
DOI: 10.1007/s00145-007-0549-3

J. Cryptology (2007) 20: 493–514

© 2007 International Association for
Cryptologic Research

Efficient Signature Schemes with Tight Reductions
to the Diffie–Hellman Problems∗

Eu-Jin Goh
Computer Science Department, Stanford University,

Stanford, CA 94305, U.S.A.
eujin@cs.stanford.edu

Stanis�law Jarecki
School of Information and Computer Science,

University of California at Irvine,
Irvine, CA 92697, U.S.A.

stasio@ics.uci.edu

Jonathan Katz and Nan Wang
Department of Computer Science, University of Maryland,

College Park, MD 20742, U.S.A.
{jkatz,nwang}@cs.umd.edu

Communicated by Matthew Franklin

Received 9 October 2005 and revised 29 September 2006
Online publication 13 July 2007

Abstract. We propose and analyze two efficient signature schemes whose security is
tightly related to the Diffie–Hellman problems in the random oracle model. The security
of our first scheme relies on the hardness of the computational Diffie–Hellman problem;
the security of our second scheme—which is more efficient than the first—is based on
the hardness of the decisional Diffie–Hellman problem, a stronger assumption.

Given the current state of the art, it is as difficult to solve the Diffie–Hellman prob-
lems as it is to solve the discrete logarithm problem in many groups of cryptographic
interest. Thus, the signature schemes shown here can currently offer substantially better
efficiency (for a given level of provable security) than existing schemes based on the
discrete logarithm assumption.

The techniques we introduce can also be applied in a wide variety of settings to yield
more efficient cryptographic schemes (based on various number-theoretic assumptions)
with tight security reductions.

Key words. Signature schemes, Diffie–Hellman assumptions.

∗ This paper combines results that appeared in “A Signature Scheme as Secure as the Diffie-Hellman
Problem” [23] presented at Eurocrypt 2003 and “Efficiency Improvements for Signature Schemes with Tight
Security Reductions” [26] presented at ACM CCCS 2003. The work by Stanis�law Jarecki was done while at
Stanford University. Jonathan Katz and Nan Wang were supported by NSF Grants #0310751 and #0208005.

493

494 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

1. Introduction

One focus of modern cryptography has been the construction of signature schemes that
can be rigorously proven secure based on specific computational assumptions. A proof
of security for a given construction generally proceeds by demonstrating a reduction
which shows how a polynomial-time adversary “breaking” the signature scheme can
be used to solve in polynomial time some underlying problem assumed to be difficult
(e.g., inverting a one-way function); it follows that if the underlying problem is truly
difficult for all polynomial-time algorithms, then the given signature scheme is indeed
secure. Classically, such results have been asymptotic; namely, the security reduction
only demonstrates that no polynomial-time adversary can forge a signature with non-
negligible probability, where both the running time of the adversary and its probability of
forgery are measured as a function of some security parameter k. As first emphasized by
Bellare and Rogaway [4], however, such results say nothing about the security of a given
scheme in practice for a particular choice of security parameter, and against adversaries
investing a particular amount of computational effort. Consequently, asymptotic security
reductions by themselves do not enable practically meaningful efficiency comparisons
between two signatures schemes: the efficiency of two schemes can be meaningfully
compared only when they achieve the same level of security, yet asymptotic security re-
sults do not by themselves provide enough information to determine when that is the case.

A simplified example illustrates the point. Assume we are given a discrete logarithm-
based signature scheme along with a security proof guaranteeing that (under current
assumptions regarding the hardness of the discrete logarithm problem) any adversary
expending 1 year of computational effort can “break” the scheme with probability at
most a · 2−b·k , where a, b > 0 are constants and k is (say) the bit-length of the order of
the group used in the scheme. In an asymptotic sense, this scheme is secure regardless
of a, b. In practice, however, we do not know what value of k to choose to achieve some
desired level of security unless a and b are known. For this reason, the values of a and b
are crucial for determining the actual efficiency of the scheme. For example, for a desired
security level (i.e., probability of forgery) of 2−32 against adversaries investing 1 year of
effort, having a ≈ 1 and b ≈ 1

10 means that we should set k ≈ 320. On the other hand,
if a ≈ 232 and b ≈ 1

20 , then we require k ≈ 1280, which implies a concomitant decrease
in efficiency to achieve the same level of security.

This motivates an emphasis on concrete security reductions that give explicit bounds
on the adversary’s success probability (i.e., its probability of forging a signature) as a
function of its expended resources [4], [15], [29], [16]. It also illustrates the importance
of designing schemes with tight security reductions: that is, reductions showing that
the success probability of an adversary running in some time t is roughly equal to the
probability of solving the underlying hard problem in roughly the same amount of time.
At least intuitively, a tight reduction is the best one can hope for, as any scheme based on
(a single instance of) any particular “hard” problem seemingly cannot be more difficult
to break than the problem itself is to solve.

1.1. Previous Work

The above considerations have sparked a significant amount of research aimed at finding
efficient signature schemes with tight security reductions. Though there exist signature

Efficient Signature Schemes with Tight Reductions to the Diffie–Hellman Problems 495

schemes (e.g., [24] and [17]) with tight security reductions in the so-called standard
model, these schemes are generally considered too inefficient for practical use and so
recent attention has turned to schemes analyzed in the random oracle model.1 We first
describe progress in this regard for schemes based on trapdoor permutations (with RSA
serving as a specific example), and then discuss schemes based on the discrete logarithm
problem.

Signature schemes based on trapdoor permutations. For some fixed value of the se-
curity parameter, let ε′ be an assumed upper bound on the probability of inverting a
given trapdoor permutation in some time t ′. The full domain hash (FDH) signature
scheme [3], [4] bounds the success probability of any adversary running in time t ≈ t ′

by ε ≈ (qs + qh)ε
′, where qs is the number of signatures the adversary obtains from

the legitimate signer, and qh represents the number of times the adversary evaluates the
hash function (formally, qh is the number of queries the adversary makes to the random
oracle).2 Subsequently, Coron [15] showed how to achieve the better security reduction
ε ≈ qsε

′ for FDH if the underlying trapdoor permutation is random self-reducible as is
the case for, e.g., RSA. Dodis and Reyzin [19], generalizing Coron’s work, show that
a similar result holds for any trapdoor permutation induced by a family of claw-free
permutations.

The probabilistic signature scheme (PSS) [4] was introduced precisely to obtain a tight
security reduction for the specific case when RSA is used as the underlying trapdoor
permutation (although it was later shown that the tight reduction holds also for more
general classes of trapdoor permutations [16], [19]). PSS uses a randomly chosen string
(a “salt”) each time a message is signed and obtains the tight security reduction ε ≈ ε′.
Coron subsequently observed [16] that the length of the salt can be significantly reduced
while obtaining essentially the same security bound.

The above signature schemes are essentially all based on the classical “hash-and-
sign” paradigm. An alternate approach is to use the Fiat–Shamir methodology [20] for
converting 3-round, public-coin identification schemes to signature schemes. Applying
this approach to some specific identification schemes yields signature schemes based
on a number of specific trapdoor permutations, including RSA. Unfortunately, the best
known security reduction for schemes constructed using the Fiat–Shamir transformation
relies on the “forking lemma” of Pointcheval and Stern [30], with some improvements in
the analysis due to Micali and Reyzin [29]. Applying this lemma results in a very loose
security reduction: roughly speaking, given an adversary running in time t and “breaking”
a signature scheme with probability ε, the reduction yields an algorithm solving the
underlying hard problem with constant probability in time t ′ ≈ �(qhtε−1) (where the
constant term in the big-� notation is greater than 1). Substituting qh ≈ 260, ε ≈ 2−60

gives a weak result unless the time t ′ that is assumed to be required to solve the underlying
hard problem is huge.

1 The random oracle model [20], [3] assumes a public, random function which is accessible by all parties.
In practice, this oracle is instantiated by a cryptographic hash function. Although security can no longer be
guaranteed for any such instantiation [10], a proof in the random oracle model does seem to indicate that there
are no “inherent” weaknesses in the scheme and, in practice, serves as a useful validation tool for cryptographic
constructions.

2 Typical suggested values for these parameters are qs ≈ 230 and qh ≈ 260 [4], [15], [16].

496 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

Micali and Reyzin [29] show a modification of the Fiat–Shamir transformation that
leads to tighter security reductions, but applies only to specific identification schemes.
Using their transformation, Micali and Reyzin show signature schemes with tight security
reductions based on some specific trapdoor permutations, including RSA. A recent result
of Fischlin [21] shows an alternate way of modifying the Fiat–Shamir transformation so
as to obtain a tight security reduction; the schemes resulting from this approach, however,
are relatively inefficient.

Signature schemes based on the discrete logarithm problem. In contrast to the case
of trapdoor permutations, there has been significantly less progress designing signature
schemes with tight security reductions to the hardness of computing discrete logarithms
(or related problems). DSS [33], perhaps the most widely used discrete logarithm-based
scheme, has no known proof of security. Existing provably secure schemes based on the
discrete logarithm assumption, such as those by Schnorr [31], an El Gamal [22] variant
suggested by Pointcheval and Stern [30], and a DSS variant by Brickell et al. [8], rely
on (variants of) the forking lemma for their proofs of security and therefore have very
loose security reductions.3 (The work of Micali and Reyzin, mentioned earlier, cannot
be applied to any of these schemes.)

1.2. Our Contributions

We design two efficient signature schemes with tight security reductions (in the random
oracle model) to problems related to the hardness of computing discrete logarithms.
Our first scheme relies on the computational Diffie–Hellman (CDH) [18] problem and
is based on a scheme previously suggested—but not proven secure—by Chaum et al.
[11], [13]. Our second scheme is more efficient, but its security is based on the stronger
decisional Diffie–Hellman (DDH) assumption. See Section 2.2 for formal definitions of
these two assumptions.

Although both Diffie–Hellman assumptions are, technically speaking, stronger than
the discrete logarithm assumption, for a variety of well-studied cryptographic groups it is
currently not known how to solve the Diffie–Hellman problems any faster than what can
be achieved by solving the discrete logarithm problem itself [5], [27]. Moreover, there
is some theoretical evidence that in certain groups the computational Diffie–Hellman
assumption may be equivalent to the discrete logarithm assumption [32], [5], [27]. For
such groups, then, our schemes offer a marked improvement compared with previous
signature schemes based on the discrete logarithm problem.

We compare the efficiency of our schemes in Table 1, focusing on the number of group
exponentiations they each require (other operations are ignored as they are dominated by
these costs). In the table, the computational cost of a multi-exponentiation (that is, com-
puting gahb) is assumed to be equivalent to 1.5 exponentiations [28, Section 14.6.1(iii)].
“Off-line” computation refers to computation that may be performed before the message
to be signed is known, while “on-line” computation must be done after this point. The

3 For the Schnorr signature scheme, a tight reduction is known in the generic group model [32]. This model
considers only algorithms which are oblivious to the representation of group elements. For certain groups,
however, there are known algorithms (e.g., the index-calculus method) that do not fall in this category.

Efficient Signature Schemes with Tight Reductions to the Diffie–Hellman Problems 497

Table 1. Efficiency of our schemes in a cyclic group G of prime order q.a

Signing Public key Signature
Off-line On-line Total Verifying length length Assumption

Scheme 1 (1∗, 0) (2, 1) (3, 1) (3, 1) G G + |q| + k + 1 CDH
Scheme 2 2∗ 0 2∗ 3∗ 3G |q| + k DDH

aWe assume G bits are used to represent elements of G (note that G ≥ |q| def= �log2 q), and k < |q| is a
parameter that affects the tightness of the security reduction. The computational cost for Scheme 1 is denoted
by (a, b), where a is the number of exponentiations inG, and b is the number of “hash-to-G” operations. The
computational cost for Scheme 2 reflects the number of exponentiations inG. A “∗” indicates exponentiations
with respect to a fixed base, where pre-computation can be used to improve efficiency [28, Section 14.6.3].
See the text for additional discussion.

tabulated values represent the efficiency of our schemes as described in Sections 3 and 4;
however, various trade-offs are possible and these are not reflected in the table.

The parameter k affects the tightness of the security reduction. Roughly speaking, k
should be set such that a probability of forgery ≈ qh · 2−k is considered acceptable.

For our first scheme, we make some mild technical assumptions on the underlying
group G that are discussed in further detail in Section 2.3. These technical assumptions
can be avoided altogether at the expense of performing a group membership test during
signature verification (which, depending on G, may impose noticeable additional com-
putation). Our first scheme also requires a random oracle mapping its inputs to elements
of G. Depending on the specific group being used, this “hash-to-G” operation may also
introduce noticeable computational cost. (See Section 2.4 for some discussion on this
point.) Rather than assume any particular choice ofG, we have explicitly tabulated such
operations for our first scheme.

Other applications. The techniques used in constructing our first scheme can be prof-
itably applied in other contexts to yield efficiency improvements along with tight security
reductions. For example, they can be used to obtain a tight proof of security while avoid-
ing the need for a random salt in the PSS and PSS-R signature schemes [4], [16] as well
as the short signature scheme of Boneh et al. [7]; they can also be used to improve the
security reduction for the Boneh–Franklin identity-based encryption scheme [6]. The
ideas used in constructing our second scheme can be applied to yield other signature
schemes with tight security reductions to decisional problems, rather than loose secu-
rity reductions to computational problems. These applications are discussed further in
Section 1.3 and [26].

1.3. Overview of Our Techniques

We now give a high-level description of the main ideas underlying our two constructions;
as preparation, we first review some relevant background.

Proving equality of discrete logarithms. Let G be a group of prime order q. We begin
by reviewing the standard protocol for proving equality of discrete logarithms [12], [9],
which is based on Schnorr’s proof of knowledge of a discrete logarithm [31]. In the
protocol a prover has values g, h, y1, y2 ∈ G, with g, h �= 1, together with an exponent

498 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

x ∈ Zq such that gx = y1 and hx = y2. To prove to a verifier (who also knows g, h, y1, y2)
that logg y1 = logh y2, the two parties execute the following interactive protocol:

1. The prover chooses random r ∈ Zq and sends A = gr , B = hr to the verifier.
2. The verifier sends to the prover a random challenge c ∈ {0, 1}k , where 2k ≤ q and

c is interpreted as an integer in {0, . . . , q − 1}.
3. The prover replies with s = cx + r mod q.

4. The verifier accepts if and only if A
?= gs y−c

1 and B
?= hs y−c

2 .

It is well known that the above protocol is honest-verifier zero-knowledge: a simulator
given (g, h, y1, y2) can choose c ← {0, 1}k and s ← Zq , and then set A = gs y−c

1 and
B = hs y−c

2 , and it can be verified that the resulting transcript (A, B, c, s) is distributed
identically to the transcript of an execution of the protocol between a prover (who
knows x) and an honest verifier.

It is also easy to verify that the above protocol is sound; in particular, if logg y1 �=
logh y2, then for any A, B sent by a cheating prover there is at most one value c for which
the prover can respond correctly. This assumes that y2 ∈ G; in Section 2.3 we show a
generalization of this result for the case when y2 may not be in G. (We also generalize
to the case when g or h may be equal to 1.)

Using the Fiat–Shamir transformation [20], the above protocol can be made non-
interactive using a hash function H modeled as a random oracle. Here, the prover com-
putes A and B as above, sets c = H(g, h, y1, y2, A, B), and then computes s as before;

it then sends the proof π
def= (c, s) to the verifier. The verifier computes A′ = gs y−c

1 and

B ′ = hs y−c
2 and accepts if and only if c

?= H(g, h, y1, y2, A′, B ′).

The Schnorr signature scheme. The protocol described previously can be adapted easily
to give an honest-verifier zero-knowledge proof of knowledge of a discrete logarithm
(see [31]). By making this protocol non-interactive using the Fiat–Shamir transformation,
we obtain the Schnorr signature scheme [31]. In this scheme the signer’s public key is
(g, y1) and its secret key is x = logg y1; a signature on a message m is a non-interactive
proof of knowledge of logg y1 (we omit some details). In the proof of security [31], [30],
[29], an adversary attacking the scheme is “rewound” in order to “extract” the value
logg y1; this rewinding, however, results in a poor security reduction (via the forking
lemma) as discussed earlier in the Introduction.

A signature scheme based on the CDH problem.4 As we have just remarked, a drawback
of the Schnorr scheme is that the security reduction relies on the proof of knowledge
property of an interactive proof system; this seems inherently to yield a loose security
reduction. In contrast, we show that it is possible to design schemes based on the CDH
assumption whose security relies only on the fact that the proof system is sound (as well
as honest-verifier zero knowledge). This avoids the need for rewinding, and hence results
in an improved security reduction.

4 Informally, the CDH problem inG is: given a random tuple (g, h, y1), output y2 such that logh y2 = logg y1.
The CDH assumption for G is that the CDH problem in G is “hard” to solve. See Section 2.2 for a formal
definition.

Efficient Signature Schemes with Tight Reductions to the Diffie–Hellman Problems 499

We first recall a scheme suggested (but not analyzed) by Chaum and Pedersen [13]:
The signer’s public key is (g, y1) ∈ G2 and its secret key is x = logg y1. Let H ′ be
a random oracle (independent of H) whose range is G. To sign message m, the signer
computes h = H ′(m) and y2 = hx ; the signer then generates a proof π showing that
logg y1 = logh y2 using the protocol for proving the equality of discrete logarithms
described earlier. The signature (y2, π) is verified in the natural way.

Security of the Chaum–Pedersen scheme was not previously analyzed, perhaps be-
cause it was viewed as a variant of Schnorr signatures. Our initial work [23] noted that
a non-tight security reduction for the Chaum–Pedersen scheme can be derived by fol-
lowing the original analysis of FDH [3]: if ε′ is an upper bound on the probability that
the CDH problem can be solved in time t ′, then the success probability of any adversary
attacking the Chaum–Pedersen scheme and running in time t ≈ t ′ is at most ε ≈ qhε

′.
Sketching the proof, a simulator given an instance (g, h, y1) of the CDH problem (where
the simulator’s goal is to output y2 satisfying logg y1 = logh y2) sets the public key to
(g, y1). Next, it guesses an index i for the hash query to H ′ that the adversary will use in
its forgery and sets the output of the i th hash query H ′(mi) to be h. The simulator sets the
output of all other hash queries H ′(mj) to be gαj for random and independent αj ∈ Zq .
If the simulator is asked to sign a message mj �= mi , it can compute the (correct) value
y
αj

1 and then simulate a proof of equality π . Furthermore, if the adversary does indeed
forge a signature on mi , then the simulator can (with overwhelming probability) recover
from this forgery the desired solution to the original instance of the CDH problem.

The reduction sketched above results in a loss of a factor qh in the security reduction
since the simulator must guess the correct index of the hash query that the adversary uses
to create the forgery. This can be improved using the approach of Coron [15]. Here, for
all i the simulator answers the i th hash query H ′(mi) by returning gαi with probability ρ,
but returning h ·gαi with probability 1−ρ (again, the {αi } are independent and uniformly
distributed in Zq). Say mi is a message of the first type if the simulator responded with
gαi , and is of the second type otherwise. The key observation is that the simulator can
correctly answer any signing queries for messages of the first type, and can (with all but
negligible probability) compute the solution to the given instance of the CDH problem
whenever the adversary’s forgery is on a message of the second type. By choosing ρ
appropriately, one can obtain the improved security reduction ε ≈ qsε

′.
Our initial work [23] also showed a variant of the Chaum–Pedersen scheme (building

on the ideas of [4] and [16]) which has a tight security reduction to the CDH problem. In
this scheme—called the EDL scheme in [23]—the public and secret keys are as above.
When signing a message, the signer first chooses a random “salt” r ∈ {0, 1}k , computes
h = H ′(r,m), and then proceeds as above (the signature now includes r as well). In
the proof of security for this scheme, the simulator answers all of the adversary’s hash
queries to H ′ with h · gαi . To respond to a signing query for a message m, the simulator
chooses r ∈ {0, 1}k and checks if the adversary had previously queried H ′(r,m). If
so, the simulator aborts; otherwise, the simulator sets H ′(r,m) = gαj and proceeds
with the simulation as before. Now any successful forgery by the adversary allows the
simulator, with overwhelming probability, to compute a solution to the original instance
of the CDH problem. Furthermore, by setting k appropriately, it is possible to ensure
that the simulator does not abort “too often.” A drawback of this modified scheme is that
signature length is increased by k, the length of the salt.

500 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

The reader is referred to [23] for full descriptions and proofs of the schemes sketched
in the preceding paragraphs; we do not include them here because the scheme described
next improves on the above in all important respects.

Scheme 1: An improved scheme based on the CDH problem. The first scheme presented
in this paper improves on the EDL scheme in that security is still tightly related to the
CDH problem, but the signature is shorter and a random salt is no longer needed. In
this improved scheme the public and secret keys are as in the EDL scheme. The main
difference is that the signer now has a hidden, random “selector bit” bm associated with
each message m that it signs; we defer for now the details of how this selector bit is
determined. To sign message m, the signer computes h = H ′(bm,m) and then proceeds
as in the EDL scheme but includes bm in the signature. Verification is done in the natural
way. In the proof of security we now have the simulator (who is again given a random
instance (g, h, y1) of the CDH problem) proceed as follows: it answers the hash query
H ′(bm,m) with gαm but answers the hash query H ′(b̄m,m) with h · gαm . Note that the
simulator can answer all of the adversary’s requests to sign any given message m since
the simulator knows logg H(bm,m); on the other hand, any forgery by the adversary
allows the simulator to solve the original instance of the CDH problem with probability
essentially 1/2 since the adversary does not know bm for any message m that has not been
signed. Hence, we obtain a tight security reduction to the CDH problem. Full details are
given in the proof of Theorem 1.

Scheme 2: A more efficient scheme based on the DDH problem.5 All the schemes based
on the CDH assumption outlined above follow the same basic paradigm: the message
m determines a value h ∈ G; the signer computes hx and then proves that this was
done correctly. We observe that if one is willing to base security on the stronger DDH
assumption, then it is unnecessary to use a new h for each message signed. In particular,
consider the signature scheme where the public key is (g, h, y1, y2) and the secret key
is a value x such that x = logg y1 = logh y2. Now, a signature is simply a proof that
logg y1 = logh y2 with one subtlety: to “bind” the proof to a particular message m
we include m as one of the inputs to the hash function H (recall that H is the hash
function used to implement the Fiat–Shamir transformation). For the proof of security,
given an adversary that succeeds in attacking the scheme with probability ε, consider
the simulator which is given as input a tuple (g, h, y1, y2). The simulator sets this value
as its public key. When the adversary requests a signature, the simulator provides this
signature by simulating the proof of equality of discrete logarithms for the tuple contained
in the public key. Hash queries by the adversary are answered by returning a random
value. If logg y1 = logh y2 then the adversary’s view is essentially identical to its view
when attacking a “real” instance of the signature scheme, and so it succeeds in forging
a signature with probability roughly ε. On the other hand, if logg y1 �= logh y2 then
soundness of the proof system implies that the adversary succeeds in forging a signature

5 Informally, the DDH problem in G is: given a tuple (g, h, y1, y2), decide whether logg y1 = logh y2. The
DDH assumption for G is that it is “hard” to solve the DDH problem in G with non-negligible advantage,
where the advantage is related to the probability of deciding correctly minus 1/2. See Section 2.2 for a formal
definition.

Efficient Signature Schemes with Tight Reductions to the Diffie–Hellman Problems 501

with only negligible probability. This simulator can thus be used to solve the DDH
problem with advantage roughly ε, meaning that we get a tight security reduction. The
proof of Theorem 2 gives further details.

Other applications of our techniques. The idea of using a “selector bit” to obtain a
tight proof of security (as we do in our first scheme) can be applied in other contexts
to avoid using a long(er) salt. For example, it immediately applies to the BLS signature
scheme [7], as well as to the PSS and PSS-R signature schemes [4], [16] when based on
the RSA trapdoor permutation. In fact, in the random permutation model6 this technique
can be applied to obtain a signature scheme supporting message recovery which has a
tight security reduction and optimal signature length. Finally, the technique can also be
used to improve the security reduction in the Boneh–Franklin identity-based encryption
scheme [6]. These applications are discussed in our previous work [26].

The idea (as used in our second scheme) of using the Fiat–Shamir transformation
to provide a proof rather than a proof of knowledge can be used more generally to
achieve a tight security reduction based on a decisional problem rather than a non-
tight security reduction based on a computational problem. For example, in the Fiat–
Shamir signature scheme [20] the signer includes in his public key quadratic residues {yi }
(modulo a composite N), and signs a message by proving knowledge of the square roots
of these values. Using the forking lemma of Pointcheval and Stern [30], one obtains
a non-tight security reduction to the hardness of computing square roots modulo N .
On the other hand, by having the signer prove that the {yi } are all quadratic residues
(without necessarily proving knowledge of their square roots), one obtains a tight security
reduction to the hardness of deciding quadratic residuosity modulo N .

1.4. Subsequent Work

In work building on our own, Chevallier-Mames [14] shows a signature scheme whose
efficiency and security are roughly equivalent to our Scheme 1 with the exception that
all exponentiations during signing can be done off-line.

2. Definitions and Preliminaries

We review the standard definitions for signature schemes, as well as the computational
and decisional Diffie–Hellman assumptions. We also more formally consider the sound-
ness property of the protocol for proving equality of discrete logarithms that was briefly
described in Section 1.3, and discuss how to implement a random oracle mapping to
certain groups given as a building block a random oracle mapping to bit strings.

2.1. Signature Schemes

We provide both a functional definition and a security definition of signature schemes.
Since we analyze our schemes in terms of their concrete security, our definitions are

6 The random permutation model (see [26]) assumes a public, random, invertible permutation which is
accessible by all parties. In practice, this would be instantiated using a block cipher with a fixed key.

502 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

concrete rather than asymptotic and do not explicitly refer to any security parameter.
(Our results, however, imply security in the asymptotic sense as well.) Our definitions
of concrete security assume a fixed computational model: e.g., Turing machines with
binary alphabet and an upper bound on the number of states.

Since our schemes are analyzed in the random oracle model, we explicitly incorporate
a random oracle H in our definitions. We note that multiple, independent random oracles
can be derived from a single random oracle in a straightforward7 way; thus, it suffices to
consider only the case of a single random oracle. We let denote the space from which
H is selected; namely, the set of all functions defined over the appropriate domain and
range.

Definition 2.1. A signature scheme is a tuple of probabilistic algorithms (Gen,Sign,
Vrfy) over a message spaceM such that:

• The key generation algorithm Gen outputs a public key P K and a secret key SK .
• The signing algorithm SignH(·) takes a secret key SK and a message m ∈ M as

inputs and returns a signature σ .
• The verification algorithm VrfyH(·) takes a public key P K , a message m ∈M, and

a signature σ as inputs and returns accept or reject.

We make the standard correctness requirement: for all H ∈ , all (SK , P K) output by
Gen, and all m ∈M, we have VrfyH(·)

P K (m,SignH(·)
SK (m)) = accept.

For simplicity, in the rest of the paper we omit the explicit dependence of the signing
and verification algorithms on H .

We now give the standard definition of existential unforgeability under adaptive
chosen-message attacks [24]. We also define the notion of strong unforgeability; in-
formally, this means that the adversary cannot even generate a new signature for a
previously signed message.

Definition 2.2. Let (Gen,Sign,Vrfy) be a signature scheme. An adversarial forging
algorithm F (t, qh, qs, ε)-breaks this scheme if F runs in time at most t , makes at most
qh hash queries (that is, queries to the random oracle H) and at most qs signing queries,
and furthermore

Pr

[
(P K , SK)← Gen; H ← ;
(m, σ)← FSignSK (·),H(·)(P K)

: m �∈M∗∧VrfyP K (m, σ) = accept

]
≥ ε,

whereM∗ is the set of messages that F submitted to its signing oracle. In addition, we
say that F (t, qh, qs, ε)-breaks this scheme in the strong sense if

Pr

[
(P K , SK)← Gen; H ← ;
(m, σ)← FSignSK (·),H(·)(P K)

: (m, σ) �∈ �∗∧VrfyP K (m, σ) = accept

]
≥ ε,

where �∗ is the set of pairs (m, σ) such that σ was the response to an adversarial query
SignSK (m).

7 For example, given a random oracle H we may construct random oracles H0, H1 that are independent of
each other by defining H0(x) = H(0x) and H1(x) = H(1x).

Efficient Signature Schemes with Tight Reductions to the Diffie–Hellman Problems 503

We say that signature scheme (Gen,Sign,Vrfy) is (t, qh, qs, ε)-secure in the sense of
unforgeability (resp., strong unforgeability) if no forger can (t, qh, qs, ε)-break it (in the
appropriate sense).

2.2. The Diffie–Hellman Problems

LetG be a finite, cyclic group of prime order q in which the group operation is represented
multiplicatively, and let g be a fixed generator ofG. Given g and group elements gx , gy ,
the computational Diffie–Hellman (CDH) problem is to find the group element gxy .
(Equivalently, given h, y1 ∈ G the problem is to compute hlogg y1 .) Informally, the CDH
problem is “hard” in G if no efficient algorithm can solve the CDH problem with high
probability for random gx , gy . The following definition makes this more concrete:

Definition 2.3. An algorithm A is said to (t, ε)-solve the CDH problem inG if A runs
in time at most t and furthermore

Pr[x, y ← Zq : A(g, gx , gy) = gxy] ≥ ε.

We say thatG is a (t, ε)-CDH group if no algorithm (t, ε)-solves the CDH problem inG.

The decisional Diffie–Hellman (DDH) problem may be described, informally, as the
problem of distinguishing between tuples of the form (g, gx , gy, gxy) for random x, y ∈
Zq (these are called “Diffie–Hellman tuples”) and tuples of the form (g, gx , gy, gz) for
random x, y, z ∈ Zq (these are called “random tuples”). (Equivalently, the problem
is to distinguish between tuples of the form (g, h, y1, hlogg y1) and tuples of the form
(g, h, y1, y2)with y2 uniformly distributed inG.) The DDH problem is “hard” inG if no
efficient algorithm can distinguish, with high probability, between randomly generated
tuples of these two types with high probability. Formally:

Definition 2.4. A distinguishing algorithm D is said to (t, ε)-solve the DDH problem
in group G if D runs in time at most t and furthermore

|Pr[x, y, z← Zq : D(g, gx , gy, gz) = 1]−Pr[x, y← Zq : D(g, gx , gy, gxy) = 1]| ≥ ε.

We say that G is a (t, ε)-DDH group if no algorithm (t, ε)-solves the DDH problem
in G.

It is not hard to see that ifG is a (t, ε)-DDH group, then it is a (t ′, ε′)-CDH group for
t ′ ≈ t and ε′ ≈ ε; that is, hardness of the DDH problem for G implies hardness of the
CDH problem in that group as well. Furthermore, if the CDH problem is hard inG, then
the discrete logarithm problem must be hard in G. The converse of these statements is
not believed to be true in general. Indeed, there are groups for which the DDH problem
is “easy,” yet the CDH and discrete logarithm problems in the group are still believed to
be hard [25]. On the other hand, for a number of groups of cryptographic interest, “the
best known algorithm for DDH is a full discrete log algorithm” [5]. These include the
commonly used group G ⊂ Z∗p of order q, where p = αq + 1 and p, q are prime with
gcd(α, q) = 1. Additionally, Shoup [32] shows that the DDH problem is as hard as the

504 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

discrete logarithm problem for generic group algorithms (i.e., those that do not use the
underlying group structure; see footnote 3). For more details, the reader is referred to [5]
and [27].

2.3. Proving Equality of Discrete Logarithms

Here, we more carefully consider the soundness property of the protocol given in Sec-
tion 1.3 for proving equality of discrete logarithms. We also work in a slightly more
general setting.

LetG be a group of prime order q. Slightly generalizing the scenario described earlier,
assume values g, h, y1 ∈ G are known to both prover and verifier, and the honest prover
knows x such that gx = y1. (We remark that we do not assume that any of g, h, y1 are
generators of G.) We now let the protocol begin by having the prover send an element
y2 to the verifier. For the honest prover, y2 will be equal to hx . The parties then do the
following:

1. The prover chooses random r ∈ Zq and sends A = gr , B = hr to the verifier.
2. The verifier sends to the prover a random c ∈ {0, 1}k , where 2k ≤ q and c is

interpreted as an integer in {0, . . . , q − 1}.
3. The prover replies with s = cx + r mod q.

4. The verifier accepts if and only if A
?= gs y−c

1 and B
?= hs y−c

2 .

We stress that the verifier does not check that any of y2, A, or B are elements of G.
We begin by formally stating the traditional soundness property satisfied by this pro-

tocol.

Lemma 1. Assume y2 ∈ G, but there is no x with gx = y1 and hx = y2. Then for any
A, B sent by a cheating prover, there is at most one value of c for which the verifier will
accept.

Proof. For any c, s, the values gs y−c
1 and hs y−c

2 are elements of G. Hence the verifier
cannot possibly accept unless A, B ∈ G. We assume this from now on.

Say A, B ∈ G are such that the prover can send correct responses s1, s2 ∈ Zq to two
different challenges c1, c2 ∈ {0, 1}k . Then

A = gs1 y−c1
1 = gs2 y−c2

1 and B = hs1 y−c1
2 = hs2 y−c2

2 .

Noting that c1 − c2 �= 0 mod q, we have

g(s1−s2)·(c1−c2)
−1 modq = y1 and h(s1−s2)·(c1−c2)

−1 modq = y2,

contrary to the assumption of the lemma.

The above requires that y2 be an element of G, and typically it is simply assumed
that the verifier performs a group membership test to determine whether this is indeed
the case. For application to our first signature scheme, however, we want to avoid the
computational overhead of performing this test and so we generalize the preceding lemma
to the case when y2 �∈ G. In order for operations involving y2 to be well-defined, we

Efficient Signature Schemes with Tight Reductions to the Diffie–Hellman Problems 505

need to impose some limitations on G; these are necessary for the proof of security of
our first signature scheme as well. We remark, though, that the restrictions we impose
are fairly mild.

In the remainder of this section, we assume that G is a subgroup of prime order q of
a finite abelian group H with |H| = α · q and q � α. (For a concrete example, consider
the case where G is the order-q subgroup of Z∗p with p = αq + 1 and p prime.) By the
fundamental theorem for finite abelian groups, this means thatH is isomorphic toG×G′
for some abelian group G′ with |G′| = α. For arbitrary h ∈ H, define the projection of

h onto G by projG(h)
def= (hα)α

−1 modq . It is easy to verify that projG(h) ∈ G for any h;
projG(h

a) = projG(h)
a ; and if h ∈ G then projG(h) = h.

We also modify slightly the protocol described earlier: we now require the verifier to
test that y2 ∈ H. For our application (and cryptographically appropriate G,H) this will
typically be more efficient than testing whether y2 ∈ G. The appropriate analogue of the
previous lemma follows:

Lemma 2. Let g, h, y1 ∈ G and y2 ∈ H. Assume there is no x with gx = y1 and
hx = projG(y2). Then for any A, B sent by a cheating prover, there is at most one value
of c for which the verifier will accept.

Proof. For any c, s, the value gs y−c
1 is an element ofG, and hs y−c

2 is an element ofH.
Hence the verifier will not possibly accept unless A ∈ G and B ∈ H. We assume this
from now on.

Say A ∈ G and B ∈ H are such that the prover can send correct responses s1, s2 to
two different challenges c1, c2 ∈ {0, 1}k . Then

A = gs1 y−c1
1 = gs2 y−c2

1 and B = hs1 y−c1
2 = hs2 y−c2

2 ,

and so

gs1−s2 = yc1−c2
1 and hs1−s2 = yc1−c2

2 .

Since g, y1 ∈ G, we see that g(s1−s2)·(c1−c2)
−1 modq = y1. Taking the projection of both

sides of the second equation, and using the fact that hs1−s2 ∈ G, we obtain

hs1−s2 = projG(h
s1−s2) = projG(y

c1−c2
2) = projG(y2)

c1−c2 .

Since projG(y2) ∈ G, we conclude that h(s1−s2)·(c1−c2)
−1 modq = projG(y2), contrary to

the assumption of the lemma.

2.4. Random Oracles Mapping to Groups

Our first scheme requires a random oracle H ′mapping its inputs to elements in a groupG.
However, we would like to assume as a basic primitive only a random oracle H mapping
its inputs to bit-strings of some particular length, since standard cryptographic hash
functions output bit-strings, not group elements. We discuss a way to construct an H ′ as
desired in general, and then look at two specific examples.

Consider the general case of constructing a random oracle H ′ mapping to the range
Y , using as a building block a random oracle H mapping to the range X . To construct

506 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

H ′ from H , we take a deterministic function f : X → Y and define H ′(x) def= f (H(x)).
In order to prove this construction secure, it suffices to show an efficient simulator
Sim that can simulate an adversary’s access to H given access to H ′; that is, roughly
speaking, given a random output y ∈ Y from H ′, the simulator should be able to find a
random x ∈ X (supposedly output by H) such that f (x) = y. Formally, we require the
distributions

{y ← Y; x ← Sim(y): (x, y)} and {x ← X : (x, f (x))}

to be statistically indistinguishable. Note in particular that this implies f is invertible
(and furthermore it should be possible to choose a random element of f −1(y)), and
also implies that f (H(w)) is close-to-uniformly distributed when H(w) is uniformly
distributed.

As an example, consider (as in the previous section) the case where G is an order-q
subgroup (q prime) of an abelian groupHwith |H| = αq and q � α. We also assume that
it is possible to sample uniformly from elements ofH. Given a random oracle H mapping
toH, we can construct a random oracle H ′ mapping toG by setting H ′(w) = (H(w))α .
It is easy to see that H ′(w) is uniformly distributed in G when H(w) is uniformly
distributed in H. Furthermore, we can define a simulator Sim as follows: Sim(g) (for

g ∈ G) chooses random h ∈ H and outputs h̃
def= g(α

−1 modq) · hq . Note that h̃ is uniformly
distributed among those elements of H that satisfy h̃α = g.

As a second example, we consider the case of constructing a random oracle H ′mapping
to Z∗p (for p prime) using as a building block a random oracle H mapping to {0, 1}n .

Assuming8 n > |p|, one simple option is to define H ′(w) def= (H(w) mod (p − 1))+ 1.
Setting n = |p|+ k, it is not hard to show a simulator for which the statistical difference
between the relevant distributions (as defined above) is ≈ 2−k . A disadvantage of this
approach is that it results in an extra (additive) factor of ≈ qh · 2−k in the security
reduction for any scheme based on H ′, where qh is the number of hash queries to H ′.

A different approach that lends itself to a perfect simulation is as follows. (This
approach was suggested to us by an anonymous referee.) Say 2n = ν · (p− 1)+ r with
0 < r < p − 1, and view H as mapping onto integers in the range [1, ν · (p − 1)+ r].
By reducing modulo p − 1 and adding 1 as before, we obtain a distribution over Z∗p in

which elements in the range S
def= [2, r+1] occur slightly more frequently than elements

in the range Z∗p\S. One can correct for this (slight) bias by computing H ′(w) as follows:

1. Compute x = (H(0w) mod (p − 1)) + 1. If x �∈ S, output x and stop. If x ∈ S,
output x and stop with probability γ , but with probability 1 − γ continue to the
next iteration.

2. Compute x ′ = (H(1w) mod (p − 1))+ 1 and output x ′.

Setting γ appropriately, the output of the above algorithm will be uniformly distributed
inZ∗p. As the focus of our work is on designing signature schemes given a random oracle

8 It is easy to extend the length of the output of H using standard techniques; for example, to obtain a
random oracle Ĥ with output length 2n one can simply define Ĥ(w) = H(0w) ‖ H(1w), where “‖” denotes
concatenation.

Efficient Signature Schemes with Tight Reductions to the Diffie–Hellman Problems 507

mapping to G (and not on implementing such random oracles), we do not dwell on this
further.

We remark that, for our particular application, a “full-fledged” random oracle mapping
ontoG is not needed. In particular, if we are given a random oracle H mapping uniformly
onto an efficiently recognizable, dense subset S of G, we can simply use H itself in our
first scheme. The proof of security can be modified as follows: when simulating the
output of the random oracle (see the proof of Theorem 1) the simulator will repeatedly
sample random group elements until it finds one that lies in S. This increases the running
time of the simulator, but not its success probability.

3. A Signature Scheme Based on the CDH Problem

The scheme we present here was described informally in Section 1.3, and we provide a
formal description here. The scheme may be defined over any group G of prime order
q with generator g, though we assume (as discussed in Section 2.3) that G is an order-q
subgroup of an abelian group H with |H| = α · q and q � α. This assumption can be
removed by slightly modifying the scheme; see below.

In the description that follows, we assume for simplicity that H,G, q, α, and g are
publicly known and fixed; alternately, they may be computed during key generation and
included in the signer’s public key. We let H ′: {0, 1}∗ → G and H : {0, 1}∗ → {0, 1}k
be hash functions that will be modeled as random oracles (refer to Section 2.4 for a
discussion on constructing H ′).

Key generation Gen: Choose a random x ← Zq and compute y1 = gx . The public key
is y1 and the secret key is x .

Signature generation SignSK (m): If m has been signed before, output the previously
generated signature (below, we discuss some simple ways to avoid maintaining any
state). Otherwise:

1. Choose a random bit b.
2. Compute h = H ′(b,m) and y2 = hx .
3. Generate a non-interactive proof π that (g, h, y1, y2) is a Diffie–Hellman tuple.

Specifically:
(a) Choose random r ← Zq .
(b) Compute A = gr , B = hr , and “challenge” c = H(h, y2, A, B,m).
(c) Compute s = cx + r mod q and set π = (c, s).

The signature is (y2, π, b).

Signature verification VrfyP K (m, σ): Let P K = y1 and parse σ as (y2, π = (c, s), b)

where c ∈ {0, 1}k , s ∈ Zq , b ∈ {0, 1}, and y2 ∈ H. Then:

1. Compute h = H ′(b,m).
2. Compute A = gs y−c

1 and B = hs y−c
2 .

Output accept if and only if c
?= H(h, y2, A, B,m).

508 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

The scheme can be defined over an arbitrary group G by checking whether y2 ∈ G
during signature verification. Depending on the exact group under consideration, this
group membership test may impose significant additional cost.

Efficiency improvements. To avoid having the signer maintain a record of all previous
message/signature pairs, we can have the signer generate bm and r as (deterministic)
pseudorandom functions of the message m; this will result in the same signature being
generated each time a particular message is signed. Since we are working in the random
oracle model, the simplest implementation of this approach is to set (bm, r) = G(SK ,m)
where G is a random oracle independent from H and H ′. A modified proof shows that
there is essentially no loss in the security reduction by doing this: the only effect on the
proof below occurs in case the adversary makes the query G(SK , �), but we can modify
the algorithm below so that it explicitly checks all G-queries of the adversary and thus if
the adversary ever makes such a query the algorithm learns x (and can then easily solve
the CDH problem).

It is easy to see that the scheme is correct: since y1 = gx and y2 = hx , the verification
algorithm computes A = gs y−c

1 = gs−xc = gr , which is the same as the value of A used
by the signer (and similarly for B); thus, H(h, y2, A, B,m) = c and verification outputs
accept. We now prove security.

Theorem 1. Let G be as above, and assume G is a (t ′, ε′)-CDH group such that
exponentiation in G takes time t1 and simulating a query to H ′ (in the sense described
in Section 2.4) takes time t2. Then the above signature scheme is (t, qh, qs, ε)-secure in
the sense of unforgeability (in the random oracle model) for

t ≈ t ′ −O((qh + qs) · (t1 + t2))

ε = 2ε′ + (qh + 1)/2k .

(The bound on t is approximate because we do not count operations that are dominated
by group exponentiations.)

Proof. Assume we have an algorithm F that runs in time at most t , makes at most
qh hash queries (to either H or H ′) and at most qs signing queries, and outputs a
valid signature on a previously unsigned message with probability at least ε. We use
F to construct an algorithm A running in time ≈ t ′ that solves the CDH problem with
probability at least ε′. The stated result follows immediately since G is a (t ′, ε′)-CDH
group.

Recall we assume thatH,G, q, α, and a generator g ofG are fixed and publicly known.
Algorithm A is given as input (h, y1) ∈ G2; setting x = logg y1 (which is unknown to
A), the goal of A is to compute hx . A sets P K = y1 and runs F on input P K .

For a message m, we say queries H ′(�,m), SignSK (m), and H(�, �, �, �,m) are
relevant for m. Any time the first relevant query for some message m is made,A performs
the following steps before answering the query:

1. Choose a random bit bm and store (bm,m).
2. Choose random γm ∈ Zq , define hm = H ′(bm,m) = gγm , and store (bm,m, γm).

Efficient Signature Schemes with Tight Reductions to the Diffie–Hellman Problems 509

3. Compute y2 = yγm

1 and simulate a non-interactive proof—as discussed in Sec-
tion 1.3—that hx

m = y2. (Note that we do not assume hm �= 1.) Namely, choose
random c ∈ {0, 1}k and s ∈ Zq and compute A = gs y−c

1 and B = hs
m y−c

2 . Set
σm = (y2, c, s, bm), define H(hm, y2, A, B,m) = c, and store (sig,m, σm).

The above steps ensure thatA always has a valid signature for any message m for which
a relevant query has been asked.

We now describe how A simulates the signing and hash oracles for F :

Queries to H ′. In response to a query H ′(b,m), algorithmA first checks if the output
of H ′ on this input has been defined previously; note that this is always the case if b = bm

because of the steps performed by A when the first relevant query for m was made. If
so,A returns the previously assigned value. Otherwise, b = b̄m , andA chooses random
βm ∈ Zq , returns h · gβm as the hash output, and stores (b̄m,m, βm).

Queries to H . In response to a query H(�), algorithmA first checks if the output of H
on this input has been previously defined. If so,A returns the previously assigned value.
Otherwise, A responds with a value chosen uniformly at random from {0, 1}k .

Signing queries. IfF asks for a signature on a message m, algorithmA finds the stored
tuple of the form (sig,m, �); a unique tuple of this form exists (by construction of A)
and we let σm denote the value of the final element in this tuple. A returns σm .

At some point,F outputs its supposed forgery (m̂, σ̂ = (ŷ2, ĉ, ŝ, b̂)), whereF did not
previously request a signature on m̂. AlgorithmA checks whether: (1) VrfyP K (m̂, σ̂) =
accept, and (2) b̂ = b̄m̂ . (Note that A may be required to simulate additional queries
to H, H ′ in case F did not make the relevant queries itself.) If either of these do not
hold, then A simply aborts. Otherwise, A finds the stored tuple of the form (b̄m̂, m̂, �);
a unique such tuple exists (by construction of A), and we let βm̂ denote the value of
the final element in this tuple.A outputs projG(ŷ2)/yβm̂

1 (see Section 2.3 for a definition
of projG(·), and note that A can compute this since α is known). This completes the
description of A.

We first claim thatA provides a simulation forF whose distribution is identical to the
distribution on the view of F in a real interaction with a signer. To see this, note that:

1. Since g is a generator of G, the output of any query H ′(b,m)—regardless of
whether b = bm or not—is uniformly distributed in G as required.

2. The simulation of the H oracle is obviously perfect.
3. Consider the signature σ = (y2, c, s, bm) returned by A in response to a signing

query SignSK (m). Note that this signature is constructed by A at the time the
first relevant query for m was made. Clearly, bm is uniformly distributed. Letting
hm = H ′(bm,m) = gγm , we see that y2 = yγm

1 = (gx)γm = hx
m , just as in the real

experiment. Finally, (c, s) is distributed as in the real experiment by the honest-
verifier zero-knowledge property of the proof system.

Thus, the probability that F outputs a valid forgery in the simulated experiment is
exactly ε.

510 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

Assume F outputs a valid forgery (m̂, (ŷ2, ĉ, ŝ, b̂)), and let ĥ = H ′(b̂, m̂). We argue
that, with all but negligible probability, projG(ŷ2) = ĥx ; if so, say ŷ2 is good. Indeed, if
ŷ2 is not good then (using Lemma 2) for any A, B there is at most one possible value of c
for which there exists an s satisfying A = gs y−c

1 and B = ĥs ŷ−c
2 . If ŷ2 is not good, then,

for any hash query H(ĥ, ŷ2, A, B, m̂) made by F the probability that the query returns
a c for which there exists an s as above is at most 1/2k . It follows that the probability
that F outputs a valid forgery where ŷ2 is not good is at most (qh + 1)/2k . (The additive
factor of 1 occurs in case F did not query H(ĥ, ŷ2, gŝ y−ĉ

1 , ĥŝ ŷ−ĉ
2 , m̂) itself.) We

conclude that in the simulated experiment described above, F outputs a valid forgery
where ŷ2 is good with probability at least ε − (qh + 1)/2k .

Now, since F did not previously request a signature on m̂, the value of bm̂ is indepen-
dent of the view of F . So, the probability that F outputs a valid forgery such that ŷ2 is
good and also b̂ = b̄m̃ is at least 1/2 · (ε − (qh + 1)/2k). To finish the proof, we claim
that whenever this event occurs A outputs the correct solution to its given instance of
the CDH problem. To see this, note that when ŷ2 is good the output of A satisfies

projG
(
ŷ2
)
/yβm̂

1 = ĥx/yβm̂
1

= (hgβm̂)x/yβm̂
1 = hx ,

as desired.
We conclude that A outputs the correct solution with probability at least 1/2 · (ε −

(qh + 1)/2k) ≥ ε′. Examining the running time of A gives the result of the theorem.

We remark that the constant term in the expression for t in the theorem can be improved
by modifying the proof so that a signature on a message m is not computed by A at the
time of the first relevant query for m, but is instead computed by A only when F
actually requests a signature on m. This results in a slightly worse bound on ε (though
the difference is unimportant). We have decided not to present the proof in this way
because we believe the current proof is conceptually simpler, and anyway the bound on
t is only approximate since we do not take into account the complexity of all operations
of A.

4. A Signature Scheme Based on the DDH Problem

In the previous scheme, a message m is signed by mapping m to some group element
h, computing y2 = hx , and then proving that (g, h, y1, y2) is a Diffie–Hellman tuple.
Distilling out the intuition behind the proof of Theorem 1, we see that previous scheme
is secure under the CDH assumption since—given some h associated with a previously
unsigned message m—an adversary “must” produce y2 = hx in order to generate a
convincing proof that (g, h, y1, y2) is a Diffie–Hellman tuple (we ignore here the pos-
sibility that y2 �∈ G, which can be taken into account as described in the proof of
Theorem 1).

We notice here that if one is willing to base security of the scheme on the (stronger)
DDH assumption, it is unnecessary to generate a new h for each message; instead, the
public key can simply contain the fixed tuple (g, h, y1, y2) and a signature will consist

Efficient Signature Schemes with Tight Reductions to the Diffie–Hellman Problems 511

of a proof that this is a Diffie–Hellman tuple. The resulting scheme is more efficient than
the previous scheme.

As before, we assume that G is a cyclic group of prime order q with generator g; in
contrast to the previous section, G is otherwise completely arbitrary. Let H : {0, 1}∗ →
{0, 1}k be a hash function that will be modeled as a random oracle. Our second scheme
is defined as follows:

Key generation Gen: Choose a random h ∈ G and a random value x ← Zq . Compute
y1 = gx and y2 = hx . The public key is the Diffie–Hellman tuple P K = (h, y1, y2) and
the secret key is x .

Signature generation SignSK (m): If m has been signed before, output the previously
generated signature (we can avoid maintaining state exactly as discussed in the previous
section). Otherwise, generate a non-interactive proof—depending on m—that the public
key is a Diffie–Hellman tuple. Specifically:

1. Choose random r ← Zq .
2. Compute A = gr , B = hr , and “challenge” c = H(A, B,m).
3. Compute s = cx + r mod q and set π = (c, s).

The signature is π .

Signature verification VrfyP K (m, σ): Parse P K as (h, y1, y2) and σ as π = (c, s)

where c ∈ {0, 1}k and s ∈ Zq . Compute A = gs y−c
1 and B = hs y−c

2 ; output accept if

and only if c
?= H(A, B,m).

We remark that, in contrast to the previous scheme, the present scheme can be proven
secure even if the same message is signed multiple times using independent randomness
(i.e., it is not strictly necessary for the signing algorithm to check whether the given
message was signed previously). We have chosen to present the scheme as we did
because the security reduction is slightly9 tighter; the proof is a bit simpler; and the
overhead of making signature generation deterministic is not (in general) significant.

It is not hard to see that the scheme is correct. We now prove security.

Theorem 2. Let G be as above, and assume G is a (t ′, ε′)-DDH group such that
exponentiation in G takes time t1. Then the above signature scheme is (t, qh, qs, ε)-
secure in the sense of strong unforgeability (in the random oracle model) for

t ≈ t ′ −O(qs · t1),
ε = ε′ + (qh + 1)/q + (qh + 1)/2k .

(The bound on t is approximate because we do not count operations that are dominated
by group exponentiations.)

9 If messages are signed multiple times, the same reduction as in the proof of the following theorem gives
ε = ε′ + (qsqh + 1)/q + (qh + 1)/2k .

512 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

Proof. Assume we have an algorithm F that runs in time at most t , makes at most qh

hash queries and at most qs signing queries, and outputs a new, valid message/signature
pair with probability at least ε. We useF to construct an algorithmD running in time≈ t ′

which solves the DDH problem with probability ε′. The stated result follows immediately
since G is a (t ′, ε′)-DDH group.

AlgorithmD is given as input a tuple (g, h, y1, y2); its goal, informally, is to determine
whether this is a random tuple or a Diffie–Hellman tuple (see Section 2.2). To this end,
it sets P K = (h, y1, y2) and runs F on input P K . Algorithm D simulates the signing
and hash oracle for F as follows:

Hash queries. In response to a query H(A, B,m), algorithmD first checks if the output
of H on this input has been previously defined (either directly by a previous hash query
or as part of a signature query). If so,D returns the previously assigned value. Otherwise,
D responds with a value chosen uniformly at random from {0, 1}k .

Signing queries. When F asks for a signature on message m, algorithmD first checks
if this message was signed before; if so, D outputs the previously generated signature.
Otherwise, D attempts to simulate a proof that (g, h, y1, y2) is a DDH tuple as follows:
D chooses random c ∈ {0, 1}k and s ∈ Zq , and computes A = gs y−c

1 and B = hs y−c
2 . If

H had previously been queried on input (A, B,m) and H(A, B,m) �= c, then D aborts
(and outputs 0); otherwise, D sets H(A, B,m) = c (if it was not set this way already)
and outputs the signature (c, s)

At some point, F outputs its forgery (m̃, σ̃ = (c̃, s̃)) where σ̃ was not previously the
response to a query SignSK (m̃). If VrfyP K (m̃, σ̃) = 1, then D outputs 1; otherwise, D
outputs 0. (Note that verifying the signature may require D to simulate an additional
query to H .)

We first analyze the probability thatD outputs 1 when (g, h, y1, y2) is a Diffie–Hellman
tuple. In this case,D provides a simulation forF whose distribution is statistically close
to the distribution from the view ofF during a real interaction with a signer, with the only
difference arising in case A aborts when answering a signing query. When answering
any particular query SignSK (m), the probability thatD aborts is at most qh(m)/q, where
qh(m) is the number of H -queries made by F of the form H(�, �,m). Furthermore,
this only applies the first time this signature query is made, as D simply outputs the
previous signature if another signature is requested on the same message m. As in
the proof of Theorem 1, we can upper-bound the probability that D aborts by qh/q.
It follows that F outputs a valid forgery (and hence D outputs 1) with probability at
least ε − qh/q .

On the other hand, if (g, h, y1, y2) is a random tuple, then it is not a Diffie–Hellman
tuple with probability 1 − 1/q. In this case, for any A, B and any query H(A, B,m)
made by F it follows from Lemma 1 that there is at most one possible value of c for
which there exists an s satisfying A = gs y−c

1 and B = hs y−c
2 . Thus,F outputs a forgery

(and henceD outputs 1) with probability at most 1/q + (qh + 1)/2k . (As in the previous
proof, the additive factor of 1 occurs in case F did not make the relevant H -query for
its forgery.)

Efficient Signature Schemes with Tight Reductions to the Diffie–Hellman Problems 513

Putting everything together, we see that

|Pr[x, y ← Zq : D(g, gx , gy, gxy) = 1]− Pr[x, y, z← Zq : D(g, gx , gy, gz) = 1]|
≥ ε − (qh + 1)/q − (qh + 1)/2k

≥ ε′.

Examining the running time of D gives the result of the theorem.

Acknowledgments

We thank Benoı̂t Chevallier-Mames and the anonymous referees for their helpful com-
ments on earlier drafts of this paper.

References

[1] Advances in Cryptology—Crypto ’89. Volume 435 of Lecture Notes in Computer Science. Springer,
Berlin, 1990.

[2] Advances in Cryptology—Crypto 2005. Volume 3621 of Lecture Notes in Computer Science. Springer,
Berlin, 2005.

[3] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols.
In ACM Conference on Computer and Communications Security, pages 62–73. ACM, New York, 1993.

[4] M. Bellare and P. Rogaway. The exact security of digital signatures—how to sign with RSA and Rabin.
In Advances in Cryptology—Eurocrypt ’96, pages 399–416. Volume 1070 of Lecture Notes in Computer
Science. Springer, Berlin, 1996.

[5] D. Boneh. The decision Diffie-Hellman problem. In Algorithmic Number Theory, 3rd International
Symposium, pages 48–63. Volume 1423 of Lecture Notes in Computer Science. Springer, Berlin, 1998.

[6] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput., 32(3):586–
615, 2003.

[7] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In Advances in Cryptology—
Asiacrypt 2001, pages 514–532. Volume 2248 of Lecture Notes in Computer Science. Springer, Berlin,
2001.

[8] E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design validations for discrete logarithm based
signature schemes. In Public-Key Cryptography, pages 276–292. Volume 1751 of Lecture Notes in
Computer Science. Springer, Berlin, 2000.

[9] J. Camenisch and M. Stadler. Proof systems for general statements about discrete logarithms. Technical
Report 260, Institute for Theoretical Computer Science, ETH Zurich, 1997.

[10] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J. ACM, 51(4):557–
594, 2004.

[11] D. Chaum and H. Van Antwerpen. Undeniable signatures. In Advances in Cryptology—Crypto ’89 [1],
pages 212–216.

[12] D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for demonstrating possession of
discrete logarithms and some generalizations. In Advances in Cryptology—Eurocrypt ’87, pages 127–142.
Volume 304 of Lecture Notes in Computer Science. Springer, Berlin, 1988.

[13] D. Chaum and T. Pedersen. Wallet databases with observers. In Advances in Cryptology—Crypto ’92,
pages 89–105. Volume 740 of Lecture Notes in Computer Science. Springer, Berlin, 1993.

[14] B. Chevallier-Mames. An efficient CDH-based signature scheme with a tight security reduction. In
Advances in Cryptology—Crypto 2005 [2], pages 511–526.

[15] J.-S. Coron. On the exact security of full-domain hash. In Advances in Cryptology—Crypto 2000, pages
229–235. Volume 1880 of Lecture Notes in Computer Science. Springer, Berlin, 2000.

514 E.-J. Goh, S. Jarecki, J. Katz, and N. Wang

[16] J.-S. Coron. Optimal security proofs for PSS and other signature schemes. In Advances in Cryptology—
Eurocrypt 2002, pages 272–287. Volume 2332 of Lecture Notes in Computer Science. Springer, Berlin,
2002.

[17] R. Cramer and I. Damgrd. Secure signature schemes based on interactive protocols. In Advances in
Cryptology—Crypto ’95, pages 297–310. Volume 963 of Lecture Notes in Computer Science. Springer,
Berlin, 1995.

[18] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory, 22(6):644–654,
1976.

[19] Y. Dodis and L. Reyzin. On the power of claw-free permutations. In Security in Communication Networks
(SCN 2002), pages 55–73. Volume 2576 of Lecture Notes in Computer Science. Springer, Berlin, 2003.

[20] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature problems.
In Advances in Cryptology—Crypto ’86, pages 186–194. Volume 263 of Lecture Notes in Computer
Science. Springer, Berlin, 1987.

[21] M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In
Advances in Cryptology—Crypto 2005 [2], pages 152–168.

[22] T. El Gamal. A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Trans. Inform. Theory, 31(4):469–472, 1985.

[23] E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie–Hellman problem. In Advances
in Cryptology—Eurocrypt 2003, volume 2656 of Lecture Notes in Computer Science, pages 401–415.
Springer, 2003.

[24] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[25] A. Joux and K. Nguyen. Separating decision Diffie–Hellman from Diffie–Hellman in cryptographic
groups. Available at http://eprint.iacr.org/2001/003.

[26] J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security reductions. In
Proceedings of the 10th ACM Conference on Computer and Communications Security, pages 155–164,
2003.

[27] U. Maurer and S. Wolf. The Diffie-Hellman protocol. Des. Codes, Cryptogr., 19(2/3):147–171, 2000.
[28] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography. CRC Press,

Boca Raton, FL, 1997.
[29] S. Micali and L. Reyzin. Improving the exact security of digital signature schemes. J. Cryptology,

15(1):1–18, 2002.
[30] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. J. Cryptology,

13(3):361–396, 2000.
[31] C.-P. Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptology—Crypto

’89 [1], pages 239–252.
[32] V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances in Cryptology—

Eurocrypt ’97, pages 256–266. Volume 1233 of Lecture Notes in Computer Science. Springer, Berlin,
1997.

[33] U.S. Department of Commerce/National Institute of Standards and Technology. Digital Signature Stan-
dard, 2000. Federal Information Processing Standards, publication #186-2.

