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Abstract. In this paper we look at the Gabidulin version of the McEliece cryptosys-
tem (GPT) and its variants. We give an overview over the existing structural attacks
on the basic scheme, and show how to combine them to get an effective attack for
every GPT variant. As a consequence, there are no secure parameter sets left for GPT
variants, which one would like to use in practice.
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1. Introduction

The security of cryptosystems based on error correcting codes is connected to the hard-
ness of the general decoding problem. The first cryptosystem, which is based on that
technique is the one presented by McEliece in 1978 [14]. McEliece’s cryptosystem is
very fast in en- and decryption, has a reasonable information rate (1/2) and we can even
build a signature scheme from it [3]. Furthermore, despite all efforts, for large public
key sizes it remains secure—even against quantum computers.

To overcome the drawback of the public key size, several variants were proposed, but
most of them showed to be insecure. This paper is a contribution to the cryptanalysis
of such variants. We view the variants based on the 1991 proposal from Gabidulin,
Paramonov and Tretjakov (GPT, [8]) to use rank distance codes instead of Hamming
distance codes. The use of smaller public-key sizes seemed to be possible for these
variants, as general decoding algorithms have higher complexity for the rank metric
than for the Hamming-metric [12].

Gibson was the first to develop (exponential) structural attacks for the GPT variant of
McEliece’s cryptosystem, which worked well for the parameter sets originally proposed
[10,11]. In order to avoid these attacks without enlarging the public key size, several
modifications of the GPT scheme were proposed (see e.g. [15,18]).
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Most of the GPT variants were shown to be strongly connected to the basic GPT
scheme [18]. However, GPT and its variants remained secure until 2005, when a poly-
nomial time attack on GPT was proposed [17]. It recovers a secret key for a given public
key, and is claimed to be applicable to many parameter sets of all variants of GPT, too.
We show, that the methods from [17] and [18] may be combined to attack the reducible
rank codes variant of GPT, which was not cryptanalyzed in [17].

In the fist sections we give a short introduction of the concept of rank distance codes,
basic notations and the proposed GPT variants. Then we give an overview of the existing
attacks on GPT and variants. Finally, we extend the attack from [17] to a powerful attack
on GPT with reducible rank codes and demonstrate, that it is not possible to avoid the
attack by using subfield subcodes of Gabidulin codes.

2. Rank Distance Codes

Rank distance codes were presented by Gabidulin in 1985. They are linear codes over
the finite field Fqm for q (power of a) prime and m ∈ N. As their name suggests they use
a special concept of distance.

Definition 2.1. Let x = (x1, . . . , xn) ∈ F
n
qm and b1, . . . , bm be a basis of Fqm over Fq .

We can write xi = ∑m
j=1 xij bj for each i = 1, . . . , n with xij ∈ Fq . The rank norm ‖ · ‖r

is defined as follows:

‖x‖r := rank((xij )1≤i≤n,1≤j≤m).

The rank norm of a vector x ∈ F
n
qm is uniquely determined (independent of the choice

of basis) and induces a metric, called rank distance. Further, if T ∈ F
n×n
q is an invertible

matrix, then ‖x · T ‖r = ‖x‖r .

Definition 2.2. We recall the basic notations of coding theory:

– An [n, k]-code G over a finite field F is a k-dimensional subvectorspace of the
vector space F

n.
– We call the code G an [n, k, d] rank distance code if d = minx,y∈G ‖x − y‖r .
– The matrix G ∈ F

k×n is a generator matrix for the [n, k] code G over F, if the rows
of G span G over F.

– The matrix H ∈ F
n×(n−k) is called check matrix for the code G if it is the right

kernel of G.
– The code generated by H� is called dual code of G and denoted by G⊥.

In [12] Ourivski and Johansson presented an algorithm which solves the general de-
coding problem in O((md−1

2 )3q(d−3)(k+1)/2) operations over Fq for [n, k, d] rank dis-
tance codes over Fqm . A special class of rank distance codes are the Gabidulin codes
for which an efficient decoding algorithm exists [5]. We will define these codes by their
generator matrix.
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Definition 2.3. Let g ∈ F
n
qm be a vector s.t. the components gi , i = 1, . . . , n are lin-

early independent over Fq . This implies that n ≤ m. The [n, k, d] Gabidulin code G is
the rank distance code with generator matrix

G =

⎛

⎜
⎜
⎜
⎜
⎝

g1 g2 · · · gn

g
q

1 g
q

2 · · · g
q
n

...
. . .

...

g
qk−1

1 g
qk−1

2 · · · g
qk−1

n

⎞

⎟
⎟
⎟
⎟
⎠

∈ F
k×n
qm . (1)

An [n, k] Gabidulin code G corrects errors up to rank �n−k
2 � and has minimum dis-

tance d = n − k + 1. The vector g is said to be a generator vector of the Gabidulin
code G (It is not unique, as all vectors ag with 0 	= a ∈ Fqm are generator vectors of G).
An error correction algorithm based on the “right Euclidian division algorithm” runs
in O(d3 + dn) operations over Fqm for [n, k, d] Gabidulin codes [5]. The dual code of
an [n, k] Gabidulin code is a [n,n − k] Gabidulin code (see [5]). Further, if T ∈ F

n×n
q

is an invertible matrix, then G · T is the generator matrix of the Gabidulin code with
generator vector gT .

For the further notation used throughout this paper see Appendix A. With these no-
tations, let h[qn−k−1] be the generator vector of this dual code, then we will call h the
check vector of G. Further, let J be a selection of n̄ > k columns of the generator matrix
G, then G·J defines an [n̄, k] Gabidulin code.

3. The GPT Cryptosystem

The GPT cryptosystem was first presented in 1991 by Gabidulin, Paramonov and Tret-
jakov [8]. We present a more general version (GGPT, see [18]) first, which may be used
to describe the original GPT cryptosystem as well as the variant with column scrambler
(CS-GPT) from [7].

– System Parameters: q, k < n ≤ m, t < n − k − 1 and s ≤ min{t, k} ∈ N.
– Key Generation: First generate the following matrices:

G ∈ F
k×n
qm generator matrix of an [n, k, d] Gabidulin code,

X ∈ F
k×t
qm random matrix of rank s over Fqm and rank t over Fq ,

S ∈ F
k×k
qm random, non-singular matrix (the row scrambler) and

T ∈ F
n×n
q random, non-singular matrix (the column scrambler).

Then compute the k × n matrix

Gpub = S([X|0] + G)T = S[G·{1,...,t} + X|G·{t+1,...,n}]T ∈ F
k×n
qm , (2)

where 0 denotes the k × (n − t) zero matrix. Choose 1 ≤ r ≤ n−k−t
2 . Further let

DG be an efficient error correction algorithm for the Gabidulin code G generated
by the matrix G·{t+1,...,n}.
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Table 1. Previously proposed parameters for GPT/GGPT.

Parameters Size public key WF general
m k t s in bytes decoding

48 10 16 3 2,880 2134

48 16 18 4 1,608 2124

48 24 8 2 6,912 2198

– Public Key: (Gpub, r).
– Private Key: (DG, S, T ) or (G,S,T ) where G is of the form in (1).
– Encryption: To encode a plaintext x ∈ F

k
qm choose a vector z ∈ F

n
qm of rank norm r

at random and compute the ciphertext c as follows:

y = xGpub + z.

– Decryption: To decode a ciphertext y apply the decoding algorithm DG for G to
y′ = (cT −1){t+1,...,n}. As T is an invertible matrix over Fq , the rank norm of a
vector does not change if it is multiplied with the isometry of the rank metric T −1.
Thus y′ has at most rank distance n−k−t

2 to G and we obtain the codeword

xSG{t+1,...,n} = DG(y′).

Now, we can compute the plaintext x.

The distortion matrix X is essential to mask the structure of G. We can recover the
vector gT from SGT in O(k3) operations over Fqm by employing methods similar to
the attack of Sidelnikov and Shestakov on the Niederreiter cryptosystem using GRS
codes (see [5]). Some parameter sets may be found in Table 1, where n = m and q = 2
(WF = operations over Fq ) .

3.1. Simple Variants of GPT

The original approach of the GPT cryptosystem, was to choose the parameters r and t

such that r = n−k
2 − t . If one does so, the legitimate user may recover xSGT by ap-

plying the error correction algorithm for 〈GT 〉 (which is a Gabidulin code, too) to
the ciphertext y. An alternative description of the public generator matrix would be
Gpub = S(Ḡ + X̄), where Ḡ = GT and X̄ = [X|0]T . However, this early version is
broken, as we will show in the following.

Another variant is the CS-GPT: G and X are chosen s.t. all entries of S the public key
are in a subfield FSUB of Fqm . In this case, the plaintext and random errors z are chosen
from FSUB as well. This saves space when storing the public key. The most common
instances of CS-GPT are the ones, where the public generator matrix may be written as

Gpub = S̄[Y |Ḡ] · T̄ ∈ F
k×n
qm ,

where Y ∈ F
k×t
SUB is arbitrary, Ḡ ∈ F

k×(n−t)
SUB defines an [n − t, k] Gabidulin code and

T̄ ∈ F
n×n
q as well as S̄ ∈ F

k×k
SUB are invertible.
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3.2. The Niederreiter Variant of GPT

We briefly introduce the Niederreiter variant of the GPT cryptosystem from [1]. On key
generation we choose a k − l dimensional subcode of an [n, k] Gabidulin code G over
Fqm . Every check matrix of the subcode may be described as

(H pub) = [H |A]S ∈ F
n×(n−k+l)
qm , (3)

where H is the n × (n − k) check matrix of G, A is an n × l matrix of full rank and S is
some invertible (n − k + l) × (n − k + l) matrix. The public key (H pub, r = (n − k)/2)

is published, and the pair (S,G) is taken to be the private key. To encode a plaintext
x ∈ F

n
qm of rank norm less then r , compute the ciphertext y as follows:

y = xH pub.

In order to decode a ciphertext y apply the syndrome decoding algorithm DG for G to
the syndrome build from the first n − k columns of yS−1.

3.3. GPT with Reducible Rank Codes

Most variants of the original GPT cryptosystem were proposed in order to avoid Gib-
son’s attacks from [10,11]. In [9], the authors proposed to substitute the underlying code
by a reducible rank code:

Definition 3.1. Let Gi = 〈Gi〉, i = 1, . . . ,w be a family of [ni, ki, di] codes over Fqm .
Then the (linear) code G given by the generator matrix of the form

G =

⎡

⎢
⎢
⎢
⎣

G1 0 · · · 0
Y21 G2 · · · 0
...

. . .
...

Yw1 Yw2 · · · Gw

⎤

⎥
⎥
⎥
⎦

∈ F

∑
ki×∑

ni

qm

for some matrices Yij ∈ F
ki×nj

qm is called a reducible code. Further, G has length
n = ∑w

i=1 ni , dimension k = ∑w
i=1 ki and minimum distance d = min1≤i≤w(di). Er-

ror correction may be done in sections, starting from the right. If all codes Gi are rank
distance codes, we call G a reducible rank code.

Using reducible rank codes for the McEliece cryptosystem is quite a natural extension
(RRC-GPT). In the examples from [9] the authors propose to take two Gabidulin codes
G1 and G2 over Fqm (with length ni and dimension ki , i = 1,2) and a random matrix

Y = Y21 ∈ F
k2×n1
qm to build a reducible rank code G. As public generator matrix they

choose

Gpub = S(G + [X1 X2])T , (4)

where S ∈ F
k×k
qm and T ∈ F

n×n
q are non-singular and the rank of Xi ∈ F

k×ni

qm over Fq

is less than ti for i = 1,2. Using this construction, the authors of [9] propose that the
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random errors added at encryption should have a rank less than r = mini=1,2(
ni−ki

2 − ti),
where en- and decryption work as with GGPT. The authors of [9] considered every
parameter set with mi ≥ 24 and r ≥ 4 to provide sufficient security, even if X1 and X2
are zero matrices. Analogous to the construction above, one might choose to build the
reducible rank code from w > 2 Gabidulin codes and an adapted distortion matrix.

Note, that because of the use of the column scrambler, we may choose Xi s.t. only the
first ti columns contain non-zero entries. All other choices correspond to an equivalent
private key with Xi of the desired form and different T and G.

4. Exponential Attacks on GPT

Structural attacks (the ones, trying to recover a private key from the public one) had
more impact on the cryptosystem than attacks employing general rank distance decod-
ing algorithms. However, for carefully chosen parameter sets, many structural attacks
have exponential running time.

Structural attacks take advantage of the main weakness of GPT in comparison with
the McEliece PKC: Unlike Goppa codes, Gabidulin codes are highly structured. Some
attacks are based on the following observation: If G is the generator matrix of a
Gabidulin code, then G and G[q] look quite the same. (Both define Gabidulin codes
with generator vectors g and g[q] respectively.) This property can be used, to distin-
guish a Gabidulin code from a random one.

4.1. Gibson’s Attacks

Gibson presented two structural attacks on the GPT cryptosystem. They recover
an alternative private-key from the GGPT public-key Gpub. On input of Gpub =
S([X|0] + G)T , Gibson’s attacks return Ĝ, X̂ ∈ F

k×n
qm and Ŝ ∈ F

k×k
qm , s.t.

(i) Ĝ is a generator matrix of an [n, k] Gabidulin code over Fqm ,
(ii) Gpub = Ŝ(Ĝ + X̂) and

(iii) the rank of X̂ over Fq is not bigger than t .

Thus Gibson’s attacks serve well for an attack on the GGPT cryptosystem, as an alter-
native column scrambler may be recovered from X̂. Gibson’s first attack was developed
for the case that the GGPT parameter s is very small. It is a variation of the approach for
GPT without distortion matrix (s = 0), which recovers a generator vector of a Gabidulin
code from its systematic generator matrix by solving some linear equations. If the para-
meter s is small enough, the attacker can guess some unknown values to eliminate the
effect of the distortion matrix. This first attack takes

O(m3(n − k)3qms) (5)

operations over Fqm . In [11] Gibson presented a different attack, which analyzes ma-
trices of the form G + G[q]. This attack is more efficient for larger values of s. It runs
in

O(k3 + (k + t)f · qf (k+2) + (m − k)t · qf ) (6)
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operations over Fqm , where f ≈ max(0, t − 2s, t + 1 − k). Note, that this attack runs
in polynomial time if f = 0. The success of both attacks is based on some assump-
tions, which are claimed to be fulfilled with high probability for random instances
of the GGPT cryptosystem. Nevertheless Gibson’s attacks are not fast enough to at-
tack the GGPT cryptosystem for all parameter sets of practical interest (compare Ta-
ble 3).

4.2. Ourivski’s Attack on the Niederreiter Variant

In 2003 A. Ourivski chose an approach similar to the one of the first attack from Gib-
son. He analyzed the public key and was able to recover the secret key by guessing
some values and solving some linear equations afterwards. The number of elements
an attacker has to guess using Ourivski’s attack is expressed by the parameter f be-
low.

Without loss of generality we may assume, that the matrix A in the public key of the
Niederreiter GPT (see (3)) is of the following form:

A =
⎡

⎣
0

Idl

Ā

⎤

⎦ ∈ F
n×l
qm ,

where Ā ∈ F
(k−l)×l
qm and Idk denotes the k-dimensional identity matrix. Let v ≤ l be the

column-rank of Ā over Fq and a ≤ min{v, k − l} be the rank of Ā over Fqm . Ourivski’s
attack takes

O(3m3 + nf · qm(f −1))

operations over Fq , where f ≈ v + 1 − min{v, a(n − k)} for most instances. Even if no
proof is given, experiments corroborate Ourivski’s estimation of f . Because 0 ≤ v ≤ l,
this attack runs in polynomial time, if l ≤ a(n − k). Ourivski states, that the parameter
a should not be to small (≥3), as otherwise a different attack approaches can be used
to recover a private key. Thus, for the worst case with fixed a, the work factor for
Ourivski’s attack is

O(3m3 + nl · qm(l−O(1)(n−k))).

5. Polynomial Time Attacks on GPT

The attack on the private key of GGPT presented in [17] runs in cubic time, but does not
succeed for every parameter set. However, it succeeds for all parameter sets proposed
previously and thus confirms that GGPT is inherently weak. To cryptanalyze GGPT,
we take advantage of the behavior of the public generator matrix under the Frobenius
automorphism:
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Definition 5.1. Let M be an arbitrary l × n matrix over Fqm and f ∈ N. Then the
operator λf is defined as

λf : F
l×n
qm −→ F

(f +1)l×n
qm

�f (M) =

⎡

⎢
⎢
⎢
⎣

M

(M)[q]
...

(M)[qf ]

⎤

⎥
⎥
⎥
⎦

.
(7)

Depending on the connection between M and a Gabidulin code, the matrix �f (M)

defines different subspaces of F
n
qm . The general idea is, to analyze �f (Gpub). By this

we can split the Gabidulin part from the random part of Gpub.
We first state some basic observations about the behavior of different matrices under

the operator �f (M). The following lemma observes the behavior of generator matrices
of Gabidulin codes:

Lemma 5.1. If M ∈ F
k×n
qm defines an [n, k] Gabidulin code with generator vector g

and f ≤ n − k − 1, then the subvectorspace spanned by the rows of �f (M) defines the
[n, k + f ] Gabidulin code with generator vector g.

Proof. Let G be a canonical generator matrix for G, then there exists a matrix
S ∈ F

k×k
qm such that M = SG. It follows, that 〈�f (M)〉 = 〈�f (G)〉, and it is obvious,

that the vectorspace spanned by the rows of �f (G) is an [n, k + f ] Gabidulin code.

(Only the last row of �f (G) is not in 〈�f −1(G)〉 and has the form g[qk−1+f ].) �

Note that identifying a Gabidulin code by an arbitrary generator matrix G may be
done using this lemma: A check vector h of 〈G〉 is given by λn−k−2(G)⊥. Unlike gen-
erator matrices of Gabidulin codes, random matrices tend to be mapped to matrices of
high rank by λf , see [13]:

Lemma 5.2. Let M ∈ F
�×n
qm be a random matrix of full column rank over Fq . Then

�f (M) has rank min(n, (f + 1) · �) with probability ≥ (1 − 4q−m).

Observe that if � = 1, then because of Lemma 5.1 the probability is 1. For the Nieder-
reiter GPT, we can make the following assumption:

Assumption 5.1. Let M ∈ F
�×n
qm define a random � > 1 dimensional subcode of an

[n, k] Gabidulin code over Fqm with generator vector g. Then with probability ≥ (1 −
q−m), �f (M) defines a min{k + f, (f + 1) · �} dimensional subcode of the [n, k + f ]
Gabidulin code with generator vector g.

It is easy to see, that �f (M) defines a subcode of the [n, k + f ] Gabidulin code with
generator vector g. The remaining part is to estimate the probability. However, it can
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not be 1, as the rank of �1(M) is 3 for

M =
(

1 0 1
0 1 1

)

G,

where G is the generator matrix of a (3, n ≥ 5) Gabidulin code over F2n . Our estimation
of the probability is based on experimental results. Unfortunately we are not able to give
theoretical corroborated bounds.

5.1. Attacking the Niederreiter Variant

Even if Ourivski’s attack on the Niederreiter GPT works well, it still has exponential
work factor for special parameter sets. Nevertheless, it is not the only way to recover the
secret key for the Niederreiter GPT. We present an attack, which recovers an alternative
secret key in polynomial timefor many parameter sets by using Assumption 5.1

Theorem 5.1. Let GSUB be a random k−� dimensional subcode of an [n, k] Gabidulin
code G over Fqm defined by an instance of the Niederreiter GPT. Then we can recover
the generator vector g of G from GSUB with probability ≥ (1 − q−m) if k − � > 1 and
n − k − 1 ≥ ��/(k − � − 1)�. Further, this may be done in O(n3) operations over Fqm .

Proof. Let GSUB be the generator matrix of GSUB. To recover g from GSUB we choose
f ∈ N such that n − k − 1 ≥ f ≥ ��/(k − � − 1)�. If Assumption 5.1 holds, λf (GSUB)

has rank k + f with probability ≥ (1 − q−m) and defines a subcode of a [n, k + f ]
Gabidulin code. Thus, in most cases, λf (GSUB) spans the [n, k + f ] Gabidulin code
with generator vector g and we can recover g in O((k + f )3) operations over Fqm

(see [5]). �

Note, that it is sufficient to know the generator vector g for the Gabidulin code G in
the secret key of an Niederreiter GPT instance, to decrypt all ciphertexts.

For the parameter sets proposed e.g. in [2], the choice of f = 1 showed to be suf-
ficient in all our experiments. I wish to thank P. Loidreau for pointing out, that the
attack presented in this section may be combined with Ourivski’s approach: The matrix
�f (Gpub) will be the of higher rank as Gpub and is the public key of an instance of
the Niederreiter GPT. Thus, one can try to employ Ourivski’s approach to recover the
secret key from it. Further, the upper bound of complexity of Ourivski’s attack is lower
for the Niederreiter GPT public key defined by �f (Gpub), than for the one defined by
Gpub.

5.2. Attacking GGPT

As we have seen in the previous section, the structure of Gabidulin codes allows to
recover the original code from a subcode. The same holds for many distorted Gabidulin
codes like the public key of most GPT variants. In the following let (Gpub, r) be the
public key of an instance of the GGPT cryptosystem with parameters q,m,n, k, t and
s and (G,S,T ) be a corresponding secret key as in Section 3. The attack strategy is
almost always the same and can be summarized in the following way:
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Table 2. Attacking GGPT.

(i) Determine the maximal f , such that �f (Gpub) has not full rank.
(ii) If �f (Gpub)⊥ has not full rank over Fq , compute a column scrambler T̂ , such that the first rows of

�f (Gpub)⊥T̂ � are zero. Otherwise the attack fails.
(iii) If the last columns of GpubT̂ −1 generate a Gabidulin code, compute its generator vector ĝ and a row

scrambler Ŝ by one of the already known methods.
(iv) Verify that T̂ and Ŝ are part of a valid secret key.

In the following we will analyze, in which case this strategy allows an attacker to
build a valid secret key.

A crucial point for this type of attacks on the private key of GGPT is the analysis of
the structure of the dual of �f (Gpub). That structure depends mainly on f and the k × t

distortion matrix X of rank s, which is used during the key generation phase of GGPT.
We want to remind the reader that n − t − k = 2r .

Theorem 5.2. For 0 ≤ f ≤ 2r − 1 there exists a dual matrix of �f (Gpub) of the form

�f (Gpub)⊥ =
[

0 H�
f

B1 B2

]

· (T −1)� ∈ F
(2r−f +�)×n
qm , (8)

where Hf ∈ F
(n−t)×(2r−f )
qm is the check matrix of a k + f dimensional Gabidulin code

Gf of length n − t , B1 is some � × t matrix with 0 ≤ � ≤ t and B2 is some � × (n − t)

matrix.

Proof. First, we assume, that T and S are the identity matrix. The proof is analogous,
if this is not the case. We may write

�f (Gpub) = [ �f (G·{1,...,t} + X)
︸ ︷︷ ︸

t

|�f (G·{t+1,...,n})
︸ ︷︷ ︸

n−t

] ∈ F
(k(f +1))×n
qm .

By Lemma 5.1, the last n − t columns of �f (Gpub) define an [n − t, k + f ] Gabidulin
code Gf . Thus the subvectorspace spanned by the rows of

[0|H�
f ] ∈ F

(2r−f )×n
qm ,

where Hf ∈ F
(n−t)×(2r−f )
qm is the check matrix of Gf , is in the dual space of �f (Gpub).

To get a matrix which defines the whole dual space of �f (Gpub), we might have to
add some more rows to [0|H�

f ]. However, it is clear, that there will be at most t rows

missing, as �f (Gpub) has at least rank k + f . This proves the theorem. �

It can be shown, that the representation of �f (Gpub)⊥ in (8) is normalized in a very
strong way (see Lemma B.1 in Appendix B): Every Hi is uniquely determined by the
secret key and 〈Hi+1〉 ⊂ 〈Hi〉. This allows us to recover an alternative secret key if the
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rank of �f (Gpub)⊥ is at its lower bound (2r − f ) for some f . In that case, �f (Gpub)⊥
is of the form

[0|H�
f ]T ∈ F

(2r−f )×n
qm , (9)

and thus reveals information about T as it is not of full rank over Fq . We are going to
determine the rank of �f (Gpub)⊥ in the following sections and show that every column
scrambler deduced from (9) leads to a valid secret key.

Theorem 5.3. If there exists an integer f ≤ 2r − 1 s.t. the rank of �f (Gpub)⊥ is
2r − f , then the rank of �f (Gpub)⊥ over Fq is exactly n − t . Further, every invertible
matrix T̂ ∈ F

n×n
q , which maps �f (Gpub)⊥ to a matrix where the first t columns are zero

is a column scrambler for a valid secret key. Thus, an attacker can recover a valid secret
key in O(n3) operations.

Proof. With the conditions above, it follows from Theorem 5.2, that the matrix
�f (Gpub)⊥ is of the form of (8) with l = 0 and thus of the form of (9). We can build
�f (Gpub) and �f (Gpub)⊥ in O(n3) operations over Fqm . Now we can choose a set N1

of columns s.t. �f (Gpub)⊥·N1
is of column rank n − t over Fq . It follows, that TN1N2

with N2 := {t + 1, . . . , n} is invertible. We may assume without loss of generality that
N1 = N2 and H�

f = �f (Gpub)⊥·N1
. Let T̃ ∈ F

t×(n−t)
q be the solution of the equation

�f (Gpub)⊥·{1,...,t} = H�
f · T̃ �

over Fq . We define

T̂ −1 :=
[

Idt T̃

0 Idn−t

]

∈ F
n×n
q .

As H0 and Hf are uniquely determined by Gpub and T̂ , it follows, that [0|H0] is in the
dual space of GpubT̂ −1. Thus T̂ serves as an alternative column scrambler as the last
n − t columns of GpubT̂ −1 define an (n − t, k) Gabidulin code. Now, an row scrambler
completing the equivalent secret key may be obtained from (Gpub · T̂ −1)·{t+1,...,n} in
O(k3) operations [5]. �

5.3. Insecure Parameter Sets for GGPT

Given an f s.t. the conditions of Theorem 5.3 are fulfilled, for the GGPT public key, we
can build an alternative private key in O(n3) operations over Fqm . In this section we are
going to determine for which parameter sets such a f exists. To do so, we will have to
determine the rank of �f (Gpub)⊥, as the attack works if the rank is small and is more
likely to fail, if it is large. As we will see, the rank of �f (Gpub)⊥ is strongly connected
to the rank s of the distortion matrix X ∈ F

k×t
qm .

Theorem 5.4. Let 0 ≤ f ≤ 2r − 1, then the rank R of �f (Gpub)⊥ is ≤ n − k −
f − min{t, f }. Further, R ≤ n − k − f − min{t, f s, f (k − 1)} holds with probability
> (1 − sq−m)(1 − 4q−m).
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Table 3. Attacking the GGPT cryptosystem.

Parameters WF attack WF best of
m k t s from [17] Gibson’s attacks

48 10 16 3 228 (success probability 1) 2139

48 16 18 4 228 (success probability ≈ 1) 2200

48 24 8 2 228 (success probability 1) 2122

We will assume that s < k in the following, as all proofs and estimations are anal-
ogous otherwise, except, that you have to replace s with k − 1. Before we prove the
theorem we want to point out the consequences: All parameter sets, where

t ≤ s · (2r − 1) (10)

are insecure, as the conditions of Theorem 5.3 will be met for f = 2r − 1. Furthermore,
we may obtain an equivalent secret key with probability 1 for all parameter sets where

t ≤ 2r − 1 ⇐⇒ 1/2 ≤ (n − k)/2 − t (11)

for the same reasons. Equation (11) is true for all instances of the original GPT cryp-
tosystem and most parameter sets for GGPT from Table 1. All in all, the attack presented
above succeeds for all parameter sets proposed so far with high probability, and runs in
polynomial time (see Table 3)

Proof of Theorem 5.4. Here we present a sketch of the proof, for a more detailed
version see Appendix C. It can be shown, that �f (Gpub)T −1 generates the same vector
space as a Matrix of the form

[
Y λf +k−1(G{1}{t+1,...,n})

λf −1(X̃) 0

]

, where X̃ = X{2,...,k}· + X
[q]
{1,...,k−1}·

and Y is some arbitrary matrix. As X̃{1,...,s}· is a random matrix, it is of rank s with
probability ≈ (1− sq−m). Lemma 5.2 yields that λf (X̃) has rank min{t, f s} with prob-
ability > (1 − 4q−m). However, X̃ has rank at least 1, which proves the theorem. �

5.4. Towards GGPT Instances Secure Against Structural Attacks

We have seen, that instances of the GGPT cryptosystem and its variants, where (10)
holds are insecure if Assumption 5.2 holds. However, we may choose parameter sets,
s.t. this equation does not hold. Even though, we might be able recover an equivalent
private key if there is a f < 2r − 1, such that

rank(�f (Gpub)⊥) < n − t − 1. (12)

In that case, an attacker can proceed as follows:



292 R. Overbeck

Table 4. A modified attack on GGPT.

(i) Guess a set N1 of n − t positions such that ([0|H�
f

](T −1)�)·N1 has full column rank over Fq .

(ii) Apply an attack on the Niederreiter GPT to the check matrix (�f (Gpub)⊥·N1
)�.

(iii) Recover the matrix �f (Gpub)⊥ of the form in (8).
(iv) Build an alternative private key.

A set N1 may be used by the attacker if (T −1)N1{t+1,...,n} is invertible. Guessing such
a set can be done with sufficient probability if T ∈ F

n×n
q was chosen at random:

Lemma 5.3. The probability, that a random (n− t)× (n− t) matrix over Fq is invert-
ible is larger than 0.28.

Proof. The number of invertible i × i matrices over Fqm is
∏i−1

j=0(q
mi − qmj ) [19].

With the results from [4] we get the following bound:

1

q(n−t)2 ·
n−t−1∏

j=0

(q(n−t) − qj ) =
n−t∏

j=1

(1 − q−j ) ≥ 0.288788. �

If the attacker has guessed a valid set N1 he may assume without loss of general-
ity that (T −1)N1N2 = Idn−t . If (12) holds, the check matrix (�f (Gpub)⊥·N1

)� defines a
subcode of an [n − t, k + f ] Gabidulin code of dimension at least 2. Therefore it cor-
responds to an instance of the Niederreiter GPT and the attacker can apply the attacks
on the Niederreiter variant of GPT, to recover [Hf |B�

2 ]. If one of the attacks succeeds,
an attacker can recover a dual matrix of �f (Gpub) of the form given in (8) and from it
an alternative column scrambler. Afterwards the attacker would be able to construct a
valid alternative private key.

To get secure instances of GGPT, one could try to choose parameters in a way, such
that there is no choice of f such that (12) holds. By Theorem 5.4 we know, that the
latter is the case, e.g. if

s ≤ 2t − n

2r
. (13)

Such a parameter set could be q = 2, m = n = 64, k = 8, t = 40 and s = 1 with a binary
work factor of 287 for a general decoding attack and a public key size of 3584 bytes.
However, these parameter sets are only secure against the presented structural attack,
but not necessarily against attacks on the ciphertext [16].

Remark 5.1. Experiments showed, that Assumption 5.1 does not seem to hold for sub-
codes of Gabidulin codes defined by the check matrix (�f (Gpub)⊥·N1

)�. Thus, for these
instances of the Niederreiter GPT, the success probability of the attack from Section 5.2
is very small. However, these subcodes are not truly random ones, but are generated in
a very special way (They are more or less the intersection of several Gabidulin codes).
Thus, this observation does not contradict Assumption 5.1. Further, Ourivski’s attack
may still be applied.
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5.5. A Simple Attack for “GPT with Reducible Rank Codes”

In [18] the author presented a security reduction for GPT with reducible rank codes. The
security reduction relies on the assumption, that all private keys of an instance of GGPT
are strongly connected to each other. The main idea is, to view only parts of the public
generator matrix, which define public generator matrices of the CS-GPT cryptosystem.
We will limit ourselves to the case, where the secret RRC is build from two Gabidulin
codes. Proofs are analogous for all other cases. To attack RRC-GPT we first rewrite the
public generator matrix:

Lemma 5.4. Let (Gpub, r) be the public key of an instance of the RRC-GPT cryptosys-
tem as given in (4). Further, let (G,S,T ) be the corresponding secret key. Then there
exists an invertible matrix T̂ ∈ F

(n1+n2)×(n1+n2)
q such that

GpubT̂ −1 = S

[
Z1 G1 0

Z2 Y G2

]

, (14)

where the matrices Gi are generator matrices of [ni − ti , ki] Gabidulin codes and Zi ∈
F

ki×(t1+t2)
qm as well as Y ∈ F

k2×(n1−t1)
qm are arbitrary matrices.

Further, if the matrix SJK2 is invertible for a subset J ⊆ {1, . . . , k1 + k2} and K2 :=
{k1 + 1, . . . , k1 + k2}, then G

pub
J · is an instance of the CS-GPT cryptosystem.

Proof. As the matrices X1 and X2 used on key generation are of column rank smaller
than ti over Fq , we may assume without loss of generality, that only their first ti columns
contain non-zero entries. Thus, by exchanging the (t1 + i)-th column of GpubT −1 with
the (n1 + i)-th column for i = 1, . . . , t2 and modifying T accordingly, we get a matrix T̂

with the desired properties. The fact that G
pub
J · forms a instance of the CS-GPT follows

from the observations above. �

The representation of the private key as in (14) suggests an iterative attack on RRC-
GPT as summarized in Table 5. This attack strategy will only work, if for each CS-GPT
instance defined by a submatrix of k rows of Gpub the same column scrambler may be
used. Therefore, we make the following assumption:

Assumption 5.2. Let (Gpub, r) be the public key of a random instance of GGPT with
parameters q,n,m,k, t and s. Further, let (G,S,T ) and (Ĝ, Ŝ, T̂ ) be two valid secret

Table 5. Attacking RRC-GPT with an CS-GPT oracle.

(i) Guess a subset J of k rows, such that they form a instance of the CS-GPT.

(ii) Use an attack on CS-GPT to recover a partial column-scrambler T̂ from G
pub
J · .

(iii) Remove the influence of T̂ from Gpub and verify that the right part of the matrix defines a Gabidulin
code.

(iv) If the latter is the case, recover a partial row scrambler, remove its influence from Gpub and eliminate the
rows and columns belonging to the recovered Gabidulin code.

(v) Continue the procedure until you have recovered a valid secret key.
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keys corresponding to (Gpub, r), then

(T̂ T −1)N1N2 = 0,

where N1 := {1, . . . , t} and N2 := {t + 1, . . . , n}.

With other words, we assume, that for all instances of the GGPT we are going to
view, all possible secret keys are closely related to each other:

Ĝ·N2(T̂ T −1)N2N2 = G·N2 .

We did not find any counterexamples in our experiments for random instances of GGPT
and the assumption can be proven for many instances of GGPT (see Lemma B.2 in
Appendix B). Therefore, we can reduce the problem of finding a alternative secret key
for a given RRC-GPT public key to the problem to recover a secret key for CS-GPT
instances.

Lemma 5.5. With the notations from Lemma 5.4. Let SK2K2 be invertible and T̂ be

the column scrambler of a valid secret key for the CS-GPT public key defined by G
pub
K2·.

Let G
pub
K2·T̂

−1 = Ŝ[A|B|Ĝ2] where the matrices A ∈ F
k2×(t1+t2)
qm and B ∈ F

k2×(n1−t1)
qm are

arbitrary. Further, assume, that Assumption 5.2 holds for all secret key pairs of G
pub
K2·

with column scramblers T and T̂ . Then there exists a solution of

GpubT̂ −1 = S1 ·
[

Z1 G1 0

A B Ĝ2

]

·
⎡

⎢
⎣

T1
0

0

0 0 Id(n2−t2)

⎤

⎥
⎦ , (15)

for some invertible matrices S1 ∈ F
k×k
qm and T1 ∈ F

(n1+t2)×(n1+t2)
q .

Proof. Assumption 5.2 yields, that the last n2 − t2 columns of [Z1|G1|0]T T̂ −1 are
zero. It follows, that the rank of matrix build from the last n2 − t2 columns of GpubT̂ −1

has only rank k2, which proves the lemma. �

We omit analyzing the impact of the proposed attack on RRC-GPT here, but leave it
to the next section.

5.6. A Modified Attack for “GPT with Reducible Rank Codes”

Choosing a minor variation of the attack from Section 5.2, we get a even more powerful
attack on RRC-GPT than in the section above. For most instances of RRC-GPT the
following is true:

Assumption 5.3. For a RRC-GPT public key (Gpub, r), the matrix GpubT −1 is of the
form in (14), with 〈Y 〉 	⊆ 〈G1〉, a matrix Z1 that has at least one row of full column rank
over Fq and where [Z1|G1] as well as [Y |G2] do not define a Gabidulin (sub-) codes.
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This assumption is true with probability almost 1, if Z1 and Y were chosen at random.
In this case, an attacker may replace the first two steps of the attack described in Table 5
by the following: “Recover a partial column scrambler T̂ from the matrix �f (Gpub),
where f = n2 − k2 − t2 − 1.” This modified attack works for a variety of parameter sets
as e.g. in the following case:

Theorem 5.5. With Assumption 5.3: Let (Gpub, r) be a public key of an instance of
RRC-GPT with parameters q , m, n1 = n2, k1 = k2 and t1 = t2. If 2t1 + 1 ≤ 2r , then we
can recover an alternative private key in O(m3) operations over Fqm .

Proof. Let f = n2 − k2 − t2 − 1 = 2r − 1. Like in Theorem 5.4, by multiplying the
matrix �f (Gpub) with a non-singular matrix from the left, we can see that

〈�f (Gpub)〉 =
〈[

�f

([
Z1 G1 0

])

�f

([
Z2 Y G2

])

]〉

=
〈
⎡

⎢
⎢
⎣

A1 0 0
A2 G̃1 0

A3 B1 0
A4 B2 G̃2

⎤

⎥
⎥
⎦

〉

∈ F
(f +1)k×n
qm ,

where A2 and A4 are matrices with n2 − t2 − 1 rows, A1 has the same number of rows
as A3, and the G̃i define [n2 − t2, n2 − t2 −1] Gabidulin codes, with the same generator
vector as Gi for i = 1,2. Further, by the assumption made, A1 ∈ F

(k2(f +1)−(f +k2))×2t2
qm

has rank at least min{2t1, f }. The assumptions for Y imply that the matrix [G̃⊥
1 B⊥

1 ] ∈
F

(n2−t2)×k2(f +1)
qm has rank n2 − t2. We conclude, that the rank of �2r−1(G

pub)⊥ is one,

and following the methods from Theorem 5.3, we can build a column scrambler T̃ from
it. This column scrambler is part of some secret key for the GGPT instance defined
by [Z2 Y G2]T . Note, that for the GGPT instance defined by [Z2 Y G2]T , the matri-
ces T and T̃ are column scramblers for two secret keys, for which Assumption 5.2 is
true. We may assume without loss of generality, that SK2K2 is invertible, and may write

G
pub
K2·T̂

−1 = Ŝ[A|B|Ĝ2]. It follows from Lemma 5.5, that the attacker may compute a

matrix S̃ ∈ F
2k2×2k2
qm s.t.

S̃−1GpubT̂ −1 =
[

S1 0

0 Idk2

]

·
[

Z1 G1 0

A B Ĝ2

]

·
⎡

⎢
⎣

T1
0

0

0 0 Id(n2−t2)

⎤

⎥
⎦

for some invertible matrices S1 ∈ F
k1×k1
qm and T1 ∈ F

(n1+t2)×(n1+t2)
q . The first k1 rows of

the first n1 +2t2 columns of S̃−1GpubT̂ −1 define a GGPT instance, for which the attack
from Section 5 succeeds with probability 1. Thus, we may recover alternative T1 and
S1, which is sufficient to build an alternative private key for the RRC-GPT public key
(Gpub, r). �

The attack described above succeeds for much more parameter sets, than named (even
without the previous Assumption 5.3). Therefore we are not able to name practical
parameter sets for RRC-GPT, which are secure. An (awkward) parameter set secure
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against this type of attack would be m = 152, n1 = 152, n2 = 24, k1 = k2 = 8, t2 = 0
and t1 = 128, as we can determine from (13) by setting s = 2k2.

6. Using Subfield Subcodes for GPT

We have seen, that the only way, to build a secure and efficient public key cryptosystem
from Gabidulin codes would be by a redesign of the cryptosystem. However, one would
have to be extremely careful, as we are going to show in this section.

One attempt to do such a redesign could be the use of subfield subcodes. This ap-
proach is quite tempting, as Goppa codes are subfield subcodes of GRS codes, and the
McEliece scheme is secure if we use Goppa codes, but not in the case of GRS codes.
As we will see, this proposal coincides with instances of RRC-GPT. However, in this
situation Assumption 5.3 is not true and one could hope having found a secure variant
of GPT.

6.1. Subfield Subcodes of Gabidulin Codes

Let G be an Gabidulin code over FqN , N = mm̄. We may consider FqN to be an exten-
sion field of degree m̄ over Vm � Fqm . The Vm-(subfield)-subcode of a G is the subcode
consisting of the codewords of G which have only entries in Vm. Such codes were first
analyzed in [6] by E. Gabidulin and P. Loidreau.

For the analysis of the structure of subfield subcodes, we will need to define a map-
ping between FqN and Vm̄

m . We will write Fqm instead of Vm in the following. Let

αq1
, αq2

, . . . , αqm̄
be a normal basis of FqN over Fqm . Then every element x ∈ FqN has

a unique representation x = ∑m̄
i=1 xiα

qi
with xi ∈ FqN . We define ϕ to be the (bijective)

mapping ϕ : FqN → F
m̄
qm;x �→ (x1, . . . , xm̄)� such that x = ∑m̄

i=1 xiα
qi

. For a matrix

M = (mij )
k,n
i=1,j=1 over FqN the matrix ϕ(M) denotes the block matrix (ϕ(mij ))

k,n
i=1,j=1.

If m̄ = 2, then for two matrices M = (mij )
k,n
i=1,j=1 and M̃ = (m̃ij )

k,n
i=1,j=1 over Fqm , we

will denote the matrix
(

ϕ−1
((

mij

m̃ij

)))k,n

i=1,j=1
with ϕ−1(M,M̃).

The orbit of ϕ(x) under the operation of the Frobenius field automorphism on x allows
to determine the check matrix of the Fqm -subcode of a Gabidulin code over FqN :

Lemma 6.1. For all i, the space spanned by the rows of ϕ(xqi
) is the row-space of

(ϕ(x)
qi

1 , . . . , ϕ(x)
qi

m̄ )�.

Proof. Since αq1
, αq2

, . . . , αqm̄
is a basis of FqN over Fqm , αq1+i

, αq2+i
, . . . , αqm̄+i

is
also a basis, which can be obtained from the above basis by multiplication by a non-
singular matrix over Fqm , say Q, thus

ϕ(xqi

) = (ϕ(x)
qi

1 , ϕ(x)
qi

2 , . . . , ϕ(x)
qi

m̄ )�Q�. �
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Let h = (h1, h2, . . . , hn) be a check vector of the [n, k] Gabidulin code G over FqN .
From Lemma 6.1 we know that both matrices

ϕ

⎛

⎜
⎜
⎜
⎝

h

h[1/q]
...

h1/qn−k−1

⎞

⎟
⎟
⎟
⎠

and

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h11 h21 · · · hn1
...

...
...

h
1/qn−k−1

11 h
1/qn−k−1

21 · · · h
1/qn−k−1

n1
h12 h22 · · · hn2
...

...
...

h
q1/n−k−1

12 h
1/qd−2

22 · · · h
1/qn−k−1

n2
...

...
...

...

h1m̄ h2m̄ · · · hnm̄

...
...

...

h
1/qn−k−1

1m̄ h
1/qn−k−1

2m̄ · · · h
1/qn−k−1

nm̄

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�

(16)

are check matrices of the Fqm -subfield-subcode of G. The lower bound of the dimension
of the Fqm -subfield-subcode of G is n − m̄(n − k), thus only when n > m̄(n − k), it is
guaranteed to be of higher dimension than zero. Analogous to the results from [6], for
m̄ = 2 we get the following theorem, which is a direct consequence of the observation
above:

Theorem 6.1. Let G be an [n, k] Gabidulin code over Fq2m with, k > m. Then for

the Fqm -subfield-subcode GSUB, there exists a non-singular matrix T ∈ F
n×n
2 such that

H · T is the generator matrix of a reducible rank code build from two Gabidulin codes
over Fqm with dimension n − k. It follows, that GSUB is a (scrambled) reducible rank
code as well. and has minimum distance d = n − k + 1.

6.2. A Version of GPT Using Subfield Subcodes

With Theorem 6.1, we can give a simple description of a variant of GPT using subfield
subcodes. We will limit ourselves to the cases, where m̄ = 2, n = N and k > m, which
are the most interesting ones. The public generator matrix Gpub of an instance of such
an GPT variant might be described as

Gpub = S

[
G1 0
0 G2

]

T ∈ F
2k×n
qm , (17)

where G1 and G2 are [m,k] Gabidulin codes over Fqm and S ∈ F
2k×2k
qm and T ∈

F
n×n
q are non-singular matrices. The secret key of such an GPT variant could be

(G1,G2, S, T ). Unfortunately, this design of a cryptosystem is insecure. The applica-
tion of a distortion matrix won’t change the situation too much, so we omit viewing that
case.
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Let hi be the check vector of 〈Gi〉, i = 1,2. With the results from above, the matrix
GpubT −1 is the generator matrix of the Fqm -subcode of the [2n,n + k] Gabidulin code
over Fq2m with check vector

h = (ϕ−1(h1,0), ϕ−1(0, h2)).

Observe, that for any non-singular matrix γ = (γij )i,j∈{1,2} ∈ F
2×2
qm the Fqm -subcode of

the [2m,m + k] Gabidulin code over Fq2m with check vector

hγ = (ϕ−1(γ11 · h1, γ12 · h1), ϕ−1(γ21 · h2, γ22 · h2))

has generator matrix GpubT −1, too. Again we can apply λf as in Section 5.1. One can
prove, that

(�n−k−1(G
pub))⊥ =

(
γ11 γ12
γ21 γ22

)[
h1 0
0 h2

]

(T −1)�

for some invertible matrix (γij ) ∈ F
2×2
qm . We know, that Gpub is the generator matrix of

the Fqm -subcode of the [2n,n + k] Gabidulin code with check vector h(T −1)� and as
well of the [2n,n + k] Gabidulin code with check vector hγ (T −1)�. As the latter one
can correct errors of rank up to n−k

2 , we can recover a valid alternative secret key by
computing (�n−k−1(G

pub))⊥.
With other words, the application of the column scrambler T does not change the

situation. Further, the method presented may be used to recover a generator vector of
some Gabidulin code given the generator matrix of its subfield subcode in O(N3) op-
erations over FqN . Even if we would use Gabidulin codes, which are not of full length
(n < N ), the methods presented in this paper allow to recover the generator vector from
a description of the subfield subcode.

7. Conclusion

None of the existing GPT variants is secure for parameter sets of practical interest, as
they may be attacked in polynomial time. Even if we would consider the remaining
possible parameter sets to be secure, their long term security has to be doubted (com-
pare [16]).

We have seen that neither the addition of random redundancy, distortion matrices
or supplementary check vectors, nor the employment of reducible codes is sufficient
to allow hide the structure of Gabidulin codes efficiently. Additionally, we have shown,
that the use of subfield subcodes does not lead to a secure GPT variant, unlike in the case
of the proposal from Niederreiter (Goppa codes are subfield subcodes of GRS codes).
Because of their highly structured generator matrix, Gabidulin codes do not seem to be
a good choice for cryptographic applications.

Appendix A. Notations

– We write G = 〈G〉 if the linear [n, k]-code G over the field F is spanned by the
rows of G.
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– If the rows of an (n − k) × n matrix M span G⊥ we write G⊥ = M . With this
notation M� is a check matrix of G.

– We will identify x ∈ F
n with (x1, . . . , xn), xi ∈ F for i = 1, . . . , n.

– For any (ordered) subset {j1, . . . , jm} = J ⊆ {1, . . . , n} we denote the vector
(xj1, . . . , xjm) ∈ F

m with xJ . Similarly, we denote by M·J the submatrix of a
k × n matrix M consisting of the columns corresponding to the indices of J and
MJ ′· = ((M�)·J ′)� for any (ordered) subset J ′ of {1, . . . , k}.

– For a matrix M = (mi,j ) let M [q] denote the matrix (m
q
i,j ).

– Block matrices will be given in brackets.

Appendix B. Lemmas

Lemma B.1. With the notations from Theorem 5.2. The Gabidulin code Gf is uniquely
defined by the secret key (G,S,T ).

Proof. Let Ĥf be a check matrix of a second [n − t, k + f ] Gabidulin code Ĝf 	= Gf

s.t. the rows of [0|Ĥ�
f ] · (T −1)� are in the dual space of �f (Gpub). Then we have

�f (Gpub) · T −1 ·
[

0 0
Hf Ĥf

]

= 0,

and as Ĝf 	= Gf , the last n − t columns of �f (Gpub) · T −1 define a subcode
of a Gabidulin code of dimension smaller than k + f . This is a contradiction to
the fact, that (G,S,T ) is a secret key for (Gpub, r), as by Lemma 5.1 the matrix
(�f (Gpub) · T −1)·{t+1,...,n} has rank k + f . �

Lemma B.2. Let (Gpub, r) be as in Lemma 5.2, where �n−k−t−1(G
pub)⊥ has rank 1.

Then Assumption 5.2 holds for all pairs (G,S,T ) and (Ĝ, Ŝ, T̂ ) of secret keys.

Proof. Let Gpub = S([X|0] + G)T . With the notation of Theorem 5.2: Let H0 be a
checkmatrix of the [n − t, k] Gabidulin code G0 and let Ĥ0 be a checkmatrix of the
[n − t, k] Gabidulin code Ĝ0, that is

GpubT̂ −1
[

0
Ĥ0

]

= 0.

As the rank of �n−k−t−1(G
pub)⊥ is one, we can conclude that

T −1
[

0
Hn−t−k−1

]

= T̂ −1
[

0
Ĥn−t−k−1

]

�⇒ T −1
[

0
H0

]

= T̂ −1
[

0
Ĥ0

]

.

For 1 ≤ i ≤ n let ei denote the n-vector over Fqm with a 1 at the i-th position, and zeros
at all other positions. With this notation,

ei

[
0

Ĥ0

]

= 0 �⇒ ei T̂ · T −1
[

0
H0

]

= 0.
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As the rank norm of ei is one, the vector (ei T̂ · T −1){t+1,...,n} has rank norm at most
one and can not be in the code 〈G2〉 if it is not zero. We conclude

〈[
Idt 0

0 0

]

T̂ · T −1

〉

=
〈[

Idt 0

0 0

]〉

.
�

Appendix C. Proof of Theorem 5.4

Proof. We have to estimate the rank of �f (Gpub) for given f and Gpub =
S([X|0] + G)T . As G is of the form in (1), the result of adding the (j + 1)-th row
of G[qi ] to the j -th row of G[qi+1] is zero for 0 ≤ i ≤ f − 1 and 1 ≤ j ≤ k − 1. Remem-
ber that G1· = g. To further simplify notations, we define the following matrices:

Mk :=
[

0 Id(k−1)

0 0

]

∈ F
k×k
qm and X̃ := X{2,...,k}· + (X[q]){1,...,k−1}· ∈ F

k−1×t
qm .

By removing the influence of S and adding the rows as mentioned above by using
Mk , we get the following matrix of the same rank as �f (Gpub):

⎡

⎢
⎢
⎢
⎣

Idk 0 · · · 0
Mk Idk · · · 0
...

. . .
. . .

...

0 · · · Mk Idk

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎣

S[q0] 0 · · · 0

0 S[q1] · · · 0
...

. . .
. . .

...

0 · · · 0 S[qf ]

⎤

⎥
⎥
⎥
⎥
⎦

−1

· λf (S([X|0] + G)T )

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X + G·{1,...,t} G·{t+1,...,n}

X̃[q0] 0

X
[q]
k· + g

[qk]
{1,...,t} g

[qk]
{t+1,...,n}

...
...

X̃[qf −1] 0

X
[q]
k· + g

[qk+f −1]
{1,...,t} g

[qk+f −1]
{t+1,...,n}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

· T ∈ F
((f +1)·k)×n
qm .

It remains to estimate the rank of λf −1(X̃) as the right part of the matrix above has
rank k + f (it is generated by λk−1+f (g{t+1,...,n})). Fist observe, that the rank of X̃ is
larger than 1 or X has the form of a Gabidulin generator matrix, which is not the case.
Furthermore, if X̃ would be of column rank < t over Fq , then we can assume without
loss of generality, that its last column is zero. It would follow, that (GpubT −1)·{t,...,n}
defines a Gabidulin code or is of column rank < n − t + 1, but none of this cases is
true. Thus, the rank of X̃ over Fq is t . Second, any selection J of s columns of X̃ forms
a random matrix (as X·J is random). In consequence, X̃ has rank ≥ s with probability
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larger than

1

qms2

s−1∏

i=0

(qms − qmi) ≥
s−1∏

i=0

(1 − qm(i−s)) ≈ 1 − s

qm
.

Observe further, that every matrix X̃{1,...,s}· is generated by some matrix X of rank ≤ s

(e.g. if X(s+1)· = 0). We conclude, that the first s rows of X̃ form a random matrix.
which has column rank t over Fq with probability ≈1. Thus the Lemmas 5.1 and 5.2
yield the theorem. �
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