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Abstract. In this paper we consider the problem of private searching on streaming
data, where we can efficiently implement searching for documents that satisfy a secret
criteria (such as the presence or absence of a hidden combination of hidden keywords)
under various cryptographic assumptions. Our results can be viewed in a variety of ways:
as a generalization of the notion of private information retrieval (to more general queries
and to a streaming environment); as positive results on privacy-preserving datamining;
and as a delegation of hidden program computation to other machines.
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1. Introduction

1.1. Data Filtering for the Intelligence Community

As our motivating example, we examine one of the tasks of the intelligence community,
which is to collect “potentially useful” information from huge streaming sources of
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data. The data sources are vast, and it is often impractical to keep all the data. Thus,
streaming data is typically sieved from multiple data streams in an on-line fashion,
one document/message/packet at a time. Most of the data is immediately dismissed
and dropped to the ground, while only a small fraction of “potentially useful” data is
retained. These streaming data sources, just to give a few examples, include things like
packet traffic on network routers, on-line news feeds (such as Reuters.com), internet
chat-rooms, or potentially terrorist-related blogs or web-sites. Again, most of the data is
completely innocent and is immediately dismissed except for a small subset of the data
that raises red flags which is collected for later analysis in a secure environment.

In almost all cases, what’s “potentially useful” and raises a “red flag” is classified,
and satisfies a secret criteria (i.e., a boolean decision whether to keep this document or
throw it away). The classified “sieving” algorithm is typically written by intelligence
community analysts. Keeping this sieving algorithm classified is clearly essential, since
otherwise adversaries could easily prevent their messages from being collected by simply
avoiding the criteria that is used to collect such documents in the first place. In order to
keep the selection criteria classified, one possible solution (and in fact the one that is
used in practice) is to collect all streaming data “on the inside”, in a secure environment,
and then filter the information according to classified rules, throwing away most of it
and keeping only a small fraction of data-items that fit the secret criteria. Often, the
criteria is simply a set of keywords that raise a red flag. While this method for collecting
data certainly keeps the sieving information private, it requires transferring all streaming
data to a classified environment, adding considerable cost in terms of communication
and the risk of a delay or even loss of data, if the transfer to the classified environment is
interrupted. Furthermore, it requires considerable cost of storage to hold this (un-sieved)
data in case the transfer to the classified setting is delayed.

Clearly, a far more preferable solution is to sieve all these data-streams at their sources
(on the same computers or routers where the stream is generated or arrives in the first
place). The issue, of course, is how can this be accomplished while keeping the sieving
criteria classified, even if the computer where the sieving program executes falls into
enemy’s hands? Perhaps somewhat surprisingly, we show how to do just that while
keeping the sieving criteria provably hidden from the adversary, even if the adversary is
allowed to experiment with the sieving executable code and/or tries to reverse-engineer
it. Put differently, we construct a “compiler” (i.e., of how to compile sieving rules) so
that it is provably impossible to reverse-engineer the classified rules from the executable
complied sieving code. In the following section we state our results in more general
terms that we believe are of independent interest.

1.2. Public-Key Program Obfuscation

Very informally, given a program f from a class C of programs, and a security parameter
k, a public-key program obfuscator compiles f into (F,Dec), where F on any input
computes an encryption of what f would compute on the same input. The decryption
algorithm Dec decrypts the output of F . That is, for any input x , Dec(F(x)) = f (x),
but given code for F it is impossible to distinguish for any polynomial time adversary
which f from the class C was used to produce F . We stress that in our definition, the
program encoding length |F | must polynomially depend only on | f | and k, and the
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output length of |F(x)| must polynomially depend only on | f (x)| and k. It is easy to see
that single-database private information retrieval (PIR) (including keyword search) can
be viewed as a special case of public-key program obfuscation.

1.3. Obfuscating Searching on Streaming Data

We consider how to public-key program obfuscate keyword search algorithms on stream-
ing data, where the size of the query (i.e., complied executable) must be independent of
the size of stream (i.e., database), and that can be executed in an on-line environment,
one document at a time. Our results also can be viewed as improvement and a speedup of
the best previous results of single-round PIR with the keyword search of Freedman et al.
[16]. In addition to the introduction of the streaming model, this paper also improves
the previous work on keyword PIR by allowing for the simultaneous return of multiple
documents that match a set of keywords, and also the ability to perform more efficiently
different types of queries beyond just searching for a single keyword. For example, we
show how to search for the disjunction of a set of keywords and several other functions.

1.4. Our Results

We consider a dictionary of finite size (e.g., an English dictionary) D that serves as the
universe for our keywords. Additionally, we can also have keywords that must be absent
from the document in order to match it. We describe the various properties of such
filtering software below. A filtering program F stores up to some maximum number
m of matching documents in an encrypted buffer B. We provide several methods for
constructing such software F that saves up to m matching documents with overwhelming
probability and saves non-matching documents with negligible probability (in most
cases, this probability will be identically 0), all without F or its encrypted buffer B
revealing any information about the query that F performs. The requirement that non-
matching documents are not saved (or at worst with negligible probability) is motivated
by the streaming model: in general the number of non-matching documents will be
vast in comparison with those that do match, and hence, to use only small storage,
we must guarantee that non-matching documents from the stream do not collect in our
buffer. Among our results, we show how to execute queries that search for documents
that match keywords in a disjunctive manner, i.e., queries that search for documents
containing one or more keywords from a keyword set. Based on the Paillier crypto-
system [26], we provide a construction where the filtering software F runs in O(l · k3)

time to process a document, where k is a security parameter and l is the length of a
document, and stores results in a buffer bounded by O(m · l · k2). We stress again that
F processes documents one at a time in an on-line, streaming environment. The size of
F in this case will be O(k · |D|) where |D| is the size of the dictionary in words. Note
that in the above construction, the program size is proportional to the dictionary size. We
can in fact improve this as well: we have constructed a reduced program size model that
depends on the �-Hiding Assumption [9]. The running time of the filtering software in
this implementation is linear in the document size and is O(k3) in the security parameter
k. The program size for this model is only O(polylog(|D|)). We also have an abstract
construction based on any group homomorphic, semantically secure encryption scheme.
Its performance depends on the performance of the underlying encryption scheme, but
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will generally perform similarly to the above constructions. As mentioned above, all of
these constructions have size that is independent of the size of the data-stream. Also,
using the results of Boneh et al. [6], we show how to execute queries that search for an
“AND” of two sets of keywords (i.e., the query searches for documents that contain at
least one word from K1 and at least one word from K2 for sets of keywords K1, K2),
without asymptotically increasing the program size.

We also show several extensions: One has to do with buffer overflow, which we
show how to recognize with overwhelming probability. We also show that if you relax
our definition of correctness (i.e., no longer require that the probability of non-matching
documents being stored in the buffer is negligible), then the protocol can handle arbitrary
bounded-length keywords that need not come from a finite dictionary.

To summarize, our contributions can be divided into three major areas: introduction
of the streaming model; having queries simultaneously return multiple results; and the
ability to extend the semantics of queries beyond just matching a single keyword.

1.5. Comparison with Previous Work

A superficially related topic is that of “searching on encrypted data” (e.g., see [7] and
the references therein). We note that this body of work is in fact not directly relevant, as
the data (i.e., input stream) that is being searched is not encrypted in our setting.

The notion of obfuscation was considered in [3], but we stress that our setting is
different, since our notion of public-key obfuscation allows the output to be encrypted,
whereas the definition of [3] demands the output of the obfuscated code is given in the
clear, making the original notion of obfuscation much more demanding.

Our notion is also superficially related to the notion of “crypto-computing” [27].
However, in this work we are concerned with programs that contain loops, and where
we cannot afford to expand this program into circuits, as this will blow-up the program
size.

Our work is most closely related to the notion of single-database PIR, that was intro-
duced by Kushilevitz and Ostrovsky [20] and has received a lot of subsequent attention
in the literature [20], [9], [14], [24], [21], [8], [28], [22], [16]. (In the setting of multiple,
non-communicating databases, the PIR notion was introduced in [11].) In particular,
the first PIR with polylogarithmic overhead was shown by Cachin et al. [9], and their
construction can be executed in the streaming environment. Thus the results of this paper
can be viewed as a generalization of their work as well. The setting of single-database
PIR keyword search was considered in [20], [10], [19], and more recently by Freedman
et al. [16]. The issue of multiple matches of a single keyword (in a somewhat different
setting) was considered by Kurosawa and Ogata [19].

There are important differences between previous works and our work on single-
database PIR keyword search: in the streaming model the program size must be inde-
pendent of the size of the stream, as the stream is assumed to be an arbitrarily large
source of data and we do not need to know the size of the stream when compiling the
obfuscated query. In contrast, in all previous non-trivial PIR protocols, when creating
the query, the user of the PIR protocol must know the upper bound on the database size
while creating the PIR query. Also, as is necessary in the streaming model, the memory
needed for our scheme is bounded by a value proportional to the size of a document
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as well as an upper bound on the total number of documents we wish to collect, but
is independent of the size of the stream of documents. Finally, we have also extended
the types of queries that can be performed. In previous work on keyword PIR, a single
keyword was searched for in a database and a single result returned. If one wanted to
query an “OR” of several keywords, this would require creating several PIR queries,
and then sending each to the database. We however show how to extend intrinsically
the types of queries that can be performed, without loss of efficiency or with multiple
queries. In particular, all of our systems can perform efficiently an “OR” on a set of
keywords and its negation (i.e., a document matches if a certain keyword is absent from
the document). In addition, we show how to execute privately a query that searches for
an “AND” of two sets of keywords, meaning that a document will match if and only if it
contains at least one word from each of the keyword sets without an increase in program
(or dictionary) size.

1.6. Potential Applications

As mentioned above, there are many applications of this work for the purposes of in-
telligence gathering. One could monitor a vast number of internet transactions using
this technology. For example, chat rooms, message boards, instant messaging, and on-
line news feeds. It could also be run on search engine hosts to track the IP addresses
of computers that search for certain suspicious phrases or words. Also, using an index
of names or a phone book as a source for keywords, this work could enable a private
search for locating an individual using an alias, without revealing one’s knowledge of
that alias. There are also several extensions of our techniques that we discuss in Sec-
tion 8 that may also have practical significance. Another possible application outside of
intelligence gathering, is to help facilitate a company or organization to perform an audit
of its own branches without massive data transfers or commandeering actual hardware
or machines.

1.7. Subsequent Work

Our definition of public-key program obfuscation motivated further interest on public-
key obfuscation, for example see the work of Adida and Wickström on “obfuscated
mixing” [1]. There have also been several follow-up works concerning practical consid-
erations for private searching on streaming data, for example the work of Danezis and
Diaz [13] and Bethencourt et al. [4], [5]. These works primarily concern the issue of
reducing the buffer size of our construction by a logarithmic factor. However, this comes
at the cost of making the running time for buffer decryption linear in the stream size. For
further discussion see Section 9.

1.8. Overview and Intuition of the Solution

Informally, our idea is to create a device that conditionally and obliviously creates
encryptions (in some homomorphic encryption scheme) of documents based on the
matching of keyword criteria, and then writes these encryptions to random locations in
a buffer, using homomorphic properties of the encryption scheme. By “conditionally”,
what is meant is that if a document matches the query, the device will produce an
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encryption of the document itself. Otherwise, an encryption of the identity element will
be produced. The key idea is that the encryption of the identity element that the software
computes if the document does not match the secret criteria will be indistinguishable from
the encryption of the matching document. This way, both matching and non-matching
documents appear to be treated precisely the same way. The machine or anyone else who
views the execution is totally unaware if the search condition is satisfied, as it is executed
as a straight-line code (i.e., any branches that the program executes are independent of the
search criteria), so that the conditions are never known unless the underlying encryption
scheme is broken. Several probabilistic methods are then applied to ensure a strong sense
of correctness. We demand that none of the documents that match the criteria are lost,
and that no documents that do not satisfy the criteria are collected.

2. Definitions and Preliminaries

2.1. Basic Definitions

For a set V we denote the power set of V by P(V ).

Definition 2.1. Recall that a function g: N −→ R+ is said to be negligible if for any
c ∈ N there exists Nc ∈ Z such that n ≥ Nc 
⇒ g(n) ≤ 1/nc.

Definition 2.2. Let C be a class of programs, and let f ∈ C. We define a public-key
program obfuscator in the weak sense to be an algorithm

Compile( f, r, 1k) → {F(·, ·),Decrypt(·)},

where r is randomness, k is a security parameter, and F and Decrypt are algorithms with
the following properties:

• (Correctness) F is a probabilistic function such that

∀x, PrR,R′ [Decrypt(F(x, R′)) = f (x)] ≥ 1 − neg(k).

• (Compiled Program Conciseness) There exists a constant c such that

| f | ≥ |F(·, ·)|
(| f | + k)c

.

• (Output Conciseness) There exists a constant c such that, for all x, R,

| f (x)| ≥ |F(x, R)|
kc

.

• (Privacy) Consider the following game between an adversary A and a challenger C :
1. On input of a security parameter k, A outputs two functions f1, f2 ∈ C.
2. C chooses a b∈{0, 1} at random and computes Compile( fb, r, k)={F,Decrypt}

and sends F back to A.
3. A outputs a guess b′.
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We say that the adversary wins if b′ = b, and we define the adversary’s advantage
to be AdvA(k) = |Pr(b = b′)− 1

2 |. Finally we say that the system is secure if, for
all A ∈ PPT , AdvA(k) is a negligible function in k.

We also define a stronger notion of this functionality, in which the decryption algorithm
does not give any information about f beyond what can be learned from the output of
the function alone.

Definition 2.3. Let C be a class of programs, and let f ∈ C. We define a public-key
program obfuscator in the strong sense to be a triple of algorithms (Key − Gen,Compile,
Decrypt) defined as follows:

1. Key-Gen(k): Takes a security parameter k and outputs a public key and a secret
key Apublic, Aprivate.

2. Compile( f, r, Apublic, Aprivate): Takes a program f ∈ C, randomness r , and the
public and private keys, and outputs a program F(·, ·) that is subject to the same
correctness and conciseness properties as in Definition 2.2.

3. Decrypt(F(x), Aprivate): Takes output of F and the private key and recovers f (x),
just as in the correctness of Definition 2.2.

Privacy is also defined as in Definition 2.2, however in the first step the adversary
A receives as an additional input Apublic and we also require that Decrypt reveals no
information about f beyond what could be computed from f (x): formally, for all ad-
versaries A ∈ PPT and for all history functions h there exists a simulating program
B ∈ PPT that on input f (x) and h(x) is computationally indistinguishable from A on
input (Decrypt, F(x), h(x)).

In what follows we give instantiations of these general definitions for several classes
of search programs C. We consider a universe of words W = {0, 1}∗, and a dictionary
D ⊂ W with |D| = α < ∞. We think of a document as an ordered, finite sequence
of words in W , however, it will often be convenient to look at the set of distinct words
in a document, and also to look at some representation of a document as a single string
in {0, 1}∗. So, the term document will often have several meanings, depending on the
context: if M is said to be a document, generally this will mean M is an ordered sequence
in W , but at times, (e.g., when M appears in set theoretic formulas) document will mean
a (finite) element of P(W ) (or possibly P(D)), and at other times still, (say when one
is talking of bitwise encrypting a document) we will view M as M ∈ {0, 1}∗. We define
a set of keywords to be any subset K ⊂ D. Finally, we define a stream of documents S
simply to be any sequence of documents.

We consider only a few types of queries in this work, however we state our definitions
in generality. We think of a query type, Q, as a class of logical expressions in ∧,∨,
and ¬. For example, Q could be the class of expressions using only the operation ∧.
Given a query type, one can plug in the number of variables, call it α for an expression,
and possibly other parameters as well, to select a specific boolean expression, Q in α
variables from the class Q. Then, given this logical expression, one can input K ⊂ D
where K = {ki }αi=1 and create a function, call it QK : P(D) → {0, 1} that takes docu-
ments, and returns 1 if and only if a document matches the criteria. QK (M) is computed
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simply by evaluating Q on inputs of the form (ki ∈ M). We call QK a query over
keywords K .

We note again that our work does not show how to execute arbitrary queries privately,
despite the generality of these definitions. In fact, extending the query semantics is an
interesting open problem.

Definition 2.4. For a query QK on a set of keywords K , and for a document M , we
say that M matches query QK if and only if QK (M) = 1.

Definition 2.5. For a fixed query type Q, a private filter generator consists of the
following probabilistic polynomial time algorithms:

1. Key-Gen(k): Takes a security parameter k and generates public key Apublic and a
private key Aprivate.

2. Filter-Gen(D, QK , Apublic, Aprivate,m, γ ): Takes a dictionary D, a query QK ∈ Q
for the set of keywords K , along with the private key, and generates a search
program F . F searches any document stream S (processing one document at a
time and updating B) collects up to m documents that match QK in B, and outputs
an encrypted buffer B that contains the query results, where |B| = O(γ ) throughout
the execution.

3. Filter-Decrypt(B, Aprivate): Decrypts an encrypted buffer B, produced by F as
above, using the private key and produces output B∗, a collection of the matching
documents from S.

We stress that in the above definition, the running-time of Filter-Decrypt is independent
of the size of the stream S. We also remark that here we assume that all documents are
upper bounded by some sufficiently large constant. Our definition can be adopted to work
with variable-size documents, with parameters multiplicatively scaled by sub-dividing
and marking documents into multiple fragments of fixed size and upper-bounding this
quantity instead of m.

Definition 2.6 (Correctness of a Private Filter Generator). Let F =
Filter-Gen(D, QK , Apublic, Aprivate,m, γ ), where D is a dictionary, QK is a query for
keywords K , m, γ ∈ Z+, and (Apublic, Aprivate) = Key-Gen(k). We say that a private
filter generator is correct if the following holds:

Let F run on any document stream S, and set B = F(S).
Let B∗ = Filter-Decrypt(B, Aprivate). Then:

• If |{M ∈ S | QK (M) = 1}| ≤ m then

Pr [B∗ = {M ∈ S | QK (M) = 1}] > 1 − neg(γ ).

• If |{M ∈ S | QK (M) = 1}| > m then

Pr [(B∗ ⊂ {M ∈ S | QK (M) = 1}) ∨ (B∗ = ⊥)] > 1 − neg(γ ),

where ⊥ is a special symbol denoting buffer overflow, and the probabilities are
taken over all coin-tosses of F , Filter-Gen, and Key-Gen.
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Definition 2.7 (Privacy). Fix a dictionary D. Consider the following game between an
adversary A and a challenger C . The game consists of the following steps:

1. C first runs Key-Gen(k) to obtain Apublic, Aprivate, and then sends Apublic to A.
2. A chooses two queries for two sets of keywords, Q0 K0

, Q1 K1
, with K0, K1 ⊂ D

and sends them to C .
3. C chooses a random bit b ∈ {0, 1} and executes Filter-Gen(D, Qb Kb

, Apublic,

Aprivate,m, γ ) to create Fb, the filtering program for the query Qb Kb
, and then

sends Fb back to A.
4. A(Fb) can experiment with the code of Fb in an arbitrary non-black-box way, and

finally outputs b′ ∈ {0, 1}.
The adversary wins the game if b = b′ and loses otherwise. We define adversary A’s
advantage in this game to be

AdvA(k) = |Pr(b = b′)− 1
2 |.

We say that a private filter generator is semantically secure if for any adversary A ∈ PPT
we have that AdvA(k) is a negligible function, where the probability is taken over coin-
tosses of the challenger and the adversary.

2.2. Combinatorial Lemmas

In our definitions we require that matching documents are saved with overwhelming
probability in the buffer B (in terms of the size of B), while non-matching documents
are not saved at all (at worst, with negligible probability). We accomplish this by the
following method: If the document is of interest to us, we throw it at random γ times
into the buffer. What we are able to guarantee is that if only one document lands in a
certain location, and no other document lands in this location, we will be able to recover
it. If there is a collision of one or more documents, we assume that all documents at
this location are lost (and furthermore, we guarantee that we will detect such collisions
with overwhelming probability). To amplify the probability that matching documents
survive, we throw each γ times, and we make the total buffer size proportional to 2γm,
where m is the upper bound on the number of documents we wish to save. Thus, we
need to analyze the following combinatorial game, where each document corresponds
to a ball of a different color.

Color-Survival Game. Let m, γ ∈ Z+, and suppose we have m different colors, call
them {colori }m

i=1, and γ balls of each color. We throw the γm balls uniformly at random
into 2γm bins, call them {binj }2γm

j=1 . We say that a ball “survives” in binj , if no other ball
(of any color) lands in binj . We say that colori “survives” if at least one ball of color
colori survives. We say that the game succeeds if all m colors survive, otherwise we say
that it fails.

Lemma 2.8. The probability that the color-survival game fails is negligible in γ .

Proof. We need to compute the probability that at least one of the m colors does not
survive, i.e., all γ balls of one or more colors are destroyed, and show that this probability
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is negligible in γ . To begin, let us compute the probability that a single ball survives
this process. Since the location of each ball is chosen uniformly at random, clearly these
choices are independent of one another. Hence,

Pr(survival) =
(

2γm − 1

2γm

)γm−1

.

Also recall that

lim
x→∞

(
x − 1

x

)x

= 1

e

and hence

lim
γ→∞

(
2γm − 1

2γm

)γm−1

= 1√
e
≈ 0.61.

Furthermore, as γ increases, this function decreases to its limit, so we always have that
the probability of survival of a single ball is greater than 1/

√
e for any γ > 0.

Now, what is the probability of at least one out of the m colors having all of its γ
balls destroyed by the process? First we compute the probability for just a single color.
Let {Ej }γj=1 be the events that the j th ball of a certain color does not survive. Then the
probability that all γ balls of this color do not survive is

Pr

(
γ⋂

j=1

Ej

)
= Pr(E1)Pr(E2 | E1) · · · Pr(Eγ | Eγ−1 Eγ−2 · · · E1) < ( 1

2 )
γ .

We know the final inequality to be true since each of the probabilities in the right-hand
product are bounded above by 1

2 as the probability of losing a particular ball was smaller
than (1 − 1/

√
e) ≈ .39 < 1

2 , regardless the choice of γ > 0, and given that collisions
have already occurred only further reduces the probability that a ball will be lost. Now,
by the union bound we have that the probability of losing all balls of at least one color
is less than or equal to the sum of the probabilities of losing each color separately. So,
we have

Pr(at least one color does not survive) ≤
m∑

i=1

Pr(colori does not survive) <
m

2γ
,

which is clearly negligible in γ , which is what we wanted to show.

Another issue is how to distinguish valid documents in the buffer from collisions of
two or more matching documents in the buffer. (In general it is unlikely that the sum of
two messages in some language will look like another message in the same language,
but we need to guarantee this fact.) This can also be accomplished by means of a simple
probabilistic construction. We will append to each document k bits, partitioned into k/3
triples of bits, and then randomly set exactly one bit in each triple to 1, leaving the other
two bits 0. When reading the buffer results, we will consider a document to be good if
exactly one bit in each of the k/3 triples of appended bits is a 1. If a buffer collision
occurs between two matching documents, the buffer at this location will store the sum
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of the messages, and the sum of 2 or more of the k-bit strings.1 We need to analyze the
probability that the sum of any number n > 1 of such k-bit strings still has exactly one
bit in each of the k/3 triples set to 1, and show that this probability is negligible in k. We
assume that the strings add together bitwise, modulo 2 as this is the hardest case.2 We
first prove the following lemma.

Lemma 2.9. Let {ei }3
i=1 be the three unit vectors in Z3

2, i.e., (ei )j = δi j . Let n be an
odd integer, n > 1. For v ∈ Z3

2, denote by Tn(v) the number of n-element sequences
{vj }n

j=1 in the ei ’s, such that
∑n

j=1 vj = v. Then

Tn((1, 1, 1)) = 3n − 3

4
.

Proof. We proceed by induction on n. For n = 3, the statement is easy to verify.
Clearly there are six such sequences, as they are obviously in one to one correspondence
with the set of all permutations of three items, and of course |S3| = 6. Finally note that
6 = (33 − 3)/4.

Now assume that for some odd integer n the statement is true. Note that the only
possible sums for such sequences are (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), since the
total number of bits equal to 1 in the sum must be odd since n is odd. Note also that by
symmetry, (1, 0, 0), (0, 1, 0), and (0, 0, 1) must all have the same number of sequences
that sum to these values (since permuting coordinates induces a permutation of the set
of all sequences). So, Tn((1, 0, 0)) = Tn((0, 1, 0)) = Tn((0, 0, 1)). Call this number R.
Since the total number of sequences of length n is 3n , and since they are partitioned by
their sums, we have that

R = 3n − Tn((1, 1, 1))

3
= 3n + 1

4
= Tn((1, 1, 1))+ 1.

Now, we analyze the sums of the sequences of length n + 1 from this data. For each
sequence of length n that summed to (1, 0, 0), (0, 1, 0), or (0, 0, 1), there is exactly one
sequence of length n + 1 that sums to (0, 0, 0). Hence, Tn+1((0, 0, 0)) = 3R. Then,
by symmetry again, we have that Tn+1((0, 1, 1)) = Tn+1((1, 0, 1)) = Tn+1((1, 1, 0)) =
3R − 1. Again, we have the sequences partitioned by their sums, so using the same
methods we can compute Tn+2((1, 1, 1)). For each sequence of length n + 1 that sums
to (0, 1, 1), (1, 0, 1), or (1, 1, 0) there is exactly one sequence of length n + 2 that sums
to (1, 1, 1). Hence

Tn+2((1, 1, 1)) = 3(3R − 1) = 9(
3n + 1

4
)− 3 = 3n+2 − 3

4
.

This completes the proof.

1 If a document does not match, it will be encrypted as the 0 message, as will its appended string of k bits,
so nothing will ever be marked as a collision with a non-matching document.

2 In the general group homomorphic encryption setting, one will use a fixed non-identity element in place
of 1 and the identity in place of zero, performing the same process. If the order of the non-identity element
is 2, then this is the exact same experiment, and as the order increases, the strings add together more and more
like a bitwise OR in which case this problem is trivial.
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Lemma 2.10. Let H be a collection of k-bit strings, partitioned into k/3 triples of bits,
chosen uniformly at random subject to the constraint that each triple contains exactly
one bit that is set to 1. Then, if |H | > 1, the probability that the sum of all strings in H
also satisfies the property that each triple has exactly one bit set to 1 is negligible in k.

Proof. Let n = |H |. For n odd, this is an immediate corollary to Lemma 2.9. Of course,
if n is even, the probability is uniformly 0 since each triple would have an even number
of bits set to 1 in this case.

2.3. Organization of the Rest of This Paper

In what follows we give several constructions of private filter generators, beginning with
our most efficient construction using a variant of the Paillier Cryptosystem [26], [12]. We
also show a construction with reduced program size using the Cachin–Micali–Stadler
(CMS) PIR protocol [9], then we give a construction based on any group homomorphic
semantically secure encryption scheme, and finally a construction based on the work of
Boneh et al. [6] that extends the query semantics to include a single “AND” operation
without increasing the program size.

3. Paillier-Based Construction

Definition 3.1. Let (G1, ·), (G2, ∗) be groups. Let E be the probabilistic encryption
algorithm and let D be the decryption algorithm of an encryption scheme with plaintext
set G1 and ciphertext set G2. The encryption scheme is said to be group homomorphic
if the encryption map E : G1 → G2 has the following property:

∀ a, b ∈ G1, D(E(a · b)) = D(E(a) ∗ E(b)).

Note that since encryption is in general probabilistic, we have to phrase the homomor-
phic property usingD, instead of simply saying that E is a homomorphism. Equivalently,
if E is onto G2, one could say that the mapD is a homomorphism of groups (in the usual
sense), with each coset of ker(D) corresponding to the set of all possible encryptions
of an element of G1. Also, as standard notation when working with homomorphic en-
cryption as just defined, we use idG1 and idG2 to be the identity elements of G1 and G2,
respectively.

3.1. Summary

We believe this construction to be our most practical and efficient solution. The running
time is reasonable, and the program size is proportional to the size of the dictionary.
In addition, the encrypted buffer can remain very small, due to the excellent plaintext–
ciphertext ratio of the Damgård–Jurik extension to the Paillier system. This system can
be used to perform queries consisting of any finite number of “OR” operations.
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3.2. Brief Basics of the Paillier Cryptosystem

Recall that the plaintext and ciphertext in the Paillier cryptosystem are represented as
elements of Zn and Z∗

n2 respectively, where n = pq is an RSA number such that p < q
and with the additional minor assumption that p � q − 1. Recall also the extensions of
Paillier by Damgård and Jurik in which the plaintext and ciphertext are represented as
elements of Zns and Z∗

ns+1 respectively for any s > 0. We use this extension in our work.
Finally, recall that these cryptosystems are homomorphic, so in this case multiplying
ciphertexts gives an encryption of the sum of the plaintexts.3

3.3. Private Filter Generator Construction

We now formally present the Key-Gen, Filter-Gen, and Buffer-Decrypt algorithms. The
classQ of queries that can be executed is the class of all boolean expressions using only
∨. By doubling the program size, it is easy to handle a ∨ of both presence and absence of
keywords. For simplicity of exposition, we describe how to detect collisions separately
from the main algorithm.

Key-Gen(k)
Execute the key generation algorithm for the Paillier cryptosystem to find an appropriate
RSA number, n, and its factorization n = pq. We make one additional assumption on
n = pq: we require that |D| < min{p, q}. (We need to guarantee that any number ≤ |D|
is a unit mod ns .) Save n as Apublic, and save the factorization as Aprivate.

Filter-Gen(D, QK , Apublic, Aprivate,m, γ )
This algorithm outputs a search program F for the query QK ∈ Q. So, QK (M) =∨
w∈K (w ∈ M). We use the Damgård–Jurik extension [12] to construct F as follows.

Choose an integer s > 0 based upon the size of documents that you wish to store so
that each document can be represented as a group element in Zns . Then F contains the
following data:

• A buffer B consisting of 2γm blocks with each the size of two elements ofZ∗
ns+1 (so,

we view each block of B as an ordered pair (v1, v2) ∈ Z∗
ns+1 ×Z∗

ns+1 ). Furthermore,
we initialize every position to (1, 1), two copies of the identity element.

• An array D̂ = {d̂i }|D|
i=1 where each d̂i ∈ Z∗

ns+1 such that d̂i is an encryption of
1 ∈ Zns if di ∈ K and is an encryption of 0 otherwise. (Note: We of course use
re-randomized encryptions of these values for each entry in the array.)

F then proceeds with the following steps upon receiving an input document M from the
stream:

1. Construct a temporary collection M̂ = {d̂i ∈ D̂ | di ∈ M}.
2. Compute

v =
∏

d̂i∈M̂

d̂i .

3 For completeness, an exposition of the Paillier cryptosystem is provided in the appendix.
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3. Compute vM and multiply (v, vM) into γ random locations in the buffer B, just as
in our combinatorial game from Section 2.2.

Note that the private key actually is not needed. The public key alone will suffice for
the creation of F .

Buffer-Decrypt(B, Aprivate)
First, this algorithm simply decrypts B one block at a time using the decryption algorithm
for the Paillier system. Each decrypted block will contain the 0 message (i.e., (0, 0)) or
a non-zero message, (w1, w2) ∈ Zns × Zns . Blocks with the 0 message are discarded
(collisions can easily be detected and discarded using Lemmas 2.10 and 3.2). A non-
zero message (w1, w2) will be of the form (c, cM ′) if no collisions have occurred at this
location, where c is the number of distinct keywords from K that appear in M ′. So to
recover M ′, simply compute w2/w1 and add this to the array B∗. (We know that any
non-zero w1 will be a unit as we required that |D| < min{p, q}.) Finally, output B∗.

In general, the filter generation and buffer decryption algorithms make use of
Lemma 2.10, having the filtering software append a validation string to each message and
having the buffer decryption algorithm save documents to the output B∗ only when the
validation string is valid. In any of our constructions, this can be accomplished by adding
r extra blocks, the size of the security parameter, to an entry in the buffer to represent
the bits of the validation string, however this will be undesirable in many settings where
the plaintext group is large (e.g., our Paillier-based construction) as this would cause a
significant increase in the size of the buffer. However, of course, there will generally be
efficient solutions in these cases, as shown below for the Paillier-based system.

Lemma 3.2. With O(k) additional bits added to each block of B, we can detect all
collisions of matching documents with probability > 1 − neg(k).

Proof. Since log(|D|) will be much smaller than the security parameter k, we can
encode the bits from Lemma 2.10 using O(k) bits via the following method. Let
t = log(|D|), which is certainly an upper bound for the number of bits of c, and will
be considerably smaller than k. Let r = k/t . Let (v, vM) be as described in the filter
generation algorithm, so that v is an encryption of c, the number of keywords present in
M . Pick a subset T ⊂ {0, 1, 2, . . . , r −1} of size r/3, uniformly at random in the format
of Lemma 2.10 (so that exactly one of every three consecutive numbers is selected, i.e.,
among all j ∈ {0, 1, . . . , r − 1} having the same quotient when divided by 3, only one
such j will be in T ). Then compute

x =
∑
j∈T

2t j and h = vx .

Now, h will encrypt a value that has exactly r/3 of the r, t-bit blocks containing non-
zero bits as in Lemma 2.10. So, the filtering software would now write (v, vM , h) to the
buffer instead of just (v, vM). The decryption of h can now be used as in Lemma 2.10 to
distinguish collisions from valid documents, with only one more ciphertext per block.4

4 This does not follow the form of Lemma 2.10 exactly, as exclusive OR is not the operation that is performed
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Also, if one wishes to increase this security parameter r beyond k/t , then of course
additional ciphertexts can be added to each block of the buffer, using them in the same
manner.

3.4. Correctness

We need to show that if the number of matching documents is less than m, then

Pr[B∗ = {M ∈ S | QK (M) = 1}] > 1 − neg(γ )

and otherwise, we have that B∗ is a subset of the matching documents (or contains
the overflow symbol, ⊥). Provided that the buffer decryption algorithm can distinguish
collisions in the buffer from valid documents (see the above remark) this equates to
showing that non-matching documents are saved with negligible probability in B and
that matching documents are saved with overwhelming probability in B. These two facts
are easy to show:

1. Are non-matching documents stored with negligible probability? Yes. In fact, they
are stored with probability 0 since clearly a non-matching document M never
affects the buffer: if M does not match, then v from step 2 will be an encryption
of 0, as will be vM . So, the private filter will multiply encryptions of 0 into the buffer
at various locations which by the homomorphic property of our encryption scheme
has the effect of adding 0 to the plaintext corresponding to whatever encrypted
value was in B. So, clearly, non-matching documents are saved with probability 0.

2. Are all matching documents saved with overwhelming probability? If M does
match, i.e., it contains c > 0 keywords from K , then v computed in step 2 will be
an encryption of c > 0. So, vM will be an encryption of cM . This encryption is
then multiplied into the buffer just as in the color-survival game from Section 2.2,
which we have proved saves all documents with overwhelming probability in γ .
Moreover, we have written an encryption of cM and not of M in general. However,
this will not be a problem as c < min{p, q} since c ≤ |K | < |D|, and hence
c ∈ Z∗

ns . So the Buffer-Decrypt algorithm will be able to divide by c and recover
the message M successfully.

3.5. Buffer Overflow Detection

For this construction, it is quite simple to create an overflow flag for the encrypted buffer.
For a document M , define

vM =
∏

d̂i∈M̂

d̂i

just as above. Note that vM encrypts the number of distinct keywords present in M . Then
the value

V =
∏
M∈S

vM

on the plaintext upon multiplying ciphertexts. However, having them added as they are here obviously further
decreases the probability that a collision will look valid.
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will of course be an encryption of an upper bound on the number of matching documents
that have been written to the buffer, where here S is the document stream. This encrypted
value can be stored and maintained as a prefix of the buffer. If a reasonable estimate for
the average number of keywords per matching document is available, then of course a
more accurate detection value can be obtained. Note that although one may be tempted
to use this value interactively to determine when to retrieve the buffer contents, this is
potentially dangerous as this interaction between the parties could be abused to gain
information about the keywords.

3.6. Efficiency in Time and Space

We now compute the efficiency of the software in relation to the security parameter k,
the size of the dictionary D, the number of documents to be saved m, and the size of a
document M .

1. Time Efficiency. For the software to process a given document it performs a
number of multiplications proportional to the size of a document, followed by a
single modular exponentiation, and then followed by 2γ additional multiplications.
Modular exponentiation takes O(k3) time which is clearly the dominating term
since the multiplications take at worst quadratic time in k (using long multiplication)
for a fixed document size. So we conclude that our private filter takes time O(k3) for
fixed document size. If you instead fix the security parameter and analyze the filter
based on document size, |M |, the running time will again be cubic as the modular
exponentiation takes cubic time in the number of bits of a document. However,
the running time could of course be changed to linear in the document length if
you process documents in blocks, instead of as a whole. (That is, compute v by
examining the entire document, just as before, and then write the document to the
buffer in smaller blocks.) So, the running time would be quadratic in k times linear
in document length. Note: for k = 1024, modular exponentiation on a somewhat
modern computer (2 GHz Pentium processor) can be accomplished in less than
0.03 seconds, so it seems that such a protocol could be practically implemented.

2. Space Efficiency. The largest part of the program is the array D̂. If you process
documents in blocks, this array will take approximately k · |D| bits. However, if
documents are processed as a whole, then the array will take O(|M | · |D|). The rest
of the program size remains constant in terms of the variables we are studying, so
these estimates hold for the size of the entire program. The size of the buffer, B(γ ),
was set to be 4γm times the size of a ciphertext value. However, since the cipher-
text–plaintext size ratio approaches 1 as the message size increases (they differ by
a constant number of bits) in the Damgård–Jurik system, this solution seems near
optimal in terms of buffer size. A loose upper bound on the probabilities of losing
a document is given by the proof of Lemma 2.8. The estimate it gives is that the
probability of losing a single document is less than the total number of documents
to be saved divided by 2γ . Just using the basic Paillier scheme (ciphertext size to
plaintext size ratio = 2), and dividing a message into message chunks, a buffer
of approximately 50 times that of the plaintext size of the documents you expect
to store (i.e., γ = 13) produces probabilities of success around .99 for m = 100
(again, m is the number of documents to be stored).
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Theorem 3.3. Assuming that the Paillier (and Damgård–Jurik) cryptosystems are se-
mantically secure, then the private filter generator from the preceding construction is
semantically secure according to Definition 2.7.

Proof. Denote by E the encryption algorithm of the Paillier/Damgård–Jurik cryptosys-
tem. Suppose that there exists an adversary A that can gain a non-negligible advantage
ε in our semantic security game from Definition 2.7. Then A could be used to gain an
advantage in breaking the semantic security of the Paillier encryption scheme as follows:
Initiate the semantic security game for the Paillier encryption scheme with some chal-
lenger C . C will send us an integer n for the Paillier challenge. For messages m0,m1,
we choose m0 = 0 ∈ Zns and choose m1 = 1 ∈ Zns . After sending m0,m1 back to C ,
we will receive eb = E(mb), an encryption of one of these two values. Next we initiate
the private filter generator semantic security game with A. A will give us two queries
Q0, Q1 in Q for some sets of keywords K0, K1, respectively. We use the public key n
to compute an encryption of 0, call it e0 = E(0). Now we pick a random bit q, and con-
struct filtering software for Qq as follows: we proceed as described above, constructing
the array D̂ by using re-randomized encryptions, E(0) of 0 for all words in D\Kq , and
for the elements of Kq , we use E(0)eb, which are randomized encryptions of mb. Now
we give this program back to A, and A returns a guess q ′. With probability 1

2 , eb is an
encryption of 0, and hence the program that we gave A does not search for anything at
all, and in this event clearly A’s guess is independent of q, and hence the probability
that q ′ = q is 1

2 . However, with probability 1
2 , eb = E(1), hence the program we have

sent A is filtering software that searches for Qq , constructed exactly as in the Filter-Gen
algorithm, and hence in this case with probability 1

2 + ε, A will guess q correctly, as our
behavior here was indistinguishable from an actual challenger. We determine our guess
b′ as follows: if A guesses q ′ = q correctly, then we will set b′ = 1, and otherwise we
will set b′ = 0. Putting it all together, we can now compute the probability that our guess
is correct:

Pr(b′ = b) = 1

2

(
1

2

)
+ 1

2

(
1

2
+ ε

)
= 1

2
+ ε

2

and hence we have obtained a non-negligible advantage in the semantic security game
for the Paillier system, a contradiction to our assumption. Therefore, our system is secure
according to Definition 2.7.

4. Reducing Program Size below Dictionary Size

In our other constructions the program size is proportional to the size of the dictionary.
By relaxing our definition slightly, we are able to provide a new construction using
Cachin–Micali–Stadler (CMS) PIR [9] which reduces the program size. Security of this
system depends on the security of [9] which uses the �-Hiding Assumption.5

The basic idea is to have a standard dictionary D agreed upon ahead of time by all
users, and then to replace the array M̂ in the filtering software with PIR queries that

5 It is an interesting open question of how to reduce the program size under other cryptographic assumptions.
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execute on a database consisting of the characteristic function of M with respect to D
to determine if keywords are present or not. The return of the queries is then used to
modify the buffer. This will reduce the size of the distributed filtering software. However,
as mentioned above, we will need to relax our definition slightly and publish an upper
bound U for |K |, the number of keywords used in a search.

4.1. Private Filter Generation

We now formally present the Key-Gen, Filter-Gen, and Buffer-Decrypt algorithms of
our construction. The class Q of queries that can be executed by this protocol is again
just the set of boolean expressions in only the operator ∨ over the presence or absence
of keywords, as discussed above. Also, an important note: for this construction, it is
necessary to know the set of keywords being used during key generation, and hence
what we achieve here is only weak public-key program obfuscation, as in Definition 2.2.
For consistency of notation, we still present this as three algorithms, even though the
key generation could be combined with the filter generation algorithm. For brevity, we
omit the handling of collision detection, which is handled using Lemma 2.10.

Key-Gen(k, K , D)
The CMS algorithms are run to generate PIR queries, {qj } for the keywords K , and the
resulting factorizations of the corresponding composite numbers {mj } are saved as the
key, Aprivate, while Apublic is set to {mj }.

Filter-Gen(D, QK , Apublic, Aprivate,m, γ )
This algorithm constructs and outputs a private filter F for the query QK , using the PIR
queries qj that were generated in the Key-Gen(k, K , D) algorithm. It operates as follows.

F contains the following data:

• The array of CMS PIR queries, {qj }U
j=1 from the first algorithm, which are designed

to retrieve a bit from a database having size equal to the number of words in the
agreed upon dictionary, D. Only |K | of these queries will be meaningful. For each
w ∈ K , there will be a meaningful query that retrieves the bit at index correspond-
ing to w’s index in the dictionary. Let {pj,l}|D|

l=1 be the primes generated by the
information in qj , and let mj be composite number part of qj . The leftover U −|K |
queries are set to retrieve random bits.

• An array of buffers {Bj }U
j=1, each indexed by blocks the size of elements of Z∗

mj
,

with every position initialized to the identity element.

The program then proceeds with the following steps upon receiving an input document M :

1. Construct the complement of the characteristic vector for the words of M relative
to the dictionary D, i.e., create an array of bits D̄ = {d̄i } of size |D|, such that
d̄i = 0 ⇔ di ∈ M . We will use this array as our database for the PIR protocols.

Next, for each j ∈ {1, 2, . . . ,U }, do the following steps:
2. Execute query qj on D̄ and store the result in rj .
3. Bitwise encrypt M , using rj to encrypt a 1 and using the identity of Z∗

mj
to encrypt

a 0.
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4. Take the j th encryption from step 3 and positionwise multiply it into a random
location in buffer Bj γ -times, as described in our color-survival game from Sec-
tion 2.

Buffer-Decrypt(B, Aprivate)
Simply decrypts each buffer Bj one block at a time by interpreting each group element
with pj,i th roots as a 0 and other elements as 1’s, where i represents the index of the
bit that is searched for by query qj . All valid non-zero decryptions are stored in the
output B∗.

4.2. Correctness of Private Filter

Since CMS PIR is not deterministic, it is possible that our queries will have the wrong an-
swer at times. However, this probability is negligible in the security parameter. Again, as
we have seen before, provided the decryption algorithm can distinguish valid documents
from collisions in buffer, correctness equates to storing non-matching documents in B
with negligible probability and matching documents with overwhelming probability.
These facts are easy to verify:

1. Are non-matching documents stored with negligible probability? Yes. With over-
whelming probability, a non-matching document M will not affect any of the
meaningful buffers. If M does not match, then the filtering software will (with very
high probability) compute subgroup elements for all of the important rj ’s. So, the
encryption using these rj ’s will actually be an encryption of the 0 message, and,
by our above remarks, will have no effect on the buffer.

2. Are matching documents saved with overwhelming probability? If M does match,
i.e., it contains a keyword from K , then, with very high probability, we will have
at least one rj that is not in the specified subgroup, and, hence, the message will
be properly encrypted and stored in the buffer. Since we used the method from
our combinatorial game in Section 2.2 to fill each buffer with documents, with
overwhelming probability all matching documents will be saved.

4.3. Efficiency of Filtering Software in Time and Space

We now compute the efficiency of the software in relation to the security parameter k,
the size of the dictionary D, the upper bound on the keywords U , and the number of
documents to be saved, n.

1. Time Efficiency. For the software to process a given document it needs to run U
CMS PIR queries. To answer each query requires a number of modular exponen-
tiations equal to the size of the dictionary, and each modular exponentiation takes
about O(k3) time. This procedure is at worst linear in the number of words of a
document (to construct the database for the PIR queries) so we conclude that the
running time is in fact O(k3).

2. Space Efficiency. The only variable-sized part of the program now is the PIR
queries. Each CMS PIR query consists of only polylogarithmic bits in terms of the
dictionary size, |D|. So, in general, this could be an advantage.
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Theorem 4.1. Assuming that the�-Assumption holds, the private filter generator from
the preceding construction is semantically secure according to Definition 2.2.

Proof. If an adversary can distinguish any two keyword sets, then the adversary can
also distinguish between two fixed keywords, by a standard hybrid argument. This is
precisely what it means to violate the privacy definition of [9], which is proven under
the �-Assumption.

5. Eliminating the Probability of Error with Perfect Hash Functions

In this section we present ways to reduce the probability of collisions in the buffer by
using perfect hash functions. Recall the definition of a perfect hash function. For a set
S ⊂ {1, . . . ,m}, if a function h: {1, . . . ,m} → {1, . . . , n} is such that h|S (the restriction
of h to S) is injective, then h is called a perfect hash function for S. We are concerned
with families of such functions. We say that H is an (m, n, k)-family of perfect hash
functions if ∀S ⊂ {1, . . . ,m} with |S| = k, ∃h ∈ H such that h is perfect for S.

We apply these families in a very straightforward way. Namely, we define m to be the
number of documents in the stream and k to be the number of documents we expect to
save. Then, since there exist polynomial size (m, n, k)-families of perfect hash functions
H , our system could consist of |H | buffers, each of size n documents, and our protocol
would just write each (potential) encryption of a document to each of the |H | buffers
once, using the corresponding hash function from H to determine the index in the buffer.
Then, no matter which of the

(m
k

)
documents were of interest, at least one of the functions

in H would be injective on that set of indexes, and hence at least one of our buffers would
be free of collisions.

We note that the current proven upper bounds on the sizes of such families do not
necessarily improve our results; the purpose of this section is theoretical, the point being
that we can eliminate the probability of losing a matching document in a non-trivial way.

In the work of Mehlhorn [23], the following upper bound for the size of perfect hash
function families is proved, where H is an (m, n, k)-family as defined above:

|H | ≤
⌈

log
(m

k

)
log(nk)− log(nk − k!

(n
k

)
)

⌉
.

This result could be used in practice, but would generally not be as space efficient as
our other models. However, if the lower bounds proved in [15] were achieved, then we
could make such a system practical. For example, if one wanted to save 25 documents
from a stream of tens of thousands of documents (say ≈ 60,000), then 7 buffers the size
of 250 documents each could be used to save 25 documents without any collisions in at
least one of the buffers.

6. Construction Based on Any Homomorphic Encryption

We provide here an abstract construction based upon an arbitrary homomorphic, seman-
tically secure public-key encryption scheme. The class of queriesQ that are considered
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here is, again, all boolean expressions in only the operation ∨, over the presence or ab-
sence of keywords, as discussed above. This construction is similar to the Paillier-based
construction, except that since we encrypt bitwise, we incur an extra multiplicative factor
of the security parameter k in the buffer size. However, both the proof and the construction
are somewhat simpler and can be based on any homomorphic encryption.

6.1. Preliminaries

Throughout this section let PKE = {KG, E,D} be a public-key encryption scheme.
Here, KG, E , and D are key generation, encryption, and decryption algorithms,
respectively.

Semantically Secure Encryption

For an encryption scheme, we define semantic security in terms of the following game
between an adversary A and a challenger C , consisting of the following steps:

1. C runs the key generation algorithm KG(k), and sends all public parameters to A.
2. A chooses two messages of equal length, M0, M1, and sends them to C .
3. C chooses a random bit b ∈ {0, 1}, computes c = E(Mb), an encryption of Mb,

and sends this ciphertext c to A.
4. A outputs a guess b′ ∈ {0, 1}.
We say that A wins the game if b′ = b and loses otherwise. We define the adversary

A’s advantage in this game to be

AdvA(k) = |Pr(b = b′)− 1
2 |.

The encryption scheme is said to be semantically secure if for any adversary A ∈ PPT
we have that AdvA(k) is a negligible function.

6.2. Construction of Abstract Private Filter Generator

Let PKE = {KG, E,D} be a group homomorphic, semantically secure, public-key en-
cryption scheme, satisfying Definition 3.1. We describe the Key-Gen, Filter-Gen, and
Buffer-Decrypt algorithms. We will write the group operations of G1 and G2 multiplica-
tively. (As usual, G1,G2 come from a distribution of groups in some class depending
on the security parameter, but to avoid confusion and unnecessary notation, we always
refer to them simply as G1,G2 where it is understood that they are actually sampled
from some distribution based on k.)

Key-Gen(k)
Execute KG(k) and save the private key as Aprivate, and save the public parameters of
PKE as Apublic.

Filter-Gen(D, QK , Apublic, Aprivate,m, γ )
This algorithm constructs and outputs a filtering program F for QK , constructed as
follows.
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F contains the following data:

• A buffer B(γ ) of size 2γm, indexed by blocks the size of an element of G2 times
the document size, with every position initialized to idG2 .

• Fix an element g ∈ G1 with g  = idG1 . The program contains an array D̂ = {d̂i }|D|
i=1

where each d̂i ∈ G2 such that d̂i is set to E(g) ∈ G1 if di ∈ K and it is set to E(idG1)

otherwise. (Note: we are of course re-applying E to compute each encryption, and
not re-using the same encryption with the same randomness over and over.)

F then proceeds with the following steps upon receiving an input document M :

1. Construct a temporary collection M̂ = {d̂i ∈ D̂ | di ∈ M}.
2. Choose a random subset S ⊂ M̂ of size !|M̂ |/2" and compute

v =
∏
s∈S

s.

3. Bitwise encrypt M using encryptions of idG1 for 0’s and using v to encrypt 1’s to
create a vector of G2 elements.

4. Choose a random location in B, take the encryption of step 3, and positionwise
multiply these two vectors storing the result back in B at the same location.

5. Repeat steps 2–4 (c/(c − 1))γ times, where in general, c will be a constant ap-
proximately the size of G1.

Buffer-Decrypt(B, Aprivate)
Decrypts B one block at a time using the decryption algorithmD to decrypt the elements
of G2, and then interpreting non-identity elements of G1 as 1’s and idG1 as 0, storing the
non-zero, valid messages in the output B∗.

6.3. Correctness of Abstract Filtering Software

Again, provided that the decryption algorithm can distinguish valid documents from
collisions in buffer, correctness equates to storing non-matching documents in B with
negligible probability and matching documents with overwhelming probability, which
can be seen as follows:

1. Are non-matching documents stored with negligible probability? Yes. In fact, they
are stored with probability 0 since clearly if a document M does not match, then
all of the values in M̂ will be encryptions of idG1 and hence so will the value v. So
the buffer contents will be unaffected by the program executing on input M .

2. Are all matching documents saved with overwhelming probability? First, observe
that if M contains at least one keyword, step 2 will compute v to be an encryption
of a non-identity element of G1 with probability at least 1

2 , regardless of what G1

is (as long as |G1| > 1). So, by only repeating steps 2–4 a small number of times,
the probability that a matching document will be written at least once becomes
exponentially close to 1. We will choose the number of times to repeat steps 2–4 so
that the expected number of non-identity v’s that we will compute will be equal to
γ . Then, we will essentially be following the method in our “color-survival” game
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from Section 2.2 for placing our documents in the buffer, and hence all documents
will be saved with overwhelming probability in γ .

Theorem 6.1. Assuming that the underlying encryption scheme is semantically se-
cure, the private filter generator from the preceding construction is semantically secure
according to Definition 2.7.

Proof. Suppose that there exists an adversary A that can gain a non-negligible advan-
tage ε in our private data collection semantic security game. Then A could be used to
gain an advantage in breaking the semantic security of PKE as follows: We initiate the
semantic security game forPKE with some challenger C , and for the plaintext messages
m0,m1 in this game, we choose m0 = idG1 and choose m1 to be g ∈ G1, where g  = idG1 .
After sending m0,m1 to our opponent C in the semantic security game, we will receive
eb = E(mb), an encryption of one of these two values. Next we initiate the private data
collection semantic security game with A, where we play the role of the challenger. A
will give us two sets of keywords K0, K1 ⊂ D. We assume that we have access to E
since the system was assumed to be public key, so we can compute eid = E(idG1).

6 Now
we pick a random bit q , and construct filtering software for Kq as follows: we proceed as
described above, constructing the array D̂ by using re-randomized encryptions E(idG1)

of the identity7 for all words in D\Kq , and, for the elements of Kq , we use E(eid)eb,
which will be a randomized encryption of mb by our assumption that the system was
homomorphic.8 Now we give this program back to A, and A returns a guess q ′. With
probability 1

2 , the program that we gave A does not search for anything at all, and, in this
event, clearly A’s guess is independent of q, and hence the probability that q ′ = q is 1

2 .
However, with 1

2 probability, the program we have sent A searches for Kq (and is in fact
indistinguishable from programs that are actually created with the Filter-Gen algorithm),
and hence in this case with probability 1

2 +ε, A will guess q correctly. We determine our
guess b′ as follows: if A guesses q ′ = q correctly, then we will set b′ = 1, and otherwise
we will set b′ = 0. Putting it all together, we can now compute the probability that our
guess is correct:

Pr(b′ = b) = 1

2

(
1

2

)
+ 1

2

(
1

2
+ ε

)
= 1

2
+ ε

2

and hence we have obtained a non-negligible advantage in the semantic security game
for PKE , a contradiction to our assumption. Therefore, our system is secure according
to Definition 2.7.

6 In most cases, just having an encryption of idG1 , without access to E will suffice.
7 Using er

id for random r would generally suffice.
8 Again, one could generally get away with using er

ideb if the group has a simple enough (e.g., cyclic)
structure. We just need to ensure that the distribution of encryptions we produce here is truly indistinguishable
from the distributions created by the Filter-Gen algorithm. This is the main reason why we required the
underlying system to be public key—it in general will not be necessary, but at this level of abstraction, how
else can one come up with uniform encryptions?
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7. Construction for a Single AND

7.1. Handling Several AND Operations by Increasing Program Size

We note that there are several simple (and unsatisfactory) modifications that can be made
to our basic system to compute an AND. For example a query consisting of at most c
AND operations can be performed simply by changing the dictionary D to a dictionary
D′ containing all |D|c c-tuples of words in D, which of course comes at a polynomial
blow-up9 of program size.10 So, only constant, or logarithmic size keyword sets can be
used in order to keep the program size polynomial.

7.2. Brief Basics of the Boneh, Goh, and Nissim (BGN) Cryptosystem

In [6] the authors make use of groups that support a bilinear map. In what follows let
G,G1 be two cyclic groups of order n = q1q2, a large composite number, and let g be
a generator of G. A map e: G × G → G1 is called a bilinear map if for all u, v ∈ G
and a, b ∈ Z, we have that e(ua, vb) = e(u, v)ab. Also, we require that 〈e(g, g)〉 = G1

for any choice of a generator g ∈ G. This bilinear map will serve as our multiplication
operator for encrypted values, and hence only one such multiplication is possible.

The security of the system is based on a subgroup indistinguishability assumption,
related to the difficulty of computing discrete logs in the groups G,G1. More formally,
it is as follows.

Let G(k) be an algorithm that returns (q1, q2,G,G1, e) as described above, where k
is the number of bits of the primes q1, q2. Then the subgroup decision problem is simply
to distinguish the distribution (n,G,G1, e, x) from the distribution (n,G,G1, e, xq2),
where x is uniformly random in G, and the other variables come from a distribution
determined by G. Clearly this is a stronger assumption than the hardness of factoring,
and it is also a stronger assumption than the hardness of discrete logs.11 For an algorithm
A ∈ PPT, the hardness assumption is formalized by first defining the advantage of the
adversary to be

AdvA(k) = |Pr[A(n,G,G1, e, x) = 1] − Pr[A(n,G,G1, e, xq2) = 1]|,

where the probabilities are taken over samples of G(k) to generate the (n,G,G1, e) and
over x which was uniformly random in G. One then says that G satisfies the subgroup
decision problem if AdvA(k) is negligible in k.

9 Asymptotically, if we treat |D| as a constant, the above observation allows a logarithmic number of AND
operations with polynomial blow-up of program size. It is an interesting open problem to handle more than a
logarithmic number of AND operations, keeping the program size polynomial.

10 One suggestion that we received for an implementation of “AND” is to keep track of several buffers, one
for each keyword or set of keywords, and then look for documents that appear in each buffer after the buffers
are retrieved, however, this will put many non-matching documents in the buffers, and hence is inappropriate
for the streaming model. Furthermore, it really just amounts to searching for an OR and doing local processing
to filter out the difference.

11 One could just pick a generator g of G, compute the log of the last parameter (x or xq2 ) with respect to
the base g, and then compute the gcd with n to distinguish.
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7.3. Executing AND without Increasing Program Size

Using the results of Boneh et al. [6], we can extend the types of queries that can be
privately executed to include queries involving a single AND of an OR of two sets of
keywords without increasing the program size. This construction is very similar to the
abstract construction, and hence several details that would be redundant are omitted from
this section. The authors of [6] build an additively homomorphic public-key cryptosystem
that is semantically secure under this subgroup decision problem. The plaintext set
of the system is Zq2 , and the ciphertext set can be either G or G1 (which are both
isomorphic to Zn). However, the decryption algorithm requires one to compute discrete
logs. Since there are no known algorithms for efficiently computing discrete logs in
general, this system can only be used to encrypt small messages.12 Using the bilinear
map e, this system has the following homomorphic property. Let F ∈ Zq2 [X1, . . . , Xu]
be a multivariate polynomial of total degree 2 and let {ci }u

i=1 be encryptions of {xi }u
i=1,

xi ∈ Zq2 . Then one can compute an encryption cF of the evaluation F(x1, . . . , xu) of
F on the xi with only the public key. This is done simply by using the bilinear map e
in place of any multiplications in F , and then multiplying ciphertexts in the place of
additions occurring in F , that is, if E is the encryption map and if

F =
∑

1≤i≤ j≤u

ai j Xi X j ,

then from {cl = E(xl)}u
l=1, xl ∈ Zq2 we can compute

E(F(x1, . . . , xu)) =
∏

1≤i≤ j≤u

e(ci , cj )
ai j ,

where all multiplications (and exponentiations) are in the group G1. Once again, since
decryption is feasible only when the plaintext values are small, one must restrict the
message space to be a small subset ofZq2 . (In our application, we always have xi ∈ {0, 1}.)
Using this cryptosystem in our abstract construction, we can easily extend the types of
queries that can be performed.

7.4. Construction of Private Filter Generator

More precisely, we can now perform queries of the following form, where M is a
document and K1, K2 ⊂ D are sets of keywords:

(M ∩ K1  = ∅) ∧ (M ∩ K2  = ∅).
We describe the Key-Gen, Filter-Gen, and Buffer-Decrypt algorithms below.

Key-Gen(k)
Execute the key generation algorithm of the BGN system to produce Apublic = (n,G,G1,

e, g, h) where g is a generator, n = q1q2, and h is a random element of order q1. The
private key, Aprivate is the factorization of n. We make the additional assumption that
|D| < q2.

12 A small message size is clearly a fundamental limitation of the construction since efficiently computing
arbitrary discrete logs would violate the security of the system.
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Filter-Gen(D, QK1,K2 , Apublic, Aprivate,m, γ )
This algorithm constructs and outputs a private filter F for the query QK1,K2 , constructed
as follows, where this query searches for all documents M such that (M ∩ K1  = ∅) ∧
(M ∩ K2  = ∅).

F contains the following data:

• A buffer B(γ ) of size 2γm, indexed by blocks the size of an element of G1 times
the document size, with every position initialized to the identity element of G1.

• Two arrays D̂l = {d̂l
i }|D|

i=1 where each d̂l
i ∈ G, such that d̂l

i is an encryption of 1 ∈ Zn

if di ∈ Kl and an encryption of 0 otherwise.

F then proceeds with the following steps upon receiving an input document M :

1. Construct temporary collections M̂l = {d̂l
i ∈ D̂l | di ∈ M}.

2. For l = 1, 2, compute

vl =
∏

d̂l
i ∈M̂l

d̂l
i

and

v = e(v1, v2) ∈ G1.

3. Bitwise encrypt M using encryptions of 0 in G1 for 0’s and using v to encrypt 1’s
to create a vector of G1 elements.

4. Choose γ random locations in B, take the encryption of step 3, and positionwise
multiply these two vectors storing the result back in B at the same location.

Buffer-Decrypt(B, Aprivate)
Decrypts B one block at a time using the decryption algorithm from the BGN system,
interpreting non-identity elements of Zq2 as 1’s and 0 as 0, storing the non-zero, valid
messages in the output B∗.13

7.5. Correctness of Filtering Software

As usual, we show the following two facts, which equate to correctness:

1. Are non-matching documents stored with negligible probability? Yes. In fact, they
are stored with probability 0 since clearly if a document M does not match, then it
either did not match K1 or it did not match K2. Hence, all of the values in M̂1 or
M̂2 will be encryptions of 0 and hence so will the value v. So the buffer contents
will be unaffected by the program executing on input M .

2. Are all matching documents saved with overwhelming probability? Clearly, if a
document M satisfies (M ∩ K1  = ∅) ∧ (M ∩ K2  = ∅), then v1 and v2 will be
encryptions of non-zero elements of Zq2 (as we ensured that |D| < q2), and so
will v, as Zq2 is a domain. Then we will be following the method in our “color-
survival” game from Section 2.2 for placing our documents in the buffer, and hence
all documents will be saved with overwhelming probability in γ .

13 See footnote 3.
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Theorem 7.1. Assuming that the subgroup decision problem of [6] is hard, then the
private filter generator from the preceding construction is semantically secure according
to Definition 2.7.

Proof. Note that if an adversary can distinguish two queries, then the adversary has
successfully distinguished one of the sets of keywords in the first query from the corre-
sponding set in the second query. Now, it is a minor reduction to apply the abstract proof
of Theorem 6.1, since this system is essentially the abstract construction built around
the BGN cryptosystem.

8. Extensions

8.1. Detecting Buffer Overflow

We take note of the fact that one can easily detect buffer overflow with overwhelming
probability in the correctness parameter γ . In the work of Kamath et al. [18], a Chernoff-
like bound is shown for the number of empty bins in the occupancy problem (where a
number of balls are thrown uniformly and independently into n bins), i.e., as n increases,
the probability that the number of empty bins after the process is a fixed proportion away
from the mean is negligible in n. Hence, one could proceed as follows to detect overflow:

Let m be the maximum number of documents to save. Double the buffer size from
2γm to 4γm. Let n = 4γm. Let r be the number of matching documents written to
the buffer. Overflow is defined as the condition r > m. Note that we can detect with
probability 1 whether or not any documents have landed in a specific buffer location just
by checking to see if it encrypts the identity or not. So we can count the exact number
of occupied bins. In the event that m < r ≤ 2m, then, by Lemma 2.8, we will in fact be
able to recover at least one copy of all r documents, and hence be aware of an overflow.
In the event that r > 2m, then we will throw more than 2γm = n/2 balls into our bins,
and the expected number of occupied bins will be ≥ 0.4n. Applying the results of [18],
it will be negligibly likely that the number of occupied bins is less than n/4, which is
always true if overflow has not occurred. So, if one modifies the filtering software to
return overflow in the event that

1. more than m valid documents are recovered, or
2. the number of occupied bins is more than n/4 = γm,

then it will correctly detect overflow with overwhelming probability in the correctness
parameter γ .

8.2. Keyword Search for Arbitrary Strings

We point out a few straightforward extensions to this work which, while weakening our
very strong notion of correctness, allows more functionality, which may be useful in
practice.

One of the limitations of the strict model we presented is the fact that all keywords
used in a search must come from a finite, public dictionary. In practice, we wish to
extend this to be arbitrary words of finite length. This is easy to do, as long as we relax
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our definition of correctness to admit “false positives” into the buffer with small (but
non-negligible) probability. In particular, in addition to the standard dictionary we can
create a sufficiently large hash table, with a hash function that maps arbitrary strings
into a smaller finite range, and use the output of the hash as additional keywords. The
problem, of course, is that this ruins the strong notion of correctness that we have proved
in our constructions. The probability of a false positive will then be proportional to
the reciprocal of the size of the table, where as our definitions require this probability
to be negligible. This may however, be useful in various practical applications. In [4]
and [5], the practicality and the consequences of this approach are examined in more
detail.

8.3. Always Saving �(m) Documents in the Case of Overflow

We present here an elementary method which extends the buffer by an additional factor of
κ , but has the property that even with buffer overflow that’s exponential in this parameter,
(say 2κm documents are written) the expected value of properly saved documents in the
buffer will be at least m/2, where m is the designed buffer capacity. The method is as
follows: replace the buffer B, by an array of identical buffers {Bi }κi=0, each Bi having
size 2γm. We will write to the buffers as follows: for each incoming document, write the
document γ times (as in the original protocol) to buffer Bi with probability 1/2i , that
is, write to B0 with probability 1, and for i ∈ [1, κ] sample from a uniform distribution
on {0, 1}i and write to Bi if the result is the 0 string. Now, as long as the total number
of matching documents is less than 2κm, then clearly there will be a buffer that has an
expected number of matching documents between m/2 and m, and since each buffer is
designed to store m documents with overwhelming probability, we will always have the
expected number of recovered documents to be at least m/2 in this situation.

9. Open Questions and Further Work

In the follow-up work of Bethencourt et al. [4], [5], a different method for recovering
documents from the buffer is presented. By recording extra information about the ordinal
numbers of matching documents, and keeping track of the seed used for the random
number generator to create the random locations at which documents are stored, they
establish a system of linear equations that correspond exactly to the buffer contents. Now
retrieving the documents amounts to solving the system of equations. The advantage of
this, compared with our solution, is that buffer collisions are no longer necessarily lost,
but in fact can often be recovered. Consequently, the buffer size does not need to be as
large in order to maintain a high probability of recovering all documents. In fact, the
buffer size becomes optimal. However, there is a drawback to this approach as well.
To store the ordinal numbers of the documents that match, an encrypted Bloom filter
is used, which is indeed a convenient device for storing set membership from a large
universe without using much space. However, although questions like “is i ∈ S?” can
be answered efficiently using a Bloom filter, it is not easy to determine all elements
of the universe that are in the set S without checking such statements for all possible
values of i from the universe. So, the buffer recovery algorithm of [4] and [5] now has
a running-time proportional to the size of the data-stream which may be undesirable,
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and does not fit the streaming model as proposed in this paper, where we insist that the
buffer contents must be decrypted at the cost which is independent of the stream size.
Again, such methods may be useful in various practical situations, and a more detailed
analysis of such practical considerations can be found in [4] and [5]. We also note that
the idea of solving a system of linear equations to recover the buffer contents was also
proposed in [13], however, no formal arguments were given to support the method. It is
an open question if one can reach buffer size as in [4] and [5] without the computational
decoding cost depending on the stream size.

Another limitation of our solution is of course the small variety of query types that
can be performed. Using a multiplicative homomorphic encryption scheme can in a way
perform an arbitrary AND query, however, all such attempts have thus far failed to satisfy
the correctness criteria. Extending the types of queries that can be executed, or proving
that doing so is impossible under some general assumptions would be another interest-
ing problem. In fact, some recent progress was made towards this end by Ostrovsky and
Skeith [25]: they show that the general methods used here to create protocols for search-
ing on streaming data (which are based essentially upon manipulating homomorphic
encryption) cannot be extended to perform conjunctive queries beyond what has been
accomplished in Sections 3, 7, and 6. More specifically, if one builds a protocol based
on an abelian group homomorphic encryption (e.g., Sections 3 and 6) then no conjunc-
tions (of more than one term) can be performed without increasing (super-linearly) the
dictionary size. More generally, Ostrovsky and Skeith [25] show that if the cryptosystem
allows computation of polynomials of total degree t over any ring R (as seen in Section 7
with t = 2, R = Zp), then the best one can hope for is a conjunction of t terms without
increasing the dictionary size. So the constructions we provide here meet a lower bound.
It seems, then, that to make progress in significantly extending the query semantics will
likely require fundamentally different approaches to the problem (unless, of course, ma-
jor developments are made in the design of homomorphic encryption schemes, e.g., a
scheme over a ring or non-abelian group).
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Appendix. A Brief Review of the Paillier Cryptosystem

For the sake of completeness, we include a simple review of the Paillier cryptosystem [26].
The Pailler system is based on an intractability assumption called the “Composite

Residuosity Assumption”, which as we will see is something of a generalization of
the hardness of distinguishing quadratic residues, and can also be reduced to the RSA
problem [2]. This assumption (which we abbreviate as CRA) is about distinguishing
higher-order residue classes. The Paillier system and its extensions (see [12]) are addi-
tively homomorphic, and have a very low ciphertext to plaintext ratio.
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A.1. Preliminaries

Let n = pq be an RSA number, with p < q. We make the additional minor assumption
that p � q − 1, i.e., that (n, ϕ(n)) = 1. The plaintext for the Paillier system will be
represented as elements of Zn and the ciphertext will be elements of Z∗

n2 . Note the
following:

Z∗
n2 & Zn × Z∗

n.

This can be proved using nothing more than elementary facts from number theory and
group theory. (See Lemma A.1 below and the corollary.) Given this structure of Z∗

n2 , it is
not hard to see that the factor of the direct product that is isomorphic to Z∗

n is in fact the
unique subgroup of order (p − 1)(q − 1). Let H < Z∗

n2 denote this subgroup of order
(p − 1)(q − 1). Now define G to be the quotient

G = Z∗
n2/H.

Then, by our above remarks, we have that the structure of G is cyclic of order n: G & Zn .
We are now ready to state the Composite Residosity Class Problem.

A.2. The Composite Residuosity Class Problem

Let g ∈ Z∗
n2 such that 〈gH〉 = G and let w be an arbitrary element in Z∗

n2 . Then, since
gH generates G = Z∗

n2/H , we have w = gi h for some i ∈ {0, 1, 2, . . . , n − 1} and
h ∈ H . Given g and w, the Composite Residuosity Class Problem (CRCP) is simply to
find i .

Note that there is also a decisional version of this problem: given w, g as above, and
x ∈ {0, . . . , n − 1}, determine if w = gx h for some h ∈ H . This decision version of
the problem is clearly equivalent to distinguishing the nth residues mod n2 (which is the
special case of x = 0) since H is exactly the subgroup of nth residues. (Proof of this is
given below—see Lemma A.3.)

Note also that these problems have several random self-reducibility properties. Any
instance of the problem can be converted to a uniformly random instance of the problem
with respect to w (just by multiplying by gabn , with a ∈ Zn, b ∈ Z∗

n and subtracting a
from the answer). Also, the problem is self-reducible with respect to the generator g. In
fact, one can show that any instance with generator g can be transformed into an instance
with generator g′. So the choice of g has no effect on the hardness of this problem—if
there are any easy instances, then all instances are easy.

Now that we have formalized the hardness assumptions, one can build a cryptosystem
as follows:

A.3. The Cryptosystem

As mentioned before, there are several variants and extensions of this cryptosystem.
Let (K, E,D) be the key generation, encryption, and decryption algorithms respectively.
They are implemented as follows:

• K(s) This algorithm randomly selects an s-bit RSA number n = pq, with p < q
and the additional property that p � q − 1 (which is satisfied with overwhelming
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probability when p, q are randomly chosen). It outputs n as the public parameters,
and saves the factorization as the private key.

• E(m) For a plaintext message m < n, choose r ∈ Z∗
n at random and set the

ciphertext, c as follows:

c = (1 + n)mrn ∈ Z∗
n2 .

Recovering m from c is precisely an instance of CRCP since rn is a random element
in the subgroup H , and the coset (1+n)H will generate all of G. (See Lemma A.5.)

Notes: (1) Due to the random self-reducibility of CRCP, 1 + n is just as good a
choice of g as any other. (2) Although it may seem more natural to choose r ∈ Z∗

n2 ,
letting r ∈ Z∗

n is just as good. (See Lemma A.4.)
• D(c) Let ciphertext c = (1+ n)mrn mod n2. To recover the message m, first look

at this equation mod n rather than n2:

c = (1 + n)mrn mod n

becomes

c = rn mod n.

Now this equation is something familiar. . .finding r from c is an instance of the
RSA problem (since we are given n which is relatively prime to ϕ(n) and an
exponentiation of r mod n). Since the factorization n = pq is known to us, we can
just use RSA decryption as a subroutine to recover r . Now that we have r , it is a
simple process to obtain m.

No begin, compute rn mod n2 and divide c by this value:

c

rn
= (1 + n)m mod n2.

Now use the binomial theorem:

(1 + n)m =
m∑

i=0

(
m

i

)
ni .

Reducing mod n2 gives us

(1 + n)m =
1∑

i=0

(
m

i

)
ni = 1 + mn (mod n2).

So, finally, we have

m = c/rn − 1

n
.

A.4. A Few Words about Extensions to the System

Recently Damgård and Jurik [12] made a very natural extension to the Paillier system
that uses larger groups for its plaintext and ciphertext. This extension works for any
s ∈ Z+. In the extended system, the plaintext is represented by an element in Zns , and
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the ciphertext is an element of Z∗
ns+1 . There are two very appealing properties of this

system: First, the ratio of plaintext length to ciphertext length approaches 1 as s tends to
∞. Second, just as in the original Paillier scheme, the public and private information can
be simply n and its factorization, respectively. You need not share s ahead of time. In fact,
the sender of a message can choose s to his/her liking based on the length of the message
to be sent. Then, except with negligable probability, the receiver can deduce s from the
length of the ciphertext. So, the public (and private) parameters remain extremely simple.

A.5. Lemmas and Proofs

Lemma A.1. Let p ∈ Z be a prime. Then Z∗
p2 & Zp × Z∗

p.

Proof. First note that |Z∗
p2 | = ϕ(p2) = p(p − 1) where p is prime and ϕ is the Euler

phi-function. So, by Cauchy’s Theorem, there is an element of order p insideZ∗
p2 (in fact,

p + 1 is such an element). So there is a subgroup of order p in Z∗
p2 . Call this subgroup

Hp. Recall that Z∗
p is cyclic of order p − 1, and let g be a generator of Z∗

p. Notice that
the order of g inside Z∗

p2 is at least p − 1 since equivalence mod p2 implies equivalence

mod p. (So, the first p − 1 powers of g remain distinct mod p2). However, this severely
limits the possibilities for the order of g inside Z∗

p2 . The only options that remain are
|g| = p − 1 or |g| = p(p − 1) since p is prime. In the first case we have found a cyclic
subgroup 〈g〉 of order p − 1, and since gcd(p, p − 1) = 1, we have

Hp ∩ 〈g〉 = {1}

and, therefore,

Z∗
p2 & Hp × 〈g〉 & Zp × Z∗

p,

which is exactly what we wanted. In the second case, 〈g〉 is all of Z∗
p2 , hence

Z∗
p2 & Zp(p−1) & Zp × Zp−1 & Zp × Z∗

p,

which is again, exactly what we wanted to prove.

Corollary A.2. Let n = pq, where p, q ∈ Z are primes. Then Z∗
n2 & Zn × Z∗

n .

Proof. First note that Zn2 & Zp2 × Zq2 and hence Z∗
n2 & Z∗

p2 × Z∗
q2 . Now applying

Lemma A.1, we have that

Z∗
n2 & Zp × Z∗

p × Zq × Z∗
q

& (Zp × Zq)× (Z∗
p × Z∗

q) & Zn × Z∗
n,

which completes the proof.

Lemma A.3. The nth residues mod n2 are exactly the subgroup H .
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Proof. We would like to show that an element h of Z∗
n2 has an nth root (i.e., can be

written as h = gn mod n2 for some g ∈ Z∗
n2 ) if and only if h ∈ H . Define ϕ: Z∗

n2 → Z∗
n2

by x → xn . Certainly ϕ is a homomorphism: ϕ(ab) = (ab)n = anbn = ϕ(a)ϕ(b).
Clearly, im(ϕ) is precisely the group of nth residues, so hopefully we can show im(ϕ) =
H . What is ker(ϕ)? Well, an element is in the kernel if and only if it has an order that
divides n (i.e., elements of order 1, p, q, n). Recall from the corollary thatZ∗

n2 & Zn×Z∗
n .

TheZn component of this product consists of all of the elements of orders 1, p, q, n since
we have that (n, ϕ(n)) = 1. So ker(ϕ) & Zn and hence |im(ϕ)| = |H |, which is enough
to show im(ϕ) = H as H is the unique subgroup of this order.

Lemma A.4. If r ∈ Z∗
n is chosen uniformly at random, then rn mod n2 is uniformly

random in H .

Proof. Let ϕ: Z∗
n → Z∗

n2 be the nth power map (composed first with the injection
into Z∗

n2 if you like). Then, of course, im(ϕ) ⊂ H , given what we have already proved.
However, in fact im(ϕ) = H as ϕ is injective (and therefore surjective as |Z∗

n| = |H |):
recall that (n, ϕ(n)) = 1, so the nth power map is 1 to 1 on Z∗

n , and since equivalence
mod n2 implies equivalence mod n it must be that ϕ is also 1 to 1. So, indeed, ϕ is a
bijection of Z∗

n and H , so uniformly random in Z∗
n is uniformly random in H .

Lemma A.5. The coset (1 + n)H generates the factor group G = Z∗
n2/H .

Proof. To see this, first look at the order of 1+n insideZ∗
n2 . Using the binomial theorem

just as in our decryption specification, we have that (1 + n)m = 1 + mn (mod n2). So,
clearly the order of 1+ n is n, and hence (1+ n) /∈ H . Suppose for some k ∈ {2, . . . , n}
that (1 + n)k lies in H . Now, under any homomorphism, the order of the image of an
element must divide the order of the element itself. Applying this to the homomorphism
defined by raising elements to the kth power, we would have that the order of (1 + n)k

must divide n. However, (1 + n)k ∈ H and |H | is relatively prime to n, so this forces
the order of (1 + n)k to be 1, i.e., k = n. Hence (1 + n)H has order n in G as well. So,
〈(1 + n)H〉 = G.
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