
DOI: 10.1007/s00145-007-0567-1

J. Cryptology (2007) 20: 431–492

© 2007 International Association for
Cryptologic Research

Concurrent Composition of Secure Protocols
in the Timing Model∗

Yael Tauman Kalai
College of Computing, Georgia Institute of Technology,

801 Atlantic Drive, Atlanta, GA 30332-0280, U.S.A.
yael@cc.gatech.edu

Yehuda Lindell
Department of Computer Science, Bar-Ilan University,

Ramag Gan 52900, Israel
lindell@cs.biu.ac.il

Manoj Prabhakaran
Department of Computer Science, University of Illinois,

Urbana-Champaign, IL 61801, U.S.A.
mmp@cs.uiuc.edu

Communicated by Oded Goldreich

Received 15 February 2005 and revised 14 July 2006
Online publication 16 July 2007

Abstract. In the setting of secure multiparty computation, a set of mutually distrustful
parties wish to securely compute some joint function of their inputs. In the stand-alone
case it has been shown that every efficient function can be securely computed. However,
in the setting of concurrent composition, broad impossibility results have been proven
for the case of no honest majority and no trusted setup phase. These results hold both for
the case of general composition (where a secure protocol is run many times concurrently
with arbitrary other protocols) and self-composition (where a single secure protocol is
run many times concurrently).

In this paper we investigate the feasibility of obtaining security in the concurrent
setting, assuming that each party has a local clock and that these clocks proceed at ap-
proximately the same rate. We show that under this mild timing assumption, it is possible
to securely compute any multiparty functionality under concurrent self -composition.
Loosely speaking, we also show that it is possible to securely compute any multiparty
functionality under concurrent general composition, as long as the secure protocol is run
only with protocols whose messages are delayed by a specified amount of time. On the
negative side, we show that it is impossible to achieve security under concurrent general

∗ Part of this work was carried out while the authors were all at IBM T.J. Watson Research, New York. Yael
Tauman Kalai was supported in part by NSF CyberTrust Grant CNS-0430450.

431

432 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

composition with no restrictions whatsoever on the network (like the aforementioned
delays), even in the timing model.

Key words. Theory of cryptography, Secure multiparty computation, Concurrent
composition, Timing assumptions.

1. Introduction

1.1. Background

In the setting of secure multiparty computation, a set of parties with private inputs wish
to jointly compute some functionality of their inputs. Loosely speaking, the security
requirements of such a computation are that nothing is learned from the protocol other
than the output (privacy), and that the output is distributed according to the prescribed
functionality (correctness). More exactly, the result of an execution of a secure protocol
must be like the result of an “ideal execution” with an incorruptible trusted party who
honestly computes the function for the parties (see [11] or Section 7.1 of [29]). These
security requirements must hold in the face of a malicious adversary who controls some
subset of the parties and can arbitrarily deviate from the protocol instructions. Powerful
feasibility results have been shown for this problem in both the information-theoretic
and computational settings [47], [30], [8], [17]. In the computational setting it has been
shown that any multiparty probabilistic polynomial-time functionality can be securely
computed for any number of corrupted parties, assuming the existence of enhanced
trapdoor permutations [47], [30], [29].

Security under concurrent composition. The above-described feasibility results relate
only to the stand-alone setting, where a single protocol is run in isolation. However,
in modern network settings, protocols must remain secure even when many protocol
executions take place concurrently and are being attacked in a coordinated manner. Un-
fortunately, the security of a protocol in the stand-alone setting does not necessarily
imply its security under concurrent composition. Therefore, an important research goal
is to re-establish the feasibility results of the stand-alone setting for the setting of con-
current composition. There are two main types of concurrent composition that have been
considered:

1. Concurrent self-composition: In this setting a single protocol is executed many
times concurrently in a network. Formally, “concurrency” means that the adversary
has full control over the scheduling of all messages in all the executions.

2. Concurrent general composition: In this setting a protocol is run many times in an
arbitrary network. That is, the protocol is run many times concurrently, alongside
other secure and insecure protocols, again with the scheduling being fully controlled
by the adversary.

On the positive side, it has been shown that in the case of an honest majority, or a trusted
setup phase (e.g., for generating a common reference string or for generating a secure
public-key infrastructure), any functionality can be securely computed under concurrent
general composition [12], [16], [3]. Thus, in these cases, we obtain the same broad
feasibility results of the stand-alone model (except that in the stand-alone model, neither
an honest majority nor a trusted setup phase is needed).

Concurrent Composition of Secure Protocols in the Timing Model 433

When considering the case of no honest majority and no trusted setup in the setting of
concurrent composition, the situation is completely different. Recent impossibility results
have demonstrated that in such a setting, large classes of functionalities cannot be securely
computed [14], [12], [15], [37], [38]. These results hold for both concurrent general
composition and concurrent self-composition. In fact, these two types of composition
have been shown to be (almost) equivalent [38]. Therefore, in the natural setting of
no trusted setup and no honest majority (including the important two-party case), it is
impossible to construct protocols that remain secure in the setting of full concurrency.

There are a number of possible ways to overcome these impossibility results. One
direction is to weaken the security requirements; this approach was taken in [41] and [45].
Another direction, and the one taken in this paper, is to introduce realistic assumptions
on the adversary or network, while providing the same strong security guarantees as
for the stand-alone setting. Needless to say, it is best to not assume any restriction
whatsoever. However, as we have mentioned, this is not possible. We therefore consider
a very reasonable network restriction that holds in real networks today.

Timing assumptions. The network restriction that we consider is a timing assumption
on the network. Timing assumptions were first used in the context of secure protocol
composition by Dwork et al. [23] who used them to achieve (efficient) zero-knowledge
protocols that remain secure under concurrent self-composition. (An equivalent formu-
lation of these assumptions was given in [28], and our presentation is more according to
this latter formulation.) There are two specific assumptions involved here:

• Assumption 1—bounded clock drift: It is assumed that the parties’ local clocks
proceed at approximately the same rate. Specifically, there exists a global bound
ε ≥ 1 such that when one local clock advances t time units, every other local clock
advances t ′ time units where t/ε ≤ t ′ ≤ tε. We stress that there is no assumption
regarding the synchronization of the parties’ local clocks with respect to each other
(and, in particular, they may read completely different times).

• Assumption 2—maximum latency: It is assumed that an upper bound � is known
on the time it takes for a message to be computed, sent, and delivered from one
party to another. In other words, � is the maximum latency over the network (plus
the time it takes to carry out the local computation for generating the message that
is sent). For simplicity, we assume that all local computation is instantaneous, and
that � measures the latency only (or, in other words, the time that it takes for the
adversary to deliver messages).

The second of these two assumptions is far more problematic than the first. This is due
to the fact that in real settings the variance of network latency can be very large. Thus,
a global upper bound would have to be very large. As we will see, taking such a high
upper bound would greatly hinder performance. In addition, any reasonable bound is
unlikely to hold always, thus potentially compromising the security of the protocol. In
contrast, local clocks are usually very accurate, at least with respect to the drift.

Motivated by this observation, we relate to these assumptions differently. More specif-
ically, our definition of security for the timing model relies only on the first assumption
regarding the clock drift. Therefore, security holds as long as the drifts of the clocks are
not too far apart, and irrespective of the network latency (which may, however, cause

434 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

Execution jExecution i

Part A

Part B

Part A

Part B timeout if
too long

delay if
too short

Fig. 1. Limiting the interleaving (notice that part A must take longer than part B).

the execution to terminate unsuccessfully). The latency assumption is only used to en-
sure liveness (or non-triviality of protocols). Namely, we only require that the protocol
terminates successfully if it does not come under attack and the latency is indeed lower
than �.

The use of timing assumptions. As in other works, the timing assumptions are used
for introducing time-out and delay operations in the protocol instructions. A time-out
command is of the form: “if more than f (�, ε) time units have passed since message x
was sent (or received), and message y has not yet been received, then output time-out and
halt the execution” (where f is a function specified by the protocol). A delay command
is of the form: “wait g(�, ε) time units before sending message y”. Typically, the use of
these operations is to limit the interleaving of different protocol executions. Specifically,
delay and time-out commands are used to ensure properties of the form: if part A of
execution i begins after part B of execution j begins, then part B of execution j is
completed before part A of execution i is completed. This is achieved by timing-out if
B takes too long and delaying to makes sure that A takes long enough, as depicted in
Fig. 1. The differences in the lengths of part A and part B in the different executions
shown in Fig. 1 are due to the control that the adversary has over message delivery. We
stress that the time-out and delay instructions depend on the parties’ local clocks only,
and so do not rely on any global synchronization.

Limiting time-out damage. As we have described, time-out instructions are used in
order to limit the adversary’s power in scheduling the executions. However, if the network
latency during a protocol execution is higher than usual (say, due to high network traffic),
then a time-out can occur even when no adversary is present.1 This therefore raises the
question of what actions honest parties should take after a time-out occurs. In particular,

1 Of course, one could set� to be an upper bound that includes latencies that are far higher than the average.
However, as we will see, this would have the effect of significantly delaying all executions.

Concurrent Composition of Secure Protocols in the Timing Model 435

can a timed-out protocol execution be safely restarted? Fortunately, our protocols have
the property that they remain secure if they are restarted from scratch after a time-out.

In order to clarify this point further, we distinguish between two types of failures:
abort failures that occur due to foul play by participating parties (and are present even in
the stand-alone case when there is no honest majority), and time-out failures that occur
due to high network latency (or by the adversary stalling or blocking messages that are
sent). In the case of an abort failure (again, even in the stand-alone case), security is not
guaranteed if the honest parties restart the protocol execution. This is due to the fact that
the adversary may have received its own output, and based on this output has decided
to cause the honest parties to abort.2 In contrast, we argue that it should be possible to
restart protocol executions that are halted due to time-out failures. This is due to the fact
that such a failure can occur even if there is no adversarial interference, and just due to the
network latency being high at the time of the execution. In order to ensure that timed-out
executions can be restarted without any damage to security, our definition of security
requires that time-outs (by honest participants) are only allowed to occur in an early
stage of the protocol, before any information about the output is revealed. We note that
since timed-out protocols can be restarted safely, a relatively optimistic estimate on the
network latency can be taken with the cost being that timed-out protocol executions are
simply restarted. (There is a tradeoff here between choosing a large � that slows down
all protocol executions and choosing a small � that results in more executions being
timed-out and restarted.) We remark that previous works that used timing assumptions
considered only the problem of concurrent zero-knowledge, where essentially no output
is generated. The above discussion is therefore a “non-issue” in that case, and protocol
executions can always be restarted.

1.2. Our Main Results

We investigate the feasibility of constructing protocols that are secure under concurrent
composition in the timing model. We consider both self- and general composition, with
the following main results:

1. CONCURRENT SELF-COMPOSITION: We show that in the timing model, every multi-
party functionalityF can be securely computed under concurrent self-composition.
We note that the model of concurrent self-composition that we consider here is
one without fixed roles. Thus, for example, in the setting of zero-knowledge, par-
ties can play both the prover and verifier roles simultaneously. This is the first
zero-knowledge protocol (for the setting of unbounded concurrency) that has this
property.

2. CONCURRENT GENERAL COMPOSITION: For this setting, we have both positive and
negative results:
(a) Positive result: Loosely speaking, we show that in the timing model, every

multiparty functionalityF can be securely computed under concurrent general
composition, as long as the arbitrary protocols that are running in the network

2 For the sake of concreteness, consider the case that parties run a coin-tossing protocol. Then the first party
to receive output can cause an abort if the first bit of the output is 1. By re-executing upon abort, this party can
bias the outcome so that the resulting string always has the first bit set to 0.

436 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

all have the property that their messages are delayed by some specified amount
of time (the exact delay required is specified in Theorem 6 and is independent
of F). We stress that our protocol is only proven secure in the case that the
arbitrary protocols running together with it do not use time (beyond the delays
that we impose).

(b) Negative result: We show that it is impossible to achieve security under con-
current general composition if no restrictions (like delays) are imposed on the
arbitrary protocols running in the network.

Positive results. We now elaborate on our main positive results. We note that all of our
results relate to the setting of no honest majority. Therefore, our definition of security
does not guarantee fairness. That is, the adversary may receive output while the honest
parties do not. This is standard for the case of no honest majority, even in the stand-alone
model. (Note that our protocols do not guarantee output delivery even in the event that
an honest majority does happen to be present. Again, this is standard for protocols that
achieve security against any number of corruptions.) Our result regarding concurrent
self-composition is informally stated as follows.

Theorem 1.1. Assume that there exist enhanced trapdoor permutations and dense
cryptosystems.3 Then, in the timing model, any multiparty functionalityF can be securely
computed under concurrent self-composition, in the presence of static adversaries.

The proof of Theorem 1.1 gives the first construction of a protocol that achieves
security (in the standard sense) under concurrent self-composition, without relying on
a trusted setup phase, an assumed honest majority, or an assumed a priori bound on
the number of executions taking place concurrently. As we have mentioned above, our
definition for concurrent self-composition makes no limitation on the roles played by
the parties. Thus, Theorem 1.1 implies the existence of a concurrent zero-knowledge
protocol (in the timing model) that remains secure even when the adversary can carry
out a concurrent man-in-the-middle attack (i.e., where the adversary may simultaneously
verify and prove many concurrent proofs). This is the first zero-knowledge protocol with
this property. (We note that an analogous result is known in a setting where the number
of concurrent executions is a priori bounded [42].) We also note that, in fact, we achieve
a stronger result than that stated in Theorem 1.1. Namely, any set of protocols that are
constructed according to the methodology presented in this paper remain secure when
concurrently composed together.

In order to state our positive result for concurrent general composition in more de-
tail, we introduce the following terminology. A protocol that does not use any timing
instruction (and in particular never refers to a clock) is called timing-free. We say that
a (timing-free) protocol π is δ-delayed if every message in π is delayed by at least δ
time units before it is sent. We stress that the contents of the messages specified by π are
untouched. Furthermore, there is no assumption regarding the delaying of messages by

3 An enhanced trapdoor permutation has the property that it is hard to invert even given the coins used to
sample the value from the range; see Appendix C.1 of [29]. A dense cryptosystem is one for which uniform
strings are valid public-keys with noticeable probability; see [19]. We inherit these assumptions from [16].

Concurrent Composition of Secure Protocols in the Timing Model 437

corrupted parties. Rather, security is guaranteed as long (and only as long) as the honest
parties delay all π -messages, as instructed. We now informally state our main result:

Theorem 1.2 (Main Theorem—Informal). Assume that there exist enhanced trapdoor
permutations and dense cryptosystems, and let F1, . . . ,Ft be any set of multiparty
functionalities. Then there exist protocols ρ1, . . . , ρt in the timing model that securely
compute F1, . . . ,Ft under concurrent general composition (in the presence of static
adversaries), as long as the arbitrary protocols running concurrently in the network
together with ρ1, . . . , ρt are δ-delayed, for some parameter δ.

Another equivalent way of stating the security guarantee achieved by Theorem 1.2 is
that it is possible to securely compute any multiparty functionality F under concurrent
general composition, as long as all the protocols running concurrently in the network
are either δ-delayed or are constructed “according to our methodology”. In the theo-
rem the protocols realizing F1, . . . ,Ft are those that are constructed “according to our
methodology”. We also stress that the protocol ρi that securely realizes Fi is the same,
irrespective of the other functionalities Fj and protocols ρj that are being run together
with it. Furthermore, the parameter δ is also independent of the functionalities.

We note that Theorem 1.1 follows immediately from Theorem 1.2. This is due to
the fact that in Theorem 1.2 security is guaranteed as long as the secure protocols are
run alongside arbitrary protocols that are δ-delayed. In Theorem 1.1, on the other hand,
security is guaranteed only under concurrent self-composition, where the set of arbitrary
protocols running alongside is empty.

We prove Theorems 1.1 and 1.2 by first constructing a protocol that securely realizes
the common random string (CRS) functionality under concurrent general composition
(as long as the arbitrary protocols running together with it are delayed). The CRS func-
tionality simply hands each party a uniformly distributed string, and as such is essentially
a multiparty coin-tossing functionality. We then rely on the fact that any efficient func-
tionality can be securely computed under concurrent general composition in the CRS
model [16]. Thus combining our protocol for securely realizing the CRS functionality
together with a delayed version of the protocol of [16], instantiated separately for each
functionality Fi , we obtain that F1, . . . ,Ft can be securely computed under concurrent
general composition with any δ-delayed protocol.

Discussion. The proof of Theorem 1.2 gives the first construction of a protocol that
achieves security (in the standard sense) in such a general setting of composition, without
relying on a trusted setup phase or an assumed honest majority. Of course, as we have
mentioned, this comes at the price of the honest parties delaying all messages of protocols
running concurrently to our protocol. On the one hand, these delay instructions can
easily be carried out by all honest parties. However, on the other hand, they impose a
severe slow-down that is unlikely to be tolerated in real settings. Thus, reducing the
number and length of the delays imposed by our protocol is an important question for
future research. A more important shortcoming of our result is that we do not achieve
security if the arbitrary protocol π that is run together with our protocols uses time in
its own instructions. This question is also left open. Despite the above shortcomings,
our protocol provides the first feasibility result for this setting, and it demonstrates that

438 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

timing assumptions can be used to bypass the broad impossibility results for achieving
security under concurrent general composition.

Negative results. As we have mentioned, the timing assumptions are used for intro-
ducing time-out and delay instructions in the protocol. Furthermore, our use of delays is
extensive, since we do not only insert delay instructions into our secure protocol ρ, but
we also require that every message of every arbitrary (timing-free) protocol π that runs
concurrently to ρ is also delayed. This is clearly a drawback of our result. However, we
show that some sort of “time-based” modification of π is essential for achieving security.
Recall that a protocol π is timing-free if it never looks at its clock and so contains no
time-based instruction (and in particular no delay or time-out instructions). We say that
a protocol ρ is secure under concurrent general composition with timing-free protocols,
if it is secure when run concurrently with any timing-free protocol π . We prove the
following theorem (stated informally here):

Theorem 1.3. There exist large classes of efficient functionalities that cannot be se-
curely computed under concurrent general composition with timing-free protocols, even
in the timing model, unless an honest majority or a trusted setup phase are assumed.

We conclude that some timing-based modification must be introduced into π . The ques-
tion of how many delays must be introduced into π , and of what length, is left open by
this work.

1.3. Related Work

Secure computation was first studied in the stand-alone model, where it was shown that
any multiparty functionality can be securely computed [47], [30], [8], [17]. The study
of concurrent composition of protocols was initiated in [26] in the context of witness
indistinguishability, and was next considered in [21] in the context of non-malleability.
Until recently, the majority of work on concurrent composition was in the context of
concurrent zero-knowledge [23], [46]. The concurrent composition of protocols for gen-
eral secure computation was only considered much later. Specifically, the first definition
and composition theorem for security under concurrent general composition was pre-
sented by [20] for the case of perfect security in the information-theoretic setting. Next,
Pfitzmann and Waidner [44] considered the computational setting and the case that a
secure protocol is executed once in an arbitrary network. The general case for the com-
putational setting, where many secure protocol executions may take place (again, in an
arbitrary network), was then considered in the definition (and composition theorem) of
universal composability [12]. It was also shown that any functionality can be securely
realized in this setting assuming an honest majority [12], or assuming a trusted setup
phase in the form of a common random string [16], or in the form of a key registration
functionality [3]. However, in the case of no honest majority or trusted setup, broad
impossibility results have been demonstrated for universal composability, concurrent
general composition and concurrent self-composition [15], [37], [38].

These impossibility results justify and provide motivation for considering restricted
network settings and weaker notions of security. One type of restriction that has been

Concurrent Composition of Secure Protocols in the Timing Model 439

considered for concurrent self-composition is that of m-bounded concurrency, where
an upper bound m on the global number of concurrent executions is assumed [1]. In
this model, both positive results [36], [43], [42] and lower bounds [36], [38] have been
demonstrated. In our opinion, the timing model is a more realistic assumption than that
of bounded concurrency. A different way of bypassing the aforementioned impossibility
results (and one not taken in this paper) is to consider weaker notions of security. This
approach was taken by the works [41], [45], [5] and [39] which all provide “additional
power” to the ideal adversary (i.e., they allow the simulator to run longer than the real-
model adversary). We remark that such solutions provide weaker security guarantees.

As we have mentioned, timing assumptions were introduced in the cryptographic con-
text in [23]. Subsequently, they have been used in a number or works, including [24],
[22], [34] and [28]. However, all of these works considered the security of specific crypto-
graphic tasks (namely, zero-knowledge and authentication-type protocols). Furthermore,
they all considered security under a limited form of concurrent self-composition. This
paper is the first to use timing assumptions in order to construct a secure protocol for
any multiparty functionality, that remains secure under concurrent self-composition, and
under concurrent general composition with (timing-free) delayed protocols.

2. Definitions and Tools

2.1. Preliminaries

We denote the security parameter by n. A function µ(·) is negligible in n (or just negligi-
ble) if for every polynomial p(·) there exists a value N such that for all n > N it holds
that µ(n) < 1/p(n). A machine is said to run in polynomial time if its number of steps
is polynomial in the security parameter, irrespective of the length of its input. Formally,
each machine has a security-parameter tape upon which 1n is written. The machine is
then polynomial in the contents of this tape.

Let X = {X (n, a)}n∈N,a∈{0,1}∗ and Y = {Y (n, a)}n∈N,a∈{0,1}∗ be distribution ensembles.

Then we say that X and Y are computationally indistinguishable, denoted X
c≡ Y , if for

every non-uniform polynomial-time distinguisher D there exists a function µ(·) that is
negligible in n, such that for every a ∈ {0, 1}∗,

|Pr[D(X (n, a)) = 1]− Pr[D(Y (n, a)) = 1]| < µ(n).

Typically, the distributions X and Y denote the output vectors of the parties in real and
ideal executions, respectively. In this case, a denotes the parties’ inputs.

2.2. Security under Concurrent General Composition in the Timing Model

In this section we present the definition of concurrent general composition in the timing
model. This is a direct extension of the definition of concurrent general composition
in the standard (non-timed) model, as defined for example in [12] and [37]. Informally
speaking, concurrent general composition considers the case that a protocol ρ for se-
curely computing some ideal functionality F , is run concurrently (many times) with
arbitrary protocols running in the network. This arbitrary network is modeled as a “call-
ing protocol” π with respect to the functionalityF . That is, π is a protocol that contains,

440 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

among other things, “ideal calls” to a trusted party that computes the functionality F .
This means that in addition to standard messages sent between the parties, protocol π ’s
specification contains instructions of the type “send the value x to the trusted party and
receive back output y”. Then the real-world scenario is obtained by replacing the ideal
calls to F in protocol π with real executions of protocol ρ. (When we say that an ideal
call toF is replaced by an execution of ρ, this means that the parties run ρ upon the same
inputs that π instructs them to send to the trusted party computing F .) The composed
protocol is denoted by πρ and it takes place without any trusted help.

We note that in this composed protocol, messages of π may be sent concurrently to
the executions of ρ (even though π “calls” ρ). In addition, the inputs are determined by
π and may therefore be influenced by previous ρ-outputs and the party’s overall view in
the arbitrary network. We stress that although the above seems very similar to “modular
sequential composition” of [11], it is fundamentally different. Most importantly, here
there is no restriction on the scheduling of the executions of ρ (or equivalently calls toF)
with respect to π . For example, π may include many calls to ρ and these executions may
be run concurrently with each other and with other messages of π . (This can be achieved
by having π be multithreaded and thus contain instructions like “invoke n executions of
ρ simultaneously”.) To take this a step further, π may not even fix the scheduling ahead
of time; rather it may contain instructions like “upon receiving a request from some party
to run ρ proceed using the input x”. We also remark that π models a large network and
may therefore involve many more parties than in any single execution of ρ. Furthermore,
there is no limitation on the different sets of parties running ρ; they may sometimes be
distinct, partially intersecting, or the same.

Now, security is defined for ρ by requiring that for every protocol π that contains ideal
calls to F , an adversary interacting with the composed real protocol πρ (where there is
no trusted help) can do no more harm than in an execution of π where a trusted party
computes all the calls to F . This therefore means that ρ behaves just like an ideal call to
F , even when it is run concurrently with any arbitrary protocol π . The above informal
description is the same in the standard (non-timed) model and in the timing model. The
only difference is that in the timing model, the parties have access to local clocks. This
will be described below.

We stress one more issue regarding the above formulation of security. As we have
mentioned,π is supposed to represent a real dynamic network like the Internet. However,
it is fixed ahead of time, unlike real networks. The reason why this suffices is because we
quantify over all protocolsπ in the definition of security. Thus, if there exists a real-world
scenario in which the protocol ρ does not behave like an ideal call to F , it is possible
to retroactively take the real-world execution and use it to define a protocol π . It then
follows that ρ does not behave like an ideal call toF with respect to this π , contradicting
the definition of security. Note that this holds even if the scheduling of the protocols in
the real Internet-like setting depends dynamically on the messages sent. This is due to
the fact that, as mentioned above, π does not necessarily fix the scheduling of protocols
ahead of time, but may leave this to the adversary and participating parties.

Secure multiparty computation. A multiparty computation task for a set of parties
P1, . . . , Pm is cast by specifying a (probabilistic polynomial-time) multiparty ideal func-
tionality F that receives inputs from these parties and provides outputs. The aim of the

Concurrent Composition of Secure Protocols in the Timing Model 441

computation is for the parties to jointly compute the functionality F . According to the
standard ideal/real model paradigm [31], [6], [40], [11], [29], a real protocol execution
is compared with an ideal execution where a trusted third party computes F for the
parties. Instead of explicitly considering such a trusted party, we sometimes talk about
the parties (and adversary) communicating directly with the ideal functionality. This is
just shorthand for saying that the parties communicate with the trusted party computing
the functionality.

Basic network model. As is typical for secure multiparty computation, we assume that
the parties are all linked by authenticated (but not necessarily private) channels. Thus,
the adversary cannot modify a message sent by one honest party to another honest party,
without being detected. This assumption can be realized using a public-key infrastructure
for secure digital signatures. We also assume that each party has a unique identity. Under
the assumption that a public-key infrastructure is in place, a party’s identity could be
taken to be its public-key. (This assumes, however, that the adversary cannot copy a
party’s public-key.) We remark that although the aim of this work is to remove setup
assumptions, the existence of authenticated channels is assumed by almost all work
on secure multiparty computation, even in the stand-alone model. Indeed, the standard
security guarantees are not achievable without assuming authenticated channels; see [2]
for discussion and work on secure computation without authenticated channels. In any
case, we stress that the setup assumption required for achieving authenticated channels
(see [13]), is far weaker than both the common-reference string model used in [16] and
the key-registration model used in [3].

Adversarial behavior. In this work we consider malicious, static adversaries. That is,
the adversary controls an a priori fixed subset of the parties who are said to be corrupted.
The corrupted parties follow the instructions of the adversary in their interaction with the
honest parties, and may arbitrarily deviate from the protocol specification. The adversary
also receives the view of the corrupted parties at every stage of the computation. In
our model the adversary also has full control over the scheduling of the delivery of all
messages. Thus, the network is asynchronous. Finally, as we will see below, the adversary
has some control over the clocks of the honest parties.

The F-hybrid model. Let π be an arbitrary protocol that utilizes ideal interaction with
a trusted party computing the multiparty functionality F (recall that π actually models
arbitrary network activity). There may be many copies of the functionality, and so these
copies are differentiated by unique session identifiers or sids. A protocolπ that runs in the
F-hybrid model contains two types of messages: standard messages and ideal messages.
A standard message is one that is sent between two parties that are participating in the
execution of π , using the point-to-point network (or broadcast channel, if assumed). An
ideal message is one that is sent by a participating party (or the adversary) to the ideal
functionalityF , or from the ideal functionality to a participating party (or the adversary).
Ideal messages are typically inputs and outputs for the functionality being computed by
the trusted party. However, in order to model execution failures, there are two “special”
ideal messages (or instructions) that the adversary can send to the trusted party. The first
is an abort instruction which is due to the fact that in our setting (of no honest majority)

442 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

there is no guaranteed output delivery. The second is a time-out instruction that is unique
to the timing model. In more detail:

1. Abort instructions: These instructions play the same role as in stand-alone secure
computation for the case of no honest majority. That is, in the case that an honest
party receives an invalid message in a real protocol execution, it would halt and
output abort (meaning that malicious behavior has been detected). The ideal ad-
versary must therefore also be able to cause an honest party to output abort in the
ideal (or hybrid) model.

Thus, the adversary can issue instructions of the type (abort, sid, Pi) to the
trusted party. Upon receiving such a message, the trusted party forwards (abort, sid)
to Pi , who in turn sets its output from execution sid to abort.4 We stress that an
abort instruction can be issued at any time and for any party. Furthermore, once an
honest party receives abort, it halts the execution (and should refuse to restart it).

2. Time-out instructions: These instructions are included in order to model the case
that an honest party is instructed to output time-out in a protocol execution (in the
timing model). The purpose of a time-out output is to indicate that the execution
can be safely repeated (unlike when the output is abort). As with abort, the ideal
adversary must also be able to cause an honest party to output time-out in an
ideal/hybrid execution. However, the mechanism for time-outs is different than
for aborts. In particular, a time-out can only be issued before any output was
generated.

Formally, the adversary may issue an instruction of the type (time-out, sid) to
the trusted party. Upon receiving such a message, the trusted party checks if it
previously sent any output in execution sid.5 If no outputs have been sent, then the
trusted party sends (time-out, sid) to all parties and halts the execution. Otherwise
(if outputs have been sent), the trusted party just ignores the time-out instruction.

Note that as used here, the time-out mechanism has no relation to time. Indeed,
in the hybrid model there are no clocks.

We remark that if one party receives time-out, then no parties receive output. This is
due to the fact that the functionality sends time-out to all parties (and so if the adversary
delivers an output to an honest party, it can only be time-out). This is in contrast to aborts,
where some parties may receive abort and some may receive their prescribed output.
(The issue of whether all parties receive abort together or not is discussed in [32].)

Notice that the computation of π is a “hybrid” between the ideal model (where a
trusted party carries out the entire computation) and the real model (where the parties
interact with each other only). Specifically, the messages of π are sent directly between
the parties, and the trusted party is only used in the ideal calls to F .

4 We note that in known protocols for stand-alone secure computation without an honest majority in the
synchronous model, abort is also output when a party does not receive all of its messages in a given round. In
our model a party will either just continue waiting (possibly forever), or will output time-out if so instructed
by the protocol.

5 In the case that the functionality is a simple function, all outputs are generated and sent at the same time.
Thus, this reduces to the trusted party just checking if it has computed the function output yet. In the case
of reactive functionalities where computation takes place over a number of phases, outputs are generated at
different times. Here, the trusted party checks that no outputs were generated until this time.

Concurrent Composition of Secure Protocols in the Timing Model 443

As is standard for concurrent settings, the adversary controls the scheduling of all
messages, including both standard and ideal messages. This means that even if the
trusted party sends the same output to all parties at the same time, the honest parties only
receive their output if and when the adversary decides to deliver it. As usual, we assume
that the parties are connected via authenticated channels. Therefore, the adversary can
read all standard messages, and may use this knowledge to decide when, if ever, to deliver
a message. (We remark that the adversary cannot, however, modify messages or insert
messages of its own.) In contrast, the channels connecting the participating parties and
the trusted party are both authenticated and private. More precisely, ideal messages are
comprised of a public header and a private body. The contents of a message that belong in
the header or body is specified by the functionality definition. In general, the public header
contains information like the name and session identifier of the functionality for which the
message is intended. We stress that although the adversary delivers the entire message, it
can only read the public header, and cannot read the private body. However, we adopt the
convention that the length of this private body is given to the adversary. (This models the
fact that the lengths of inputs and outputs cannot be fully hidden from the adversary.6)

Computation in theF-hybrid model proceeds as follows. The computation begins with
the adversary receiving the inputs and random tapes of the corrupted parties. Throughout
the execution, the adversary controls these parties and can instruct them to send any
standard and ideal messages that it wishes. In addition to controlling the corrupted parties,
the adversary delivers all the standard and ideal messages (when and if it wishes to do
so) by copying them from outgoing communication tapes to incoming communication
tapes. The series of activations is sequential. That is, the adversary is activated first,
at which time it can carry out any arbitrary computation. It concludes its activation by
writing a message to the incoming communication tape of either a party or an ideal
functionality. A party (or an ideal functionality) that receives a message on its incoming
communication tape is immediately activated. When it halts, the adversary is activated
once again.7 Upon being activated, the honest parties always follow the specification of
protocolπ . Specifically, upon receiving a message (delivered by the adversary), the party
reads the message, carries out a local computation as instructed byπ , and writes standard
and/or ideal messages to its outgoing communication tape, as instructed by π . Likewise,
the ideal functionality follows its prescribed instructions (and is never corrupted). At the
end of the computation, the honest parties write the output value prescribed by π on their
output tapes, the corrupted parties output a special corrupted symbol, and the adversary
outputs an arbitrary function of its view. Let n be the security parameter, let S be an
adversary for the F-hybrid model with auxiliary input z ∈ {0, 1}∗, let I ⊆ [m] be the
set of corrupted parties, and let x = (x1, . . . , xm) ∈ ({0, 1}∗)m be the vector of the
parties’ inputs to π . Then the hybrid execution of π with ideal functionality F , denoted
HYBRIDFπ,S,I (n, x, z), is defined as the output vector of all parties and S from the above
hybrid execution.

6 For the majority of this paper, the ideal functionality that we consider generates a public common random
string. Therefore, all communication between the parties and functionality can be made part of the public
header.

7 The adversary can activate parties at the beginning of the execution, before there are messages to deliver,
by sending them a special “begin computation” message.

444 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

The real model. Let ρ be a multiparty protocol. Intuitively, the composition of protocol
π with ρ is such that a real execution of protocol ρ takes the place of an ideal call to F .8

In the real model, each party holds the code of a probabilistic interactive Turing
machine (ITM) that works according to the specification of the protocol ρ.9 When π
instructs a party to send an ideal message (i.e., input) α to the ideal functionality F with
session identifier sid, the party creates a new instantiation of the ITM for ρ, associates
the identifier sid with this machine, and invokes it with input α. Any message that it later
receives that is earmarked for ρ with identifier sid, it forwards to this ITM. All other
messages (that are not earmarked for ρ) are answered according to π . Finally, when the
execution of ρ with identifier sid concludes and a value β is written on the output tape of
the ITM, the party copies β to the incoming communication tape for π , as if β is an ideal
message (i.e., output) received from the copy of the ideal functionality F with identifier
sid. This composition of π with ρ is denoted πρ and takes place without any trusted
help. Thus, the computation proceeds in the same way as in the hybrid model, except
that all messages are standard. (Like in the hybrid model, the adversary controls message
delivery and can also read messages sent, but cannot modify or insert messages.) Let n
be the security parameter, let A be an adversary for the real model with auxiliary input
z, let I ⊆ [m] be the set of corrupted parties, and let x be the vector of the parties’ inputs
to π . Then the real execution of π with ρ, denoted REALπρ,A,I (n, x, z), is defined as the
output vector of all the parties and A from the above real execution.

So far the description of the real model is consistent with the standard non-timed
model. In our timing model, in addition to the above, each party has a local clock. In
order to model parties with clocks, we add a clock tape to the ITMs that model the parties
in the network; we call such a modified machine an ITMC (interactive Turing machine
with a clock). As we will see below, the adversary is the only machine to update the clock
tapes of the parties. The leeway given to the adversary in its control over these tapes
determines the model being considered. For example, if the adversary has full control
and can write any values that it wishes to the clock tapes, then this is equivalent to a
non-timed, fully asynchronous model. On the other extreme, if the adversary initializes
all clocks to 0 and adds 1 to each clock at the same time, then this is equivalent to the
fully synchronous model.10 In the timing model, as introduced in [23], the adversary
is somewhat limited in its power over the clock tapes. Specifically, the adversary can
initialize the values of the clock tapes to any values that it wishes (this initialization
takes place at the onset of the computation and models the fact that we do not require
synchronized clocks). Following this initialization step, the adversary may update the
clock of any party that it wishes, under the constraint that a bound on the clock drift

8 Recall that though we refer to π as a protocol, it could in fact be an arbitrary asynchronous environment,
consisting of multiple protocol executions.

9 Note that each party receives the same machine and thus the same set of instructions for ρ. This means
that separate, fixed roles are not defined for the different parties. Rather, assigning the roles (if different roles
exist, like for example in zero-knowledge proof where there are distinct prover and verifier roles) is assumed
to be a part of the functionality.

10 Of course, just updating the clocks together does not necessarily force the adversary to activate all
the parties in parallel (or essentially in parallel, by activating them sequentially in a round robin fashion).
Nevertheless, a protocol can force this by having a party abort if it does not receive its round i messages when
its clock reads i .

Concurrent Composition of Secure Protocols in the Timing Model 445

is preserved. Loosely speaking, this restriction states that the clocks of all machines
proceed at approximately the same rate (within a factor of ε).

More formally, let M1, . . . ,M� be the ITMCs in the network and let a1, a2, . . . be
the series of global states of all machines in the network, where aj denotes the global
state after the j th activation of a machine by the real-model adversary. (Note that we do
not include activations of the adversary, but just of the participating parties.) Denote the
contents of the clock tape of machine Mi in activation aj by clocki (aj), and let clocki (a0)

be the initial value of its clock tape. Then adversarial control over the clocks is modeled
as follows:

1. Before the computation begins, the adversary is allowed to write any values that it
wishes to the parties’ clock tapes (if a value is not written, then the default is 0).
These are the initial clock values.

2. Every time that the adversary is activated, it is given write access to the clock tapes
of all the parties. This write access is limited in a natural way in that the adversary
is only allowed to increase the current value. We stress that writing to a party’s
clock tape does not activate it (in this way, it is different than writing to a party’s
incoming communication tape).

The above describes how the adversary updates the clock tapes; it does not specify any
limitations over these updates. In the timing model it is assumed that the clocks all
proceed within ε units of each other. That is, let ε ≥ 1 be a constant. We say that an
adversary is ε-drift preserving if for every pair of parties Pi and Pj and for every k ≥ 1,

1

ε
· (clockj (ak)− clockj (ak−1)) ≤ clocki (ak)− clocki (ak−1)

≤ ε · (clockj (ak)− clockj (ak−1)). (1)

In other words, whenever a party’s clock is increased by some value δ, then all other
clocks must be increased by some value between δ/ε and δε. An equivalent and more
explicit way of stating this requirement is as follows.

Let ε ≥ 1 be a constant. Then we say that an adversary is ε-drift preserving if there
exist a series of values δ1, δ2, . . . so that, for every i and every k ≥ 1,

δk ≤ clocki (ak)− clocki (ak−1) ≤ δk · ε.
This means that between activation ak−1 and activation ak , the clocks of all parties have
increased by a value which is between δk and δkε. Intuitively, one can think of δk as
being the objective real time (although there may be a number of values δk that fulfill
this condition).11

The rest of the execution is the same as in the (non-timed) real execution described
above. Let n be the security parameter, let A be an ε-drift preserving adversary for the
real model with auxiliary input z, let I ⊆ [m] be the set of corrupted parties, and let x
be the vector of the parties’ inputs to π . Then the real execution of π with ρ, denoted

11 Clearly this alternate condition implies (1). Conversely, taking δk = minj {clockj (ak) − clockj (ak−1)},
(1) implies that maxj {clockj (ak) − clockj (ak−1)} ≤ δkε, which in turn implies that, for every i , δk ≤
clocki (ak)− clocki (ak−1) ≤ δkε.

446 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

REALεπρ,A,I (n, x, z), is defined as the output vector of all the parties and A from the
above real execution.

Security under concurrent composition in the timing model. Having defined the hybrid
and real models, we can now define security of protocols under concurrent composition.
We first define security under concurrent general composition. Loosely speaking, the
definition asserts that for any context, or calling protocol π , the real execution of πρ

emulates the hybrid execution of π which utilizes ideal calls to F . This is formulated
by saying that for every real-model adversary there exists a hybrid model adversary for
which the output distributions are computationally indistinguishable. The fact that the
above emulation must hold for every protocol π that utilizes ideal calls to F , means
that general composition is being considered (recall that π represents arbitrary network
activity).

As we have described, we do not actually achieve concurrent general composition
in the most general sense. Rather, we only obtain security when the arbitrary protocols
running in the network are all delayed by some parameter δ. Furthermore, these protocols
(before the δ-delays are added) are timing-free; i.e., the protocols never instruct the honest
parties to read their clock tapes. Formally,

Definition 1 (Delayed Protocols). Let π be any timing-free protocol (in the real model
or in the F-hybrid model for some F), and let δ = δ(n) be a function. Then πδ is the
protocol obtained from π by having every honest party delay sending every (standard or
ideal) message by δ local time units.12 We call πδ a δ-delayed protocol.

We stress that the above notion of δ-delayed protocols is only defined for protocols
π that are timing free. Thus, any time we refer to a δ-delayed protocol πδ , it is implicit
that the original protocol π was timing-free. We are now ready to define our notion of
security:

Definition 2 (Security under Concurrent General Composition in the Timing Model).
Let ρ be a probabilistic polynomial-time protocol, letF be an ideal functionality, and let
ε be a constant. We say that ρ securely realizesF under concurrent general composition
in the timing model with ε-drift if for every probabilistic polynomial-time m-party proto-
col π in the F-hybrid model and every ε-drift preserving non-uniform polynomial-time
real-model adversaryA forπρ , there exists a probabilistic non-uniform polynomial-time
hybrid-model adversary S such that, for every I ⊆ [m],

{HYBRIDFπ,S,I (n, x, z)}n∈N;x∈({0,1}∗)m ;z∈{0,1}∗

c≡ {REALεπρ,A,I (n, x, z)}n∈N;x∈({0,1}∗)m ;z∈{0,1}∗ . (2)

If there exists a δ such that {HYBRIDFπ,S,I (n, x, z)} c≡ {REALε(πδ)ρ ,A,I (n, x, z)} holds (note

12 That is, a message generated is sent out when the party is active again and δ time units have passed by
the local clock. Depending on the exact local clock reading when the party is activated, the delay introduced
may be more than δ.

Concurrent Composition of Secure Protocols in the Timing Model 447

that here π is δ-delayed), then we say that ρ securely realizes F under concurrent
general composition with δ-delays in the timing model with ε-drift.

We stress that the real execution with A takes place in a model with time and clocks,
whereas the hybrid execution with S takes place in a model with no timing at all.

The above definition can be extended to deal with a number of protocols ρ1, . . . , ρt

such that each ρi securely realizes some functionality Fi . We need this for stating our
main result:

Definition 3. We say that ρ1, . . . , ρt securely realize F1, . . . ,Ft under concurrent
general composition with δ-delays in the timing model with ε-drift if for every (non-
timed) probabilistic polynomial-time m-party protocol π in the (F1, . . . ,Ft)-hybrid
model and every ε-drift preserving non-uniform polynomial-time real-model adversary
A for (πδ)ρ1,...,ρt , there exists a probabilistic non-uniform polynomial-time hybrid-model
adversary S such that, for every I ⊆ [m],

{HYBRID
F1,...,Ft
π,S,I (n, x, z)}n,x,z c≡ {REALε(πδ)ρ1 ,...,ρt ,A,I (n, x, z)}n,x,z,

where ρi is called in the place of any ideal call to Fi .

In the setting of concurrent self-composition, a secure protocol is run many times
concurrently, but it is the only protocol running in the network. In this setting, which
is a special case of the setting of concurrent general composition, the “arbitrary” (non-
timed) protocol π contains calls to the ideal functionality, and nothing else (and thus is
no longer arbitrary). We let λF denote the set of (non-timed) protocols that contain only
calls to ideal functionality F (and in particular have no standard messages). We have
the following definition, that basically states that a protocol is secure under concurrent
self-composition if it is secure under concurrent general composition with any protocol
from the class of protocols λF :

Definition 4 (Security under Concurrent Self-Composition in the Timing Model). Let
ρ be a probabilistic polynomial-time protocol and let F be an ideal functionality. Then,
ρ securely realizes F under concurrent self-composition in the timing model with ε-
drift if, for every π ∈ λF and for every ε-drift preserving non-uniform polynomial-
time real-model adversary A, there exists a probabilistic non-uniform polynomial-time
hybrid-model adversary S such that, for every I ⊆ [m],

{HYBRIDFπ,S,I (n, x, z)}n,x,z c≡ {REALεπρ,A,I (n, x, z)}n,x,z,

where x ∈ ({0, 1}∗)m and z ∈ {0, 1}∗.

We remark that if Definition 4 had considered protocols in (λF)δ rather than proto-
cols in λF , where (λF)δ is the set of protocols obtained from λF by adding δ-delays
before sending each ideal message, then Definition 4 would clearly be a special case of
Definition 2 when considering concurrent general composition with δ-delays; the only
difference is that now the set of δ-delayed protocols is much more restricted. Moreover,

448 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

if a protocol ρ securely realizes F according to Definition 4 when only considering
protocols in (λF)δ , then there exists a protocol ρ ′ that securely realizes F according to
Definition 4 (which considers non-timed protocols in λF); protocol ρ ′ simply runs ρ
while delaying the sending of the first message by δ time units. This implies that our
result on concurrent self-composition follows as an immediate corollary from our result
on concurrent general composition with δ-delays.

Non-trivial protocols in the timing model. As we discussed in the Introduction, the
timing model relies on two assumptions: the clock-drift ε and the maximum network
latency �. However, the security of a protocol should rely solely on the more realistic
assumption regarding clock drift. Therefore, our above definition refers to the clock drift,
but makes no mention of the network latency; the latency assumption is only used in
order to guarantee non-triviality. Loosely speaking, a protocol is non-trivial if the honest
parties are guaranteed to receive their outputs (according to the functionality definition)
in executions where the adversary is “well-behaved”. More specifically, in the context
of the timing model, a protocol is non-trivial for � and ε if, in each execution in which
the adversary is ε-drift preserving, delivers all messages in time at most�, and does not
corrupt any party, none of the parties outputs time-out or abort.

Definition 5 (Non-Triviality). We say that a protocol ρ is non-trivial under timing as-
sumptions (�, ε) if in any execution of ρ where

1. the real-model adversary A has not corrupted any of the participating parties, and
2. the real-model adversary A is ε-drift preserving and delivers all the messages of
ρ within � time units (according to the clocks of all the parties—see explanation
below),

it holds that all parties receive an output that does not equal time-out or abort.

Notice that item 2 in Definition 5 refers to delivery within � time units according to
the clocks of all parties. More specifically, this means that if a message is sent by one
honest party P to another honest party P ′ when the vector of clocks of all parties reads
(t1, . . . , tm), then the message is received by P ′ when the vector of clocks is such that for
every i , party Pi ’s clock reads at most ti +�. Thus, � is an upper bound on the latency
with respect to all local clocks (and not with respect to some specific clock).

Modeling delays and time-outs. As we have discussed in the Introduction, our se-
cure protocols utilize the clocks by introducing delay and time-out instructions. Such
instructions can be carried out in our model as follows:

1. Delay instructions: If a party Pi is instructed to delay sending a message x by c time
units, then it chooses a random identifier delay-id and writes (x, delay-id, c, time)
on its work tape, where time is the current contents of its clock tape. It then writes
(delay, delay-id, c) on its outgoing communication tape concluding the activation.
Upon receiving a message (send, delay− id) from the adversary in a future acti-
vation, party Pi first checks that c units have passed according to its clock (i.e., that
the current contents of its clock is at least time+ c, where c and time are the values

Concurrent Composition of Secure Protocols in the Timing Model 449

in the tuple indexed by delay-id). If not, then it halts this activation. If yes, then
it writes the delayed message x on its outgoing communication tape, concluding
the activation. (We note that our decision to write the length c of the delay on the
outgoing communication tape is arbitrary and makes no difference to our result.)

2. Time-out instructions: If a party Pi (or an ITMC that it runs as a subprotocol) has
an instruction to time-out if it does not receive a specific message within c time
units from the present time, then Pi writes the current contents of its clock tape on
its work tape. Then, when it receives the specific message, it outputs time-out if
the current contents of its clock tape is greater than the previously recorded value
plus c.

Discussion—local computation time. In our definitions we have included a local clock
on machines and use this to measure the time that it takes for messages to be sent and
received over the network. A more general model would also include issues such as the
time that it takes for local computation. The focus of this paper is a secure protocol
that utilizes timing assumptions, and not the issue of modeling time in its most general
fashion. Our model therefore assumes that local computation is immediate (this can
be seen because the adversary is not activated while local computations take place and
so cannot update the clocks). One approach for generalizing the model is to have the
adversary activated after every single step of the transition function of an ITMC. We
leave these questions of modeling for future work.

2.3. Tools

Our protocol uses a number of different tools and primitives. In this section we briefly
describe these tools and provide references to full definitions.

Witness indistinguishable and witness hiding proofs [26]. We consider the interac-
tive proof system between a probabilistic polynomial-time verifier and a probabilistic
polynomial-time prover who is given an auxiliary input (typically, an NP-witness). Such
an interactive proof is witness indistinguishable if interactions in which the prover uses
different “legitimate” auxiliary-inputs are computationally indistinguishable from each
other [26]. Recall that any zero-knowledge proof system is also witness indistinguish-
able. Furthermore, witness indistinguishable proofs remain witness indistinguishable
under concurrent composition. Witness hiding proofs have the property that a verifier
cannot obtain a witness from its interaction with the prover. For example, if a prover
proves that it knows the preimage of some one-way function using a witness hiding proof,
then the interaction will not help any probabilistic polynomial-time verifier to compute
a preimage. Witness hiding proofs can be constructed from witness indistinguishable
proofs by considering “double statements” with independent witnesses, of the form “I
know the preimage of one of v1 and v2” [26]. See Section 4.6 of [27] for a full treatment
of witness indistinguishable and witness hiding proofs.

Strong proofs of knowledge [27]. A proof of knowledge [33], [7] is an interactive proof
which convinces a verifier that the prover “knows” a witness to a certain statement. This
is in contrast to a regular interactive proof, where the verifier is just convinced of the

450 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

validity of the statement. The concept of “knowledge” for machines is formalized by
saying that if a prover can convince the verifier, then there exists an efficient procedure
that can “extract” a witness from this prover (thus the prover knows a witness because it
can run the extraction procedure on itself). More formally, a proof of knowledge has the
property that for every machine P∗ there exists a knowledge extractor K , such that if P∗

convinces V with probability p, then K “extracts” a valid witness from the prover P∗

with probability that is negligibly close to p. A strong proof of knowledge, as defined by
Goldreich [27, Section 4.7.6], is a proof of knowledge where the knowledge extractor
runs in strict polynomial time and fulfills the following more stringent requirement: there
exists a negligible function µ(n) such that if a given prover convinces the honest verifier
to accept with probability greater than µ(n), then the knowledge extractor succeeds in
obtaining a witness with probability at least 1 − µ(n). See Section 4.7.6 of [27] for a
full treatment.

We remark that there exist witness indistinguishable strong proofs of knowledge with
any super-constant number of rounds. (The construction of [27] uses a super-logarithmic
number of sequential executions of the 3-round zero-knowledge proof for Hamiltonic-
ity [10]. However, using the same ideas, it can be shown that by running log n parallel
executions of the proof of Hamiltonicity, any super-constant number of sequential rep-
etitions is actually enough. We can therefore reduce this to any super-constant number
of rounds α(n) = ω(1).) We also remark that it has been shown that under exponen-
tial hardness assumptions, there do not exist witness indistinguishable strong proofs of
knowledge with a constant number of rounds, even using non-black-box techniques [4].

3. Constructing Secure Protocols in the Timing Model

In this section we prove our main positive results, which consists of proving Theorem 1.2
(and obtaining Theorem 1.1 as a corollary). We begin by formally restating Theorem 1.2.

Theorem 6 (Theorem 1.2—Restated). Assume that there exist enhanced trapdoor per-
mutations and dense cryptosystems, and let� and ε be constants where 1 ≤ ε < 3

√
1.5.13

Then there exists a function δ(n)
def= α(n) · � · ε such that for any set of probabilis-

tic polynomial-time functionalities F1, . . . ,Ft there exist probabilistic polynomial-time
protocols ρ1, . . . , ρt that securely realizeF1, . . . ,Ft under concurrent general composi-
tion with δ-delays in the timing model with ε-drift. Furthermore, eachρi is non-trivial un-
der timing assumptions (�, ε), and does not depend on the other functionalities {Fj }j �=i .

The majority of the proof of Theorem 6 involves showing how to securely realize the
“common random string” (CRS) functionality under concurrent general composition
with any δ-delayed protocol πδ . We begin by formally defining the CRS functionality in
Section 3.1. Next, in Section 3.2, we show that in order to prove Theorem 6, it suffices
to securely realize the CRS functionality under concurrent general composition with
δ-delays. Finally, Sections 3.3–3.6 are devoted to showing how to securely realize the
CRS functionality under concurrent composition with δ-delays.

13 This limitation on ε is needed in our proof of security.

Concurrent Composition of Secure Protocols in the Timing Model 451

Functionality FCRS

Let n be the security parameter and let p(·) be a fixed polynomial.14 Let P1, . . . , Pm be the
set of all parties, and let S be the adversary. The functionality FCRS proceeds as follows:

Upon receiving a message (crsgen, sid, {Pi1 , . . . , Pik }), choose a uniformly
distributed string RCRS ∈R {0, 1}p(n), send (crsgen, sid, {Pi1 , . . . , Pik }, RCRS) to
S and to all parties Pi1 , . . . , Pik , and halt.15

Fig. 2. The ideal multiparty FCRS functionality.

3.1. The CRS Functionality

We now formally define the CRS functionality, denoted FCRS. Intuitively, the func-
tionality simply chooses a random string and sends it to all parties. Any party can send
the functionality a crsgen request. Once the functionality receives such a request, it gen-
erates a random string RCRS and sends it to the adversary and all the parties. Recall that
the adversary controls the delivery of messages between FCRS and the parties; therefore,
the fact that FCRS sends the output does not mean that the parties receive it immediately
(or even that they will ever receive it). Recall also that parties may receive time-out and
abort outputs, as defined in Section 2.2. A formal description of FCRS appears in Fig. 2.

We note that theFCRS functionality sends only uniformly distributed strings (in contrast
to some prior definitions which allowed any efficiently samplable distribution). This is
crucial for our implementation since we use a coin-tossing protocol.

3.2. Reducing the Problem to Realizing the CRS Functionality

In theFCRS-hybrid model all parties are given access to theFCRS functionality. As we have
mentioned, it follows from [16] and from the composition theorem given in [12], that
if the FCRS functionality can be securely realized under concurrent general composition
then any functionality F can be securely realized under concurrent general composition
(assuming the existence of enhanced trapdoor permutations and dense cryptosystems).16

Unfortunately, it is known that theFCRS functionality cannot be securely realized under
concurrent general composition, unless an honest majority or a trusted setup phase is
assumed [12], [14], [15]. Moreover, as we show in Section 5, even in the timing model,
theFCRS functionality cannot be securely realized under concurrent general composition.
Instead, we show how to securely realize theFCRS functionality in the timing model under

14 FCRS is parameterized by a polynomial p(·) that determines the length of the CRS generated. If desired,
this can be included as input with almost no difference to the protocol (the only necessary addition is for the
parties to negotiate the value of p(·) at the onset).

15 When the set of parties {Pi1 , . . . , Pik } is clear from the context, we sometimes let the message
(sid, compute) be a shorthand for the message (crsgen, sid, {Pi1 , . . . , Pik }). Similarly, we let (sid, RCRS)

be a shorthand for (crsgen, sid, {Pi1 , . . . , Pik }, RCRS).
16 Actually, the result in [16] holds only for the class of “well-formed” functionalities. However, in the

case of static adversaries, this only limits the functionalities to those that are “unaware” of which parties are
corrupted and which are honest. Since in our definition of the computational model the ideal functionality is
not given this information, it follows that all efficient functionalities can be securely realized.

452 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

concurrent general composition with δ-delays, as defined in Definition 2. In this section
we show that this implies that any series of multiparty functionalities can be securely
realized in the timing model under concurrent general composition with δ-delays, as
defined in Definition 3. Our proof follows the following series of steps. Let F1, . . . ,Ft

be a series of multiparty functionalities and let ρ be a protocol that securely realizes
the FCRS functionality in the timing model under concurrent general composition with
δ-delays, for δ as defined in the theorem. Then:

1. We first use [16] to obtain timing-free protocols σ1, . . . , σt such that each σi se-
curely realizesFi under concurrent general composition in theFCRS-hybrid model.
(Note that each σi is secure in a model without time.)

2. Next, we wish to replace the ideal calls to FCRS in each σi by invocations of the
real protocol ρ. However, since ρ is only secure when all other protocols that are
run concurrently in the network are δ-delayed, we first insert delays into all the
protocols σ1, . . . , σt . We denote by σ̂i the δ-delayed version of σi , as defined in
Definition 1. Note that inserting delays into σi does not affect its security because
the security of σi holds under any scheduling.

3. Finally, we define the protocol ρi to be the composition of σ̂i with ρ (i.e., σ̂i uses
real calls to ρ instead of ideal calls to FCRS).

We now explain intuitively why ρ1, . . . , ρt securely realize F1, . . . ,Ft . Let π be any
arbitrary protocol. We argue that the result of a real execution of π with ρ1, . . . , ρt is
indistinguishable from the result of an execution of π with ideal calls toF1, . . . ,Ft ,17 as
follows. Define a new protocolπ ′ that includes the timing-free protocolπ and the timing-
free protocols σ1, . . . , σt , where each σi replaces the ideal calls to Fi . The protocol π ′

is timing-free and it runs in the FCRS-hybrid model, because each σi runs in the FCRS-
hybrid model. The fact that an execution of π ′ with FCRS is indistinguishable from a
hybrid execution of π with F1, . . . ,Ft follows from the security of σ1, . . . , σt under
concurrent general composition in the FCRS-hybrid model. Next, we use the fact that ρ
securely realizes FCRS when run concurrently with any δ-delayed protocol. In particular,
it securely realizes FCRS when run concurrently with π ′δ (the δ-delayed version of π ′).
Thus, it follows that the real protocol π ′δ with ρ, denoted (π ′δ)

ρ , is indistinguishable from
π ′ with ideal calls to FCRS, which is in turn indistinguishable from π with ideal calls to
F1, . . . ,Ft . Finally, note that (π ′δ)

ρ is exactly the same as the composition of π with the
protocols σ̂1, . . . , σ̂t . Thus, the theorem follows.

We proceed to provide a formal proof of the above; i.e., of the fact that the protocols
of [16] (with delays of length δ inserted before the sending of each message), composed
with a protocol for securely realizing the FCRS functionality in the timing model under
concurrent general composition with δ-delays, results with protocols that securely realize
F1, . . . ,Ft under concurrent general composition with δ-delays. We remark that the
proofs are straightforward, and just involve justifying a few technical points related to
the above informal reasoning. First, the hybrid model of [16] is not quite the same as the
one defined here, since in our definition the adversary can send time-out instructions to
the trusted party. This is in contrast to the hybrid model of [16] which does not include

17 Of course, this is completely informal and what we mean is that the conditions of Definition 3 are met.

Concurrent Composition of Secure Protocols in the Timing Model 453

time-out instructions (this technicality was not expressed in the above informal discussion
but is proven below). Second, we do not securely realize the FCRS functionality under
standard concurrent general composition (even though the security of theσi protocols was
proven in this setting); rather, we securely realize it under concurrent general composition
with δ-delays. Despite the above differences, we show that our construction is secure.

We note one technicality that must be dealt with. According to our definition, a time-out
can only be issued before any outputs are obtained. Thus, a policy must be determined
regarding what the delayed protocol σ̂i should do in case FCRS returns time-out (note
that in the model of [16] where σ was constructed, the functionality FCRS never returns
time-out; this issue only arises in the timing model). There are two possible approaches
here. First, we could define that the output of σ in this case is abort (and not time-out).
The drawback of this approach is that we lose the advantage of a time-out that enables
parties to restart the execution. The second approach is to rely on the fact that the protocol
σ from [16] can be written so that there is only a single call to FCRS, and this takes place
at the very onset of the execution (before any outputs are produced). We prefer this latter
approach as it results in a protocol that can be restarted in the case when high network
latency is the only reason that the protocol did not terminate successfully.

We first claim that time-out instructions can be added to a secure timing-free protocolσ
without making any real difference. As discussed above, we assume that σ contains only
a single call toFCRS, and this takes place at the onset of the execution. In the proof below
we refer both to the FCRS-hybrid model defined in this paper where time-out instructions
are allowed and to theFCRS-hybrid model of [16] where there are no time-out instructions.
We call these the FCRS-hybrid model with and without time-outs, respectively.

Claim 3.1. Let F be a functionality and let σ be a timing-free protocol that contains a
single call to FCRS at the onset of the protocol and securely realizes F under concurrent
general composition in the FCRS-hybrid model without time-outs. Define the protocol
σ ′ to be the same as σ except that if an honest party receives time-out as output from
the ideal FCRS functionality, then it outputs time-out in σ ′ and halts. Then protocol σ ′

securely realizesF under concurrent general composition in theFCRS-hybrid model with
time-outs, as defined in Section 2.2.

Proof Sketch. The only difference between σ and σ ′ is with respect to the possibility
of obtaining time-out. There are two cases here:

1. Case 1—the FCRS functionality sends time-out to all honest parties: In this case
the ideal-model adversary/simulator for σ ′ sends a time-out instruction to the
trusted party computing the functionalityF . SinceFCRS is called at the onset of the
execution, and thus before any outputs are generated, this implies that the time-out
instruction is “accepted” by the trusted party, and thus it will also send time-out to
all honest parties.

2. Case 2—the FCRS functionality does not send time-out to the honest parties: In this
case the execution of σ ′ is exactly the same as σ . Therefore, the simulator for σ ′

follows exactly the same strategy as the simulator for σ .

Note that the simulator for σ ′ knows whether it is in case 1 or case 2, and so can efficiently
implement the above strategy. Furthermore, by the definition of the hybrid model, all

454 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

parties receive time-out or none do; thus these are the only two cases. This completes
the proof sketch.

So far, we have shown that adding time-out instructions does not make any difference
with respect to a protocol’s security in theFCRS-hybrid model. The next claim shows that
in order to securely realize any t functionalities F1, . . . ,Ft , it suffices to prove that the
FCRS functionality can be securely realized under concurrent general composition with
δ-delayed protocols.

Claim 3.2. For any set of probabilistic polynomial-time multiparty functionalities
F1, . . . ,Ft , let σ ′1, . . . , σ

′
t be timing-free protocols such that for every i , σ ′i securely real-

izes Fi under concurrent general composition in the FCRS-hybrid model with time-outs.
Furthermore, let ρ be a real-world protocol that securely realizes FCRS (with time-outs)
under concurrent general composition with δ-delays in the timing model with ε-drift.
For every i , define the real-world protocol ρi = (σ̂i)

ρ , where σ̂i = (σ ′i)δ is the δ-delayed
version of σ ′i . Then the real protocols ρ1, . . . , ρt securely realize F1, . . . ,Ft under con-
current general composition with δ-delays in the timing model with ε-drift.

Proof Sketch. Fix any set of probabilistic polynomial-time multiparty functionalities
F1, . . . ,Ft , and let σ ′1, . . . , σ

′
t be as in the claim statement. Let π be an arbitrary protocol

that contains ideal calls to the functionalities F1, . . . ,Ft . Consider now the real-world
protocol (πδ)ρ1,...,ρt , where each ρi is as defined in the claim statement, where ρi replaces
every ideal call to Fi in π , and where the messages of π are delayed by δ units of time.
It holds that

(πδ)
ρ1,...,ρt = ((πδ)σ̂1,...,σ̂t)ρ = ((πσ ′1,...,σ ′t)δ)ρ,

where the first equality follows from the fact that ρi = (σ̂i)
ρ , and the second equality

follows from the fact that σ̂i = (σ ′i)δ . Now, by the assumption in the claim, ρ securely
realizes FCRS under concurrent general composition with δ-delays in the timing model
with ε-drift. Thus, for every real-model adversary A there exists an adversary H in the
FCRS-hybrid model with time-outs such that

{REALε(πδ)ρ1 ,...,ρt ,A,I (n, x, z)}n,x,z ≡ {REALε
((π

σ ′
1
,...,σ ′

t)δ)ρ ,A,I
(n, x, z)}n,x,z

c≡ {HYBRID
FCRS

π
σ ′

1
,...,σ ′

t ,H,I
(n, x, z)}n,x,z .

Next, we use the fact that σ ′i securely realizesFi under concurrent general composition in
the FCRS-hybrid model with time-outs (note that there is actually no time in this model).
Specifically, this implies that for every adversary H in the FCRS-hybrid model with
time-outs, there exists an adversary S in the F1, . . . ,Ft -hybrid model with time-outs
such that

{HYBRID
FCRS

π
σ ′

1
,...,σ ′

t ,H,I
(n, x, z)}n,x,z c≡ {HYBRID

F1,...,Ft
π,S,I (n, x, z)}n,x,z .

Combining the above, we have that ρ1, . . . , ρt securely realizeF1, . . . ,Ft under concur-
rent general composition with δ-delays in the timing model with ε-drift, as
required.

Concurrent Composition of Secure Protocols in the Timing Model 455

Under the assumption that enhanced trapdoor permutations and dense cryptosystems
exist, the result of [16] provides us with protocols σ as required in Claim 3.1. Thus, using
Claim 3.2 we conclude that in order to prove Theorem 6 it suffices to prove that there
exists a protocol ρ that securely realizesFCRS under concurrent general composition with
δ-delays in the timing model with ε-drift. The rest of this section is devoted to this task
of securely realizing FCRS.

Remark. Above we introduced the “hybrid model without time-outs” only in order to
refer to the functionalities in [16] which do not accept time-out instructions from the
adversary. For the rest of this paper, whenever we refer to a hybrid model, we mean the
model defined in Section 2.2 that allows time-outs.

3.3. Overview of the Protocol for FCRS and Its Security Analysis

Before proceeding to describe the actual protocol for securely realizing the FCRS func-
tionality, we provide a high-level overview of the construction. The basic structure of
the protocol is an extension of the two-party coin-tossing protocol of [35] (which is
in turn an extension of Blum’s protocol [9]). In this protocol each party first commits
to a randomly chosen value and provides a zero-knowledge proof of knowledge of the
committed value. In the next phase of the protocol, each party reveals its committed
value, without actually decommitting, and provides a zero-knowledge proof that the
revealed value is indeed the one that was committed to. The idea behind this construc-
tion is that due to the soundness of the proofs, a corrupted party has no choice but to
reveal the value that it committed to in the first phase. Thus, the binding property of
the commitment scheme is preserved. Intuitively, this means that the adversary cannot
bias the outcome of the coin-tossing protocol, because it is bound to the corrupted par-
ties’ committed values before it sees the honest parties’ committed values. However,
in order to prove the security of the coin-tossing protocol according to the simulation
paradigm, it is necessary to construct a simulator that can force the outcome of the pro-
tocol to be the exact string RCRS that is generated by the ideal functionality FCRS. The
zero-knowledge proofs of knowledge are included in order to facilitate such a simula-
tion. Specifically, it is true that the adversary must reveal the correctly committed value
due to the soundness of the proofs. However, the simulator can run the simulator for
the zero-knowledge protocol, and can effectively cheat. Thus, the simulator can reveal
any value that it wishes and is not bound by the commitment scheme (note that de-
commitment never actually takes place; rather the committed value is revealed and the
zero-knowledge proof is used to determine that it is correct). This observation is used in
the following way. In the first phase of the protocol, the simulator commits to random
values for the honest parties, and extracts all of the values committed to by the corrupted
parties (it does this by running the knowledge extractor on the proofs of knowledge of
the committed values). Next, given the corrupted parties’ values, it chooses new random
strings for the honest parties so that the XOR of the extracted corrupted parties’ values
and the new honest parties values equals RCRS exactly. Finally, the simulator reveals
the new (fake) honest party values and simulates the zero-knowledge proofs claiming
that the revealed values are indeed the committed ones (which they are not). The adver-
sary’s view in this simulation is indistinguishable from that in a real protocol execution

456 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

due to the hiding property of the commitments and the zero-knowledge property of the
proofs.

A crucial point in the above security argument is that the proofs of knowledge must be
run independently of each other (in order to ensure that the adversary does not “copy”
a proof from an honest party). The same holds also for the zero-knowledge proofs of
consistency in phase 2. (Here the reason is slightly different. During simulation, the
simulator actually “cheats” by proving an incorrect theorem. We need to ensure that the
adversary cannot use the cheating of the simulator in order to cheat itself.) In the stand-
alone case, this independence is achieved by simply running the proofs sequentially.
Technically, this enables the rewinding of the proofs of knowledge provided by the
adversary (for extraction in the first phase) and the rewinding of the zero-knowledge
proofs verified by the adversary (for simulation in the second phase) without overlapping
and therefore without interfering with any of the other proofs. In our case, however, we
must achieve security under concurrent composition. Therefore, it is not possible to
enforce any specific scheduling that will ensure independence between the proofs (or
that they do not overlap during rewinding).

As a first step towards solving this problem (and as a solution to another problem),
we limit the rewinding stages to be “early” on in the protocol. In particular, rewinding
takes place only before the decommitment values are revealed and so before the common
reference string can be learned by the adversary. This is a necessary step because time-
out instructions are crucial for enabling “proper rewinding”, and as we have discussed
in Section 2.2, a time-out must only occur before the adversary can learn the output.
We achieve this by using the specific zero-knowledge arguments of knowledge of Feige
and Shamir [25] (an argument is a proof system where soundness is only guaranteed
for polynomial-time cheating provers). Loosely speaking, the Feige–Shamir argument
system consists of two witness-indistinguishable proofs of knowledge (WIPOKs, for
short); first the verifier proves that it knows one of two independent secrets; next, the
prover proves either that it knows one of the verifier’s secrets or that it knows the real
witness. The soundness of this protocol follows from the fact that a WIPOK for statements
with multiple independent witnesses is witness hiding. Therefore, the prover could not
have obtained the secret from the first WIPOK and must use the real witness in the second
WIPOK. The zero-knowledge property is demonstrated by first extracting a secret from
the verifier in the first stage, and then proving the second WIPOK using knowledge of
this secret. Note that the second stage of the simulation requires no rewinding, and that
this is the only part of the proof that depends on the statement being proved.

To be more precise, our protocol consists of three phases. In Phase 1 each player runs
a WIPOK that it knows one of two independent secrets (this is the first WIPOK of the
Feige–Shamir argument system). Then, in Phase 2, each player commits to a random
value, and runs a single WIPOK that it either knows the value that it committed to or
that it knows one of the secrets of the verifier (completing the Feige–Shamir argument
that was initiated in Phase 1). Thus, by the end of Phase 2, each player has committed
to some value and has proved in zero-knowledge to each of the other players that it
knows the value that it committed to. Notice that Phases 1 and 2 correspond to the first
part of the coin-tossing protocol of [35]. The coin-tossing protocol is then completed
in Phase 3 where each player reveals the value that it committed to in Phase 2 (without
decommitting), and proves that it is the correct value. This proof is a single WIPOK

Concurrent Composition of Secure Protocols in the Timing Model 457

that it either knows the decommitment information that corresponds to this value or that
it knows one of the secrets of the verifier. Once again, combining this WIPOK with
that of Phase 1, we obtain a Feige–Shamir argument. Thus, both the proofs of Phases 2
and 3 (which consist of only a single WIPOK) are actually zero-knowledge, as required
by the coin-tossing protocol. An important property of this protocol is that the only
rewinding needed is (a) to extract the secrets from the first Feige–Shamir WIPOK in
Phase 1 (enabling simulation later), and (b) to extract the committed value from the
adversary in Phase 2. This implies that all rewinding takes place before Phase 3, which
is where the committed values are revealed. Furthermore, all rewinding is actually for
the purpose of extraction only.18

Until now, we have focused on how to limit the rewinding to the early stage of the
protocol, and to witness extraction only. However, a far more crucial issue is how we
carry out this extraction (i.e., rewinding) in the concurrent setting. It is here that we
use the timing assumptions, via time-out and delay instructions, in an inherent way.
Informally speaking, there are two issues that must be dealt with when considering
concurrent composition here: (a) the WIPOK protocols must self-compose (i.e., we
should be able to extract and enforce independence when many WIPOK executions
take place concurrently), and (b) the WIPOK executions should remain secure (again,
enabling extraction and independence) when run concurrently with an arbitrary δ-delayed
protocolπ . We separately explain, at an intuitive level, the security of the WIPOKs under
these two types of composition.19

Composition with arbitrary δ-delayed protocols. The main problem that arises when
running a secure protocol ρ concurrently to an arbitrary other protocol π , is that the
adversary may be able to generate some dependence betweenπ and the secure protocolρ.
(For example, π messages may have the same format as ρ messages and so an adversary
can just forward messages from one protocol to another). On a more technical level, the
proof of security works by constructing a hybrid-model simulator who runs π externally,
while internally simulating ρ. Now, if the simulator needs to rewind ρ, it cannot proceed
with π because the π -messages are sent to external parties and so cannot be retracted.
Thus, it is crucial that while rewinding the WIPOKs in order to extract, the simulator
does not need to send any π -messages externally. By setting δ to be the amount of time
that it takes to complete a WIPOK, we have that the rewinding spans only over this
amount of time. Thus, if π is δ-delayed, we have that no new π messages need to be
dealt with during rewinding. We note that the length of the WIPOK is forced to be at
most δ by timing-out if it takes too long. Thus, as described in the Introduction, the
needed effect is obtained by combining time-out and delay instructions together.

Concurrent self-composition. The main concern that arises here is that of independence.
That is, when many WIPOK executions are run concurrently, the adversary can carry
out a man-in-the-middle (or mauling) attack, in which it takes messages received in one

18 This strategy simplifies the proof of security, because it turns out to be “much easier” to extract than
simulate. This is especially true because we use strong proofs of knowledge, rather than ordinary ones; see
below.

19 We caution the reader that the formal proof of security does not separate out in this fashion.

458 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

execution and forwards (or modifies) them in another execution. Such a strategy enables
it to “copy” a proof provided by an honest party, and contradicts the requirement of
independence.

In order to prevent such an attack, it suffices to ensure that no (relevant) WIPOK in one
session occurs concurrently with any (relevant) WIPOK in another session. However,
in a setting where we cannot coordinate between multiple sessions of the protocol, this
is impossible. We therefore have the parties prove many WIPOKs in every session,
according to a carefully designed scheduling strategy. Our scheduling is based on the
Chor–Rabin scheduling [18], with modifications necessary due to the fact that we work
in the concurrent setting with timing (whereas they worked in the fully synchronous
model). Our scheduling has the property that for every two sessions, there exists at least
one WIPOK in the first session that does not overlap with any of the WIPOKs of the
second session. We call a scheduling that has this property a pairwise-disjoint scheduling,
and discuss it further in Sections 3.4 and 4.20 We note that we make essential use of the
timing assumptions in order to construct this scheduling.

Use of strong proofs of knowledge. We actually use strong proofs of knowledge in
our protocol, rather than ordinary ones. (Recall that such a proof has the property that
if the prover convinces the verifier with non-negligible probability, then the extractor
obtains a witness with overwhelming probability. Furthermore, the running-time of the
extractor is independent of the probability that the prover convinces the verifier.) We do
not know if this is essential, but we also do not know how to prove the security of our
protocol otherwise.21 Loosely speaking, we use strong proofs of knowledge in order to
obtain the following effect. Our simulation strategy works by running in a “straight-line
simulation mode” until a WIPOK is reached. When the beginning of such a proof is
reached, we leave this mode and enter an “extraction mode,” where rewinding takes
place. We then run the extractor, while internally simulating the future messages (that is,
the strategy is actually one of look-ahead, rather than rewinding back). Now, if a strong
proof of knowledge is used, then after the extractor terminates, we are guaranteed that
the following holds: either the extractor succeeded in obtaining a witness, or if it did
not, we know that the prover will only succeed in convincing the verifier with negligible
probability (in which case, we will not need the witness because the session will be
aborted with all but negligible probability). Thus, there is no uncertainty (of course,
beyond the negligible probability that the above will not hold). In contrast, in a regular
proof of knowledge, such a look-ahead would fail because even if the extractor did not
obtain a witness, it may still happen that the prover will convince the verifier. Thus, we
would need to use a “rewind back” strategy where after the prover convinces the verifier,
we would go back and obtain the witness. This type of strategy seems to be more difficult
when dealing with the external π -messages (although, as mentioned above, we do not
know whether or not the difficulties are inherent).

20 We remark that the Chor–Rabin scheduling was also used in [21] in a concurrent-type setting in order to
achieve non-malleable commitments (without timing assumptions). Our setting differs in that we have many
executions (and in this way it is “harder”), but we also utilize timing assumptions (and in this way it is “easier”).

21 This is the first work that we are aware of that utilizes strong proofs of knowledge in an essential way,
rather than just in order to simplify the construction and proof.

Concurrent Composition of Secure Protocols in the Timing Model 459

3.4. Scheduling

Our goal is to construct a protocol that securely realizes the FCRS functionality in the
timing model, in a general multiparty network where sessions are being executed con-
currently. One of the major risks in this concurrent setting is related to the notion of
malleability. Loosely speaking, this refers to an adversary who interleaves different ex-
ecutions of the protocol, and chooses its messages in one execution based on messages
that it receives in the other executions. Consider, for example, many interleaved exe-
cutions of a (regular, stand-alone) zero-knowledge proof of knowledge. In this setting,
even if an adversary succeeds in convincing a verifier that it knows some secret s, it
does not necessarily mean that the adversary actually knows s. Rather, it may be the
case that there is some other party that is concurrently proving to the adversary that it
knows the same secret s, and the adversary is simply relaying the messages between
these two executions. Such a strategy is known as a “man-in-the-middle” attack. In order
to construct secure protocols, it is necessary to prevent such attacks.

Our idea for preventing such mauling attacks is based on [18], who introduce a method
for concurrently alternating and interleaving protocol executions in the fully synchronous
model, while preserving independence. Loosely speaking, they construct an O(log n)-
round n-party protocol, in which each party (concurrently) carries out several zero-
knowledge proofs sequentially, so that at least one of its proofs is “independent” from
the proofs of the other parties.

More specifically, they associate with each party Pi a unique identifier idi ∈ {0, 1}2m

that contains exactly m ones and m zeros (since the number of parties is polynomial in n,
the value m can be set to be O(log n)). The protocol consists of 2m phases, where in each
phase some of the parties play the role of prover (and all parties verify). A party plays
the prover in a zero knowledge proof in phase k if and only if the kth bit of its identifier
is 1 (i.e., party Pi will play the prover in phase k if and only if (idi)k = 1). In total,
every party plays the prover’s role during half of the phases, and for every two parties
Pi and Pj , there is at least one phase in which Pi acts as a prover while Pj acts only as a
verifier, and vice versa. This follows from the fact that for every i �= j , idi and id j are
distinct and they both have the same number of ones and zeros. Therefore, there exist
two distinct indices k and k ′ such that (a) (idi)k = 1 and (id j)k = 0, and (b) (idi)k ′ = 0
and (id j)k ′ = 1. Thus, in phase k party Pi proves and party Pj only verifies, and in phase
k ′ party Pj proves and party Pi only verifies. Intuitively, this prevents Pi from using Pj as
an oracle for supplying its proofs. As we explain below, even though this method seems
to guarantee only pairwise independence, it actually achieves overall independence. We
show that a similar idea can be used to achieve independence in a concurrent setting, in
the timing model.

To this end we define the notion of a pairwise disjoint scheduling. In Section 4 we
show how to construct a pairwise-disjoint scheduling in the timing model. In Section 3.5
we show how such a scheduling can be used to design a protocol that securely realizes
the FCRS functionality under concurrent general composition with delays, in the timing
model.

Pairwise-disjoint scheduling. Consider one prespecified protocol σ , which needs to
be executed concurrently in many different sessions, where each session has a unique

460 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

identifier. The aim of a pairwise-disjoint scheduling is to ensure that different concurrent
executions of σ are somewhat “independent”. Intuitively, the idea is to achieve indepen-
dence by requiring the parties to act as follows: Instead of running a single execution
of protocol σ in a given session, the parties execute σ several times in that session ac-
cording to some prespecified “pairwise-disjoint” scheduling S. Loosely speaking, this
scheduling ensures that when looking at any two distinct sessions (each containing at
least one honest party), there exists at least one execution in each of the sessions that
does not intersect (i.e., overlap) with any execution in the other session.

We define the notion of a pairwise-disjoint scheduling algorithm S that receives for
input a protocol σ , a unique session identifier sid, and the network timing assumptions
� and ε. The algorithm S(σ, sid,�, ε) then outputs a schedule consisting of many
executions of σ with the property that for every two distinct sessions sid and sid′ there
exists at least one execution in S(σ, sid,�, ε) that does not overlap with any of the
executions of S(σ, sid′,�, ε,) and vice versa. We stress a crucial point here. When
considering many different sessions, it may be the case that every execution of σ in a
session sid overlaps with some other execution of σ in some other session. However, it is
guaranteed that for every session sid′, there exists at least one execution of σ in session
sid that does not overlap with any of the executions in session sid′. This type of pairwise
disjointness suffices since in our proof the simulator simulates all the honest provers
except for one chosen prover which will be an “external prover”. It is only this “external
prover” that cannot be rewound. Thus, it suffices to ensure that for each session there
exists one execution which does not overlap with the proofs of the “external prover”.
This is exactly what a pairwise disjoint scheduling ensures.

In what follows we formally define the syntax of a scheduling algorithm. We are only
interested in schedules which are polynomial time22 and non-trivial (where the parties
output time-out only if the network delay is too long). We therefore incorporate these
requirements into the definition.

Definition 7 (Non-Trivial Scheduling Algorithm). A non-trivial scheduling algo-
rithm is an algorithm S that receives for input a protocol σ , a session identifier sid,
and a pair (�, ε), and outputs a schedule � consisting of polynomially many execu-
tions of σ together with delay and time-out instructions that are polynomial in � and ε.
Furthermore � is non-trivial (as defined in Definition 5).

Before proceeding further, we define what it means for an execution of a protocol σ
to overlap with another execution. Let σ1 and σ2 be two executions of protocol σ , and
let P1 and P2 be any two honest participants in σ1 and σ2, respectively. Then σ1 and σ2

overlap according to P1 and P2, if P1 sends a σ1 message after P2 has sent its first σ2

message but before P2 sends its last σ2 message, or if P2 sends a σ2 message after P1

has sent its first σ1 message but before P1 sends its last σ1 message. This is shown in
Fig. 3(a) and in Fig. 3(b), respectively. Therefore, if σ1 and σ2 overlap according to P1

22 This means that the number of executions of σ in the schedule is polynomial in �, ε, and n, and also
that all honest parties will finish the schedule (either terminate normally or abort or time-out) within time
which is polynomial. In particular, due to the non-triviality condition, this requires that all the delays are for
polynomial durations.

Concurrent Composition of Secure Protocols in the Timing Model 461

(a)

((

(b)

((
σ1 σ1

σ2 σ2

P1 P1

P2 P2

Fig. 3. A schematic representation of the two situations when two WIPOKs σ1 and σ2 are said to overlap with
respect to two parties P1 and P2, respectively. The horizontal timelines indicate the progress of the execution.
In (a) the upward pointing bold arrow represents a message in σ1 sent out by P1. In the lower timeline for P2,
the hashed region between the parenthesis indicates when P2 is executing σ2. The vertical dotted line indicates
that while a message in σ1 was sent out by P1, P2 was executing σ2. In (b) the roles of P1 and P2 are reversed.

and P2 then there is a message (of σ1 or of σ2) that was sent while P1 was executing
σ1 and while P2 was executing σ2. Notice that the notion of overlapping is defined with
respect to a pair of parties. This is due to the fact that parties do not necessarily begin
and conclude executions at the same time in an asynchronous network (and so σ1 and
σ2 may not overlap according to some pairs, and may overlap according to others). We
therefore always refer to overlapping according to a specified pair of parties. We are
now ready to define what it means for a schedule to be pairwise-disjoint.

Definition 8 (Non-Trivial Pairwise-Disjoint Scheduling). The schedule output by a
non-trivial scheduling algorithm S is said to be pairwise-disjoint if it has the follow-
ing property: Let sid1 �= sid2 be any identifiers of the same length and assume that
�1 = S(σ, sid1,�, ε) and �2 = S(σ, sid2,�, ε) are run in a network with an ε-drift
preserving adversary, such that both sid1 and sid2 have at least one honest participant
each. Then for any two honest parties P1 and P2 in sessions sid1 and sid2 respectively,
there exists an execution of σ in �2, denoted by σ2, such that, for every execution σ1 in
�1, it holds that σ1 and σ2 do not overlap according to P1 and P2.

Note that if P2 times-out session sid2 before some execution σ ∗ in S(σ, sid1,�, ε) was
initiated, then in particular σ ∗ does not overlap with any execution in S(σ, sid2,�, ε),
according to P1 and P2. This fact will be used in the proof of Theorem 12 in Section 4.

In Section 4 we prove the following theorem which will be used in order to construct
our protocol for securely realizing the FCRS functionality.

Theorem 9. There exists a non-trivial pairwise-disjoint scheduling algorithm for any
protocol σ , any network delay�, any clock-drift ε such that 1 ≤ ε < 3

√
1.5, and any set

of identifiers sid ∈ {0, 1}poly(n). Furthermore, in each execution of σ in the scheduling,
honest parties output time-out if the execution runs for longer than � · rounds(σ) time
units according to the party’s local clock, where rounds(σ) denotes the number of rounds
of communication in an execution of σ .

462 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

Before proceeding, we explain again (but in more detail) why pairwise-disjointness
suffices. In our protocol, we use a pairwise-disjoint scheduling for WIPOKs. Then, at
some stage in our proof of security of the protocol, we focus on a single session sid,
and argue that the simulation (i.e., the extraction from WIPOK proofs) in all sessions
sid′ �= sid can be carried out without rewinding during any WIPOK of session sid. This
can be achieved because the pairwise disjointness property of the schedule guarantees
that for every session sid′, there exists at least one WIPOK in sid′ that does not overlap
with any WIPOK in sid. We can therefore extract from the non-overlapping WIPOK
in sid′ without rewinding any of the WIPOK proofs in sid. Since this is true for all
sessions sid′ �= sid, we are able to simulate without rewinding any WIPOK proof in sid,
as required.

3.5. The Protocol for FCRS

The protocol below refers to a one-way function f and a commitment scheme C . We
denote by C(r; s) a commitment to r using random coins s. For simplicity, we use a non-
interactive commitment scheme. Such schemes are known to exist assuming the existence
of 1–1 one-way functions. Our protocol uses a broadcast primitive, and we assume that
all messages are sent over this channel. We remark that in the case that output delivery is
not guaranteed (as in our model here), broadcast that is secure under concurrent general
composition can be easily implemented in a standard point-to-point network [32].

As was mentioned in Section 3.3, the protocol is based on a natural extension of
the coin-tossing protocol of [35] to the multiparty setting, with the following high-
level differences. First, instead of using just any zero-knowledge proof of knowledge,
we use the zero-knowledge arguments of knowledge of [25] that are constructed from
two witness-indistinguishable proofs of knowledge.23 Second, we use strong proofs
of knowledge, rather than “ordinary” ones, so that if the prover convinces an honest
verifier with non-negligible probability, a witness can be extracted with overwhelming
probability in polynomial time. Third, some of these strong proofs of knowledge are
given according to a pairwise-disjoint scheduling. We now present the protocol.

Protocol ρ (protocol for realizing theFCRS functionality in a general multiparty network,
assuming time bounds � and ε):

• Participating Parties: P1, . . . , Pk (some subset of the parties in the entire network).

• Common Input: the security parameter n, a session identifier sid ∈ {0, 1}m , and
global constants � and ε.

• The Protocol: The protocol proceeds in three phases.

• PHASE ONE:
1. Each party Pi chooses a pair of values wi

1, w
i
2 ∈R {0, 1}n , and computes

vi
1 = f (wi

1), v
i
2 = f (wi

2), where f is a one-way function.

23 We note that looking at our protocol it is not clear that we use the zero-knowledge proof of knowledge
of [25], since the two witness-indistinguishable proofs of knowledge appear in different phases of the protocol,
and moreover, we use the first witness-indistinguishable proof of knowledge for two different zero-knowledge
proofs. Thus, our protocol does not exactly follow the syntax of [25] though the concept is similar.

Concurrent Composition of Secure Protocols in the Timing Model 463

2. Each party Pi proves independently to all other parties that it knows f −1(vi
1)

or f −1(vi
2). Formally, Pi proves that it knows a witness for the relation

Ri
1

def= {((vi
1, v

i
2), w) | vi

1 = f (w) or vi
2 = f (w)}.

The proofs are given according to some arbitrary order; say the party with the
smallest ID proves first, then the party with the second to smallest ID, and so
on.24 Each Pi carries out a proof that has the following properties:
(a) The proof is an α(n)-round witness-indistinguishable strong proof of

knowledge, for some prespecified super-constant function α(·).25 (Hence-
forth, we denote this proof by WISPOK, for short).

(b) The proof is carried out in a parallel manner. That is, Pi sends the first
message of the proof to all other parties. It then waits for the responses
from all the parties, and only then sends the second message to all the
parties, and so on.

(c) The first and the last messages of the proof are sent by the verifier. (This
convention is for convenience.)

We let σ denote such a proof system (i.e., σ is a protocol consisting of k − 1
WISPOKs in which a single party Pi gives a proof in parallel to all other
parties Pj). Each party Pi repeats this proof σ several times, according to any
non-trivial pairwise-disjoint scheduling � = S(σ, sid,�, ε) in which each

execution of σ is timed-out by honest parties if more than τ
def= α(n) · �

units of time pass on their local clocks. (The existence of such a scheduling
is guaranteed in Theorem 9.) Denote by �(i) the schedule in which Pi plays
the prover. Then the protocol works by first running �(1), then �(2), and so
on until�(k) (assuming party P1 has the smallest ID, party P2 has the second
to smallest ID, and so on).

If a party Pi receives a time-out message in any execution of σ in any sched-
ule�(j), then it broadcasts time-out to all the parties, outputs (time-out, sid),
and halts. Any party receiving such a time-out message also outputs
(time-out, sid) and halts.

• PHASE TWO: Each party Pi operates as follows:
1. Party Pi chooses ri ∈R {0, 1}p(n) and broadcasts a commitment ci = C(ri ; si)

to all the parties, where C is a perfectly binding commitment scheme and si is
a random string. Pi waits for the commitments from all other parties to arrive
before proceeding.

2. Party Pi proves in parallel to every other party Pj that it knows either f −1(v
j
1)

or f −1(v
j
2) or a pair (ri , si) such that ci = C(ri ; si), using an α(n)-round

WISPOK. Formally, Pi proves that it knows a witness for the relation

Ri, j
2

def={((v j
1 , v

j
2 , ci),(w, r, s)) |v j

1= f (w) or v j
2= f (w) or ci=C(r; s)}.

24 Note that by requiring the proofs to be given sequentially we automatically obtain “independence”
between proofs that belong to the same session.

25 Recall that such proofs are known to exist for any super-constant function α(·).

464 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

TIME-OUT MECHANISM: For every proof that party Pi participated in (either
as a prover or as a verifier), it checks that no more than τ = α(n) · � local
time units have passed from the time that the proof began until the time that
it ended. If more time passed, then Pi broadcasts time-out to all the parties,
outputs (time-out, sid) and halts the execution. Any party receiving such a
time-out message also outputs (time-out, sid) and halts the execution.

3. Once Party Pi finished its proof and verified the proofs of all other parties,
it broadcasts a Phase2over message to all other parties. It then waits for the
same message to arrive from all other parties before proceeding. After this it
will never output (time-out, sid).

We remark that the proofs in this phase can be scheduled in any way.

• DELAY MECHANISM: Before continuing to Phase 3, each party Pi waits τε local
time units.

• PHASE THREE: Party Pi broadcasts ri to all other parties (without decommitting)
and, using a (regular, not necessarily a strong) 3-round WIPOK, proves in parallel
to every other party Pj that it either knows a preimage for one of v j

1 , v
j
2 or that it

knows s such that ci = C(ri ; s). Formally, Pi proves in parallel that it knows a
witness for the relation

Ri, j
3

def= {((v j
1 , v

j
2 , ci , ri), (w, s)) | v j

1 = f (w) or v j
2 = f (w) or ci = C(ri ; s)}.

We remark that the proofs in this phase can be scheduled in any way.

• Each party Pi defines R = r1⊕r2⊕ · · ·⊕rk , where rj is the string it received in
the previous step from party Pj , and ri is the string that it broadcast to all other
parties.26

• Output: Each party outputs (sid, R).

This completes the description of the protocol.

Conventions. If an honest party receives a message that does not have a valid format
or if it rejects a proof that it verifies, then the party broadcasts an abort message to all
other parties and halts the execution.27 Any party receiving such an abort message also
halts the execution. We also assume that all messages are sent together with the session
identifier sid, which is part of the common input. This enables the correct assignment of
messages to their intended sessions. We stress that the security of the protocol does not
rely on this assignment being correct. Rather, this mechanism just ensures successful
termination when honest parties interact.

3.6. Proof of Security

We now show that protocol ρ securely realizes theFCRS functionality in the timing model,
even when run many times concurrently with an arbitrary other protocol π , as long as

26 Note that since all the ri ’s were broadcast it must be the case that all the honest parties have the same R.
27 Recall that when a party times-out it behaves differently. Namely, it does not send an abort message, but

rather sends a time-out message.

Concurrent Composition of Secure Protocols in the Timing Model 465

all the messages in π are delayed by τε local time units, where τ = α(n) · �.28 In
other words, protocol ρ securely realizes FCRS under concurrent general composition
with τε-delays in the timing model with ε-drift. As we have seen in Section 3.2, this
(along with the non-triviality condition) suffices for proving Theorem 6.

Theorem 10. Let � and ε be fixed constants, such that 1 ≤ ε <
3
√

1.5, and let
τ = α(n)·�. Then, assuming the existence of 1–1 one-way functions, protocol ρ securely
realizes theFCRS functionality under concurrent general composition with τε-delays (as
defined in Definition 1) in the timing model with ε-drift, and in the presence of static
malicious adversaries. Furthermore, protocol ρ is non-trivial under timing assumptions
(�, ε).

Proof. We begin by proving that protocol ρ is non-trivial. In order to see this, notice
that in ρ an honest party outputs a time-out message only if a WISPOK takes more
than τ = α(n) · � local time units or if the (pairwise-disjoint) schedule instructs it to
time-out. Since the WISPOKs consist of α(n) rounds, if the latency of the network is
at most � (according to all local clocks) then each WISPOK will conclude within at
most τ = α(n) · � local time units (recall that we assume that local computation is
instantaneous). This together with the fact that the schedule used in ρ is non-trivial,
implies that ρ is non-trivial.

We now proceed to prove the security of protocol ρ. Let� and ε be any fixed constants
such that 1 ≤ ε < 3

√
1.5. Letπτε be an arbitrary τε-delayed multiparty protocol that may

contain ideal calls to theFCRS functionality. LetA be any static non-uniform probabilistic
polynomial-time ε-drift preserving adversary that runs protocol πρ in the timing model.
We begin by describing the hybrid-model simulator S that runs π in the FCRS-hybrid
model (in a model without time).

The simulator S simulates the real-model adversary A internally. The aim of S is to
force the output of the coin-tossing protocol ρ in any given session to equal the CRS
obtained from the FCRS functionality.

In order to force a coin-tossing session to output some given random string RCRS, in
each session S will do the following: for every corrupted party Pj , it will extract from
A both a value wj such that f (wj) = v

j
1 or f (wj) = v

j
2 , and a value rj , which is

the decommitment of cj (sent by Pj in the beginning of Phase 2). These values will be
extracted before entering Phase 3 of this session. Then Phase 3 will be simulated in a
“straight-line” manner: S will simulate each honest party Pi sending a random ri such
that RCRS =

⊕k
l=1 rl , and proving to each party Pj that ri was committed to (even though

it was not) using the previously extracted witness wj .
Thus, the simulation byS consists of an extraction mode and a straight-line simulation

mode. “Rewinding” takes place only when S is in the extraction mode (the rest of the
simulation is “straight-line”). In the extraction mode S rewinds A internally, without
rewinding the simulated protocol. That is, S pauses the simulation, and internally creates
a copy of its simulated world. Then the extraction is carried out in a look-ahead manner.
That is, S (forward) simulates the messages that the honest parties in ρ will send to A

28 Recall that α(n) is the number of rounds in the WISPOKs of protocol ρ.

466 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

after the paused point, and then rewinds this simulation. The time constraints ensure that
messages from π (that are sent externally by S) never have to be sent while S is in the
extraction mode, where rewinding takes place. We now formally describe S.

The simulatorS. S is a “hybrid-world” adversary that interacts with the parties running
protocol π in the FCRS-hybrid model (without time). The aim of S is to create the same
effect in the FCRS-hybrid model, as the real-model adversary A does in a real execution
of πρ (in a model with time).

As was previously mentioned, S’s operations consist of two modes of operation:
straight-line simulation mode and extraction mode. S starts and ends in the straight-
line simulation mode, but frequently leaves it and enters the extraction mode. In the
straight-line mode, S interacts with the honest parties (in the FCRS-hybrid model), while
updating internally simulated states of the adversaryA and of the honest parties running
the program for the protocol ρ. In the extraction mode, these simulated states are frozen,
while S applies an extraction subroutine. The output of the extraction subroutine will be
needed for continuing the straight-line mode.

We denote by P sid
i the simulated ρ program of an honest party Pi for a session sid,

which S uses in the straight-line simulation mode. The simulation enters the extraction
mode every time that P sid

i is about to take part as a verifier in one of the WISPOKs
given by a corrupted player in the protocol. In this extraction mode S calls the extraction
subroutine. This subroutine will try to find the witness used by the corrupted prover in that
WISPOK. The straight-line simulation continues when the extraction subroutine returns.

We proceed to define the simulator by first describing the straight-line simulation
mode and then describing the extraction subroutine.

STRAIGHT-LINE MODE. S internally runsA, and, for each honest party, S simulates the
various tapes thatA expects to have access to (namely, the communication tapes and the
clock tape). It also maintains simulated states (i.e., the work tape) of the ρ programs of
the honest parties. As was mentioned above, we denote by P sid

i the program simulated
by S, corresponding to the ρ program of an honest party Pi in session sid. The simulated
programs P sid

i communicate directly with A.
In addition, S needs to let the π program of the external honest parties communicate

with A (here we mean the real parties with whom S interacts in the hybrid model). For
π messages fromA to a party Pi , this is done simply by sending the messages out to Pi

(i.e., they are copied onto Pi ’s incoming message tape). However, upon receiving a π
message from an external honest party Pi , simulator S needs to simulate the delay of Pi

before forwarding it to A (because in the hybrid world π messages are sent out without
any delay, in contrast to the real world). Therefore, S waits τε time units according
to Pi ’s simulated local clock before sending the received π -message to A. Finally, S
generates the same input–output as A. More formally:

• Whenever a session sid with parties Pi1 , . . . , Pik is begun, S sends (crsgen, sid,
{Pi1 , . . . , Pik }) to the FCRS functionality.29 We assume that at least one party in
{Pi1 , . . . , Pik } is honest, since the case that all parties are corrupted is trivial.

29 Actually, this crsgen message to the functionality may have been sent by one of the honest parties
participating in session sid. This is inconsequential.

Concurrent Composition of Secure Protocols in the Timing Model 467

• S initiates the program P sid
i corresponding to each honest participant Pi .

• If at any point P sid
i outputs (time-out, sid), S sends (time-out, sid) to the FCRS

functionality and delivers the message (time-out, sid) from the FCRS functionality
to Pi .
• WheneverA sends a π message to some party Pi , S sends the π message externally

to party Pi .
• Whenever S (externally) receives a π message from some honest party Pi , it stores

the message in an internal delay buffer. Then, after τε time units according to
internally simulated local clock, it forwards the π message to A.
• For all except one honest party, P sid

i runs exactly the program specified by the
protocol ρ. We denote the index of this one chosen honest party by H(sid); when
sid is clear from the context we write H instead of H(sid).30 The program P sid

H(sid)
is identical to ρ in Phases 1 and 2, and differs from ρ only in Phase 3. We shall
describe the differences shortly.
• In Phases 1 and 2, when P sid

H receives the first message of a WISPOK in which it
plays verifier and a corrupted party plays prover,S applies the extraction subroutine
(to be defined later) to that WISPOK. The output of the extraction subroutine is
recorded for later reference. (Note that extraction is only carried out when P sid

H
plays the verifier.)
• At the point thatP sid

H enters Phase 3 of the protocol, S carries out the following two
checks:
1. S checks the output of the extraction subroutine applied to each of the Phase 1

and Phase 2 WISPOKs given to P sid
H by a corrupted party. If in any of them, the

extraction subroutine failed to extract a valid witness for the statement of that
WISPOK, then S outputs fail1 and halts.

2. Let (vH
1 , v

H
2) be the first message that P sid

H sends in session sid. Recall that w
such that f (w) ∈ {vH

1 , v
H
2 } is a valid witness in all of the Phase 2 WISPOKs

that P sid
H verifies. If the extraction subroutine, applied to any of the Phase 2

WISPOKs given to P sid
H by a corrupted party outputs such aw as a witness, then

S outputs fail2 and halts.
Note that if S did not output fail1 then for every corrupted party Pj , the extraction
subroutine applied to each of the Phase 1 WISPOKs given by Pj must have returned
w j such that f (w j) ∈ {v j

1 , v
j
2 }. Furthermore, for every honest party Pi , S can look

up such a wi from P sid
i (because S runs the code of Pi internally).

Similarly, if S did not output fail2 either, then for every corrupted party Pj ,
the extraction subroutine, applied to each of the Phase 2 WISPOKs given by Pj ,
must have produced the witness (rj , sj) such that cj = C(rj ; sj), where cj is the
commitment sent by Pj in Phase 2 of session sid (recall that the only valid witnesses
for this WISPOK are either the above mentioned witness (rj , sj) or w such that
f (w) ∈ {vH

1 , v
H
2 }, where extraction of the latter witness results in fail2). In addition,

for every honest party Pi , S can look up ri from P sid
i (again, because S runs

P sid
i).

30 This honest party can be arbitrarily chosen—say, the one with the “smallest” identity among all honest
participants.

468 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

Thus, if the above two checks passed (namely, S did not output fail1 or fail2) then
S has obtained values wi and ri , for all participants Pi . (As we will see, for all
i �= H, the values wi and ri will be needed by S to continue the simulation.)
• If the above two checks passed then S acts as follows:

1. S sends (sid, compute) to the FCRS functionality, and receives (sid, RCRS) in
response.31 Then using the ri values as given above, S computes

r = RCRS⊕
(⊕

i �=H

ri

)
. (3)

2. S hands r (from (3)) and {wi }i �=H to P sid
H .

• P sid
H proceeds with the simulation of Phase 3. (Notice that its instructions here differ

from the program specified by ρ for the honest parties.)
1. In the beginning of Phase 3, P sid

H does not send the value rH that it committed
to in Phase 2, as instructed by protocol ρ. Rather, it sends the value r given to it
by S.

2. After sending r , P sid
H proves to each party Pj (in the WIPOK of Phase 3) that

this “fake” value r is the value that it committed to in Phase 2. This is done using
the alternative witness w j given to it by S.32

• If there exists a (corrupted) party Pj that broadcasted r ′j �= rj in the beginning of
Phase 3 and P sid

H accepts its Phase 3 WIPOK, then S outputs fail3.
• For every honest party Pi , if P sid

i outputs (sid, R) then S delivers the message
(sid, RCRS) from FCRS to Pi .33

This completes the description of the simulator except for the extraction subroutine.

THE EXTRACTION SUBROUTINE. Recall that in Phases 1 and 2, when P sid
H receives the

first message of a WISPOK in which it plays verifier and a corrupted party Pj plays
prover, S calls the extraction subroutine. (We denote such a WISPOK by WISPOKsid

j .)
The extraction subroutine will try to extract a witness for the statement of WISPOKsid

j by
constructing a stand-alone prover Qsid

j from A, and then applying the strong proof of
knowledge extractor to Qsid

j . The stand-alone prover Qsid
j is defined as follows.

31 At this point of the protocol it is guaranteed that no honest party has or will output (time-out, sid),
because they must all have sent Phase2over messages (since Psid

H entered Phase 3). Hence it is possible for

S to send a (sid, compute) message to FCRS, thereby receiving back (sid, RCRS).
32 Its ability to use the “fake” value r = RCRS⊕(

⊕
i �=Hri), rather than the value that it committed to, is

exactly what allows the output of this session to equal RCRS. Note that in order to use this “fake” value r it
must know all the alternative witnesses {wi }i �=H, which is why S must apply the extraction subroutine to the
WISPOKs of Phase 1. The reasonS must apply the extraction subroutine to the WISPOKs of Phase 2 is in order
to obtain all the values {ri }i �=H, which are needed in order to determine the “fake” value r = RCRS⊕(

⊕
i �=Hri).

33 Notice that if Psid
i produced an output (sid, R) then it must be the case that R = RCRS. If R �= RCRS

then there exists a j such that rj �= r ′j (follows from the fact that R = r ′1⊕· · ·⊕ r ′k and RCRS = r1⊕· · ·⊕ rk).

In this case, either S outputs fail3 or Psid
H does not accept the Phase 3 WIPOK of Pj and thus will halt the

execution. In both cases Psid
i would not produce an output.

Concurrent Composition of Secure Protocols in the Timing Model 469

Qsid
j is a stand-alone (cheating) prover who proves a single strong proof of knowledge

to an external verifier. Qsid
j simulates A exactly like S does, continuing from the point

after the extraction subroutine is invoked, except for the following differences:

• InS the programP sid
H plays the verifier of the WISPOK, i.e., it receives the WISPOK

messages from a prover Pj , and responds to them as a verifier. Instead, in Qsid
j the

program Psid
H relays out the incoming WISPOK messages from Pj to an exter-

nal verifier. When it receives a response from the external verifier, it forwards it
internally to Pj as its own response.
• Since Qsid

j is a stand-alone prover, unlike S, it cannot interact with the honest
parties running the protocol π in the hybrid world. So all messages generated by S
for these parties are ignored. Furthermore, there are no incoming messages from the
π protocol. However, the messages that arrived earlier and were stored internally
in the delaying buffers of S will be used just like S did originally. (As we will see
later, this suffices and no “new” π messages are needed.)

Note also that since Qsid
j is a stand-alone prover, it cannot interact with the

different instances ofFCRS. However, these can all be perfectly simulated internally
by Qsid

j .
• Qsid

j does not invoke the extraction subroutine that S invokes. Instead, when the
extraction subroutine needs to be called, it is just assumed to return⊥ (this ensures
that Qsid

j is well defined).
• Qsid

j halts as soon as it receives an accept or reject message from the outside verifier.
Also, if P sid

H ’s local clock reaches a time where the original P sid
H would have timed-

out, then Qsid
j halts.

The key point to notice is that Qsid
j is a stand-alone adversary who proves a single

strong proof of knowledge to an external verifier. The extraction subroutine applies the
strong knowledge extractor K to the proverQsid

j (recall that ifQsid
j convinces an honest

verifier V in the proof with probability greater than µ(n) for some negligible function
µ, then K obtains a witness with probability at least 1− µ(n)).

This completes the description of the extraction subroutine. Note that the extraction
subroutine is invoked on all the Phase 1 and Phase 2 WISPOKs given to P sid

H by any
corrupted party Pj in any session sid (with at least one honest player). This ensures
that if the WISPOKs convince P sid

H with non-negligible probability, then the simulator
will obtain the corresponding witnesses with overwhelming probability, by applying the
extraction subroutine. (Of course, this is the case assuming thatQsid

j convinces the verifier
with essentially the same probability that P sid

H is convinced. This will be proven below.)

Proof of the simulation. First note that S runs in strict polynomial time if A runs in
strict polynomial time (because the knowledge extractor of a strong proof of knowledge
runs in strict polynomial time, and the only rewinding carried out by S is in applying
the knowledge extractor). We now prove that the output distribution of S and the honest
parties running π in the FCRS-hybrid model is computationally indistinguishable from
the output distribution of an ε-drift preserving adversary A and the honest parties in a
real execution of protocol πρ in the timing model. In order to prove this, we first show
that S outputs a fail message with negligible probability. Given this, we then introduce

470 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

hybrid experiments which bridge the difference between the FCRS-hybrid execution and
the real execution, to prove the claimed indistinguishability.

We now prove that S outputs a fail message with at most negligible probability. Recall
that there are three types of failures: fail1, fail2, and fail3. Intuitively, fail1 occurs if there
exists a WISPOK for which the extraction subroutine fails to output a corresponding
witness, and yet Psid

H accepts the WISPOK. fail2 occurs if the extraction subroutine,
applied to any of the Phase 2 WISPOKs, outputs the “wrong witness”; i.e., instead of
extracting the committed value rj together with the corresponding randomness sj (such
that cj = C(rj , sj)), it somehow extracts a witness w such that f (w) ∈ {vH

1 , v
H
2 }. fail3

occurs if there exists a (corrupted) party Pj that in the beginning of Phase 3 sends a value
r ′j which is different from the value rj extracted in the extraction subroutine, and yetP sid

H
accepts the WIPOK in Phase 3.

We show that each of these failures occurs with negligible probability.

S OUTPUTS fail1 WITH NEGLIGIBLE PROBABILITY. Recall that S outputs fail1 if there
exists a session sid such that P sid

H enters Phase 3, and there exists a corrupted party Pj

such that for one of its (Phase 1 or Phase 2) WISPOKs given to P sid
H in this session, the

extraction subroutine failed to extract a witness. Note that it must be the case that P sid
H

has accepted this WISPOK, since otherwise it would have never reached Phase 3. Thus,
the occurrence of fail1 implies that there exists a session sid and a corrupted party Pj

such that the extraction subroutine failed to extract a witness, and yet P sid
H accepted the

WISPOK. In other words, the strong knowledge extractor K failed to obtain a witness
from the stand-alone proverQsid

j , yet later in the simulation, S accepts that proof fromA.
Intuitively, this should not happen because K has the property that if a prover convinces
the honest verifier with non-negligible probability, then it successfully extracts with
overwhelming probability. However, this is not immediate because K attempts to extract
from the stand-alone adversary Qsid

j , whereas P sid
H verifies the proof from the original

adversary A. Thus, the essence here is to show that Qsid
j convinces an honest verifier

with the same probability that A convinces P sid
H .

Claim 11. For any corrupted party Pj participating in session sid, let WISPOK
sid,�
j de-

note the �th WISPOK of Pj in this session. Then the stand-alone proverQsid
j , constructed

by the extractor in the beginning of WISPOK
sid,�
j , convinces an honest verifier with exactly

the same probability as P sid
H accepts WISPOK

sid,�
j in the straight-line simulation by S.

Proof. The main observation involved is that after WISPOK
sid,�
j begins, the fact that no

further extraction procedures are run and no new π -messages are received, makes no
difference in the straight-line mode, until after the WISPOK is finished. This is ensured
by the time-out for the WISPOK, by the fact that the output of the extraction subroutines
in a session are not used until the session enters Phase 3 (together with the fact that a
delay occurs before entering Phase 3), and by the assumption thatπ is a delayed protocol.
We elaborate below.

First we construct a simulator S ′ which is the same as S except that it does not
invoke the extraction subroutine after the point at which WISPOK

sid,�
j has begun. Thus,

Concurrent Composition of Secure Protocols in the Timing Model 471

if a WISPOK, denoted WISPOK
sid′,�′
j ′ , of Phase 1 or Phase 2 in a session sid′ starts after

the point at which WISPOK
sid,�
j has begun, the simulator S ′ will not run the extraction

subroutine for WISPOK
sid′,�′
j ′ , whereas S would. Now, recall that S does not use the output

that this extraction subroutine returns until session sid′ enters Phase 3. We claim that the
delay between Phase 2 and Phase 3 in the protocol ensures that S will enter Phase 3 in
session sid′ only after WISPOK

sid,�
j has already concluded. This follows from the following

facts:

1. When WISPOK
sid,�
j began, session sid′ did not yet finish Phase 2 (because session

sid′ must still at least run WISPOK
sid′,�′
j ′).

2. WISPOK
sid,�
j is timed-out by P sid

H if it does not conclude within τ local time units.
By the assumption on the bounded clock drifts, this is at most τε local time units
according to P sid′

H′ ’s clock.

3. P sid′
H′ waits at least τε local time units between Phases 2 and 3.

ThusS andS ′ identically simulate the interaction betweenP sid
H andA, until WISPOK

sid,�
j

concludes. Therefore, the probability that WISPOK
sid,�
j is accepted byP sid

H is equal in both
cases.

Next we modify S ′ to obtain a stand-alone machine S ′′ which ignores all communi-
cation with the honest parties (in the π protocol) after the point at which WISPOK

sid,�
j has

begun. Note that if S ′ receives a π -message from a party Pi , it will be delivered to A
only after a delay of τε time units according to Pi ’s local clock. The restriction on the
drifts of the clocks ensures that this delay is at least τ time units according to the local
clock of P sid

H . So, if S ′ received this message after WISPOK
sid,�
j has begun, it will not be

used until P sid
H concludes WISPOK

sid,�
j . This is because P sid

H will conclude the WISPOK

(by timing-out if necessary) within τ local time units after WISPOK
sid,�
j has begun (which

is at most τε on Pi ’s local clock).34 Hence the probability that P sid
H accepts WISPOK

sid,�
j

in S ′′ is equal to that in S ′.
Finally we note that the system consisting of the stand-alone prover Qsid

j interacting
with an external honest verifier, is the same system as emulated by the stand-alone
machine S ′′. The role of the external verifier is played honestly by P sid

H in S ′′. Thus the
probability that Qsid

j can convince an honest verifier is exactly equal to the probability

that P sid
H will accept WISPOK

sid,�
j in the execution of S ′′ or S.

Now, let µ(n) be the negligible error function of the strong proof of knowledge. That
is, if a prover convinces an honest verifier with probability greater than µ(n), then K
successfully extracts with probability greater than 1 − µ(n). We define three events:
“K-fail” if K fails to extract a witness from Qsid

j , “S-pass” if P sid
H accepts WISPOK

sid,�
j ,

and “good-proof” if the probability that an honest verifier accepts the proof given by
the stand-alone prover Qsid

j is at least µ(n). Then the probability that S outputs fail1

34 Notice that we are using here the fact that the the first and last message of WISPOK
sid,�
j are sent by the

verifier, since we assume that once WISPOK
sid,�
j begins, it also begins according to the verifier Psid

H .

472 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

corresponding to WISPOK
sid,�
j is bounded by

Pr[K -fail ∧ S-pass] = Pr[K -fail ∧ S-pass ∧ good-proof]

+Pr[K -fail ∧ S-pass ∧ ¬good-proof]

≤ Pr[K -fail|good-proof]Pr[good-proof]

+Pr[S-pass|¬good-proof]Pr[¬good-proof]

≤ µ(n)Pr[good-proof]+ µ(n)Pr[¬good-proof]

= µ(n). (4)

S OUTPUTS fail2 OR fail3 WITH NEGLIGIBLE PROBABILITY. Recall that S outputs fail2 if
the extraction subroutine applied to a Phase 2 WISPOK of some session sid outputs w
such that f (w) ∈ {vH(sid)

1 , v
H(sid)
2 }. It outputs fail3 if in Phase 3 of some session sid there

exists a corrupted party Pj that does the following: (a) it sends a value r ′j different from
the value rj extracted from the extraction subroutine (applied to the Phase 2 WISPOK
given by Pj in session sid), and (b) it succeeds in proving that it either knows w such

that f (w) ∈ {vH(sid)
1 , v

H(sid)
2 } or that r ′j is indeed the value it committed to in Phase 2.

However, since the second half of (b) is false, the soundness of the WIPOK would require
that the first half of (b) be true, namely that it knows w.

Thus the cause for either of these failures (fail2 or fail3) is essentially that the adversary
knows w such that f (w) ∈ {vH(sid)

1 , v
H(sid)
2 }. (Note that these (vH(sid)

1 , v
H(sid)
2) values are

chosen by an honest party.) Our proof that fail2 or fail3 is unlikely will use the argument
that it is unlikely that the adversary can obtain such a w. Intuitively, this is due to the
fact that w is only used in proving witness-indistinguishable proofs, which are also
witness hiding. However, the actual proof is more complicated due to the fact that the
adversary does not have to guess such aw explicitly, but merely succeed in giving a proof
of knowledge of w, when concurrently interacting with the honest parties in multiple
sessions. In order to prove that this is not feasible, we shall show how to construct a
stand-alone machine M which interacts with an external machine E . The machine E
sends a pair (v1, v2), like in Phase 1 of our protocol, followed by many WISPOKs to M ,
to prove that it knows w such that f (w) ∈ {v1, v2}. Our construction of M will be such
that if S outputs fail2 or fail3 with non-negligible probability, then M can also output
w at the end of this interaction with non-negligible probability. Since f is a one-way
function and the proofs are witness indistinguishable (and hence witness hiding), this
will lead to a contradiction. We note that the formal proof relies heavily on the fact that
the scheduling is pairwise disjoint.

M is constructed in two steps. First we describe a modified simulator T , and then,
depending on whether it is fail2 or fail3 that occurs with non-negligible probability, we
show how to build M from T .

The main feature of T is that, in a randomly chosen session sid∗, it interacts with
the above mentioned external prover E (instead of with the internally simulated honest
protocol programPsid∗

H). We shall ensure that ifS outputs fail2 or fail3 with non-negligible
probability, then so does T .

Concurrent Composition of Secure Protocols in the Timing Model 473

OVERVIEW OF T . T emulates part of the hybrid system consisting of FCRS and S, but
with the emulated S modified as follows: for a randomly chosen session sid∗, the simu-
lated program P sid∗

H is not entirely run internally; instead part of the Phase 1 protocol is
carried out by an external program E , with which T interacts. The extraction subroutines
in S are modified in such a way that they do not use the internal state of E (and in
particular they do not “rewind” E). These modifications will be such that T outputs fail2
or fail3 with non-negligible probability if S did so in the original hybrid system. The
proof of this fact crucially depends on the way Phase 1 WISPOKs are scheduled; we use
the fact that the scheduling is pairwise disjoint to argue that even without rewinding E ,
the extraction procedure can still be carried out in T .

OVERVIEW OF M . M will runT described above, as well as the rest of the hybrid system
(namely, the honest parties running the protocol π). M does not include E mentioned
above. Instead, it interacts with E . Furthermore, M attempts to compute the witness w
while interacting with E , as mentioned earlier. If T outputs fail2, the witness should have
been extracted by the extractor in T . Thus, M can output this witness. If T outputs
fail3, then M will construct a stand-alone prover for the Phase 3 WIPOK (corresponding
to which T outputs fail3) and use an extractor on this prover to obtain w (because, as
mentioned earlier, in this casew will be the only valid witness for the WIPOK). In either
case M will be able to output w with non-negligible probability.

CONTRADICTION GIVEN M . Notice that M , which interacts with E as above, can output
w with at most negligible probability. This is due to the following two observations:

1. Given the pair (v1, v2) which is computed by E (by choosing w1, w2 at random
and setting vi = f (wi)), it is infeasible for M to find w such that f (w) ∈ {v1, v2}
(this follows from the fact that f is a one-way function).

2. The WISPOKs that E provides to M are witness hiding [26] (this follows from the
fact that the proofs are witness indistinguishable with independent witnesses; see
[27] for further details), and thus do not give M any non-negligible advantage in
guessing w.

Thus, in order to prove that S has negligible probability of outputting fail2 or fail3, it
suffices to show that if S outputs fail2 or fail3 with non-negligible probability, then M ,
which interacts with E as above, outputs w with non-negligible probability.

It remains only to construct M as claimed, which in turn is built from T .

CONSTRUCTION OF T . First we present the details of the construction of T , as well as
the proof that it outputs fail2 or fail3 with non-negligible probability if S does so. The
construction is carried out through a series of modifications to S. The goal is to bring
the simulator to a state where it does not need to rewind the Phase 1 WISPOKs of P sid∗

H
(step 6). This will enable us to safely replace this part of P sid∗

H by the external machine
E (step 7). In order to eliminate the rewinding of the Phase 1 WISPOKs of P sid∗

H , we
modify S so that rather than running the extraction subroutine on all Phase 2 WISPOKs,
it runs it only on the Phase 2 WISPOKs of session sid∗ (step 5). Then we further modify
S so that, rather than running the extraction subroutine on all the Phase 1 WISPOKs, it

474 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

runs it on a single Phase 1 WISPOK in each session; namely, the one which is pairwise
disjoint to (i.e., does not overlap with) any of the Phase 1 WISPOKs ofP sid∗

H . (This point
of the proof is exactly where the pairwise disjointness comes in.)

Formally, the construction of T is carried out through a series of seven modifications
to S. After each modification we show that if the probability of outputting fail2 or fail3 is
non-negligible in the previous step, it continues to be so in this step too. The simulator
in step 7 corresponds to T . We now begin with the modifications:

1. First modify S so that it never outputs fail1, and does not check if the fail1 condition
holds. We denote the modified simulator byS1. SinceS outputs fail1 with negligible
probability, it follows that S1 and S are statistically close, and in particular, the
probability with which they output fail2 and fail3 is the same up to a negligible
factor.

2. Modify S1 to obtain a new simulator S2 that behaves similarly to S1 with the
following differences: Instead of accessing an external FCRS functionality, it in-
ternally implements it. (Thus the honest parties obtain their outputs from FCRS

implemented by S2.) Furthermore, in Phase 3 of each session sid, instead of first
drawing a random RCRS (on behalf of FCRS) and then defining r =⊕i �=Hri⊕RCRS,
it first draws a random r and defines RCRS =

⊕
i �=Hri⊕r . (See (3); recall that ri

is the value that party Pi committed to in the beginning of Phase 2, and if Pi is
corrupted then ri is obtained by applying the extraction subroutine to the Phase 2
WISPOK given by Pi .) Note that the output distributions of S1 and S2 are identical,
and in particular the probability with which S1 and S2 output fail2 and fail3 is the
same.

3. Next we observe that the rj values extracted from the Phase 2 WISPOKs are used
twice by the simulator S2:
(a) To check the fail3 condition.
(b) To compute RCRS, which is needed when someP sid

i produces an output (sid,R).
In this case, FCRS (implemented by the simulator) sends RCRS to Pi .

We claim that the second usage of the rj values is not essential. In order to see
this, we modify S2 so that instead of computing RCRS = r1 ⊕ · · · ⊕ rk and sending
it to Pi (thereby using the rj values), it computes R′ = r ′1 ⊕ · · · ⊕ r ′k and sends
R′ to Pi .35 As was pointed out in footnote 33, if RCRS �= R′ then it must be the
case that either S outputs fail3 or P sid

H rejects one of the Phase 3 WIPOKs that it
verifies, both of which result in Pi not receiving any output. Thus if Pi does receive
an output it must be the case that RCRS = R′. Therefore this modification does
not change anything in the system, except to make it explicit that the extracted
values rj are used only for determining if fail3 occurs. We denote the new simulator
by S3.

4. We next define S4 which behaves identically to S3 except for the following: S4

chooses a random session and outputs fail2 or fail3 only if it happens in the chosen
session. (In other sessions if S3 would have output fail2 or fail3 and halted, S4 does
not even check for the failure condition and so might continue executing.) Note

35 Recall that r ′j is the (supposedly committed) value sent by party Pj at the beginning of Phase 3 of this

session, and note that (sid,R′) is the output of Psid
H in this session.

Concurrent Composition of Secure Protocols in the Timing Model 475

that there are only polynomially many sessions possible (as the adversary and the
polynomially many parties are all assumed to be strict probabilistic polynomial-
time machines). Hence if S3 outputs fail2 or fail3 with non-negligible probability, so
does S4. (The reason that this holds is that with probability 1/poly, the first session
in which fail2 or fail3 occurs will be chosen, and the simulation until that point is
identical.)

We denote by Ssid∗
4 the resulting simulator when S4 picks a session with ses-

sion identifier sid∗ as its random choice. All the simulators defined below also
choose a random session in the beginning. We use similar notation to denote
them.

5. Ssid∗
5 is the same as Ssid∗

4 with the following difference. Ssid∗
5 does not run the

Phase 2 extraction subroutines for any session except sid∗. (The Phase 1 extraction
subroutines are run for all sessions.) Note that Ssid∗

4 does not use the extracted
values from Phase 2 in any other session except sid∗. This is because it neither
calculates RCRS nor checks the fail2 and fail3 conditions in those sessions. Thus
Ssid∗

5 and Ssid∗
4 output fail2/fail3 with the same probability.

6. Ssid∗
6 is designed not to rewind P sid∗

H (so that in the next step we can replace the
internally simulated P sid∗

H by an external machine E).
Recall that in Ssid∗

5, for each session sid and for each Phase 1 WISPOK
WISPOK

sid,�
j (1 ≤ � ≤ m + 2) proven by a corrupt party Pj to the honest veri-

fier P sid
H , the extraction subroutine builds a stand-alone prover Qsid,�

j (which we

earlier abbreviated as Qsid
j). In Ssid∗

6 this stand-alone prover is modified so that

it aborts the proof if, during its internally simulated execution, P sid∗
H sends a mes-

sage (as the prover) in a Phase 1 WISPOK in session sid∗.36 (This depends on
the adversarial scheduling of the sessions sid and sid∗.) We denote this modified
stand-alone prover by Qsid,�

j\H(sid∗). Other than this replacement Ssid∗
6 is identical to

Ssid∗
5.

We need to argue that even with this replacement the probability of Ssid∗
6 out-

putting fail2 or fail3 does not significantly change. For this, it suffices to prove that
for every session sid, if Phase 1 of session sid is successfully concluded (in the
straight-line mode), then for every corrupted party Pj in session sid, the extractor
(for Ssid∗

6) will succeed in obtaining a witness from one of the Phase 1 WISPOKs
proven by Pj in session sid with overwhelming probability. Intuitively, this fol-
lows from the pairwise disjoint scheduling of the Phase 1 WISPOKs, as explained
below.

If Phase 1 of a session sid is successfully concluded (in the straight-line mode),
then the fact that the scheduling of the Phase 1 WISPOKs is pairwise disjoint
guarantees that there exists a WISPOK proven by Pj in session sid that does not
overlap, according to Psid

H and P sid∗
H , with any of the Phase 1 WISPOKs given

by Psid∗
H in session sid∗.37 Intuitively, the extractor (for Ssid∗

6) should succeed

36 Note that in Ssid∗
5 the only Phase 2 WISPOKs which are extracted from are those of session sid∗, which

occur strictly after the Phase 1 of sid∗. Hence these extractions never rewind the Phase 1 proofs given byPsid∗
H ,

and need not be modified.
37 Recall that non-overlapping between two sessions sid and sid∗ is with respect to two honest parties, one

476 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

in extracting a witness from this “disjoint” WISPOK with overwhelming prob-
ability. However, this is not immediate because, similarly to the proof that fail1
occurs only with negligible probability, the extractor does not extract from the
real (cheating) prover, but rather from the corresponding stand-alone prover. The
fact that in the straight-line mode, say WISPOK

sid,�
j was accepting and was non-

overlapping with the proofs given by Psid∗
H , does not necessarily imply that this

will remain so in the look-ahead run in the extraction mode (since it may be that
in the straight-line mode this happened by chance). In other words, it is still possi-
ble that, with significant probability, an honest verifier will reject the proof given
by Qsid,�

j\H(sid∗), or Qsid,�
j\H(sid∗) will abort because of P sid∗

H sending a message. Nev-

ertheless, if WISPOK
sid,�
j was accepting and non-overlapping, we can expect that,

with non-negligible probability, this will remain the case when the real (cheating)
prover is replaced with the stand-alone prover. Thus, the knowledge extractor will
be able to extract the witness with overwhelming probability, even though it is
not allowed to rewind the (now external) prover P sid∗

H . A more formal argument
follows.

Consider any session sid and any corrupted party Pj in session sid. Similar to
the proof that fail1 occurs with only negligible probability, we define the following
events:

• K -fail� is the event that K fails to extract a witness from Qsid,�
j\H(sid∗).

• S-pass� is the event that P sid
H accepts WISPOK

sid,�
j .

• disjoint� is the event that WISPOK
sid,�
j does not overlap with any WISPOK

given by P sid∗
H , according to P sid

H and P sid∗
H .

Remark. Notice that if event disjoint� holds then while Pj is proving WISPOK
sid,�
j ,

partyPsid∗
H does not send any message (as a prover) in any Phase 1 WISPOK.38

• good-proof� is the event that the probability that an honest verifier accepts the
proof given by the stand-alone prover Qsid,�

j\H(sid∗) is at least µ(n) (where µ(n)
is a negligible function such that if a prover convinces an honest verifier with
probability greater than µ(n), then K successfully extracts with probability
greater than 1− µ(n)).

Notice that

Pr[K -fail�|good-proof�] ≤ µ(n). (5)

Moreover, using similar arguments to the ones given in the proof of Claim 11, and
using the remark above, one can show that

Pr[S-pass� ∧ disjoint�|¬good-proof�] ≤ µ(n). (6)

Now we can bound the probability of Ssid∗
6 not being able to extract a witness in

the extraction mode from any of the WISPOKs given by Pj in session sid, while

from each session. Here we take Psid
H to be the honest party in sid, and Psid∗

H to be the honest party in sid∗.
38 This follows from our assumption that the first and last message in every WISPOK is sent by the verifier.

Concurrent Composition of Secure Protocols in the Timing Model 477

in the straight-line mode all those WISPOKs are accepted by P sid
H :

Pr

[∧
�

(K -fail� ∧ S-pass�)

]

= Pr

[(∧
�

(
K -fail� ∧ S-pass�

)) ∧
(∨

�

good-proof�

)]

+ Pr

[∧
�

(
K -fail� ∧ S-pass� ∧ ¬good-proof�

)]

≤ Pr

[∨
�

(
K -fail� ∧ good-proof�)

)]

+ Pr

[∧
�

(
S-pass� ∧ ¬good-proof�

)]
.

By (5) and by the union bound, the first term is bounded by (m+2)µ(n). To bound
the second term we use the guarantee from pairwise-disjoint scheduling, namely:∧
� S-pass� ⇒

∨
� disjoint�. Then we have

Pr

[∧
�

(
S-pass� ∧ ¬good-proof�

)]

= Pr

[(∧
�

(
S-pass� ∧ ¬good-proof�

)) ∧
(∨

�

disjoint�

)]

≤ Pr

[∨
�

(
S-pass� ∧ ¬good-proof� ∧ disjoint�

)]

≤
∑
�

Pr[S-pass� ∧ disjoint�|¬good-proof�]

Using (6), this is bounded by (m + 2)µ(n). Thus, Pr[
∧
�(K -fail� ∧ S-pass�)] is

negligible. Hence we can conclude that, except with negligible probability, the
extractor of Ssid∗

6 will also be able to extract the witnesses in all the (polynomially
many) sessions which reach Phase 3 in the straight-line mode.

Note that the only difference between Ssid∗
5 and Ssid∗

6 is in the way the Phase 1
witnesses of corrupted parties are extracted. Since both Ssid∗

5 and Ssid∗
6 succeed

in extracting these witnesses (with overwhelming probability) for every session
that reaches Phase 3, and since these witnesses are used only in Phase 3, we would
like to conclude and say that the output distributions of Ssid∗

5 and Ssid∗
6 are statis-

tically indistinguishable. However, there is a subtle point here: The witnesses w j

obtained by Ssid∗
5 and Ssid∗

6 may be distributed differently. Nevertheless, since
the simulation uses these witnesses only in WIPOKs we conclude that the output
distributions of Ssid∗

5 and Ssid∗
6 are computationally indistinguishable, which in

478 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

particular implies that the probability with which they output fail2 and fail3 is the
same (up to a negligible factor). The formal reduction (reducing any algorithm that
distinguishes between the outputs of Ssid∗

5 and Ssid∗
6 to an algorithm that breaks

the witness indistinguishability property of the WIPOK) is straightforward, and
omitted here.

7. Finally we define Ssid∗
7 which replaces the internal simulation of the first mes-

sage (namely, (vH(sid∗)
1 , v

H(sid∗)
2) and the WISPOKs given by PH(sid∗) in session

sid∗ by externally received messages. That is, Ssid∗
7 interacts with an external

machine E that picks (w1, w2), sets vi = f (wi), sends them to Ssid∗
7, and then

engages in multiple WISPOKs to prove knowledge ofw such that f (w) ∈ {v1, v2}.
Internally, Ssid∗

7 uses this to replace (part of) the computation carried out by
P sid∗

H . In other words, the program of P sid∗
H will be considered to be split into

an external machine E (which sends (vH(sid∗)
1 , v

H(sid∗)
2) and carries out the proofs

of Phase 1) and an internal machine (which carries out the rest of the protocol
execution). The extractors will not have access to the state of the external ma-
chine.

Recall that the stand-alone provers used by the extractors in Ssid∗
6 abort if, dur-

ing their internally simulated execution, P sid∗
H sends a message (as a prover) in

a Phase 1 WISPOK. Thus, the extractor used by Ssid∗
6 does not need access to

the internal state of E . Therefore, Ssid∗
7 can use the same extraction procedure,

which implies that the probability that Ssid∗
7 outputs fail2 or fail3 is the same as the

probability that Ssid∗
6 does so.

T is the same as Ssid∗
7, with sid∗ chosen randomly. The above series of steps shows that

if S outputs fail2 or fail3 with non-negligible probability, then T also outputs fail2 or fail3
with non-negligible probability.

CONSTRUCTION OF M . We seek to construct a machine M such that if T has a non-
negligible probability of outputting fail2 or fail3 in its interaction with E , then, with
non-negligible probability, when M interacts with E it will succeed in computingw such
that f (w) ∈ {v1, v2}, where (v1, v2) is the pair sent to it by E .

The machine M emulates the entire system of honest parties running π and the simu-
lator T . However, it does not simulate E . Instead M itself interacts with E . We construct
M separately for the following two cases.

T outputs fail2 with non-negligible probability. While emulating the system, if T
outputs fail2, then M can output the witness w that caused T to fail. This witness, by
definition of fail2, equalsw such that f (w) ∈ {v1, v2}, where (v1, v2) is the first message
sent by E . This is in contradiction to the fact that the WISPOKs are witness hiding.

T outputs fail3 with non-negligible probability. Recall that T outputs fail3 if some Pj

sent in the beginning of Phase 3 has a value r ′j �= rj , where rj was the value extracted in

Phase 2. Let sid∗ be the random session chosen by T (i.e., T is identical to Ssid∗
7). In T ,

whenPsid∗
H enters Phase 3, M will randomly pick a corrupt party Pj and construct a stand-

alone prover corresponding to Pj ’s Phase 3 WIPOK to P sid∗
H . The stand-alone prover is

Concurrent Composition of Secure Protocols in the Timing Model 479

constructed by modifying P sid∗
H simply to relay messages between Pj and an external

verifier. This construction is similar to, but simpler than, that of Qsid∗
j described earlier.

Recall that there, Qsid∗
j worked exactly like the simulator, continuing from the point

where the extraction subroutine was invoked, except that Qsid∗
j (unlike the simulator)

did not interact with the honest parties running π and did not invoke the extraction
subroutines that S invokes. However, now the stand-alone prover includes the honest
parties running the π protocol, and also runs all extraction subroutines. Note that by
running the extraction subroutines there is no danger in rewinding E since E is not active
any more when M reaches Phase 3 of the session sid∗.

Now M applies a knowledge extractor to this stand-alone prover, and if it extracts
a witness w such that f (w) ∈ {v1, v2}, then M outputs w. Note that T outputs fail3
when, for some party Pj ′ , the value rj ′ extracted in Phase 2 is different from the value
r ′j ′ that it sent out in Phase 3, and yet its Phase 3 WIPOK is accepted. Note that the only
valid witnesses for this WIPOK are values w such that f (w) ∈ {v1, v2}. Now, since the
probability of T outputting fail3 is non-negligible, and since there are only polynomially
many (corrupt) parties from which M picked Pj , with non-negligible probability M
picked party Pj ′ , and thus convinces the external verifier of a statement with the only
witnesses being w such that f (w) ∈ {v1, v2}. This implies that the knowledge extractor
when run on M , will succeed in outputting such a w with non-negligible probability.
(This knowledge extractor runs in expected, and not strict, polynomial time. Nevertheless,
using standard arguments, we can obtain a strict polynomial-time machine that obtains
w with non-negligible probability.)

Completing the proof for fail2 and fail3. This completes the construction of M , and also
the proof that S outputs fail2 or fail3 with only negligible probability.

THE HYBRIDS. Above we have shown that S outputs fail1, fail2, or fail3 only with negli-
gible probability. We now prove that the output distributions of S and the honest parties
running π in the FCRS-hybrid model are indistinguishable from that ofA and the honest
parties running πρ in the real world with timing. For this we note that S in the hybrid
world almost perfectly emulates the real-world interaction, but with a few differences.
The main difference is that in the simulated world in every session sid there is one party
P sid

H that deviates from the protocol. This is the case since the simulator gets a random
string RCRS from the functionality and needs to simulate the protocol so that its output
will be equal to RCRS.

We shall build some hybrid simulators to bridge the gap between the real and hybrid
worlds.

• HYBRID SIMULATORH1: This is similar to S2 as defined earlier: It implementsFCRS

internally and defines RCRS by randomly picking r and setting RCRS =
⊕

i �=Hri⊕r
(however it outputs fail1 just likeS does). As argued above, this does not change any-
thing in the system, and in particular the output distributions remain
unchanged.

• HYBRID SIMULATOR H2: Recall that when P sid
i produces an output (sid, R), H1

delivers the output (sid, RCRS) from FCRS to Pi (after P sid
H produces an output).

480 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

In contrast, the simulator H2 will hand Pi the output R generated by P sid
i in the

simulation. Note that if P sid
i outputs (sid, R) and H1 did not output fail3 (and P sid

H
produced an output) then it must be the case that with overwhelming probability
R = RCRS, since the fact that H1 did not output fail3 and that P sid

H produced an
output implies that all parties must have sent in Phase 3 the decommitment value
which was extracted by the extracted subroutine. Therefore, the output distributions
ofH1 andH2 are statistically close.

• HYBRID SIMULATORH3:H3 is defined exactly asH2 is, except with the following
difference: instead of running P sid

H in every session sid (with at least one honest

player H),H3 runs another program P ′sid
H . This program is exactly like P sid

H , except
that, in Phase 3, instead of sending r received from S, it sends out rH as instructed
by the honest program of ρ.

The hiding property of the Phase 2 commitment scheme, the hiding property of
the Phase 2 WISPOK, and the fact that r and the committed value rH are identically
distributed (both are uniformly distributed) imply that the output distributions of
H2 andH3 are computationally indistinguishable.

• HYBRID SIMULATORH4:H4 uses exactly the program specified by ρ for P sid
H . Note

that the only difference between P ′sid
H used by H3 and the program specified by ρ

is that while giving Phase 3 WIPOK to a party Pj , P ′sid
H uses the alternate witness

provided by S (namelyw j such that f (w j) ∈ {v j
1 , v

j
2 }) instead of what is specified

by the protocol ρ. The witness indistinguishable property of this WIPOK implies
that the output distributions ofH3 andH4 are computationally indistinguishable.

Now note that the system run by H4 and the real-world system are identical, except
that H4 also runs the extraction subroutines and might output fail depending on the
outputs from these subroutines. Other than that, the extraction subroutines are not used
in the system (because we replaced theP sid

H programs by the original programs specified
by ρ). Now since S outputs fail with negligible probability and the output of H4 is
indistinguishable from that of S, we see that H4 also outputs fail only with negligible
probability. Thus, it follows that the output of the system with H4 is indistinguishable
from that of the real-world system. From the line of reasoning above, we conclude that
the distribution of the output of the system consisting of S and the honest parties running
π in the FCRS-hybrid world is indistinguishable from the output of the system consisting
of A and the honest parties running πρ in the real world (with time).

4. Pairwise-Disjoint Scheduling

In this section we construct a pairwise-disjoint scheduling algorithm, thereby proving
Theorem 9 of Section 3.4. On a very high level, the idea is that for each session sid ∈
{0, 1}m , the schedule output by S(σ, sid,�, ε) is such that protocol σ is executed m+ 2
times, with delays between each execution (here we make use of the timing model). The
crux of the idea is that the delays depend on the bits of sid, so that for any sid �= sid′ the
executions of S(σ, sid,�, ε) and S(σ, sid′,�, ε) will not be aligned. The schedule is
enforced by requiring the parties to “time-out” if the execution is too long, say if it takes

Concurrent Composition of Secure Protocols in the Timing Model 481

more that τ local time units, where τ is a function of σ and� (and the delays depend on
this parameter τ). In our specific protocol, σ is a strong proof-of-knowledge with α(n)

rounds, and we set τ
def= α(n) ·�.39

Motivation to the schedule. Due to the technical nature of the schedule and its proof,
we first provide a lengthy discussion explaining the idea behind the construction. Recall
that our aim is to obtain pairwise disjointness, meaning that for every two sessions sid
and sid′, there exists at least one execution of σ in sid that does not overlap with any
execution of σ in sid′. As a first try, suppose that the schedule consists of running σ
twice, with a delay between each execution that is “large” and directly proportional to
the session ID sid. For example, interpret the value sid ∈ {0, 1}m as an integer in the
range [1, . . . , 2m] and delay 2sid · τ time units between the executions, where τ is an
upper bound on how long σ should run. Furthermore, time-out an execution of σ if it
runs longer than τ time units. Now, let sid′ �= sid be two different sessions. Denote by σ1

and σ2 the two executions of σ in session sid, and denote by σ ′1 and σ ′2 the two executions
of σ in session sid′. Without taking the clock drift ε into account for now, we have the
following cases:

1. Execution σ1 overlaps with execution σ ′1: Notice that σ2 is delayed by 2sid · τ time
units, whereas σ ′2 is delayed by 2sid′ · τ time units. Since sid′ �= sid, there is a
difference of at least 2τ time units between the delay before σ2 and the delay before
σ ′2. The fact that each execution of σ takes at most τ time units ensures that the σ ′2
execution does not overlap with σ2. Also, the fact that the delay before σ ′2 is longer
than τ time units implies that σ ′2 does not overlap with σ1.

2. Execution σ2 overlaps with execution σ ′2: The same analysis as above yields that
σ ′1 does not overlap with σ1 or σ2.

3. Execution σ1 overlaps with execution σ ′2: In this case, it follows immediately that
σ ′1 concluded before σ1 began (because there is a delay of more than τ time units
between σ ′1 and σ ′2). Thus, σ ′1 does not overlap with σ1 or σ2.

4. Execution σ2 overlaps with execution σ ′1: As above, it follows that σ ′2 does not
overlap with σ1 or σ2.

We therefore obtain that the above is a pairwise-disjoint schedule. However, this schedule
is problematic because the length of the delays are exponential in the length of sid. Thus,
unless there is an a priori polynomial bound on the number of sessions (in which case, sid
can be of length O(log n)), we obtain that the schedule is not polynomial in the security
parameter.

We solve this problem by using a more involved scheduling strategy, adapted from
the strategy of Chor and Rabin [18]. We now recall this strategy (already described in
Section 3.4). It was observed in [18] that if the identifiers sid and sid′ are encoded (one-
to-one) into 2m-bit strings containing m zeros and m ones, then for any two different
identifiers sid �= sid′, there is at least one bit position where the encoding of sid has a

39 Note that since σ consists of α(n) rounds and� is an upper bound on the latency according to all clocks,

we have that τ
def= α(n) · � is an upper bound on σ ’s overall running time, assuming that all messages are

delivered with � time units (and assuming local computation is instantaneous).

482 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

zero and that of sid′ has a one. Suppose now that the time is divided into 2m distinct
slots (each slot corresponding to a bit of the encoding of the identifier), and executions
of σ in the session sid are run only in the slots where the encoding of sid has a one in
that slot. Then there is a slot in which an execution of σ is run in sid′, but not in sid.
The improvement over the previous scheme is that this encoding is compact (i.e., linear),
rather than exponential, in the length of sid.

However, there are numerous complications in adapting this strategy to our setting.
Firstly, unlike the setting considered in [18], we consider executions of ρ occurring
in different sessions at different times. Therefore, two encodings which are different
may be shifted with respect to each other in a way that all the positions with ones
align with each other (e.g. the ones in 0110 and 1100 can be aligned with each other
by shifting one of the two strings by one position). This problem is solved simply by
prepending a one to the encoding (for convenience in later analysis, we shall actually
add a one to both ends of the encoding). We therefore have that the above encodings
become 101101 and 111001, respectively, and shifting in either direction will result in
independence.

Another problem that arises is due to the fact that in our setting, it is not possible to
define distinct time-slots (because the parties’ clocks are not synchronized). Therefore,
one execution of σ in session sid can partially overlap with two executions of σ in
session sid′. We solve this by introducing delays between the time slots in each session.
We note that it suffices to delay for at least the maximum time that it takes to conclude
an execution of σ . (It is possible to limit the maximum time for any execution of σ by
using a time-out instruction.) We thereby obtain that any execution of σ in session sid
can overlap with at most one execution of σ in session sid′.

The final complication that arises is due to the fact that the parties’ local clocks do
not proceed at exactly the same rate, but rather can drift. Since the rates at which the
local clocks of the different parties proceed may vary adversarially (up to a factor ε), it
is possible that two different schedules from different sessions may perfectly overlap.
For example, suppose that the schedule for session sid is 10i 10 j 1k and the schedule
in sid′ is 10 j 10i 1k (with say i > j). Furthermore, suppose that an honest party P is
participating in session sid, and another honest party P ′ is participating in session sid′.
Then, the adversary can cause the executions of P and P ′ to overlap by first running
the clock of P faster than that of P ′ by a factor of i/j (starting after the first execution
of σ , up to the second execution of σ), and then running it slower by a factor of j/ i
(after finishing the second execution of σ and until reaching the third execution of σ).40

Now, note that although P and P ′ use the prescribed distinct schedules, the adversary
can make every execution of σ in sid fully coincide with every execution of σ in sid′.
However, for this to work, it must hold that i/j is less than ε. Intuitively, if i and j are
small (and ε is not too large, and in particular ε � i/j) then the adversary does not have
enough leeway to align these two executions. This holds because even if the adversary
runs P’s clock faster than P ′’s clock by a factor of ε, the delay of P between these
two executions will still be much longer than the delay of P ′. Thus, if we make sure
that there are no long runs of zeros in the encoding used, we can use our scheduling

40 We ignore the “delaying slots” between the time slots for this discussion.

Concurrent Composition of Secure Protocols in the Timing Model 483

for values of ε that are reasonably larger than one (but not too large). The particular
encoding we use (which is sometimes called the “Manchester encoding”) ensures that
there will be at most two consecutive zeros. For this encoding, we prove that if two con-
secutive executions of session sid overlap with two consecutive executions of session
sid′, then it must be the case that the number of zeros between these executions is the
same in both sessions, assuming ε is less than 3

√
1.5. The reason for this specific bound

on ε is quite technical, and is needed for our proof to go through. Our complete descrip-
tion of the schedule, and the formal proof, take all of the above discussed factors into
account.

Convention. We assume for simplicity (and without loss of generality) that in protocol
σ there exists one party that sends the first message which is of the form “start” and
the last message which is of the form “end” to all of the parties that participate in the
protocol. This ensures that (when the adversary does not corrupt parties and delivers all
messages within time �) the duration of the protocol is roughly the same for all parties
participating in σ .

The construction. We now present our construction of a pairwise disjoint scheduling.
We associate with each session sid a unique session identifier usid which is a vector
of zeros and ones, so that the number of ones is the same for each identifier. Loosely
speaking, each one entry will correspond to an execution of σ .

Formally, our scheduling algorithm, on input a protocol σ , a session identifier sid, and
time-bounds� and ε, operates as follows. We specify the delay and time-out mechanisms
in terms of some parameters d , τ , τMIN(·) and τMAX(·). We fix these parameters later, as
functions of � and ε.

1. Associate with session sid ∈ {0, 1}m a vector usid = (usid
1, . . . , usid

2m+2) ∈
{0, 1}2m+2, defined as follows:
(a) usid

1 = 1 and usid
2m+2 = 1.

(b) For every j ∈ {1, . . . ,m}, if sidj = 1 then (usid
2 j , usid

2 j+1) = (1, 0), and if
sidj = 0 then (usid

2 j , usid
2 j+1) = (0, 1).

Notice that usid has exactly m + 2 ones and m zeros. Moreover, it has at most
two consecutive zeros. S(σ, sid,�, ε) will consist of m + 2 executions of σ , one
execution corresponding to each one entry of the usid vector.

2. Carry out m + 2 executions of σ according to the following scheduling:
(a) Set j = 1.
(b) If usid

j = 1 then carry out an execution of σ and then continue to step 2(c).
Otherwise, continue immediately to step 2(c).

(c) Wait d local time units (d will be specified later).

(d) Set j
def= j + 1.

(e) If j ≤ 2m + 2 then goto step 2(b).
3. TIME-OUT MECHANISM: In each of the above executions of σ , each participant

checks that no more than τ local time units passed from the time that it received its
first message of the execution (“start”), to the time that it received its last message
of the execution (“end”). If more time passes before the execution is over, then it
outputs (time-out, sid) on its output tape and halts the execution.

484 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

4. DELAY MECHANISM: For any x ∈ {0, 1, 2} and for any two consecutive execu-
tions of σ in S(σ, sid,�, ε) that correspond to two ones with x zeros in between,
each party P participating in session sid checks that the delay (according to P’s
local clock) between these two executions (i.e., the time between receiving its
last message in one execution and receiving its first message in the next exe-
cution) is between τMIN(x) and τMAX(x). Here τMIN(·) and τMAX(·) are increasing
functions, to be specified later. For each honest participant, if the delay is too
short or too long then it outputs (time-out, sid) on its output tape and halts the
execution.

Theorem 12. Assume that 1 ≤ ε <. Then the above scheduling is a non-trivial
pairwise-disjoint scheduling, for the following parameters:

τ ≥ α(n) ·�,
d > (2τε2 +�(1+ ε)ε)/(3− 2ε3),

τMIN(x) = (x + 1)d/ε −�,
τMAX(x) = (x + 1)dε +�.

Note that the efficiency of the scheduling depends on ε. The closer ε is to 3
√

1.5, the
greater the delay is, and the less efficient the scheduling is. (This is due to the (3− 2ε3)

factor in the denominator of d.)

Proof. First, we collect a few inequalities, which we refer to throughout the proof:

τMIN(0) > τε, (7)

τMIN(1) > (2τ + τMAX(0))ε, (8)

τMIN(2) > (2τ + τMAX(0))ε, (9)

τMIN(2) > (2τ + τMAX(1))ε. (10)

We note that these inequalities easily follow from the inequalities listed in the
hypothesis.41

Assume for the sake of contradiction that S is not a pairwise-disjoint scheduling for
some protocol σ , and timing parameters (�, ε) such that 1 ≤ ε < 3

√
1.5. Thus, there

exists an ε-drift preserving adversary, and two distinct sessions sid and sid′, such that the
following holds. There exist honest parties P and P ′ participating in sessions sid and sid′,

41 This can be seen as follows. The denominator of the delay d is at most 1 (assuming 1 ≤ ε < 3√1.5), which
implies that d > 2τε2 +�(1+ ε)ε. Thus, τMIN(0) = d/ε−� > (2τε+�(1+ ε))−� = 2τε+�ε > τε,
implying (7). Next, in order to prove (8) and (10) it suffices to prove that τMIN(x)−τMAX(x − 1)ε > 2τε (this can
be seen by simply manipulating the equations). In order to prove that τMIN(x)−τMAX(x − 1)ε > 2τε, note that
τMIN(x)−τMAX(x − 1)ε = (x+1)d/ε−�−(xdε+�)ε = d(x/ε−xε2+1/ε)−�(1+ε). Since 1/ε−ε2 ≤ 0,
the latter equality is smallest when x = 2. Thus, τMIN(x)−τMAX(x − 1)ε ≥ d(2/ε−2ε2+1/ε)−�(1+ε) =
d(3 − 2ε3)/ε − �(1 + ε) > (2τε + �(1 + ε) − �(1 + ε) = 2τε, as desired. Finally, note that (9) follows
immediately from (10).

Concurrent Composition of Secure Protocols in the Timing Model 485

respectively, such that according to P and P ′, every execution of σ in S(σ, sid′,�, ε)
overlaps with at least one of the executions of σ in S(σ, sid,�, ε). For simplicity of
notation, throughout this proof we denote S(σ, sid,�, ε) by �, and S(σ, sid′,�, ε) by
�′. Further, we use “overlaps” as a short hand for “overlaps according to P and P ′”.

We first show that any execution in � can overlap with at most one execution in �′.
This is due to the delay inserted between each execution. More specifically, assume that
there is one execution σ in � which overlaps with two executions σ ′1 and σ ′2 in �′. The
fact that σ and σ ′1 overlap implies that there is a message (of σ or of σ ′1) that was sent
while P was executing σ and while P ′ was executing σ ′1. Similarly, the fact that σ and
σ ′2 overlap implies that there is a message (of σ or of σ ′2) that was sent while P was
executing σ and while P ′ was executing σ ′2. Let the time between sending these two
messages be δ as measured by the clock of P , and δ′ as measured by the clock of P ′.
Since the clock drift factor is at most ε, we have δ′ ≤ δε. Note that the executions σ ′1
and σ ′2 are separated by at least τMIN(0) local time units, according to P ′’s clock. This
is the case since otherwise P ′ would time-out the execution before σ ′2 really started,
which would imply that σ does not overlap σ ′2 according to P and P ′, contradicting our
assumption. Thus, the above mentioned messages must also be separated by at least that
much time, i.e., δ′ ≥ τMIN(0). Finally, we note that since both the messages were sent out
while the honest party P was executing σ , then δ ≤ τ . Combining the above inequalities
we get τMIN(0) ≤ δ′ ≤ δε ≤ τε. This contradicts (7). See Fig. 4 For an illustration of
this argument.

We thus have that any execution in � can overlap with at most one execution in �′.
This, together with our assumption that S is not a pairwise-disjoint scheduling, implies
that every execution in � overlaps with exactly one execution in �′. Moreover, it must
be the case that for every l ∈ [m + 2], the lth execution in � overlaps only with the lth
execution in �′.

Fix any l ∈ [m + 1]. Let x ′ be the number of zeros between the lth one and the
(l + 1)st one in usid′ . Note that the encoding guarantees that x ′ ∈ {0, 1, 2}. We prove
that the number of zeros between the lth one and the (l + 1)st one in usid is also x ′. This
will imply that usid = usid′ , which in turn will imply that sid = sid′, contradicting our
assumption that sid and sid′ are distinct.

σ

δ
′

δ

≥ τmin(0)

P

P
′

(

σ
′

1

(

σ
′

2

((

Fig. 4. An illustration of the argument that a single execution σ in one schedule can overlap at most one
execution in another schedule, with respect to two parties P and P ′. In the scenario shown, the first overlap is
according to situation (a) of Fig. 3 and the second overlap is according to situation (b). δ is measured using
P’s local clock and δ′ by using P ′’s local clock.

486 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

Take any two (consecutive) executionsσ1 andσ2 in� that overlap with two consecutive
executions σ ′1 and σ ′2 in �′, respectively. Let x be the number of zeros between the ones
corresponding to σ1 and σ2 in usid. Similarly, let x ′ be the number of zeros between the
ones corresponding to σ ′1 and σ ′2 in usid′ . We need to show that x = x ′.

Since σ1 and σ ′1 overlap, a message (of σ1 or of σ ′1) was sent while P was executing
σ1 and while P ′ was executing σ ′1. Call the sending of this message the “first event”.
Similarly, since σ2 and σ ′2 overlap, a message (of σ2 or of σ ′2) was sent while P was
executing σ2 and while P ′ was executing σ ′2. We call the sending of this message the
“second event”. Let δ denote the duration between these two events according to the
clock of P , and let δ′ be the duration between them according to the clock of P ′. Then

δ/ε ≤ δ′ ≤ δε.

Now, since σ1 and σ2 are separated by x zeros, and P is an honest party, we are assured
that

τMIN(x) ≤ δ ≤ τMAX(x)+ 2τ. (11)

This is the case since P , being honest, checks that each of these executions run for at
most τ time units. It also checks that the delay between the last message of σ1 and the first
message of σ2 is in the range [τMIN(x), τMAX(x)]. Note that these checks must be satisfied
since otherwise P would time-out, and thus would not participate in σ2. Therefore, σ2

and σ ′2 would not overlap according to P and P ′, contradicting our assumption. Since
the first and second events occur in the middle of σ1 and σ2, respectively, we are assured
that inequality (11) holds. This is illustrated in Fig. 5. Similarly, we are assured that

τMIN(x
′) ≤ δ′ ≤ τMAX(x

′)+ 2τ.

The above three displayed inequalities imply

τMIN(x) ≤ δ ≤ δ′ε ≤ (2τ + τMAX(x
′))ε,

τMIN(x
′) ≤ δ′ ≤ δε ≤ (2τ + τMAX(x))ε.

δ

((

≥ τmin(x)

≤ τmax(x)

≤ τ

δ
′

P

P
′

σ
′
1

(
σ
′
2

(

≤ τ

σ1 σ2

Fig. 5. An illustration of inequality (11). All time intervals shown (except δ′) are measured according to P’s
local clock.

Concurrent Composition of Secure Protocols in the Timing Model 487

From these two inequalities we can easily derive contradictions for all the combinations
(x, x ′) = (1, 0), (x, x ′) = (2, 0), (x, x ′) = (0, 1), (x, x ′) = (2, 1), (x, x ′) = (0, 2) and
(x, x ′) = (1, 2). For instance, setting (x, x ′) = (1, 0) or (x, x ′) = (0, 1), we obtain

2τ + τMAX(0) ≥ δ′ ≥ δ/ε ≥ τMIN(1)/ε,

which contradicts (8). Similarly, setting (x, x ′) = (2, 0) or (x, x ′) = (0, 2) contradicts
(9), and setting (x, x ′) = (2, 1) or (x, x ′) = (1, 2) contradicts (10). Hence we conclude
that x ′ = x , as required. This shows that the scheduling is indeed pairwise disjoint.

It remains to show that it is non-trivial. For this, consider a scheduling � being
executed in the presence of an adversary who does not corrupt any party and delivers
all messages within time � by the clocks of all the parties. Now, since the protocol
has α(n) rounds, setting the time-out for an individual execution to be τ = α(n) · �
ensures that no party times-out an execution. We need also to ensure that, for every
party, the checks on the delays between the executions are also satisfied. Recall our
convention that a designated party sends out “start” and “end” messages to every party
in the protocol; call this party P . For any two executions σ1 and σ2, corresponding

to two ones with x zeros in between, party P delays δ
def= (x + 1)d local time units

between the “end” message of σ1 and the “start” message of σ2. By the clock of another
party P ′ this duration will be measured as δ′, where δ/ε ≤ δ′ ≤ δε. However, P ′

considers the time at which these two messages reach it (rather than when they were
sent). At one extreme, the “end” message may be delivered instantaneously and the
subsequent “start” message delivered with a delay of � (according to P ′’s clock), in
which case the time between the arrival of the two messages will be δ′ +�. At the other
extreme, “end” is delayed by �, while “start” reaches instantaneously, making the time
between the two arrivals δ′ − �. Thus, the delay between the two messages will be in
the range [δ′ −�, δ′ +�] which is in turn in the range [δ/ε −�, δε +�]. Since δ =
(x + 1)d , this range is the same as [τMIN(x), τMAX(x)]. Thus no party will time-out in the
schedule. Also note that m and O(α(n)) are bounded by a polynomial. Hence the schedule
will be completed in polynomial number of steps and within a polynomial number of
time units according to any party. Thus the scheduling algorithm is polynomial and
non-trivial.

5. Impossibility for Non-Delayed General Composition

In this section we prove that in the timing model, in order to construct a protocol ρ that
securely realizes F when running concurrently to some arbitrary protocol π , it holds
that π must consider time in some way. (Recall that we assumed that π is a τε-delayed
protocol.) In order to state this result, we first define the notion of a timing-free protocol.
Intuitively, such a protocol does not use timing in its instructions. Formally, in our model,
a timing-free protocol does not read the clock tape. (The “plain model” in the theorem
refers to the model as defined in this paper, without, for example, any trusted setup
phase.)

Theorem 13. In the plain model and without an assumed honest majority, there exist
probabilistic polynomial-time functionalities that cannot be securely computed (by a

488 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

non-trivial protocol) under concurrent general composition with timing-free protocols,
even in the (�, ε)-timing model, for any � and any ε ≥ 1.

We prove this theorem by showing that for every protocol ρ in the timing model, if
ρ is secure under concurrent general composition with timing-free protocols, then it
can be modified to become secure under 1-bounded parallel general composition in a
model with no timing. (In the setting of 1-bounded parallel general composition, a secure
protocol ρ is executed once in parallel with an arbitrary protocol π .) This suffices for
proving Theorem 13 because impossibility of this case is proven explicitly in [37]. As
in [37], we also limit ourselves to two-party protocols.

The intuition behind the proof of Theorem 13 is as follows. If a secure protocol ρ is
run together with a timing-free protocol π , then this means that the adversary has full
control over the scheduling of the messages of π . Now, consider a single execution of ρ
together with π . Since the adversary can schedule π -messages as it wishes, it can force
π to run perfectly in parallel with ρ. Notice that this holds irrespective of the timing
instructions used in ρ. We conclude that ρ must remain secure when run in parallel with
an arbitrary protocol π , in contradiction to the impossibility results of [37]. We now
proceed to the formal proof.

Proof. Let � ≥ 1 and ε ≥ 1 be any values, and let ρ be a two-party protocol that
securely realizes a functionality F under concurrent general composition with timing-
free protocols, in the (�, ε)-timing model.42 Denote the participating parties by P1

and P2.
We construct a modified protocolρ ′ that is timing-free. Inρ ′, instead of using the clock,

the parties simulate the clock themselves by incrementing a counter on each activation
that is initialized to zero. (This is equivalent to setting the counter to equal the round
number in the protocol, if it is defined.) This simulated clock is then made available to
protocol ρ (or, more precisely, to the computation specified by protocol ρ). Note that ρ ′

consists of two components: a clock simulation protocol and the original protocol ρ in
the timing model.

We now show that if ρ is non-trivial and secure under concurrent general composition
in the timing model, then ρ ′ is non-trivial and secure under 1-bounded parallel general
composition (in the timing-free model).43 We note that if the adversary in the timing-free
model activates the same party multiple times before activating the other party, then in ρ ′

the simulated clocks would have an unavoidable drift. This is problematic because in this
case ρ does not give any guarantee of security. However, we consider parallel general
composition for ρ ′. In this setting, the adversary strictly alternates between activating P1

and P2. Furthermore, in the (i + 1)th activation of a party, the adversary delivers it the

42 We stress that a contradiction will be derived for any choice of �, ε ≥ 1. Note that ε ≥ 1 by definition,
and that � ≥ 1 is the smallest increment possible.

43 The notion of non-trivial protocols has also been considered in the timing-free model since the trivial
protocol that just hangs and never generates output securely realizes all functionalities. Therefore, as in the
timing model, only non-trivial protocols are of interest. In the timing-free model, a protocol is called non-
trivial if output is guaranteed in the event that the adversary corrupts no parties and (eventually) delivers
all messages. As expected, the impossibility results of [37] for parallel general composition hold only for
non-trivial protocols.

Concurrent Composition of Secure Protocols in the Timing Model 489

i th-round message from ρ ′ and the i th-round message from π (where π is the arbitrary
protocol running concurrently with ρ ′). We call such an adversary for the parallel setting
a round-robin adversary. The formal arguments are given in the proof of the following
claim.

Claim 14. Let ρ be a two-party protocol and let �, ε ≥ 1 be any values. If ρ is non-
trivial and securely realizes a functionality F under concurrent general composition in
the (�, ε)-timing model (even when run concurrently with timing-free protocols), then
ρ ′ as described above is a non-trivial protocol that securely realizesF under 1-bounded
parallel general composition in the timing-free model.

Proof. Let π be an arbitrary timing-free two-party protocol. In order to prove the
security claim on ρ ′, we need to show that for any given round-robin adversary, there
exists a simulatorS such that the output distribution ofA and the honest parties runningπ
and ρ ′ in the real model is computationally indistinguishable from the output distribution
of S and the honest parties running π with ideal access to F in the F-hybrid model.
In order to construct S, we first we show an intermediate adversary H (who interacts
with the parties running ρ in the timing model) such that the output distributions of the
adversary and honest parties in the following two scenarios are identical:

• Scenario A: The honest parties and the adversaryA run π and ρ ′ in the timing-free
(real) model.
• Scenario B: The honest parties and the adversaryH run π and ρ in the real model

with time.

We now describe the adversary H in the timing model. H internally invokes A and
perfectly emulates all ofA’s actions. This means thatH delivers messages wheneverA
does (thereby activating the recipients) and passes A the messages that it receives. In
addition to this emulation,H needs to increment the clocks of the honest parties (because
Hworks in the timing model, unlikeA). This is carried out simply by havingH increment
the clocks of all honest parties by 1 at the beginning of each round-robin round.

Before proceeding, we show that the outputs of the honest parties and adversaries
are identical in scenarios A and B, described above. This follows from the fact that in
both scenarios, the clock of each party is incremented by one between every activation.
Furthermore, H carries out exactly the same actions as A. (The only difference is that
in scenario A, the clocks are updated in sequence upon each activation, whereas in
scenario B, they are all updated together. However, since parties only read their clocks
upon activation, this is exactly the same.) We therefore have that for every round-robin
adversaryA in the timing-free real model withπ and ρ ′ there exists an adversaryH in the
timing model with π and ρ such that the output distributions in both cases are identical.

Next, notice that as long asH is ε-drift preserving, the assumed security of ρ implies
that there exists a simulator S such that the output distribution of an execution with S
and the honest parties running π in the F-hybrid model is indistinguishable from an
execution withH and the honest parties running π and ρ in the real timing model. This
suffices becauseH satisfies the drift condition for any ε (notice that the clocks of all the
honest parties are always the same). Combining the above two steps, we obtain that ρ ′

securely realizes F under 1-bounded parallel general composition.

490 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

To complete the proof of the claim, we show that if ρ is non-trivial then so is ρ ′. Recall
that ρ ′ is non-trivial (in the timing-free model) if in the case thatA corrupts no parties and
delivers all messages, then all parties receive output. In order to see that this holds, first
recall thatH essentially just emulatesA. Therefore, ifA corrupts no parties, then neither
does H. Furthermore, by the assumption that A is a round-robin adversary, we know
that it always delivers all messages immediately (i.e., all round i messages are received
in round i + 1). Therefore, H delivers all messages within time � = 1. Finally, as we
have shown above, H is always ε-drift preserving (for any ε ≥ 1). We conclude that in
an execution of ρ ′ in whichA does not corrupt any parties, the analogous execution of ρ
withH is such thatH corrupts no parties, is ε-drift preserving and delivers all messages
within time � = 1. Therefore, by Definition 5 and the assumption that ρ is non-trivial,
we have that in this execution of ρ with H, the honest parties all obtain their output
(and this output does not equal time-out). By the equivalence between scenarios A and
B above, we obtain that in the execution of ρ ′ withA, the parties also all receive output.
That is, ρ ′ is non-trivial. This completes the proof of non-triviality and of the claim.

As we have mentioned above, the proof of the theorem follows immediately from the
above claim and the impossibility results for 1-bounded parallel general composition (in
the timing-free model) as proven in [37].

Remark. Theorem 13 states that there exist functionalities that cannot be securely
computed under concurrent general composition with timing-free protocols. However,
the proof actually shows that this setting inherits all of the impossibility results of [37],
which are in turn inherited from [15]. Thus, we actually obtain very broad impossibility
results that hold for large classes of functionalities.

Acknowledgements

We thank Ran Canetti, Oded Goldreich, Shafi Goldwasser and Shai Halevi for helpful
discussions and comments. We also thank the anonymous referees for their many very
helpful comments.

References

[1] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In Proc. 42nd FOCS, pages 106–115,
2001.

[2] B. Barak, R. Canetti, Y. Lindell, R. Pass and T. Rabin. Secure Computation without Authentication. In
CRYPTO 2005, pages 361–377. Springer-Verlag (LNCS 3621), Berlin, 2005.

[3] B. Barak, R. Canetti, J. B. Nielsen and R. Pass. Universally Composable Protocols with Relaxed Set-Up
Assumptions. In Proc. 45th FOCS, pages 186–195, 2004.

[4] B. Barak, Y. Lindell and S. Vadhan. Lower Bounds for Non-Black-Box Zero-Knowledge. In Proc. 44th
FOCS, pages 384–393, 2003.

[5] B. Barak and A. Sahai. How To Play Almost Any Mental Game Over The Net—Concurrent Composition
via Super-Polynomial Simulation. In Proc. 46th FOCS, pages 543–552, 2005.

[6] D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO ’91, pages 377–391. Springer-
Verlag (LNCS 576), Berlin, 1991.

Concurrent Composition of Secure Protocols in the Timing Model 491

[7] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In CRYPTO ’92, pages 390–420.
Springer-Verlag (LNCS 740), Berlin, 1992.

[8] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-
Tolerant Distributed Computation. In Proc. 20th STOC, pages 1–10, 1988.

[9] M. Blum. Coin Flipping by Phone. Proc. IEEE Spring COMPCOM, pages 133–137, 1982.
[10] M. Blum. How to Prove a Theorem So No One Else Can Claim It. Proc. International Congress of

Mathematicians, pages 1444–1451, 1987.
[11] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology,

13(1):143–202, 2000.
[12] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In Proc.

42nd FOCS, pages 136–145, 2001.
[13] R. Canetti. Universally Composable Signature, Certification, and Authentication. In Proc. 17th Computer

Security Foundations Workshop, pages 219–235, 2004.
[14] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO 2001, pages 19–40.

Springer-Verlag (LNCS 2139), Berlin, 2001.
[15] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal Composable Two-Party Com-

putation without Set-Up Assumptions. Journal of Cryptology, 19(2):135–167, 2006.
[16] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and Multi-Party

Computation. In Proc. 34th STOC, pages 494–503, 2002.
[17] D. Chaum, C. Crepeau and I. Damgard. Multiparty Unconditionally Secure Protocols. In Proc. 20th

STOC, pages 11–19, 1988.
[18] B. Chor and M. Rabin. Achieving Independence in Logarithmic Number of Rounds. In Proc. 6th PODC,

pages 260–268, 1987.
[19] A. De Santis and G. Persiano. Zero-Knowledge Proofs of Knowledge without Interaction. In Proc. 33rd

FOCS, pages 427–436, 1992.
[20] Y. Dodis and S. Micali. Parallel Reducibility for Information-Theoretically Secure Computation. In

CRYPTO 2000, pages 74–92. Springer-Verlag (LNCS 1880), Berlin, 2000.
[21] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing, 30(2):391–

437, 2000.
[22] C. Dwork and M. Naor. Zaps and Their Applications. In Proc. 41st FOCS, pages 283–293, 2000.
[23] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. Journal of the ACM, 51(6):851–898,

2004.
[24] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing Constraints. In

CRYPTO ’98, pages 442–457. Springer-Verlag (LNCS 1462), Berlin, 1998.
[25] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In CRYPTO’89, Springer-

Verlag (LNCS 435), pages 526–544, 1989.
[26] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In Proc. 22nd STOC,

pages 416–426, 1990.
[27] O. Goldreich. Foundations of Cryptography: Volume 1—Basic Tools. Cambridge University Press,

Cambridge, 2001.
[28] O. Goldreich. Concurrent Zero-Knowledge with Timing Revisited. In Proc. 34th STOC, pages 332–340,

2002.
[29] O. Goldreich. Foundations of Cryptography: Volume 2—Basic Applications. Cambridge University Press,

Cambridge, 2004.
[30] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game—a Completeness Theorem

for Protocols with Honest Majority. In Proc. 19th STOC, pages 218–229, 1987.
[31] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral Majority.

In CRYPTO ’90, pages 77–93. Springer-Verlag (LNCS 537), Berlin, 1990.
[32] S. Goldwasser and Y. Lindell. Secure Computation without Agreement. Journal of Cryptology, 18(3):247–

287, 2005.
[33] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems.

SIAM Journal on Computing, 18(1):186–208, 1989.
[34] J. Katz. Efficient and Non-Malleable Proofs of Plaintext Knowledge and Applications. In EUROCRYPT

2003, pages 211–228. Springer-Verlag (LNCS 2656), Berlin, 2003.

492 Y. T. Kalai, Y. Lindell, and M. Prabhakaran

[35] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. Journal of
Cryptology, 16(3):143–184, 2003.

[36] Y. Lindell. Bounded-Concurrent Secure Two-Party Computation without Setup Assumptions. In Proc.
35th STOC, pages 683–692, 2003.

[37] Y. Lindell. General Composition and Universal Composability in Secure Multiparty Computation. In
Proc. 44th FOCS, pages 394–403, 2003.

[38] Y. Lindell. Lower Bounds for Concurrent Self Composition. In Proc. 1st Theory of Cryptography Con-
ference (TCC), pages 203–222. Springer-Verlag (LNCS 2951), Berlin, 2004.

[39] T. Malkin, R. Moriarty and N. Yakovenko. Generalized Environmental Security from Number Theoretic
Assumptions. In Proc. 3rd Theory of Cryptography Conference (TCC), pages 343–359. Springer-Verlag
(LNCS 3876), Berlin, 2006.

[40] S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary version in
CRYPTO ’91, pages 392–404. Springer-Verlag (LNCS 576), Berlin, 1991.

[41] R. Pass. Simulation in Quasi-Polynomial Time, and Its Application to Protocol Composition. In Eurocrypt
2003, pages 160–176. Springer-Verlag (LNCS 2656), Berlin, 2003.

[42] R. Pass. Bounded-Concurrent Secure Multiparty Computation with a Dishonest Majority. In Proc. 36th
STOC, pages 232–241, 2004.

[43] R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a Constant Number of
Rounds. In Proc. 44th FOCS, pages 404–413, 2003.

[44] B. Pfitzmann and M. Waidner. Composition and Integrity Preservation of Secure Reactive Systems. In
Proc. 7th ACM Conference on Computer and Communication Security, pages 245–254, 2000.

[45] M. Prabhakaran and A. Sahai. New Notions of Security: Universal Composability without Trusted Setup.
In Proc. 36th STOC, pages 242–251, 2004.

[46] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In EURO-
CRYPT ’99, pages 415–431. Springer-Verlag (LNCS 1592), Berlin, 1999.

[47] A. Yao. How to Generate and Exchange Secrets. In Proc. 27th FOCS, pages 162–167, 1986.

