C from σ and σ ′, as it will be clear
from context. We will also use gi

j as shorthand for g(Ci
0 + j).

We first consider the event E0 happening. Since E0(i) implies that for some mes-
sage i : C′

0 = Ci
0, it also implies, along with E0(ii) and σ ′

L′−1 = σ i
Li−1

= 0, that

N′
L′−1 = Ni

Li−1
, and hence M′

L′−1 = Mi
Li−1

. Further, E0(i) also implies N′
j = Ni

j (for

j = 1 to L′ − 2), which in turn implies M′
j = Mi

j and hence also P′
j = Pi

j . Thus, we
have

(
L′−1⊕

j=1

P′
j = 0

)

∧ E0

⇒
(

L′−1⊕

j=1

P′
j = 0

)

∧ E0 ∧ ∃i
(
M′

L′−1 = Mi
Li−1

)

⇒
(

L′−1⊕

j=1

P′
j = 0

)

∧ E0 ∧ ∃i
(
P′

L′−1 ⊕ gi
L′−1 = Mi

Li−1

)

⇒ ∃i

(
L′−2⊕

j=1

(
Pi

j

) ⊕ Mi
Li−1 ⊕ gi

L′−1 = 0

)

Encryption Modes with Almost Free Message Integrity 573

≡ ∃i

(
L′−2⊕

j=1

(
Pi

j

) ⊕
Li−2⊕

j=1

(
Pi

j

) ⊕ gi
Li−1 ⊕ gi

L′−1 = 0

)

.

Since G is XOR-universal and L′ < Li and since the initial vectors are safe, we
have

Pr

[
L′−1⊕

j=1

P′
j = 0 ∧ E0 ∧ PD

]

≤ Pr

[

PD ∧ ∃i

(
L′−2⊕

j=1

(
Pi

j

) ⊕
Li−2⊕

j=1

(
Pi

j

) ⊕ gi
Li−1 ⊕ gi

L′−1 = 0

)]

=
∑

c∈C
Pr

[

C = c ∧ PD ∧ ∃i

(
L′−2⊕

j=1

(
Pi

j

) ⊕
Li−2⊕

j=1

(
Pi

j

) ⊕ gi
Li−1 ⊕ gi

L′−1 = 0

)]

=
∑

c∈C
Pr

[

C = c ∧ PD ∧ ∃i

(
L′−2⊕

j=1

(
P i

j (c)
) ⊕

Li−2⊕

j=1

(
P i

j (c)
) ⊕ gi

Li−1 ⊕ gi
L′−1 = 0

)]

≤ z · 2−n+1 ·
∑

c∈C
Pr[C = c],

where the last inequality follows by Lemma 4, and the union bound.
Now, consider the event E1 happening. We have that for some message i : C′

0 =
Ci

0 + t with 1 ≤ t ≤ Li − L′. Note that, for j ∈ [1..L′ − 1], σ ′
j + t ≤ Li − 2. For j ∈

[1..L′ − 1], from E1(ii) we then have

N′
j = C′

j ⊕ g(C′
0 + σ ′

j) = Ci
σ ′

j +t
⊕ g(Ci

0 + t + σ ′
j).

Since σ ′
j + t ≤ Li − 2, we get N′

j = Ni
σ ′

j +t
, and hence M′

j = Mi
σ ′

j +t
. Now, for j ∈

[1..L′ − 2], since σ ′
j = j , we have

M′
j = P′

j ⊕ g(C′
0 + j) = P′

j ⊕ g
(
Ci

0 + t + j
)
.

Since Mi
j+t = Pi

j+t ⊕ g(Ci
0 + t + j), we have P′

j = Pi
j+t .

Also, M′
L′−1 = Mi

t , as σ ′
L′−1 = 0. Thus, P′

L′−1 ⊕ g(Ci
0 + t + L′ − 1) = Mi

t . Hence,

(
L′−1⊕

j=1

P′
j = 0

)

∧ E1

⇒
(

L′−1⊕

j=1

P′
j = 0

)

∧ E1 ∧ ∃i
(
P′

L′−1 ⊕ gi
t+L′−1 = Mi

t

)

574 C.S. Jutla

⇒ ∃i

(
L′−2⊕

j=1

(
Pi

j+t

) ⊕ Mi
t ⊕ gi

t+L′−1 = 0

)

≡ ∃i

(
L′−2⊕

j=1

(
Pi

j+t

) ⊕ Pi
t ⊕ gi

t ⊕ gi
t+L′−1 = 0

)

.

As L′ ≥ 2, as before, using Lemma 4, we get an upper bound of z · 2−n+1. �

4.2. Modes Using GF(p)

We now prove Theorem 1 for the IAPM scheme as in Fig. 3 (Sect. 3.3), i.e., using the
mod p construction. We first show that for each i, j , Si

j (as defined in Sect. 3.3) is
uniformly distributed in GF(p).

When it is clear from context, we will drop i from the superscript.

Lemma 9. For every j , Sj is uniformly distributed in GF(p).

Proof. First we prove that there is no overflow in the last step of the for-loop, i.e.,
while adding (2n − p).

If S0 < (2n − p), then let t be the least j such that Sj ≥ (2n − p), otherwise t = 0.
Clearly, for j ≤ t , the condition (K2 > S∗

j) cannot be satisfied, as K2 < p.
We next show by induction that for j ≥ t , Sj ≥ (2n − p). Clearly, for j = t , it is true

by the definition of t . If for some j > t , (K2 ≤ S∗
j), then Sj = Sj−1 + K2, and there

was no overflow in this addition, hence by induction Sj ≥ (2n − p). If for some j > t ,
(K2 > S∗

j), then S∗
j < p, as K2 < p. Thus, there is no overflow while adding (2n − p),

and hence Sj ≥ (2n − p).
Finally, we show that Sj = K2 ∗ (j + IV) mod p, which proves the lemma. Clearly,

this is true for j = 0. Suppose that it is true for j − 1, then we show that Sj = K2 ∗
(j + IV) mod p. If (Sj−1 + K2) < 2n, then Sj = Sj−1 + K2, and hence Sj = K2∗
(j + IV) mod p, by induction. If (Sj−1 + K2) ≥ 2n, then Sj = (Sj−1 + K2) − 2n +
(2n − p), since there is no overflow while adding (2n − p) as shown in the previous
paragraph, and the lemma follows. �

Lemma 10. For any constant c ∈ [0..2n − 1] and for every i, j, i1, j1 such that j +
IVi �= j1 + IVi1,

PrK2∈GFp

[
Si

j − Si1
j1 = c mod p

] ≤ 1/p.

Proof. Since, by the proof of the previous lemma, Si
j = K2 ∗ (j + IVi) mod p, the

lemma follows. �

In the following theorem, α(n) denotes the smallest t such that 2n − t is a prime. For
modes of practical interest, the quantity α(n) in the following theorem is less than 2n.
For example, for 128 bit block ciphers, if we let p = 2128 − 159, this quantity is 159.

Encryption Modes with Almost Free Message Integrity 575

Theorem 2. Let A be an adversary attacking the message integrity of IAPM (t = 1)
with the GF(p) construction (Fig. 3), with f chosen uniformly from set of permutations
and K2 chosen uniformly from GF(p). Let A make at most z queries in the first stage,
totaling at most μ blocks. Let u = μ + z. Let v be the maximum number of blocks in
the second stage. Also, assume that the initial vectors are chosen safe. If 2v < 2n and
4u2 < 2n, then for adversary A,

Succ < 2 ∗ (
u2 + z2 + 2(u + v + z) + 1 + o(1) + (z + 1) ∗ α(n)

) ∗ 2−n.

The proof is similar to that of Theorem 1, except that Lemma 10 is used in probability
calculations.

5. Message Secrecy

We now prove security in the find-then-guess model, which implies that the IAPM
scheme (Figs. 1 and 2) is secure for message secrecy. A similar theorem holds for the
mod p version of IAPM (Fig. 3). We will again prove our theorem for the IAPM mode
in the random permutation model as in Sect. 3.4.

Theorem 3. Let A be a chosen plaintext attack adversary of the encryption scheme
IAPM(G) making at most z queries, these totaling at most u blocks. Assume that the
initial vectors are chosen to be safe. If 2u2 < 2n, then

AdvA ≤ 3 ∗ u2 + z(2z + u)

2
· 2−n.

Proof. As in the proof of Theorem 1, we will use subscripts to denote particular blocks
in a message. Let the z queries be divided into y queries in the find stage, one query in
the “choice” stage, and y′ queries in the guess stage. By assuming y′ to be large enough
(i.e., by repetition of queries) we can assume that the adversary makes exactly z queries.
Thus, z = y + 1 + y′. As in Theorem 1, if IAPM chooses initial vectors randomly
(uniformly and independently), then the adversary’s success probability increases by at
most (2z + u) ∗ z ∗ 2−n.

As in Theorem 1, we consider the event PD (pairwise different) under which all the M

(and respectively N) variables are different. However, there is a small difference here.
The event PD in Theorem 1 was defined as a function of c and g, as there c completely
determined the plaintexts for all the blocks. Here, we have two variants (corresponding
to b being 0 or 1). Thus, we define two variants of the predicate PD, namely PD0 and
PD1, where the predicate PD0 (PD1) uses the (y + 1)th plaintext block according to
b = 0 (b = 1 respectively).

We will bound
∣∣∣∣

∑

b∈[0..1]
Prb,(f,g)∈DK

[
A(C) = b | b = b

] − Prb,(f,g)∈DK
[
A(C) �= b | b = b

]
∣∣∣∣.

576 C.S. Jutla

This is upper bounded by

∣∣∣∣
∑

b∈[0..1]
Pr

[
A(C) = b ∧ PDb | b = b

] − Pr
[
A(C) �= b ∧ PDb | b = b

]
∣∣∣∣

+ Pr
[¬PD0] + Pr

[¬PD1]. (19)

For the first term, note that for any constant binary bit t , we have

∑

b∈[0..1]
Prb,(f,g)∈DK

[
A(C) = b ⊕ t ∧ PDb| b = b

]

=
∑

c1∈L()

· · ·
∑

ci∈L(c1,...,ci−1)

· · ·
∑

cz∈L(c1,...,cz−1)

∑

b∈[0..1]
Pr

[
A(c) = b ⊕ t ∧ C = c ∧ PDb(c,g)| b = b

]
.

We note that for any constant c, the probability of A(c) being b ⊕ t is independent of
b, f, and g. Thus, we have

∣∣
∣∣

∑

b∈[0..1]
Pr

[
A(C) = b ∧ PDb | b = b

] − Pr
[
A(C) �= b ∧ PDb | b = b

]
∣∣
∣∣

=
∣∣∣∣
∑

c∈C

∑

b∈[0..1]

(
Pr

[
A(c) = b ∧ C = c ∧ PDb(c,g) | b = b

]

− Pr
[
A(c) �= b ∧ C = c ∧ PDb(c,g) | b = b

])
∣∣∣
∣

=
∣∣∣∣
∑

c∈C

∑

b∈[0..1]

(
Pr

[
A(c) = b

] ∗ Pr
[
C = c ∧ PDb(c,g) | b = b

]

− Pr
[
A(c) �= b

] ∗ Pr
[
C = c ∧ PDb(c,g) | b = b

])
∣∣∣∣

=
∣∣∣∣

∑

b∈[0..1]

∑

c∈C
Pr

[
A(c) = b

] ∗ (
Pr

[
C = c ∧ PDb(c,g) | b = b

]

− Pr
[
C = c ∧ PDb(c,g) | b = b ⊕ 1

])
∣∣
∣∣

≤
∑

b∈[0..1]

∣∣∣∣
∑

c∈C

(
Pr

[
C = c ∧ PDb(c,g) | b = b

]

− Pr
[
C = c ∧ PDb(c,g) | b = b ⊕ 1

])
∣∣∣∣

Encryption Modes with Almost Free Message Integrity 577

=
∑

b∈[0..1]

∣∣Pr
[
PDb

] − Pr
[
PDb⊕1]∣∣

≤ 2 ∗ ∣∣Pr
[¬PD0] − Pr

[¬PD1]∣∣.

The theorem then follows from (19) and Lemma 3. �

Acknowledgements

The author is extremely grateful to Shai Halevi and Pankaj Rohatgi for help with the
proof of message integrity. The author thanks J. Håstad for suggesting Lemma 1 and
the current form of the event PD, which made the proofs more transparent.

The author also thanks Don Coppersmith, Nick Howgrave-Graham, J.R. Rao, Ron
Rivest, Phil Rogaway, referees of Eurocrypt 2001, and reviewers of this journal for
helpful suggestions. Finally, the author thanks Pau-Chen Cheng for introducing him to
the problem.

References

[1] Advanced Encryption Standard, National Institute of Standards and Technology, U.S. Department of
Commerce, FIPS 197 (2001)

[2] ANSI X3.106, American national standard for information systems—data encryption algorithm—
modes of operation. In American National Standards Institute (1983)

[3] M. Bellare, C. Namprempre, Authenticated encryption: relations among notions and analysis of the
generic composition paradigm. In Proc. Asiacrypt. LNCS, vol. 1976 (2000)

[4] M. Bellare, C. Namprempre, Authenticated encryption: relations among notions and analysis of the
generic composition paradigm. In Proc. Asiacrypt 2000, ed. by T. Okamoto (Springer, Berlin, 2000)

[5] M. Bellare, A. Desai, E. Jokipii, P. Rogaway, A concrete security treatment of symmetric encryption:
analysis of the DES modes of operation. In Proc. 38th IEEE FOCS (1997)

[6] M. Bellare, J. Kilian, P. Rogaway, The security of cipher block chaining. JCSS 61(3), 362–399 (2000)
[7] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway, UMAC: Fast and secure message authenti-

cation. In Proc. Advances in Cryptology-CRYPTO 99. LNCS, vol. 1666 (1999)
[8] J. Carter, M. Wegman, Universal classes of hash functions. JCSS 18, 143–154 (1979)
[9] V.D. Gligor, P. Donescu, Integrity aware PCBC encryption schemes. In Proc. 7th Intl. Work. on Security

Protocols. LNCS, vol. 1796 (Cambridge, 1999), pp. 153–171
[10] V.D. Gligor, P. Donescu, Fast encryption authentication: XCBC encryption and XECB authentication

modes. http://csrc.nist.gov/encryption/modes/workshop1
[11] O. Goldreich, H. Krawczyk, M. Luby, On the existence of pseudorandom generators. In Proc. FOCS

(1988), pp. 12–14. Also in SIAM J. Comput. 22(6), 1163–1175
[12] S. Halevi, An observation regarding Jutla’s modes of operation. http://eprint.iacr.org/2001/015/
[13] J. Håstad, Message integrity of IAPM and IACBC. http://csrc.nist.gov/CryptoToolkit/modes/

proposedmodes/iapm/integrityproofs.pdf
[14] ISO/IEC 9797, Data cryptographic techniques—data integrity mechanism using a cryptographic check

function employing a block cipher algorithm. In International Organization for Standardization,
Geneva, Switzerland (1989)

[15] C.S. Jutla, Encryption modes with almost free message integrity. http://csrc.nist.gov/groups/ST/toolkit/
BCM/workshops.html

[16] C.S. Jutla, Encryption modes with almost free message integrity. In Proc. Eurocrypt 2001. LNCS,
vol. 2045 (2001)

[17] C.S. Jutla, Tight lower bound on linear authenticated encryption. In Proc. Selected Areas in Cryptogra-
phy 2003. LNCS, vol. 3006 (2003)

http://csrc.nist.gov/encryption/modes/workshop1
http://eprint.iacr.org/2001/015/
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/iapm/integrityproofs.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/iapm/integrityproofs.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/workshops.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/workshops.html

578 C.S. Jutla

[18] J. Katz, M. Yung, Unforgeable encryption and adaptively secure modes of operation. In Proc. Fast
Software Encryption. LNCS, vol. 1978 (2000)

[19] H. Krawczyk, LFSR-based hashing and authentication. In Proc. Crypto 94. LNCS, vol. 839 (1994)
[20] H.W. Kuhn, Extensive games and the problem of information. In Contributions to the Theory of Games

II, ed. by H.W. Kuhn, A.W. Tucker. Annals of Mathematical Studies, vol. 28 (Princeton Univ. Press,
Princeton, 1950)

[21] M. Luby, A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4),
1036–55 (1986)

[22] M. Luby, Pseudorandomness and cryptographic applications. In Princeton Computer Science Notes
(Princeton Univ. Press, Princeton, 1996)

[23] C.H. Meyer, S.M. Matyas, Cryptography: A New Dimension in Computer Data Security (Wiley, New
York, 1982)

[24] M. Naor, O. Reingold, On the construction of pseudo-random permutations: Luby–Rackoff revisited. In
Proc. 29th ACM STOC (1997), pp. 189–199

[25] M. Naor, M. Yung, Universal Hash functions and their cryptographic applications. In Proc. STOC,
(1989), pp. 33–43

[26] National Bureau of Standards, Data encryption standard, U.S. Department of Commerce, FIPS 46
(1977)

[27] National Bureau of Standards, DES modes of operation, U.S. Department of Commerce, FIPS 81
(1980)

[28] RFC 1510, The Kerberos network authentication service (V5), J. Kohl and B.C. Neuman (Sept. 1993)
[29] RFC 2401, Security architecture for the Internet protocol. http://www.ietf.org/rfc/rfc2401.txt
[30] RFC 2246, The TLS protocol. http://www.ietf.org/rfc/rfc2246.txt
[31] P. Rogaway, M. Bellare, J. Black, T. Krovetz, OCB: A block-cipher mode of operation for efficient

authenticated encryption. In Proc. 8th ACM Conf. Comp. and Comm. Security (CCS), ACM (2001)
[32] S.G. Stubblebine, V.D. Gligor, On message integrity in cryptographic protocols. In Proc. 1992 IEEE

Comp. Soc. Symp. on Research in Security and Privacy (1992)

http://www.ietf.org/rfc/rfc2401.txt
http://www.ietf.org/rfc/rfc2246.txt

	Encryption Modes with Almost Free Message Integrity
	Abstract
	Introduction
	Authenticated Encryption Schemes
	The New Modes of Operation
	XOR-Universal Distributions
	The New Mode-IAPM
	Generation of XOR-Universal Sequences
	Galois Field Constructions of XOR-Universal Sequences
	Safe Initial Vectors

	Integrity Aware Parallelizable Mode (IAPM) Using a Prime Number
	IAPM in Random Permutation Model

	 Message Integrity of IAPM
	Proofs of the Lemmas
	Modes Using GF(p)

	Message Secrecy
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

