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Abstract. This paper shows that an eavesdropper can always recover efficiently the
private key of one of the two parts of the public key cryptography protocol introduced
by Shpilrain and Ushakov (ACNS 2005, Lecture Notes in Comput. Sci., vol. 3531,
pp. 151–163, 2005). Thus an eavesdropper can always recover the shared secret key,
making the protocol insecure.
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1. Introduction

Recent advances in public key cryptography have underlined the need to find alterna-
tives to the RSA cryptosystem. It has been proposed to use algorithmic problems in
non-commutative group theory as possible ways to build new protocols. The conjugacy
search problem was introduced in several papers as a generalization of the discrete log-
arithm problem in the research of a new safe encryption scheme. The former problem
asks whether or not, given a group G and two elements a, b ∈ G that are conjugate,
we can find at least one x ∈ G with ax := x−1ax = b. It is thus important to look for
a platform group G where this problem is computationally hard. Seminal works by
Anshel-Anshel-Godlfeld [1] and Ko-Lee et al. [6] have proposed the braid group Bn on
n strands as a possible platform group.

It has been observed that Thompson’s group F and the braid groups Bn have some
similarities. Belk proved in his thesis [2] that F and the braid groups have a similar clas-
sifying space. Loosely speaking, the elements of F appear as braids, but with merges
and splits instead of twists (this representation of F uses strand diagrams which are
introduced in [2]). Dehornoy defined in [4] a group of parenthesized braids which con-
tains both F and Bn in a very natural way. However, for cryptographic purposes, F has
still not proved to be a good platform. Kassabov and Matucci have proved in [5] that
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the simultaneous conjugacy problem is efficiently solvable, making it insecure to apply
protocols based on the conjugacy problem.

Shpilrain and Ushakov in [9] have proposed using a particular version of the decom-
position problem as a protocol and the group F as a platform. The new problem is:
given a group G, a subset X ⊆ G and two elements w1,w2 ∈ G with the information
that there exist a, b ∈ X such that aw1b = w2, find at least one such pair a, b. In this
paper we show how to recover efficiently the shared secret key of this protocol.

The paper is organized as follows. In Sects. 2 and 3 we recall the protocol and give
a description of Thompson’s group F . In Sect. 4 we recall the choice of parameters
proposed in [9]. In Sect. 5 we give an efficient attack that always recovers the secret key.
In Sects. 6 and 7 we show another type of attack. In Sect. 8 we make some comments
on possible generalizations of this protocol.

History and Related Works The first attack on this protocol was announced by Ruin-
skiy, Shamir and Tsaban in November 2005 at the Bochum Workshop Algebraic Meth-
ods in Cryptography, showing that the parameters given in [9] should be increased to
have higher security of the system. Their attack was improved in other announcements
and was finalized in [7] at the same time that this paper was written. Their attack de-
scribes a more general procedure which uses length functions. We remark that the same
authors have been developing new techniques involving “subgroup distance functions”
and that they applied them on the same protocol for F as a test case [8]. The approach
of Ruinskiy, Shamir and Tsaban in their mentioned papers is heuristic, and its success
rates are good but not 100%. Our approach is deterministic, and provably succeeds in
all possible cases.

2. The Protocol

The protocol proposed in [9] is based on the decomposition problem: given a group G,
a subset X ⊆ G and w1,w2 ∈ G, find a, b ∈ X with aw1b = w2, given that such a, b

exist. Here is the protocol in detail:

Public Data A group G, an element w ∈ G and two subgroups A,B of G such that
ab = ba for all a ∈ A, b ∈ B .

Private Keys Alice chooses a1 ∈ A, b1 ∈ B and sends the element u1 = a1wb1 to
Bob. Bob chooses b2 ∈ B , a2 ∈ A and sends the element u2 = b2wa2 to Alice. Alice
then computes the element KA = a1u2b1 = a1b2wa2b1 and Bob computes the element
KB = b2u1a2 = b2a1wb1a2. Since A and B commute elementwise, K = KA = KB

becomes Alice and Bob’s shared secret key.

Eavesdropper’s Data Eve has all the public data and the two elements u1 and u2,
observed during Alice and Bob’s exchange.

3. The Group F and the Subgroups As,Bs

Thompson’s group F was introduced by R. Thompson while working on problems in
logic. The standard introduction to F is [3]. One of Thompson’s original definitions
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Fig. 1. Two of the elements of the generating set of F .

of F is the following: for I = [0,1] we define PL2(I ) to be the group of piecewise
linear homeomorphisms of the interval I with finitely many breakpoints such that:

• All slopes are integral powers of 2, and
• All breakpoints are in Z[ 1

2 ], the ring of dyadic rational numbers;

the product of two elements is given by the composition of functions. We thus define F

to be the group PL2(I ). F can also be described using the following presentation:

F = 〈x0, x1, x2, . . . | xnxk = xkxn+1,∀k < n〉.
This presentation has the advantage that the elements of F can be uniquely written in
the following normal form

xi1 · · ·xiux
−1
jv

· · ·x−1
j1

such that i1 ≤ · · · ≤ iu, j1 ≤ · · · ≤ jv and if both xi and x−1
i occur, then either xi+1 or

x−1
i+1 occurs, too. Since xk = x1−k

0 x1x
k−1
0 for k ≥ 2, the group F is generated by the

elements x0 and x1. The generators xk of the infinite presentation can be represented as
piecewise-linear homeomorphisms by shrinking the function x0 shown in figure 1 onto
the interval [1 − 1

2k ,1] and extending it as the identity on [0,1 − 1
2k ] (see Fig. 1).

We now introduce a notation which will be useful for the definition of the subgroups A

and B . For every positive integer k we call

ϕk := 1 − 1

2k+1
.

From the definition of xk , we get

x−1
k ([ϕk,1]) = [ϕk+1,1] ⊆

[
3

4
,1

]

implying that, for t ∈ [ϕk,1], we have

d

dt
x0x

−1
k (t) = x′

0(x
−1
k (t))(x−1

k )′(t) = 2 · 1

2
= 1,

which means x0x
−1
k is the identity in the interval [ϕk,1]. For any s ∈ N, Shpilrain and

Ushakov define in [9] the following sets

SAs = {x0x
−1
1 , . . . , x0x

−1
s }
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Fig. 2. An example of an element of As and one of Bs .

and

SBs = {xs+1, . . . , x2s}
and then define the subgroups As := 〈SAs 〉 and Bs := 〈SBs 〉. The previous argument
immediately yields that all elements of As commute with all elements of Bs (see Fig. 2),
i.e.

Lemma 3.1 (Shpilrain–Ushakov [9]). For every fixed s ∈ N, ab = ba for every ele-
ments a ∈ As and b ∈ Bs .

Notation 3.2. For every dyadic number d ∈ [0,1] we denote by PL2([0, d]) the set
of functions in PL2(I ) which are the identity on [d,1]. Moreover, if we are given a
piecewise linear map defined only on [0, d] we will assume it is extended to [0,1] by
defining it as the identity on [d,1]. Similar remarks apply to PL2([d,1]).

Parts (i) and (iii) of the following Lemma are in [9], while part (ii) is a simple observa-
tion.

Lemma 3.3. (i) As is the set of elements whose normal form is of the type

xi1 · · ·ximx−1
jm

· · ·x−1
j1

,

where ik − k < s and jk − k < s, for all k = 1, . . . ,m.
(ii) Bs = PL2([ϕs,1]).
(iii) Let a ∈ As and b ∈ Bs be such that their normal forms are

a = xi1 · · ·ximx−1
jm

· · ·x−1
j1

,

b = xc1 · · ·xcux
−1
dv

· · ·x−1
d1

.

Then the normal form of ab is

ab = xi1 · · ·ximxc1+m · · ·xcu+mx−1
dv+m · · ·x−1

d1+mx−1
jm

· · ·x−1
j1

.

Theorem 3.4 (Shpilrain–Ushakov [9]). In Thompson’s group F , the normal form of
a given word w can be computed in time O(|w| log |w|), where |w| is the length of the
normal form in the generators x0, x1, x2, . . . .
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4. Suggested Parameters for the Encryption

We now illustrate briefly the choice of parameters proposed in [9]. Alice and Bob se-
lect an integer s ∈ [3,8] and an even integer M ∈ [256,320] uniformly and randomly.
Moreover, they also choose a random element w ∈ 〈x0, x1, . . . , xs+2〉 with |w| = M ,
where |w| is as in Theorem 3.4. The numbers s,M and the element w are now part of
the public data.

To proceed with the protocol described in Sect. 2, Alice chooses random ele-
ments a1 ∈ As, b1 ∈ Bs , with |a1| = |b1| = M , while Bob chooses random elements
a2 ∈ As, b2 ∈ Bs , with |a2| = |b2| = M . Now they both compute the shared secret key:

K = a1b2wa2b1.

Shpilrain and Ushakov remark that this choice of parameters gives a key space which

increases exponentially in M , i.e., |As(M)| ≥ √
2
M

, thereby making it difficult for Eve
to perform a brute force attack.

5. Recovering the Shared Secret Key

We begin this section by providing the theoretical background for the attack. We will use
the piecewise-linear point of view to understand why the attack works and then rephrase
it combinatorially. We will now describe how Eve, by knowing the elements w,u1, u2,
can always recover one of the two legitimate parties’ private keys. She chooses whose
key to crack, depending on whether the graph of w is above or below the point (ϕs, ϕs).

5.1. Recovering Bob’s Private Keys: w(ϕs) ≤ ϕs

Since w(t) ≤ ϕs for all t ∈ [0, ϕs], we observe the following identity

u2(t) = b2wa2(t) = wa2(t), ∀t ∈ [0, ϕs].

Therefore, Eve may apply w−1 to the left of both sides of the previous equation to obtain

w−1u2(t) = a2(t), ∀t ∈ [0, ϕs]

and so w−1u2 ∈ AsBs and

a2(t) =
{

w−1u2(t), t ∈ [0, ϕs],
t, t ∈ [ϕs,1].

Now Eve has the elements a2, w and u2 = b2wa2 and she computes

b2 = u2a
−1
2 w−1

thereby detecting Bob’s private keys and the shared secret key K .
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5.2. Recovering Alice’s Private Key: w(ϕs) > ϕs

Since w−1(t) < ϕs for all t ∈ [0, ϕs], we have

u−1
1 (t) = b−1

1 w−1a−1
1 (t) = w−1a−1

1 (t), ∀t ∈ [0, ϕs].

By applying the same technique as in the previous subsection Eve recovers a−1
1 and

obtains that u1w
−1 ∈ AsBs . Thus, she is able to detect a1, b1 and the shared secret

key K . Alternatively, Eve observes

w−1u1(t) = w−1a1wb1(t) = b1(t), ∀t ∈ [ϕs,1]
and so

b1(t) =
{

t, t ∈ [0, ϕs],
w−1u1(t), t ∈ [ϕs,1].

5.3. Outline of the Attack

We expand on the previous discussion to describe a combinatorial attack. Assume that
Eve has the elements w,u1, u2.

(1) Eve writes the normal forms of z1 := u1w
−1 and z2 := w−1u2.

(2) By the previous discussion, either z1 ∈ AsBs or z2 ∈ AsBs (or both). She can
detect which one using Lemma 3.3(i) and selects this zi .

(3) She computes the As -part azi
of zi .

(4) If i = 1, she computes bz1 := w−1a−1
z1

u1. If i = 2, she computes bz2 :=
u2a

−1
z2

w−1.
(5) Eve computes K from u1, u2, azi

, bzi
.

The only point of this procedure which needs further explanation is (2). When we
have the normal forms of z1, z2, we know that one of them is in AsBs . We write the
normal form zi = xi1 · · ·xiex

−1
jf

· · ·x−1
j1

and we look at the notation of Lemma 3.3(i): we
need to find the smallest index r in zi such that either ir+1 or jr+1 does not satisfy the
index condition in Lemma 3.3(i). To verify if zi ∈ AsBs , we need to check whether it
has the form described in Lemma 3.3(iii): we remove the first r letters and the last r

letters of zi from the word and we lower all the indices of the remaining letters by r ; if
what remains is a word whose indices are in {s + 2, . . . ,2s}, then we have an element
of Bs , otherwise zi /∈ AsBs . If zi ∈ AsBs , then azi

will be the product of the first r

elements of zi and the last r ones.

5.4. Complexity of the Attack

By Theorem 3.4 we know that computing normal forms can be done in time
O(M logM), where M is the size of the inputs suggested in Sect. 4. Part (2) of the
attack can be executed in time O(M), by just reading the indices of the normal forms
and finding when the relation of Lemma 3.3(i) breaks down. Finally, the last steps are
just multiplications and then simplifications so they can again be performed in time
O(M logM). Therefore, Eve can recover the shared secret key in time O(M logM).
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Fig. 3. The two standard generators for PL2([0, 1
2 ]).

Remark 5.1. The previous discussion shows that there is no need to pass from words
to piecewise-linear functions and back. The attack can be performed entirely by using
the combinatorial point of view which is used for encryption. The piecewise-linear point
of view is necessary only to prove that the combinatorial attack works. We also remark
that the complexity of the attack is independent of the parameter s.

6. Transitivity of As and Bs

The previous section showed how to recover the shared secret key of one of the two
involved parties, based on whether the graph of w lies above or below the point (ϕs, ϕs).
However, it is possible to find the shared secret key even in the cases not studied in
the previous section. More precisely, it is possible to attack Alice’s word in the case
w(ϕs) ≤ ϕs and Bob’s word in the case w(ϕs) > ϕs . We need a better description of
the subgroups As . If s = 1, we observe that A1 = 〈x0x

−1
1 〉 is a cyclic group. For larger

values of s, As becomes the full group of piecewise linear homeomorphism on [0, ϕs].

Lemma 6.1. A2 = PL2([0, 7
8 ]).

Proof. Let a, b be the two generators of PL2([0, 1
2 ]) shown in Fig. 3.

One sees that a = x2
0x−1

1 x−1
0 and that b = x0x

2
1x−1

2 x−1
1 x−1

0 and so a conjugation of
PL2([0, 1

2 ]) by x2
0 yields PL2([0, 7

8 ]) = 〈x2
0ax−2

0 , x2
0bx−2

0 〉. By Lemma 3.3 we have

x2
0ax−2

0 = x4
0x−1

1 x−3
0 ∈ A2,

x2
0bx−2

0 = x3
0x2

1x−1
2 x−1

1 x−3
0 ∈ A2

so that PL2([0, 7
8 ]) ⊆ A2. The other inclusion is obvious. �

Theorem 6.2. As = PL2([0, ϕs]), for every s ≥ 2.

Proof. A straightforward computation shows that

x−1
0 PL2([0, ϕs])x0 = PL2([0, ϕs+1]), ∀s ≥ 0.
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Therefore A2 = PL2([0, ϕ2]) and the definition of As imply

PL2([0, ϕs]) = xs−2
0 A2x

2−s
0 ⊆ As ⊆ PL2([0, ϕs])

therefore implying that As = PL2([0, ϕs]). �

Corollary 6.3. As
∼= Bs

∼= F , for every s ≥ 2.

The previous Theorem and Lemma 2.5 in [5] yield the following corollaries:

Corollary 6.4 (Transitivity of As ). For any t1, t2 ∈ Z[ 1
2 ] ∩ [0, ϕs] we can construct an

a ∈ As with a(t1) = t2.

Corollary 6.5 (Extendability of As ). Let t0 ∈ Z[ 1
2 ] ∩ [0, ϕs] and ā(t) = a|[0,t0] for an

element a ∈ As . Assume we know ā, but that we do not know a. Then we can construct
an aσ ∈ As such that aσ (t) = ā(t) for all t ∈ [0, ϕs].
Remark 6.6. The analogues of the last two corollaries are true for the interval [ϕs,1]
and Bs too.

7. Using Transitivity to Attack the Shared Secret Key

With the new description of As and Bs given in Sect. 6, it is now possible to attack the
secret keys in the cases left open from Sect. 5.

7.1. Attacking Alice’s Word for the Case w(ϕs) ≤ ϕs

We have

u1(t) = a1w(t), ∀t ∈ [0, ϕs],
thus

a1(t) = u1w
−1(t), ∀t ∈ [0,w(ϕs)]

and so a1 is uniquely determined in [0,w(ϕs)]. We apply Corollary 6.5 to find an ele-
ment aσ ∈ As such that aσ = a1 on the interval [0,w(ϕs)]. If we define

bσ := w−1a−1
σ u1

then we have that

bσ (t) = w−1a−1
σ a1w(t) = w−1w(t) = t, ∀t ∈ [0, ϕs].

Therefore bσ ∈ Bs and aσ wbσ = u1 and so Eve can recover the shared secret key K by
using the pair (aσ , bσ ).

Remark 7.1. We observe that any extension of a1|[0,w(ϕs)] to an element aσ of
PL2([0, ϕs]) will yield a suitable element to attack Alice’s key. Moreover, any ele-
ment a′

1 ∈ As such that a′
1wb′

1 = u1, for some suitable b′
1 ∈ Bs , will be an extension

of a1|[0,w(ϕs)].
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7.2. Attacking Bob’s Word for the Case w(ϕs) > ϕs

Eve considers u−1
2 = a−1

2 w−1b−1
2 and recovers a pair (a−1

σ , b−1
σ ) to get the shared secret

key in the same fashion of the previous subsection.

Remark 7.2. Both the techniques of this section have been carried out using the tran-
sitivity of As (Corollary 6.4). They can also be solved by using the analogue of Corol-
lary 6.5 for Bs to get another pair (aσ , bσ ) which can be used to retrieve the secret
key.

8. Comments and Alternatives to the Protocol

This section analyzes possible alternatives and weaknesses of our methods. We observe
that, if instead of PL2(I ) we had used a larger group of piecewise linear homeomor-
phisms of the unit interval, the same technique would have worked, as long as the com-
muting subgroups A and B had disjoint supports. More generally, we can copy this idea
if the given group G acts on some space and we have A,B with disjoint support. We
will now see some examples of how this is possible.

8.1. Choice of the Subgroups A and B

We recall the following result:

Theorem 8.1 (Kassabov-Matucci [5]). Let A = 〈a1, . . . , am〉 ≤ F be a finitely gener-
ated subgroup. Then

(i) There exists a dyadic partition of [0,1] = I1 ∪ · · · ∪ In such that the centralizer
CF (A) := {f ∈ F | af = f a,∀a ∈ A} is a product of subgroups C1, . . . ,Cn, where
Cr ≤ {f ∈ F | f (t) = t,∀t /∈ Ir}. Moreover, we have

• Cr = PL2(Ir ) if and only if of ai |Ir = id , for all i = 1, . . . , r .
• Cr

∼= Z if and only if a1|Ir , . . . , am|Ir have a common root on Ir .
• Cr = 1 if and only if there are i �= j such that ai |Ir , aj |Ir have no common root on

Ir .

(ii) There exist two elements g1, g2 ∈ F such that CF (A) = CF (g1) ∩ CF (g2).

Going back to the protocol introduced in Sect. 2 we observe that, after we choose a
finitely generated subgroup A = 〈f1, . . . , fm〉, we are very restricted in our choice of
the subgroup B . Since B ≤ CF (A), we must make sure that the elements of B , when
restricted to Ir , are powers of common roots of the ai ’s, if at least one ai is non-trivial
on Ir . This gives a tight restriction on the subgroup B whose support is essentially
disjoint from that of A, except in the intervals where they all are powers of a common
root. An attack similar to that of Sect. 5 can thus be applied on each interval Ir : if their
supports are disjoint on Ir , we can act as before, otherwise elements of A and B are
powers of a common root on Ir .

With more general commuting subgroups, the attack of Sect. 5 does not immediately
give either of the two keys. However, the discussion above suggests that the choice of
A and B must be done much more carefully in order to avoid similar attacks.
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8.2. Alternative Protocol and Attacks

Ko-Lee et al. [6] introduced a slightly different protocol based on the decomposition
problem (They worked with braid groups, but we will apply their protocol to Thomp-
son’s group). In their protocol, Alice picks a1, a2 ∈ A and sends u1 = a1wa2 to Bob,
while Bob chooses b1, b2 ∈ B and sends u2 = b1wb2 to Alice. We can still attempt to
solve this new protocol, by again dividing the problem into various cases. We assume
that we use the same subgroups As and Bs and we work in the case w(ϕs) ≤ ϕs to show
how to attack the private keys of Bob. We apply the analogue for Bs of Corollary 6.4
and find a b0 such that b−1

0 (w−1(ϕs)) = u−1
2 (ϕs) = b−1

2 w−1(ϕs). We define

b′
1 = b1,

b′
2 = b2b

−1
0 ,

u′
2 = b′

1wb′
2

so that b′
2(w

−1(ϕs)) = w−1(ϕs) > ϕs . Thus we have

u′
2(t) = b′

1(t)wb′
2(t) = wb′

2(t), ∀t ∈ [0,w−1(ϕs)]

hence

b′
2(t) = w−1u′

2(t), ∀t ∈ [0,w−1(ϕs)].
Thus b′

2 is uniquely determined in [0,w−1(ϕs)]. We apply Corollary 6.5 for Bs to find
a bσ2 ∈ Bs such that bσ2 = b′

2 on [0,w−1(ϕs)] and we define

bσ1 := u′
2b

−1
σ2

w−1.

Thus

bσ1(t) = b′
1wb′

2b
−1
σ2

w−1(t) = b′
1(t) = t, ∀t ∈ [0, ϕs]

therefore bσ1 ∈ Bs . Therefore the pair (bσ1, bσ2) satisfies u′
2 = bσ1wbσ2 and so Eve can

recover the shared secret key K . A similar argument can be used to attack the element
a1wa2, with the transitivity results for As .

8.3. A comment on the Alternative Protocol

The weakness in the protocol discussed in the previous subsection arises from the fact
that the chosen subgroups As and Bs are transitive on the intervals on which they act
nontrivially. This suggests that a possible way to avoid such attacks is for A and B to
be chosen to be not transitive on their support.

Remark 8.2. We observe that the attacks of Sects. 7 and 8 can be carried out in a
fashion similar to that of Sect. 5, still producing a solution in polynomial time.
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